]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory.c
mm: refactor TLB gathering API
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71
72 #include <asm/io.h>
73 #include <asm/mmu_context.h>
74 #include <asm/pgalloc.h>
75 #include <linux/uaccess.h>
76 #include <asm/tlb.h>
77 #include <asm/tlbflush.h>
78 #include <asm/pgtable.h>
79
80 #include "internal.h"
81
82 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
83 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #endif
85
86 #ifndef CONFIG_NEED_MULTIPLE_NODES
87 /* use the per-pgdat data instead for discontigmem - mbligh */
88 unsigned long max_mapnr;
89 EXPORT_SYMBOL(max_mapnr);
90
91 struct page *mem_map;
92 EXPORT_SYMBOL(mem_map);
93 #endif
94
95 /*
96 * A number of key systems in x86 including ioremap() rely on the assumption
97 * that high_memory defines the upper bound on direct map memory, then end
98 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
99 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 * and ZONE_HIGHMEM.
101 */
102 void *high_memory;
103 EXPORT_SYMBOL(high_memory);
104
105 /*
106 * Randomize the address space (stacks, mmaps, brk, etc.).
107 *
108 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
109 * as ancient (libc5 based) binaries can segfault. )
110 */
111 int randomize_va_space __read_mostly =
112 #ifdef CONFIG_COMPAT_BRK
113 1;
114 #else
115 2;
116 #endif
117
118 static int __init disable_randmaps(char *s)
119 {
120 randomize_va_space = 0;
121 return 1;
122 }
123 __setup("norandmaps", disable_randmaps);
124
125 unsigned long zero_pfn __read_mostly;
126 EXPORT_SYMBOL(zero_pfn);
127
128 unsigned long highest_memmap_pfn __read_mostly;
129
130 /*
131 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
132 */
133 static int __init init_zero_pfn(void)
134 {
135 zero_pfn = page_to_pfn(ZERO_PAGE(0));
136 return 0;
137 }
138 core_initcall(init_zero_pfn);
139
140
141 #if defined(SPLIT_RSS_COUNTING)
142
143 void sync_mm_rss(struct mm_struct *mm)
144 {
145 int i;
146
147 for (i = 0; i < NR_MM_COUNTERS; i++) {
148 if (current->rss_stat.count[i]) {
149 add_mm_counter(mm, i, current->rss_stat.count[i]);
150 current->rss_stat.count[i] = 0;
151 }
152 }
153 current->rss_stat.events = 0;
154 }
155
156 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
157 {
158 struct task_struct *task = current;
159
160 if (likely(task->mm == mm))
161 task->rss_stat.count[member] += val;
162 else
163 add_mm_counter(mm, member, val);
164 }
165 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
166 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
167
168 /* sync counter once per 64 page faults */
169 #define TASK_RSS_EVENTS_THRESH (64)
170 static void check_sync_rss_stat(struct task_struct *task)
171 {
172 if (unlikely(task != current))
173 return;
174 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
175 sync_mm_rss(task->mm);
176 }
177 #else /* SPLIT_RSS_COUNTING */
178
179 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
180 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
181
182 static void check_sync_rss_stat(struct task_struct *task)
183 {
184 }
185
186 #endif /* SPLIT_RSS_COUNTING */
187
188 #ifdef HAVE_GENERIC_MMU_GATHER
189
190 static bool tlb_next_batch(struct mmu_gather *tlb)
191 {
192 struct mmu_gather_batch *batch;
193
194 batch = tlb->active;
195 if (batch->next) {
196 tlb->active = batch->next;
197 return true;
198 }
199
200 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
201 return false;
202
203 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
204 if (!batch)
205 return false;
206
207 tlb->batch_count++;
208 batch->next = NULL;
209 batch->nr = 0;
210 batch->max = MAX_GATHER_BATCH;
211
212 tlb->active->next = batch;
213 tlb->active = batch;
214
215 return true;
216 }
217
218 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
219 unsigned long start, unsigned long end)
220 {
221 tlb->mm = mm;
222
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
235 tlb->page_size = 0;
236
237 __tlb_reset_range(tlb);
238 }
239
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 {
242 if (!tlb->end)
243 return;
244
245 tlb_flush(tlb);
246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb);
249 #endif
250 __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255 struct mmu_gather_batch *batch;
256
257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
258 free_pages_and_swap_cache(batch->pages, batch->nr);
259 batch->nr = 0;
260 }
261 tlb->active = &tlb->local;
262 }
263
264 void tlb_flush_mmu(struct mmu_gather *tlb)
265 {
266 tlb_flush_mmu_tlbonly(tlb);
267 tlb_flush_mmu_free(tlb);
268 }
269
270 /* tlb_finish_mmu
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
273 */
274 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
275 unsigned long start, unsigned long end)
276 {
277 struct mmu_gather_batch *batch, *next;
278
279 tlb_flush_mmu(tlb);
280
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
283
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
287 }
288 tlb->local.next = NULL;
289 }
290
291 /* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
296 *returns true if the caller should flush.
297 */
298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
299 {
300 struct mmu_gather_batch *batch;
301
302 VM_BUG_ON(!tlb->end);
303 VM_WARN_ON(tlb->page_size != page_size);
304
305 batch = tlb->active;
306 /*
307 * Add the page and check if we are full. If so
308 * force a flush.
309 */
310 batch->pages[batch->nr++] = page;
311 if (batch->nr == batch->max) {
312 if (!tlb_next_batch(tlb))
313 return true;
314 batch = tlb->active;
315 }
316 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
317
318 return false;
319 }
320
321 #endif /* HAVE_GENERIC_MMU_GATHER */
322
323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
324
325 /*
326 * See the comment near struct mmu_table_batch.
327 */
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 /* Simply deliver the interrupt */
332 }
333
334 static void tlb_remove_table_one(void *table)
335 {
336 /*
337 * This isn't an RCU grace period and hence the page-tables cannot be
338 * assumed to be actually RCU-freed.
339 *
340 * It is however sufficient for software page-table walkers that rely on
341 * IRQ disabling. See the comment near struct mmu_table_batch.
342 */
343 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344 __tlb_remove_table(table);
345 }
346
347 static void tlb_remove_table_rcu(struct rcu_head *head)
348 {
349 struct mmu_table_batch *batch;
350 int i;
351
352 batch = container_of(head, struct mmu_table_batch, rcu);
353
354 for (i = 0; i < batch->nr; i++)
355 __tlb_remove_table(batch->tables[i]);
356
357 free_page((unsigned long)batch);
358 }
359
360 void tlb_table_flush(struct mmu_gather *tlb)
361 {
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 if (*batch) {
365 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366 *batch = NULL;
367 }
368 }
369
370 void tlb_remove_table(struct mmu_gather *tlb, void *table)
371 {
372 struct mmu_table_batch **batch = &tlb->batch;
373
374 /*
375 * When there's less then two users of this mm there cannot be a
376 * concurrent page-table walk.
377 */
378 if (atomic_read(&tlb->mm->mm_users) < 2) {
379 __tlb_remove_table(table);
380 return;
381 }
382
383 if (*batch == NULL) {
384 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
385 if (*batch == NULL) {
386 tlb_remove_table_one(table);
387 return;
388 }
389 (*batch)->nr = 0;
390 }
391 (*batch)->tables[(*batch)->nr++] = table;
392 if ((*batch)->nr == MAX_TABLE_BATCH)
393 tlb_table_flush(tlb);
394 }
395
396 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
397
398 /* tlb_gather_mmu
399 * Called to initialize an (on-stack) mmu_gather structure for page-table
400 * tear-down from @mm. The @fullmm argument is used when @mm is without
401 * users and we're going to destroy the full address space (exit/execve).
402 */
403 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
404 unsigned long start, unsigned long end)
405 {
406 arch_tlb_gather_mmu(tlb, mm, start, end);
407 }
408
409 void tlb_finish_mmu(struct mmu_gather *tlb,
410 unsigned long start, unsigned long end)
411 {
412 arch_tlb_finish_mmu(tlb, start, end);
413 }
414
415 /*
416 * Note: this doesn't free the actual pages themselves. That
417 * has been handled earlier when unmapping all the memory regions.
418 */
419 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
420 unsigned long addr)
421 {
422 pgtable_t token = pmd_pgtable(*pmd);
423 pmd_clear(pmd);
424 pte_free_tlb(tlb, token, addr);
425 atomic_long_dec(&tlb->mm->nr_ptes);
426 }
427
428 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
429 unsigned long addr, unsigned long end,
430 unsigned long floor, unsigned long ceiling)
431 {
432 pmd_t *pmd;
433 unsigned long next;
434 unsigned long start;
435
436 start = addr;
437 pmd = pmd_offset(pud, addr);
438 do {
439 next = pmd_addr_end(addr, end);
440 if (pmd_none_or_clear_bad(pmd))
441 continue;
442 free_pte_range(tlb, pmd, addr);
443 } while (pmd++, addr = next, addr != end);
444
445 start &= PUD_MASK;
446 if (start < floor)
447 return;
448 if (ceiling) {
449 ceiling &= PUD_MASK;
450 if (!ceiling)
451 return;
452 }
453 if (end - 1 > ceiling - 1)
454 return;
455
456 pmd = pmd_offset(pud, start);
457 pud_clear(pud);
458 pmd_free_tlb(tlb, pmd, start);
459 mm_dec_nr_pmds(tlb->mm);
460 }
461
462 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
463 unsigned long addr, unsigned long end,
464 unsigned long floor, unsigned long ceiling)
465 {
466 pud_t *pud;
467 unsigned long next;
468 unsigned long start;
469
470 start = addr;
471 pud = pud_offset(p4d, addr);
472 do {
473 next = pud_addr_end(addr, end);
474 if (pud_none_or_clear_bad(pud))
475 continue;
476 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
477 } while (pud++, addr = next, addr != end);
478
479 start &= P4D_MASK;
480 if (start < floor)
481 return;
482 if (ceiling) {
483 ceiling &= P4D_MASK;
484 if (!ceiling)
485 return;
486 }
487 if (end - 1 > ceiling - 1)
488 return;
489
490 pud = pud_offset(p4d, start);
491 p4d_clear(p4d);
492 pud_free_tlb(tlb, pud, start);
493 }
494
495 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
496 unsigned long addr, unsigned long end,
497 unsigned long floor, unsigned long ceiling)
498 {
499 p4d_t *p4d;
500 unsigned long next;
501 unsigned long start;
502
503 start = addr;
504 p4d = p4d_offset(pgd, addr);
505 do {
506 next = p4d_addr_end(addr, end);
507 if (p4d_none_or_clear_bad(p4d))
508 continue;
509 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
510 } while (p4d++, addr = next, addr != end);
511
512 start &= PGDIR_MASK;
513 if (start < floor)
514 return;
515 if (ceiling) {
516 ceiling &= PGDIR_MASK;
517 if (!ceiling)
518 return;
519 }
520 if (end - 1 > ceiling - 1)
521 return;
522
523 p4d = p4d_offset(pgd, start);
524 pgd_clear(pgd);
525 p4d_free_tlb(tlb, p4d, start);
526 }
527
528 /*
529 * This function frees user-level page tables of a process.
530 */
531 void free_pgd_range(struct mmu_gather *tlb,
532 unsigned long addr, unsigned long end,
533 unsigned long floor, unsigned long ceiling)
534 {
535 pgd_t *pgd;
536 unsigned long next;
537
538 /*
539 * The next few lines have given us lots of grief...
540 *
541 * Why are we testing PMD* at this top level? Because often
542 * there will be no work to do at all, and we'd prefer not to
543 * go all the way down to the bottom just to discover that.
544 *
545 * Why all these "- 1"s? Because 0 represents both the bottom
546 * of the address space and the top of it (using -1 for the
547 * top wouldn't help much: the masks would do the wrong thing).
548 * The rule is that addr 0 and floor 0 refer to the bottom of
549 * the address space, but end 0 and ceiling 0 refer to the top
550 * Comparisons need to use "end - 1" and "ceiling - 1" (though
551 * that end 0 case should be mythical).
552 *
553 * Wherever addr is brought up or ceiling brought down, we must
554 * be careful to reject "the opposite 0" before it confuses the
555 * subsequent tests. But what about where end is brought down
556 * by PMD_SIZE below? no, end can't go down to 0 there.
557 *
558 * Whereas we round start (addr) and ceiling down, by different
559 * masks at different levels, in order to test whether a table
560 * now has no other vmas using it, so can be freed, we don't
561 * bother to round floor or end up - the tests don't need that.
562 */
563
564 addr &= PMD_MASK;
565 if (addr < floor) {
566 addr += PMD_SIZE;
567 if (!addr)
568 return;
569 }
570 if (ceiling) {
571 ceiling &= PMD_MASK;
572 if (!ceiling)
573 return;
574 }
575 if (end - 1 > ceiling - 1)
576 end -= PMD_SIZE;
577 if (addr > end - 1)
578 return;
579 /*
580 * We add page table cache pages with PAGE_SIZE,
581 * (see pte_free_tlb()), flush the tlb if we need
582 */
583 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
584 pgd = pgd_offset(tlb->mm, addr);
585 do {
586 next = pgd_addr_end(addr, end);
587 if (pgd_none_or_clear_bad(pgd))
588 continue;
589 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
590 } while (pgd++, addr = next, addr != end);
591 }
592
593 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
594 unsigned long floor, unsigned long ceiling)
595 {
596 while (vma) {
597 struct vm_area_struct *next = vma->vm_next;
598 unsigned long addr = vma->vm_start;
599
600 /*
601 * Hide vma from rmap and truncate_pagecache before freeing
602 * pgtables
603 */
604 unlink_anon_vmas(vma);
605 unlink_file_vma(vma);
606
607 if (is_vm_hugetlb_page(vma)) {
608 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
609 floor, next ? next->vm_start : ceiling);
610 } else {
611 /*
612 * Optimization: gather nearby vmas into one call down
613 */
614 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
615 && !is_vm_hugetlb_page(next)) {
616 vma = next;
617 next = vma->vm_next;
618 unlink_anon_vmas(vma);
619 unlink_file_vma(vma);
620 }
621 free_pgd_range(tlb, addr, vma->vm_end,
622 floor, next ? next->vm_start : ceiling);
623 }
624 vma = next;
625 }
626 }
627
628 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
629 {
630 spinlock_t *ptl;
631 pgtable_t new = pte_alloc_one(mm, address);
632 if (!new)
633 return -ENOMEM;
634
635 /*
636 * Ensure all pte setup (eg. pte page lock and page clearing) are
637 * visible before the pte is made visible to other CPUs by being
638 * put into page tables.
639 *
640 * The other side of the story is the pointer chasing in the page
641 * table walking code (when walking the page table without locking;
642 * ie. most of the time). Fortunately, these data accesses consist
643 * of a chain of data-dependent loads, meaning most CPUs (alpha
644 * being the notable exception) will already guarantee loads are
645 * seen in-order. See the alpha page table accessors for the
646 * smp_read_barrier_depends() barriers in page table walking code.
647 */
648 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
649
650 ptl = pmd_lock(mm, pmd);
651 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
652 atomic_long_inc(&mm->nr_ptes);
653 pmd_populate(mm, pmd, new);
654 new = NULL;
655 }
656 spin_unlock(ptl);
657 if (new)
658 pte_free(mm, new);
659 return 0;
660 }
661
662 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
663 {
664 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
665 if (!new)
666 return -ENOMEM;
667
668 smp_wmb(); /* See comment in __pte_alloc */
669
670 spin_lock(&init_mm.page_table_lock);
671 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
672 pmd_populate_kernel(&init_mm, pmd, new);
673 new = NULL;
674 }
675 spin_unlock(&init_mm.page_table_lock);
676 if (new)
677 pte_free_kernel(&init_mm, new);
678 return 0;
679 }
680
681 static inline void init_rss_vec(int *rss)
682 {
683 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
684 }
685
686 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
687 {
688 int i;
689
690 if (current->mm == mm)
691 sync_mm_rss(mm);
692 for (i = 0; i < NR_MM_COUNTERS; i++)
693 if (rss[i])
694 add_mm_counter(mm, i, rss[i]);
695 }
696
697 /*
698 * This function is called to print an error when a bad pte
699 * is found. For example, we might have a PFN-mapped pte in
700 * a region that doesn't allow it.
701 *
702 * The calling function must still handle the error.
703 */
704 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
705 pte_t pte, struct page *page)
706 {
707 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
708 p4d_t *p4d = p4d_offset(pgd, addr);
709 pud_t *pud = pud_offset(p4d, addr);
710 pmd_t *pmd = pmd_offset(pud, addr);
711 struct address_space *mapping;
712 pgoff_t index;
713 static unsigned long resume;
714 static unsigned long nr_shown;
715 static unsigned long nr_unshown;
716
717 /*
718 * Allow a burst of 60 reports, then keep quiet for that minute;
719 * or allow a steady drip of one report per second.
720 */
721 if (nr_shown == 60) {
722 if (time_before(jiffies, resume)) {
723 nr_unshown++;
724 return;
725 }
726 if (nr_unshown) {
727 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
728 nr_unshown);
729 nr_unshown = 0;
730 }
731 nr_shown = 0;
732 }
733 if (nr_shown++ == 0)
734 resume = jiffies + 60 * HZ;
735
736 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
737 index = linear_page_index(vma, addr);
738
739 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
740 current->comm,
741 (long long)pte_val(pte), (long long)pmd_val(*pmd));
742 if (page)
743 dump_page(page, "bad pte");
744 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
745 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
746 /*
747 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
748 */
749 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
750 vma->vm_file,
751 vma->vm_ops ? vma->vm_ops->fault : NULL,
752 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
753 mapping ? mapping->a_ops->readpage : NULL);
754 dump_stack();
755 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
756 }
757
758 /*
759 * vm_normal_page -- This function gets the "struct page" associated with a pte.
760 *
761 * "Special" mappings do not wish to be associated with a "struct page" (either
762 * it doesn't exist, or it exists but they don't want to touch it). In this
763 * case, NULL is returned here. "Normal" mappings do have a struct page.
764 *
765 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
766 * pte bit, in which case this function is trivial. Secondly, an architecture
767 * may not have a spare pte bit, which requires a more complicated scheme,
768 * described below.
769 *
770 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
771 * special mapping (even if there are underlying and valid "struct pages").
772 * COWed pages of a VM_PFNMAP are always normal.
773 *
774 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
775 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
776 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
777 * mapping will always honor the rule
778 *
779 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
780 *
781 * And for normal mappings this is false.
782 *
783 * This restricts such mappings to be a linear translation from virtual address
784 * to pfn. To get around this restriction, we allow arbitrary mappings so long
785 * as the vma is not a COW mapping; in that case, we know that all ptes are
786 * special (because none can have been COWed).
787 *
788 *
789 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
790 *
791 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
792 * page" backing, however the difference is that _all_ pages with a struct
793 * page (that is, those where pfn_valid is true) are refcounted and considered
794 * normal pages by the VM. The disadvantage is that pages are refcounted
795 * (which can be slower and simply not an option for some PFNMAP users). The
796 * advantage is that we don't have to follow the strict linearity rule of
797 * PFNMAP mappings in order to support COWable mappings.
798 *
799 */
800 #ifdef __HAVE_ARCH_PTE_SPECIAL
801 # define HAVE_PTE_SPECIAL 1
802 #else
803 # define HAVE_PTE_SPECIAL 0
804 #endif
805 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
806 pte_t pte)
807 {
808 unsigned long pfn = pte_pfn(pte);
809
810 if (HAVE_PTE_SPECIAL) {
811 if (likely(!pte_special(pte)))
812 goto check_pfn;
813 if (vma->vm_ops && vma->vm_ops->find_special_page)
814 return vma->vm_ops->find_special_page(vma, addr);
815 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
816 return NULL;
817 if (!is_zero_pfn(pfn))
818 print_bad_pte(vma, addr, pte, NULL);
819 return NULL;
820 }
821
822 /* !HAVE_PTE_SPECIAL case follows: */
823
824 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
825 if (vma->vm_flags & VM_MIXEDMAP) {
826 if (!pfn_valid(pfn))
827 return NULL;
828 goto out;
829 } else {
830 unsigned long off;
831 off = (addr - vma->vm_start) >> PAGE_SHIFT;
832 if (pfn == vma->vm_pgoff + off)
833 return NULL;
834 if (!is_cow_mapping(vma->vm_flags))
835 return NULL;
836 }
837 }
838
839 if (is_zero_pfn(pfn))
840 return NULL;
841 check_pfn:
842 if (unlikely(pfn > highest_memmap_pfn)) {
843 print_bad_pte(vma, addr, pte, NULL);
844 return NULL;
845 }
846
847 /*
848 * NOTE! We still have PageReserved() pages in the page tables.
849 * eg. VDSO mappings can cause them to exist.
850 */
851 out:
852 return pfn_to_page(pfn);
853 }
854
855 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
856 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
857 pmd_t pmd)
858 {
859 unsigned long pfn = pmd_pfn(pmd);
860
861 /*
862 * There is no pmd_special() but there may be special pmds, e.g.
863 * in a direct-access (dax) mapping, so let's just replicate the
864 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
865 */
866 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
867 if (vma->vm_flags & VM_MIXEDMAP) {
868 if (!pfn_valid(pfn))
869 return NULL;
870 goto out;
871 } else {
872 unsigned long off;
873 off = (addr - vma->vm_start) >> PAGE_SHIFT;
874 if (pfn == vma->vm_pgoff + off)
875 return NULL;
876 if (!is_cow_mapping(vma->vm_flags))
877 return NULL;
878 }
879 }
880
881 if (is_zero_pfn(pfn))
882 return NULL;
883 if (unlikely(pfn > highest_memmap_pfn))
884 return NULL;
885
886 /*
887 * NOTE! We still have PageReserved() pages in the page tables.
888 * eg. VDSO mappings can cause them to exist.
889 */
890 out:
891 return pfn_to_page(pfn);
892 }
893 #endif
894
895 /*
896 * copy one vm_area from one task to the other. Assumes the page tables
897 * already present in the new task to be cleared in the whole range
898 * covered by this vma.
899 */
900
901 static inline unsigned long
902 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
904 unsigned long addr, int *rss)
905 {
906 unsigned long vm_flags = vma->vm_flags;
907 pte_t pte = *src_pte;
908 struct page *page;
909
910 /* pte contains position in swap or file, so copy. */
911 if (unlikely(!pte_present(pte))) {
912 swp_entry_t entry = pte_to_swp_entry(pte);
913
914 if (likely(!non_swap_entry(entry))) {
915 if (swap_duplicate(entry) < 0)
916 return entry.val;
917
918 /* make sure dst_mm is on swapoff's mmlist. */
919 if (unlikely(list_empty(&dst_mm->mmlist))) {
920 spin_lock(&mmlist_lock);
921 if (list_empty(&dst_mm->mmlist))
922 list_add(&dst_mm->mmlist,
923 &src_mm->mmlist);
924 spin_unlock(&mmlist_lock);
925 }
926 rss[MM_SWAPENTS]++;
927 } else if (is_migration_entry(entry)) {
928 page = migration_entry_to_page(entry);
929
930 rss[mm_counter(page)]++;
931
932 if (is_write_migration_entry(entry) &&
933 is_cow_mapping(vm_flags)) {
934 /*
935 * COW mappings require pages in both
936 * parent and child to be set to read.
937 */
938 make_migration_entry_read(&entry);
939 pte = swp_entry_to_pte(entry);
940 if (pte_swp_soft_dirty(*src_pte))
941 pte = pte_swp_mksoft_dirty(pte);
942 set_pte_at(src_mm, addr, src_pte, pte);
943 }
944 }
945 goto out_set_pte;
946 }
947
948 /*
949 * If it's a COW mapping, write protect it both
950 * in the parent and the child
951 */
952 if (is_cow_mapping(vm_flags)) {
953 ptep_set_wrprotect(src_mm, addr, src_pte);
954 pte = pte_wrprotect(pte);
955 }
956
957 /*
958 * If it's a shared mapping, mark it clean in
959 * the child
960 */
961 if (vm_flags & VM_SHARED)
962 pte = pte_mkclean(pte);
963 pte = pte_mkold(pte);
964
965 page = vm_normal_page(vma, addr, pte);
966 if (page) {
967 get_page(page);
968 page_dup_rmap(page, false);
969 rss[mm_counter(page)]++;
970 }
971
972 out_set_pte:
973 set_pte_at(dst_mm, addr, dst_pte, pte);
974 return 0;
975 }
976
977 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
980 {
981 pte_t *orig_src_pte, *orig_dst_pte;
982 pte_t *src_pte, *dst_pte;
983 spinlock_t *src_ptl, *dst_ptl;
984 int progress = 0;
985 int rss[NR_MM_COUNTERS];
986 swp_entry_t entry = (swp_entry_t){0};
987
988 again:
989 init_rss_vec(rss);
990
991 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
992 if (!dst_pte)
993 return -ENOMEM;
994 src_pte = pte_offset_map(src_pmd, addr);
995 src_ptl = pte_lockptr(src_mm, src_pmd);
996 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 orig_src_pte = src_pte;
998 orig_dst_pte = dst_pte;
999 arch_enter_lazy_mmu_mode();
1000
1001 do {
1002 /*
1003 * We are holding two locks at this point - either of them
1004 * could generate latencies in another task on another CPU.
1005 */
1006 if (progress >= 32) {
1007 progress = 0;
1008 if (need_resched() ||
1009 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1010 break;
1011 }
1012 if (pte_none(*src_pte)) {
1013 progress++;
1014 continue;
1015 }
1016 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1017 vma, addr, rss);
1018 if (entry.val)
1019 break;
1020 progress += 8;
1021 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1022
1023 arch_leave_lazy_mmu_mode();
1024 spin_unlock(src_ptl);
1025 pte_unmap(orig_src_pte);
1026 add_mm_rss_vec(dst_mm, rss);
1027 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1028 cond_resched();
1029
1030 if (entry.val) {
1031 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1032 return -ENOMEM;
1033 progress = 0;
1034 }
1035 if (addr != end)
1036 goto again;
1037 return 0;
1038 }
1039
1040 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1041 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1042 unsigned long addr, unsigned long end)
1043 {
1044 pmd_t *src_pmd, *dst_pmd;
1045 unsigned long next;
1046
1047 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1048 if (!dst_pmd)
1049 return -ENOMEM;
1050 src_pmd = pmd_offset(src_pud, addr);
1051 do {
1052 next = pmd_addr_end(addr, end);
1053 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1054 int err;
1055 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1056 err = copy_huge_pmd(dst_mm, src_mm,
1057 dst_pmd, src_pmd, addr, vma);
1058 if (err == -ENOMEM)
1059 return -ENOMEM;
1060 if (!err)
1061 continue;
1062 /* fall through */
1063 }
1064 if (pmd_none_or_clear_bad(src_pmd))
1065 continue;
1066 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1067 vma, addr, next))
1068 return -ENOMEM;
1069 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1070 return 0;
1071 }
1072
1073 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1074 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1075 unsigned long addr, unsigned long end)
1076 {
1077 pud_t *src_pud, *dst_pud;
1078 unsigned long next;
1079
1080 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1081 if (!dst_pud)
1082 return -ENOMEM;
1083 src_pud = pud_offset(src_p4d, addr);
1084 do {
1085 next = pud_addr_end(addr, end);
1086 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1087 int err;
1088
1089 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1090 err = copy_huge_pud(dst_mm, src_mm,
1091 dst_pud, src_pud, addr, vma);
1092 if (err == -ENOMEM)
1093 return -ENOMEM;
1094 if (!err)
1095 continue;
1096 /* fall through */
1097 }
1098 if (pud_none_or_clear_bad(src_pud))
1099 continue;
1100 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1101 vma, addr, next))
1102 return -ENOMEM;
1103 } while (dst_pud++, src_pud++, addr = next, addr != end);
1104 return 0;
1105 }
1106
1107 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1108 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1109 unsigned long addr, unsigned long end)
1110 {
1111 p4d_t *src_p4d, *dst_p4d;
1112 unsigned long next;
1113
1114 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1115 if (!dst_p4d)
1116 return -ENOMEM;
1117 src_p4d = p4d_offset(src_pgd, addr);
1118 do {
1119 next = p4d_addr_end(addr, end);
1120 if (p4d_none_or_clear_bad(src_p4d))
1121 continue;
1122 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1123 vma, addr, next))
1124 return -ENOMEM;
1125 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1126 return 0;
1127 }
1128
1129 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1130 struct vm_area_struct *vma)
1131 {
1132 pgd_t *src_pgd, *dst_pgd;
1133 unsigned long next;
1134 unsigned long addr = vma->vm_start;
1135 unsigned long end = vma->vm_end;
1136 unsigned long mmun_start; /* For mmu_notifiers */
1137 unsigned long mmun_end; /* For mmu_notifiers */
1138 bool is_cow;
1139 int ret;
1140
1141 /*
1142 * Don't copy ptes where a page fault will fill them correctly.
1143 * Fork becomes much lighter when there are big shared or private
1144 * readonly mappings. The tradeoff is that copy_page_range is more
1145 * efficient than faulting.
1146 */
1147 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1148 !vma->anon_vma)
1149 return 0;
1150
1151 if (is_vm_hugetlb_page(vma))
1152 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1153
1154 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1155 /*
1156 * We do not free on error cases below as remove_vma
1157 * gets called on error from higher level routine
1158 */
1159 ret = track_pfn_copy(vma);
1160 if (ret)
1161 return ret;
1162 }
1163
1164 /*
1165 * We need to invalidate the secondary MMU mappings only when
1166 * there could be a permission downgrade on the ptes of the
1167 * parent mm. And a permission downgrade will only happen if
1168 * is_cow_mapping() returns true.
1169 */
1170 is_cow = is_cow_mapping(vma->vm_flags);
1171 mmun_start = addr;
1172 mmun_end = end;
1173 if (is_cow)
1174 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1175 mmun_end);
1176
1177 ret = 0;
1178 dst_pgd = pgd_offset(dst_mm, addr);
1179 src_pgd = pgd_offset(src_mm, addr);
1180 do {
1181 next = pgd_addr_end(addr, end);
1182 if (pgd_none_or_clear_bad(src_pgd))
1183 continue;
1184 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1185 vma, addr, next))) {
1186 ret = -ENOMEM;
1187 break;
1188 }
1189 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1190
1191 if (is_cow)
1192 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1193 return ret;
1194 }
1195
1196 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1197 struct vm_area_struct *vma, pmd_t *pmd,
1198 unsigned long addr, unsigned long end,
1199 struct zap_details *details)
1200 {
1201 struct mm_struct *mm = tlb->mm;
1202 int force_flush = 0;
1203 int rss[NR_MM_COUNTERS];
1204 spinlock_t *ptl;
1205 pte_t *start_pte;
1206 pte_t *pte;
1207 swp_entry_t entry;
1208
1209 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1210 again:
1211 init_rss_vec(rss);
1212 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1213 pte = start_pte;
1214 flush_tlb_batched_pending(mm);
1215 arch_enter_lazy_mmu_mode();
1216 do {
1217 pte_t ptent = *pte;
1218 if (pte_none(ptent))
1219 continue;
1220
1221 if (pte_present(ptent)) {
1222 struct page *page;
1223
1224 page = vm_normal_page(vma, addr, ptent);
1225 if (unlikely(details) && page) {
1226 /*
1227 * unmap_shared_mapping_pages() wants to
1228 * invalidate cache without truncating:
1229 * unmap shared but keep private pages.
1230 */
1231 if (details->check_mapping &&
1232 details->check_mapping != page_rmapping(page))
1233 continue;
1234 }
1235 ptent = ptep_get_and_clear_full(mm, addr, pte,
1236 tlb->fullmm);
1237 tlb_remove_tlb_entry(tlb, pte, addr);
1238 if (unlikely(!page))
1239 continue;
1240
1241 if (!PageAnon(page)) {
1242 if (pte_dirty(ptent)) {
1243 force_flush = 1;
1244 set_page_dirty(page);
1245 }
1246 if (pte_young(ptent) &&
1247 likely(!(vma->vm_flags & VM_SEQ_READ)))
1248 mark_page_accessed(page);
1249 }
1250 rss[mm_counter(page)]--;
1251 page_remove_rmap(page, false);
1252 if (unlikely(page_mapcount(page) < 0))
1253 print_bad_pte(vma, addr, ptent, page);
1254 if (unlikely(__tlb_remove_page(tlb, page))) {
1255 force_flush = 1;
1256 addr += PAGE_SIZE;
1257 break;
1258 }
1259 continue;
1260 }
1261 /* If details->check_mapping, we leave swap entries. */
1262 if (unlikely(details))
1263 continue;
1264
1265 entry = pte_to_swp_entry(ptent);
1266 if (!non_swap_entry(entry))
1267 rss[MM_SWAPENTS]--;
1268 else if (is_migration_entry(entry)) {
1269 struct page *page;
1270
1271 page = migration_entry_to_page(entry);
1272 rss[mm_counter(page)]--;
1273 }
1274 if (unlikely(!free_swap_and_cache(entry)))
1275 print_bad_pte(vma, addr, ptent, NULL);
1276 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1277 } while (pte++, addr += PAGE_SIZE, addr != end);
1278
1279 add_mm_rss_vec(mm, rss);
1280 arch_leave_lazy_mmu_mode();
1281
1282 /* Do the actual TLB flush before dropping ptl */
1283 if (force_flush)
1284 tlb_flush_mmu_tlbonly(tlb);
1285 pte_unmap_unlock(start_pte, ptl);
1286
1287 /*
1288 * If we forced a TLB flush (either due to running out of
1289 * batch buffers or because we needed to flush dirty TLB
1290 * entries before releasing the ptl), free the batched
1291 * memory too. Restart if we didn't do everything.
1292 */
1293 if (force_flush) {
1294 force_flush = 0;
1295 tlb_flush_mmu_free(tlb);
1296 if (addr != end)
1297 goto again;
1298 }
1299
1300 return addr;
1301 }
1302
1303 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1304 struct vm_area_struct *vma, pud_t *pud,
1305 unsigned long addr, unsigned long end,
1306 struct zap_details *details)
1307 {
1308 pmd_t *pmd;
1309 unsigned long next;
1310
1311 pmd = pmd_offset(pud, addr);
1312 do {
1313 next = pmd_addr_end(addr, end);
1314 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1315 if (next - addr != HPAGE_PMD_SIZE) {
1316 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1317 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1318 __split_huge_pmd(vma, pmd, addr, false, NULL);
1319 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1320 goto next;
1321 /* fall through */
1322 }
1323 /*
1324 * Here there can be other concurrent MADV_DONTNEED or
1325 * trans huge page faults running, and if the pmd is
1326 * none or trans huge it can change under us. This is
1327 * because MADV_DONTNEED holds the mmap_sem in read
1328 * mode.
1329 */
1330 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1331 goto next;
1332 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1333 next:
1334 cond_resched();
1335 } while (pmd++, addr = next, addr != end);
1336
1337 return addr;
1338 }
1339
1340 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1341 struct vm_area_struct *vma, p4d_t *p4d,
1342 unsigned long addr, unsigned long end,
1343 struct zap_details *details)
1344 {
1345 pud_t *pud;
1346 unsigned long next;
1347
1348 pud = pud_offset(p4d, addr);
1349 do {
1350 next = pud_addr_end(addr, end);
1351 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1352 if (next - addr != HPAGE_PUD_SIZE) {
1353 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1354 split_huge_pud(vma, pud, addr);
1355 } else if (zap_huge_pud(tlb, vma, pud, addr))
1356 goto next;
1357 /* fall through */
1358 }
1359 if (pud_none_or_clear_bad(pud))
1360 continue;
1361 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1362 next:
1363 cond_resched();
1364 } while (pud++, addr = next, addr != end);
1365
1366 return addr;
1367 }
1368
1369 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1370 struct vm_area_struct *vma, pgd_t *pgd,
1371 unsigned long addr, unsigned long end,
1372 struct zap_details *details)
1373 {
1374 p4d_t *p4d;
1375 unsigned long next;
1376
1377 p4d = p4d_offset(pgd, addr);
1378 do {
1379 next = p4d_addr_end(addr, end);
1380 if (p4d_none_or_clear_bad(p4d))
1381 continue;
1382 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1383 } while (p4d++, addr = next, addr != end);
1384
1385 return addr;
1386 }
1387
1388 void unmap_page_range(struct mmu_gather *tlb,
1389 struct vm_area_struct *vma,
1390 unsigned long addr, unsigned long end,
1391 struct zap_details *details)
1392 {
1393 pgd_t *pgd;
1394 unsigned long next;
1395
1396 BUG_ON(addr >= end);
1397 tlb_start_vma(tlb, vma);
1398 pgd = pgd_offset(vma->vm_mm, addr);
1399 do {
1400 next = pgd_addr_end(addr, end);
1401 if (pgd_none_or_clear_bad(pgd))
1402 continue;
1403 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1404 } while (pgd++, addr = next, addr != end);
1405 tlb_end_vma(tlb, vma);
1406 }
1407
1408
1409 static void unmap_single_vma(struct mmu_gather *tlb,
1410 struct vm_area_struct *vma, unsigned long start_addr,
1411 unsigned long end_addr,
1412 struct zap_details *details)
1413 {
1414 unsigned long start = max(vma->vm_start, start_addr);
1415 unsigned long end;
1416
1417 if (start >= vma->vm_end)
1418 return;
1419 end = min(vma->vm_end, end_addr);
1420 if (end <= vma->vm_start)
1421 return;
1422
1423 if (vma->vm_file)
1424 uprobe_munmap(vma, start, end);
1425
1426 if (unlikely(vma->vm_flags & VM_PFNMAP))
1427 untrack_pfn(vma, 0, 0);
1428
1429 if (start != end) {
1430 if (unlikely(is_vm_hugetlb_page(vma))) {
1431 /*
1432 * It is undesirable to test vma->vm_file as it
1433 * should be non-null for valid hugetlb area.
1434 * However, vm_file will be NULL in the error
1435 * cleanup path of mmap_region. When
1436 * hugetlbfs ->mmap method fails,
1437 * mmap_region() nullifies vma->vm_file
1438 * before calling this function to clean up.
1439 * Since no pte has actually been setup, it is
1440 * safe to do nothing in this case.
1441 */
1442 if (vma->vm_file) {
1443 i_mmap_lock_write(vma->vm_file->f_mapping);
1444 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1445 i_mmap_unlock_write(vma->vm_file->f_mapping);
1446 }
1447 } else
1448 unmap_page_range(tlb, vma, start, end, details);
1449 }
1450 }
1451
1452 /**
1453 * unmap_vmas - unmap a range of memory covered by a list of vma's
1454 * @tlb: address of the caller's struct mmu_gather
1455 * @vma: the starting vma
1456 * @start_addr: virtual address at which to start unmapping
1457 * @end_addr: virtual address at which to end unmapping
1458 *
1459 * Unmap all pages in the vma list.
1460 *
1461 * Only addresses between `start' and `end' will be unmapped.
1462 *
1463 * The VMA list must be sorted in ascending virtual address order.
1464 *
1465 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1466 * range after unmap_vmas() returns. So the only responsibility here is to
1467 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1468 * drops the lock and schedules.
1469 */
1470 void unmap_vmas(struct mmu_gather *tlb,
1471 struct vm_area_struct *vma, unsigned long start_addr,
1472 unsigned long end_addr)
1473 {
1474 struct mm_struct *mm = vma->vm_mm;
1475
1476 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1477 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1478 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1479 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1480 }
1481
1482 /**
1483 * zap_page_range - remove user pages in a given range
1484 * @vma: vm_area_struct holding the applicable pages
1485 * @start: starting address of pages to zap
1486 * @size: number of bytes to zap
1487 *
1488 * Caller must protect the VMA list
1489 */
1490 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1491 unsigned long size)
1492 {
1493 struct mm_struct *mm = vma->vm_mm;
1494 struct mmu_gather tlb;
1495 unsigned long end = start + size;
1496
1497 lru_add_drain();
1498 tlb_gather_mmu(&tlb, mm, start, end);
1499 update_hiwater_rss(mm);
1500 mmu_notifier_invalidate_range_start(mm, start, end);
1501 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1502 unmap_single_vma(&tlb, vma, start, end, NULL);
1503 mmu_notifier_invalidate_range_end(mm, start, end);
1504 tlb_finish_mmu(&tlb, start, end);
1505 }
1506
1507 /**
1508 * zap_page_range_single - remove user pages in a given range
1509 * @vma: vm_area_struct holding the applicable pages
1510 * @address: starting address of pages to zap
1511 * @size: number of bytes to zap
1512 * @details: details of shared cache invalidation
1513 *
1514 * The range must fit into one VMA.
1515 */
1516 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1517 unsigned long size, struct zap_details *details)
1518 {
1519 struct mm_struct *mm = vma->vm_mm;
1520 struct mmu_gather tlb;
1521 unsigned long end = address + size;
1522
1523 lru_add_drain();
1524 tlb_gather_mmu(&tlb, mm, address, end);
1525 update_hiwater_rss(mm);
1526 mmu_notifier_invalidate_range_start(mm, address, end);
1527 unmap_single_vma(&tlb, vma, address, end, details);
1528 mmu_notifier_invalidate_range_end(mm, address, end);
1529 tlb_finish_mmu(&tlb, address, end);
1530 }
1531
1532 /**
1533 * zap_vma_ptes - remove ptes mapping the vma
1534 * @vma: vm_area_struct holding ptes to be zapped
1535 * @address: starting address of pages to zap
1536 * @size: number of bytes to zap
1537 *
1538 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1539 *
1540 * The entire address range must be fully contained within the vma.
1541 *
1542 * Returns 0 if successful.
1543 */
1544 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1545 unsigned long size)
1546 {
1547 if (address < vma->vm_start || address + size > vma->vm_end ||
1548 !(vma->vm_flags & VM_PFNMAP))
1549 return -1;
1550 zap_page_range_single(vma, address, size, NULL);
1551 return 0;
1552 }
1553 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1554
1555 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1556 spinlock_t **ptl)
1557 {
1558 pgd_t *pgd;
1559 p4d_t *p4d;
1560 pud_t *pud;
1561 pmd_t *pmd;
1562
1563 pgd = pgd_offset(mm, addr);
1564 p4d = p4d_alloc(mm, pgd, addr);
1565 if (!p4d)
1566 return NULL;
1567 pud = pud_alloc(mm, p4d, addr);
1568 if (!pud)
1569 return NULL;
1570 pmd = pmd_alloc(mm, pud, addr);
1571 if (!pmd)
1572 return NULL;
1573
1574 VM_BUG_ON(pmd_trans_huge(*pmd));
1575 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1576 }
1577
1578 /*
1579 * This is the old fallback for page remapping.
1580 *
1581 * For historical reasons, it only allows reserved pages. Only
1582 * old drivers should use this, and they needed to mark their
1583 * pages reserved for the old functions anyway.
1584 */
1585 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1586 struct page *page, pgprot_t prot)
1587 {
1588 struct mm_struct *mm = vma->vm_mm;
1589 int retval;
1590 pte_t *pte;
1591 spinlock_t *ptl;
1592
1593 retval = -EINVAL;
1594 if (PageAnon(page))
1595 goto out;
1596 retval = -ENOMEM;
1597 flush_dcache_page(page);
1598 pte = get_locked_pte(mm, addr, &ptl);
1599 if (!pte)
1600 goto out;
1601 retval = -EBUSY;
1602 if (!pte_none(*pte))
1603 goto out_unlock;
1604
1605 /* Ok, finally just insert the thing.. */
1606 get_page(page);
1607 inc_mm_counter_fast(mm, mm_counter_file(page));
1608 page_add_file_rmap(page, false);
1609 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1610
1611 retval = 0;
1612 pte_unmap_unlock(pte, ptl);
1613 return retval;
1614 out_unlock:
1615 pte_unmap_unlock(pte, ptl);
1616 out:
1617 return retval;
1618 }
1619
1620 /**
1621 * vm_insert_page - insert single page into user vma
1622 * @vma: user vma to map to
1623 * @addr: target user address of this page
1624 * @page: source kernel page
1625 *
1626 * This allows drivers to insert individual pages they've allocated
1627 * into a user vma.
1628 *
1629 * The page has to be a nice clean _individual_ kernel allocation.
1630 * If you allocate a compound page, you need to have marked it as
1631 * such (__GFP_COMP), or manually just split the page up yourself
1632 * (see split_page()).
1633 *
1634 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1635 * took an arbitrary page protection parameter. This doesn't allow
1636 * that. Your vma protection will have to be set up correctly, which
1637 * means that if you want a shared writable mapping, you'd better
1638 * ask for a shared writable mapping!
1639 *
1640 * The page does not need to be reserved.
1641 *
1642 * Usually this function is called from f_op->mmap() handler
1643 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1644 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1645 * function from other places, for example from page-fault handler.
1646 */
1647 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1648 struct page *page)
1649 {
1650 if (addr < vma->vm_start || addr >= vma->vm_end)
1651 return -EFAULT;
1652 if (!page_count(page))
1653 return -EINVAL;
1654 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1655 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1656 BUG_ON(vma->vm_flags & VM_PFNMAP);
1657 vma->vm_flags |= VM_MIXEDMAP;
1658 }
1659 return insert_page(vma, addr, page, vma->vm_page_prot);
1660 }
1661 EXPORT_SYMBOL(vm_insert_page);
1662
1663 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1664 pfn_t pfn, pgprot_t prot)
1665 {
1666 struct mm_struct *mm = vma->vm_mm;
1667 int retval;
1668 pte_t *pte, entry;
1669 spinlock_t *ptl;
1670
1671 retval = -ENOMEM;
1672 pte = get_locked_pte(mm, addr, &ptl);
1673 if (!pte)
1674 goto out;
1675 retval = -EBUSY;
1676 if (!pte_none(*pte))
1677 goto out_unlock;
1678
1679 /* Ok, finally just insert the thing.. */
1680 if (pfn_t_devmap(pfn))
1681 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1682 else
1683 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1684 set_pte_at(mm, addr, pte, entry);
1685 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1686
1687 retval = 0;
1688 out_unlock:
1689 pte_unmap_unlock(pte, ptl);
1690 out:
1691 return retval;
1692 }
1693
1694 /**
1695 * vm_insert_pfn - insert single pfn into user vma
1696 * @vma: user vma to map to
1697 * @addr: target user address of this page
1698 * @pfn: source kernel pfn
1699 *
1700 * Similar to vm_insert_page, this allows drivers to insert individual pages
1701 * they've allocated into a user vma. Same comments apply.
1702 *
1703 * This function should only be called from a vm_ops->fault handler, and
1704 * in that case the handler should return NULL.
1705 *
1706 * vma cannot be a COW mapping.
1707 *
1708 * As this is called only for pages that do not currently exist, we
1709 * do not need to flush old virtual caches or the TLB.
1710 */
1711 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1712 unsigned long pfn)
1713 {
1714 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1715 }
1716 EXPORT_SYMBOL(vm_insert_pfn);
1717
1718 /**
1719 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1720 * @vma: user vma to map to
1721 * @addr: target user address of this page
1722 * @pfn: source kernel pfn
1723 * @pgprot: pgprot flags for the inserted page
1724 *
1725 * This is exactly like vm_insert_pfn, except that it allows drivers to
1726 * to override pgprot on a per-page basis.
1727 *
1728 * This only makes sense for IO mappings, and it makes no sense for
1729 * cow mappings. In general, using multiple vmas is preferable;
1730 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1731 * impractical.
1732 */
1733 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1734 unsigned long pfn, pgprot_t pgprot)
1735 {
1736 int ret;
1737 /*
1738 * Technically, architectures with pte_special can avoid all these
1739 * restrictions (same for remap_pfn_range). However we would like
1740 * consistency in testing and feature parity among all, so we should
1741 * try to keep these invariants in place for everybody.
1742 */
1743 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1744 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1745 (VM_PFNMAP|VM_MIXEDMAP));
1746 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1747 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1748
1749 if (addr < vma->vm_start || addr >= vma->vm_end)
1750 return -EFAULT;
1751
1752 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1753
1754 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1755
1756 return ret;
1757 }
1758 EXPORT_SYMBOL(vm_insert_pfn_prot);
1759
1760 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1761 pfn_t pfn)
1762 {
1763 pgprot_t pgprot = vma->vm_page_prot;
1764
1765 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1766
1767 if (addr < vma->vm_start || addr >= vma->vm_end)
1768 return -EFAULT;
1769
1770 track_pfn_insert(vma, &pgprot, pfn);
1771
1772 /*
1773 * If we don't have pte special, then we have to use the pfn_valid()
1774 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1775 * refcount the page if pfn_valid is true (hence insert_page rather
1776 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1777 * without pte special, it would there be refcounted as a normal page.
1778 */
1779 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1780 struct page *page;
1781
1782 /*
1783 * At this point we are committed to insert_page()
1784 * regardless of whether the caller specified flags that
1785 * result in pfn_t_has_page() == false.
1786 */
1787 page = pfn_to_page(pfn_t_to_pfn(pfn));
1788 return insert_page(vma, addr, page, pgprot);
1789 }
1790 return insert_pfn(vma, addr, pfn, pgprot);
1791 }
1792 EXPORT_SYMBOL(vm_insert_mixed);
1793
1794 /*
1795 * maps a range of physical memory into the requested pages. the old
1796 * mappings are removed. any references to nonexistent pages results
1797 * in null mappings (currently treated as "copy-on-access")
1798 */
1799 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 unsigned long pfn, pgprot_t prot)
1802 {
1803 pte_t *pte;
1804 spinlock_t *ptl;
1805
1806 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1807 if (!pte)
1808 return -ENOMEM;
1809 arch_enter_lazy_mmu_mode();
1810 do {
1811 BUG_ON(!pte_none(*pte));
1812 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1813 pfn++;
1814 } while (pte++, addr += PAGE_SIZE, addr != end);
1815 arch_leave_lazy_mmu_mode();
1816 pte_unmap_unlock(pte - 1, ptl);
1817 return 0;
1818 }
1819
1820 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1821 unsigned long addr, unsigned long end,
1822 unsigned long pfn, pgprot_t prot)
1823 {
1824 pmd_t *pmd;
1825 unsigned long next;
1826
1827 pfn -= addr >> PAGE_SHIFT;
1828 pmd = pmd_alloc(mm, pud, addr);
1829 if (!pmd)
1830 return -ENOMEM;
1831 VM_BUG_ON(pmd_trans_huge(*pmd));
1832 do {
1833 next = pmd_addr_end(addr, end);
1834 if (remap_pte_range(mm, pmd, addr, next,
1835 pfn + (addr >> PAGE_SHIFT), prot))
1836 return -ENOMEM;
1837 } while (pmd++, addr = next, addr != end);
1838 return 0;
1839 }
1840
1841 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1842 unsigned long addr, unsigned long end,
1843 unsigned long pfn, pgprot_t prot)
1844 {
1845 pud_t *pud;
1846 unsigned long next;
1847
1848 pfn -= addr >> PAGE_SHIFT;
1849 pud = pud_alloc(mm, p4d, addr);
1850 if (!pud)
1851 return -ENOMEM;
1852 do {
1853 next = pud_addr_end(addr, end);
1854 if (remap_pmd_range(mm, pud, addr, next,
1855 pfn + (addr >> PAGE_SHIFT), prot))
1856 return -ENOMEM;
1857 } while (pud++, addr = next, addr != end);
1858 return 0;
1859 }
1860
1861 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1862 unsigned long addr, unsigned long end,
1863 unsigned long pfn, pgprot_t prot)
1864 {
1865 p4d_t *p4d;
1866 unsigned long next;
1867
1868 pfn -= addr >> PAGE_SHIFT;
1869 p4d = p4d_alloc(mm, pgd, addr);
1870 if (!p4d)
1871 return -ENOMEM;
1872 do {
1873 next = p4d_addr_end(addr, end);
1874 if (remap_pud_range(mm, p4d, addr, next,
1875 pfn + (addr >> PAGE_SHIFT), prot))
1876 return -ENOMEM;
1877 } while (p4d++, addr = next, addr != end);
1878 return 0;
1879 }
1880
1881 /**
1882 * remap_pfn_range - remap kernel memory to userspace
1883 * @vma: user vma to map to
1884 * @addr: target user address to start at
1885 * @pfn: physical address of kernel memory
1886 * @size: size of map area
1887 * @prot: page protection flags for this mapping
1888 *
1889 * Note: this is only safe if the mm semaphore is held when called.
1890 */
1891 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892 unsigned long pfn, unsigned long size, pgprot_t prot)
1893 {
1894 pgd_t *pgd;
1895 unsigned long next;
1896 unsigned long end = addr + PAGE_ALIGN(size);
1897 struct mm_struct *mm = vma->vm_mm;
1898 unsigned long remap_pfn = pfn;
1899 int err;
1900
1901 /*
1902 * Physically remapped pages are special. Tell the
1903 * rest of the world about it:
1904 * VM_IO tells people not to look at these pages
1905 * (accesses can have side effects).
1906 * VM_PFNMAP tells the core MM that the base pages are just
1907 * raw PFN mappings, and do not have a "struct page" associated
1908 * with them.
1909 * VM_DONTEXPAND
1910 * Disable vma merging and expanding with mremap().
1911 * VM_DONTDUMP
1912 * Omit vma from core dump, even when VM_IO turned off.
1913 *
1914 * There's a horrible special case to handle copy-on-write
1915 * behaviour that some programs depend on. We mark the "original"
1916 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917 * See vm_normal_page() for details.
1918 */
1919 if (is_cow_mapping(vma->vm_flags)) {
1920 if (addr != vma->vm_start || end != vma->vm_end)
1921 return -EINVAL;
1922 vma->vm_pgoff = pfn;
1923 }
1924
1925 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926 if (err)
1927 return -EINVAL;
1928
1929 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930
1931 BUG_ON(addr >= end);
1932 pfn -= addr >> PAGE_SHIFT;
1933 pgd = pgd_offset(mm, addr);
1934 flush_cache_range(vma, addr, end);
1935 do {
1936 next = pgd_addr_end(addr, end);
1937 err = remap_p4d_range(mm, pgd, addr, next,
1938 pfn + (addr >> PAGE_SHIFT), prot);
1939 if (err)
1940 break;
1941 } while (pgd++, addr = next, addr != end);
1942
1943 if (err)
1944 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945
1946 return err;
1947 }
1948 EXPORT_SYMBOL(remap_pfn_range);
1949
1950 /**
1951 * vm_iomap_memory - remap memory to userspace
1952 * @vma: user vma to map to
1953 * @start: start of area
1954 * @len: size of area
1955 *
1956 * This is a simplified io_remap_pfn_range() for common driver use. The
1957 * driver just needs to give us the physical memory range to be mapped,
1958 * we'll figure out the rest from the vma information.
1959 *
1960 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961 * whatever write-combining details or similar.
1962 */
1963 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1964 {
1965 unsigned long vm_len, pfn, pages;
1966
1967 /* Check that the physical memory area passed in looks valid */
1968 if (start + len < start)
1969 return -EINVAL;
1970 /*
1971 * You *really* shouldn't map things that aren't page-aligned,
1972 * but we've historically allowed it because IO memory might
1973 * just have smaller alignment.
1974 */
1975 len += start & ~PAGE_MASK;
1976 pfn = start >> PAGE_SHIFT;
1977 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1978 if (pfn + pages < pfn)
1979 return -EINVAL;
1980
1981 /* We start the mapping 'vm_pgoff' pages into the area */
1982 if (vma->vm_pgoff > pages)
1983 return -EINVAL;
1984 pfn += vma->vm_pgoff;
1985 pages -= vma->vm_pgoff;
1986
1987 /* Can we fit all of the mapping? */
1988 vm_len = vma->vm_end - vma->vm_start;
1989 if (vm_len >> PAGE_SHIFT > pages)
1990 return -EINVAL;
1991
1992 /* Ok, let it rip */
1993 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1994 }
1995 EXPORT_SYMBOL(vm_iomap_memory);
1996
1997 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1998 unsigned long addr, unsigned long end,
1999 pte_fn_t fn, void *data)
2000 {
2001 pte_t *pte;
2002 int err;
2003 pgtable_t token;
2004 spinlock_t *uninitialized_var(ptl);
2005
2006 pte = (mm == &init_mm) ?
2007 pte_alloc_kernel(pmd, addr) :
2008 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2009 if (!pte)
2010 return -ENOMEM;
2011
2012 BUG_ON(pmd_huge(*pmd));
2013
2014 arch_enter_lazy_mmu_mode();
2015
2016 token = pmd_pgtable(*pmd);
2017
2018 do {
2019 err = fn(pte++, token, addr, data);
2020 if (err)
2021 break;
2022 } while (addr += PAGE_SIZE, addr != end);
2023
2024 arch_leave_lazy_mmu_mode();
2025
2026 if (mm != &init_mm)
2027 pte_unmap_unlock(pte-1, ptl);
2028 return err;
2029 }
2030
2031 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2032 unsigned long addr, unsigned long end,
2033 pte_fn_t fn, void *data)
2034 {
2035 pmd_t *pmd;
2036 unsigned long next;
2037 int err;
2038
2039 BUG_ON(pud_huge(*pud));
2040
2041 pmd = pmd_alloc(mm, pud, addr);
2042 if (!pmd)
2043 return -ENOMEM;
2044 do {
2045 next = pmd_addr_end(addr, end);
2046 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2047 if (err)
2048 break;
2049 } while (pmd++, addr = next, addr != end);
2050 return err;
2051 }
2052
2053 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2054 unsigned long addr, unsigned long end,
2055 pte_fn_t fn, void *data)
2056 {
2057 pud_t *pud;
2058 unsigned long next;
2059 int err;
2060
2061 pud = pud_alloc(mm, p4d, addr);
2062 if (!pud)
2063 return -ENOMEM;
2064 do {
2065 next = pud_addr_end(addr, end);
2066 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2067 if (err)
2068 break;
2069 } while (pud++, addr = next, addr != end);
2070 return err;
2071 }
2072
2073 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2074 unsigned long addr, unsigned long end,
2075 pte_fn_t fn, void *data)
2076 {
2077 p4d_t *p4d;
2078 unsigned long next;
2079 int err;
2080
2081 p4d = p4d_alloc(mm, pgd, addr);
2082 if (!p4d)
2083 return -ENOMEM;
2084 do {
2085 next = p4d_addr_end(addr, end);
2086 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2087 if (err)
2088 break;
2089 } while (p4d++, addr = next, addr != end);
2090 return err;
2091 }
2092
2093 /*
2094 * Scan a region of virtual memory, filling in page tables as necessary
2095 * and calling a provided function on each leaf page table.
2096 */
2097 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2098 unsigned long size, pte_fn_t fn, void *data)
2099 {
2100 pgd_t *pgd;
2101 unsigned long next;
2102 unsigned long end = addr + size;
2103 int err;
2104
2105 if (WARN_ON(addr >= end))
2106 return -EINVAL;
2107
2108 pgd = pgd_offset(mm, addr);
2109 do {
2110 next = pgd_addr_end(addr, end);
2111 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2112 if (err)
2113 break;
2114 } while (pgd++, addr = next, addr != end);
2115
2116 return err;
2117 }
2118 EXPORT_SYMBOL_GPL(apply_to_page_range);
2119
2120 /*
2121 * handle_pte_fault chooses page fault handler according to an entry which was
2122 * read non-atomically. Before making any commitment, on those architectures
2123 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2124 * parts, do_swap_page must check under lock before unmapping the pte and
2125 * proceeding (but do_wp_page is only called after already making such a check;
2126 * and do_anonymous_page can safely check later on).
2127 */
2128 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2129 pte_t *page_table, pte_t orig_pte)
2130 {
2131 int same = 1;
2132 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2133 if (sizeof(pte_t) > sizeof(unsigned long)) {
2134 spinlock_t *ptl = pte_lockptr(mm, pmd);
2135 spin_lock(ptl);
2136 same = pte_same(*page_table, orig_pte);
2137 spin_unlock(ptl);
2138 }
2139 #endif
2140 pte_unmap(page_table);
2141 return same;
2142 }
2143
2144 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2145 {
2146 debug_dma_assert_idle(src);
2147
2148 /*
2149 * If the source page was a PFN mapping, we don't have
2150 * a "struct page" for it. We do a best-effort copy by
2151 * just copying from the original user address. If that
2152 * fails, we just zero-fill it. Live with it.
2153 */
2154 if (unlikely(!src)) {
2155 void *kaddr = kmap_atomic(dst);
2156 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2157
2158 /*
2159 * This really shouldn't fail, because the page is there
2160 * in the page tables. But it might just be unreadable,
2161 * in which case we just give up and fill the result with
2162 * zeroes.
2163 */
2164 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2165 clear_page(kaddr);
2166 kunmap_atomic(kaddr);
2167 flush_dcache_page(dst);
2168 } else
2169 copy_user_highpage(dst, src, va, vma);
2170 }
2171
2172 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2173 {
2174 struct file *vm_file = vma->vm_file;
2175
2176 if (vm_file)
2177 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2178
2179 /*
2180 * Special mappings (e.g. VDSO) do not have any file so fake
2181 * a default GFP_KERNEL for them.
2182 */
2183 return GFP_KERNEL;
2184 }
2185
2186 /*
2187 * Notify the address space that the page is about to become writable so that
2188 * it can prohibit this or wait for the page to get into an appropriate state.
2189 *
2190 * We do this without the lock held, so that it can sleep if it needs to.
2191 */
2192 static int do_page_mkwrite(struct vm_fault *vmf)
2193 {
2194 int ret;
2195 struct page *page = vmf->page;
2196 unsigned int old_flags = vmf->flags;
2197
2198 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2199
2200 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2201 /* Restore original flags so that caller is not surprised */
2202 vmf->flags = old_flags;
2203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2204 return ret;
2205 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2206 lock_page(page);
2207 if (!page->mapping) {
2208 unlock_page(page);
2209 return 0; /* retry */
2210 }
2211 ret |= VM_FAULT_LOCKED;
2212 } else
2213 VM_BUG_ON_PAGE(!PageLocked(page), page);
2214 return ret;
2215 }
2216
2217 /*
2218 * Handle dirtying of a page in shared file mapping on a write fault.
2219 *
2220 * The function expects the page to be locked and unlocks it.
2221 */
2222 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2223 struct page *page)
2224 {
2225 struct address_space *mapping;
2226 bool dirtied;
2227 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2228
2229 dirtied = set_page_dirty(page);
2230 VM_BUG_ON_PAGE(PageAnon(page), page);
2231 /*
2232 * Take a local copy of the address_space - page.mapping may be zeroed
2233 * by truncate after unlock_page(). The address_space itself remains
2234 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2235 * release semantics to prevent the compiler from undoing this copying.
2236 */
2237 mapping = page_rmapping(page);
2238 unlock_page(page);
2239
2240 if ((dirtied || page_mkwrite) && mapping) {
2241 /*
2242 * Some device drivers do not set page.mapping
2243 * but still dirty their pages
2244 */
2245 balance_dirty_pages_ratelimited(mapping);
2246 }
2247
2248 if (!page_mkwrite)
2249 file_update_time(vma->vm_file);
2250 }
2251
2252 /*
2253 * Handle write page faults for pages that can be reused in the current vma
2254 *
2255 * This can happen either due to the mapping being with the VM_SHARED flag,
2256 * or due to us being the last reference standing to the page. In either
2257 * case, all we need to do here is to mark the page as writable and update
2258 * any related book-keeping.
2259 */
2260 static inline void wp_page_reuse(struct vm_fault *vmf)
2261 __releases(vmf->ptl)
2262 {
2263 struct vm_area_struct *vma = vmf->vma;
2264 struct page *page = vmf->page;
2265 pte_t entry;
2266 /*
2267 * Clear the pages cpupid information as the existing
2268 * information potentially belongs to a now completely
2269 * unrelated process.
2270 */
2271 if (page)
2272 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2273
2274 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2275 entry = pte_mkyoung(vmf->orig_pte);
2276 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2277 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2278 update_mmu_cache(vma, vmf->address, vmf->pte);
2279 pte_unmap_unlock(vmf->pte, vmf->ptl);
2280 }
2281
2282 /*
2283 * Handle the case of a page which we actually need to copy to a new page.
2284 *
2285 * Called with mmap_sem locked and the old page referenced, but
2286 * without the ptl held.
2287 *
2288 * High level logic flow:
2289 *
2290 * - Allocate a page, copy the content of the old page to the new one.
2291 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2292 * - Take the PTL. If the pte changed, bail out and release the allocated page
2293 * - If the pte is still the way we remember it, update the page table and all
2294 * relevant references. This includes dropping the reference the page-table
2295 * held to the old page, as well as updating the rmap.
2296 * - In any case, unlock the PTL and drop the reference we took to the old page.
2297 */
2298 static int wp_page_copy(struct vm_fault *vmf)
2299 {
2300 struct vm_area_struct *vma = vmf->vma;
2301 struct mm_struct *mm = vma->vm_mm;
2302 struct page *old_page = vmf->page;
2303 struct page *new_page = NULL;
2304 pte_t entry;
2305 int page_copied = 0;
2306 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2307 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2308 struct mem_cgroup *memcg;
2309
2310 if (unlikely(anon_vma_prepare(vma)))
2311 goto oom;
2312
2313 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2314 new_page = alloc_zeroed_user_highpage_movable(vma,
2315 vmf->address);
2316 if (!new_page)
2317 goto oom;
2318 } else {
2319 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2320 vmf->address);
2321 if (!new_page)
2322 goto oom;
2323 cow_user_page(new_page, old_page, vmf->address, vma);
2324 }
2325
2326 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2327 goto oom_free_new;
2328
2329 __SetPageUptodate(new_page);
2330
2331 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2332
2333 /*
2334 * Re-check the pte - we dropped the lock
2335 */
2336 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2337 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2338 if (old_page) {
2339 if (!PageAnon(old_page)) {
2340 dec_mm_counter_fast(mm,
2341 mm_counter_file(old_page));
2342 inc_mm_counter_fast(mm, MM_ANONPAGES);
2343 }
2344 } else {
2345 inc_mm_counter_fast(mm, MM_ANONPAGES);
2346 }
2347 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2348 entry = mk_pte(new_page, vma->vm_page_prot);
2349 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2350 /*
2351 * Clear the pte entry and flush it first, before updating the
2352 * pte with the new entry. This will avoid a race condition
2353 * seen in the presence of one thread doing SMC and another
2354 * thread doing COW.
2355 */
2356 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2357 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2358 mem_cgroup_commit_charge(new_page, memcg, false, false);
2359 lru_cache_add_active_or_unevictable(new_page, vma);
2360 /*
2361 * We call the notify macro here because, when using secondary
2362 * mmu page tables (such as kvm shadow page tables), we want the
2363 * new page to be mapped directly into the secondary page table.
2364 */
2365 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2366 update_mmu_cache(vma, vmf->address, vmf->pte);
2367 if (old_page) {
2368 /*
2369 * Only after switching the pte to the new page may
2370 * we remove the mapcount here. Otherwise another
2371 * process may come and find the rmap count decremented
2372 * before the pte is switched to the new page, and
2373 * "reuse" the old page writing into it while our pte
2374 * here still points into it and can be read by other
2375 * threads.
2376 *
2377 * The critical issue is to order this
2378 * page_remove_rmap with the ptp_clear_flush above.
2379 * Those stores are ordered by (if nothing else,)
2380 * the barrier present in the atomic_add_negative
2381 * in page_remove_rmap.
2382 *
2383 * Then the TLB flush in ptep_clear_flush ensures that
2384 * no process can access the old page before the
2385 * decremented mapcount is visible. And the old page
2386 * cannot be reused until after the decremented
2387 * mapcount is visible. So transitively, TLBs to
2388 * old page will be flushed before it can be reused.
2389 */
2390 page_remove_rmap(old_page, false);
2391 }
2392
2393 /* Free the old page.. */
2394 new_page = old_page;
2395 page_copied = 1;
2396 } else {
2397 mem_cgroup_cancel_charge(new_page, memcg, false);
2398 }
2399
2400 if (new_page)
2401 put_page(new_page);
2402
2403 pte_unmap_unlock(vmf->pte, vmf->ptl);
2404 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2405 if (old_page) {
2406 /*
2407 * Don't let another task, with possibly unlocked vma,
2408 * keep the mlocked page.
2409 */
2410 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2411 lock_page(old_page); /* LRU manipulation */
2412 if (PageMlocked(old_page))
2413 munlock_vma_page(old_page);
2414 unlock_page(old_page);
2415 }
2416 put_page(old_page);
2417 }
2418 return page_copied ? VM_FAULT_WRITE : 0;
2419 oom_free_new:
2420 put_page(new_page);
2421 oom:
2422 if (old_page)
2423 put_page(old_page);
2424 return VM_FAULT_OOM;
2425 }
2426
2427 /**
2428 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2429 * writeable once the page is prepared
2430 *
2431 * @vmf: structure describing the fault
2432 *
2433 * This function handles all that is needed to finish a write page fault in a
2434 * shared mapping due to PTE being read-only once the mapped page is prepared.
2435 * It handles locking of PTE and modifying it. The function returns
2436 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2437 * lock.
2438 *
2439 * The function expects the page to be locked or other protection against
2440 * concurrent faults / writeback (such as DAX radix tree locks).
2441 */
2442 int finish_mkwrite_fault(struct vm_fault *vmf)
2443 {
2444 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2445 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2446 &vmf->ptl);
2447 /*
2448 * We might have raced with another page fault while we released the
2449 * pte_offset_map_lock.
2450 */
2451 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2452 pte_unmap_unlock(vmf->pte, vmf->ptl);
2453 return VM_FAULT_NOPAGE;
2454 }
2455 wp_page_reuse(vmf);
2456 return 0;
2457 }
2458
2459 /*
2460 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2461 * mapping
2462 */
2463 static int wp_pfn_shared(struct vm_fault *vmf)
2464 {
2465 struct vm_area_struct *vma = vmf->vma;
2466
2467 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2468 int ret;
2469
2470 pte_unmap_unlock(vmf->pte, vmf->ptl);
2471 vmf->flags |= FAULT_FLAG_MKWRITE;
2472 ret = vma->vm_ops->pfn_mkwrite(vmf);
2473 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2474 return ret;
2475 return finish_mkwrite_fault(vmf);
2476 }
2477 wp_page_reuse(vmf);
2478 return VM_FAULT_WRITE;
2479 }
2480
2481 static int wp_page_shared(struct vm_fault *vmf)
2482 __releases(vmf->ptl)
2483 {
2484 struct vm_area_struct *vma = vmf->vma;
2485
2486 get_page(vmf->page);
2487
2488 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2489 int tmp;
2490
2491 pte_unmap_unlock(vmf->pte, vmf->ptl);
2492 tmp = do_page_mkwrite(vmf);
2493 if (unlikely(!tmp || (tmp &
2494 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2495 put_page(vmf->page);
2496 return tmp;
2497 }
2498 tmp = finish_mkwrite_fault(vmf);
2499 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2500 unlock_page(vmf->page);
2501 put_page(vmf->page);
2502 return tmp;
2503 }
2504 } else {
2505 wp_page_reuse(vmf);
2506 lock_page(vmf->page);
2507 }
2508 fault_dirty_shared_page(vma, vmf->page);
2509 put_page(vmf->page);
2510
2511 return VM_FAULT_WRITE;
2512 }
2513
2514 /*
2515 * This routine handles present pages, when users try to write
2516 * to a shared page. It is done by copying the page to a new address
2517 * and decrementing the shared-page counter for the old page.
2518 *
2519 * Note that this routine assumes that the protection checks have been
2520 * done by the caller (the low-level page fault routine in most cases).
2521 * Thus we can safely just mark it writable once we've done any necessary
2522 * COW.
2523 *
2524 * We also mark the page dirty at this point even though the page will
2525 * change only once the write actually happens. This avoids a few races,
2526 * and potentially makes it more efficient.
2527 *
2528 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2529 * but allow concurrent faults), with pte both mapped and locked.
2530 * We return with mmap_sem still held, but pte unmapped and unlocked.
2531 */
2532 static int do_wp_page(struct vm_fault *vmf)
2533 __releases(vmf->ptl)
2534 {
2535 struct vm_area_struct *vma = vmf->vma;
2536
2537 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2538 if (!vmf->page) {
2539 /*
2540 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2541 * VM_PFNMAP VMA.
2542 *
2543 * We should not cow pages in a shared writeable mapping.
2544 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2545 */
2546 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2547 (VM_WRITE|VM_SHARED))
2548 return wp_pfn_shared(vmf);
2549
2550 pte_unmap_unlock(vmf->pte, vmf->ptl);
2551 return wp_page_copy(vmf);
2552 }
2553
2554 /*
2555 * Take out anonymous pages first, anonymous shared vmas are
2556 * not dirty accountable.
2557 */
2558 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2559 int total_mapcount;
2560 if (!trylock_page(vmf->page)) {
2561 get_page(vmf->page);
2562 pte_unmap_unlock(vmf->pte, vmf->ptl);
2563 lock_page(vmf->page);
2564 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2565 vmf->address, &vmf->ptl);
2566 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2567 unlock_page(vmf->page);
2568 pte_unmap_unlock(vmf->pte, vmf->ptl);
2569 put_page(vmf->page);
2570 return 0;
2571 }
2572 put_page(vmf->page);
2573 }
2574 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2575 if (total_mapcount == 1) {
2576 /*
2577 * The page is all ours. Move it to
2578 * our anon_vma so the rmap code will
2579 * not search our parent or siblings.
2580 * Protected against the rmap code by
2581 * the page lock.
2582 */
2583 page_move_anon_rmap(vmf->page, vma);
2584 }
2585 unlock_page(vmf->page);
2586 wp_page_reuse(vmf);
2587 return VM_FAULT_WRITE;
2588 }
2589 unlock_page(vmf->page);
2590 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2591 (VM_WRITE|VM_SHARED))) {
2592 return wp_page_shared(vmf);
2593 }
2594
2595 /*
2596 * Ok, we need to copy. Oh, well..
2597 */
2598 get_page(vmf->page);
2599
2600 pte_unmap_unlock(vmf->pte, vmf->ptl);
2601 return wp_page_copy(vmf);
2602 }
2603
2604 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2605 unsigned long start_addr, unsigned long end_addr,
2606 struct zap_details *details)
2607 {
2608 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2609 }
2610
2611 static inline void unmap_mapping_range_tree(struct rb_root *root,
2612 struct zap_details *details)
2613 {
2614 struct vm_area_struct *vma;
2615 pgoff_t vba, vea, zba, zea;
2616
2617 vma_interval_tree_foreach(vma, root,
2618 details->first_index, details->last_index) {
2619
2620 vba = vma->vm_pgoff;
2621 vea = vba + vma_pages(vma) - 1;
2622 zba = details->first_index;
2623 if (zba < vba)
2624 zba = vba;
2625 zea = details->last_index;
2626 if (zea > vea)
2627 zea = vea;
2628
2629 unmap_mapping_range_vma(vma,
2630 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2631 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2632 details);
2633 }
2634 }
2635
2636 /**
2637 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2638 * address_space corresponding to the specified page range in the underlying
2639 * file.
2640 *
2641 * @mapping: the address space containing mmaps to be unmapped.
2642 * @holebegin: byte in first page to unmap, relative to the start of
2643 * the underlying file. This will be rounded down to a PAGE_SIZE
2644 * boundary. Note that this is different from truncate_pagecache(), which
2645 * must keep the partial page. In contrast, we must get rid of
2646 * partial pages.
2647 * @holelen: size of prospective hole in bytes. This will be rounded
2648 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2649 * end of the file.
2650 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2651 * but 0 when invalidating pagecache, don't throw away private data.
2652 */
2653 void unmap_mapping_range(struct address_space *mapping,
2654 loff_t const holebegin, loff_t const holelen, int even_cows)
2655 {
2656 struct zap_details details = { };
2657 pgoff_t hba = holebegin >> PAGE_SHIFT;
2658 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2659
2660 /* Check for overflow. */
2661 if (sizeof(holelen) > sizeof(hlen)) {
2662 long long holeend =
2663 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2664 if (holeend & ~(long long)ULONG_MAX)
2665 hlen = ULONG_MAX - hba + 1;
2666 }
2667
2668 details.check_mapping = even_cows ? NULL : mapping;
2669 details.first_index = hba;
2670 details.last_index = hba + hlen - 1;
2671 if (details.last_index < details.first_index)
2672 details.last_index = ULONG_MAX;
2673
2674 i_mmap_lock_write(mapping);
2675 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2676 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2677 i_mmap_unlock_write(mapping);
2678 }
2679 EXPORT_SYMBOL(unmap_mapping_range);
2680
2681 /*
2682 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2683 * but allow concurrent faults), and pte mapped but not yet locked.
2684 * We return with pte unmapped and unlocked.
2685 *
2686 * We return with the mmap_sem locked or unlocked in the same cases
2687 * as does filemap_fault().
2688 */
2689 int do_swap_page(struct vm_fault *vmf)
2690 {
2691 struct vm_area_struct *vma = vmf->vma;
2692 struct page *page, *swapcache;
2693 struct mem_cgroup *memcg;
2694 swp_entry_t entry;
2695 pte_t pte;
2696 int locked;
2697 int exclusive = 0;
2698 int ret = 0;
2699
2700 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2701 goto out;
2702
2703 entry = pte_to_swp_entry(vmf->orig_pte);
2704 if (unlikely(non_swap_entry(entry))) {
2705 if (is_migration_entry(entry)) {
2706 migration_entry_wait(vma->vm_mm, vmf->pmd,
2707 vmf->address);
2708 } else if (is_hwpoison_entry(entry)) {
2709 ret = VM_FAULT_HWPOISON;
2710 } else {
2711 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2712 ret = VM_FAULT_SIGBUS;
2713 }
2714 goto out;
2715 }
2716 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2717 page = lookup_swap_cache(entry);
2718 if (!page) {
2719 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2720 vmf->address);
2721 if (!page) {
2722 /*
2723 * Back out if somebody else faulted in this pte
2724 * while we released the pte lock.
2725 */
2726 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2727 vmf->address, &vmf->ptl);
2728 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2729 ret = VM_FAULT_OOM;
2730 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2731 goto unlock;
2732 }
2733
2734 /* Had to read the page from swap area: Major fault */
2735 ret = VM_FAULT_MAJOR;
2736 count_vm_event(PGMAJFAULT);
2737 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2738 } else if (PageHWPoison(page)) {
2739 /*
2740 * hwpoisoned dirty swapcache pages are kept for killing
2741 * owner processes (which may be unknown at hwpoison time)
2742 */
2743 ret = VM_FAULT_HWPOISON;
2744 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2745 swapcache = page;
2746 goto out_release;
2747 }
2748
2749 swapcache = page;
2750 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2751
2752 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2753 if (!locked) {
2754 ret |= VM_FAULT_RETRY;
2755 goto out_release;
2756 }
2757
2758 /*
2759 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2760 * release the swapcache from under us. The page pin, and pte_same
2761 * test below, are not enough to exclude that. Even if it is still
2762 * swapcache, we need to check that the page's swap has not changed.
2763 */
2764 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2765 goto out_page;
2766
2767 page = ksm_might_need_to_copy(page, vma, vmf->address);
2768 if (unlikely(!page)) {
2769 ret = VM_FAULT_OOM;
2770 page = swapcache;
2771 goto out_page;
2772 }
2773
2774 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2775 &memcg, false)) {
2776 ret = VM_FAULT_OOM;
2777 goto out_page;
2778 }
2779
2780 /*
2781 * Back out if somebody else already faulted in this pte.
2782 */
2783 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2784 &vmf->ptl);
2785 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2786 goto out_nomap;
2787
2788 if (unlikely(!PageUptodate(page))) {
2789 ret = VM_FAULT_SIGBUS;
2790 goto out_nomap;
2791 }
2792
2793 /*
2794 * The page isn't present yet, go ahead with the fault.
2795 *
2796 * Be careful about the sequence of operations here.
2797 * To get its accounting right, reuse_swap_page() must be called
2798 * while the page is counted on swap but not yet in mapcount i.e.
2799 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2800 * must be called after the swap_free(), or it will never succeed.
2801 */
2802
2803 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2804 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2805 pte = mk_pte(page, vma->vm_page_prot);
2806 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2807 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2808 vmf->flags &= ~FAULT_FLAG_WRITE;
2809 ret |= VM_FAULT_WRITE;
2810 exclusive = RMAP_EXCLUSIVE;
2811 }
2812 flush_icache_page(vma, page);
2813 if (pte_swp_soft_dirty(vmf->orig_pte))
2814 pte = pte_mksoft_dirty(pte);
2815 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2816 vmf->orig_pte = pte;
2817 if (page == swapcache) {
2818 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2819 mem_cgroup_commit_charge(page, memcg, true, false);
2820 activate_page(page);
2821 } else { /* ksm created a completely new copy */
2822 page_add_new_anon_rmap(page, vma, vmf->address, false);
2823 mem_cgroup_commit_charge(page, memcg, false, false);
2824 lru_cache_add_active_or_unevictable(page, vma);
2825 }
2826
2827 swap_free(entry);
2828 if (mem_cgroup_swap_full(page) ||
2829 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2830 try_to_free_swap(page);
2831 unlock_page(page);
2832 if (page != swapcache) {
2833 /*
2834 * Hold the lock to avoid the swap entry to be reused
2835 * until we take the PT lock for the pte_same() check
2836 * (to avoid false positives from pte_same). For
2837 * further safety release the lock after the swap_free
2838 * so that the swap count won't change under a
2839 * parallel locked swapcache.
2840 */
2841 unlock_page(swapcache);
2842 put_page(swapcache);
2843 }
2844
2845 if (vmf->flags & FAULT_FLAG_WRITE) {
2846 ret |= do_wp_page(vmf);
2847 if (ret & VM_FAULT_ERROR)
2848 ret &= VM_FAULT_ERROR;
2849 goto out;
2850 }
2851
2852 /* No need to invalidate - it was non-present before */
2853 update_mmu_cache(vma, vmf->address, vmf->pte);
2854 unlock:
2855 pte_unmap_unlock(vmf->pte, vmf->ptl);
2856 out:
2857 return ret;
2858 out_nomap:
2859 mem_cgroup_cancel_charge(page, memcg, false);
2860 pte_unmap_unlock(vmf->pte, vmf->ptl);
2861 out_page:
2862 unlock_page(page);
2863 out_release:
2864 put_page(page);
2865 if (page != swapcache) {
2866 unlock_page(swapcache);
2867 put_page(swapcache);
2868 }
2869 return ret;
2870 }
2871
2872 /*
2873 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874 * but allow concurrent faults), and pte mapped but not yet locked.
2875 * We return with mmap_sem still held, but pte unmapped and unlocked.
2876 */
2877 static int do_anonymous_page(struct vm_fault *vmf)
2878 {
2879 struct vm_area_struct *vma = vmf->vma;
2880 struct mem_cgroup *memcg;
2881 struct page *page;
2882 pte_t entry;
2883
2884 /* File mapping without ->vm_ops ? */
2885 if (vma->vm_flags & VM_SHARED)
2886 return VM_FAULT_SIGBUS;
2887
2888 /*
2889 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2890 * pte_offset_map() on pmds where a huge pmd might be created
2891 * from a different thread.
2892 *
2893 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2894 * parallel threads are excluded by other means.
2895 *
2896 * Here we only have down_read(mmap_sem).
2897 */
2898 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2899 return VM_FAULT_OOM;
2900
2901 /* See the comment in pte_alloc_one_map() */
2902 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2903 return 0;
2904
2905 /* Use the zero-page for reads */
2906 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2907 !mm_forbids_zeropage(vma->vm_mm)) {
2908 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2909 vma->vm_page_prot));
2910 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2911 vmf->address, &vmf->ptl);
2912 if (!pte_none(*vmf->pte))
2913 goto unlock;
2914 /* Deliver the page fault to userland, check inside PT lock */
2915 if (userfaultfd_missing(vma)) {
2916 pte_unmap_unlock(vmf->pte, vmf->ptl);
2917 return handle_userfault(vmf, VM_UFFD_MISSING);
2918 }
2919 goto setpte;
2920 }
2921
2922 /* Allocate our own private page. */
2923 if (unlikely(anon_vma_prepare(vma)))
2924 goto oom;
2925 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2926 if (!page)
2927 goto oom;
2928
2929 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2930 goto oom_free_page;
2931
2932 /*
2933 * The memory barrier inside __SetPageUptodate makes sure that
2934 * preceeding stores to the page contents become visible before
2935 * the set_pte_at() write.
2936 */
2937 __SetPageUptodate(page);
2938
2939 entry = mk_pte(page, vma->vm_page_prot);
2940 if (vma->vm_flags & VM_WRITE)
2941 entry = pte_mkwrite(pte_mkdirty(entry));
2942
2943 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2944 &vmf->ptl);
2945 if (!pte_none(*vmf->pte))
2946 goto release;
2947
2948 /* Deliver the page fault to userland, check inside PT lock */
2949 if (userfaultfd_missing(vma)) {
2950 pte_unmap_unlock(vmf->pte, vmf->ptl);
2951 mem_cgroup_cancel_charge(page, memcg, false);
2952 put_page(page);
2953 return handle_userfault(vmf, VM_UFFD_MISSING);
2954 }
2955
2956 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2957 page_add_new_anon_rmap(page, vma, vmf->address, false);
2958 mem_cgroup_commit_charge(page, memcg, false, false);
2959 lru_cache_add_active_or_unevictable(page, vma);
2960 setpte:
2961 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2962
2963 /* No need to invalidate - it was non-present before */
2964 update_mmu_cache(vma, vmf->address, vmf->pte);
2965 unlock:
2966 pte_unmap_unlock(vmf->pte, vmf->ptl);
2967 return 0;
2968 release:
2969 mem_cgroup_cancel_charge(page, memcg, false);
2970 put_page(page);
2971 goto unlock;
2972 oom_free_page:
2973 put_page(page);
2974 oom:
2975 return VM_FAULT_OOM;
2976 }
2977
2978 /*
2979 * The mmap_sem must have been held on entry, and may have been
2980 * released depending on flags and vma->vm_ops->fault() return value.
2981 * See filemap_fault() and __lock_page_retry().
2982 */
2983 static int __do_fault(struct vm_fault *vmf)
2984 {
2985 struct vm_area_struct *vma = vmf->vma;
2986 int ret;
2987
2988 ret = vma->vm_ops->fault(vmf);
2989 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2990 VM_FAULT_DONE_COW)))
2991 return ret;
2992
2993 if (unlikely(PageHWPoison(vmf->page))) {
2994 if (ret & VM_FAULT_LOCKED)
2995 unlock_page(vmf->page);
2996 put_page(vmf->page);
2997 vmf->page = NULL;
2998 return VM_FAULT_HWPOISON;
2999 }
3000
3001 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3002 lock_page(vmf->page);
3003 else
3004 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3005
3006 return ret;
3007 }
3008
3009 /*
3010 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3011 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3012 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3013 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3014 */
3015 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3016 {
3017 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3018 }
3019
3020 static int pte_alloc_one_map(struct vm_fault *vmf)
3021 {
3022 struct vm_area_struct *vma = vmf->vma;
3023
3024 if (!pmd_none(*vmf->pmd))
3025 goto map_pte;
3026 if (vmf->prealloc_pte) {
3027 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3028 if (unlikely(!pmd_none(*vmf->pmd))) {
3029 spin_unlock(vmf->ptl);
3030 goto map_pte;
3031 }
3032
3033 atomic_long_inc(&vma->vm_mm->nr_ptes);
3034 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3035 spin_unlock(vmf->ptl);
3036 vmf->prealloc_pte = NULL;
3037 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3038 return VM_FAULT_OOM;
3039 }
3040 map_pte:
3041 /*
3042 * If a huge pmd materialized under us just retry later. Use
3043 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3044 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3045 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3046 * running immediately after a huge pmd fault in a different thread of
3047 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3048 * All we have to ensure is that it is a regular pmd that we can walk
3049 * with pte_offset_map() and we can do that through an atomic read in
3050 * C, which is what pmd_trans_unstable() provides.
3051 */
3052 if (pmd_devmap_trans_unstable(vmf->pmd))
3053 return VM_FAULT_NOPAGE;
3054
3055 /*
3056 * At this point we know that our vmf->pmd points to a page of ptes
3057 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3058 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3059 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3060 * be valid and we will re-check to make sure the vmf->pte isn't
3061 * pte_none() under vmf->ptl protection when we return to
3062 * alloc_set_pte().
3063 */
3064 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3065 &vmf->ptl);
3066 return 0;
3067 }
3068
3069 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3070
3071 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3072 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3073 unsigned long haddr)
3074 {
3075 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3076 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3077 return false;
3078 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3079 return false;
3080 return true;
3081 }
3082
3083 static void deposit_prealloc_pte(struct vm_fault *vmf)
3084 {
3085 struct vm_area_struct *vma = vmf->vma;
3086
3087 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3088 /*
3089 * We are going to consume the prealloc table,
3090 * count that as nr_ptes.
3091 */
3092 atomic_long_inc(&vma->vm_mm->nr_ptes);
3093 vmf->prealloc_pte = NULL;
3094 }
3095
3096 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3097 {
3098 struct vm_area_struct *vma = vmf->vma;
3099 bool write = vmf->flags & FAULT_FLAG_WRITE;
3100 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3101 pmd_t entry;
3102 int i, ret;
3103
3104 if (!transhuge_vma_suitable(vma, haddr))
3105 return VM_FAULT_FALLBACK;
3106
3107 ret = VM_FAULT_FALLBACK;
3108 page = compound_head(page);
3109
3110 /*
3111 * Archs like ppc64 need additonal space to store information
3112 * related to pte entry. Use the preallocated table for that.
3113 */
3114 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3115 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3116 if (!vmf->prealloc_pte)
3117 return VM_FAULT_OOM;
3118 smp_wmb(); /* See comment in __pte_alloc() */
3119 }
3120
3121 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3122 if (unlikely(!pmd_none(*vmf->pmd)))
3123 goto out;
3124
3125 for (i = 0; i < HPAGE_PMD_NR; i++)
3126 flush_icache_page(vma, page + i);
3127
3128 entry = mk_huge_pmd(page, vma->vm_page_prot);
3129 if (write)
3130 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3131
3132 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3133 page_add_file_rmap(page, true);
3134 /*
3135 * deposit and withdraw with pmd lock held
3136 */
3137 if (arch_needs_pgtable_deposit())
3138 deposit_prealloc_pte(vmf);
3139
3140 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3141
3142 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3143
3144 /* fault is handled */
3145 ret = 0;
3146 count_vm_event(THP_FILE_MAPPED);
3147 out:
3148 spin_unlock(vmf->ptl);
3149 return ret;
3150 }
3151 #else
3152 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3153 {
3154 BUILD_BUG();
3155 return 0;
3156 }
3157 #endif
3158
3159 /**
3160 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3161 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3162 *
3163 * @vmf: fault environment
3164 * @memcg: memcg to charge page (only for private mappings)
3165 * @page: page to map
3166 *
3167 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3168 * return.
3169 *
3170 * Target users are page handler itself and implementations of
3171 * vm_ops->map_pages.
3172 */
3173 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3174 struct page *page)
3175 {
3176 struct vm_area_struct *vma = vmf->vma;
3177 bool write = vmf->flags & FAULT_FLAG_WRITE;
3178 pte_t entry;
3179 int ret;
3180
3181 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3182 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3183 /* THP on COW? */
3184 VM_BUG_ON_PAGE(memcg, page);
3185
3186 ret = do_set_pmd(vmf, page);
3187 if (ret != VM_FAULT_FALLBACK)
3188 return ret;
3189 }
3190
3191 if (!vmf->pte) {
3192 ret = pte_alloc_one_map(vmf);
3193 if (ret)
3194 return ret;
3195 }
3196
3197 /* Re-check under ptl */
3198 if (unlikely(!pte_none(*vmf->pte)))
3199 return VM_FAULT_NOPAGE;
3200
3201 flush_icache_page(vma, page);
3202 entry = mk_pte(page, vma->vm_page_prot);
3203 if (write)
3204 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3205 /* copy-on-write page */
3206 if (write && !(vma->vm_flags & VM_SHARED)) {
3207 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3208 page_add_new_anon_rmap(page, vma, vmf->address, false);
3209 mem_cgroup_commit_charge(page, memcg, false, false);
3210 lru_cache_add_active_or_unevictable(page, vma);
3211 } else {
3212 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3213 page_add_file_rmap(page, false);
3214 }
3215 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3216
3217 /* no need to invalidate: a not-present page won't be cached */
3218 update_mmu_cache(vma, vmf->address, vmf->pte);
3219
3220 return 0;
3221 }
3222
3223
3224 /**
3225 * finish_fault - finish page fault once we have prepared the page to fault
3226 *
3227 * @vmf: structure describing the fault
3228 *
3229 * This function handles all that is needed to finish a page fault once the
3230 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3231 * given page, adds reverse page mapping, handles memcg charges and LRU
3232 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3233 * error.
3234 *
3235 * The function expects the page to be locked and on success it consumes a
3236 * reference of a page being mapped (for the PTE which maps it).
3237 */
3238 int finish_fault(struct vm_fault *vmf)
3239 {
3240 struct page *page;
3241 int ret;
3242
3243 /* Did we COW the page? */
3244 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3245 !(vmf->vma->vm_flags & VM_SHARED))
3246 page = vmf->cow_page;
3247 else
3248 page = vmf->page;
3249 ret = alloc_set_pte(vmf, vmf->memcg, page);
3250 if (vmf->pte)
3251 pte_unmap_unlock(vmf->pte, vmf->ptl);
3252 return ret;
3253 }
3254
3255 static unsigned long fault_around_bytes __read_mostly =
3256 rounddown_pow_of_two(65536);
3257
3258 #ifdef CONFIG_DEBUG_FS
3259 static int fault_around_bytes_get(void *data, u64 *val)
3260 {
3261 *val = fault_around_bytes;
3262 return 0;
3263 }
3264
3265 /*
3266 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3267 * rounded down to nearest page order. It's what do_fault_around() expects to
3268 * see.
3269 */
3270 static int fault_around_bytes_set(void *data, u64 val)
3271 {
3272 if (val / PAGE_SIZE > PTRS_PER_PTE)
3273 return -EINVAL;
3274 if (val > PAGE_SIZE)
3275 fault_around_bytes = rounddown_pow_of_two(val);
3276 else
3277 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3278 return 0;
3279 }
3280 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3281 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3282
3283 static int __init fault_around_debugfs(void)
3284 {
3285 void *ret;
3286
3287 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3288 &fault_around_bytes_fops);
3289 if (!ret)
3290 pr_warn("Failed to create fault_around_bytes in debugfs");
3291 return 0;
3292 }
3293 late_initcall(fault_around_debugfs);
3294 #endif
3295
3296 /*
3297 * do_fault_around() tries to map few pages around the fault address. The hope
3298 * is that the pages will be needed soon and this will lower the number of
3299 * faults to handle.
3300 *
3301 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3302 * not ready to be mapped: not up-to-date, locked, etc.
3303 *
3304 * This function is called with the page table lock taken. In the split ptlock
3305 * case the page table lock only protects only those entries which belong to
3306 * the page table corresponding to the fault address.
3307 *
3308 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3309 * only once.
3310 *
3311 * fault_around_pages() defines how many pages we'll try to map.
3312 * do_fault_around() expects it to return a power of two less than or equal to
3313 * PTRS_PER_PTE.
3314 *
3315 * The virtual address of the area that we map is naturally aligned to the
3316 * fault_around_pages() value (and therefore to page order). This way it's
3317 * easier to guarantee that we don't cross page table boundaries.
3318 */
3319 static int do_fault_around(struct vm_fault *vmf)
3320 {
3321 unsigned long address = vmf->address, nr_pages, mask;
3322 pgoff_t start_pgoff = vmf->pgoff;
3323 pgoff_t end_pgoff;
3324 int off, ret = 0;
3325
3326 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3327 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3328
3329 vmf->address = max(address & mask, vmf->vma->vm_start);
3330 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3331 start_pgoff -= off;
3332
3333 /*
3334 * end_pgoff is either end of page table or end of vma
3335 * or fault_around_pages() from start_pgoff, depending what is nearest.
3336 */
3337 end_pgoff = start_pgoff -
3338 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3339 PTRS_PER_PTE - 1;
3340 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3341 start_pgoff + nr_pages - 1);
3342
3343 if (pmd_none(*vmf->pmd)) {
3344 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3345 vmf->address);
3346 if (!vmf->prealloc_pte)
3347 goto out;
3348 smp_wmb(); /* See comment in __pte_alloc() */
3349 }
3350
3351 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3352
3353 /* Huge page is mapped? Page fault is solved */
3354 if (pmd_trans_huge(*vmf->pmd)) {
3355 ret = VM_FAULT_NOPAGE;
3356 goto out;
3357 }
3358
3359 /* ->map_pages() haven't done anything useful. Cold page cache? */
3360 if (!vmf->pte)
3361 goto out;
3362
3363 /* check if the page fault is solved */
3364 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3365 if (!pte_none(*vmf->pte))
3366 ret = VM_FAULT_NOPAGE;
3367 pte_unmap_unlock(vmf->pte, vmf->ptl);
3368 out:
3369 vmf->address = address;
3370 vmf->pte = NULL;
3371 return ret;
3372 }
3373
3374 static int do_read_fault(struct vm_fault *vmf)
3375 {
3376 struct vm_area_struct *vma = vmf->vma;
3377 int ret = 0;
3378
3379 /*
3380 * Let's call ->map_pages() first and use ->fault() as fallback
3381 * if page by the offset is not ready to be mapped (cold cache or
3382 * something).
3383 */
3384 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3385 ret = do_fault_around(vmf);
3386 if (ret)
3387 return ret;
3388 }
3389
3390 ret = __do_fault(vmf);
3391 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3392 return ret;
3393
3394 ret |= finish_fault(vmf);
3395 unlock_page(vmf->page);
3396 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3397 put_page(vmf->page);
3398 return ret;
3399 }
3400
3401 static int do_cow_fault(struct vm_fault *vmf)
3402 {
3403 struct vm_area_struct *vma = vmf->vma;
3404 int ret;
3405
3406 if (unlikely(anon_vma_prepare(vma)))
3407 return VM_FAULT_OOM;
3408
3409 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3410 if (!vmf->cow_page)
3411 return VM_FAULT_OOM;
3412
3413 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3414 &vmf->memcg, false)) {
3415 put_page(vmf->cow_page);
3416 return VM_FAULT_OOM;
3417 }
3418
3419 ret = __do_fault(vmf);
3420 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3421 goto uncharge_out;
3422 if (ret & VM_FAULT_DONE_COW)
3423 return ret;
3424
3425 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3426 __SetPageUptodate(vmf->cow_page);
3427
3428 ret |= finish_fault(vmf);
3429 unlock_page(vmf->page);
3430 put_page(vmf->page);
3431 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432 goto uncharge_out;
3433 return ret;
3434 uncharge_out:
3435 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3436 put_page(vmf->cow_page);
3437 return ret;
3438 }
3439
3440 static int do_shared_fault(struct vm_fault *vmf)
3441 {
3442 struct vm_area_struct *vma = vmf->vma;
3443 int ret, tmp;
3444
3445 ret = __do_fault(vmf);
3446 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3447 return ret;
3448
3449 /*
3450 * Check if the backing address space wants to know that the page is
3451 * about to become writable
3452 */
3453 if (vma->vm_ops->page_mkwrite) {
3454 unlock_page(vmf->page);
3455 tmp = do_page_mkwrite(vmf);
3456 if (unlikely(!tmp ||
3457 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3458 put_page(vmf->page);
3459 return tmp;
3460 }
3461 }
3462
3463 ret |= finish_fault(vmf);
3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3465 VM_FAULT_RETRY))) {
3466 unlock_page(vmf->page);
3467 put_page(vmf->page);
3468 return ret;
3469 }
3470
3471 fault_dirty_shared_page(vma, vmf->page);
3472 return ret;
3473 }
3474
3475 /*
3476 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3477 * but allow concurrent faults).
3478 * The mmap_sem may have been released depending on flags and our
3479 * return value. See filemap_fault() and __lock_page_or_retry().
3480 */
3481 static int do_fault(struct vm_fault *vmf)
3482 {
3483 struct vm_area_struct *vma = vmf->vma;
3484 int ret;
3485
3486 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3487 if (!vma->vm_ops->fault)
3488 ret = VM_FAULT_SIGBUS;
3489 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3490 ret = do_read_fault(vmf);
3491 else if (!(vma->vm_flags & VM_SHARED))
3492 ret = do_cow_fault(vmf);
3493 else
3494 ret = do_shared_fault(vmf);
3495
3496 /* preallocated pagetable is unused: free it */
3497 if (vmf->prealloc_pte) {
3498 pte_free(vma->vm_mm, vmf->prealloc_pte);
3499 vmf->prealloc_pte = NULL;
3500 }
3501 return ret;
3502 }
3503
3504 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3505 unsigned long addr, int page_nid,
3506 int *flags)
3507 {
3508 get_page(page);
3509
3510 count_vm_numa_event(NUMA_HINT_FAULTS);
3511 if (page_nid == numa_node_id()) {
3512 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3513 *flags |= TNF_FAULT_LOCAL;
3514 }
3515
3516 return mpol_misplaced(page, vma, addr);
3517 }
3518
3519 static int do_numa_page(struct vm_fault *vmf)
3520 {
3521 struct vm_area_struct *vma = vmf->vma;
3522 struct page *page = NULL;
3523 int page_nid = -1;
3524 int last_cpupid;
3525 int target_nid;
3526 bool migrated = false;
3527 pte_t pte;
3528 bool was_writable = pte_savedwrite(vmf->orig_pte);
3529 int flags = 0;
3530
3531 /*
3532 * The "pte" at this point cannot be used safely without
3533 * validation through pte_unmap_same(). It's of NUMA type but
3534 * the pfn may be screwed if the read is non atomic.
3535 */
3536 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3537 spin_lock(vmf->ptl);
3538 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3539 pte_unmap_unlock(vmf->pte, vmf->ptl);
3540 goto out;
3541 }
3542
3543 /*
3544 * Make it present again, Depending on how arch implementes non
3545 * accessible ptes, some can allow access by kernel mode.
3546 */
3547 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3548 pte = pte_modify(pte, vma->vm_page_prot);
3549 pte = pte_mkyoung(pte);
3550 if (was_writable)
3551 pte = pte_mkwrite(pte);
3552 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3553 update_mmu_cache(vma, vmf->address, vmf->pte);
3554
3555 page = vm_normal_page(vma, vmf->address, pte);
3556 if (!page) {
3557 pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 return 0;
3559 }
3560
3561 /* TODO: handle PTE-mapped THP */
3562 if (PageCompound(page)) {
3563 pte_unmap_unlock(vmf->pte, vmf->ptl);
3564 return 0;
3565 }
3566
3567 /*
3568 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3569 * much anyway since they can be in shared cache state. This misses
3570 * the case where a mapping is writable but the process never writes
3571 * to it but pte_write gets cleared during protection updates and
3572 * pte_dirty has unpredictable behaviour between PTE scan updates,
3573 * background writeback, dirty balancing and application behaviour.
3574 */
3575 if (!pte_write(pte))
3576 flags |= TNF_NO_GROUP;
3577
3578 /*
3579 * Flag if the page is shared between multiple address spaces. This
3580 * is later used when determining whether to group tasks together
3581 */
3582 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3583 flags |= TNF_SHARED;
3584
3585 last_cpupid = page_cpupid_last(page);
3586 page_nid = page_to_nid(page);
3587 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3588 &flags);
3589 pte_unmap_unlock(vmf->pte, vmf->ptl);
3590 if (target_nid == -1) {
3591 put_page(page);
3592 goto out;
3593 }
3594
3595 /* Migrate to the requested node */
3596 migrated = migrate_misplaced_page(page, vma, target_nid);
3597 if (migrated) {
3598 page_nid = target_nid;
3599 flags |= TNF_MIGRATED;
3600 } else
3601 flags |= TNF_MIGRATE_FAIL;
3602
3603 out:
3604 if (page_nid != -1)
3605 task_numa_fault(last_cpupid, page_nid, 1, flags);
3606 return 0;
3607 }
3608
3609 static inline int create_huge_pmd(struct vm_fault *vmf)
3610 {
3611 if (vma_is_anonymous(vmf->vma))
3612 return do_huge_pmd_anonymous_page(vmf);
3613 if (vmf->vma->vm_ops->huge_fault)
3614 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3615 return VM_FAULT_FALLBACK;
3616 }
3617
3618 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3619 {
3620 if (vma_is_anonymous(vmf->vma))
3621 return do_huge_pmd_wp_page(vmf, orig_pmd);
3622 if (vmf->vma->vm_ops->huge_fault)
3623 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3624
3625 /* COW handled on pte level: split pmd */
3626 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3627 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3628
3629 return VM_FAULT_FALLBACK;
3630 }
3631
3632 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3633 {
3634 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3635 }
3636
3637 static int create_huge_pud(struct vm_fault *vmf)
3638 {
3639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3640 /* No support for anonymous transparent PUD pages yet */
3641 if (vma_is_anonymous(vmf->vma))
3642 return VM_FAULT_FALLBACK;
3643 if (vmf->vma->vm_ops->huge_fault)
3644 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3645 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3646 return VM_FAULT_FALLBACK;
3647 }
3648
3649 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3650 {
3651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3652 /* No support for anonymous transparent PUD pages yet */
3653 if (vma_is_anonymous(vmf->vma))
3654 return VM_FAULT_FALLBACK;
3655 if (vmf->vma->vm_ops->huge_fault)
3656 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3657 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3658 return VM_FAULT_FALLBACK;
3659 }
3660
3661 /*
3662 * These routines also need to handle stuff like marking pages dirty
3663 * and/or accessed for architectures that don't do it in hardware (most
3664 * RISC architectures). The early dirtying is also good on the i386.
3665 *
3666 * There is also a hook called "update_mmu_cache()" that architectures
3667 * with external mmu caches can use to update those (ie the Sparc or
3668 * PowerPC hashed page tables that act as extended TLBs).
3669 *
3670 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3671 * concurrent faults).
3672 *
3673 * The mmap_sem may have been released depending on flags and our return value.
3674 * See filemap_fault() and __lock_page_or_retry().
3675 */
3676 static int handle_pte_fault(struct vm_fault *vmf)
3677 {
3678 pte_t entry;
3679
3680 if (unlikely(pmd_none(*vmf->pmd))) {
3681 /*
3682 * Leave __pte_alloc() until later: because vm_ops->fault may
3683 * want to allocate huge page, and if we expose page table
3684 * for an instant, it will be difficult to retract from
3685 * concurrent faults and from rmap lookups.
3686 */
3687 vmf->pte = NULL;
3688 } else {
3689 /* See comment in pte_alloc_one_map() */
3690 if (pmd_devmap_trans_unstable(vmf->pmd))
3691 return 0;
3692 /*
3693 * A regular pmd is established and it can't morph into a huge
3694 * pmd from under us anymore at this point because we hold the
3695 * mmap_sem read mode and khugepaged takes it in write mode.
3696 * So now it's safe to run pte_offset_map().
3697 */
3698 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3699 vmf->orig_pte = *vmf->pte;
3700
3701 /*
3702 * some architectures can have larger ptes than wordsize,
3703 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3704 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3705 * atomic accesses. The code below just needs a consistent
3706 * view for the ifs and we later double check anyway with the
3707 * ptl lock held. So here a barrier will do.
3708 */
3709 barrier();
3710 if (pte_none(vmf->orig_pte)) {
3711 pte_unmap(vmf->pte);
3712 vmf->pte = NULL;
3713 }
3714 }
3715
3716 if (!vmf->pte) {
3717 if (vma_is_anonymous(vmf->vma))
3718 return do_anonymous_page(vmf);
3719 else
3720 return do_fault(vmf);
3721 }
3722
3723 if (!pte_present(vmf->orig_pte))
3724 return do_swap_page(vmf);
3725
3726 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3727 return do_numa_page(vmf);
3728
3729 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3730 spin_lock(vmf->ptl);
3731 entry = vmf->orig_pte;
3732 if (unlikely(!pte_same(*vmf->pte, entry)))
3733 goto unlock;
3734 if (vmf->flags & FAULT_FLAG_WRITE) {
3735 if (!pte_write(entry))
3736 return do_wp_page(vmf);
3737 entry = pte_mkdirty(entry);
3738 }
3739 entry = pte_mkyoung(entry);
3740 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3741 vmf->flags & FAULT_FLAG_WRITE)) {
3742 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3743 } else {
3744 /*
3745 * This is needed only for protection faults but the arch code
3746 * is not yet telling us if this is a protection fault or not.
3747 * This still avoids useless tlb flushes for .text page faults
3748 * with threads.
3749 */
3750 if (vmf->flags & FAULT_FLAG_WRITE)
3751 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3752 }
3753 unlock:
3754 pte_unmap_unlock(vmf->pte, vmf->ptl);
3755 return 0;
3756 }
3757
3758 /*
3759 * By the time we get here, we already hold the mm semaphore
3760 *
3761 * The mmap_sem may have been released depending on flags and our
3762 * return value. See filemap_fault() and __lock_page_or_retry().
3763 */
3764 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3765 unsigned int flags)
3766 {
3767 struct vm_fault vmf = {
3768 .vma = vma,
3769 .address = address & PAGE_MASK,
3770 .flags = flags,
3771 .pgoff = linear_page_index(vma, address),
3772 .gfp_mask = __get_fault_gfp_mask(vma),
3773 };
3774 struct mm_struct *mm = vma->vm_mm;
3775 pgd_t *pgd;
3776 p4d_t *p4d;
3777 int ret;
3778
3779 pgd = pgd_offset(mm, address);
3780 p4d = p4d_alloc(mm, pgd, address);
3781 if (!p4d)
3782 return VM_FAULT_OOM;
3783
3784 vmf.pud = pud_alloc(mm, p4d, address);
3785 if (!vmf.pud)
3786 return VM_FAULT_OOM;
3787 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3788 ret = create_huge_pud(&vmf);
3789 if (!(ret & VM_FAULT_FALLBACK))
3790 return ret;
3791 } else {
3792 pud_t orig_pud = *vmf.pud;
3793
3794 barrier();
3795 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3796 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3797
3798 /* NUMA case for anonymous PUDs would go here */
3799
3800 if (dirty && !pud_write(orig_pud)) {
3801 ret = wp_huge_pud(&vmf, orig_pud);
3802 if (!(ret & VM_FAULT_FALLBACK))
3803 return ret;
3804 } else {
3805 huge_pud_set_accessed(&vmf, orig_pud);
3806 return 0;
3807 }
3808 }
3809 }
3810
3811 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3812 if (!vmf.pmd)
3813 return VM_FAULT_OOM;
3814 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3815 ret = create_huge_pmd(&vmf);
3816 if (!(ret & VM_FAULT_FALLBACK))
3817 return ret;
3818 } else {
3819 pmd_t orig_pmd = *vmf.pmd;
3820
3821 barrier();
3822 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3823 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3824 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3825
3826 if ((vmf.flags & FAULT_FLAG_WRITE) &&
3827 !pmd_write(orig_pmd)) {
3828 ret = wp_huge_pmd(&vmf, orig_pmd);
3829 if (!(ret & VM_FAULT_FALLBACK))
3830 return ret;
3831 } else {
3832 huge_pmd_set_accessed(&vmf, orig_pmd);
3833 return 0;
3834 }
3835 }
3836 }
3837
3838 return handle_pte_fault(&vmf);
3839 }
3840
3841 /*
3842 * By the time we get here, we already hold the mm semaphore
3843 *
3844 * The mmap_sem may have been released depending on flags and our
3845 * return value. See filemap_fault() and __lock_page_or_retry().
3846 */
3847 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3848 unsigned int flags)
3849 {
3850 int ret;
3851
3852 __set_current_state(TASK_RUNNING);
3853
3854 count_vm_event(PGFAULT);
3855 count_memcg_event_mm(vma->vm_mm, PGFAULT);
3856
3857 /* do counter updates before entering really critical section. */
3858 check_sync_rss_stat(current);
3859
3860 /*
3861 * Enable the memcg OOM handling for faults triggered in user
3862 * space. Kernel faults are handled more gracefully.
3863 */
3864 if (flags & FAULT_FLAG_USER)
3865 mem_cgroup_oom_enable();
3866
3867 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3868 flags & FAULT_FLAG_INSTRUCTION,
3869 flags & FAULT_FLAG_REMOTE))
3870 return VM_FAULT_SIGSEGV;
3871
3872 if (unlikely(is_vm_hugetlb_page(vma)))
3873 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3874 else
3875 ret = __handle_mm_fault(vma, address, flags);
3876
3877 if (flags & FAULT_FLAG_USER) {
3878 mem_cgroup_oom_disable();
3879 /*
3880 * The task may have entered a memcg OOM situation but
3881 * if the allocation error was handled gracefully (no
3882 * VM_FAULT_OOM), there is no need to kill anything.
3883 * Just clean up the OOM state peacefully.
3884 */
3885 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3886 mem_cgroup_oom_synchronize(false);
3887 }
3888
3889 /*
3890 * This mm has been already reaped by the oom reaper and so the
3891 * refault cannot be trusted in general. Anonymous refaults would
3892 * lose data and give a zero page instead e.g. This is especially
3893 * problem for use_mm() because regular tasks will just die and
3894 * the corrupted data will not be visible anywhere while kthread
3895 * will outlive the oom victim and potentially propagate the date
3896 * further.
3897 */
3898 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3899 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3900 ret = VM_FAULT_SIGBUS;
3901
3902 return ret;
3903 }
3904 EXPORT_SYMBOL_GPL(handle_mm_fault);
3905
3906 #ifndef __PAGETABLE_P4D_FOLDED
3907 /*
3908 * Allocate p4d page table.
3909 * We've already handled the fast-path in-line.
3910 */
3911 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3912 {
3913 p4d_t *new = p4d_alloc_one(mm, address);
3914 if (!new)
3915 return -ENOMEM;
3916
3917 smp_wmb(); /* See comment in __pte_alloc */
3918
3919 spin_lock(&mm->page_table_lock);
3920 if (pgd_present(*pgd)) /* Another has populated it */
3921 p4d_free(mm, new);
3922 else
3923 pgd_populate(mm, pgd, new);
3924 spin_unlock(&mm->page_table_lock);
3925 return 0;
3926 }
3927 #endif /* __PAGETABLE_P4D_FOLDED */
3928
3929 #ifndef __PAGETABLE_PUD_FOLDED
3930 /*
3931 * Allocate page upper directory.
3932 * We've already handled the fast-path in-line.
3933 */
3934 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3935 {
3936 pud_t *new = pud_alloc_one(mm, address);
3937 if (!new)
3938 return -ENOMEM;
3939
3940 smp_wmb(); /* See comment in __pte_alloc */
3941
3942 spin_lock(&mm->page_table_lock);
3943 #ifndef __ARCH_HAS_5LEVEL_HACK
3944 if (p4d_present(*p4d)) /* Another has populated it */
3945 pud_free(mm, new);
3946 else
3947 p4d_populate(mm, p4d, new);
3948 #else
3949 if (pgd_present(*p4d)) /* Another has populated it */
3950 pud_free(mm, new);
3951 else
3952 pgd_populate(mm, p4d, new);
3953 #endif /* __ARCH_HAS_5LEVEL_HACK */
3954 spin_unlock(&mm->page_table_lock);
3955 return 0;
3956 }
3957 #endif /* __PAGETABLE_PUD_FOLDED */
3958
3959 #ifndef __PAGETABLE_PMD_FOLDED
3960 /*
3961 * Allocate page middle directory.
3962 * We've already handled the fast-path in-line.
3963 */
3964 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3965 {
3966 spinlock_t *ptl;
3967 pmd_t *new = pmd_alloc_one(mm, address);
3968 if (!new)
3969 return -ENOMEM;
3970
3971 smp_wmb(); /* See comment in __pte_alloc */
3972
3973 ptl = pud_lock(mm, pud);
3974 #ifndef __ARCH_HAS_4LEVEL_HACK
3975 if (!pud_present(*pud)) {
3976 mm_inc_nr_pmds(mm);
3977 pud_populate(mm, pud, new);
3978 } else /* Another has populated it */
3979 pmd_free(mm, new);
3980 #else
3981 if (!pgd_present(*pud)) {
3982 mm_inc_nr_pmds(mm);
3983 pgd_populate(mm, pud, new);
3984 } else /* Another has populated it */
3985 pmd_free(mm, new);
3986 #endif /* __ARCH_HAS_4LEVEL_HACK */
3987 spin_unlock(ptl);
3988 return 0;
3989 }
3990 #endif /* __PAGETABLE_PMD_FOLDED */
3991
3992 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3993 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3994 {
3995 pgd_t *pgd;
3996 p4d_t *p4d;
3997 pud_t *pud;
3998 pmd_t *pmd;
3999 pte_t *ptep;
4000
4001 pgd = pgd_offset(mm, address);
4002 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4003 goto out;
4004
4005 p4d = p4d_offset(pgd, address);
4006 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4007 goto out;
4008
4009 pud = pud_offset(p4d, address);
4010 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4011 goto out;
4012
4013 pmd = pmd_offset(pud, address);
4014 VM_BUG_ON(pmd_trans_huge(*pmd));
4015
4016 if (pmd_huge(*pmd)) {
4017 if (!pmdpp)
4018 goto out;
4019
4020 *ptlp = pmd_lock(mm, pmd);
4021 if (pmd_huge(*pmd)) {
4022 *pmdpp = pmd;
4023 return 0;
4024 }
4025 spin_unlock(*ptlp);
4026 }
4027
4028 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4029 goto out;
4030
4031 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4032 if (!pte_present(*ptep))
4033 goto unlock;
4034 *ptepp = ptep;
4035 return 0;
4036 unlock:
4037 pte_unmap_unlock(ptep, *ptlp);
4038 out:
4039 return -EINVAL;
4040 }
4041
4042 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4043 pte_t **ptepp, spinlock_t **ptlp)
4044 {
4045 int res;
4046
4047 /* (void) is needed to make gcc happy */
4048 (void) __cond_lock(*ptlp,
4049 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
4050 ptlp)));
4051 return res;
4052 }
4053
4054 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4055 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4056 {
4057 int res;
4058
4059 /* (void) is needed to make gcc happy */
4060 (void) __cond_lock(*ptlp,
4061 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
4062 ptlp)));
4063 return res;
4064 }
4065 EXPORT_SYMBOL(follow_pte_pmd);
4066
4067 /**
4068 * follow_pfn - look up PFN at a user virtual address
4069 * @vma: memory mapping
4070 * @address: user virtual address
4071 * @pfn: location to store found PFN
4072 *
4073 * Only IO mappings and raw PFN mappings are allowed.
4074 *
4075 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4076 */
4077 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4078 unsigned long *pfn)
4079 {
4080 int ret = -EINVAL;
4081 spinlock_t *ptl;
4082 pte_t *ptep;
4083
4084 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4085 return ret;
4086
4087 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4088 if (ret)
4089 return ret;
4090 *pfn = pte_pfn(*ptep);
4091 pte_unmap_unlock(ptep, ptl);
4092 return 0;
4093 }
4094 EXPORT_SYMBOL(follow_pfn);
4095
4096 #ifdef CONFIG_HAVE_IOREMAP_PROT
4097 int follow_phys(struct vm_area_struct *vma,
4098 unsigned long address, unsigned int flags,
4099 unsigned long *prot, resource_size_t *phys)
4100 {
4101 int ret = -EINVAL;
4102 pte_t *ptep, pte;
4103 spinlock_t *ptl;
4104
4105 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4106 goto out;
4107
4108 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4109 goto out;
4110 pte = *ptep;
4111
4112 if ((flags & FOLL_WRITE) && !pte_write(pte))
4113 goto unlock;
4114
4115 *prot = pgprot_val(pte_pgprot(pte));
4116 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4117
4118 ret = 0;
4119 unlock:
4120 pte_unmap_unlock(ptep, ptl);
4121 out:
4122 return ret;
4123 }
4124
4125 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4126 void *buf, int len, int write)
4127 {
4128 resource_size_t phys_addr;
4129 unsigned long prot = 0;
4130 void __iomem *maddr;
4131 int offset = addr & (PAGE_SIZE-1);
4132
4133 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4134 return -EINVAL;
4135
4136 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4137 if (write)
4138 memcpy_toio(maddr + offset, buf, len);
4139 else
4140 memcpy_fromio(buf, maddr + offset, len);
4141 iounmap(maddr);
4142
4143 return len;
4144 }
4145 EXPORT_SYMBOL_GPL(generic_access_phys);
4146 #endif
4147
4148 /*
4149 * Access another process' address space as given in mm. If non-NULL, use the
4150 * given task for page fault accounting.
4151 */
4152 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4153 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4154 {
4155 struct vm_area_struct *vma;
4156 void *old_buf = buf;
4157 int write = gup_flags & FOLL_WRITE;
4158
4159 down_read(&mm->mmap_sem);
4160 /* ignore errors, just check how much was successfully transferred */
4161 while (len) {
4162 int bytes, ret, offset;
4163 void *maddr;
4164 struct page *page = NULL;
4165
4166 ret = get_user_pages_remote(tsk, mm, addr, 1,
4167 gup_flags, &page, &vma, NULL);
4168 if (ret <= 0) {
4169 #ifndef CONFIG_HAVE_IOREMAP_PROT
4170 break;
4171 #else
4172 /*
4173 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4174 * we can access using slightly different code.
4175 */
4176 vma = find_vma(mm, addr);
4177 if (!vma || vma->vm_start > addr)
4178 break;
4179 if (vma->vm_ops && vma->vm_ops->access)
4180 ret = vma->vm_ops->access(vma, addr, buf,
4181 len, write);
4182 if (ret <= 0)
4183 break;
4184 bytes = ret;
4185 #endif
4186 } else {
4187 bytes = len;
4188 offset = addr & (PAGE_SIZE-1);
4189 if (bytes > PAGE_SIZE-offset)
4190 bytes = PAGE_SIZE-offset;
4191
4192 maddr = kmap(page);
4193 if (write) {
4194 copy_to_user_page(vma, page, addr,
4195 maddr + offset, buf, bytes);
4196 set_page_dirty_lock(page);
4197 } else {
4198 copy_from_user_page(vma, page, addr,
4199 buf, maddr + offset, bytes);
4200 }
4201 kunmap(page);
4202 put_page(page);
4203 }
4204 len -= bytes;
4205 buf += bytes;
4206 addr += bytes;
4207 }
4208 up_read(&mm->mmap_sem);
4209
4210 return buf - old_buf;
4211 }
4212
4213 /**
4214 * access_remote_vm - access another process' address space
4215 * @mm: the mm_struct of the target address space
4216 * @addr: start address to access
4217 * @buf: source or destination buffer
4218 * @len: number of bytes to transfer
4219 * @gup_flags: flags modifying lookup behaviour
4220 *
4221 * The caller must hold a reference on @mm.
4222 */
4223 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4224 void *buf, int len, unsigned int gup_flags)
4225 {
4226 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4227 }
4228
4229 /*
4230 * Access another process' address space.
4231 * Source/target buffer must be kernel space,
4232 * Do not walk the page table directly, use get_user_pages
4233 */
4234 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4235 void *buf, int len, unsigned int gup_flags)
4236 {
4237 struct mm_struct *mm;
4238 int ret;
4239
4240 mm = get_task_mm(tsk);
4241 if (!mm)
4242 return 0;
4243
4244 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4245
4246 mmput(mm);
4247
4248 return ret;
4249 }
4250 EXPORT_SYMBOL_GPL(access_process_vm);
4251
4252 /*
4253 * Print the name of a VMA.
4254 */
4255 void print_vma_addr(char *prefix, unsigned long ip)
4256 {
4257 struct mm_struct *mm = current->mm;
4258 struct vm_area_struct *vma;
4259
4260 /*
4261 * Do not print if we are in atomic
4262 * contexts (in exception stacks, etc.):
4263 */
4264 if (preempt_count())
4265 return;
4266
4267 down_read(&mm->mmap_sem);
4268 vma = find_vma(mm, ip);
4269 if (vma && vma->vm_file) {
4270 struct file *f = vma->vm_file;
4271 char *buf = (char *)__get_free_page(GFP_KERNEL);
4272 if (buf) {
4273 char *p;
4274
4275 p = file_path(f, buf, PAGE_SIZE);
4276 if (IS_ERR(p))
4277 p = "?";
4278 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4279 vma->vm_start,
4280 vma->vm_end - vma->vm_start);
4281 free_page((unsigned long)buf);
4282 }
4283 }
4284 up_read(&mm->mmap_sem);
4285 }
4286
4287 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4288 void __might_fault(const char *file, int line)
4289 {
4290 /*
4291 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4292 * holding the mmap_sem, this is safe because kernel memory doesn't
4293 * get paged out, therefore we'll never actually fault, and the
4294 * below annotations will generate false positives.
4295 */
4296 if (uaccess_kernel())
4297 return;
4298 if (pagefault_disabled())
4299 return;
4300 __might_sleep(file, line, 0);
4301 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4302 if (current->mm)
4303 might_lock_read(&current->mm->mmap_sem);
4304 #endif
4305 }
4306 EXPORT_SYMBOL(__might_fault);
4307 #endif
4308
4309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4310 static void clear_gigantic_page(struct page *page,
4311 unsigned long addr,
4312 unsigned int pages_per_huge_page)
4313 {
4314 int i;
4315 struct page *p = page;
4316
4317 might_sleep();
4318 for (i = 0; i < pages_per_huge_page;
4319 i++, p = mem_map_next(p, page, i)) {
4320 cond_resched();
4321 clear_user_highpage(p, addr + i * PAGE_SIZE);
4322 }
4323 }
4324 void clear_huge_page(struct page *page,
4325 unsigned long addr, unsigned int pages_per_huge_page)
4326 {
4327 int i;
4328
4329 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4330 clear_gigantic_page(page, addr, pages_per_huge_page);
4331 return;
4332 }
4333
4334 might_sleep();
4335 for (i = 0; i < pages_per_huge_page; i++) {
4336 cond_resched();
4337 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4338 }
4339 }
4340
4341 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4342 unsigned long addr,
4343 struct vm_area_struct *vma,
4344 unsigned int pages_per_huge_page)
4345 {
4346 int i;
4347 struct page *dst_base = dst;
4348 struct page *src_base = src;
4349
4350 for (i = 0; i < pages_per_huge_page; ) {
4351 cond_resched();
4352 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4353
4354 i++;
4355 dst = mem_map_next(dst, dst_base, i);
4356 src = mem_map_next(src, src_base, i);
4357 }
4358 }
4359
4360 void copy_user_huge_page(struct page *dst, struct page *src,
4361 unsigned long addr, struct vm_area_struct *vma,
4362 unsigned int pages_per_huge_page)
4363 {
4364 int i;
4365
4366 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4367 copy_user_gigantic_page(dst, src, addr, vma,
4368 pages_per_huge_page);
4369 return;
4370 }
4371
4372 might_sleep();
4373 for (i = 0; i < pages_per_huge_page; i++) {
4374 cond_resched();
4375 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4376 }
4377 }
4378
4379 long copy_huge_page_from_user(struct page *dst_page,
4380 const void __user *usr_src,
4381 unsigned int pages_per_huge_page,
4382 bool allow_pagefault)
4383 {
4384 void *src = (void *)usr_src;
4385 void *page_kaddr;
4386 unsigned long i, rc = 0;
4387 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4388
4389 for (i = 0; i < pages_per_huge_page; i++) {
4390 if (allow_pagefault)
4391 page_kaddr = kmap(dst_page + i);
4392 else
4393 page_kaddr = kmap_atomic(dst_page + i);
4394 rc = copy_from_user(page_kaddr,
4395 (const void __user *)(src + i * PAGE_SIZE),
4396 PAGE_SIZE);
4397 if (allow_pagefault)
4398 kunmap(dst_page + i);
4399 else
4400 kunmap_atomic(page_kaddr);
4401
4402 ret_val -= (PAGE_SIZE - rc);
4403 if (rc)
4404 break;
4405
4406 cond_resched();
4407 }
4408 return ret_val;
4409 }
4410 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4411
4412 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4413
4414 static struct kmem_cache *page_ptl_cachep;
4415
4416 void __init ptlock_cache_init(void)
4417 {
4418 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4419 SLAB_PANIC, NULL);
4420 }
4421
4422 bool ptlock_alloc(struct page *page)
4423 {
4424 spinlock_t *ptl;
4425
4426 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4427 if (!ptl)
4428 return false;
4429 page->ptl = ptl;
4430 return true;
4431 }
4432
4433 void ptlock_free(struct page *page)
4434 {
4435 kmem_cache_free(page_ptl_cachep, page->ptl);
4436 }
4437 #endif