]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
Merge tag 'amlogic-fixes' of https://git.kernel.org/pub/scm/linux/kernel/git/khilman...
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97
98 /*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107
108 /*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 1;
117 #else
118 2;
119 #endif
120
121 static int __init disable_randmaps(char *s)
122 {
123 randomize_va_space = 0;
124 return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130
131 unsigned long highest_memmap_pfn __read_mostly;
132
133 /*
134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 */
136 static int __init init_zero_pfn(void)
137 {
138 zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 return 0;
140 }
141 core_initcall(init_zero_pfn);
142
143
144 #if defined(SPLIT_RSS_COUNTING)
145
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 int i;
149
150 for (i = 0; i < NR_MM_COUNTERS; i++) {
151 if (current->rss_stat.count[i]) {
152 add_mm_counter(mm, i, current->rss_stat.count[i]);
153 current->rss_stat.count[i] = 0;
154 }
155 }
156 current->rss_stat.events = 0;
157 }
158
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 struct task_struct *task = current;
162
163 if (likely(task->mm == mm))
164 task->rss_stat.count[member] += val;
165 else
166 add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH (64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 if (unlikely(task != current))
176 return;
177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188
189 #endif /* SPLIT_RSS_COUNTING */
190
191 /*
192 * Note: this doesn't free the actual pages themselves. That
193 * has been handled earlier when unmapping all the memory regions.
194 */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 unsigned long addr)
197 {
198 pgtable_t token = pmd_pgtable(*pmd);
199 pmd_clear(pmd);
200 pte_free_tlb(tlb, token, addr);
201 mm_dec_nr_ptes(tlb->mm);
202 }
203
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
207 {
208 pmd_t *pmd;
209 unsigned long next;
210 unsigned long start;
211
212 start = addr;
213 pmd = pmd_offset(pud, addr);
214 do {
215 next = pmd_addr_end(addr, end);
216 if (pmd_none_or_clear_bad(pmd))
217 continue;
218 free_pte_range(tlb, pmd, addr);
219 } while (pmd++, addr = next, addr != end);
220
221 start &= PUD_MASK;
222 if (start < floor)
223 return;
224 if (ceiling) {
225 ceiling &= PUD_MASK;
226 if (!ceiling)
227 return;
228 }
229 if (end - 1 > ceiling - 1)
230 return;
231
232 pmd = pmd_offset(pud, start);
233 pud_clear(pud);
234 pmd_free_tlb(tlb, pmd, start);
235 mm_dec_nr_pmds(tlb->mm);
236 }
237
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 unsigned long addr, unsigned long end,
240 unsigned long floor, unsigned long ceiling)
241 {
242 pud_t *pud;
243 unsigned long next;
244 unsigned long start;
245
246 start = addr;
247 pud = pud_offset(p4d, addr);
248 do {
249 next = pud_addr_end(addr, end);
250 if (pud_none_or_clear_bad(pud))
251 continue;
252 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 } while (pud++, addr = next, addr != end);
254
255 start &= P4D_MASK;
256 if (start < floor)
257 return;
258 if (ceiling) {
259 ceiling &= P4D_MASK;
260 if (!ceiling)
261 return;
262 }
263 if (end - 1 > ceiling - 1)
264 return;
265
266 pud = pud_offset(p4d, start);
267 p4d_clear(p4d);
268 pud_free_tlb(tlb, pud, start);
269 mm_dec_nr_puds(tlb->mm);
270 }
271
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 unsigned long addr, unsigned long end,
274 unsigned long floor, unsigned long ceiling)
275 {
276 p4d_t *p4d;
277 unsigned long next;
278 unsigned long start;
279
280 start = addr;
281 p4d = p4d_offset(pgd, addr);
282 do {
283 next = p4d_addr_end(addr, end);
284 if (p4d_none_or_clear_bad(p4d))
285 continue;
286 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 } while (p4d++, addr = next, addr != end);
288
289 start &= PGDIR_MASK;
290 if (start < floor)
291 return;
292 if (ceiling) {
293 ceiling &= PGDIR_MASK;
294 if (!ceiling)
295 return;
296 }
297 if (end - 1 > ceiling - 1)
298 return;
299
300 p4d = p4d_offset(pgd, start);
301 pgd_clear(pgd);
302 p4d_free_tlb(tlb, p4d, start);
303 }
304
305 /*
306 * This function frees user-level page tables of a process.
307 */
308 void free_pgd_range(struct mmu_gather *tlb,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
311 {
312 pgd_t *pgd;
313 unsigned long next;
314
315 /*
316 * The next few lines have given us lots of grief...
317 *
318 * Why are we testing PMD* at this top level? Because often
319 * there will be no work to do at all, and we'd prefer not to
320 * go all the way down to the bottom just to discover that.
321 *
322 * Why all these "- 1"s? Because 0 represents both the bottom
323 * of the address space and the top of it (using -1 for the
324 * top wouldn't help much: the masks would do the wrong thing).
325 * The rule is that addr 0 and floor 0 refer to the bottom of
326 * the address space, but end 0 and ceiling 0 refer to the top
327 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 * that end 0 case should be mythical).
329 *
330 * Wherever addr is brought up or ceiling brought down, we must
331 * be careful to reject "the opposite 0" before it confuses the
332 * subsequent tests. But what about where end is brought down
333 * by PMD_SIZE below? no, end can't go down to 0 there.
334 *
335 * Whereas we round start (addr) and ceiling down, by different
336 * masks at different levels, in order to test whether a table
337 * now has no other vmas using it, so can be freed, we don't
338 * bother to round floor or end up - the tests don't need that.
339 */
340
341 addr &= PMD_MASK;
342 if (addr < floor) {
343 addr += PMD_SIZE;
344 if (!addr)
345 return;
346 }
347 if (ceiling) {
348 ceiling &= PMD_MASK;
349 if (!ceiling)
350 return;
351 }
352 if (end - 1 > ceiling - 1)
353 end -= PMD_SIZE;
354 if (addr > end - 1)
355 return;
356 /*
357 * We add page table cache pages with PAGE_SIZE,
358 * (see pte_free_tlb()), flush the tlb if we need
359 */
360 tlb_change_page_size(tlb, PAGE_SIZE);
361 pgd = pgd_offset(tlb->mm, addr);
362 do {
363 next = pgd_addr_end(addr, end);
364 if (pgd_none_or_clear_bad(pgd))
365 continue;
366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 } while (pgd++, addr = next, addr != end);
368 }
369
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 unsigned long floor, unsigned long ceiling)
372 {
373 while (vma) {
374 struct vm_area_struct *next = vma->vm_next;
375 unsigned long addr = vma->vm_start;
376
377 /*
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
380 */
381 unlink_anon_vmas(vma);
382 unlink_file_vma(vma);
383
384 if (is_vm_hugetlb_page(vma)) {
385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 floor, next ? next->vm_start : ceiling);
387 } else {
388 /*
389 * Optimization: gather nearby vmas into one call down
390 */
391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 && !is_vm_hugetlb_page(next)) {
393 vma = next;
394 next = vma->vm_next;
395 unlink_anon_vmas(vma);
396 unlink_file_vma(vma);
397 }
398 free_pgd_range(tlb, addr, vma->vm_end,
399 floor, next ? next->vm_start : ceiling);
400 }
401 vma = next;
402 }
403 }
404
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 spinlock_t *ptl;
408 pgtable_t new = pte_alloc_one(mm);
409 if (!new)
410 return -ENOMEM;
411
412 /*
413 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 * visible before the pte is made visible to other CPUs by being
415 * put into page tables.
416 *
417 * The other side of the story is the pointer chasing in the page
418 * table walking code (when walking the page table without locking;
419 * ie. most of the time). Fortunately, these data accesses consist
420 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 * being the notable exception) will already guarantee loads are
422 * seen in-order. See the alpha page table accessors for the
423 * smp_read_barrier_depends() barriers in page table walking code.
424 */
425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426
427 ptl = pmd_lock(mm, pmd);
428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
429 mm_inc_nr_ptes(mm);
430 pmd_populate(mm, pmd, new);
431 new = NULL;
432 }
433 spin_unlock(ptl);
434 if (new)
435 pte_free(mm, new);
436 return 0;
437 }
438
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 pte_t *new = pte_alloc_one_kernel(&init_mm);
442 if (!new)
443 return -ENOMEM;
444
445 smp_wmb(); /* See comment in __pte_alloc */
446
447 spin_lock(&init_mm.page_table_lock);
448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
449 pmd_populate_kernel(&init_mm, pmd, new);
450 new = NULL;
451 }
452 spin_unlock(&init_mm.page_table_lock);
453 if (new)
454 pte_free_kernel(&init_mm, new);
455 return 0;
456 }
457
458 static inline void init_rss_vec(int *rss)
459 {
460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 int i;
466
467 if (current->mm == mm)
468 sync_mm_rss(mm);
469 for (i = 0; i < NR_MM_COUNTERS; i++)
470 if (rss[i])
471 add_mm_counter(mm, i, rss[i]);
472 }
473
474 /*
475 * This function is called to print an error when a bad pte
476 * is found. For example, we might have a PFN-mapped pte in
477 * a region that doesn't allow it.
478 *
479 * The calling function must still handle the error.
480 */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 pte_t pte, struct page *page)
483 {
484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 p4d_t *p4d = p4d_offset(pgd, addr);
486 pud_t *pud = pud_offset(p4d, addr);
487 pmd_t *pmd = pmd_offset(pud, addr);
488 struct address_space *mapping;
489 pgoff_t index;
490 static unsigned long resume;
491 static unsigned long nr_shown;
492 static unsigned long nr_unshown;
493
494 /*
495 * Allow a burst of 60 reports, then keep quiet for that minute;
496 * or allow a steady drip of one report per second.
497 */
498 if (nr_shown == 60) {
499 if (time_before(jiffies, resume)) {
500 nr_unshown++;
501 return;
502 }
503 if (nr_unshown) {
504 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 nr_unshown);
506 nr_unshown = 0;
507 }
508 nr_shown = 0;
509 }
510 if (nr_shown++ == 0)
511 resume = jiffies + 60 * HZ;
512
513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 index = linear_page_index(vma, addr);
515
516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
517 current->comm,
518 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 if (page)
520 dump_page(page, "bad pte");
521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 mapping ? mapping->a_ops->readpage : NULL);
528 dump_stack();
529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531
532 /*
533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
534 *
535 * "Special" mappings do not wish to be associated with a "struct page" (either
536 * it doesn't exist, or it exists but they don't want to touch it). In this
537 * case, NULL is returned here. "Normal" mappings do have a struct page.
538 *
539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540 * pte bit, in which case this function is trivial. Secondly, an architecture
541 * may not have a spare pte bit, which requires a more complicated scheme,
542 * described below.
543 *
544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545 * special mapping (even if there are underlying and valid "struct pages").
546 * COWed pages of a VM_PFNMAP are always normal.
547 *
548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551 * mapping will always honor the rule
552 *
553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554 *
555 * And for normal mappings this is false.
556 *
557 * This restricts such mappings to be a linear translation from virtual address
558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
559 * as the vma is not a COW mapping; in that case, we know that all ptes are
560 * special (because none can have been COWed).
561 *
562 *
563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564 *
565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566 * page" backing, however the difference is that _all_ pages with a struct
567 * page (that is, those where pfn_valid is true) are refcounted and considered
568 * normal pages by the VM. The disadvantage is that pages are refcounted
569 * (which can be slower and simply not an option for some PFNMAP users). The
570 * advantage is that we don't have to follow the strict linearity rule of
571 * PFNMAP mappings in order to support COWable mappings.
572 *
573 */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 pte_t pte, bool with_public_device)
576 {
577 unsigned long pfn = pte_pfn(pte);
578
579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 if (likely(!pte_special(pte)))
581 goto check_pfn;
582 if (vma->vm_ops && vma->vm_ops->find_special_page)
583 return vma->vm_ops->find_special_page(vma, addr);
584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 return NULL;
586 if (is_zero_pfn(pfn))
587 return NULL;
588
589 /*
590 * Device public pages are special pages (they are ZONE_DEVICE
591 * pages but different from persistent memory). They behave
592 * allmost like normal pages. The difference is that they are
593 * not on the lru and thus should never be involve with any-
594 * thing that involve lru manipulation (mlock, numa balancing,
595 * ...).
596 *
597 * This is why we still want to return NULL for such page from
598 * vm_normal_page() so that we do not have to special case all
599 * call site of vm_normal_page().
600 */
601 if (likely(pfn <= highest_memmap_pfn)) {
602 struct page *page = pfn_to_page(pfn);
603
604 if (is_device_public_page(page)) {
605 if (with_public_device)
606 return page;
607 return NULL;
608 }
609 }
610
611 if (pte_devmap(pte))
612 return NULL;
613
614 print_bad_pte(vma, addr, pte, NULL);
615 return NULL;
616 }
617
618 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619
620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 if (vma->vm_flags & VM_MIXEDMAP) {
622 if (!pfn_valid(pfn))
623 return NULL;
624 goto out;
625 } else {
626 unsigned long off;
627 off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 if (pfn == vma->vm_pgoff + off)
629 return NULL;
630 if (!is_cow_mapping(vma->vm_flags))
631 return NULL;
632 }
633 }
634
635 if (is_zero_pfn(pfn))
636 return NULL;
637
638 check_pfn:
639 if (unlikely(pfn > highest_memmap_pfn)) {
640 print_bad_pte(vma, addr, pte, NULL);
641 return NULL;
642 }
643
644 /*
645 * NOTE! We still have PageReserved() pages in the page tables.
646 * eg. VDSO mappings can cause them to exist.
647 */
648 out:
649 return pfn_to_page(pfn);
650 }
651
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654 pmd_t pmd)
655 {
656 unsigned long pfn = pmd_pfn(pmd);
657
658 /*
659 * There is no pmd_special() but there may be special pmds, e.g.
660 * in a direct-access (dax) mapping, so let's just replicate the
661 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662 */
663 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664 if (vma->vm_flags & VM_MIXEDMAP) {
665 if (!pfn_valid(pfn))
666 return NULL;
667 goto out;
668 } else {
669 unsigned long off;
670 off = (addr - vma->vm_start) >> PAGE_SHIFT;
671 if (pfn == vma->vm_pgoff + off)
672 return NULL;
673 if (!is_cow_mapping(vma->vm_flags))
674 return NULL;
675 }
676 }
677
678 if (pmd_devmap(pmd))
679 return NULL;
680 if (is_zero_pfn(pfn))
681 return NULL;
682 if (unlikely(pfn > highest_memmap_pfn))
683 return NULL;
684
685 /*
686 * NOTE! We still have PageReserved() pages in the page tables.
687 * eg. VDSO mappings can cause them to exist.
688 */
689 out:
690 return pfn_to_page(pfn);
691 }
692 #endif
693
694 /*
695 * copy one vm_area from one task to the other. Assumes the page tables
696 * already present in the new task to be cleared in the whole range
697 * covered by this vma.
698 */
699
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703 unsigned long addr, int *rss)
704 {
705 unsigned long vm_flags = vma->vm_flags;
706 pte_t pte = *src_pte;
707 struct page *page;
708
709 /* pte contains position in swap or file, so copy. */
710 if (unlikely(!pte_present(pte))) {
711 swp_entry_t entry = pte_to_swp_entry(pte);
712
713 if (likely(!non_swap_entry(entry))) {
714 if (swap_duplicate(entry) < 0)
715 return entry.val;
716
717 /* make sure dst_mm is on swapoff's mmlist. */
718 if (unlikely(list_empty(&dst_mm->mmlist))) {
719 spin_lock(&mmlist_lock);
720 if (list_empty(&dst_mm->mmlist))
721 list_add(&dst_mm->mmlist,
722 &src_mm->mmlist);
723 spin_unlock(&mmlist_lock);
724 }
725 rss[MM_SWAPENTS]++;
726 } else if (is_migration_entry(entry)) {
727 page = migration_entry_to_page(entry);
728
729 rss[mm_counter(page)]++;
730
731 if (is_write_migration_entry(entry) &&
732 is_cow_mapping(vm_flags)) {
733 /*
734 * COW mappings require pages in both
735 * parent and child to be set to read.
736 */
737 make_migration_entry_read(&entry);
738 pte = swp_entry_to_pte(entry);
739 if (pte_swp_soft_dirty(*src_pte))
740 pte = pte_swp_mksoft_dirty(pte);
741 set_pte_at(src_mm, addr, src_pte, pte);
742 }
743 } else if (is_device_private_entry(entry)) {
744 page = device_private_entry_to_page(entry);
745
746 /*
747 * Update rss count even for unaddressable pages, as
748 * they should treated just like normal pages in this
749 * respect.
750 *
751 * We will likely want to have some new rss counters
752 * for unaddressable pages, at some point. But for now
753 * keep things as they are.
754 */
755 get_page(page);
756 rss[mm_counter(page)]++;
757 page_dup_rmap(page, false);
758
759 /*
760 * We do not preserve soft-dirty information, because so
761 * far, checkpoint/restore is the only feature that
762 * requires that. And checkpoint/restore does not work
763 * when a device driver is involved (you cannot easily
764 * save and restore device driver state).
765 */
766 if (is_write_device_private_entry(entry) &&
767 is_cow_mapping(vm_flags)) {
768 make_device_private_entry_read(&entry);
769 pte = swp_entry_to_pte(entry);
770 set_pte_at(src_mm, addr, src_pte, pte);
771 }
772 }
773 goto out_set_pte;
774 }
775
776 /*
777 * If it's a COW mapping, write protect it both
778 * in the parent and the child
779 */
780 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 ptep_set_wrprotect(src_mm, addr, src_pte);
782 pte = pte_wrprotect(pte);
783 }
784
785 /*
786 * If it's a shared mapping, mark it clean in
787 * the child
788 */
789 if (vm_flags & VM_SHARED)
790 pte = pte_mkclean(pte);
791 pte = pte_mkold(pte);
792
793 page = vm_normal_page(vma, addr, pte);
794 if (page) {
795 get_page(page);
796 page_dup_rmap(page, false);
797 rss[mm_counter(page)]++;
798 } else if (pte_devmap(pte)) {
799 page = pte_page(pte);
800
801 /*
802 * Cache coherent device memory behave like regular page and
803 * not like persistent memory page. For more informations see
804 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805 */
806 if (is_device_public_page(page)) {
807 get_page(page);
808 page_dup_rmap(page, false);
809 rss[mm_counter(page)]++;
810 }
811 }
812
813 out_set_pte:
814 set_pte_at(dst_mm, addr, dst_pte, pte);
815 return 0;
816 }
817
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820 unsigned long addr, unsigned long end)
821 {
822 pte_t *orig_src_pte, *orig_dst_pte;
823 pte_t *src_pte, *dst_pte;
824 spinlock_t *src_ptl, *dst_ptl;
825 int progress = 0;
826 int rss[NR_MM_COUNTERS];
827 swp_entry_t entry = (swp_entry_t){0};
828
829 again:
830 init_rss_vec(rss);
831
832 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833 if (!dst_pte)
834 return -ENOMEM;
835 src_pte = pte_offset_map(src_pmd, addr);
836 src_ptl = pte_lockptr(src_mm, src_pmd);
837 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838 orig_src_pte = src_pte;
839 orig_dst_pte = dst_pte;
840 arch_enter_lazy_mmu_mode();
841
842 do {
843 /*
844 * We are holding two locks at this point - either of them
845 * could generate latencies in another task on another CPU.
846 */
847 if (progress >= 32) {
848 progress = 0;
849 if (need_resched() ||
850 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851 break;
852 }
853 if (pte_none(*src_pte)) {
854 progress++;
855 continue;
856 }
857 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858 vma, addr, rss);
859 if (entry.val)
860 break;
861 progress += 8;
862 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863
864 arch_leave_lazy_mmu_mode();
865 spin_unlock(src_ptl);
866 pte_unmap(orig_src_pte);
867 add_mm_rss_vec(dst_mm, rss);
868 pte_unmap_unlock(orig_dst_pte, dst_ptl);
869 cond_resched();
870
871 if (entry.val) {
872 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873 return -ENOMEM;
874 progress = 0;
875 }
876 if (addr != end)
877 goto again;
878 return 0;
879 }
880
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883 unsigned long addr, unsigned long end)
884 {
885 pmd_t *src_pmd, *dst_pmd;
886 unsigned long next;
887
888 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889 if (!dst_pmd)
890 return -ENOMEM;
891 src_pmd = pmd_offset(src_pud, addr);
892 do {
893 next = pmd_addr_end(addr, end);
894 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895 || pmd_devmap(*src_pmd)) {
896 int err;
897 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898 err = copy_huge_pmd(dst_mm, src_mm,
899 dst_pmd, src_pmd, addr, vma);
900 if (err == -ENOMEM)
901 return -ENOMEM;
902 if (!err)
903 continue;
904 /* fall through */
905 }
906 if (pmd_none_or_clear_bad(src_pmd))
907 continue;
908 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909 vma, addr, next))
910 return -ENOMEM;
911 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
912 return 0;
913 }
914
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918 {
919 pud_t *src_pud, *dst_pud;
920 unsigned long next;
921
922 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923 if (!dst_pud)
924 return -ENOMEM;
925 src_pud = pud_offset(src_p4d, addr);
926 do {
927 next = pud_addr_end(addr, end);
928 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929 int err;
930
931 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932 err = copy_huge_pud(dst_mm, src_mm,
933 dst_pud, src_pud, addr, vma);
934 if (err == -ENOMEM)
935 return -ENOMEM;
936 if (!err)
937 continue;
938 /* fall through */
939 }
940 if (pud_none_or_clear_bad(src_pud))
941 continue;
942 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_pud++, src_pud++, addr = next, addr != end);
946 return 0;
947 }
948
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952 {
953 p4d_t *src_p4d, *dst_p4d;
954 unsigned long next;
955
956 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957 if (!dst_p4d)
958 return -ENOMEM;
959 src_p4d = p4d_offset(src_pgd, addr);
960 do {
961 next = p4d_addr_end(addr, end);
962 if (p4d_none_or_clear_bad(src_p4d))
963 continue;
964 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965 vma, addr, next))
966 return -ENOMEM;
967 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
968 return 0;
969 }
970
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 struct vm_area_struct *vma)
973 {
974 pgd_t *src_pgd, *dst_pgd;
975 unsigned long next;
976 unsigned long addr = vma->vm_start;
977 unsigned long end = vma->vm_end;
978 struct mmu_notifier_range range;
979 bool is_cow;
980 int ret;
981
982 /*
983 * Don't copy ptes where a page fault will fill them correctly.
984 * Fork becomes much lighter when there are big shared or private
985 * readonly mappings. The tradeoff is that copy_page_range is more
986 * efficient than faulting.
987 */
988 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989 !vma->anon_vma)
990 return 0;
991
992 if (is_vm_hugetlb_page(vma))
993 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994
995 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 /*
997 * We do not free on error cases below as remove_vma
998 * gets called on error from higher level routine
999 */
1000 ret = track_pfn_copy(vma);
1001 if (ret)
1002 return ret;
1003 }
1004
1005 /*
1006 * We need to invalidate the secondary MMU mappings only when
1007 * there could be a permission downgrade on the ptes of the
1008 * parent mm. And a permission downgrade will only happen if
1009 * is_cow_mapping() returns true.
1010 */
1011 is_cow = is_cow_mapping(vma->vm_flags);
1012
1013 if (is_cow) {
1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015 0, vma, src_mm, addr, end);
1016 mmu_notifier_invalidate_range_start(&range);
1017 }
1018
1019 ret = 0;
1020 dst_pgd = pgd_offset(dst_mm, addr);
1021 src_pgd = pgd_offset(src_mm, addr);
1022 do {
1023 next = pgd_addr_end(addr, end);
1024 if (pgd_none_or_clear_bad(src_pgd))
1025 continue;
1026 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027 vma, addr, next))) {
1028 ret = -ENOMEM;
1029 break;
1030 }
1031 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032
1033 if (is_cow)
1034 mmu_notifier_invalidate_range_end(&range);
1035 return ret;
1036 }
1037
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039 struct vm_area_struct *vma, pmd_t *pmd,
1040 unsigned long addr, unsigned long end,
1041 struct zap_details *details)
1042 {
1043 struct mm_struct *mm = tlb->mm;
1044 int force_flush = 0;
1045 int rss[NR_MM_COUNTERS];
1046 spinlock_t *ptl;
1047 pte_t *start_pte;
1048 pte_t *pte;
1049 swp_entry_t entry;
1050
1051 tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053 init_rss_vec(rss);
1054 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055 pte = start_pte;
1056 flush_tlb_batched_pending(mm);
1057 arch_enter_lazy_mmu_mode();
1058 do {
1059 pte_t ptent = *pte;
1060 if (pte_none(ptent))
1061 continue;
1062
1063 if (pte_present(ptent)) {
1064 struct page *page;
1065
1066 page = _vm_normal_page(vma, addr, ptent, true);
1067 if (unlikely(details) && page) {
1068 /*
1069 * unmap_shared_mapping_pages() wants to
1070 * invalidate cache without truncating:
1071 * unmap shared but keep private pages.
1072 */
1073 if (details->check_mapping &&
1074 details->check_mapping != page_rmapping(page))
1075 continue;
1076 }
1077 ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 tlb->fullmm);
1079 tlb_remove_tlb_entry(tlb, pte, addr);
1080 if (unlikely(!page))
1081 continue;
1082
1083 if (!PageAnon(page)) {
1084 if (pte_dirty(ptent)) {
1085 force_flush = 1;
1086 set_page_dirty(page);
1087 }
1088 if (pte_young(ptent) &&
1089 likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 mark_page_accessed(page);
1091 }
1092 rss[mm_counter(page)]--;
1093 page_remove_rmap(page, false);
1094 if (unlikely(page_mapcount(page) < 0))
1095 print_bad_pte(vma, addr, ptent, page);
1096 if (unlikely(__tlb_remove_page(tlb, page))) {
1097 force_flush = 1;
1098 addr += PAGE_SIZE;
1099 break;
1100 }
1101 continue;
1102 }
1103
1104 entry = pte_to_swp_entry(ptent);
1105 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106 struct page *page = device_private_entry_to_page(entry);
1107
1108 if (unlikely(details && details->check_mapping)) {
1109 /*
1110 * unmap_shared_mapping_pages() wants to
1111 * invalidate cache without truncating:
1112 * unmap shared but keep private pages.
1113 */
1114 if (details->check_mapping !=
1115 page_rmapping(page))
1116 continue;
1117 }
1118
1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 rss[mm_counter(page)]--;
1121 page_remove_rmap(page, false);
1122 put_page(page);
1123 continue;
1124 }
1125
1126 /* If details->check_mapping, we leave swap entries. */
1127 if (unlikely(details))
1128 continue;
1129
1130 entry = pte_to_swp_entry(ptent);
1131 if (!non_swap_entry(entry))
1132 rss[MM_SWAPENTS]--;
1133 else if (is_migration_entry(entry)) {
1134 struct page *page;
1135
1136 page = migration_entry_to_page(entry);
1137 rss[mm_counter(page)]--;
1138 }
1139 if (unlikely(!free_swap_and_cache(entry)))
1140 print_bad_pte(vma, addr, ptent, NULL);
1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 } while (pte++, addr += PAGE_SIZE, addr != end);
1143
1144 add_mm_rss_vec(mm, rss);
1145 arch_leave_lazy_mmu_mode();
1146
1147 /* Do the actual TLB flush before dropping ptl */
1148 if (force_flush)
1149 tlb_flush_mmu_tlbonly(tlb);
1150 pte_unmap_unlock(start_pte, ptl);
1151
1152 /*
1153 * If we forced a TLB flush (either due to running out of
1154 * batch buffers or because we needed to flush dirty TLB
1155 * entries before releasing the ptl), free the batched
1156 * memory too. Restart if we didn't do everything.
1157 */
1158 if (force_flush) {
1159 force_flush = 0;
1160 tlb_flush_mmu(tlb);
1161 if (addr != end)
1162 goto again;
1163 }
1164
1165 return addr;
1166 }
1167
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 struct vm_area_struct *vma, pud_t *pud,
1170 unsigned long addr, unsigned long end,
1171 struct zap_details *details)
1172 {
1173 pmd_t *pmd;
1174 unsigned long next;
1175
1176 pmd = pmd_offset(pud, addr);
1177 do {
1178 next = pmd_addr_end(addr, end);
1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 if (next - addr != HPAGE_PMD_SIZE)
1181 __split_huge_pmd(vma, pmd, addr, false, NULL);
1182 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 goto next;
1184 /* fall through */
1185 }
1186 /*
1187 * Here there can be other concurrent MADV_DONTNEED or
1188 * trans huge page faults running, and if the pmd is
1189 * none or trans huge it can change under us. This is
1190 * because MADV_DONTNEED holds the mmap_sem in read
1191 * mode.
1192 */
1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 goto next;
1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 cond_resched();
1198 } while (pmd++, addr = next, addr != end);
1199
1200 return addr;
1201 }
1202
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, p4d_t *p4d,
1205 unsigned long addr, unsigned long end,
1206 struct zap_details *details)
1207 {
1208 pud_t *pud;
1209 unsigned long next;
1210
1211 pud = pud_offset(p4d, addr);
1212 do {
1213 next = pud_addr_end(addr, end);
1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 if (next - addr != HPAGE_PUD_SIZE) {
1216 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217 split_huge_pud(vma, pud, addr);
1218 } else if (zap_huge_pud(tlb, vma, pud, addr))
1219 goto next;
1220 /* fall through */
1221 }
1222 if (pud_none_or_clear_bad(pud))
1223 continue;
1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 cond_resched();
1227 } while (pud++, addr = next, addr != end);
1228
1229 return addr;
1230 }
1231
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 struct vm_area_struct *vma, pgd_t *pgd,
1234 unsigned long addr, unsigned long end,
1235 struct zap_details *details)
1236 {
1237 p4d_t *p4d;
1238 unsigned long next;
1239
1240 p4d = p4d_offset(pgd, addr);
1241 do {
1242 next = p4d_addr_end(addr, end);
1243 if (p4d_none_or_clear_bad(p4d))
1244 continue;
1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 } while (p4d++, addr = next, addr != end);
1247
1248 return addr;
1249 }
1250
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1255 {
1256 pgd_t *pgd;
1257 unsigned long next;
1258
1259 BUG_ON(addr >= end);
1260 tlb_start_vma(tlb, vma);
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 } while (pgd++, addr = next, addr != end);
1268 tlb_end_vma(tlb, vma);
1269 }
1270
1271
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, unsigned long start_addr,
1274 unsigned long end_addr,
1275 struct zap_details *details)
1276 {
1277 unsigned long start = max(vma->vm_start, start_addr);
1278 unsigned long end;
1279
1280 if (start >= vma->vm_end)
1281 return;
1282 end = min(vma->vm_end, end_addr);
1283 if (end <= vma->vm_start)
1284 return;
1285
1286 if (vma->vm_file)
1287 uprobe_munmap(vma, start, end);
1288
1289 if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 untrack_pfn(vma, 0, 0);
1291
1292 if (start != end) {
1293 if (unlikely(is_vm_hugetlb_page(vma))) {
1294 /*
1295 * It is undesirable to test vma->vm_file as it
1296 * should be non-null for valid hugetlb area.
1297 * However, vm_file will be NULL in the error
1298 * cleanup path of mmap_region. When
1299 * hugetlbfs ->mmap method fails,
1300 * mmap_region() nullifies vma->vm_file
1301 * before calling this function to clean up.
1302 * Since no pte has actually been setup, it is
1303 * safe to do nothing in this case.
1304 */
1305 if (vma->vm_file) {
1306 i_mmap_lock_write(vma->vm_file->f_mapping);
1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 }
1310 } else
1311 unmap_page_range(tlb, vma, start, end, details);
1312 }
1313 }
1314
1315 /**
1316 * unmap_vmas - unmap a range of memory covered by a list of vma's
1317 * @tlb: address of the caller's struct mmu_gather
1318 * @vma: the starting vma
1319 * @start_addr: virtual address at which to start unmapping
1320 * @end_addr: virtual address at which to end unmapping
1321 *
1322 * Unmap all pages in the vma list.
1323 *
1324 * Only addresses between `start' and `end' will be unmapped.
1325 *
1326 * The VMA list must be sorted in ascending virtual address order.
1327 *
1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329 * range after unmap_vmas() returns. So the only responsibility here is to
1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331 * drops the lock and schedules.
1332 */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 struct vm_area_struct *vma, unsigned long start_addr,
1335 unsigned long end_addr)
1336 {
1337 struct mmu_notifier_range range;
1338
1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 start_addr, end_addr);
1341 mmu_notifier_invalidate_range_start(&range);
1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 mmu_notifier_invalidate_range_end(&range);
1345 }
1346
1347 /**
1348 * zap_page_range - remove user pages in a given range
1349 * @vma: vm_area_struct holding the applicable pages
1350 * @start: starting address of pages to zap
1351 * @size: number of bytes to zap
1352 *
1353 * Caller must protect the VMA list
1354 */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 unsigned long size)
1357 {
1358 struct mmu_notifier_range range;
1359 struct mmu_gather tlb;
1360
1361 lru_add_drain();
1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 start, start + size);
1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 update_hiwater_rss(vma->vm_mm);
1366 mmu_notifier_invalidate_range_start(&range);
1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 mmu_notifier_invalidate_range_end(&range);
1370 tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372
1373 /**
1374 * zap_page_range_single - remove user pages in a given range
1375 * @vma: vm_area_struct holding the applicable pages
1376 * @address: starting address of pages to zap
1377 * @size: number of bytes to zap
1378 * @details: details of shared cache invalidation
1379 *
1380 * The range must fit into one VMA.
1381 */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 unsigned long size, struct zap_details *details)
1384 {
1385 struct mmu_notifier_range range;
1386 struct mmu_gather tlb;
1387
1388 lru_add_drain();
1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 address, address + size);
1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 update_hiwater_rss(vma->vm_mm);
1393 mmu_notifier_invalidate_range_start(&range);
1394 unmap_single_vma(&tlb, vma, address, range.end, details);
1395 mmu_notifier_invalidate_range_end(&range);
1396 tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398
1399 /**
1400 * zap_vma_ptes - remove ptes mapping the vma
1401 * @vma: vm_area_struct holding ptes to be zapped
1402 * @address: starting address of pages to zap
1403 * @size: number of bytes to zap
1404 *
1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406 *
1407 * The entire address range must be fully contained within the vma.
1408 *
1409 */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 unsigned long size)
1412 {
1413 if (address < vma->vm_start || address + size > vma->vm_end ||
1414 !(vma->vm_flags & VM_PFNMAP))
1415 return;
1416
1417 zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422 spinlock_t **ptl)
1423 {
1424 pgd_t *pgd;
1425 p4d_t *p4d;
1426 pud_t *pud;
1427 pmd_t *pmd;
1428
1429 pgd = pgd_offset(mm, addr);
1430 p4d = p4d_alloc(mm, pgd, addr);
1431 if (!p4d)
1432 return NULL;
1433 pud = pud_alloc(mm, p4d, addr);
1434 if (!pud)
1435 return NULL;
1436 pmd = pmd_alloc(mm, pud, addr);
1437 if (!pmd)
1438 return NULL;
1439
1440 VM_BUG_ON(pmd_trans_huge(*pmd));
1441 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443
1444 /*
1445 * This is the old fallback for page remapping.
1446 *
1447 * For historical reasons, it only allows reserved pages. Only
1448 * old drivers should use this, and they needed to mark their
1449 * pages reserved for the old functions anyway.
1450 */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452 struct page *page, pgprot_t prot)
1453 {
1454 struct mm_struct *mm = vma->vm_mm;
1455 int retval;
1456 pte_t *pte;
1457 spinlock_t *ptl;
1458
1459 retval = -EINVAL;
1460 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461 goto out;
1462 retval = -ENOMEM;
1463 flush_dcache_page(page);
1464 pte = get_locked_pte(mm, addr, &ptl);
1465 if (!pte)
1466 goto out;
1467 retval = -EBUSY;
1468 if (!pte_none(*pte))
1469 goto out_unlock;
1470
1471 /* Ok, finally just insert the thing.. */
1472 get_page(page);
1473 inc_mm_counter_fast(mm, mm_counter_file(page));
1474 page_add_file_rmap(page, false);
1475 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476
1477 retval = 0;
1478 pte_unmap_unlock(pte, ptl);
1479 return retval;
1480 out_unlock:
1481 pte_unmap_unlock(pte, ptl);
1482 out:
1483 return retval;
1484 }
1485
1486 /**
1487 * vm_insert_page - insert single page into user vma
1488 * @vma: user vma to map to
1489 * @addr: target user address of this page
1490 * @page: source kernel page
1491 *
1492 * This allows drivers to insert individual pages they've allocated
1493 * into a user vma.
1494 *
1495 * The page has to be a nice clean _individual_ kernel allocation.
1496 * If you allocate a compound page, you need to have marked it as
1497 * such (__GFP_COMP), or manually just split the page up yourself
1498 * (see split_page()).
1499 *
1500 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1501 * took an arbitrary page protection parameter. This doesn't allow
1502 * that. Your vma protection will have to be set up correctly, which
1503 * means that if you want a shared writable mapping, you'd better
1504 * ask for a shared writable mapping!
1505 *
1506 * The page does not need to be reserved.
1507 *
1508 * Usually this function is called from f_op->mmap() handler
1509 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1510 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1511 * function from other places, for example from page-fault handler.
1512 *
1513 * Return: %0 on success, negative error code otherwise.
1514 */
1515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1516 struct page *page)
1517 {
1518 if (addr < vma->vm_start || addr >= vma->vm_end)
1519 return -EFAULT;
1520 if (!page_count(page))
1521 return -EINVAL;
1522 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1523 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1524 BUG_ON(vma->vm_flags & VM_PFNMAP);
1525 vma->vm_flags |= VM_MIXEDMAP;
1526 }
1527 return insert_page(vma, addr, page, vma->vm_page_prot);
1528 }
1529 EXPORT_SYMBOL(vm_insert_page);
1530
1531 /*
1532 * __vm_map_pages - maps range of kernel pages into user vma
1533 * @vma: user vma to map to
1534 * @pages: pointer to array of source kernel pages
1535 * @num: number of pages in page array
1536 * @offset: user's requested vm_pgoff
1537 *
1538 * This allows drivers to map range of kernel pages into a user vma.
1539 *
1540 * Return: 0 on success and error code otherwise.
1541 */
1542 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1543 unsigned long num, unsigned long offset)
1544 {
1545 unsigned long count = vma_pages(vma);
1546 unsigned long uaddr = vma->vm_start;
1547 int ret, i;
1548
1549 /* Fail if the user requested offset is beyond the end of the object */
1550 if (offset > num)
1551 return -ENXIO;
1552
1553 /* Fail if the user requested size exceeds available object size */
1554 if (count > num - offset)
1555 return -ENXIO;
1556
1557 for (i = 0; i < count; i++) {
1558 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1559 if (ret < 0)
1560 return ret;
1561 uaddr += PAGE_SIZE;
1562 }
1563
1564 return 0;
1565 }
1566
1567 /**
1568 * vm_map_pages - maps range of kernel pages starts with non zero offset
1569 * @vma: user vma to map to
1570 * @pages: pointer to array of source kernel pages
1571 * @num: number of pages in page array
1572 *
1573 * Maps an object consisting of @num pages, catering for the user's
1574 * requested vm_pgoff
1575 *
1576 * If we fail to insert any page into the vma, the function will return
1577 * immediately leaving any previously inserted pages present. Callers
1578 * from the mmap handler may immediately return the error as their caller
1579 * will destroy the vma, removing any successfully inserted pages. Other
1580 * callers should make their own arrangements for calling unmap_region().
1581 *
1582 * Context: Process context. Called by mmap handlers.
1583 * Return: 0 on success and error code otherwise.
1584 */
1585 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1586 unsigned long num)
1587 {
1588 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1589 }
1590 EXPORT_SYMBOL(vm_map_pages);
1591
1592 /**
1593 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1594 * @vma: user vma to map to
1595 * @pages: pointer to array of source kernel pages
1596 * @num: number of pages in page array
1597 *
1598 * Similar to vm_map_pages(), except that it explicitly sets the offset
1599 * to 0. This function is intended for the drivers that did not consider
1600 * vm_pgoff.
1601 *
1602 * Context: Process context. Called by mmap handlers.
1603 * Return: 0 on success and error code otherwise.
1604 */
1605 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1606 unsigned long num)
1607 {
1608 return __vm_map_pages(vma, pages, num, 0);
1609 }
1610 EXPORT_SYMBOL(vm_map_pages_zero);
1611
1612 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613 pfn_t pfn, pgprot_t prot, bool mkwrite)
1614 {
1615 struct mm_struct *mm = vma->vm_mm;
1616 pte_t *pte, entry;
1617 spinlock_t *ptl;
1618
1619 pte = get_locked_pte(mm, addr, &ptl);
1620 if (!pte)
1621 return VM_FAULT_OOM;
1622 if (!pte_none(*pte)) {
1623 if (mkwrite) {
1624 /*
1625 * For read faults on private mappings the PFN passed
1626 * in may not match the PFN we have mapped if the
1627 * mapped PFN is a writeable COW page. In the mkwrite
1628 * case we are creating a writable PTE for a shared
1629 * mapping and we expect the PFNs to match. If they
1630 * don't match, we are likely racing with block
1631 * allocation and mapping invalidation so just skip the
1632 * update.
1633 */
1634 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1635 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1636 goto out_unlock;
1637 }
1638 entry = pte_mkyoung(*pte);
1639 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1640 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1641 update_mmu_cache(vma, addr, pte);
1642 }
1643 goto out_unlock;
1644 }
1645
1646 /* Ok, finally just insert the thing.. */
1647 if (pfn_t_devmap(pfn))
1648 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1649 else
1650 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1651
1652 if (mkwrite) {
1653 entry = pte_mkyoung(entry);
1654 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1655 }
1656
1657 set_pte_at(mm, addr, pte, entry);
1658 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1659
1660 out_unlock:
1661 pte_unmap_unlock(pte, ptl);
1662 return VM_FAULT_NOPAGE;
1663 }
1664
1665 /**
1666 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1667 * @vma: user vma to map to
1668 * @addr: target user address of this page
1669 * @pfn: source kernel pfn
1670 * @pgprot: pgprot flags for the inserted page
1671 *
1672 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1673 * to override pgprot on a per-page basis.
1674 *
1675 * This only makes sense for IO mappings, and it makes no sense for
1676 * COW mappings. In general, using multiple vmas is preferable;
1677 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1678 * impractical.
1679 *
1680 * Context: Process context. May allocate using %GFP_KERNEL.
1681 * Return: vm_fault_t value.
1682 */
1683 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1684 unsigned long pfn, pgprot_t pgprot)
1685 {
1686 /*
1687 * Technically, architectures with pte_special can avoid all these
1688 * restrictions (same for remap_pfn_range). However we would like
1689 * consistency in testing and feature parity among all, so we should
1690 * try to keep these invariants in place for everybody.
1691 */
1692 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1693 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1694 (VM_PFNMAP|VM_MIXEDMAP));
1695 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1696 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1697
1698 if (addr < vma->vm_start || addr >= vma->vm_end)
1699 return VM_FAULT_SIGBUS;
1700
1701 if (!pfn_modify_allowed(pfn, pgprot))
1702 return VM_FAULT_SIGBUS;
1703
1704 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1705
1706 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1707 false);
1708 }
1709 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1710
1711 /**
1712 * vmf_insert_pfn - insert single pfn into user vma
1713 * @vma: user vma to map to
1714 * @addr: target user address of this page
1715 * @pfn: source kernel pfn
1716 *
1717 * Similar to vm_insert_page, this allows drivers to insert individual pages
1718 * they've allocated into a user vma. Same comments apply.
1719 *
1720 * This function should only be called from a vm_ops->fault handler, and
1721 * in that case the handler should return the result of this function.
1722 *
1723 * vma cannot be a COW mapping.
1724 *
1725 * As this is called only for pages that do not currently exist, we
1726 * do not need to flush old virtual caches or the TLB.
1727 *
1728 * Context: Process context. May allocate using %GFP_KERNEL.
1729 * Return: vm_fault_t value.
1730 */
1731 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1732 unsigned long pfn)
1733 {
1734 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1735 }
1736 EXPORT_SYMBOL(vmf_insert_pfn);
1737
1738 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1739 {
1740 /* these checks mirror the abort conditions in vm_normal_page */
1741 if (vma->vm_flags & VM_MIXEDMAP)
1742 return true;
1743 if (pfn_t_devmap(pfn))
1744 return true;
1745 if (pfn_t_special(pfn))
1746 return true;
1747 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1748 return true;
1749 return false;
1750 }
1751
1752 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1753 unsigned long addr, pfn_t pfn, bool mkwrite)
1754 {
1755 pgprot_t pgprot = vma->vm_page_prot;
1756 int err;
1757
1758 BUG_ON(!vm_mixed_ok(vma, pfn));
1759
1760 if (addr < vma->vm_start || addr >= vma->vm_end)
1761 return VM_FAULT_SIGBUS;
1762
1763 track_pfn_insert(vma, &pgprot, pfn);
1764
1765 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1766 return VM_FAULT_SIGBUS;
1767
1768 /*
1769 * If we don't have pte special, then we have to use the pfn_valid()
1770 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1771 * refcount the page if pfn_valid is true (hence insert_page rather
1772 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1773 * without pte special, it would there be refcounted as a normal page.
1774 */
1775 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1776 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1777 struct page *page;
1778
1779 /*
1780 * At this point we are committed to insert_page()
1781 * regardless of whether the caller specified flags that
1782 * result in pfn_t_has_page() == false.
1783 */
1784 page = pfn_to_page(pfn_t_to_pfn(pfn));
1785 err = insert_page(vma, addr, page, pgprot);
1786 } else {
1787 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1788 }
1789
1790 if (err == -ENOMEM)
1791 return VM_FAULT_OOM;
1792 if (err < 0 && err != -EBUSY)
1793 return VM_FAULT_SIGBUS;
1794
1795 return VM_FAULT_NOPAGE;
1796 }
1797
1798 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1799 pfn_t pfn)
1800 {
1801 return __vm_insert_mixed(vma, addr, pfn, false);
1802 }
1803 EXPORT_SYMBOL(vmf_insert_mixed);
1804
1805 /*
1806 * If the insertion of PTE failed because someone else already added a
1807 * different entry in the mean time, we treat that as success as we assume
1808 * the same entry was actually inserted.
1809 */
1810 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1811 unsigned long addr, pfn_t pfn)
1812 {
1813 return __vm_insert_mixed(vma, addr, pfn, true);
1814 }
1815 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1816
1817 /*
1818 * maps a range of physical memory into the requested pages. the old
1819 * mappings are removed. any references to nonexistent pages results
1820 * in null mappings (currently treated as "copy-on-access")
1821 */
1822 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823 unsigned long addr, unsigned long end,
1824 unsigned long pfn, pgprot_t prot)
1825 {
1826 pte_t *pte;
1827 spinlock_t *ptl;
1828 int err = 0;
1829
1830 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1831 if (!pte)
1832 return -ENOMEM;
1833 arch_enter_lazy_mmu_mode();
1834 do {
1835 BUG_ON(!pte_none(*pte));
1836 if (!pfn_modify_allowed(pfn, prot)) {
1837 err = -EACCES;
1838 break;
1839 }
1840 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1841 pfn++;
1842 } while (pte++, addr += PAGE_SIZE, addr != end);
1843 arch_leave_lazy_mmu_mode();
1844 pte_unmap_unlock(pte - 1, ptl);
1845 return err;
1846 }
1847
1848 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1849 unsigned long addr, unsigned long end,
1850 unsigned long pfn, pgprot_t prot)
1851 {
1852 pmd_t *pmd;
1853 unsigned long next;
1854 int err;
1855
1856 pfn -= addr >> PAGE_SHIFT;
1857 pmd = pmd_alloc(mm, pud, addr);
1858 if (!pmd)
1859 return -ENOMEM;
1860 VM_BUG_ON(pmd_trans_huge(*pmd));
1861 do {
1862 next = pmd_addr_end(addr, end);
1863 err = remap_pte_range(mm, pmd, addr, next,
1864 pfn + (addr >> PAGE_SHIFT), prot);
1865 if (err)
1866 return err;
1867 } while (pmd++, addr = next, addr != end);
1868 return 0;
1869 }
1870
1871 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1872 unsigned long addr, unsigned long end,
1873 unsigned long pfn, pgprot_t prot)
1874 {
1875 pud_t *pud;
1876 unsigned long next;
1877 int err;
1878
1879 pfn -= addr >> PAGE_SHIFT;
1880 pud = pud_alloc(mm, p4d, addr);
1881 if (!pud)
1882 return -ENOMEM;
1883 do {
1884 next = pud_addr_end(addr, end);
1885 err = remap_pmd_range(mm, pud, addr, next,
1886 pfn + (addr >> PAGE_SHIFT), prot);
1887 if (err)
1888 return err;
1889 } while (pud++, addr = next, addr != end);
1890 return 0;
1891 }
1892
1893 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1894 unsigned long addr, unsigned long end,
1895 unsigned long pfn, pgprot_t prot)
1896 {
1897 p4d_t *p4d;
1898 unsigned long next;
1899 int err;
1900
1901 pfn -= addr >> PAGE_SHIFT;
1902 p4d = p4d_alloc(mm, pgd, addr);
1903 if (!p4d)
1904 return -ENOMEM;
1905 do {
1906 next = p4d_addr_end(addr, end);
1907 err = remap_pud_range(mm, p4d, addr, next,
1908 pfn + (addr >> PAGE_SHIFT), prot);
1909 if (err)
1910 return err;
1911 } while (p4d++, addr = next, addr != end);
1912 return 0;
1913 }
1914
1915 /**
1916 * remap_pfn_range - remap kernel memory to userspace
1917 * @vma: user vma to map to
1918 * @addr: target user address to start at
1919 * @pfn: physical address of kernel memory
1920 * @size: size of map area
1921 * @prot: page protection flags for this mapping
1922 *
1923 * Note: this is only safe if the mm semaphore is held when called.
1924 *
1925 * Return: %0 on success, negative error code otherwise.
1926 */
1927 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1928 unsigned long pfn, unsigned long size, pgprot_t prot)
1929 {
1930 pgd_t *pgd;
1931 unsigned long next;
1932 unsigned long end = addr + PAGE_ALIGN(size);
1933 struct mm_struct *mm = vma->vm_mm;
1934 unsigned long remap_pfn = pfn;
1935 int err;
1936
1937 /*
1938 * Physically remapped pages are special. Tell the
1939 * rest of the world about it:
1940 * VM_IO tells people not to look at these pages
1941 * (accesses can have side effects).
1942 * VM_PFNMAP tells the core MM that the base pages are just
1943 * raw PFN mappings, and do not have a "struct page" associated
1944 * with them.
1945 * VM_DONTEXPAND
1946 * Disable vma merging and expanding with mremap().
1947 * VM_DONTDUMP
1948 * Omit vma from core dump, even when VM_IO turned off.
1949 *
1950 * There's a horrible special case to handle copy-on-write
1951 * behaviour that some programs depend on. We mark the "original"
1952 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1953 * See vm_normal_page() for details.
1954 */
1955 if (is_cow_mapping(vma->vm_flags)) {
1956 if (addr != vma->vm_start || end != vma->vm_end)
1957 return -EINVAL;
1958 vma->vm_pgoff = pfn;
1959 }
1960
1961 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1962 if (err)
1963 return -EINVAL;
1964
1965 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1966
1967 BUG_ON(addr >= end);
1968 pfn -= addr >> PAGE_SHIFT;
1969 pgd = pgd_offset(mm, addr);
1970 flush_cache_range(vma, addr, end);
1971 do {
1972 next = pgd_addr_end(addr, end);
1973 err = remap_p4d_range(mm, pgd, addr, next,
1974 pfn + (addr >> PAGE_SHIFT), prot);
1975 if (err)
1976 break;
1977 } while (pgd++, addr = next, addr != end);
1978
1979 if (err)
1980 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1981
1982 return err;
1983 }
1984 EXPORT_SYMBOL(remap_pfn_range);
1985
1986 /**
1987 * vm_iomap_memory - remap memory to userspace
1988 * @vma: user vma to map to
1989 * @start: start of area
1990 * @len: size of area
1991 *
1992 * This is a simplified io_remap_pfn_range() for common driver use. The
1993 * driver just needs to give us the physical memory range to be mapped,
1994 * we'll figure out the rest from the vma information.
1995 *
1996 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1997 * whatever write-combining details or similar.
1998 *
1999 * Return: %0 on success, negative error code otherwise.
2000 */
2001 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2002 {
2003 unsigned long vm_len, pfn, pages;
2004
2005 /* Check that the physical memory area passed in looks valid */
2006 if (start + len < start)
2007 return -EINVAL;
2008 /*
2009 * You *really* shouldn't map things that aren't page-aligned,
2010 * but we've historically allowed it because IO memory might
2011 * just have smaller alignment.
2012 */
2013 len += start & ~PAGE_MASK;
2014 pfn = start >> PAGE_SHIFT;
2015 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2016 if (pfn + pages < pfn)
2017 return -EINVAL;
2018
2019 /* We start the mapping 'vm_pgoff' pages into the area */
2020 if (vma->vm_pgoff > pages)
2021 return -EINVAL;
2022 pfn += vma->vm_pgoff;
2023 pages -= vma->vm_pgoff;
2024
2025 /* Can we fit all of the mapping? */
2026 vm_len = vma->vm_end - vma->vm_start;
2027 if (vm_len >> PAGE_SHIFT > pages)
2028 return -EINVAL;
2029
2030 /* Ok, let it rip */
2031 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2032 }
2033 EXPORT_SYMBOL(vm_iomap_memory);
2034
2035 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2036 unsigned long addr, unsigned long end,
2037 pte_fn_t fn, void *data)
2038 {
2039 pte_t *pte;
2040 int err;
2041 pgtable_t token;
2042 spinlock_t *uninitialized_var(ptl);
2043
2044 pte = (mm == &init_mm) ?
2045 pte_alloc_kernel(pmd, addr) :
2046 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2047 if (!pte)
2048 return -ENOMEM;
2049
2050 BUG_ON(pmd_huge(*pmd));
2051
2052 arch_enter_lazy_mmu_mode();
2053
2054 token = pmd_pgtable(*pmd);
2055
2056 do {
2057 err = fn(pte++, token, addr, data);
2058 if (err)
2059 break;
2060 } while (addr += PAGE_SIZE, addr != end);
2061
2062 arch_leave_lazy_mmu_mode();
2063
2064 if (mm != &init_mm)
2065 pte_unmap_unlock(pte-1, ptl);
2066 return err;
2067 }
2068
2069 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2070 unsigned long addr, unsigned long end,
2071 pte_fn_t fn, void *data)
2072 {
2073 pmd_t *pmd;
2074 unsigned long next;
2075 int err;
2076
2077 BUG_ON(pud_huge(*pud));
2078
2079 pmd = pmd_alloc(mm, pud, addr);
2080 if (!pmd)
2081 return -ENOMEM;
2082 do {
2083 next = pmd_addr_end(addr, end);
2084 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2085 if (err)
2086 break;
2087 } while (pmd++, addr = next, addr != end);
2088 return err;
2089 }
2090
2091 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2092 unsigned long addr, unsigned long end,
2093 pte_fn_t fn, void *data)
2094 {
2095 pud_t *pud;
2096 unsigned long next;
2097 int err;
2098
2099 pud = pud_alloc(mm, p4d, addr);
2100 if (!pud)
2101 return -ENOMEM;
2102 do {
2103 next = pud_addr_end(addr, end);
2104 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2105 if (err)
2106 break;
2107 } while (pud++, addr = next, addr != end);
2108 return err;
2109 }
2110
2111 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2112 unsigned long addr, unsigned long end,
2113 pte_fn_t fn, void *data)
2114 {
2115 p4d_t *p4d;
2116 unsigned long next;
2117 int err;
2118
2119 p4d = p4d_alloc(mm, pgd, addr);
2120 if (!p4d)
2121 return -ENOMEM;
2122 do {
2123 next = p4d_addr_end(addr, end);
2124 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2125 if (err)
2126 break;
2127 } while (p4d++, addr = next, addr != end);
2128 return err;
2129 }
2130
2131 /*
2132 * Scan a region of virtual memory, filling in page tables as necessary
2133 * and calling a provided function on each leaf page table.
2134 */
2135 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2136 unsigned long size, pte_fn_t fn, void *data)
2137 {
2138 pgd_t *pgd;
2139 unsigned long next;
2140 unsigned long end = addr + size;
2141 int err;
2142
2143 if (WARN_ON(addr >= end))
2144 return -EINVAL;
2145
2146 pgd = pgd_offset(mm, addr);
2147 do {
2148 next = pgd_addr_end(addr, end);
2149 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2150 if (err)
2151 break;
2152 } while (pgd++, addr = next, addr != end);
2153
2154 return err;
2155 }
2156 EXPORT_SYMBOL_GPL(apply_to_page_range);
2157
2158 /*
2159 * handle_pte_fault chooses page fault handler according to an entry which was
2160 * read non-atomically. Before making any commitment, on those architectures
2161 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2162 * parts, do_swap_page must check under lock before unmapping the pte and
2163 * proceeding (but do_wp_page is only called after already making such a check;
2164 * and do_anonymous_page can safely check later on).
2165 */
2166 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2167 pte_t *page_table, pte_t orig_pte)
2168 {
2169 int same = 1;
2170 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2171 if (sizeof(pte_t) > sizeof(unsigned long)) {
2172 spinlock_t *ptl = pte_lockptr(mm, pmd);
2173 spin_lock(ptl);
2174 same = pte_same(*page_table, orig_pte);
2175 spin_unlock(ptl);
2176 }
2177 #endif
2178 pte_unmap(page_table);
2179 return same;
2180 }
2181
2182 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2183 {
2184 debug_dma_assert_idle(src);
2185
2186 /*
2187 * If the source page was a PFN mapping, we don't have
2188 * a "struct page" for it. We do a best-effort copy by
2189 * just copying from the original user address. If that
2190 * fails, we just zero-fill it. Live with it.
2191 */
2192 if (unlikely(!src)) {
2193 void *kaddr = kmap_atomic(dst);
2194 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2195
2196 /*
2197 * This really shouldn't fail, because the page is there
2198 * in the page tables. But it might just be unreadable,
2199 * in which case we just give up and fill the result with
2200 * zeroes.
2201 */
2202 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2203 clear_page(kaddr);
2204 kunmap_atomic(kaddr);
2205 flush_dcache_page(dst);
2206 } else
2207 copy_user_highpage(dst, src, va, vma);
2208 }
2209
2210 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2211 {
2212 struct file *vm_file = vma->vm_file;
2213
2214 if (vm_file)
2215 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2216
2217 /*
2218 * Special mappings (e.g. VDSO) do not have any file so fake
2219 * a default GFP_KERNEL for them.
2220 */
2221 return GFP_KERNEL;
2222 }
2223
2224 /*
2225 * Notify the address space that the page is about to become writable so that
2226 * it can prohibit this or wait for the page to get into an appropriate state.
2227 *
2228 * We do this without the lock held, so that it can sleep if it needs to.
2229 */
2230 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2231 {
2232 vm_fault_t ret;
2233 struct page *page = vmf->page;
2234 unsigned int old_flags = vmf->flags;
2235
2236 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2237
2238 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2239 /* Restore original flags so that caller is not surprised */
2240 vmf->flags = old_flags;
2241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2242 return ret;
2243 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2244 lock_page(page);
2245 if (!page->mapping) {
2246 unlock_page(page);
2247 return 0; /* retry */
2248 }
2249 ret |= VM_FAULT_LOCKED;
2250 } else
2251 VM_BUG_ON_PAGE(!PageLocked(page), page);
2252 return ret;
2253 }
2254
2255 /*
2256 * Handle dirtying of a page in shared file mapping on a write fault.
2257 *
2258 * The function expects the page to be locked and unlocks it.
2259 */
2260 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2261 struct page *page)
2262 {
2263 struct address_space *mapping;
2264 bool dirtied;
2265 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2266
2267 dirtied = set_page_dirty(page);
2268 VM_BUG_ON_PAGE(PageAnon(page), page);
2269 /*
2270 * Take a local copy of the address_space - page.mapping may be zeroed
2271 * by truncate after unlock_page(). The address_space itself remains
2272 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2273 * release semantics to prevent the compiler from undoing this copying.
2274 */
2275 mapping = page_rmapping(page);
2276 unlock_page(page);
2277
2278 if ((dirtied || page_mkwrite) && mapping) {
2279 /*
2280 * Some device drivers do not set page.mapping
2281 * but still dirty their pages
2282 */
2283 balance_dirty_pages_ratelimited(mapping);
2284 }
2285
2286 if (!page_mkwrite)
2287 file_update_time(vma->vm_file);
2288 }
2289
2290 /*
2291 * Handle write page faults for pages that can be reused in the current vma
2292 *
2293 * This can happen either due to the mapping being with the VM_SHARED flag,
2294 * or due to us being the last reference standing to the page. In either
2295 * case, all we need to do here is to mark the page as writable and update
2296 * any related book-keeping.
2297 */
2298 static inline void wp_page_reuse(struct vm_fault *vmf)
2299 __releases(vmf->ptl)
2300 {
2301 struct vm_area_struct *vma = vmf->vma;
2302 struct page *page = vmf->page;
2303 pte_t entry;
2304 /*
2305 * Clear the pages cpupid information as the existing
2306 * information potentially belongs to a now completely
2307 * unrelated process.
2308 */
2309 if (page)
2310 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2311
2312 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2313 entry = pte_mkyoung(vmf->orig_pte);
2314 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2315 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2316 update_mmu_cache(vma, vmf->address, vmf->pte);
2317 pte_unmap_unlock(vmf->pte, vmf->ptl);
2318 }
2319
2320 /*
2321 * Handle the case of a page which we actually need to copy to a new page.
2322 *
2323 * Called with mmap_sem locked and the old page referenced, but
2324 * without the ptl held.
2325 *
2326 * High level logic flow:
2327 *
2328 * - Allocate a page, copy the content of the old page to the new one.
2329 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2330 * - Take the PTL. If the pte changed, bail out and release the allocated page
2331 * - If the pte is still the way we remember it, update the page table and all
2332 * relevant references. This includes dropping the reference the page-table
2333 * held to the old page, as well as updating the rmap.
2334 * - In any case, unlock the PTL and drop the reference we took to the old page.
2335 */
2336 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2337 {
2338 struct vm_area_struct *vma = vmf->vma;
2339 struct mm_struct *mm = vma->vm_mm;
2340 struct page *old_page = vmf->page;
2341 struct page *new_page = NULL;
2342 pte_t entry;
2343 int page_copied = 0;
2344 struct mem_cgroup *memcg;
2345 struct mmu_notifier_range range;
2346
2347 if (unlikely(anon_vma_prepare(vma)))
2348 goto oom;
2349
2350 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2351 new_page = alloc_zeroed_user_highpage_movable(vma,
2352 vmf->address);
2353 if (!new_page)
2354 goto oom;
2355 } else {
2356 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2357 vmf->address);
2358 if (!new_page)
2359 goto oom;
2360 cow_user_page(new_page, old_page, vmf->address, vma);
2361 }
2362
2363 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2364 goto oom_free_new;
2365
2366 __SetPageUptodate(new_page);
2367
2368 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2369 vmf->address & PAGE_MASK,
2370 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2371 mmu_notifier_invalidate_range_start(&range);
2372
2373 /*
2374 * Re-check the pte - we dropped the lock
2375 */
2376 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2377 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2378 if (old_page) {
2379 if (!PageAnon(old_page)) {
2380 dec_mm_counter_fast(mm,
2381 mm_counter_file(old_page));
2382 inc_mm_counter_fast(mm, MM_ANONPAGES);
2383 }
2384 } else {
2385 inc_mm_counter_fast(mm, MM_ANONPAGES);
2386 }
2387 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2388 entry = mk_pte(new_page, vma->vm_page_prot);
2389 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2390 /*
2391 * Clear the pte entry and flush it first, before updating the
2392 * pte with the new entry. This will avoid a race condition
2393 * seen in the presence of one thread doing SMC and another
2394 * thread doing COW.
2395 */
2396 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2397 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2398 mem_cgroup_commit_charge(new_page, memcg, false, false);
2399 lru_cache_add_active_or_unevictable(new_page, vma);
2400 /*
2401 * We call the notify macro here because, when using secondary
2402 * mmu page tables (such as kvm shadow page tables), we want the
2403 * new page to be mapped directly into the secondary page table.
2404 */
2405 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2406 update_mmu_cache(vma, vmf->address, vmf->pte);
2407 if (old_page) {
2408 /*
2409 * Only after switching the pte to the new page may
2410 * we remove the mapcount here. Otherwise another
2411 * process may come and find the rmap count decremented
2412 * before the pte is switched to the new page, and
2413 * "reuse" the old page writing into it while our pte
2414 * here still points into it and can be read by other
2415 * threads.
2416 *
2417 * The critical issue is to order this
2418 * page_remove_rmap with the ptp_clear_flush above.
2419 * Those stores are ordered by (if nothing else,)
2420 * the barrier present in the atomic_add_negative
2421 * in page_remove_rmap.
2422 *
2423 * Then the TLB flush in ptep_clear_flush ensures that
2424 * no process can access the old page before the
2425 * decremented mapcount is visible. And the old page
2426 * cannot be reused until after the decremented
2427 * mapcount is visible. So transitively, TLBs to
2428 * old page will be flushed before it can be reused.
2429 */
2430 page_remove_rmap(old_page, false);
2431 }
2432
2433 /* Free the old page.. */
2434 new_page = old_page;
2435 page_copied = 1;
2436 } else {
2437 mem_cgroup_cancel_charge(new_page, memcg, false);
2438 }
2439
2440 if (new_page)
2441 put_page(new_page);
2442
2443 pte_unmap_unlock(vmf->pte, vmf->ptl);
2444 /*
2445 * No need to double call mmu_notifier->invalidate_range() callback as
2446 * the above ptep_clear_flush_notify() did already call it.
2447 */
2448 mmu_notifier_invalidate_range_only_end(&range);
2449 if (old_page) {
2450 /*
2451 * Don't let another task, with possibly unlocked vma,
2452 * keep the mlocked page.
2453 */
2454 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2455 lock_page(old_page); /* LRU manipulation */
2456 if (PageMlocked(old_page))
2457 munlock_vma_page(old_page);
2458 unlock_page(old_page);
2459 }
2460 put_page(old_page);
2461 }
2462 return page_copied ? VM_FAULT_WRITE : 0;
2463 oom_free_new:
2464 put_page(new_page);
2465 oom:
2466 if (old_page)
2467 put_page(old_page);
2468 return VM_FAULT_OOM;
2469 }
2470
2471 /**
2472 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2473 * writeable once the page is prepared
2474 *
2475 * @vmf: structure describing the fault
2476 *
2477 * This function handles all that is needed to finish a write page fault in a
2478 * shared mapping due to PTE being read-only once the mapped page is prepared.
2479 * It handles locking of PTE and modifying it.
2480 *
2481 * The function expects the page to be locked or other protection against
2482 * concurrent faults / writeback (such as DAX radix tree locks).
2483 *
2484 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2485 * we acquired PTE lock.
2486 */
2487 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2488 {
2489 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2490 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2491 &vmf->ptl);
2492 /*
2493 * We might have raced with another page fault while we released the
2494 * pte_offset_map_lock.
2495 */
2496 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2497 pte_unmap_unlock(vmf->pte, vmf->ptl);
2498 return VM_FAULT_NOPAGE;
2499 }
2500 wp_page_reuse(vmf);
2501 return 0;
2502 }
2503
2504 /*
2505 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2506 * mapping
2507 */
2508 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2509 {
2510 struct vm_area_struct *vma = vmf->vma;
2511
2512 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2513 vm_fault_t ret;
2514
2515 pte_unmap_unlock(vmf->pte, vmf->ptl);
2516 vmf->flags |= FAULT_FLAG_MKWRITE;
2517 ret = vma->vm_ops->pfn_mkwrite(vmf);
2518 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2519 return ret;
2520 return finish_mkwrite_fault(vmf);
2521 }
2522 wp_page_reuse(vmf);
2523 return VM_FAULT_WRITE;
2524 }
2525
2526 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2527 __releases(vmf->ptl)
2528 {
2529 struct vm_area_struct *vma = vmf->vma;
2530
2531 get_page(vmf->page);
2532
2533 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2534 vm_fault_t tmp;
2535
2536 pte_unmap_unlock(vmf->pte, vmf->ptl);
2537 tmp = do_page_mkwrite(vmf);
2538 if (unlikely(!tmp || (tmp &
2539 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2540 put_page(vmf->page);
2541 return tmp;
2542 }
2543 tmp = finish_mkwrite_fault(vmf);
2544 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2545 unlock_page(vmf->page);
2546 put_page(vmf->page);
2547 return tmp;
2548 }
2549 } else {
2550 wp_page_reuse(vmf);
2551 lock_page(vmf->page);
2552 }
2553 fault_dirty_shared_page(vma, vmf->page);
2554 put_page(vmf->page);
2555
2556 return VM_FAULT_WRITE;
2557 }
2558
2559 /*
2560 * This routine handles present pages, when users try to write
2561 * to a shared page. It is done by copying the page to a new address
2562 * and decrementing the shared-page counter for the old page.
2563 *
2564 * Note that this routine assumes that the protection checks have been
2565 * done by the caller (the low-level page fault routine in most cases).
2566 * Thus we can safely just mark it writable once we've done any necessary
2567 * COW.
2568 *
2569 * We also mark the page dirty at this point even though the page will
2570 * change only once the write actually happens. This avoids a few races,
2571 * and potentially makes it more efficient.
2572 *
2573 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2574 * but allow concurrent faults), with pte both mapped and locked.
2575 * We return with mmap_sem still held, but pte unmapped and unlocked.
2576 */
2577 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2578 __releases(vmf->ptl)
2579 {
2580 struct vm_area_struct *vma = vmf->vma;
2581
2582 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2583 if (!vmf->page) {
2584 /*
2585 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2586 * VM_PFNMAP VMA.
2587 *
2588 * We should not cow pages in a shared writeable mapping.
2589 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2590 */
2591 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2592 (VM_WRITE|VM_SHARED))
2593 return wp_pfn_shared(vmf);
2594
2595 pte_unmap_unlock(vmf->pte, vmf->ptl);
2596 return wp_page_copy(vmf);
2597 }
2598
2599 /*
2600 * Take out anonymous pages first, anonymous shared vmas are
2601 * not dirty accountable.
2602 */
2603 if (PageAnon(vmf->page)) {
2604 int total_map_swapcount;
2605 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2606 page_count(vmf->page) != 1))
2607 goto copy;
2608 if (!trylock_page(vmf->page)) {
2609 get_page(vmf->page);
2610 pte_unmap_unlock(vmf->pte, vmf->ptl);
2611 lock_page(vmf->page);
2612 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2613 vmf->address, &vmf->ptl);
2614 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2615 unlock_page(vmf->page);
2616 pte_unmap_unlock(vmf->pte, vmf->ptl);
2617 put_page(vmf->page);
2618 return 0;
2619 }
2620 put_page(vmf->page);
2621 }
2622 if (PageKsm(vmf->page)) {
2623 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2624 vmf->address);
2625 unlock_page(vmf->page);
2626 if (!reused)
2627 goto copy;
2628 wp_page_reuse(vmf);
2629 return VM_FAULT_WRITE;
2630 }
2631 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2632 if (total_map_swapcount == 1) {
2633 /*
2634 * The page is all ours. Move it to
2635 * our anon_vma so the rmap code will
2636 * not search our parent or siblings.
2637 * Protected against the rmap code by
2638 * the page lock.
2639 */
2640 page_move_anon_rmap(vmf->page, vma);
2641 }
2642 unlock_page(vmf->page);
2643 wp_page_reuse(vmf);
2644 return VM_FAULT_WRITE;
2645 }
2646 unlock_page(vmf->page);
2647 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2648 (VM_WRITE|VM_SHARED))) {
2649 return wp_page_shared(vmf);
2650 }
2651 copy:
2652 /*
2653 * Ok, we need to copy. Oh, well..
2654 */
2655 get_page(vmf->page);
2656
2657 pte_unmap_unlock(vmf->pte, vmf->ptl);
2658 return wp_page_copy(vmf);
2659 }
2660
2661 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2662 unsigned long start_addr, unsigned long end_addr,
2663 struct zap_details *details)
2664 {
2665 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2666 }
2667
2668 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2669 struct zap_details *details)
2670 {
2671 struct vm_area_struct *vma;
2672 pgoff_t vba, vea, zba, zea;
2673
2674 vma_interval_tree_foreach(vma, root,
2675 details->first_index, details->last_index) {
2676
2677 vba = vma->vm_pgoff;
2678 vea = vba + vma_pages(vma) - 1;
2679 zba = details->first_index;
2680 if (zba < vba)
2681 zba = vba;
2682 zea = details->last_index;
2683 if (zea > vea)
2684 zea = vea;
2685
2686 unmap_mapping_range_vma(vma,
2687 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2688 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2689 details);
2690 }
2691 }
2692
2693 /**
2694 * unmap_mapping_pages() - Unmap pages from processes.
2695 * @mapping: The address space containing pages to be unmapped.
2696 * @start: Index of first page to be unmapped.
2697 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2698 * @even_cows: Whether to unmap even private COWed pages.
2699 *
2700 * Unmap the pages in this address space from any userspace process which
2701 * has them mmaped. Generally, you want to remove COWed pages as well when
2702 * a file is being truncated, but not when invalidating pages from the page
2703 * cache.
2704 */
2705 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2706 pgoff_t nr, bool even_cows)
2707 {
2708 struct zap_details details = { };
2709
2710 details.check_mapping = even_cows ? NULL : mapping;
2711 details.first_index = start;
2712 details.last_index = start + nr - 1;
2713 if (details.last_index < details.first_index)
2714 details.last_index = ULONG_MAX;
2715
2716 i_mmap_lock_write(mapping);
2717 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2718 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2719 i_mmap_unlock_write(mapping);
2720 }
2721
2722 /**
2723 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2724 * address_space corresponding to the specified byte range in the underlying
2725 * file.
2726 *
2727 * @mapping: the address space containing mmaps to be unmapped.
2728 * @holebegin: byte in first page to unmap, relative to the start of
2729 * the underlying file. This will be rounded down to a PAGE_SIZE
2730 * boundary. Note that this is different from truncate_pagecache(), which
2731 * must keep the partial page. In contrast, we must get rid of
2732 * partial pages.
2733 * @holelen: size of prospective hole in bytes. This will be rounded
2734 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2735 * end of the file.
2736 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2737 * but 0 when invalidating pagecache, don't throw away private data.
2738 */
2739 void unmap_mapping_range(struct address_space *mapping,
2740 loff_t const holebegin, loff_t const holelen, int even_cows)
2741 {
2742 pgoff_t hba = holebegin >> PAGE_SHIFT;
2743 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2744
2745 /* Check for overflow. */
2746 if (sizeof(holelen) > sizeof(hlen)) {
2747 long long holeend =
2748 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2749 if (holeend & ~(long long)ULONG_MAX)
2750 hlen = ULONG_MAX - hba + 1;
2751 }
2752
2753 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2754 }
2755 EXPORT_SYMBOL(unmap_mapping_range);
2756
2757 /*
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), and pte mapped but not yet locked.
2760 * We return with pte unmapped and unlocked.
2761 *
2762 * We return with the mmap_sem locked or unlocked in the same cases
2763 * as does filemap_fault().
2764 */
2765 vm_fault_t do_swap_page(struct vm_fault *vmf)
2766 {
2767 struct vm_area_struct *vma = vmf->vma;
2768 struct page *page = NULL, *swapcache;
2769 struct mem_cgroup *memcg;
2770 swp_entry_t entry;
2771 pte_t pte;
2772 int locked;
2773 int exclusive = 0;
2774 vm_fault_t ret = 0;
2775
2776 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2777 goto out;
2778
2779 entry = pte_to_swp_entry(vmf->orig_pte);
2780 if (unlikely(non_swap_entry(entry))) {
2781 if (is_migration_entry(entry)) {
2782 migration_entry_wait(vma->vm_mm, vmf->pmd,
2783 vmf->address);
2784 } else if (is_device_private_entry(entry)) {
2785 /*
2786 * For un-addressable device memory we call the pgmap
2787 * fault handler callback. The callback must migrate
2788 * the page back to some CPU accessible page.
2789 */
2790 ret = device_private_entry_fault(vma, vmf->address, entry,
2791 vmf->flags, vmf->pmd);
2792 } else if (is_hwpoison_entry(entry)) {
2793 ret = VM_FAULT_HWPOISON;
2794 } else {
2795 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2796 ret = VM_FAULT_SIGBUS;
2797 }
2798 goto out;
2799 }
2800
2801
2802 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2803 page = lookup_swap_cache(entry, vma, vmf->address);
2804 swapcache = page;
2805
2806 if (!page) {
2807 struct swap_info_struct *si = swp_swap_info(entry);
2808
2809 if (si->flags & SWP_SYNCHRONOUS_IO &&
2810 __swap_count(si, entry) == 1) {
2811 /* skip swapcache */
2812 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2813 vmf->address);
2814 if (page) {
2815 __SetPageLocked(page);
2816 __SetPageSwapBacked(page);
2817 set_page_private(page, entry.val);
2818 lru_cache_add_anon(page);
2819 swap_readpage(page, true);
2820 }
2821 } else {
2822 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2823 vmf);
2824 swapcache = page;
2825 }
2826
2827 if (!page) {
2828 /*
2829 * Back out if somebody else faulted in this pte
2830 * while we released the pte lock.
2831 */
2832 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2833 vmf->address, &vmf->ptl);
2834 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2835 ret = VM_FAULT_OOM;
2836 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2837 goto unlock;
2838 }
2839
2840 /* Had to read the page from swap area: Major fault */
2841 ret = VM_FAULT_MAJOR;
2842 count_vm_event(PGMAJFAULT);
2843 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2844 } else if (PageHWPoison(page)) {
2845 /*
2846 * hwpoisoned dirty swapcache pages are kept for killing
2847 * owner processes (which may be unknown at hwpoison time)
2848 */
2849 ret = VM_FAULT_HWPOISON;
2850 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2851 goto out_release;
2852 }
2853
2854 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2855
2856 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2857 if (!locked) {
2858 ret |= VM_FAULT_RETRY;
2859 goto out_release;
2860 }
2861
2862 /*
2863 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2864 * release the swapcache from under us. The page pin, and pte_same
2865 * test below, are not enough to exclude that. Even if it is still
2866 * swapcache, we need to check that the page's swap has not changed.
2867 */
2868 if (unlikely((!PageSwapCache(page) ||
2869 page_private(page) != entry.val)) && swapcache)
2870 goto out_page;
2871
2872 page = ksm_might_need_to_copy(page, vma, vmf->address);
2873 if (unlikely(!page)) {
2874 ret = VM_FAULT_OOM;
2875 page = swapcache;
2876 goto out_page;
2877 }
2878
2879 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2880 &memcg, false)) {
2881 ret = VM_FAULT_OOM;
2882 goto out_page;
2883 }
2884
2885 /*
2886 * Back out if somebody else already faulted in this pte.
2887 */
2888 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2889 &vmf->ptl);
2890 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2891 goto out_nomap;
2892
2893 if (unlikely(!PageUptodate(page))) {
2894 ret = VM_FAULT_SIGBUS;
2895 goto out_nomap;
2896 }
2897
2898 /*
2899 * The page isn't present yet, go ahead with the fault.
2900 *
2901 * Be careful about the sequence of operations here.
2902 * To get its accounting right, reuse_swap_page() must be called
2903 * while the page is counted on swap but not yet in mapcount i.e.
2904 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2905 * must be called after the swap_free(), or it will never succeed.
2906 */
2907
2908 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2909 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2910 pte = mk_pte(page, vma->vm_page_prot);
2911 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2912 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2913 vmf->flags &= ~FAULT_FLAG_WRITE;
2914 ret |= VM_FAULT_WRITE;
2915 exclusive = RMAP_EXCLUSIVE;
2916 }
2917 flush_icache_page(vma, page);
2918 if (pte_swp_soft_dirty(vmf->orig_pte))
2919 pte = pte_mksoft_dirty(pte);
2920 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2921 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2922 vmf->orig_pte = pte;
2923
2924 /* ksm created a completely new copy */
2925 if (unlikely(page != swapcache && swapcache)) {
2926 page_add_new_anon_rmap(page, vma, vmf->address, false);
2927 mem_cgroup_commit_charge(page, memcg, false, false);
2928 lru_cache_add_active_or_unevictable(page, vma);
2929 } else {
2930 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2931 mem_cgroup_commit_charge(page, memcg, true, false);
2932 activate_page(page);
2933 }
2934
2935 swap_free(entry);
2936 if (mem_cgroup_swap_full(page) ||
2937 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2938 try_to_free_swap(page);
2939 unlock_page(page);
2940 if (page != swapcache && swapcache) {
2941 /*
2942 * Hold the lock to avoid the swap entry to be reused
2943 * until we take the PT lock for the pte_same() check
2944 * (to avoid false positives from pte_same). For
2945 * further safety release the lock after the swap_free
2946 * so that the swap count won't change under a
2947 * parallel locked swapcache.
2948 */
2949 unlock_page(swapcache);
2950 put_page(swapcache);
2951 }
2952
2953 if (vmf->flags & FAULT_FLAG_WRITE) {
2954 ret |= do_wp_page(vmf);
2955 if (ret & VM_FAULT_ERROR)
2956 ret &= VM_FAULT_ERROR;
2957 goto out;
2958 }
2959
2960 /* No need to invalidate - it was non-present before */
2961 update_mmu_cache(vma, vmf->address, vmf->pte);
2962 unlock:
2963 pte_unmap_unlock(vmf->pte, vmf->ptl);
2964 out:
2965 return ret;
2966 out_nomap:
2967 mem_cgroup_cancel_charge(page, memcg, false);
2968 pte_unmap_unlock(vmf->pte, vmf->ptl);
2969 out_page:
2970 unlock_page(page);
2971 out_release:
2972 put_page(page);
2973 if (page != swapcache && swapcache) {
2974 unlock_page(swapcache);
2975 put_page(swapcache);
2976 }
2977 return ret;
2978 }
2979
2980 /*
2981 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2982 * but allow concurrent faults), and pte mapped but not yet locked.
2983 * We return with mmap_sem still held, but pte unmapped and unlocked.
2984 */
2985 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2986 {
2987 struct vm_area_struct *vma = vmf->vma;
2988 struct mem_cgroup *memcg;
2989 struct page *page;
2990 vm_fault_t ret = 0;
2991 pte_t entry;
2992
2993 /* File mapping without ->vm_ops ? */
2994 if (vma->vm_flags & VM_SHARED)
2995 return VM_FAULT_SIGBUS;
2996
2997 /*
2998 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2999 * pte_offset_map() on pmds where a huge pmd might be created
3000 * from a different thread.
3001 *
3002 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3003 * parallel threads are excluded by other means.
3004 *
3005 * Here we only have down_read(mmap_sem).
3006 */
3007 if (pte_alloc(vma->vm_mm, vmf->pmd))
3008 return VM_FAULT_OOM;
3009
3010 /* See the comment in pte_alloc_one_map() */
3011 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3012 return 0;
3013
3014 /* Use the zero-page for reads */
3015 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3016 !mm_forbids_zeropage(vma->vm_mm)) {
3017 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3018 vma->vm_page_prot));
3019 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3020 vmf->address, &vmf->ptl);
3021 if (!pte_none(*vmf->pte))
3022 goto unlock;
3023 ret = check_stable_address_space(vma->vm_mm);
3024 if (ret)
3025 goto unlock;
3026 /* Deliver the page fault to userland, check inside PT lock */
3027 if (userfaultfd_missing(vma)) {
3028 pte_unmap_unlock(vmf->pte, vmf->ptl);
3029 return handle_userfault(vmf, VM_UFFD_MISSING);
3030 }
3031 goto setpte;
3032 }
3033
3034 /* Allocate our own private page. */
3035 if (unlikely(anon_vma_prepare(vma)))
3036 goto oom;
3037 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3038 if (!page)
3039 goto oom;
3040
3041 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3042 false))
3043 goto oom_free_page;
3044
3045 /*
3046 * The memory barrier inside __SetPageUptodate makes sure that
3047 * preceeding stores to the page contents become visible before
3048 * the set_pte_at() write.
3049 */
3050 __SetPageUptodate(page);
3051
3052 entry = mk_pte(page, vma->vm_page_prot);
3053 if (vma->vm_flags & VM_WRITE)
3054 entry = pte_mkwrite(pte_mkdirty(entry));
3055
3056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057 &vmf->ptl);
3058 if (!pte_none(*vmf->pte))
3059 goto release;
3060
3061 ret = check_stable_address_space(vma->vm_mm);
3062 if (ret)
3063 goto release;
3064
3065 /* Deliver the page fault to userland, check inside PT lock */
3066 if (userfaultfd_missing(vma)) {
3067 pte_unmap_unlock(vmf->pte, vmf->ptl);
3068 mem_cgroup_cancel_charge(page, memcg, false);
3069 put_page(page);
3070 return handle_userfault(vmf, VM_UFFD_MISSING);
3071 }
3072
3073 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3074 page_add_new_anon_rmap(page, vma, vmf->address, false);
3075 mem_cgroup_commit_charge(page, memcg, false, false);
3076 lru_cache_add_active_or_unevictable(page, vma);
3077 setpte:
3078 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3079
3080 /* No need to invalidate - it was non-present before */
3081 update_mmu_cache(vma, vmf->address, vmf->pte);
3082 unlock:
3083 pte_unmap_unlock(vmf->pte, vmf->ptl);
3084 return ret;
3085 release:
3086 mem_cgroup_cancel_charge(page, memcg, false);
3087 put_page(page);
3088 goto unlock;
3089 oom_free_page:
3090 put_page(page);
3091 oom:
3092 return VM_FAULT_OOM;
3093 }
3094
3095 /*
3096 * The mmap_sem must have been held on entry, and may have been
3097 * released depending on flags and vma->vm_ops->fault() return value.
3098 * See filemap_fault() and __lock_page_retry().
3099 */
3100 static vm_fault_t __do_fault(struct vm_fault *vmf)
3101 {
3102 struct vm_area_struct *vma = vmf->vma;
3103 vm_fault_t ret;
3104
3105 /*
3106 * Preallocate pte before we take page_lock because this might lead to
3107 * deadlocks for memcg reclaim which waits for pages under writeback:
3108 * lock_page(A)
3109 * SetPageWriteback(A)
3110 * unlock_page(A)
3111 * lock_page(B)
3112 * lock_page(B)
3113 * pte_alloc_pne
3114 * shrink_page_list
3115 * wait_on_page_writeback(A)
3116 * SetPageWriteback(B)
3117 * unlock_page(B)
3118 * # flush A, B to clear the writeback
3119 */
3120 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3121 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3122 if (!vmf->prealloc_pte)
3123 return VM_FAULT_OOM;
3124 smp_wmb(); /* See comment in __pte_alloc() */
3125 }
3126
3127 ret = vma->vm_ops->fault(vmf);
3128 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3129 VM_FAULT_DONE_COW)))
3130 return ret;
3131
3132 if (unlikely(PageHWPoison(vmf->page))) {
3133 if (ret & VM_FAULT_LOCKED)
3134 unlock_page(vmf->page);
3135 put_page(vmf->page);
3136 vmf->page = NULL;
3137 return VM_FAULT_HWPOISON;
3138 }
3139
3140 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3141 lock_page(vmf->page);
3142 else
3143 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3144
3145 return ret;
3146 }
3147
3148 /*
3149 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3150 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3151 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3152 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3153 */
3154 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3155 {
3156 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3157 }
3158
3159 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3160 {
3161 struct vm_area_struct *vma = vmf->vma;
3162
3163 if (!pmd_none(*vmf->pmd))
3164 goto map_pte;
3165 if (vmf->prealloc_pte) {
3166 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3167 if (unlikely(!pmd_none(*vmf->pmd))) {
3168 spin_unlock(vmf->ptl);
3169 goto map_pte;
3170 }
3171
3172 mm_inc_nr_ptes(vma->vm_mm);
3173 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3174 spin_unlock(vmf->ptl);
3175 vmf->prealloc_pte = NULL;
3176 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3177 return VM_FAULT_OOM;
3178 }
3179 map_pte:
3180 /*
3181 * If a huge pmd materialized under us just retry later. Use
3182 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3183 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3184 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3185 * running immediately after a huge pmd fault in a different thread of
3186 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3187 * All we have to ensure is that it is a regular pmd that we can walk
3188 * with pte_offset_map() and we can do that through an atomic read in
3189 * C, which is what pmd_trans_unstable() provides.
3190 */
3191 if (pmd_devmap_trans_unstable(vmf->pmd))
3192 return VM_FAULT_NOPAGE;
3193
3194 /*
3195 * At this point we know that our vmf->pmd points to a page of ptes
3196 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3197 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3198 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3199 * be valid and we will re-check to make sure the vmf->pte isn't
3200 * pte_none() under vmf->ptl protection when we return to
3201 * alloc_set_pte().
3202 */
3203 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3204 &vmf->ptl);
3205 return 0;
3206 }
3207
3208 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3209
3210 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3211 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3212 unsigned long haddr)
3213 {
3214 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3215 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3216 return false;
3217 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3218 return false;
3219 return true;
3220 }
3221
3222 static void deposit_prealloc_pte(struct vm_fault *vmf)
3223 {
3224 struct vm_area_struct *vma = vmf->vma;
3225
3226 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3227 /*
3228 * We are going to consume the prealloc table,
3229 * count that as nr_ptes.
3230 */
3231 mm_inc_nr_ptes(vma->vm_mm);
3232 vmf->prealloc_pte = NULL;
3233 }
3234
3235 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3236 {
3237 struct vm_area_struct *vma = vmf->vma;
3238 bool write = vmf->flags & FAULT_FLAG_WRITE;
3239 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3240 pmd_t entry;
3241 int i;
3242 vm_fault_t ret;
3243
3244 if (!transhuge_vma_suitable(vma, haddr))
3245 return VM_FAULT_FALLBACK;
3246
3247 ret = VM_FAULT_FALLBACK;
3248 page = compound_head(page);
3249
3250 /*
3251 * Archs like ppc64 need additonal space to store information
3252 * related to pte entry. Use the preallocated table for that.
3253 */
3254 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3255 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3256 if (!vmf->prealloc_pte)
3257 return VM_FAULT_OOM;
3258 smp_wmb(); /* See comment in __pte_alloc() */
3259 }
3260
3261 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3262 if (unlikely(!pmd_none(*vmf->pmd)))
3263 goto out;
3264
3265 for (i = 0; i < HPAGE_PMD_NR; i++)
3266 flush_icache_page(vma, page + i);
3267
3268 entry = mk_huge_pmd(page, vma->vm_page_prot);
3269 if (write)
3270 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3271
3272 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3273 page_add_file_rmap(page, true);
3274 /*
3275 * deposit and withdraw with pmd lock held
3276 */
3277 if (arch_needs_pgtable_deposit())
3278 deposit_prealloc_pte(vmf);
3279
3280 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3281
3282 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3283
3284 /* fault is handled */
3285 ret = 0;
3286 count_vm_event(THP_FILE_MAPPED);
3287 out:
3288 spin_unlock(vmf->ptl);
3289 return ret;
3290 }
3291 #else
3292 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3293 {
3294 BUILD_BUG();
3295 return 0;
3296 }
3297 #endif
3298
3299 /**
3300 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3301 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3302 *
3303 * @vmf: fault environment
3304 * @memcg: memcg to charge page (only for private mappings)
3305 * @page: page to map
3306 *
3307 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3308 * return.
3309 *
3310 * Target users are page handler itself and implementations of
3311 * vm_ops->map_pages.
3312 *
3313 * Return: %0 on success, %VM_FAULT_ code in case of error.
3314 */
3315 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3316 struct page *page)
3317 {
3318 struct vm_area_struct *vma = vmf->vma;
3319 bool write = vmf->flags & FAULT_FLAG_WRITE;
3320 pte_t entry;
3321 vm_fault_t ret;
3322
3323 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3324 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3325 /* THP on COW? */
3326 VM_BUG_ON_PAGE(memcg, page);
3327
3328 ret = do_set_pmd(vmf, page);
3329 if (ret != VM_FAULT_FALLBACK)
3330 return ret;
3331 }
3332
3333 if (!vmf->pte) {
3334 ret = pte_alloc_one_map(vmf);
3335 if (ret)
3336 return ret;
3337 }
3338
3339 /* Re-check under ptl */
3340 if (unlikely(!pte_none(*vmf->pte)))
3341 return VM_FAULT_NOPAGE;
3342
3343 flush_icache_page(vma, page);
3344 entry = mk_pte(page, vma->vm_page_prot);
3345 if (write)
3346 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3347 /* copy-on-write page */
3348 if (write && !(vma->vm_flags & VM_SHARED)) {
3349 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3350 page_add_new_anon_rmap(page, vma, vmf->address, false);
3351 mem_cgroup_commit_charge(page, memcg, false, false);
3352 lru_cache_add_active_or_unevictable(page, vma);
3353 } else {
3354 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3355 page_add_file_rmap(page, false);
3356 }
3357 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3358
3359 /* no need to invalidate: a not-present page won't be cached */
3360 update_mmu_cache(vma, vmf->address, vmf->pte);
3361
3362 return 0;
3363 }
3364
3365
3366 /**
3367 * finish_fault - finish page fault once we have prepared the page to fault
3368 *
3369 * @vmf: structure describing the fault
3370 *
3371 * This function handles all that is needed to finish a page fault once the
3372 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3373 * given page, adds reverse page mapping, handles memcg charges and LRU
3374 * addition.
3375 *
3376 * The function expects the page to be locked and on success it consumes a
3377 * reference of a page being mapped (for the PTE which maps it).
3378 *
3379 * Return: %0 on success, %VM_FAULT_ code in case of error.
3380 */
3381 vm_fault_t finish_fault(struct vm_fault *vmf)
3382 {
3383 struct page *page;
3384 vm_fault_t ret = 0;
3385
3386 /* Did we COW the page? */
3387 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3388 !(vmf->vma->vm_flags & VM_SHARED))
3389 page = vmf->cow_page;
3390 else
3391 page = vmf->page;
3392
3393 /*
3394 * check even for read faults because we might have lost our CoWed
3395 * page
3396 */
3397 if (!(vmf->vma->vm_flags & VM_SHARED))
3398 ret = check_stable_address_space(vmf->vma->vm_mm);
3399 if (!ret)
3400 ret = alloc_set_pte(vmf, vmf->memcg, page);
3401 if (vmf->pte)
3402 pte_unmap_unlock(vmf->pte, vmf->ptl);
3403 return ret;
3404 }
3405
3406 static unsigned long fault_around_bytes __read_mostly =
3407 rounddown_pow_of_two(65536);
3408
3409 #ifdef CONFIG_DEBUG_FS
3410 static int fault_around_bytes_get(void *data, u64 *val)
3411 {
3412 *val = fault_around_bytes;
3413 return 0;
3414 }
3415
3416 /*
3417 * fault_around_bytes must be rounded down to the nearest page order as it's
3418 * what do_fault_around() expects to see.
3419 */
3420 static int fault_around_bytes_set(void *data, u64 val)
3421 {
3422 if (val / PAGE_SIZE > PTRS_PER_PTE)
3423 return -EINVAL;
3424 if (val > PAGE_SIZE)
3425 fault_around_bytes = rounddown_pow_of_two(val);
3426 else
3427 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3428 return 0;
3429 }
3430 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3431 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3432
3433 static int __init fault_around_debugfs(void)
3434 {
3435 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3436 &fault_around_bytes_fops);
3437 return 0;
3438 }
3439 late_initcall(fault_around_debugfs);
3440 #endif
3441
3442 /*
3443 * do_fault_around() tries to map few pages around the fault address. The hope
3444 * is that the pages will be needed soon and this will lower the number of
3445 * faults to handle.
3446 *
3447 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3448 * not ready to be mapped: not up-to-date, locked, etc.
3449 *
3450 * This function is called with the page table lock taken. In the split ptlock
3451 * case the page table lock only protects only those entries which belong to
3452 * the page table corresponding to the fault address.
3453 *
3454 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3455 * only once.
3456 *
3457 * fault_around_bytes defines how many bytes we'll try to map.
3458 * do_fault_around() expects it to be set to a power of two less than or equal
3459 * to PTRS_PER_PTE.
3460 *
3461 * The virtual address of the area that we map is naturally aligned to
3462 * fault_around_bytes rounded down to the machine page size
3463 * (and therefore to page order). This way it's easier to guarantee
3464 * that we don't cross page table boundaries.
3465 */
3466 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3467 {
3468 unsigned long address = vmf->address, nr_pages, mask;
3469 pgoff_t start_pgoff = vmf->pgoff;
3470 pgoff_t end_pgoff;
3471 int off;
3472 vm_fault_t ret = 0;
3473
3474 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3475 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3476
3477 vmf->address = max(address & mask, vmf->vma->vm_start);
3478 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3479 start_pgoff -= off;
3480
3481 /*
3482 * end_pgoff is either the end of the page table, the end of
3483 * the vma or nr_pages from start_pgoff, depending what is nearest.
3484 */
3485 end_pgoff = start_pgoff -
3486 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3487 PTRS_PER_PTE - 1;
3488 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3489 start_pgoff + nr_pages - 1);
3490
3491 if (pmd_none(*vmf->pmd)) {
3492 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3493 if (!vmf->prealloc_pte)
3494 goto out;
3495 smp_wmb(); /* See comment in __pte_alloc() */
3496 }
3497
3498 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3499
3500 /* Huge page is mapped? Page fault is solved */
3501 if (pmd_trans_huge(*vmf->pmd)) {
3502 ret = VM_FAULT_NOPAGE;
3503 goto out;
3504 }
3505
3506 /* ->map_pages() haven't done anything useful. Cold page cache? */
3507 if (!vmf->pte)
3508 goto out;
3509
3510 /* check if the page fault is solved */
3511 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3512 if (!pte_none(*vmf->pte))
3513 ret = VM_FAULT_NOPAGE;
3514 pte_unmap_unlock(vmf->pte, vmf->ptl);
3515 out:
3516 vmf->address = address;
3517 vmf->pte = NULL;
3518 return ret;
3519 }
3520
3521 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3522 {
3523 struct vm_area_struct *vma = vmf->vma;
3524 vm_fault_t ret = 0;
3525
3526 /*
3527 * Let's call ->map_pages() first and use ->fault() as fallback
3528 * if page by the offset is not ready to be mapped (cold cache or
3529 * something).
3530 */
3531 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3532 ret = do_fault_around(vmf);
3533 if (ret)
3534 return ret;
3535 }
3536
3537 ret = __do_fault(vmf);
3538 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539 return ret;
3540
3541 ret |= finish_fault(vmf);
3542 unlock_page(vmf->page);
3543 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3544 put_page(vmf->page);
3545 return ret;
3546 }
3547
3548 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3549 {
3550 struct vm_area_struct *vma = vmf->vma;
3551 vm_fault_t ret;
3552
3553 if (unlikely(anon_vma_prepare(vma)))
3554 return VM_FAULT_OOM;
3555
3556 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3557 if (!vmf->cow_page)
3558 return VM_FAULT_OOM;
3559
3560 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3561 &vmf->memcg, false)) {
3562 put_page(vmf->cow_page);
3563 return VM_FAULT_OOM;
3564 }
3565
3566 ret = __do_fault(vmf);
3567 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3568 goto uncharge_out;
3569 if (ret & VM_FAULT_DONE_COW)
3570 return ret;
3571
3572 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3573 __SetPageUptodate(vmf->cow_page);
3574
3575 ret |= finish_fault(vmf);
3576 unlock_page(vmf->page);
3577 put_page(vmf->page);
3578 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3579 goto uncharge_out;
3580 return ret;
3581 uncharge_out:
3582 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3583 put_page(vmf->cow_page);
3584 return ret;
3585 }
3586
3587 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3588 {
3589 struct vm_area_struct *vma = vmf->vma;
3590 vm_fault_t ret, tmp;
3591
3592 ret = __do_fault(vmf);
3593 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3594 return ret;
3595
3596 /*
3597 * Check if the backing address space wants to know that the page is
3598 * about to become writable
3599 */
3600 if (vma->vm_ops->page_mkwrite) {
3601 unlock_page(vmf->page);
3602 tmp = do_page_mkwrite(vmf);
3603 if (unlikely(!tmp ||
3604 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3605 put_page(vmf->page);
3606 return tmp;
3607 }
3608 }
3609
3610 ret |= finish_fault(vmf);
3611 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3612 VM_FAULT_RETRY))) {
3613 unlock_page(vmf->page);
3614 put_page(vmf->page);
3615 return ret;
3616 }
3617
3618 fault_dirty_shared_page(vma, vmf->page);
3619 return ret;
3620 }
3621
3622 /*
3623 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3624 * but allow concurrent faults).
3625 * The mmap_sem may have been released depending on flags and our
3626 * return value. See filemap_fault() and __lock_page_or_retry().
3627 * If mmap_sem is released, vma may become invalid (for example
3628 * by other thread calling munmap()).
3629 */
3630 static vm_fault_t do_fault(struct vm_fault *vmf)
3631 {
3632 struct vm_area_struct *vma = vmf->vma;
3633 struct mm_struct *vm_mm = vma->vm_mm;
3634 vm_fault_t ret;
3635
3636 /*
3637 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3638 */
3639 if (!vma->vm_ops->fault) {
3640 /*
3641 * If we find a migration pmd entry or a none pmd entry, which
3642 * should never happen, return SIGBUS
3643 */
3644 if (unlikely(!pmd_present(*vmf->pmd)))
3645 ret = VM_FAULT_SIGBUS;
3646 else {
3647 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3648 vmf->pmd,
3649 vmf->address,
3650 &vmf->ptl);
3651 /*
3652 * Make sure this is not a temporary clearing of pte
3653 * by holding ptl and checking again. A R/M/W update
3654 * of pte involves: take ptl, clearing the pte so that
3655 * we don't have concurrent modification by hardware
3656 * followed by an update.
3657 */
3658 if (unlikely(pte_none(*vmf->pte)))
3659 ret = VM_FAULT_SIGBUS;
3660 else
3661 ret = VM_FAULT_NOPAGE;
3662
3663 pte_unmap_unlock(vmf->pte, vmf->ptl);
3664 }
3665 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3666 ret = do_read_fault(vmf);
3667 else if (!(vma->vm_flags & VM_SHARED))
3668 ret = do_cow_fault(vmf);
3669 else
3670 ret = do_shared_fault(vmf);
3671
3672 /* preallocated pagetable is unused: free it */
3673 if (vmf->prealloc_pte) {
3674 pte_free(vm_mm, vmf->prealloc_pte);
3675 vmf->prealloc_pte = NULL;
3676 }
3677 return ret;
3678 }
3679
3680 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3681 unsigned long addr, int page_nid,
3682 int *flags)
3683 {
3684 get_page(page);
3685
3686 count_vm_numa_event(NUMA_HINT_FAULTS);
3687 if (page_nid == numa_node_id()) {
3688 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3689 *flags |= TNF_FAULT_LOCAL;
3690 }
3691
3692 return mpol_misplaced(page, vma, addr);
3693 }
3694
3695 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3696 {
3697 struct vm_area_struct *vma = vmf->vma;
3698 struct page *page = NULL;
3699 int page_nid = NUMA_NO_NODE;
3700 int last_cpupid;
3701 int target_nid;
3702 bool migrated = false;
3703 pte_t pte, old_pte;
3704 bool was_writable = pte_savedwrite(vmf->orig_pte);
3705 int flags = 0;
3706
3707 /*
3708 * The "pte" at this point cannot be used safely without
3709 * validation through pte_unmap_same(). It's of NUMA type but
3710 * the pfn may be screwed if the read is non atomic.
3711 */
3712 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3713 spin_lock(vmf->ptl);
3714 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3715 pte_unmap_unlock(vmf->pte, vmf->ptl);
3716 goto out;
3717 }
3718
3719 /*
3720 * Make it present again, Depending on how arch implementes non
3721 * accessible ptes, some can allow access by kernel mode.
3722 */
3723 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3724 pte = pte_modify(old_pte, vma->vm_page_prot);
3725 pte = pte_mkyoung(pte);
3726 if (was_writable)
3727 pte = pte_mkwrite(pte);
3728 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3729 update_mmu_cache(vma, vmf->address, vmf->pte);
3730
3731 page = vm_normal_page(vma, vmf->address, pte);
3732 if (!page) {
3733 pte_unmap_unlock(vmf->pte, vmf->ptl);
3734 return 0;
3735 }
3736
3737 /* TODO: handle PTE-mapped THP */
3738 if (PageCompound(page)) {
3739 pte_unmap_unlock(vmf->pte, vmf->ptl);
3740 return 0;
3741 }
3742
3743 /*
3744 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3745 * much anyway since they can be in shared cache state. This misses
3746 * the case where a mapping is writable but the process never writes
3747 * to it but pte_write gets cleared during protection updates and
3748 * pte_dirty has unpredictable behaviour between PTE scan updates,
3749 * background writeback, dirty balancing and application behaviour.
3750 */
3751 if (!pte_write(pte))
3752 flags |= TNF_NO_GROUP;
3753
3754 /*
3755 * Flag if the page is shared between multiple address spaces. This
3756 * is later used when determining whether to group tasks together
3757 */
3758 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3759 flags |= TNF_SHARED;
3760
3761 last_cpupid = page_cpupid_last(page);
3762 page_nid = page_to_nid(page);
3763 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3764 &flags);
3765 pte_unmap_unlock(vmf->pte, vmf->ptl);
3766 if (target_nid == NUMA_NO_NODE) {
3767 put_page(page);
3768 goto out;
3769 }
3770
3771 /* Migrate to the requested node */
3772 migrated = migrate_misplaced_page(page, vma, target_nid);
3773 if (migrated) {
3774 page_nid = target_nid;
3775 flags |= TNF_MIGRATED;
3776 } else
3777 flags |= TNF_MIGRATE_FAIL;
3778
3779 out:
3780 if (page_nid != NUMA_NO_NODE)
3781 task_numa_fault(last_cpupid, page_nid, 1, flags);
3782 return 0;
3783 }
3784
3785 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3786 {
3787 if (vma_is_anonymous(vmf->vma))
3788 return do_huge_pmd_anonymous_page(vmf);
3789 if (vmf->vma->vm_ops->huge_fault)
3790 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3791 return VM_FAULT_FALLBACK;
3792 }
3793
3794 /* `inline' is required to avoid gcc 4.1.2 build error */
3795 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3796 {
3797 if (vma_is_anonymous(vmf->vma))
3798 return do_huge_pmd_wp_page(vmf, orig_pmd);
3799 if (vmf->vma->vm_ops->huge_fault)
3800 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3801
3802 /* COW handled on pte level: split pmd */
3803 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3804 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3805
3806 return VM_FAULT_FALLBACK;
3807 }
3808
3809 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3810 {
3811 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3812 }
3813
3814 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3815 {
3816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3817 /* No support for anonymous transparent PUD pages yet */
3818 if (vma_is_anonymous(vmf->vma))
3819 return VM_FAULT_FALLBACK;
3820 if (vmf->vma->vm_ops->huge_fault)
3821 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3822 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3823 return VM_FAULT_FALLBACK;
3824 }
3825
3826 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3827 {
3828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3829 /* No support for anonymous transparent PUD pages yet */
3830 if (vma_is_anonymous(vmf->vma))
3831 return VM_FAULT_FALLBACK;
3832 if (vmf->vma->vm_ops->huge_fault)
3833 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3834 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3835 return VM_FAULT_FALLBACK;
3836 }
3837
3838 /*
3839 * These routines also need to handle stuff like marking pages dirty
3840 * and/or accessed for architectures that don't do it in hardware (most
3841 * RISC architectures). The early dirtying is also good on the i386.
3842 *
3843 * There is also a hook called "update_mmu_cache()" that architectures
3844 * with external mmu caches can use to update those (ie the Sparc or
3845 * PowerPC hashed page tables that act as extended TLBs).
3846 *
3847 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3848 * concurrent faults).
3849 *
3850 * The mmap_sem may have been released depending on flags and our return value.
3851 * See filemap_fault() and __lock_page_or_retry().
3852 */
3853 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3854 {
3855 pte_t entry;
3856
3857 if (unlikely(pmd_none(*vmf->pmd))) {
3858 /*
3859 * Leave __pte_alloc() until later: because vm_ops->fault may
3860 * want to allocate huge page, and if we expose page table
3861 * for an instant, it will be difficult to retract from
3862 * concurrent faults and from rmap lookups.
3863 */
3864 vmf->pte = NULL;
3865 } else {
3866 /* See comment in pte_alloc_one_map() */
3867 if (pmd_devmap_trans_unstable(vmf->pmd))
3868 return 0;
3869 /*
3870 * A regular pmd is established and it can't morph into a huge
3871 * pmd from under us anymore at this point because we hold the
3872 * mmap_sem read mode and khugepaged takes it in write mode.
3873 * So now it's safe to run pte_offset_map().
3874 */
3875 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3876 vmf->orig_pte = *vmf->pte;
3877
3878 /*
3879 * some architectures can have larger ptes than wordsize,
3880 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3881 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3882 * accesses. The code below just needs a consistent view
3883 * for the ifs and we later double check anyway with the
3884 * ptl lock held. So here a barrier will do.
3885 */
3886 barrier();
3887 if (pte_none(vmf->orig_pte)) {
3888 pte_unmap(vmf->pte);
3889 vmf->pte = NULL;
3890 }
3891 }
3892
3893 if (!vmf->pte) {
3894 if (vma_is_anonymous(vmf->vma))
3895 return do_anonymous_page(vmf);
3896 else
3897 return do_fault(vmf);
3898 }
3899
3900 if (!pte_present(vmf->orig_pte))
3901 return do_swap_page(vmf);
3902
3903 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3904 return do_numa_page(vmf);
3905
3906 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3907 spin_lock(vmf->ptl);
3908 entry = vmf->orig_pte;
3909 if (unlikely(!pte_same(*vmf->pte, entry)))
3910 goto unlock;
3911 if (vmf->flags & FAULT_FLAG_WRITE) {
3912 if (!pte_write(entry))
3913 return do_wp_page(vmf);
3914 entry = pte_mkdirty(entry);
3915 }
3916 entry = pte_mkyoung(entry);
3917 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3918 vmf->flags & FAULT_FLAG_WRITE)) {
3919 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3920 } else {
3921 /*
3922 * This is needed only for protection faults but the arch code
3923 * is not yet telling us if this is a protection fault or not.
3924 * This still avoids useless tlb flushes for .text page faults
3925 * with threads.
3926 */
3927 if (vmf->flags & FAULT_FLAG_WRITE)
3928 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3929 }
3930 unlock:
3931 pte_unmap_unlock(vmf->pte, vmf->ptl);
3932 return 0;
3933 }
3934
3935 /*
3936 * By the time we get here, we already hold the mm semaphore
3937 *
3938 * The mmap_sem may have been released depending on flags and our
3939 * return value. See filemap_fault() and __lock_page_or_retry().
3940 */
3941 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3942 unsigned long address, unsigned int flags)
3943 {
3944 struct vm_fault vmf = {
3945 .vma = vma,
3946 .address = address & PAGE_MASK,
3947 .flags = flags,
3948 .pgoff = linear_page_index(vma, address),
3949 .gfp_mask = __get_fault_gfp_mask(vma),
3950 };
3951 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3952 struct mm_struct *mm = vma->vm_mm;
3953 pgd_t *pgd;
3954 p4d_t *p4d;
3955 vm_fault_t ret;
3956
3957 pgd = pgd_offset(mm, address);
3958 p4d = p4d_alloc(mm, pgd, address);
3959 if (!p4d)
3960 return VM_FAULT_OOM;
3961
3962 vmf.pud = pud_alloc(mm, p4d, address);
3963 if (!vmf.pud)
3964 return VM_FAULT_OOM;
3965 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3966 ret = create_huge_pud(&vmf);
3967 if (!(ret & VM_FAULT_FALLBACK))
3968 return ret;
3969 } else {
3970 pud_t orig_pud = *vmf.pud;
3971
3972 barrier();
3973 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3974
3975 /* NUMA case for anonymous PUDs would go here */
3976
3977 if (dirty && !pud_write(orig_pud)) {
3978 ret = wp_huge_pud(&vmf, orig_pud);
3979 if (!(ret & VM_FAULT_FALLBACK))
3980 return ret;
3981 } else {
3982 huge_pud_set_accessed(&vmf, orig_pud);
3983 return 0;
3984 }
3985 }
3986 }
3987
3988 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3989 if (!vmf.pmd)
3990 return VM_FAULT_OOM;
3991 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3992 ret = create_huge_pmd(&vmf);
3993 if (!(ret & VM_FAULT_FALLBACK))
3994 return ret;
3995 } else {
3996 pmd_t orig_pmd = *vmf.pmd;
3997
3998 barrier();
3999 if (unlikely(is_swap_pmd(orig_pmd))) {
4000 VM_BUG_ON(thp_migration_supported() &&
4001 !is_pmd_migration_entry(orig_pmd));
4002 if (is_pmd_migration_entry(orig_pmd))
4003 pmd_migration_entry_wait(mm, vmf.pmd);
4004 return 0;
4005 }
4006 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4007 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4008 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4009
4010 if (dirty && !pmd_write(orig_pmd)) {
4011 ret = wp_huge_pmd(&vmf, orig_pmd);
4012 if (!(ret & VM_FAULT_FALLBACK))
4013 return ret;
4014 } else {
4015 huge_pmd_set_accessed(&vmf, orig_pmd);
4016 return 0;
4017 }
4018 }
4019 }
4020
4021 return handle_pte_fault(&vmf);
4022 }
4023
4024 /*
4025 * By the time we get here, we already hold the mm semaphore
4026 *
4027 * The mmap_sem may have been released depending on flags and our
4028 * return value. See filemap_fault() and __lock_page_or_retry().
4029 */
4030 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4031 unsigned int flags)
4032 {
4033 vm_fault_t ret;
4034
4035 __set_current_state(TASK_RUNNING);
4036
4037 count_vm_event(PGFAULT);
4038 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4039
4040 /* do counter updates before entering really critical section. */
4041 check_sync_rss_stat(current);
4042
4043 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4044 flags & FAULT_FLAG_INSTRUCTION,
4045 flags & FAULT_FLAG_REMOTE))
4046 return VM_FAULT_SIGSEGV;
4047
4048 /*
4049 * Enable the memcg OOM handling for faults triggered in user
4050 * space. Kernel faults are handled more gracefully.
4051 */
4052 if (flags & FAULT_FLAG_USER)
4053 mem_cgroup_enter_user_fault();
4054
4055 if (unlikely(is_vm_hugetlb_page(vma)))
4056 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4057 else
4058 ret = __handle_mm_fault(vma, address, flags);
4059
4060 if (flags & FAULT_FLAG_USER) {
4061 mem_cgroup_exit_user_fault();
4062 /*
4063 * The task may have entered a memcg OOM situation but
4064 * if the allocation error was handled gracefully (no
4065 * VM_FAULT_OOM), there is no need to kill anything.
4066 * Just clean up the OOM state peacefully.
4067 */
4068 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4069 mem_cgroup_oom_synchronize(false);
4070 }
4071
4072 return ret;
4073 }
4074 EXPORT_SYMBOL_GPL(handle_mm_fault);
4075
4076 #ifndef __PAGETABLE_P4D_FOLDED
4077 /*
4078 * Allocate p4d page table.
4079 * We've already handled the fast-path in-line.
4080 */
4081 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4082 {
4083 p4d_t *new = p4d_alloc_one(mm, address);
4084 if (!new)
4085 return -ENOMEM;
4086
4087 smp_wmb(); /* See comment in __pte_alloc */
4088
4089 spin_lock(&mm->page_table_lock);
4090 if (pgd_present(*pgd)) /* Another has populated it */
4091 p4d_free(mm, new);
4092 else
4093 pgd_populate(mm, pgd, new);
4094 spin_unlock(&mm->page_table_lock);
4095 return 0;
4096 }
4097 #endif /* __PAGETABLE_P4D_FOLDED */
4098
4099 #ifndef __PAGETABLE_PUD_FOLDED
4100 /*
4101 * Allocate page upper directory.
4102 * We've already handled the fast-path in-line.
4103 */
4104 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4105 {
4106 pud_t *new = pud_alloc_one(mm, address);
4107 if (!new)
4108 return -ENOMEM;
4109
4110 smp_wmb(); /* See comment in __pte_alloc */
4111
4112 spin_lock(&mm->page_table_lock);
4113 #ifndef __ARCH_HAS_5LEVEL_HACK
4114 if (!p4d_present(*p4d)) {
4115 mm_inc_nr_puds(mm);
4116 p4d_populate(mm, p4d, new);
4117 } else /* Another has populated it */
4118 pud_free(mm, new);
4119 #else
4120 if (!pgd_present(*p4d)) {
4121 mm_inc_nr_puds(mm);
4122 pgd_populate(mm, p4d, new);
4123 } else /* Another has populated it */
4124 pud_free(mm, new);
4125 #endif /* __ARCH_HAS_5LEVEL_HACK */
4126 spin_unlock(&mm->page_table_lock);
4127 return 0;
4128 }
4129 #endif /* __PAGETABLE_PUD_FOLDED */
4130
4131 #ifndef __PAGETABLE_PMD_FOLDED
4132 /*
4133 * Allocate page middle directory.
4134 * We've already handled the fast-path in-line.
4135 */
4136 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4137 {
4138 spinlock_t *ptl;
4139 pmd_t *new = pmd_alloc_one(mm, address);
4140 if (!new)
4141 return -ENOMEM;
4142
4143 smp_wmb(); /* See comment in __pte_alloc */
4144
4145 ptl = pud_lock(mm, pud);
4146 #ifndef __ARCH_HAS_4LEVEL_HACK
4147 if (!pud_present(*pud)) {
4148 mm_inc_nr_pmds(mm);
4149 pud_populate(mm, pud, new);
4150 } else /* Another has populated it */
4151 pmd_free(mm, new);
4152 #else
4153 if (!pgd_present(*pud)) {
4154 mm_inc_nr_pmds(mm);
4155 pgd_populate(mm, pud, new);
4156 } else /* Another has populated it */
4157 pmd_free(mm, new);
4158 #endif /* __ARCH_HAS_4LEVEL_HACK */
4159 spin_unlock(ptl);
4160 return 0;
4161 }
4162 #endif /* __PAGETABLE_PMD_FOLDED */
4163
4164 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4165 struct mmu_notifier_range *range,
4166 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4167 {
4168 pgd_t *pgd;
4169 p4d_t *p4d;
4170 pud_t *pud;
4171 pmd_t *pmd;
4172 pte_t *ptep;
4173
4174 pgd = pgd_offset(mm, address);
4175 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4176 goto out;
4177
4178 p4d = p4d_offset(pgd, address);
4179 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4180 goto out;
4181
4182 pud = pud_offset(p4d, address);
4183 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4184 goto out;
4185
4186 pmd = pmd_offset(pud, address);
4187 VM_BUG_ON(pmd_trans_huge(*pmd));
4188
4189 if (pmd_huge(*pmd)) {
4190 if (!pmdpp)
4191 goto out;
4192
4193 if (range) {
4194 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4195 NULL, mm, address & PMD_MASK,
4196 (address & PMD_MASK) + PMD_SIZE);
4197 mmu_notifier_invalidate_range_start(range);
4198 }
4199 *ptlp = pmd_lock(mm, pmd);
4200 if (pmd_huge(*pmd)) {
4201 *pmdpp = pmd;
4202 return 0;
4203 }
4204 spin_unlock(*ptlp);
4205 if (range)
4206 mmu_notifier_invalidate_range_end(range);
4207 }
4208
4209 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4210 goto out;
4211
4212 if (range) {
4213 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4214 address & PAGE_MASK,
4215 (address & PAGE_MASK) + PAGE_SIZE);
4216 mmu_notifier_invalidate_range_start(range);
4217 }
4218 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4219 if (!pte_present(*ptep))
4220 goto unlock;
4221 *ptepp = ptep;
4222 return 0;
4223 unlock:
4224 pte_unmap_unlock(ptep, *ptlp);
4225 if (range)
4226 mmu_notifier_invalidate_range_end(range);
4227 out:
4228 return -EINVAL;
4229 }
4230
4231 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4232 pte_t **ptepp, spinlock_t **ptlp)
4233 {
4234 int res;
4235
4236 /* (void) is needed to make gcc happy */
4237 (void) __cond_lock(*ptlp,
4238 !(res = __follow_pte_pmd(mm, address, NULL,
4239 ptepp, NULL, ptlp)));
4240 return res;
4241 }
4242
4243 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4244 struct mmu_notifier_range *range,
4245 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4246 {
4247 int res;
4248
4249 /* (void) is needed to make gcc happy */
4250 (void) __cond_lock(*ptlp,
4251 !(res = __follow_pte_pmd(mm, address, range,
4252 ptepp, pmdpp, ptlp)));
4253 return res;
4254 }
4255 EXPORT_SYMBOL(follow_pte_pmd);
4256
4257 /**
4258 * follow_pfn - look up PFN at a user virtual address
4259 * @vma: memory mapping
4260 * @address: user virtual address
4261 * @pfn: location to store found PFN
4262 *
4263 * Only IO mappings and raw PFN mappings are allowed.
4264 *
4265 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4266 */
4267 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4268 unsigned long *pfn)
4269 {
4270 int ret = -EINVAL;
4271 spinlock_t *ptl;
4272 pte_t *ptep;
4273
4274 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4275 return ret;
4276
4277 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4278 if (ret)
4279 return ret;
4280 *pfn = pte_pfn(*ptep);
4281 pte_unmap_unlock(ptep, ptl);
4282 return 0;
4283 }
4284 EXPORT_SYMBOL(follow_pfn);
4285
4286 #ifdef CONFIG_HAVE_IOREMAP_PROT
4287 int follow_phys(struct vm_area_struct *vma,
4288 unsigned long address, unsigned int flags,
4289 unsigned long *prot, resource_size_t *phys)
4290 {
4291 int ret = -EINVAL;
4292 pte_t *ptep, pte;
4293 spinlock_t *ptl;
4294
4295 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4296 goto out;
4297
4298 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4299 goto out;
4300 pte = *ptep;
4301
4302 if ((flags & FOLL_WRITE) && !pte_write(pte))
4303 goto unlock;
4304
4305 *prot = pgprot_val(pte_pgprot(pte));
4306 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4307
4308 ret = 0;
4309 unlock:
4310 pte_unmap_unlock(ptep, ptl);
4311 out:
4312 return ret;
4313 }
4314
4315 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4316 void *buf, int len, int write)
4317 {
4318 resource_size_t phys_addr;
4319 unsigned long prot = 0;
4320 void __iomem *maddr;
4321 int offset = addr & (PAGE_SIZE-1);
4322
4323 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4324 return -EINVAL;
4325
4326 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4327 if (!maddr)
4328 return -ENOMEM;
4329
4330 if (write)
4331 memcpy_toio(maddr + offset, buf, len);
4332 else
4333 memcpy_fromio(buf, maddr + offset, len);
4334 iounmap(maddr);
4335
4336 return len;
4337 }
4338 EXPORT_SYMBOL_GPL(generic_access_phys);
4339 #endif
4340
4341 /*
4342 * Access another process' address space as given in mm. If non-NULL, use the
4343 * given task for page fault accounting.
4344 */
4345 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4346 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4347 {
4348 struct vm_area_struct *vma;
4349 void *old_buf = buf;
4350 int write = gup_flags & FOLL_WRITE;
4351
4352 down_read(&mm->mmap_sem);
4353 /* ignore errors, just check how much was successfully transferred */
4354 while (len) {
4355 int bytes, ret, offset;
4356 void *maddr;
4357 struct page *page = NULL;
4358
4359 ret = get_user_pages_remote(tsk, mm, addr, 1,
4360 gup_flags, &page, &vma, NULL);
4361 if (ret <= 0) {
4362 #ifndef CONFIG_HAVE_IOREMAP_PROT
4363 break;
4364 #else
4365 /*
4366 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4367 * we can access using slightly different code.
4368 */
4369 vma = find_vma(mm, addr);
4370 if (!vma || vma->vm_start > addr)
4371 break;
4372 if (vma->vm_ops && vma->vm_ops->access)
4373 ret = vma->vm_ops->access(vma, addr, buf,
4374 len, write);
4375 if (ret <= 0)
4376 break;
4377 bytes = ret;
4378 #endif
4379 } else {
4380 bytes = len;
4381 offset = addr & (PAGE_SIZE-1);
4382 if (bytes > PAGE_SIZE-offset)
4383 bytes = PAGE_SIZE-offset;
4384
4385 maddr = kmap(page);
4386 if (write) {
4387 copy_to_user_page(vma, page, addr,
4388 maddr + offset, buf, bytes);
4389 set_page_dirty_lock(page);
4390 } else {
4391 copy_from_user_page(vma, page, addr,
4392 buf, maddr + offset, bytes);
4393 }
4394 kunmap(page);
4395 put_page(page);
4396 }
4397 len -= bytes;
4398 buf += bytes;
4399 addr += bytes;
4400 }
4401 up_read(&mm->mmap_sem);
4402
4403 return buf - old_buf;
4404 }
4405
4406 /**
4407 * access_remote_vm - access another process' address space
4408 * @mm: the mm_struct of the target address space
4409 * @addr: start address to access
4410 * @buf: source or destination buffer
4411 * @len: number of bytes to transfer
4412 * @gup_flags: flags modifying lookup behaviour
4413 *
4414 * The caller must hold a reference on @mm.
4415 *
4416 * Return: number of bytes copied from source to destination.
4417 */
4418 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4419 void *buf, int len, unsigned int gup_flags)
4420 {
4421 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4422 }
4423
4424 /*
4425 * Access another process' address space.
4426 * Source/target buffer must be kernel space,
4427 * Do not walk the page table directly, use get_user_pages
4428 */
4429 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4430 void *buf, int len, unsigned int gup_flags)
4431 {
4432 struct mm_struct *mm;
4433 int ret;
4434
4435 mm = get_task_mm(tsk);
4436 if (!mm)
4437 return 0;
4438
4439 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4440
4441 mmput(mm);
4442
4443 return ret;
4444 }
4445 EXPORT_SYMBOL_GPL(access_process_vm);
4446
4447 /*
4448 * Print the name of a VMA.
4449 */
4450 void print_vma_addr(char *prefix, unsigned long ip)
4451 {
4452 struct mm_struct *mm = current->mm;
4453 struct vm_area_struct *vma;
4454
4455 /*
4456 * we might be running from an atomic context so we cannot sleep
4457 */
4458 if (!down_read_trylock(&mm->mmap_sem))
4459 return;
4460
4461 vma = find_vma(mm, ip);
4462 if (vma && vma->vm_file) {
4463 struct file *f = vma->vm_file;
4464 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4465 if (buf) {
4466 char *p;
4467
4468 p = file_path(f, buf, PAGE_SIZE);
4469 if (IS_ERR(p))
4470 p = "?";
4471 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4472 vma->vm_start,
4473 vma->vm_end - vma->vm_start);
4474 free_page((unsigned long)buf);
4475 }
4476 }
4477 up_read(&mm->mmap_sem);
4478 }
4479
4480 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4481 void __might_fault(const char *file, int line)
4482 {
4483 /*
4484 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4485 * holding the mmap_sem, this is safe because kernel memory doesn't
4486 * get paged out, therefore we'll never actually fault, and the
4487 * below annotations will generate false positives.
4488 */
4489 if (uaccess_kernel())
4490 return;
4491 if (pagefault_disabled())
4492 return;
4493 __might_sleep(file, line, 0);
4494 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4495 if (current->mm)
4496 might_lock_read(&current->mm->mmap_sem);
4497 #endif
4498 }
4499 EXPORT_SYMBOL(__might_fault);
4500 #endif
4501
4502 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4503 /*
4504 * Process all subpages of the specified huge page with the specified
4505 * operation. The target subpage will be processed last to keep its
4506 * cache lines hot.
4507 */
4508 static inline void process_huge_page(
4509 unsigned long addr_hint, unsigned int pages_per_huge_page,
4510 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4511 void *arg)
4512 {
4513 int i, n, base, l;
4514 unsigned long addr = addr_hint &
4515 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4516
4517 /* Process target subpage last to keep its cache lines hot */
4518 might_sleep();
4519 n = (addr_hint - addr) / PAGE_SIZE;
4520 if (2 * n <= pages_per_huge_page) {
4521 /* If target subpage in first half of huge page */
4522 base = 0;
4523 l = n;
4524 /* Process subpages at the end of huge page */
4525 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4526 cond_resched();
4527 process_subpage(addr + i * PAGE_SIZE, i, arg);
4528 }
4529 } else {
4530 /* If target subpage in second half of huge page */
4531 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4532 l = pages_per_huge_page - n;
4533 /* Process subpages at the begin of huge page */
4534 for (i = 0; i < base; i++) {
4535 cond_resched();
4536 process_subpage(addr + i * PAGE_SIZE, i, arg);
4537 }
4538 }
4539 /*
4540 * Process remaining subpages in left-right-left-right pattern
4541 * towards the target subpage
4542 */
4543 for (i = 0; i < l; i++) {
4544 int left_idx = base + i;
4545 int right_idx = base + 2 * l - 1 - i;
4546
4547 cond_resched();
4548 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4549 cond_resched();
4550 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4551 }
4552 }
4553
4554 static void clear_gigantic_page(struct page *page,
4555 unsigned long addr,
4556 unsigned int pages_per_huge_page)
4557 {
4558 int i;
4559 struct page *p = page;
4560
4561 might_sleep();
4562 for (i = 0; i < pages_per_huge_page;
4563 i++, p = mem_map_next(p, page, i)) {
4564 cond_resched();
4565 clear_user_highpage(p, addr + i * PAGE_SIZE);
4566 }
4567 }
4568
4569 static void clear_subpage(unsigned long addr, int idx, void *arg)
4570 {
4571 struct page *page = arg;
4572
4573 clear_user_highpage(page + idx, addr);
4574 }
4575
4576 void clear_huge_page(struct page *page,
4577 unsigned long addr_hint, unsigned int pages_per_huge_page)
4578 {
4579 unsigned long addr = addr_hint &
4580 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4581
4582 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4583 clear_gigantic_page(page, addr, pages_per_huge_page);
4584 return;
4585 }
4586
4587 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4588 }
4589
4590 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4591 unsigned long addr,
4592 struct vm_area_struct *vma,
4593 unsigned int pages_per_huge_page)
4594 {
4595 int i;
4596 struct page *dst_base = dst;
4597 struct page *src_base = src;
4598
4599 for (i = 0; i < pages_per_huge_page; ) {
4600 cond_resched();
4601 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4602
4603 i++;
4604 dst = mem_map_next(dst, dst_base, i);
4605 src = mem_map_next(src, src_base, i);
4606 }
4607 }
4608
4609 struct copy_subpage_arg {
4610 struct page *dst;
4611 struct page *src;
4612 struct vm_area_struct *vma;
4613 };
4614
4615 static void copy_subpage(unsigned long addr, int idx, void *arg)
4616 {
4617 struct copy_subpage_arg *copy_arg = arg;
4618
4619 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4620 addr, copy_arg->vma);
4621 }
4622
4623 void copy_user_huge_page(struct page *dst, struct page *src,
4624 unsigned long addr_hint, struct vm_area_struct *vma,
4625 unsigned int pages_per_huge_page)
4626 {
4627 unsigned long addr = addr_hint &
4628 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4629 struct copy_subpage_arg arg = {
4630 .dst = dst,
4631 .src = src,
4632 .vma = vma,
4633 };
4634
4635 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4636 copy_user_gigantic_page(dst, src, addr, vma,
4637 pages_per_huge_page);
4638 return;
4639 }
4640
4641 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4642 }
4643
4644 long copy_huge_page_from_user(struct page *dst_page,
4645 const void __user *usr_src,
4646 unsigned int pages_per_huge_page,
4647 bool allow_pagefault)
4648 {
4649 void *src = (void *)usr_src;
4650 void *page_kaddr;
4651 unsigned long i, rc = 0;
4652 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4653
4654 for (i = 0; i < pages_per_huge_page; i++) {
4655 if (allow_pagefault)
4656 page_kaddr = kmap(dst_page + i);
4657 else
4658 page_kaddr = kmap_atomic(dst_page + i);
4659 rc = copy_from_user(page_kaddr,
4660 (const void __user *)(src + i * PAGE_SIZE),
4661 PAGE_SIZE);
4662 if (allow_pagefault)
4663 kunmap(dst_page + i);
4664 else
4665 kunmap_atomic(page_kaddr);
4666
4667 ret_val -= (PAGE_SIZE - rc);
4668 if (rc)
4669 break;
4670
4671 cond_resched();
4672 }
4673 return ret_val;
4674 }
4675 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4676
4677 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4678
4679 static struct kmem_cache *page_ptl_cachep;
4680
4681 void __init ptlock_cache_init(void)
4682 {
4683 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4684 SLAB_PANIC, NULL);
4685 }
4686
4687 bool ptlock_alloc(struct page *page)
4688 {
4689 spinlock_t *ptl;
4690
4691 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4692 if (!ptl)
4693 return false;
4694 page->ptl = ptl;
4695 return true;
4696 }
4697
4698 void ptlock_free(struct page *page)
4699 {
4700 kmem_cache_free(page_ptl_cachep, page->ptl);
4701 }
4702 #endif