]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
Merge tag 'char-misc-3.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197 }
198
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->start = -1UL;
210 tlb->end = 0;
211 tlb->need_flush = 0;
212 tlb->fast_mode = (num_possible_cpus() == 1);
213 tlb->local.next = NULL;
214 tlb->local.nr = 0;
215 tlb->local.max = ARRAY_SIZE(tlb->__pages);
216 tlb->active = &tlb->local;
217
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 tlb->batch = NULL;
220 #endif
221 }
222
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225 struct mmu_gather_batch *batch;
226
227 if (!tlb->need_flush)
228 return;
229 tlb->need_flush = 0;
230 tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 tlb_table_flush(tlb);
233 #endif
234
235 if (tlb_fast_mode(tlb))
236 return;
237
238 for (batch = &tlb->local; batch; batch = batch->next) {
239 free_pages_and_swap_cache(batch->pages, batch->nr);
240 batch->nr = 0;
241 }
242 tlb->active = &tlb->local;
243 }
244
245 /* tlb_finish_mmu
246 * Called at the end of the shootdown operation to free up any resources
247 * that were required.
248 */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251 struct mmu_gather_batch *batch, *next;
252
253 tlb->start = start;
254 tlb->end = end;
255 tlb_flush_mmu(tlb);
256
257 /* keep the page table cache within bounds */
258 check_pgt_cache();
259
260 for (batch = tlb->local.next; batch; batch = next) {
261 next = batch->next;
262 free_pages((unsigned long)batch, 0);
263 }
264 tlb->local.next = NULL;
265 }
266
267 /* __tlb_remove_page
268 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269 * handling the additional races in SMP caused by other CPUs caching valid
270 * mappings in their TLBs. Returns the number of free page slots left.
271 * When out of page slots we must call tlb_flush_mmu().
272 */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275 struct mmu_gather_batch *batch;
276
277 VM_BUG_ON(!tlb->need_flush);
278
279 if (tlb_fast_mode(tlb)) {
280 free_page_and_swap_cache(page);
281 return 1; /* avoid calling tlb_flush_mmu() */
282 }
283
284 batch = tlb->active;
285 batch->pages[batch->nr++] = page;
286 if (batch->nr == batch->max) {
287 if (!tlb_next_batch(tlb))
288 return 0;
289 batch = tlb->active;
290 }
291 VM_BUG_ON(batch->nr > batch->max);
292
293 return batch->max - batch->nr;
294 }
295
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299
300 /*
301 * See the comment near struct mmu_table_batch.
302 */
303
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 /* Simply deliver the interrupt */
307 }
308
309 static void tlb_remove_table_one(void *table)
310 {
311 /*
312 * This isn't an RCU grace period and hence the page-tables cannot be
313 * assumed to be actually RCU-freed.
314 *
315 * It is however sufficient for software page-table walkers that rely on
316 * IRQ disabling. See the comment near struct mmu_table_batch.
317 */
318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 __tlb_remove_table(table);
320 }
321
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 struct mmu_table_batch *batch;
325 int i;
326
327 batch = container_of(head, struct mmu_table_batch, rcu);
328
329 for (i = 0; i < batch->nr; i++)
330 __tlb_remove_table(batch->tables[i]);
331
332 free_page((unsigned long)batch);
333 }
334
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 struct mmu_table_batch **batch = &tlb->batch;
338
339 if (*batch) {
340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 *batch = NULL;
342 }
343 }
344
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 struct mmu_table_batch **batch = &tlb->batch;
348
349 tlb->need_flush = 1;
350
351 /*
352 * When there's less then two users of this mm there cannot be a
353 * concurrent page-table walk.
354 */
355 if (atomic_read(&tlb->mm->mm_users) < 2) {
356 __tlb_remove_table(table);
357 return;
358 }
359
360 if (*batch == NULL) {
361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 if (*batch == NULL) {
363 tlb_remove_table_one(table);
364 return;
365 }
366 (*batch)->nr = 0;
367 }
368 (*batch)->tables[(*batch)->nr++] = table;
369 if ((*batch)->nr == MAX_TABLE_BATCH)
370 tlb_table_flush(tlb);
371 }
372
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374
375 /*
376 * If a p?d_bad entry is found while walking page tables, report
377 * the error, before resetting entry to p?d_none. Usually (but
378 * very seldom) called out from the p?d_none_or_clear_bad macros.
379 */
380
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 pgd_ERROR(*pgd);
384 pgd_clear(pgd);
385 }
386
387 void pud_clear_bad(pud_t *pud)
388 {
389 pud_ERROR(*pud);
390 pud_clear(pud);
391 }
392
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 pmd_ERROR(*pmd);
396 pmd_clear(pmd);
397 }
398
399 /*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
405 {
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 tlb->mm->nr_ptes--;
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
415 {
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
419
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
428
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
436 }
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
443 }
444
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
448 {
449 pud_t *pud;
450 unsigned long next;
451 unsigned long start;
452
453 start = addr;
454 pud = pud_offset(pgd, addr);
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 } while (pud++, addr = next, addr != end);
461
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
469 }
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
475 pud_free_tlb(tlb, pud, start);
476 }
477
478 /*
479 * This function frees user-level page tables of a process.
480 *
481 * Must be called with pagetable lock held.
482 */
483 void free_pgd_range(struct mmu_gather *tlb,
484 unsigned long addr, unsigned long end,
485 unsigned long floor, unsigned long ceiling)
486 {
487 pgd_t *pgd;
488 unsigned long next;
489
490 /*
491 * The next few lines have given us lots of grief...
492 *
493 * Why are we testing PMD* at this top level? Because often
494 * there will be no work to do at all, and we'd prefer not to
495 * go all the way down to the bottom just to discover that.
496 *
497 * Why all these "- 1"s? Because 0 represents both the bottom
498 * of the address space and the top of it (using -1 for the
499 * top wouldn't help much: the masks would do the wrong thing).
500 * The rule is that addr 0 and floor 0 refer to the bottom of
501 * the address space, but end 0 and ceiling 0 refer to the top
502 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 * that end 0 case should be mythical).
504 *
505 * Wherever addr is brought up or ceiling brought down, we must
506 * be careful to reject "the opposite 0" before it confuses the
507 * subsequent tests. But what about where end is brought down
508 * by PMD_SIZE below? no, end can't go down to 0 there.
509 *
510 * Whereas we round start (addr) and ceiling down, by different
511 * masks at different levels, in order to test whether a table
512 * now has no other vmas using it, so can be freed, we don't
513 * bother to round floor or end up - the tests don't need that.
514 */
515
516 addr &= PMD_MASK;
517 if (addr < floor) {
518 addr += PMD_SIZE;
519 if (!addr)
520 return;
521 }
522 if (ceiling) {
523 ceiling &= PMD_MASK;
524 if (!ceiling)
525 return;
526 }
527 if (end - 1 > ceiling - 1)
528 end -= PMD_SIZE;
529 if (addr > end - 1)
530 return;
531
532 pgd = pgd_offset(tlb->mm, addr);
533 do {
534 next = pgd_addr_end(addr, end);
535 if (pgd_none_or_clear_bad(pgd))
536 continue;
537 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 } while (pgd++, addr = next, addr != end);
539 }
540
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 unsigned long floor, unsigned long ceiling)
543 {
544 while (vma) {
545 struct vm_area_struct *next = vma->vm_next;
546 unsigned long addr = vma->vm_start;
547
548 /*
549 * Hide vma from rmap and truncate_pagecache before freeing
550 * pgtables
551 */
552 unlink_anon_vmas(vma);
553 unlink_file_vma(vma);
554
555 if (is_vm_hugetlb_page(vma)) {
556 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 } else {
559 /*
560 * Optimization: gather nearby vmas into one call down
561 */
562 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 && !is_vm_hugetlb_page(next)) {
564 vma = next;
565 next = vma->vm_next;
566 unlink_anon_vmas(vma);
567 unlink_file_vma(vma);
568 }
569 free_pgd_range(tlb, addr, vma->vm_end,
570 floor, next? next->vm_start: ceiling);
571 }
572 vma = next;
573 }
574 }
575
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 pmd_t *pmd, unsigned long address)
578 {
579 pgtable_t new = pte_alloc_one(mm, address);
580 int wait_split_huge_page;
581 if (!new)
582 return -ENOMEM;
583
584 /*
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
588 *
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
596 */
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599 spin_lock(&mm->page_table_lock);
600 wait_split_huge_page = 0;
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 mm->nr_ptes++;
603 pmd_populate(mm, pmd, new);
604 new = NULL;
605 } else if (unlikely(pmd_trans_splitting(*pmd)))
606 wait_split_huge_page = 1;
607 spin_unlock(&mm->page_table_lock);
608 if (new)
609 pte_free(mm, new);
610 if (wait_split_huge_page)
611 wait_split_huge_page(vma->anon_vma, pmd);
612 return 0;
613 }
614
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 if (!new)
619 return -ENOMEM;
620
621 smp_wmb(); /* See comment in __pte_alloc */
622
623 spin_lock(&init_mm.page_table_lock);
624 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
625 pmd_populate_kernel(&init_mm, pmd, new);
626 new = NULL;
627 } else
628 VM_BUG_ON(pmd_trans_splitting(*pmd));
629 spin_unlock(&init_mm.page_table_lock);
630 if (new)
631 pte_free_kernel(&init_mm, new);
632 return 0;
633 }
634
635 static inline void init_rss_vec(int *rss)
636 {
637 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 int i;
643
644 if (current->mm == mm)
645 sync_mm_rss(mm);
646 for (i = 0; i < NR_MM_COUNTERS; i++)
647 if (rss[i])
648 add_mm_counter(mm, i, rss[i]);
649 }
650
651 /*
652 * This function is called to print an error when a bad pte
653 * is found. For example, we might have a PFN-mapped pte in
654 * a region that doesn't allow it.
655 *
656 * The calling function must still handle the error.
657 */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 pte_t pte, struct page *page)
660 {
661 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 pud_t *pud = pud_offset(pgd, addr);
663 pmd_t *pmd = pmd_offset(pud, addr);
664 struct address_space *mapping;
665 pgoff_t index;
666 static unsigned long resume;
667 static unsigned long nr_shown;
668 static unsigned long nr_unshown;
669
670 /*
671 * Allow a burst of 60 reports, then keep quiet for that minute;
672 * or allow a steady drip of one report per second.
673 */
674 if (nr_shown == 60) {
675 if (time_before(jiffies, resume)) {
676 nr_unshown++;
677 return;
678 }
679 if (nr_unshown) {
680 printk(KERN_ALERT
681 "BUG: Bad page map: %lu messages suppressed\n",
682 nr_unshown);
683 nr_unshown = 0;
684 }
685 nr_shown = 0;
686 }
687 if (nr_shown++ == 0)
688 resume = jiffies + 60 * HZ;
689
690 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 index = linear_page_index(vma, addr);
692
693 printk(KERN_ALERT
694 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
695 current->comm,
696 (long long)pte_val(pte), (long long)pmd_val(*pmd));
697 if (page)
698 dump_page(page);
699 printk(KERN_ALERT
700 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 /*
703 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 */
705 if (vma->vm_ops)
706 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 (unsigned long)vma->vm_ops->fault);
708 if (vma->vm_file && vma->vm_file->f_op)
709 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 (unsigned long)vma->vm_file->f_op->mmap);
711 dump_stack();
712 add_taint(TAINT_BAD_PAGE);
713 }
714
715 static inline bool is_cow_mapping(vm_flags_t flags)
716 {
717 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719
720 /*
721 * vm_normal_page -- This function gets the "struct page" associated with a pte.
722 *
723 * "Special" mappings do not wish to be associated with a "struct page" (either
724 * it doesn't exist, or it exists but they don't want to touch it). In this
725 * case, NULL is returned here. "Normal" mappings do have a struct page.
726 *
727 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
728 * pte bit, in which case this function is trivial. Secondly, an architecture
729 * may not have a spare pte bit, which requires a more complicated scheme,
730 * described below.
731 *
732 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
733 * special mapping (even if there are underlying and valid "struct pages").
734 * COWed pages of a VM_PFNMAP are always normal.
735 *
736 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
737 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
738 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
739 * mapping will always honor the rule
740 *
741 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
742 *
743 * And for normal mappings this is false.
744 *
745 * This restricts such mappings to be a linear translation from virtual address
746 * to pfn. To get around this restriction, we allow arbitrary mappings so long
747 * as the vma is not a COW mapping; in that case, we know that all ptes are
748 * special (because none can have been COWed).
749 *
750 *
751 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
752 *
753 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
754 * page" backing, however the difference is that _all_ pages with a struct
755 * page (that is, those where pfn_valid is true) are refcounted and considered
756 * normal pages by the VM. The disadvantage is that pages are refcounted
757 * (which can be slower and simply not an option for some PFNMAP users). The
758 * advantage is that we don't have to follow the strict linearity rule of
759 * PFNMAP mappings in order to support COWable mappings.
760 *
761 */
762 #ifdef __HAVE_ARCH_PTE_SPECIAL
763 # define HAVE_PTE_SPECIAL 1
764 #else
765 # define HAVE_PTE_SPECIAL 0
766 #endif
767 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
768 pte_t pte)
769 {
770 unsigned long pfn = pte_pfn(pte);
771
772 if (HAVE_PTE_SPECIAL) {
773 if (likely(!pte_special(pte)))
774 goto check_pfn;
775 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
776 return NULL;
777 if (!is_zero_pfn(pfn))
778 print_bad_pte(vma, addr, pte, NULL);
779 return NULL;
780 }
781
782 /* !HAVE_PTE_SPECIAL case follows: */
783
784 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
785 if (vma->vm_flags & VM_MIXEDMAP) {
786 if (!pfn_valid(pfn))
787 return NULL;
788 goto out;
789 } else {
790 unsigned long off;
791 off = (addr - vma->vm_start) >> PAGE_SHIFT;
792 if (pfn == vma->vm_pgoff + off)
793 return NULL;
794 if (!is_cow_mapping(vma->vm_flags))
795 return NULL;
796 }
797 }
798
799 if (is_zero_pfn(pfn))
800 return NULL;
801 check_pfn:
802 if (unlikely(pfn > highest_memmap_pfn)) {
803 print_bad_pte(vma, addr, pte, NULL);
804 return NULL;
805 }
806
807 /*
808 * NOTE! We still have PageReserved() pages in the page tables.
809 * eg. VDSO mappings can cause them to exist.
810 */
811 out:
812 return pfn_to_page(pfn);
813 }
814
815 /*
816 * copy one vm_area from one task to the other. Assumes the page tables
817 * already present in the new task to be cleared in the whole range
818 * covered by this vma.
819 */
820
821 static inline unsigned long
822 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
823 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
824 unsigned long addr, int *rss)
825 {
826 unsigned long vm_flags = vma->vm_flags;
827 pte_t pte = *src_pte;
828 struct page *page;
829
830 /* pte contains position in swap or file, so copy. */
831 if (unlikely(!pte_present(pte))) {
832 if (!pte_file(pte)) {
833 swp_entry_t entry = pte_to_swp_entry(pte);
834
835 if (swap_duplicate(entry) < 0)
836 return entry.val;
837
838 /* make sure dst_mm is on swapoff's mmlist. */
839 if (unlikely(list_empty(&dst_mm->mmlist))) {
840 spin_lock(&mmlist_lock);
841 if (list_empty(&dst_mm->mmlist))
842 list_add(&dst_mm->mmlist,
843 &src_mm->mmlist);
844 spin_unlock(&mmlist_lock);
845 }
846 if (likely(!non_swap_entry(entry)))
847 rss[MM_SWAPENTS]++;
848 else if (is_migration_entry(entry)) {
849 page = migration_entry_to_page(entry);
850
851 if (PageAnon(page))
852 rss[MM_ANONPAGES]++;
853 else
854 rss[MM_FILEPAGES]++;
855
856 if (is_write_migration_entry(entry) &&
857 is_cow_mapping(vm_flags)) {
858 /*
859 * COW mappings require pages in both
860 * parent and child to be set to read.
861 */
862 make_migration_entry_read(&entry);
863 pte = swp_entry_to_pte(entry);
864 set_pte_at(src_mm, addr, src_pte, pte);
865 }
866 }
867 }
868 goto out_set_pte;
869 }
870
871 /*
872 * If it's a COW mapping, write protect it both
873 * in the parent and the child
874 */
875 if (is_cow_mapping(vm_flags)) {
876 ptep_set_wrprotect(src_mm, addr, src_pte);
877 pte = pte_wrprotect(pte);
878 }
879
880 /*
881 * If it's a shared mapping, mark it clean in
882 * the child
883 */
884 if (vm_flags & VM_SHARED)
885 pte = pte_mkclean(pte);
886 pte = pte_mkold(pte);
887
888 page = vm_normal_page(vma, addr, pte);
889 if (page) {
890 get_page(page);
891 page_dup_rmap(page);
892 if (PageAnon(page))
893 rss[MM_ANONPAGES]++;
894 else
895 rss[MM_FILEPAGES]++;
896 }
897
898 out_set_pte:
899 set_pte_at(dst_mm, addr, dst_pte, pte);
900 return 0;
901 }
902
903 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
904 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
905 unsigned long addr, unsigned long end)
906 {
907 pte_t *orig_src_pte, *orig_dst_pte;
908 pte_t *src_pte, *dst_pte;
909 spinlock_t *src_ptl, *dst_ptl;
910 int progress = 0;
911 int rss[NR_MM_COUNTERS];
912 swp_entry_t entry = (swp_entry_t){0};
913
914 again:
915 init_rss_vec(rss);
916
917 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
918 if (!dst_pte)
919 return -ENOMEM;
920 src_pte = pte_offset_map(src_pmd, addr);
921 src_ptl = pte_lockptr(src_mm, src_pmd);
922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
923 orig_src_pte = src_pte;
924 orig_dst_pte = dst_pte;
925 arch_enter_lazy_mmu_mode();
926
927 do {
928 /*
929 * We are holding two locks at this point - either of them
930 * could generate latencies in another task on another CPU.
931 */
932 if (progress >= 32) {
933 progress = 0;
934 if (need_resched() ||
935 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
936 break;
937 }
938 if (pte_none(*src_pte)) {
939 progress++;
940 continue;
941 }
942 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
943 vma, addr, rss);
944 if (entry.val)
945 break;
946 progress += 8;
947 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
948
949 arch_leave_lazy_mmu_mode();
950 spin_unlock(src_ptl);
951 pte_unmap(orig_src_pte);
952 add_mm_rss_vec(dst_mm, rss);
953 pte_unmap_unlock(orig_dst_pte, dst_ptl);
954 cond_resched();
955
956 if (entry.val) {
957 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
958 return -ENOMEM;
959 progress = 0;
960 }
961 if (addr != end)
962 goto again;
963 return 0;
964 }
965
966 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
967 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
968 unsigned long addr, unsigned long end)
969 {
970 pmd_t *src_pmd, *dst_pmd;
971 unsigned long next;
972
973 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
974 if (!dst_pmd)
975 return -ENOMEM;
976 src_pmd = pmd_offset(src_pud, addr);
977 do {
978 next = pmd_addr_end(addr, end);
979 if (pmd_trans_huge(*src_pmd)) {
980 int err;
981 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
982 err = copy_huge_pmd(dst_mm, src_mm,
983 dst_pmd, src_pmd, addr, vma);
984 if (err == -ENOMEM)
985 return -ENOMEM;
986 if (!err)
987 continue;
988 /* fall through */
989 }
990 if (pmd_none_or_clear_bad(src_pmd))
991 continue;
992 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
993 vma, addr, next))
994 return -ENOMEM;
995 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
996 return 0;
997 }
998
999 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1001 unsigned long addr, unsigned long end)
1002 {
1003 pud_t *src_pud, *dst_pud;
1004 unsigned long next;
1005
1006 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1007 if (!dst_pud)
1008 return -ENOMEM;
1009 src_pud = pud_offset(src_pgd, addr);
1010 do {
1011 next = pud_addr_end(addr, end);
1012 if (pud_none_or_clear_bad(src_pud))
1013 continue;
1014 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1015 vma, addr, next))
1016 return -ENOMEM;
1017 } while (dst_pud++, src_pud++, addr = next, addr != end);
1018 return 0;
1019 }
1020
1021 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022 struct vm_area_struct *vma)
1023 {
1024 pgd_t *src_pgd, *dst_pgd;
1025 unsigned long next;
1026 unsigned long addr = vma->vm_start;
1027 unsigned long end = vma->vm_end;
1028 unsigned long mmun_start; /* For mmu_notifiers */
1029 unsigned long mmun_end; /* For mmu_notifiers */
1030 bool is_cow;
1031 int ret;
1032
1033 /*
1034 * Don't copy ptes where a page fault will fill them correctly.
1035 * Fork becomes much lighter when there are big shared or private
1036 * readonly mappings. The tradeoff is that copy_page_range is more
1037 * efficient than faulting.
1038 */
1039 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1040 VM_PFNMAP | VM_MIXEDMAP))) {
1041 if (!vma->anon_vma)
1042 return 0;
1043 }
1044
1045 if (is_vm_hugetlb_page(vma))
1046 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1047
1048 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1049 /*
1050 * We do not free on error cases below as remove_vma
1051 * gets called on error from higher level routine
1052 */
1053 ret = track_pfn_copy(vma);
1054 if (ret)
1055 return ret;
1056 }
1057
1058 /*
1059 * We need to invalidate the secondary MMU mappings only when
1060 * there could be a permission downgrade on the ptes of the
1061 * parent mm. And a permission downgrade will only happen if
1062 * is_cow_mapping() returns true.
1063 */
1064 is_cow = is_cow_mapping(vma->vm_flags);
1065 mmun_start = addr;
1066 mmun_end = end;
1067 if (is_cow)
1068 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1069 mmun_end);
1070
1071 ret = 0;
1072 dst_pgd = pgd_offset(dst_mm, addr);
1073 src_pgd = pgd_offset(src_mm, addr);
1074 do {
1075 next = pgd_addr_end(addr, end);
1076 if (pgd_none_or_clear_bad(src_pgd))
1077 continue;
1078 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1079 vma, addr, next))) {
1080 ret = -ENOMEM;
1081 break;
1082 }
1083 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1084
1085 if (is_cow)
1086 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1087 return ret;
1088 }
1089
1090 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1091 struct vm_area_struct *vma, pmd_t *pmd,
1092 unsigned long addr, unsigned long end,
1093 struct zap_details *details)
1094 {
1095 struct mm_struct *mm = tlb->mm;
1096 int force_flush = 0;
1097 int rss[NR_MM_COUNTERS];
1098 spinlock_t *ptl;
1099 pte_t *start_pte;
1100 pte_t *pte;
1101
1102 again:
1103 init_rss_vec(rss);
1104 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1105 pte = start_pte;
1106 arch_enter_lazy_mmu_mode();
1107 do {
1108 pte_t ptent = *pte;
1109 if (pte_none(ptent)) {
1110 continue;
1111 }
1112
1113 if (pte_present(ptent)) {
1114 struct page *page;
1115
1116 page = vm_normal_page(vma, addr, ptent);
1117 if (unlikely(details) && page) {
1118 /*
1119 * unmap_shared_mapping_pages() wants to
1120 * invalidate cache without truncating:
1121 * unmap shared but keep private pages.
1122 */
1123 if (details->check_mapping &&
1124 details->check_mapping != page->mapping)
1125 continue;
1126 /*
1127 * Each page->index must be checked when
1128 * invalidating or truncating nonlinear.
1129 */
1130 if (details->nonlinear_vma &&
1131 (page->index < details->first_index ||
1132 page->index > details->last_index))
1133 continue;
1134 }
1135 ptent = ptep_get_and_clear_full(mm, addr, pte,
1136 tlb->fullmm);
1137 tlb_remove_tlb_entry(tlb, pte, addr);
1138 if (unlikely(!page))
1139 continue;
1140 if (unlikely(details) && details->nonlinear_vma
1141 && linear_page_index(details->nonlinear_vma,
1142 addr) != page->index)
1143 set_pte_at(mm, addr, pte,
1144 pgoff_to_pte(page->index));
1145 if (PageAnon(page))
1146 rss[MM_ANONPAGES]--;
1147 else {
1148 if (pte_dirty(ptent))
1149 set_page_dirty(page);
1150 if (pte_young(ptent) &&
1151 likely(!VM_SequentialReadHint(vma)))
1152 mark_page_accessed(page);
1153 rss[MM_FILEPAGES]--;
1154 }
1155 page_remove_rmap(page);
1156 if (unlikely(page_mapcount(page) < 0))
1157 print_bad_pte(vma, addr, ptent, page);
1158 force_flush = !__tlb_remove_page(tlb, page);
1159 if (force_flush)
1160 break;
1161 continue;
1162 }
1163 /*
1164 * If details->check_mapping, we leave swap entries;
1165 * if details->nonlinear_vma, we leave file entries.
1166 */
1167 if (unlikely(details))
1168 continue;
1169 if (pte_file(ptent)) {
1170 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1171 print_bad_pte(vma, addr, ptent, NULL);
1172 } else {
1173 swp_entry_t entry = pte_to_swp_entry(ptent);
1174
1175 if (!non_swap_entry(entry))
1176 rss[MM_SWAPENTS]--;
1177 else if (is_migration_entry(entry)) {
1178 struct page *page;
1179
1180 page = migration_entry_to_page(entry);
1181
1182 if (PageAnon(page))
1183 rss[MM_ANONPAGES]--;
1184 else
1185 rss[MM_FILEPAGES]--;
1186 }
1187 if (unlikely(!free_swap_and_cache(entry)))
1188 print_bad_pte(vma, addr, ptent, NULL);
1189 }
1190 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1191 } while (pte++, addr += PAGE_SIZE, addr != end);
1192
1193 add_mm_rss_vec(mm, rss);
1194 arch_leave_lazy_mmu_mode();
1195 pte_unmap_unlock(start_pte, ptl);
1196
1197 /*
1198 * mmu_gather ran out of room to batch pages, we break out of
1199 * the PTE lock to avoid doing the potential expensive TLB invalidate
1200 * and page-free while holding it.
1201 */
1202 if (force_flush) {
1203 force_flush = 0;
1204
1205 #ifdef HAVE_GENERIC_MMU_GATHER
1206 tlb->start = addr;
1207 tlb->end = end;
1208 #endif
1209 tlb_flush_mmu(tlb);
1210 if (addr != end)
1211 goto again;
1212 }
1213
1214 return addr;
1215 }
1216
1217 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1218 struct vm_area_struct *vma, pud_t *pud,
1219 unsigned long addr, unsigned long end,
1220 struct zap_details *details)
1221 {
1222 pmd_t *pmd;
1223 unsigned long next;
1224
1225 pmd = pmd_offset(pud, addr);
1226 do {
1227 next = pmd_addr_end(addr, end);
1228 if (pmd_trans_huge(*pmd)) {
1229 if (next - addr != HPAGE_PMD_SIZE) {
1230 #ifdef CONFIG_DEBUG_VM
1231 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1232 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1233 __func__, addr, end,
1234 vma->vm_start,
1235 vma->vm_end);
1236 BUG();
1237 }
1238 #endif
1239 split_huge_page_pmd(vma, addr, pmd);
1240 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241 goto next;
1242 /* fall through */
1243 }
1244 /*
1245 * Here there can be other concurrent MADV_DONTNEED or
1246 * trans huge page faults running, and if the pmd is
1247 * none or trans huge it can change under us. This is
1248 * because MADV_DONTNEED holds the mmap_sem in read
1249 * mode.
1250 */
1251 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252 goto next;
1253 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254 next:
1255 cond_resched();
1256 } while (pmd++, addr = next, addr != end);
1257
1258 return addr;
1259 }
1260
1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, pgd_t *pgd,
1263 unsigned long addr, unsigned long end,
1264 struct zap_details *details)
1265 {
1266 pud_t *pud;
1267 unsigned long next;
1268
1269 pud = pud_offset(pgd, addr);
1270 do {
1271 next = pud_addr_end(addr, end);
1272 if (pud_none_or_clear_bad(pud))
1273 continue;
1274 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275 } while (pud++, addr = next, addr != end);
1276
1277 return addr;
1278 }
1279
1280 static void unmap_page_range(struct mmu_gather *tlb,
1281 struct vm_area_struct *vma,
1282 unsigned long addr, unsigned long end,
1283 struct zap_details *details)
1284 {
1285 pgd_t *pgd;
1286 unsigned long next;
1287
1288 if (details && !details->check_mapping && !details->nonlinear_vma)
1289 details = NULL;
1290
1291 BUG_ON(addr >= end);
1292 mem_cgroup_uncharge_start();
1293 tlb_start_vma(tlb, vma);
1294 pgd = pgd_offset(vma->vm_mm, addr);
1295 do {
1296 next = pgd_addr_end(addr, end);
1297 if (pgd_none_or_clear_bad(pgd))
1298 continue;
1299 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1300 } while (pgd++, addr = next, addr != end);
1301 tlb_end_vma(tlb, vma);
1302 mem_cgroup_uncharge_end();
1303 }
1304
1305
1306 static void unmap_single_vma(struct mmu_gather *tlb,
1307 struct vm_area_struct *vma, unsigned long start_addr,
1308 unsigned long end_addr,
1309 struct zap_details *details)
1310 {
1311 unsigned long start = max(vma->vm_start, start_addr);
1312 unsigned long end;
1313
1314 if (start >= vma->vm_end)
1315 return;
1316 end = min(vma->vm_end, end_addr);
1317 if (end <= vma->vm_start)
1318 return;
1319
1320 if (vma->vm_file)
1321 uprobe_munmap(vma, start, end);
1322
1323 if (unlikely(vma->vm_flags & VM_PFNMAP))
1324 untrack_pfn(vma, 0, 0);
1325
1326 if (start != end) {
1327 if (unlikely(is_vm_hugetlb_page(vma))) {
1328 /*
1329 * It is undesirable to test vma->vm_file as it
1330 * should be non-null for valid hugetlb area.
1331 * However, vm_file will be NULL in the error
1332 * cleanup path of do_mmap_pgoff. When
1333 * hugetlbfs ->mmap method fails,
1334 * do_mmap_pgoff() nullifies vma->vm_file
1335 * before calling this function to clean up.
1336 * Since no pte has actually been setup, it is
1337 * safe to do nothing in this case.
1338 */
1339 if (vma->vm_file) {
1340 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1341 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1342 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 }
1344 } else
1345 unmap_page_range(tlb, vma, start, end, details);
1346 }
1347 }
1348
1349 /**
1350 * unmap_vmas - unmap a range of memory covered by a list of vma's
1351 * @tlb: address of the caller's struct mmu_gather
1352 * @vma: the starting vma
1353 * @start_addr: virtual address at which to start unmapping
1354 * @end_addr: virtual address at which to end unmapping
1355 *
1356 * Unmap all pages in the vma list.
1357 *
1358 * Only addresses between `start' and `end' will be unmapped.
1359 *
1360 * The VMA list must be sorted in ascending virtual address order.
1361 *
1362 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1363 * range after unmap_vmas() returns. So the only responsibility here is to
1364 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1365 * drops the lock and schedules.
1366 */
1367 void unmap_vmas(struct mmu_gather *tlb,
1368 struct vm_area_struct *vma, unsigned long start_addr,
1369 unsigned long end_addr)
1370 {
1371 struct mm_struct *mm = vma->vm_mm;
1372
1373 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1374 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1375 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1376 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1377 }
1378
1379 /**
1380 * zap_page_range - remove user pages in a given range
1381 * @vma: vm_area_struct holding the applicable pages
1382 * @start: starting address of pages to zap
1383 * @size: number of bytes to zap
1384 * @details: details of nonlinear truncation or shared cache invalidation
1385 *
1386 * Caller must protect the VMA list
1387 */
1388 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1389 unsigned long size, struct zap_details *details)
1390 {
1391 struct mm_struct *mm = vma->vm_mm;
1392 struct mmu_gather tlb;
1393 unsigned long end = start + size;
1394
1395 lru_add_drain();
1396 tlb_gather_mmu(&tlb, mm, 0);
1397 update_hiwater_rss(mm);
1398 mmu_notifier_invalidate_range_start(mm, start, end);
1399 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1400 unmap_single_vma(&tlb, vma, start, end, details);
1401 mmu_notifier_invalidate_range_end(mm, start, end);
1402 tlb_finish_mmu(&tlb, start, end);
1403 }
1404
1405 /**
1406 * zap_page_range_single - remove user pages in a given range
1407 * @vma: vm_area_struct holding the applicable pages
1408 * @address: starting address of pages to zap
1409 * @size: number of bytes to zap
1410 * @details: details of nonlinear truncation or shared cache invalidation
1411 *
1412 * The range must fit into one VMA.
1413 */
1414 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1415 unsigned long size, struct zap_details *details)
1416 {
1417 struct mm_struct *mm = vma->vm_mm;
1418 struct mmu_gather tlb;
1419 unsigned long end = address + size;
1420
1421 lru_add_drain();
1422 tlb_gather_mmu(&tlb, mm, 0);
1423 update_hiwater_rss(mm);
1424 mmu_notifier_invalidate_range_start(mm, address, end);
1425 unmap_single_vma(&tlb, vma, address, end, details);
1426 mmu_notifier_invalidate_range_end(mm, address, end);
1427 tlb_finish_mmu(&tlb, address, end);
1428 }
1429
1430 /**
1431 * zap_vma_ptes - remove ptes mapping the vma
1432 * @vma: vm_area_struct holding ptes to be zapped
1433 * @address: starting address of pages to zap
1434 * @size: number of bytes to zap
1435 *
1436 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1437 *
1438 * The entire address range must be fully contained within the vma.
1439 *
1440 * Returns 0 if successful.
1441 */
1442 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1443 unsigned long size)
1444 {
1445 if (address < vma->vm_start || address + size > vma->vm_end ||
1446 !(vma->vm_flags & VM_PFNMAP))
1447 return -1;
1448 zap_page_range_single(vma, address, size, NULL);
1449 return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1452
1453 /**
1454 * follow_page - look up a page descriptor from a user-virtual address
1455 * @vma: vm_area_struct mapping @address
1456 * @address: virtual address to look up
1457 * @flags: flags modifying lookup behaviour
1458 *
1459 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1460 *
1461 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1462 * an error pointer if there is a mapping to something not represented
1463 * by a page descriptor (see also vm_normal_page()).
1464 */
1465 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1466 unsigned int flags)
1467 {
1468 pgd_t *pgd;
1469 pud_t *pud;
1470 pmd_t *pmd;
1471 pte_t *ptep, pte;
1472 spinlock_t *ptl;
1473 struct page *page;
1474 struct mm_struct *mm = vma->vm_mm;
1475
1476 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1477 if (!IS_ERR(page)) {
1478 BUG_ON(flags & FOLL_GET);
1479 goto out;
1480 }
1481
1482 page = NULL;
1483 pgd = pgd_offset(mm, address);
1484 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1485 goto no_page_table;
1486
1487 pud = pud_offset(pgd, address);
1488 if (pud_none(*pud))
1489 goto no_page_table;
1490 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1491 BUG_ON(flags & FOLL_GET);
1492 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1493 goto out;
1494 }
1495 if (unlikely(pud_bad(*pud)))
1496 goto no_page_table;
1497
1498 pmd = pmd_offset(pud, address);
1499 if (pmd_none(*pmd))
1500 goto no_page_table;
1501 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1502 BUG_ON(flags & FOLL_GET);
1503 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1504 goto out;
1505 }
1506 if (pmd_trans_huge(*pmd)) {
1507 if (flags & FOLL_SPLIT) {
1508 split_huge_page_pmd(vma, address, pmd);
1509 goto split_fallthrough;
1510 }
1511 spin_lock(&mm->page_table_lock);
1512 if (likely(pmd_trans_huge(*pmd))) {
1513 if (unlikely(pmd_trans_splitting(*pmd))) {
1514 spin_unlock(&mm->page_table_lock);
1515 wait_split_huge_page(vma->anon_vma, pmd);
1516 } else {
1517 page = follow_trans_huge_pmd(vma, address,
1518 pmd, flags);
1519 spin_unlock(&mm->page_table_lock);
1520 goto out;
1521 }
1522 } else
1523 spin_unlock(&mm->page_table_lock);
1524 /* fall through */
1525 }
1526 split_fallthrough:
1527 if (unlikely(pmd_bad(*pmd)))
1528 goto no_page_table;
1529
1530 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1531
1532 pte = *ptep;
1533 if (!pte_present(pte))
1534 goto no_page;
1535 if ((flags & FOLL_WRITE) && !pte_write(pte))
1536 goto unlock;
1537
1538 page = vm_normal_page(vma, address, pte);
1539 if (unlikely(!page)) {
1540 if ((flags & FOLL_DUMP) ||
1541 !is_zero_pfn(pte_pfn(pte)))
1542 goto bad_page;
1543 page = pte_page(pte);
1544 }
1545
1546 if (flags & FOLL_GET)
1547 get_page_foll(page);
1548 if (flags & FOLL_TOUCH) {
1549 if ((flags & FOLL_WRITE) &&
1550 !pte_dirty(pte) && !PageDirty(page))
1551 set_page_dirty(page);
1552 /*
1553 * pte_mkyoung() would be more correct here, but atomic care
1554 * is needed to avoid losing the dirty bit: it is easier to use
1555 * mark_page_accessed().
1556 */
1557 mark_page_accessed(page);
1558 }
1559 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1560 /*
1561 * The preliminary mapping check is mainly to avoid the
1562 * pointless overhead of lock_page on the ZERO_PAGE
1563 * which might bounce very badly if there is contention.
1564 *
1565 * If the page is already locked, we don't need to
1566 * handle it now - vmscan will handle it later if and
1567 * when it attempts to reclaim the page.
1568 */
1569 if (page->mapping && trylock_page(page)) {
1570 lru_add_drain(); /* push cached pages to LRU */
1571 /*
1572 * Because we lock page here, and migration is
1573 * blocked by the pte's page reference, and we
1574 * know the page is still mapped, we don't even
1575 * need to check for file-cache page truncation.
1576 */
1577 mlock_vma_page(page);
1578 unlock_page(page);
1579 }
1580 }
1581 unlock:
1582 pte_unmap_unlock(ptep, ptl);
1583 out:
1584 return page;
1585
1586 bad_page:
1587 pte_unmap_unlock(ptep, ptl);
1588 return ERR_PTR(-EFAULT);
1589
1590 no_page:
1591 pte_unmap_unlock(ptep, ptl);
1592 if (!pte_none(pte))
1593 return page;
1594
1595 no_page_table:
1596 /*
1597 * When core dumping an enormous anonymous area that nobody
1598 * has touched so far, we don't want to allocate unnecessary pages or
1599 * page tables. Return error instead of NULL to skip handle_mm_fault,
1600 * then get_dump_page() will return NULL to leave a hole in the dump.
1601 * But we can only make this optimization where a hole would surely
1602 * be zero-filled if handle_mm_fault() actually did handle it.
1603 */
1604 if ((flags & FOLL_DUMP) &&
1605 (!vma->vm_ops || !vma->vm_ops->fault))
1606 return ERR_PTR(-EFAULT);
1607 return page;
1608 }
1609
1610 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1611 {
1612 return stack_guard_page_start(vma, addr) ||
1613 stack_guard_page_end(vma, addr+PAGE_SIZE);
1614 }
1615
1616 /**
1617 * __get_user_pages() - pin user pages in memory
1618 * @tsk: task_struct of target task
1619 * @mm: mm_struct of target mm
1620 * @start: starting user address
1621 * @nr_pages: number of pages from start to pin
1622 * @gup_flags: flags modifying pin behaviour
1623 * @pages: array that receives pointers to the pages pinned.
1624 * Should be at least nr_pages long. Or NULL, if caller
1625 * only intends to ensure the pages are faulted in.
1626 * @vmas: array of pointers to vmas corresponding to each page.
1627 * Or NULL if the caller does not require them.
1628 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1629 *
1630 * Returns number of pages pinned. This may be fewer than the number
1631 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1632 * were pinned, returns -errno. Each page returned must be released
1633 * with a put_page() call when it is finished with. vmas will only
1634 * remain valid while mmap_sem is held.
1635 *
1636 * Must be called with mmap_sem held for read or write.
1637 *
1638 * __get_user_pages walks a process's page tables and takes a reference to
1639 * each struct page that each user address corresponds to at a given
1640 * instant. That is, it takes the page that would be accessed if a user
1641 * thread accesses the given user virtual address at that instant.
1642 *
1643 * This does not guarantee that the page exists in the user mappings when
1644 * __get_user_pages returns, and there may even be a completely different
1645 * page there in some cases (eg. if mmapped pagecache has been invalidated
1646 * and subsequently re faulted). However it does guarantee that the page
1647 * won't be freed completely. And mostly callers simply care that the page
1648 * contains data that was valid *at some point in time*. Typically, an IO
1649 * or similar operation cannot guarantee anything stronger anyway because
1650 * locks can't be held over the syscall boundary.
1651 *
1652 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1653 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1654 * appropriate) must be called after the page is finished with, and
1655 * before put_page is called.
1656 *
1657 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1658 * or mmap_sem contention, and if waiting is needed to pin all pages,
1659 * *@nonblocking will be set to 0.
1660 *
1661 * In most cases, get_user_pages or get_user_pages_fast should be used
1662 * instead of __get_user_pages. __get_user_pages should be used only if
1663 * you need some special @gup_flags.
1664 */
1665 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1666 unsigned long start, int nr_pages, unsigned int gup_flags,
1667 struct page **pages, struct vm_area_struct **vmas,
1668 int *nonblocking)
1669 {
1670 int i;
1671 unsigned long vm_flags;
1672
1673 if (nr_pages <= 0)
1674 return 0;
1675
1676 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1677
1678 /*
1679 * Require read or write permissions.
1680 * If FOLL_FORCE is set, we only require the "MAY" flags.
1681 */
1682 vm_flags = (gup_flags & FOLL_WRITE) ?
1683 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1684 vm_flags &= (gup_flags & FOLL_FORCE) ?
1685 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1686 i = 0;
1687
1688 do {
1689 struct vm_area_struct *vma;
1690
1691 vma = find_extend_vma(mm, start);
1692 if (!vma && in_gate_area(mm, start)) {
1693 unsigned long pg = start & PAGE_MASK;
1694 pgd_t *pgd;
1695 pud_t *pud;
1696 pmd_t *pmd;
1697 pte_t *pte;
1698
1699 /* user gate pages are read-only */
1700 if (gup_flags & FOLL_WRITE)
1701 return i ? : -EFAULT;
1702 if (pg > TASK_SIZE)
1703 pgd = pgd_offset_k(pg);
1704 else
1705 pgd = pgd_offset_gate(mm, pg);
1706 BUG_ON(pgd_none(*pgd));
1707 pud = pud_offset(pgd, pg);
1708 BUG_ON(pud_none(*pud));
1709 pmd = pmd_offset(pud, pg);
1710 if (pmd_none(*pmd))
1711 return i ? : -EFAULT;
1712 VM_BUG_ON(pmd_trans_huge(*pmd));
1713 pte = pte_offset_map(pmd, pg);
1714 if (pte_none(*pte)) {
1715 pte_unmap(pte);
1716 return i ? : -EFAULT;
1717 }
1718 vma = get_gate_vma(mm);
1719 if (pages) {
1720 struct page *page;
1721
1722 page = vm_normal_page(vma, start, *pte);
1723 if (!page) {
1724 if (!(gup_flags & FOLL_DUMP) &&
1725 is_zero_pfn(pte_pfn(*pte)))
1726 page = pte_page(*pte);
1727 else {
1728 pte_unmap(pte);
1729 return i ? : -EFAULT;
1730 }
1731 }
1732 pages[i] = page;
1733 get_page(page);
1734 }
1735 pte_unmap(pte);
1736 goto next_page;
1737 }
1738
1739 if (!vma ||
1740 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1741 !(vm_flags & vma->vm_flags))
1742 return i ? : -EFAULT;
1743
1744 if (is_vm_hugetlb_page(vma)) {
1745 i = follow_hugetlb_page(mm, vma, pages, vmas,
1746 &start, &nr_pages, i, gup_flags);
1747 continue;
1748 }
1749
1750 do {
1751 struct page *page;
1752 unsigned int foll_flags = gup_flags;
1753
1754 /*
1755 * If we have a pending SIGKILL, don't keep faulting
1756 * pages and potentially allocating memory.
1757 */
1758 if (unlikely(fatal_signal_pending(current)))
1759 return i ? i : -ERESTARTSYS;
1760
1761 cond_resched();
1762 while (!(page = follow_page(vma, start, foll_flags))) {
1763 int ret;
1764 unsigned int fault_flags = 0;
1765
1766 /* For mlock, just skip the stack guard page. */
1767 if (foll_flags & FOLL_MLOCK) {
1768 if (stack_guard_page(vma, start))
1769 goto next_page;
1770 }
1771 if (foll_flags & FOLL_WRITE)
1772 fault_flags |= FAULT_FLAG_WRITE;
1773 if (nonblocking)
1774 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1775 if (foll_flags & FOLL_NOWAIT)
1776 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1777
1778 ret = handle_mm_fault(mm, vma, start,
1779 fault_flags);
1780
1781 if (ret & VM_FAULT_ERROR) {
1782 if (ret & VM_FAULT_OOM)
1783 return i ? i : -ENOMEM;
1784 if (ret & (VM_FAULT_HWPOISON |
1785 VM_FAULT_HWPOISON_LARGE)) {
1786 if (i)
1787 return i;
1788 else if (gup_flags & FOLL_HWPOISON)
1789 return -EHWPOISON;
1790 else
1791 return -EFAULT;
1792 }
1793 if (ret & VM_FAULT_SIGBUS)
1794 return i ? i : -EFAULT;
1795 BUG();
1796 }
1797
1798 if (tsk) {
1799 if (ret & VM_FAULT_MAJOR)
1800 tsk->maj_flt++;
1801 else
1802 tsk->min_flt++;
1803 }
1804
1805 if (ret & VM_FAULT_RETRY) {
1806 if (nonblocking)
1807 *nonblocking = 0;
1808 return i;
1809 }
1810
1811 /*
1812 * The VM_FAULT_WRITE bit tells us that
1813 * do_wp_page has broken COW when necessary,
1814 * even if maybe_mkwrite decided not to set
1815 * pte_write. We can thus safely do subsequent
1816 * page lookups as if they were reads. But only
1817 * do so when looping for pte_write is futile:
1818 * in some cases userspace may also be wanting
1819 * to write to the gotten user page, which a
1820 * read fault here might prevent (a readonly
1821 * page might get reCOWed by userspace write).
1822 */
1823 if ((ret & VM_FAULT_WRITE) &&
1824 !(vma->vm_flags & VM_WRITE))
1825 foll_flags &= ~FOLL_WRITE;
1826
1827 cond_resched();
1828 }
1829 if (IS_ERR(page))
1830 return i ? i : PTR_ERR(page);
1831 if (pages) {
1832 pages[i] = page;
1833
1834 flush_anon_page(vma, page, start);
1835 flush_dcache_page(page);
1836 }
1837 next_page:
1838 if (vmas)
1839 vmas[i] = vma;
1840 i++;
1841 start += PAGE_SIZE;
1842 nr_pages--;
1843 } while (nr_pages && start < vma->vm_end);
1844 } while (nr_pages);
1845 return i;
1846 }
1847 EXPORT_SYMBOL(__get_user_pages);
1848
1849 /*
1850 * fixup_user_fault() - manually resolve a user page fault
1851 * @tsk: the task_struct to use for page fault accounting, or
1852 * NULL if faults are not to be recorded.
1853 * @mm: mm_struct of target mm
1854 * @address: user address
1855 * @fault_flags:flags to pass down to handle_mm_fault()
1856 *
1857 * This is meant to be called in the specific scenario where for locking reasons
1858 * we try to access user memory in atomic context (within a pagefault_disable()
1859 * section), this returns -EFAULT, and we want to resolve the user fault before
1860 * trying again.
1861 *
1862 * Typically this is meant to be used by the futex code.
1863 *
1864 * The main difference with get_user_pages() is that this function will
1865 * unconditionally call handle_mm_fault() which will in turn perform all the
1866 * necessary SW fixup of the dirty and young bits in the PTE, while
1867 * handle_mm_fault() only guarantees to update these in the struct page.
1868 *
1869 * This is important for some architectures where those bits also gate the
1870 * access permission to the page because they are maintained in software. On
1871 * such architectures, gup() will not be enough to make a subsequent access
1872 * succeed.
1873 *
1874 * This should be called with the mm_sem held for read.
1875 */
1876 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1877 unsigned long address, unsigned int fault_flags)
1878 {
1879 struct vm_area_struct *vma;
1880 int ret;
1881
1882 vma = find_extend_vma(mm, address);
1883 if (!vma || address < vma->vm_start)
1884 return -EFAULT;
1885
1886 ret = handle_mm_fault(mm, vma, address, fault_flags);
1887 if (ret & VM_FAULT_ERROR) {
1888 if (ret & VM_FAULT_OOM)
1889 return -ENOMEM;
1890 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1891 return -EHWPOISON;
1892 if (ret & VM_FAULT_SIGBUS)
1893 return -EFAULT;
1894 BUG();
1895 }
1896 if (tsk) {
1897 if (ret & VM_FAULT_MAJOR)
1898 tsk->maj_flt++;
1899 else
1900 tsk->min_flt++;
1901 }
1902 return 0;
1903 }
1904
1905 /*
1906 * get_user_pages() - pin user pages in memory
1907 * @tsk: the task_struct to use for page fault accounting, or
1908 * NULL if faults are not to be recorded.
1909 * @mm: mm_struct of target mm
1910 * @start: starting user address
1911 * @nr_pages: number of pages from start to pin
1912 * @write: whether pages will be written to by the caller
1913 * @force: whether to force write access even if user mapping is
1914 * readonly. This will result in the page being COWed even
1915 * in MAP_SHARED mappings. You do not want this.
1916 * @pages: array that receives pointers to the pages pinned.
1917 * Should be at least nr_pages long. Or NULL, if caller
1918 * only intends to ensure the pages are faulted in.
1919 * @vmas: array of pointers to vmas corresponding to each page.
1920 * Or NULL if the caller does not require them.
1921 *
1922 * Returns number of pages pinned. This may be fewer than the number
1923 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1924 * were pinned, returns -errno. Each page returned must be released
1925 * with a put_page() call when it is finished with. vmas will only
1926 * remain valid while mmap_sem is held.
1927 *
1928 * Must be called with mmap_sem held for read or write.
1929 *
1930 * get_user_pages walks a process's page tables and takes a reference to
1931 * each struct page that each user address corresponds to at a given
1932 * instant. That is, it takes the page that would be accessed if a user
1933 * thread accesses the given user virtual address at that instant.
1934 *
1935 * This does not guarantee that the page exists in the user mappings when
1936 * get_user_pages returns, and there may even be a completely different
1937 * page there in some cases (eg. if mmapped pagecache has been invalidated
1938 * and subsequently re faulted). However it does guarantee that the page
1939 * won't be freed completely. And mostly callers simply care that the page
1940 * contains data that was valid *at some point in time*. Typically, an IO
1941 * or similar operation cannot guarantee anything stronger anyway because
1942 * locks can't be held over the syscall boundary.
1943 *
1944 * If write=0, the page must not be written to. If the page is written to,
1945 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1946 * after the page is finished with, and before put_page is called.
1947 *
1948 * get_user_pages is typically used for fewer-copy IO operations, to get a
1949 * handle on the memory by some means other than accesses via the user virtual
1950 * addresses. The pages may be submitted for DMA to devices or accessed via
1951 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1952 * use the correct cache flushing APIs.
1953 *
1954 * See also get_user_pages_fast, for performance critical applications.
1955 */
1956 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1957 unsigned long start, int nr_pages, int write, int force,
1958 struct page **pages, struct vm_area_struct **vmas)
1959 {
1960 int flags = FOLL_TOUCH;
1961
1962 if (pages)
1963 flags |= FOLL_GET;
1964 if (write)
1965 flags |= FOLL_WRITE;
1966 if (force)
1967 flags |= FOLL_FORCE;
1968
1969 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1970 NULL);
1971 }
1972 EXPORT_SYMBOL(get_user_pages);
1973
1974 /**
1975 * get_dump_page() - pin user page in memory while writing it to core dump
1976 * @addr: user address
1977 *
1978 * Returns struct page pointer of user page pinned for dump,
1979 * to be freed afterwards by page_cache_release() or put_page().
1980 *
1981 * Returns NULL on any kind of failure - a hole must then be inserted into
1982 * the corefile, to preserve alignment with its headers; and also returns
1983 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1984 * allowing a hole to be left in the corefile to save diskspace.
1985 *
1986 * Called without mmap_sem, but after all other threads have been killed.
1987 */
1988 #ifdef CONFIG_ELF_CORE
1989 struct page *get_dump_page(unsigned long addr)
1990 {
1991 struct vm_area_struct *vma;
1992 struct page *page;
1993
1994 if (__get_user_pages(current, current->mm, addr, 1,
1995 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1996 NULL) < 1)
1997 return NULL;
1998 flush_cache_page(vma, addr, page_to_pfn(page));
1999 return page;
2000 }
2001 #endif /* CONFIG_ELF_CORE */
2002
2003 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2004 spinlock_t **ptl)
2005 {
2006 pgd_t * pgd = pgd_offset(mm, addr);
2007 pud_t * pud = pud_alloc(mm, pgd, addr);
2008 if (pud) {
2009 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2010 if (pmd) {
2011 VM_BUG_ON(pmd_trans_huge(*pmd));
2012 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2013 }
2014 }
2015 return NULL;
2016 }
2017
2018 /*
2019 * This is the old fallback for page remapping.
2020 *
2021 * For historical reasons, it only allows reserved pages. Only
2022 * old drivers should use this, and they needed to mark their
2023 * pages reserved for the old functions anyway.
2024 */
2025 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 struct page *page, pgprot_t prot)
2027 {
2028 struct mm_struct *mm = vma->vm_mm;
2029 int retval;
2030 pte_t *pte;
2031 spinlock_t *ptl;
2032
2033 retval = -EINVAL;
2034 if (PageAnon(page))
2035 goto out;
2036 retval = -ENOMEM;
2037 flush_dcache_page(page);
2038 pte = get_locked_pte(mm, addr, &ptl);
2039 if (!pte)
2040 goto out;
2041 retval = -EBUSY;
2042 if (!pte_none(*pte))
2043 goto out_unlock;
2044
2045 /* Ok, finally just insert the thing.. */
2046 get_page(page);
2047 inc_mm_counter_fast(mm, MM_FILEPAGES);
2048 page_add_file_rmap(page);
2049 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2050
2051 retval = 0;
2052 pte_unmap_unlock(pte, ptl);
2053 return retval;
2054 out_unlock:
2055 pte_unmap_unlock(pte, ptl);
2056 out:
2057 return retval;
2058 }
2059
2060 /**
2061 * vm_insert_page - insert single page into user vma
2062 * @vma: user vma to map to
2063 * @addr: target user address of this page
2064 * @page: source kernel page
2065 *
2066 * This allows drivers to insert individual pages they've allocated
2067 * into a user vma.
2068 *
2069 * The page has to be a nice clean _individual_ kernel allocation.
2070 * If you allocate a compound page, you need to have marked it as
2071 * such (__GFP_COMP), or manually just split the page up yourself
2072 * (see split_page()).
2073 *
2074 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2075 * took an arbitrary page protection parameter. This doesn't allow
2076 * that. Your vma protection will have to be set up correctly, which
2077 * means that if you want a shared writable mapping, you'd better
2078 * ask for a shared writable mapping!
2079 *
2080 * The page does not need to be reserved.
2081 *
2082 * Usually this function is called from f_op->mmap() handler
2083 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2084 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2085 * function from other places, for example from page-fault handler.
2086 */
2087 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2088 struct page *page)
2089 {
2090 if (addr < vma->vm_start || addr >= vma->vm_end)
2091 return -EFAULT;
2092 if (!page_count(page))
2093 return -EINVAL;
2094 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2095 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2096 BUG_ON(vma->vm_flags & VM_PFNMAP);
2097 vma->vm_flags |= VM_MIXEDMAP;
2098 }
2099 return insert_page(vma, addr, page, vma->vm_page_prot);
2100 }
2101 EXPORT_SYMBOL(vm_insert_page);
2102
2103 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2104 unsigned long pfn, pgprot_t prot)
2105 {
2106 struct mm_struct *mm = vma->vm_mm;
2107 int retval;
2108 pte_t *pte, entry;
2109 spinlock_t *ptl;
2110
2111 retval = -ENOMEM;
2112 pte = get_locked_pte(mm, addr, &ptl);
2113 if (!pte)
2114 goto out;
2115 retval = -EBUSY;
2116 if (!pte_none(*pte))
2117 goto out_unlock;
2118
2119 /* Ok, finally just insert the thing.. */
2120 entry = pte_mkspecial(pfn_pte(pfn, prot));
2121 set_pte_at(mm, addr, pte, entry);
2122 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2123
2124 retval = 0;
2125 out_unlock:
2126 pte_unmap_unlock(pte, ptl);
2127 out:
2128 return retval;
2129 }
2130
2131 /**
2132 * vm_insert_pfn - insert single pfn into user vma
2133 * @vma: user vma to map to
2134 * @addr: target user address of this page
2135 * @pfn: source kernel pfn
2136 *
2137 * Similar to vm_insert_page, this allows drivers to insert individual pages
2138 * they've allocated into a user vma. Same comments apply.
2139 *
2140 * This function should only be called from a vm_ops->fault handler, and
2141 * in that case the handler should return NULL.
2142 *
2143 * vma cannot be a COW mapping.
2144 *
2145 * As this is called only for pages that do not currently exist, we
2146 * do not need to flush old virtual caches or the TLB.
2147 */
2148 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2149 unsigned long pfn)
2150 {
2151 int ret;
2152 pgprot_t pgprot = vma->vm_page_prot;
2153 /*
2154 * Technically, architectures with pte_special can avoid all these
2155 * restrictions (same for remap_pfn_range). However we would like
2156 * consistency in testing and feature parity among all, so we should
2157 * try to keep these invariants in place for everybody.
2158 */
2159 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2160 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2161 (VM_PFNMAP|VM_MIXEDMAP));
2162 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2163 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2164
2165 if (addr < vma->vm_start || addr >= vma->vm_end)
2166 return -EFAULT;
2167 if (track_pfn_insert(vma, &pgprot, pfn))
2168 return -EINVAL;
2169
2170 ret = insert_pfn(vma, addr, pfn, pgprot);
2171
2172 return ret;
2173 }
2174 EXPORT_SYMBOL(vm_insert_pfn);
2175
2176 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2177 unsigned long pfn)
2178 {
2179 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2180
2181 if (addr < vma->vm_start || addr >= vma->vm_end)
2182 return -EFAULT;
2183
2184 /*
2185 * If we don't have pte special, then we have to use the pfn_valid()
2186 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2187 * refcount the page if pfn_valid is true (hence insert_page rather
2188 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2189 * without pte special, it would there be refcounted as a normal page.
2190 */
2191 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2192 struct page *page;
2193
2194 page = pfn_to_page(pfn);
2195 return insert_page(vma, addr, page, vma->vm_page_prot);
2196 }
2197 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2198 }
2199 EXPORT_SYMBOL(vm_insert_mixed);
2200
2201 /*
2202 * maps a range of physical memory into the requested pages. the old
2203 * mappings are removed. any references to nonexistent pages results
2204 * in null mappings (currently treated as "copy-on-access")
2205 */
2206 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2207 unsigned long addr, unsigned long end,
2208 unsigned long pfn, pgprot_t prot)
2209 {
2210 pte_t *pte;
2211 spinlock_t *ptl;
2212
2213 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 if (!pte)
2215 return -ENOMEM;
2216 arch_enter_lazy_mmu_mode();
2217 do {
2218 BUG_ON(!pte_none(*pte));
2219 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2220 pfn++;
2221 } while (pte++, addr += PAGE_SIZE, addr != end);
2222 arch_leave_lazy_mmu_mode();
2223 pte_unmap_unlock(pte - 1, ptl);
2224 return 0;
2225 }
2226
2227 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2228 unsigned long addr, unsigned long end,
2229 unsigned long pfn, pgprot_t prot)
2230 {
2231 pmd_t *pmd;
2232 unsigned long next;
2233
2234 pfn -= addr >> PAGE_SHIFT;
2235 pmd = pmd_alloc(mm, pud, addr);
2236 if (!pmd)
2237 return -ENOMEM;
2238 VM_BUG_ON(pmd_trans_huge(*pmd));
2239 do {
2240 next = pmd_addr_end(addr, end);
2241 if (remap_pte_range(mm, pmd, addr, next,
2242 pfn + (addr >> PAGE_SHIFT), prot))
2243 return -ENOMEM;
2244 } while (pmd++, addr = next, addr != end);
2245 return 0;
2246 }
2247
2248 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2249 unsigned long addr, unsigned long end,
2250 unsigned long pfn, pgprot_t prot)
2251 {
2252 pud_t *pud;
2253 unsigned long next;
2254
2255 pfn -= addr >> PAGE_SHIFT;
2256 pud = pud_alloc(mm, pgd, addr);
2257 if (!pud)
2258 return -ENOMEM;
2259 do {
2260 next = pud_addr_end(addr, end);
2261 if (remap_pmd_range(mm, pud, addr, next,
2262 pfn + (addr >> PAGE_SHIFT), prot))
2263 return -ENOMEM;
2264 } while (pud++, addr = next, addr != end);
2265 return 0;
2266 }
2267
2268 /**
2269 * remap_pfn_range - remap kernel memory to userspace
2270 * @vma: user vma to map to
2271 * @addr: target user address to start at
2272 * @pfn: physical address of kernel memory
2273 * @size: size of map area
2274 * @prot: page protection flags for this mapping
2275 *
2276 * Note: this is only safe if the mm semaphore is held when called.
2277 */
2278 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2279 unsigned long pfn, unsigned long size, pgprot_t prot)
2280 {
2281 pgd_t *pgd;
2282 unsigned long next;
2283 unsigned long end = addr + PAGE_ALIGN(size);
2284 struct mm_struct *mm = vma->vm_mm;
2285 int err;
2286
2287 /*
2288 * Physically remapped pages are special. Tell the
2289 * rest of the world about it:
2290 * VM_IO tells people not to look at these pages
2291 * (accesses can have side effects).
2292 * VM_PFNMAP tells the core MM that the base pages are just
2293 * raw PFN mappings, and do not have a "struct page" associated
2294 * with them.
2295 * VM_DONTEXPAND
2296 * Disable vma merging and expanding with mremap().
2297 * VM_DONTDUMP
2298 * Omit vma from core dump, even when VM_IO turned off.
2299 *
2300 * There's a horrible special case to handle copy-on-write
2301 * behaviour that some programs depend on. We mark the "original"
2302 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2303 * See vm_normal_page() for details.
2304 */
2305 if (is_cow_mapping(vma->vm_flags)) {
2306 if (addr != vma->vm_start || end != vma->vm_end)
2307 return -EINVAL;
2308 vma->vm_pgoff = pfn;
2309 }
2310
2311 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2312 if (err)
2313 return -EINVAL;
2314
2315 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2316
2317 BUG_ON(addr >= end);
2318 pfn -= addr >> PAGE_SHIFT;
2319 pgd = pgd_offset(mm, addr);
2320 flush_cache_range(vma, addr, end);
2321 do {
2322 next = pgd_addr_end(addr, end);
2323 err = remap_pud_range(mm, pgd, addr, next,
2324 pfn + (addr >> PAGE_SHIFT), prot);
2325 if (err)
2326 break;
2327 } while (pgd++, addr = next, addr != end);
2328
2329 if (err)
2330 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2331
2332 return err;
2333 }
2334 EXPORT_SYMBOL(remap_pfn_range);
2335
2336 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2337 unsigned long addr, unsigned long end,
2338 pte_fn_t fn, void *data)
2339 {
2340 pte_t *pte;
2341 int err;
2342 pgtable_t token;
2343 spinlock_t *uninitialized_var(ptl);
2344
2345 pte = (mm == &init_mm) ?
2346 pte_alloc_kernel(pmd, addr) :
2347 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2348 if (!pte)
2349 return -ENOMEM;
2350
2351 BUG_ON(pmd_huge(*pmd));
2352
2353 arch_enter_lazy_mmu_mode();
2354
2355 token = pmd_pgtable(*pmd);
2356
2357 do {
2358 err = fn(pte++, token, addr, data);
2359 if (err)
2360 break;
2361 } while (addr += PAGE_SIZE, addr != end);
2362
2363 arch_leave_lazy_mmu_mode();
2364
2365 if (mm != &init_mm)
2366 pte_unmap_unlock(pte-1, ptl);
2367 return err;
2368 }
2369
2370 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2371 unsigned long addr, unsigned long end,
2372 pte_fn_t fn, void *data)
2373 {
2374 pmd_t *pmd;
2375 unsigned long next;
2376 int err;
2377
2378 BUG_ON(pud_huge(*pud));
2379
2380 pmd = pmd_alloc(mm, pud, addr);
2381 if (!pmd)
2382 return -ENOMEM;
2383 do {
2384 next = pmd_addr_end(addr, end);
2385 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2386 if (err)
2387 break;
2388 } while (pmd++, addr = next, addr != end);
2389 return err;
2390 }
2391
2392 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2393 unsigned long addr, unsigned long end,
2394 pte_fn_t fn, void *data)
2395 {
2396 pud_t *pud;
2397 unsigned long next;
2398 int err;
2399
2400 pud = pud_alloc(mm, pgd, addr);
2401 if (!pud)
2402 return -ENOMEM;
2403 do {
2404 next = pud_addr_end(addr, end);
2405 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2406 if (err)
2407 break;
2408 } while (pud++, addr = next, addr != end);
2409 return err;
2410 }
2411
2412 /*
2413 * Scan a region of virtual memory, filling in page tables as necessary
2414 * and calling a provided function on each leaf page table.
2415 */
2416 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2417 unsigned long size, pte_fn_t fn, void *data)
2418 {
2419 pgd_t *pgd;
2420 unsigned long next;
2421 unsigned long end = addr + size;
2422 int err;
2423
2424 BUG_ON(addr >= end);
2425 pgd = pgd_offset(mm, addr);
2426 do {
2427 next = pgd_addr_end(addr, end);
2428 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2429 if (err)
2430 break;
2431 } while (pgd++, addr = next, addr != end);
2432
2433 return err;
2434 }
2435 EXPORT_SYMBOL_GPL(apply_to_page_range);
2436
2437 /*
2438 * handle_pte_fault chooses page fault handler according to an entry
2439 * which was read non-atomically. Before making any commitment, on
2440 * those architectures or configurations (e.g. i386 with PAE) which
2441 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2442 * must check under lock before unmapping the pte and proceeding
2443 * (but do_wp_page is only called after already making such a check;
2444 * and do_anonymous_page can safely check later on).
2445 */
2446 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2447 pte_t *page_table, pte_t orig_pte)
2448 {
2449 int same = 1;
2450 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2451 if (sizeof(pte_t) > sizeof(unsigned long)) {
2452 spinlock_t *ptl = pte_lockptr(mm, pmd);
2453 spin_lock(ptl);
2454 same = pte_same(*page_table, orig_pte);
2455 spin_unlock(ptl);
2456 }
2457 #endif
2458 pte_unmap(page_table);
2459 return same;
2460 }
2461
2462 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2463 {
2464 /*
2465 * If the source page was a PFN mapping, we don't have
2466 * a "struct page" for it. We do a best-effort copy by
2467 * just copying from the original user address. If that
2468 * fails, we just zero-fill it. Live with it.
2469 */
2470 if (unlikely(!src)) {
2471 void *kaddr = kmap_atomic(dst);
2472 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2473
2474 /*
2475 * This really shouldn't fail, because the page is there
2476 * in the page tables. But it might just be unreadable,
2477 * in which case we just give up and fill the result with
2478 * zeroes.
2479 */
2480 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2481 clear_page(kaddr);
2482 kunmap_atomic(kaddr);
2483 flush_dcache_page(dst);
2484 } else
2485 copy_user_highpage(dst, src, va, vma);
2486 }
2487
2488 /*
2489 * This routine handles present pages, when users try to write
2490 * to a shared page. It is done by copying the page to a new address
2491 * and decrementing the shared-page counter for the old page.
2492 *
2493 * Note that this routine assumes that the protection checks have been
2494 * done by the caller (the low-level page fault routine in most cases).
2495 * Thus we can safely just mark it writable once we've done any necessary
2496 * COW.
2497 *
2498 * We also mark the page dirty at this point even though the page will
2499 * change only once the write actually happens. This avoids a few races,
2500 * and potentially makes it more efficient.
2501 *
2502 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2503 * but allow concurrent faults), with pte both mapped and locked.
2504 * We return with mmap_sem still held, but pte unmapped and unlocked.
2505 */
2506 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2507 unsigned long address, pte_t *page_table, pmd_t *pmd,
2508 spinlock_t *ptl, pte_t orig_pte)
2509 __releases(ptl)
2510 {
2511 struct page *old_page, *new_page = NULL;
2512 pte_t entry;
2513 int ret = 0;
2514 int page_mkwrite = 0;
2515 struct page *dirty_page = NULL;
2516 unsigned long mmun_start = 0; /* For mmu_notifiers */
2517 unsigned long mmun_end = 0; /* For mmu_notifiers */
2518
2519 old_page = vm_normal_page(vma, address, orig_pte);
2520 if (!old_page) {
2521 /*
2522 * VM_MIXEDMAP !pfn_valid() case
2523 *
2524 * We should not cow pages in a shared writeable mapping.
2525 * Just mark the pages writable as we can't do any dirty
2526 * accounting on raw pfn maps.
2527 */
2528 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2529 (VM_WRITE|VM_SHARED))
2530 goto reuse;
2531 goto gotten;
2532 }
2533
2534 /*
2535 * Take out anonymous pages first, anonymous shared vmas are
2536 * not dirty accountable.
2537 */
2538 if (PageAnon(old_page) && !PageKsm(old_page)) {
2539 if (!trylock_page(old_page)) {
2540 page_cache_get(old_page);
2541 pte_unmap_unlock(page_table, ptl);
2542 lock_page(old_page);
2543 page_table = pte_offset_map_lock(mm, pmd, address,
2544 &ptl);
2545 if (!pte_same(*page_table, orig_pte)) {
2546 unlock_page(old_page);
2547 goto unlock;
2548 }
2549 page_cache_release(old_page);
2550 }
2551 if (reuse_swap_page(old_page)) {
2552 /*
2553 * The page is all ours. Move it to our anon_vma so
2554 * the rmap code will not search our parent or siblings.
2555 * Protected against the rmap code by the page lock.
2556 */
2557 page_move_anon_rmap(old_page, vma, address);
2558 unlock_page(old_page);
2559 goto reuse;
2560 }
2561 unlock_page(old_page);
2562 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2563 (VM_WRITE|VM_SHARED))) {
2564 /*
2565 * Only catch write-faults on shared writable pages,
2566 * read-only shared pages can get COWed by
2567 * get_user_pages(.write=1, .force=1).
2568 */
2569 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2570 struct vm_fault vmf;
2571 int tmp;
2572
2573 vmf.virtual_address = (void __user *)(address &
2574 PAGE_MASK);
2575 vmf.pgoff = old_page->index;
2576 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2577 vmf.page = old_page;
2578
2579 /*
2580 * Notify the address space that the page is about to
2581 * become writable so that it can prohibit this or wait
2582 * for the page to get into an appropriate state.
2583 *
2584 * We do this without the lock held, so that it can
2585 * sleep if it needs to.
2586 */
2587 page_cache_get(old_page);
2588 pte_unmap_unlock(page_table, ptl);
2589
2590 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2591 if (unlikely(tmp &
2592 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2593 ret = tmp;
2594 goto unwritable_page;
2595 }
2596 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2597 lock_page(old_page);
2598 if (!old_page->mapping) {
2599 ret = 0; /* retry the fault */
2600 unlock_page(old_page);
2601 goto unwritable_page;
2602 }
2603 } else
2604 VM_BUG_ON(!PageLocked(old_page));
2605
2606 /*
2607 * Since we dropped the lock we need to revalidate
2608 * the PTE as someone else may have changed it. If
2609 * they did, we just return, as we can count on the
2610 * MMU to tell us if they didn't also make it writable.
2611 */
2612 page_table = pte_offset_map_lock(mm, pmd, address,
2613 &ptl);
2614 if (!pte_same(*page_table, orig_pte)) {
2615 unlock_page(old_page);
2616 goto unlock;
2617 }
2618
2619 page_mkwrite = 1;
2620 }
2621 dirty_page = old_page;
2622 get_page(dirty_page);
2623
2624 reuse:
2625 flush_cache_page(vma, address, pte_pfn(orig_pte));
2626 entry = pte_mkyoung(orig_pte);
2627 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2628 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2629 update_mmu_cache(vma, address, page_table);
2630 pte_unmap_unlock(page_table, ptl);
2631 ret |= VM_FAULT_WRITE;
2632
2633 if (!dirty_page)
2634 return ret;
2635
2636 /*
2637 * Yes, Virginia, this is actually required to prevent a race
2638 * with clear_page_dirty_for_io() from clearing the page dirty
2639 * bit after it clear all dirty ptes, but before a racing
2640 * do_wp_page installs a dirty pte.
2641 *
2642 * __do_fault is protected similarly.
2643 */
2644 if (!page_mkwrite) {
2645 wait_on_page_locked(dirty_page);
2646 set_page_dirty_balance(dirty_page, page_mkwrite);
2647 /* file_update_time outside page_lock */
2648 if (vma->vm_file)
2649 file_update_time(vma->vm_file);
2650 }
2651 put_page(dirty_page);
2652 if (page_mkwrite) {
2653 struct address_space *mapping = dirty_page->mapping;
2654
2655 set_page_dirty(dirty_page);
2656 unlock_page(dirty_page);
2657 page_cache_release(dirty_page);
2658 if (mapping) {
2659 /*
2660 * Some device drivers do not set page.mapping
2661 * but still dirty their pages
2662 */
2663 balance_dirty_pages_ratelimited(mapping);
2664 }
2665 }
2666
2667 return ret;
2668 }
2669
2670 /*
2671 * Ok, we need to copy. Oh, well..
2672 */
2673 page_cache_get(old_page);
2674 gotten:
2675 pte_unmap_unlock(page_table, ptl);
2676
2677 if (unlikely(anon_vma_prepare(vma)))
2678 goto oom;
2679
2680 if (is_zero_pfn(pte_pfn(orig_pte))) {
2681 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2682 if (!new_page)
2683 goto oom;
2684 } else {
2685 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2686 if (!new_page)
2687 goto oom;
2688 cow_user_page(new_page, old_page, address, vma);
2689 }
2690 __SetPageUptodate(new_page);
2691
2692 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2693 goto oom_free_new;
2694
2695 mmun_start = address & PAGE_MASK;
2696 mmun_end = mmun_start + PAGE_SIZE;
2697 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2698
2699 /*
2700 * Re-check the pte - we dropped the lock
2701 */
2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2703 if (likely(pte_same(*page_table, orig_pte))) {
2704 if (old_page) {
2705 if (!PageAnon(old_page)) {
2706 dec_mm_counter_fast(mm, MM_FILEPAGES);
2707 inc_mm_counter_fast(mm, MM_ANONPAGES);
2708 }
2709 } else
2710 inc_mm_counter_fast(mm, MM_ANONPAGES);
2711 flush_cache_page(vma, address, pte_pfn(orig_pte));
2712 entry = mk_pte(new_page, vma->vm_page_prot);
2713 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2714 /*
2715 * Clear the pte entry and flush it first, before updating the
2716 * pte with the new entry. This will avoid a race condition
2717 * seen in the presence of one thread doing SMC and another
2718 * thread doing COW.
2719 */
2720 ptep_clear_flush(vma, address, page_table);
2721 page_add_new_anon_rmap(new_page, vma, address);
2722 /*
2723 * We call the notify macro here because, when using secondary
2724 * mmu page tables (such as kvm shadow page tables), we want the
2725 * new page to be mapped directly into the secondary page table.
2726 */
2727 set_pte_at_notify(mm, address, page_table, entry);
2728 update_mmu_cache(vma, address, page_table);
2729 if (old_page) {
2730 /*
2731 * Only after switching the pte to the new page may
2732 * we remove the mapcount here. Otherwise another
2733 * process may come and find the rmap count decremented
2734 * before the pte is switched to the new page, and
2735 * "reuse" the old page writing into it while our pte
2736 * here still points into it and can be read by other
2737 * threads.
2738 *
2739 * The critical issue is to order this
2740 * page_remove_rmap with the ptp_clear_flush above.
2741 * Those stores are ordered by (if nothing else,)
2742 * the barrier present in the atomic_add_negative
2743 * in page_remove_rmap.
2744 *
2745 * Then the TLB flush in ptep_clear_flush ensures that
2746 * no process can access the old page before the
2747 * decremented mapcount is visible. And the old page
2748 * cannot be reused until after the decremented
2749 * mapcount is visible. So transitively, TLBs to
2750 * old page will be flushed before it can be reused.
2751 */
2752 page_remove_rmap(old_page);
2753 }
2754
2755 /* Free the old page.. */
2756 new_page = old_page;
2757 ret |= VM_FAULT_WRITE;
2758 } else
2759 mem_cgroup_uncharge_page(new_page);
2760
2761 if (new_page)
2762 page_cache_release(new_page);
2763 unlock:
2764 pte_unmap_unlock(page_table, ptl);
2765 if (mmun_end > mmun_start)
2766 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2767 if (old_page) {
2768 /*
2769 * Don't let another task, with possibly unlocked vma,
2770 * keep the mlocked page.
2771 */
2772 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2773 lock_page(old_page); /* LRU manipulation */
2774 munlock_vma_page(old_page);
2775 unlock_page(old_page);
2776 }
2777 page_cache_release(old_page);
2778 }
2779 return ret;
2780 oom_free_new:
2781 page_cache_release(new_page);
2782 oom:
2783 if (old_page)
2784 page_cache_release(old_page);
2785 return VM_FAULT_OOM;
2786
2787 unwritable_page:
2788 page_cache_release(old_page);
2789 return ret;
2790 }
2791
2792 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2793 unsigned long start_addr, unsigned long end_addr,
2794 struct zap_details *details)
2795 {
2796 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2797 }
2798
2799 static inline void unmap_mapping_range_tree(struct rb_root *root,
2800 struct zap_details *details)
2801 {
2802 struct vm_area_struct *vma;
2803 pgoff_t vba, vea, zba, zea;
2804
2805 vma_interval_tree_foreach(vma, root,
2806 details->first_index, details->last_index) {
2807
2808 vba = vma->vm_pgoff;
2809 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2810 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2811 zba = details->first_index;
2812 if (zba < vba)
2813 zba = vba;
2814 zea = details->last_index;
2815 if (zea > vea)
2816 zea = vea;
2817
2818 unmap_mapping_range_vma(vma,
2819 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2820 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2821 details);
2822 }
2823 }
2824
2825 static inline void unmap_mapping_range_list(struct list_head *head,
2826 struct zap_details *details)
2827 {
2828 struct vm_area_struct *vma;
2829
2830 /*
2831 * In nonlinear VMAs there is no correspondence between virtual address
2832 * offset and file offset. So we must perform an exhaustive search
2833 * across *all* the pages in each nonlinear VMA, not just the pages
2834 * whose virtual address lies outside the file truncation point.
2835 */
2836 list_for_each_entry(vma, head, shared.nonlinear) {
2837 details->nonlinear_vma = vma;
2838 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2839 }
2840 }
2841
2842 /**
2843 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2844 * @mapping: the address space containing mmaps to be unmapped.
2845 * @holebegin: byte in first page to unmap, relative to the start of
2846 * the underlying file. This will be rounded down to a PAGE_SIZE
2847 * boundary. Note that this is different from truncate_pagecache(), which
2848 * must keep the partial page. In contrast, we must get rid of
2849 * partial pages.
2850 * @holelen: size of prospective hole in bytes. This will be rounded
2851 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2852 * end of the file.
2853 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2854 * but 0 when invalidating pagecache, don't throw away private data.
2855 */
2856 void unmap_mapping_range(struct address_space *mapping,
2857 loff_t const holebegin, loff_t const holelen, int even_cows)
2858 {
2859 struct zap_details details;
2860 pgoff_t hba = holebegin >> PAGE_SHIFT;
2861 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862
2863 /* Check for overflow. */
2864 if (sizeof(holelen) > sizeof(hlen)) {
2865 long long holeend =
2866 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2867 if (holeend & ~(long long)ULONG_MAX)
2868 hlen = ULONG_MAX - hba + 1;
2869 }
2870
2871 details.check_mapping = even_cows? NULL: mapping;
2872 details.nonlinear_vma = NULL;
2873 details.first_index = hba;
2874 details.last_index = hba + hlen - 1;
2875 if (details.last_index < details.first_index)
2876 details.last_index = ULONG_MAX;
2877
2878
2879 mutex_lock(&mapping->i_mmap_mutex);
2880 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2881 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2882 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2883 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2884 mutex_unlock(&mapping->i_mmap_mutex);
2885 }
2886 EXPORT_SYMBOL(unmap_mapping_range);
2887
2888 /*
2889 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2890 * but allow concurrent faults), and pte mapped but not yet locked.
2891 * We return with mmap_sem still held, but pte unmapped and unlocked.
2892 */
2893 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2894 unsigned long address, pte_t *page_table, pmd_t *pmd,
2895 unsigned int flags, pte_t orig_pte)
2896 {
2897 spinlock_t *ptl;
2898 struct page *page, *swapcache = NULL;
2899 swp_entry_t entry;
2900 pte_t pte;
2901 int locked;
2902 struct mem_cgroup *ptr;
2903 int exclusive = 0;
2904 int ret = 0;
2905
2906 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2907 goto out;
2908
2909 entry = pte_to_swp_entry(orig_pte);
2910 if (unlikely(non_swap_entry(entry))) {
2911 if (is_migration_entry(entry)) {
2912 migration_entry_wait(mm, pmd, address);
2913 } else if (is_hwpoison_entry(entry)) {
2914 ret = VM_FAULT_HWPOISON;
2915 } else {
2916 print_bad_pte(vma, address, orig_pte, NULL);
2917 ret = VM_FAULT_SIGBUS;
2918 }
2919 goto out;
2920 }
2921 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2922 page = lookup_swap_cache(entry);
2923 if (!page) {
2924 page = swapin_readahead(entry,
2925 GFP_HIGHUSER_MOVABLE, vma, address);
2926 if (!page) {
2927 /*
2928 * Back out if somebody else faulted in this pte
2929 * while we released the pte lock.
2930 */
2931 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2932 if (likely(pte_same(*page_table, orig_pte)))
2933 ret = VM_FAULT_OOM;
2934 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2935 goto unlock;
2936 }
2937
2938 /* Had to read the page from swap area: Major fault */
2939 ret = VM_FAULT_MAJOR;
2940 count_vm_event(PGMAJFAULT);
2941 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2942 } else if (PageHWPoison(page)) {
2943 /*
2944 * hwpoisoned dirty swapcache pages are kept for killing
2945 * owner processes (which may be unknown at hwpoison time)
2946 */
2947 ret = VM_FAULT_HWPOISON;
2948 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949 goto out_release;
2950 }
2951
2952 locked = lock_page_or_retry(page, mm, flags);
2953
2954 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2955 if (!locked) {
2956 ret |= VM_FAULT_RETRY;
2957 goto out_release;
2958 }
2959
2960 /*
2961 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2962 * release the swapcache from under us. The page pin, and pte_same
2963 * test below, are not enough to exclude that. Even if it is still
2964 * swapcache, we need to check that the page's swap has not changed.
2965 */
2966 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2967 goto out_page;
2968
2969 if (ksm_might_need_to_copy(page, vma, address)) {
2970 swapcache = page;
2971 page = ksm_does_need_to_copy(page, vma, address);
2972
2973 if (unlikely(!page)) {
2974 ret = VM_FAULT_OOM;
2975 page = swapcache;
2976 swapcache = NULL;
2977 goto out_page;
2978 }
2979 }
2980
2981 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2982 ret = VM_FAULT_OOM;
2983 goto out_page;
2984 }
2985
2986 /*
2987 * Back out if somebody else already faulted in this pte.
2988 */
2989 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2990 if (unlikely(!pte_same(*page_table, orig_pte)))
2991 goto out_nomap;
2992
2993 if (unlikely(!PageUptodate(page))) {
2994 ret = VM_FAULT_SIGBUS;
2995 goto out_nomap;
2996 }
2997
2998 /*
2999 * The page isn't present yet, go ahead with the fault.
3000 *
3001 * Be careful about the sequence of operations here.
3002 * To get its accounting right, reuse_swap_page() must be called
3003 * while the page is counted on swap but not yet in mapcount i.e.
3004 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3005 * must be called after the swap_free(), or it will never succeed.
3006 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3007 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3008 * in page->private. In this case, a record in swap_cgroup is silently
3009 * discarded at swap_free().
3010 */
3011
3012 inc_mm_counter_fast(mm, MM_ANONPAGES);
3013 dec_mm_counter_fast(mm, MM_SWAPENTS);
3014 pte = mk_pte(page, vma->vm_page_prot);
3015 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3016 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3017 flags &= ~FAULT_FLAG_WRITE;
3018 ret |= VM_FAULT_WRITE;
3019 exclusive = 1;
3020 }
3021 flush_icache_page(vma, page);
3022 set_pte_at(mm, address, page_table, pte);
3023 do_page_add_anon_rmap(page, vma, address, exclusive);
3024 /* It's better to call commit-charge after rmap is established */
3025 mem_cgroup_commit_charge_swapin(page, ptr);
3026
3027 swap_free(entry);
3028 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3029 try_to_free_swap(page);
3030 unlock_page(page);
3031 if (swapcache) {
3032 /*
3033 * Hold the lock to avoid the swap entry to be reused
3034 * until we take the PT lock for the pte_same() check
3035 * (to avoid false positives from pte_same). For
3036 * further safety release the lock after the swap_free
3037 * so that the swap count won't change under a
3038 * parallel locked swapcache.
3039 */
3040 unlock_page(swapcache);
3041 page_cache_release(swapcache);
3042 }
3043
3044 if (flags & FAULT_FLAG_WRITE) {
3045 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3046 if (ret & VM_FAULT_ERROR)
3047 ret &= VM_FAULT_ERROR;
3048 goto out;
3049 }
3050
3051 /* No need to invalidate - it was non-present before */
3052 update_mmu_cache(vma, address, page_table);
3053 unlock:
3054 pte_unmap_unlock(page_table, ptl);
3055 out:
3056 return ret;
3057 out_nomap:
3058 mem_cgroup_cancel_charge_swapin(ptr);
3059 pte_unmap_unlock(page_table, ptl);
3060 out_page:
3061 unlock_page(page);
3062 out_release:
3063 page_cache_release(page);
3064 if (swapcache) {
3065 unlock_page(swapcache);
3066 page_cache_release(swapcache);
3067 }
3068 return ret;
3069 }
3070
3071 /*
3072 * This is like a special single-page "expand_{down|up}wards()",
3073 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3074 * doesn't hit another vma.
3075 */
3076 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3077 {
3078 address &= PAGE_MASK;
3079 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3080 struct vm_area_struct *prev = vma->vm_prev;
3081
3082 /*
3083 * Is there a mapping abutting this one below?
3084 *
3085 * That's only ok if it's the same stack mapping
3086 * that has gotten split..
3087 */
3088 if (prev && prev->vm_end == address)
3089 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3090
3091 expand_downwards(vma, address - PAGE_SIZE);
3092 }
3093 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3094 struct vm_area_struct *next = vma->vm_next;
3095
3096 /* As VM_GROWSDOWN but s/below/above/ */
3097 if (next && next->vm_start == address + PAGE_SIZE)
3098 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3099
3100 expand_upwards(vma, address + PAGE_SIZE);
3101 }
3102 return 0;
3103 }
3104
3105 /*
3106 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3107 * but allow concurrent faults), and pte mapped but not yet locked.
3108 * We return with mmap_sem still held, but pte unmapped and unlocked.
3109 */
3110 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3111 unsigned long address, pte_t *page_table, pmd_t *pmd,
3112 unsigned int flags)
3113 {
3114 struct page *page;
3115 spinlock_t *ptl;
3116 pte_t entry;
3117
3118 pte_unmap(page_table);
3119
3120 /* Check if we need to add a guard page to the stack */
3121 if (check_stack_guard_page(vma, address) < 0)
3122 return VM_FAULT_SIGBUS;
3123
3124 /* Use the zero-page for reads */
3125 if (!(flags & FAULT_FLAG_WRITE)) {
3126 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3127 vma->vm_page_prot));
3128 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3129 if (!pte_none(*page_table))
3130 goto unlock;
3131 goto setpte;
3132 }
3133
3134 /* Allocate our own private page. */
3135 if (unlikely(anon_vma_prepare(vma)))
3136 goto oom;
3137 page = alloc_zeroed_user_highpage_movable(vma, address);
3138 if (!page)
3139 goto oom;
3140 __SetPageUptodate(page);
3141
3142 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3143 goto oom_free_page;
3144
3145 entry = mk_pte(page, vma->vm_page_prot);
3146 if (vma->vm_flags & VM_WRITE)
3147 entry = pte_mkwrite(pte_mkdirty(entry));
3148
3149 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3150 if (!pte_none(*page_table))
3151 goto release;
3152
3153 inc_mm_counter_fast(mm, MM_ANONPAGES);
3154 page_add_new_anon_rmap(page, vma, address);
3155 setpte:
3156 set_pte_at(mm, address, page_table, entry);
3157
3158 /* No need to invalidate - it was non-present before */
3159 update_mmu_cache(vma, address, page_table);
3160 unlock:
3161 pte_unmap_unlock(page_table, ptl);
3162 return 0;
3163 release:
3164 mem_cgroup_uncharge_page(page);
3165 page_cache_release(page);
3166 goto unlock;
3167 oom_free_page:
3168 page_cache_release(page);
3169 oom:
3170 return VM_FAULT_OOM;
3171 }
3172
3173 /*
3174 * __do_fault() tries to create a new page mapping. It aggressively
3175 * tries to share with existing pages, but makes a separate copy if
3176 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3177 * the next page fault.
3178 *
3179 * As this is called only for pages that do not currently exist, we
3180 * do not need to flush old virtual caches or the TLB.
3181 *
3182 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3183 * but allow concurrent faults), and pte neither mapped nor locked.
3184 * We return with mmap_sem still held, but pte unmapped and unlocked.
3185 */
3186 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3187 unsigned long address, pmd_t *pmd,
3188 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3189 {
3190 pte_t *page_table;
3191 spinlock_t *ptl;
3192 struct page *page;
3193 struct page *cow_page;
3194 pte_t entry;
3195 int anon = 0;
3196 struct page *dirty_page = NULL;
3197 struct vm_fault vmf;
3198 int ret;
3199 int page_mkwrite = 0;
3200
3201 /*
3202 * If we do COW later, allocate page befor taking lock_page()
3203 * on the file cache page. This will reduce lock holding time.
3204 */
3205 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3206
3207 if (unlikely(anon_vma_prepare(vma)))
3208 return VM_FAULT_OOM;
3209
3210 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3211 if (!cow_page)
3212 return VM_FAULT_OOM;
3213
3214 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3215 page_cache_release(cow_page);
3216 return VM_FAULT_OOM;
3217 }
3218 } else
3219 cow_page = NULL;
3220
3221 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3222 vmf.pgoff = pgoff;
3223 vmf.flags = flags;
3224 vmf.page = NULL;
3225
3226 ret = vma->vm_ops->fault(vma, &vmf);
3227 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3228 VM_FAULT_RETRY)))
3229 goto uncharge_out;
3230
3231 if (unlikely(PageHWPoison(vmf.page))) {
3232 if (ret & VM_FAULT_LOCKED)
3233 unlock_page(vmf.page);
3234 ret = VM_FAULT_HWPOISON;
3235 goto uncharge_out;
3236 }
3237
3238 /*
3239 * For consistency in subsequent calls, make the faulted page always
3240 * locked.
3241 */
3242 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3243 lock_page(vmf.page);
3244 else
3245 VM_BUG_ON(!PageLocked(vmf.page));
3246
3247 /*
3248 * Should we do an early C-O-W break?
3249 */
3250 page = vmf.page;
3251 if (flags & FAULT_FLAG_WRITE) {
3252 if (!(vma->vm_flags & VM_SHARED)) {
3253 page = cow_page;
3254 anon = 1;
3255 copy_user_highpage(page, vmf.page, address, vma);
3256 __SetPageUptodate(page);
3257 } else {
3258 /*
3259 * If the page will be shareable, see if the backing
3260 * address space wants to know that the page is about
3261 * to become writable
3262 */
3263 if (vma->vm_ops->page_mkwrite) {
3264 int tmp;
3265
3266 unlock_page(page);
3267 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3268 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3269 if (unlikely(tmp &
3270 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3271 ret = tmp;
3272 goto unwritable_page;
3273 }
3274 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3275 lock_page(page);
3276 if (!page->mapping) {
3277 ret = 0; /* retry the fault */
3278 unlock_page(page);
3279 goto unwritable_page;
3280 }
3281 } else
3282 VM_BUG_ON(!PageLocked(page));
3283 page_mkwrite = 1;
3284 }
3285 }
3286
3287 }
3288
3289 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3290
3291 /*
3292 * This silly early PAGE_DIRTY setting removes a race
3293 * due to the bad i386 page protection. But it's valid
3294 * for other architectures too.
3295 *
3296 * Note that if FAULT_FLAG_WRITE is set, we either now have
3297 * an exclusive copy of the page, or this is a shared mapping,
3298 * so we can make it writable and dirty to avoid having to
3299 * handle that later.
3300 */
3301 /* Only go through if we didn't race with anybody else... */
3302 if (likely(pte_same(*page_table, orig_pte))) {
3303 flush_icache_page(vma, page);
3304 entry = mk_pte(page, vma->vm_page_prot);
3305 if (flags & FAULT_FLAG_WRITE)
3306 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3307 if (anon) {
3308 inc_mm_counter_fast(mm, MM_ANONPAGES);
3309 page_add_new_anon_rmap(page, vma, address);
3310 } else {
3311 inc_mm_counter_fast(mm, MM_FILEPAGES);
3312 page_add_file_rmap(page);
3313 if (flags & FAULT_FLAG_WRITE) {
3314 dirty_page = page;
3315 get_page(dirty_page);
3316 }
3317 }
3318 set_pte_at(mm, address, page_table, entry);
3319
3320 /* no need to invalidate: a not-present page won't be cached */
3321 update_mmu_cache(vma, address, page_table);
3322 } else {
3323 if (cow_page)
3324 mem_cgroup_uncharge_page(cow_page);
3325 if (anon)
3326 page_cache_release(page);
3327 else
3328 anon = 1; /* no anon but release faulted_page */
3329 }
3330
3331 pte_unmap_unlock(page_table, ptl);
3332
3333 if (dirty_page) {
3334 struct address_space *mapping = page->mapping;
3335 int dirtied = 0;
3336
3337 if (set_page_dirty(dirty_page))
3338 dirtied = 1;
3339 unlock_page(dirty_page);
3340 put_page(dirty_page);
3341 if ((dirtied || page_mkwrite) && mapping) {
3342 /*
3343 * Some device drivers do not set page.mapping but still
3344 * dirty their pages
3345 */
3346 balance_dirty_pages_ratelimited(mapping);
3347 }
3348
3349 /* file_update_time outside page_lock */
3350 if (vma->vm_file && !page_mkwrite)
3351 file_update_time(vma->vm_file);
3352 } else {
3353 unlock_page(vmf.page);
3354 if (anon)
3355 page_cache_release(vmf.page);
3356 }
3357
3358 return ret;
3359
3360 unwritable_page:
3361 page_cache_release(page);
3362 return ret;
3363 uncharge_out:
3364 /* fs's fault handler get error */
3365 if (cow_page) {
3366 mem_cgroup_uncharge_page(cow_page);
3367 page_cache_release(cow_page);
3368 }
3369 return ret;
3370 }
3371
3372 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3373 unsigned long address, pte_t *page_table, pmd_t *pmd,
3374 unsigned int flags, pte_t orig_pte)
3375 {
3376 pgoff_t pgoff = (((address & PAGE_MASK)
3377 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3378
3379 pte_unmap(page_table);
3380 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3381 }
3382
3383 /*
3384 * Fault of a previously existing named mapping. Repopulate the pte
3385 * from the encoded file_pte if possible. This enables swappable
3386 * nonlinear vmas.
3387 *
3388 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3389 * but allow concurrent faults), and pte mapped but not yet locked.
3390 * We return with mmap_sem still held, but pte unmapped and unlocked.
3391 */
3392 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3393 unsigned long address, pte_t *page_table, pmd_t *pmd,
3394 unsigned int flags, pte_t orig_pte)
3395 {
3396 pgoff_t pgoff;
3397
3398 flags |= FAULT_FLAG_NONLINEAR;
3399
3400 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3401 return 0;
3402
3403 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3404 /*
3405 * Page table corrupted: show pte and kill process.
3406 */
3407 print_bad_pte(vma, address, orig_pte, NULL);
3408 return VM_FAULT_SIGBUS;
3409 }
3410
3411 pgoff = pte_to_pgoff(orig_pte);
3412 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3413 }
3414
3415 /*
3416 * These routines also need to handle stuff like marking pages dirty
3417 * and/or accessed for architectures that don't do it in hardware (most
3418 * RISC architectures). The early dirtying is also good on the i386.
3419 *
3420 * There is also a hook called "update_mmu_cache()" that architectures
3421 * with external mmu caches can use to update those (ie the Sparc or
3422 * PowerPC hashed page tables that act as extended TLBs).
3423 *
3424 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3425 * but allow concurrent faults), and pte mapped but not yet locked.
3426 * We return with mmap_sem still held, but pte unmapped and unlocked.
3427 */
3428 int handle_pte_fault(struct mm_struct *mm,
3429 struct vm_area_struct *vma, unsigned long address,
3430 pte_t *pte, pmd_t *pmd, unsigned int flags)
3431 {
3432 pte_t entry;
3433 spinlock_t *ptl;
3434
3435 entry = *pte;
3436 if (!pte_present(entry)) {
3437 if (pte_none(entry)) {
3438 if (vma->vm_ops) {
3439 if (likely(vma->vm_ops->fault))
3440 return do_linear_fault(mm, vma, address,
3441 pte, pmd, flags, entry);
3442 }
3443 return do_anonymous_page(mm, vma, address,
3444 pte, pmd, flags);
3445 }
3446 if (pte_file(entry))
3447 return do_nonlinear_fault(mm, vma, address,
3448 pte, pmd, flags, entry);
3449 return do_swap_page(mm, vma, address,
3450 pte, pmd, flags, entry);
3451 }
3452
3453 ptl = pte_lockptr(mm, pmd);
3454 spin_lock(ptl);
3455 if (unlikely(!pte_same(*pte, entry)))
3456 goto unlock;
3457 if (flags & FAULT_FLAG_WRITE) {
3458 if (!pte_write(entry))
3459 return do_wp_page(mm, vma, address,
3460 pte, pmd, ptl, entry);
3461 entry = pte_mkdirty(entry);
3462 }
3463 entry = pte_mkyoung(entry);
3464 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3465 update_mmu_cache(vma, address, pte);
3466 } else {
3467 /*
3468 * This is needed only for protection faults but the arch code
3469 * is not yet telling us if this is a protection fault or not.
3470 * This still avoids useless tlb flushes for .text page faults
3471 * with threads.
3472 */
3473 if (flags & FAULT_FLAG_WRITE)
3474 flush_tlb_fix_spurious_fault(vma, address);
3475 }
3476 unlock:
3477 pte_unmap_unlock(pte, ptl);
3478 return 0;
3479 }
3480
3481 /*
3482 * By the time we get here, we already hold the mm semaphore
3483 */
3484 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485 unsigned long address, unsigned int flags)
3486 {
3487 pgd_t *pgd;
3488 pud_t *pud;
3489 pmd_t *pmd;
3490 pte_t *pte;
3491
3492 __set_current_state(TASK_RUNNING);
3493
3494 count_vm_event(PGFAULT);
3495 mem_cgroup_count_vm_event(mm, PGFAULT);
3496
3497 /* do counter updates before entering really critical section. */
3498 check_sync_rss_stat(current);
3499
3500 if (unlikely(is_vm_hugetlb_page(vma)))
3501 return hugetlb_fault(mm, vma, address, flags);
3502
3503 retry:
3504 pgd = pgd_offset(mm, address);
3505 pud = pud_alloc(mm, pgd, address);
3506 if (!pud)
3507 return VM_FAULT_OOM;
3508 pmd = pmd_alloc(mm, pud, address);
3509 if (!pmd)
3510 return VM_FAULT_OOM;
3511 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3512 if (!vma->vm_ops)
3513 return do_huge_pmd_anonymous_page(mm, vma, address,
3514 pmd, flags);
3515 } else {
3516 pmd_t orig_pmd = *pmd;
3517 int ret;
3518
3519 barrier();
3520 if (pmd_trans_huge(orig_pmd)) {
3521 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3522
3523 if (dirty && !pmd_write(orig_pmd) &&
3524 !pmd_trans_splitting(orig_pmd)) {
3525 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3526 orig_pmd);
3527 /*
3528 * If COW results in an oom, the huge pmd will
3529 * have been split, so retry the fault on the
3530 * pte for a smaller charge.
3531 */
3532 if (unlikely(ret & VM_FAULT_OOM))
3533 goto retry;
3534 return ret;
3535 } else {
3536 huge_pmd_set_accessed(mm, vma, address, pmd,
3537 orig_pmd, dirty);
3538 }
3539 return 0;
3540 }
3541 }
3542
3543 /*
3544 * Use __pte_alloc instead of pte_alloc_map, because we can't
3545 * run pte_offset_map on the pmd, if an huge pmd could
3546 * materialize from under us from a different thread.
3547 */
3548 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3549 return VM_FAULT_OOM;
3550 /* if an huge pmd materialized from under us just retry later */
3551 if (unlikely(pmd_trans_huge(*pmd)))
3552 return 0;
3553 /*
3554 * A regular pmd is established and it can't morph into a huge pmd
3555 * from under us anymore at this point because we hold the mmap_sem
3556 * read mode and khugepaged takes it in write mode. So now it's
3557 * safe to run pte_offset_map().
3558 */
3559 pte = pte_offset_map(pmd, address);
3560
3561 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3562 }
3563
3564 #ifndef __PAGETABLE_PUD_FOLDED
3565 /*
3566 * Allocate page upper directory.
3567 * We've already handled the fast-path in-line.
3568 */
3569 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3570 {
3571 pud_t *new = pud_alloc_one(mm, address);
3572 if (!new)
3573 return -ENOMEM;
3574
3575 smp_wmb(); /* See comment in __pte_alloc */
3576
3577 spin_lock(&mm->page_table_lock);
3578 if (pgd_present(*pgd)) /* Another has populated it */
3579 pud_free(mm, new);
3580 else
3581 pgd_populate(mm, pgd, new);
3582 spin_unlock(&mm->page_table_lock);
3583 return 0;
3584 }
3585 #endif /* __PAGETABLE_PUD_FOLDED */
3586
3587 #ifndef __PAGETABLE_PMD_FOLDED
3588 /*
3589 * Allocate page middle directory.
3590 * We've already handled the fast-path in-line.
3591 */
3592 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3593 {
3594 pmd_t *new = pmd_alloc_one(mm, address);
3595 if (!new)
3596 return -ENOMEM;
3597
3598 smp_wmb(); /* See comment in __pte_alloc */
3599
3600 spin_lock(&mm->page_table_lock);
3601 #ifndef __ARCH_HAS_4LEVEL_HACK
3602 if (pud_present(*pud)) /* Another has populated it */
3603 pmd_free(mm, new);
3604 else
3605 pud_populate(mm, pud, new);
3606 #else
3607 if (pgd_present(*pud)) /* Another has populated it */
3608 pmd_free(mm, new);
3609 else
3610 pgd_populate(mm, pud, new);
3611 #endif /* __ARCH_HAS_4LEVEL_HACK */
3612 spin_unlock(&mm->page_table_lock);
3613 return 0;
3614 }
3615 #endif /* __PAGETABLE_PMD_FOLDED */
3616
3617 int make_pages_present(unsigned long addr, unsigned long end)
3618 {
3619 int ret, len, write;
3620 struct vm_area_struct * vma;
3621
3622 vma = find_vma(current->mm, addr);
3623 if (!vma)
3624 return -ENOMEM;
3625 /*
3626 * We want to touch writable mappings with a write fault in order
3627 * to break COW, except for shared mappings because these don't COW
3628 * and we would not want to dirty them for nothing.
3629 */
3630 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3631 BUG_ON(addr >= end);
3632 BUG_ON(end > vma->vm_end);
3633 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3634 ret = get_user_pages(current, current->mm, addr,
3635 len, write, 0, NULL, NULL);
3636 if (ret < 0)
3637 return ret;
3638 return ret == len ? 0 : -EFAULT;
3639 }
3640
3641 #if !defined(__HAVE_ARCH_GATE_AREA)
3642
3643 #if defined(AT_SYSINFO_EHDR)
3644 static struct vm_area_struct gate_vma;
3645
3646 static int __init gate_vma_init(void)
3647 {
3648 gate_vma.vm_mm = NULL;
3649 gate_vma.vm_start = FIXADDR_USER_START;
3650 gate_vma.vm_end = FIXADDR_USER_END;
3651 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3652 gate_vma.vm_page_prot = __P101;
3653
3654 return 0;
3655 }
3656 __initcall(gate_vma_init);
3657 #endif
3658
3659 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3660 {
3661 #ifdef AT_SYSINFO_EHDR
3662 return &gate_vma;
3663 #else
3664 return NULL;
3665 #endif
3666 }
3667
3668 int in_gate_area_no_mm(unsigned long addr)
3669 {
3670 #ifdef AT_SYSINFO_EHDR
3671 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3672 return 1;
3673 #endif
3674 return 0;
3675 }
3676
3677 #endif /* __HAVE_ARCH_GATE_AREA */
3678
3679 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3680 pte_t **ptepp, spinlock_t **ptlp)
3681 {
3682 pgd_t *pgd;
3683 pud_t *pud;
3684 pmd_t *pmd;
3685 pte_t *ptep;
3686
3687 pgd = pgd_offset(mm, address);
3688 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3689 goto out;
3690
3691 pud = pud_offset(pgd, address);
3692 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3693 goto out;
3694
3695 pmd = pmd_offset(pud, address);
3696 VM_BUG_ON(pmd_trans_huge(*pmd));
3697 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3698 goto out;
3699
3700 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3701 if (pmd_huge(*pmd))
3702 goto out;
3703
3704 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3705 if (!ptep)
3706 goto out;
3707 if (!pte_present(*ptep))
3708 goto unlock;
3709 *ptepp = ptep;
3710 return 0;
3711 unlock:
3712 pte_unmap_unlock(ptep, *ptlp);
3713 out:
3714 return -EINVAL;
3715 }
3716
3717 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3718 pte_t **ptepp, spinlock_t **ptlp)
3719 {
3720 int res;
3721
3722 /* (void) is needed to make gcc happy */
3723 (void) __cond_lock(*ptlp,
3724 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3725 return res;
3726 }
3727
3728 /**
3729 * follow_pfn - look up PFN at a user virtual address
3730 * @vma: memory mapping
3731 * @address: user virtual address
3732 * @pfn: location to store found PFN
3733 *
3734 * Only IO mappings and raw PFN mappings are allowed.
3735 *
3736 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3737 */
3738 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3739 unsigned long *pfn)
3740 {
3741 int ret = -EINVAL;
3742 spinlock_t *ptl;
3743 pte_t *ptep;
3744
3745 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3746 return ret;
3747
3748 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3749 if (ret)
3750 return ret;
3751 *pfn = pte_pfn(*ptep);
3752 pte_unmap_unlock(ptep, ptl);
3753 return 0;
3754 }
3755 EXPORT_SYMBOL(follow_pfn);
3756
3757 #ifdef CONFIG_HAVE_IOREMAP_PROT
3758 int follow_phys(struct vm_area_struct *vma,
3759 unsigned long address, unsigned int flags,
3760 unsigned long *prot, resource_size_t *phys)
3761 {
3762 int ret = -EINVAL;
3763 pte_t *ptep, pte;
3764 spinlock_t *ptl;
3765
3766 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3767 goto out;
3768
3769 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3770 goto out;
3771 pte = *ptep;
3772
3773 if ((flags & FOLL_WRITE) && !pte_write(pte))
3774 goto unlock;
3775
3776 *prot = pgprot_val(pte_pgprot(pte));
3777 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3778
3779 ret = 0;
3780 unlock:
3781 pte_unmap_unlock(ptep, ptl);
3782 out:
3783 return ret;
3784 }
3785
3786 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3787 void *buf, int len, int write)
3788 {
3789 resource_size_t phys_addr;
3790 unsigned long prot = 0;
3791 void __iomem *maddr;
3792 int offset = addr & (PAGE_SIZE-1);
3793
3794 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3795 return -EINVAL;
3796
3797 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3798 if (write)
3799 memcpy_toio(maddr + offset, buf, len);
3800 else
3801 memcpy_fromio(buf, maddr + offset, len);
3802 iounmap(maddr);
3803
3804 return len;
3805 }
3806 #endif
3807
3808 /*
3809 * Access another process' address space as given in mm. If non-NULL, use the
3810 * given task for page fault accounting.
3811 */
3812 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3813 unsigned long addr, void *buf, int len, int write)
3814 {
3815 struct vm_area_struct *vma;
3816 void *old_buf = buf;
3817
3818 down_read(&mm->mmap_sem);
3819 /* ignore errors, just check how much was successfully transferred */
3820 while (len) {
3821 int bytes, ret, offset;
3822 void *maddr;
3823 struct page *page = NULL;
3824
3825 ret = get_user_pages(tsk, mm, addr, 1,
3826 write, 1, &page, &vma);
3827 if (ret <= 0) {
3828 /*
3829 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3830 * we can access using slightly different code.
3831 */
3832 #ifdef CONFIG_HAVE_IOREMAP_PROT
3833 vma = find_vma(mm, addr);
3834 if (!vma || vma->vm_start > addr)
3835 break;
3836 if (vma->vm_ops && vma->vm_ops->access)
3837 ret = vma->vm_ops->access(vma, addr, buf,
3838 len, write);
3839 if (ret <= 0)
3840 #endif
3841 break;
3842 bytes = ret;
3843 } else {
3844 bytes = len;
3845 offset = addr & (PAGE_SIZE-1);
3846 if (bytes > PAGE_SIZE-offset)
3847 bytes = PAGE_SIZE-offset;
3848
3849 maddr = kmap(page);
3850 if (write) {
3851 copy_to_user_page(vma, page, addr,
3852 maddr + offset, buf, bytes);
3853 set_page_dirty_lock(page);
3854 } else {
3855 copy_from_user_page(vma, page, addr,
3856 buf, maddr + offset, bytes);
3857 }
3858 kunmap(page);
3859 page_cache_release(page);
3860 }
3861 len -= bytes;
3862 buf += bytes;
3863 addr += bytes;
3864 }
3865 up_read(&mm->mmap_sem);
3866
3867 return buf - old_buf;
3868 }
3869
3870 /**
3871 * access_remote_vm - access another process' address space
3872 * @mm: the mm_struct of the target address space
3873 * @addr: start address to access
3874 * @buf: source or destination buffer
3875 * @len: number of bytes to transfer
3876 * @write: whether the access is a write
3877 *
3878 * The caller must hold a reference on @mm.
3879 */
3880 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3881 void *buf, int len, int write)
3882 {
3883 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3884 }
3885
3886 /*
3887 * Access another process' address space.
3888 * Source/target buffer must be kernel space,
3889 * Do not walk the page table directly, use get_user_pages
3890 */
3891 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3892 void *buf, int len, int write)
3893 {
3894 struct mm_struct *mm;
3895 int ret;
3896
3897 mm = get_task_mm(tsk);
3898 if (!mm)
3899 return 0;
3900
3901 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3902 mmput(mm);
3903
3904 return ret;
3905 }
3906
3907 /*
3908 * Print the name of a VMA.
3909 */
3910 void print_vma_addr(char *prefix, unsigned long ip)
3911 {
3912 struct mm_struct *mm = current->mm;
3913 struct vm_area_struct *vma;
3914
3915 /*
3916 * Do not print if we are in atomic
3917 * contexts (in exception stacks, etc.):
3918 */
3919 if (preempt_count())
3920 return;
3921
3922 down_read(&mm->mmap_sem);
3923 vma = find_vma(mm, ip);
3924 if (vma && vma->vm_file) {
3925 struct file *f = vma->vm_file;
3926 char *buf = (char *)__get_free_page(GFP_KERNEL);
3927 if (buf) {
3928 char *p, *s;
3929
3930 p = d_path(&f->f_path, buf, PAGE_SIZE);
3931 if (IS_ERR(p))
3932 p = "?";
3933 s = strrchr(p, '/');
3934 if (s)
3935 p = s+1;
3936 printk("%s%s[%lx+%lx]", prefix, p,
3937 vma->vm_start,
3938 vma->vm_end - vma->vm_start);
3939 free_page((unsigned long)buf);
3940 }
3941 }
3942 up_read(&mm->mmap_sem);
3943 }
3944
3945 #ifdef CONFIG_PROVE_LOCKING
3946 void might_fault(void)
3947 {
3948 /*
3949 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3950 * holding the mmap_sem, this is safe because kernel memory doesn't
3951 * get paged out, therefore we'll never actually fault, and the
3952 * below annotations will generate false positives.
3953 */
3954 if (segment_eq(get_fs(), KERNEL_DS))
3955 return;
3956
3957 might_sleep();
3958 /*
3959 * it would be nicer only to annotate paths which are not under
3960 * pagefault_disable, however that requires a larger audit and
3961 * providing helpers like get_user_atomic.
3962 */
3963 if (!in_atomic() && current->mm)
3964 might_lock_read(&current->mm->mmap_sem);
3965 }
3966 EXPORT_SYMBOL(might_fault);
3967 #endif
3968
3969 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3970 static void clear_gigantic_page(struct page *page,
3971 unsigned long addr,
3972 unsigned int pages_per_huge_page)
3973 {
3974 int i;
3975 struct page *p = page;
3976
3977 might_sleep();
3978 for (i = 0; i < pages_per_huge_page;
3979 i++, p = mem_map_next(p, page, i)) {
3980 cond_resched();
3981 clear_user_highpage(p, addr + i * PAGE_SIZE);
3982 }
3983 }
3984 void clear_huge_page(struct page *page,
3985 unsigned long addr, unsigned int pages_per_huge_page)
3986 {
3987 int i;
3988
3989 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3990 clear_gigantic_page(page, addr, pages_per_huge_page);
3991 return;
3992 }
3993
3994 might_sleep();
3995 for (i = 0; i < pages_per_huge_page; i++) {
3996 cond_resched();
3997 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3998 }
3999 }
4000
4001 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4002 unsigned long addr,
4003 struct vm_area_struct *vma,
4004 unsigned int pages_per_huge_page)
4005 {
4006 int i;
4007 struct page *dst_base = dst;
4008 struct page *src_base = src;
4009
4010 for (i = 0; i < pages_per_huge_page; ) {
4011 cond_resched();
4012 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4013
4014 i++;
4015 dst = mem_map_next(dst, dst_base, i);
4016 src = mem_map_next(src, src_base, i);
4017 }
4018 }
4019
4020 void copy_user_huge_page(struct page *dst, struct page *src,
4021 unsigned long addr, struct vm_area_struct *vma,
4022 unsigned int pages_per_huge_page)
4023 {
4024 int i;
4025
4026 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4027 copy_user_gigantic_page(dst, src, addr, vma,
4028 pages_per_huge_page);
4029 return;
4030 }
4031
4032 might_sleep();
4033 for (i = 0; i < pages_per_huge_page; i++) {
4034 cond_resched();
4035 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4036 }
4037 }
4038 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */