]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory.c
Merge tag 'kernel-clone-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/braune...
[mirror_ubuntu-hirsute-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77
78 #include <trace/events/kmem.h>
79
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86
87 #include "pgalloc-track.h"
88 #include "internal.h"
89
90 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
91 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
92 #endif
93
94 #ifndef CONFIG_NEED_MULTIPLE_NODES
95 /* use the per-pgdat data instead for discontigmem - mbligh */
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102
103 /*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112
113 /*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 1;
122 #else
123 2;
124 #endif
125
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135 }
136 #endif
137
138 static int __init disable_randmaps(char *s)
139 {
140 randomize_va_space = 0;
141 return 1;
142 }
143 __setup("norandmaps", disable_randmaps);
144
145 unsigned long zero_pfn __read_mostly;
146 EXPORT_SYMBOL(zero_pfn);
147
148 unsigned long highest_memmap_pfn __read_mostly;
149
150 /*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153 static int __init init_zero_pfn(void)
154 {
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157 }
158 core_initcall(init_zero_pfn);
159
160 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
161 {
162 trace_rss_stat(mm, member, count);
163 }
164
165 #if defined(SPLIT_RSS_COUNTING)
166
167 void sync_mm_rss(struct mm_struct *mm)
168 {
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
175 }
176 }
177 current->rss_stat.events = 0;
178 }
179
180 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181 {
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188 }
189 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192 /* sync counter once per 64 page faults */
193 #define TASK_RSS_EVENTS_THRESH (64)
194 static void check_sync_rss_stat(struct task_struct *task)
195 {
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
199 sync_mm_rss(task->mm);
200 }
201 #else /* SPLIT_RSS_COUNTING */
202
203 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 }
209
210 #endif /* SPLIT_RSS_COUNTING */
211
212 /*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
216 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
218 {
219 pgtable_t token = pmd_pgtable(*pmd);
220 pmd_clear(pmd);
221 pte_free_tlb(tlb, token, addr);
222 mm_dec_nr_ptes(tlb->mm);
223 }
224
225 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
228 {
229 pmd_t *pmd;
230 unsigned long next;
231 unsigned long start;
232
233 start = addr;
234 pmd = pmd_offset(pud, addr);
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
239 free_pte_range(tlb, pmd, addr);
240 } while (pmd++, addr = next, addr != end);
241
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
249 }
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
255 pmd_free_tlb(tlb, pmd, start);
256 mm_dec_nr_pmds(tlb->mm);
257 }
258
259 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
262 {
263 pud_t *pud;
264 unsigned long next;
265 unsigned long start;
266
267 start = addr;
268 pud = pud_offset(p4d, addr);
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
274 } while (pud++, addr = next, addr != end);
275
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
290 mm_dec_nr_puds(tlb->mm);
291 }
292
293 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296 {
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
317 }
318 if (end - 1 > ceiling - 1)
319 return;
320
321 p4d = p4d_offset(pgd, start);
322 pgd_clear(pgd);
323 p4d_free_tlb(tlb, p4d, start);
324 }
325
326 /*
327 * This function frees user-level page tables of a process.
328 */
329 void free_pgd_range(struct mmu_gather *tlb,
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
332 {
333 pgd_t *pgd;
334 unsigned long next;
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
361
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
381 tlb_change_page_size(tlb, PAGE_SIZE);
382 pgd = pgd_offset(tlb->mm, addr);
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
388 } while (pgd++, addr = next, addr != end);
389 }
390
391 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
392 unsigned long floor, unsigned long ceiling)
393 {
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
398 /*
399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
401 */
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
404
405 if (is_vm_hugetlb_page(vma)) {
406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
407 floor, next ? next->vm_start : ceiling);
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
413 && !is_vm_hugetlb_page(next)) {
414 vma = next;
415 next = vma->vm_next;
416 unlink_anon_vmas(vma);
417 unlink_file_vma(vma);
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
420 floor, next ? next->vm_start : ceiling);
421 }
422 vma = next;
423 }
424 }
425
426 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
427 {
428 spinlock_t *ptl;
429 pgtable_t new = pte_alloc_one(mm);
430 if (!new)
431 return -ENOMEM;
432
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
444 * smp_rmb() barriers in page table walking code.
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
448 ptl = pmd_lock(mm, pmd);
449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
450 mm_inc_nr_ptes(mm);
451 pmd_populate(mm, pmd, new);
452 new = NULL;
453 }
454 spin_unlock(ptl);
455 if (new)
456 pte_free(mm, new);
457 return 0;
458 }
459
460 int __pte_alloc_kernel(pmd_t *pmd)
461 {
462 pte_t *new = pte_alloc_one_kernel(&init_mm);
463 if (!new)
464 return -ENOMEM;
465
466 smp_wmb(); /* See comment in __pte_alloc */
467
468 spin_lock(&init_mm.page_table_lock);
469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
470 pmd_populate_kernel(&init_mm, pmd, new);
471 new = NULL;
472 }
473 spin_unlock(&init_mm.page_table_lock);
474 if (new)
475 pte_free_kernel(&init_mm, new);
476 return 0;
477 }
478
479 static inline void init_rss_vec(int *rss)
480 {
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482 }
483
484 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
485 {
486 int i;
487
488 if (current->mm == mm)
489 sync_mm_rss(mm);
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
493 }
494
495 /*
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
499 *
500 * The calling function must still handle the error.
501 */
502 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
504 {
505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
540 if (page)
541 dump_page(page, "bad pte");
542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
549 dump_stack();
550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 }
552
553 /*
554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
555 *
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
559 *
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
568 *
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
582 *
583 *
584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
594 */
595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
597 {
598 unsigned long pfn = pte_pfn(pte);
599
600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
601 if (likely(!pte_special(pte)))
602 goto check_pfn;
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
607 if (is_zero_pfn(pfn))
608 return NULL;
609 if (pte_devmap(pte))
610 return NULL;
611
612 print_bad_pte(vma, addr, pte, NULL);
613 return NULL;
614 }
615
616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
631 }
632
633 if (is_zero_pfn(pfn))
634 return NULL;
635
636 check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
641
642 /*
643 * NOTE! We still have PageReserved() pages in the page tables.
644 * eg. VDSO mappings can cause them to exist.
645 */
646 out:
647 return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653 {
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
676 if (pmd_devmap(pmd))
677 return NULL;
678 if (is_huge_zero_pmd(pmd))
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687 out:
688 return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
696 */
697
698 static unsigned long
699 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701 unsigned long addr, int *rss)
702 {
703 unsigned long vm_flags = vma->vm_flags;
704 pte_t pte = *src_pte;
705 struct page *page;
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
724 rss[mm_counter(page)]++;
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
771 }
772 set_pte_at(dst_mm, addr, dst_pte, pte);
773 return 0;
774 }
775
776 /*
777 * Copy a present and normal page if necessary.
778 *
779 * NOTE! The usual case is that this doesn't need to do
780 * anything, and can just return a positive value. That
781 * will let the caller know that it can just increase
782 * the page refcount and re-use the pte the traditional
783 * way.
784 *
785 * But _if_ we need to copy it because it needs to be
786 * pinned in the parent (and the child should get its own
787 * copy rather than just a reference to the same page),
788 * we'll do that here and return zero to let the caller
789 * know we're done.
790 *
791 * And if we need a pre-allocated page but don't yet have
792 * one, return a negative error to let the preallocation
793 * code know so that it can do so outside the page table
794 * lock.
795 */
796 static inline int
797 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
798 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
799 struct page **prealloc, pte_t pte, struct page *page)
800 {
801 struct mm_struct *src_mm = src_vma->vm_mm;
802 struct page *new_page;
803
804 if (!is_cow_mapping(src_vma->vm_flags))
805 return 1;
806
807 /*
808 * What we want to do is to check whether this page may
809 * have been pinned by the parent process. If so,
810 * instead of wrprotect the pte on both sides, we copy
811 * the page immediately so that we'll always guarantee
812 * the pinned page won't be randomly replaced in the
813 * future.
814 *
815 * The page pinning checks are just "has this mm ever
816 * seen pinning", along with the (inexact) check of
817 * the page count. That might give false positives for
818 * for pinning, but it will work correctly.
819 */
820 if (likely(!atomic_read(&src_mm->has_pinned)))
821 return 1;
822 if (likely(!page_maybe_dma_pinned(page)))
823 return 1;
824
825 new_page = *prealloc;
826 if (!new_page)
827 return -EAGAIN;
828
829 /*
830 * We have a prealloc page, all good! Take it
831 * over and copy the page & arm it.
832 */
833 *prealloc = NULL;
834 copy_user_highpage(new_page, page, addr, src_vma);
835 __SetPageUptodate(new_page);
836 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
837 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
838 rss[mm_counter(new_page)]++;
839
840 /* All done, just insert the new page copy in the child */
841 pte = mk_pte(new_page, dst_vma->vm_page_prot);
842 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
843 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
844 return 0;
845 }
846
847 /*
848 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
849 * is required to copy this pte.
850 */
851 static inline int
852 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
853 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
854 struct page **prealloc)
855 {
856 struct mm_struct *src_mm = src_vma->vm_mm;
857 unsigned long vm_flags = src_vma->vm_flags;
858 pte_t pte = *src_pte;
859 struct page *page;
860
861 page = vm_normal_page(src_vma, addr, pte);
862 if (page) {
863 int retval;
864
865 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
866 addr, rss, prealloc, pte, page);
867 if (retval <= 0)
868 return retval;
869
870 get_page(page);
871 page_dup_rmap(page, false);
872 rss[mm_counter(page)]++;
873 }
874
875 /*
876 * If it's a COW mapping, write protect it both
877 * in the parent and the child
878 */
879 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
880 ptep_set_wrprotect(src_mm, addr, src_pte);
881 pte = pte_wrprotect(pte);
882 }
883
884 /*
885 * If it's a shared mapping, mark it clean in
886 * the child
887 */
888 if (vm_flags & VM_SHARED)
889 pte = pte_mkclean(pte);
890 pte = pte_mkold(pte);
891
892 /*
893 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
894 * does not have the VM_UFFD_WP, which means that the uffd
895 * fork event is not enabled.
896 */
897 if (!(vm_flags & VM_UFFD_WP))
898 pte = pte_clear_uffd_wp(pte);
899
900 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
901 return 0;
902 }
903
904 static inline struct page *
905 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
906 unsigned long addr)
907 {
908 struct page *new_page;
909
910 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
911 if (!new_page)
912 return NULL;
913
914 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
915 put_page(new_page);
916 return NULL;
917 }
918 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
919
920 return new_page;
921 }
922
923 static int
924 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
925 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
926 unsigned long end)
927 {
928 struct mm_struct *dst_mm = dst_vma->vm_mm;
929 struct mm_struct *src_mm = src_vma->vm_mm;
930 pte_t *orig_src_pte, *orig_dst_pte;
931 pte_t *src_pte, *dst_pte;
932 spinlock_t *src_ptl, *dst_ptl;
933 int progress, ret = 0;
934 int rss[NR_MM_COUNTERS];
935 swp_entry_t entry = (swp_entry_t){0};
936 struct page *prealloc = NULL;
937
938 again:
939 progress = 0;
940 init_rss_vec(rss);
941
942 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 if (!dst_pte) {
944 ret = -ENOMEM;
945 goto out;
946 }
947 src_pte = pte_offset_map(src_pmd, addr);
948 src_ptl = pte_lockptr(src_mm, src_pmd);
949 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
950 orig_src_pte = src_pte;
951 orig_dst_pte = dst_pte;
952 arch_enter_lazy_mmu_mode();
953
954 do {
955 /*
956 * We are holding two locks at this point - either of them
957 * could generate latencies in another task on another CPU.
958 */
959 if (progress >= 32) {
960 progress = 0;
961 if (need_resched() ||
962 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
963 break;
964 }
965 if (pte_none(*src_pte)) {
966 progress++;
967 continue;
968 }
969 if (unlikely(!pte_present(*src_pte))) {
970 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
971 dst_pte, src_pte,
972 src_vma, addr, rss);
973 if (entry.val)
974 break;
975 progress += 8;
976 continue;
977 }
978 /* copy_present_pte() will clear `*prealloc' if consumed */
979 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
980 addr, rss, &prealloc);
981 /*
982 * If we need a pre-allocated page for this pte, drop the
983 * locks, allocate, and try again.
984 */
985 if (unlikely(ret == -EAGAIN))
986 break;
987 if (unlikely(prealloc)) {
988 /*
989 * pre-alloc page cannot be reused by next time so as
990 * to strictly follow mempolicy (e.g., alloc_page_vma()
991 * will allocate page according to address). This
992 * could only happen if one pinned pte changed.
993 */
994 put_page(prealloc);
995 prealloc = NULL;
996 }
997 progress += 8;
998 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
999
1000 arch_leave_lazy_mmu_mode();
1001 spin_unlock(src_ptl);
1002 pte_unmap(orig_src_pte);
1003 add_mm_rss_vec(dst_mm, rss);
1004 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1005 cond_resched();
1006
1007 if (entry.val) {
1008 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1009 ret = -ENOMEM;
1010 goto out;
1011 }
1012 entry.val = 0;
1013 } else if (ret) {
1014 WARN_ON_ONCE(ret != -EAGAIN);
1015 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1016 if (!prealloc)
1017 return -ENOMEM;
1018 /* We've captured and resolved the error. Reset, try again. */
1019 ret = 0;
1020 }
1021 if (addr != end)
1022 goto again;
1023 out:
1024 if (unlikely(prealloc))
1025 put_page(prealloc);
1026 return ret;
1027 }
1028
1029 static inline int
1030 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1031 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1032 unsigned long end)
1033 {
1034 struct mm_struct *dst_mm = dst_vma->vm_mm;
1035 struct mm_struct *src_mm = src_vma->vm_mm;
1036 pmd_t *src_pmd, *dst_pmd;
1037 unsigned long next;
1038
1039 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1040 if (!dst_pmd)
1041 return -ENOMEM;
1042 src_pmd = pmd_offset(src_pud, addr);
1043 do {
1044 next = pmd_addr_end(addr, end);
1045 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1046 || pmd_devmap(*src_pmd)) {
1047 int err;
1048 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1049 err = copy_huge_pmd(dst_mm, src_mm,
1050 dst_pmd, src_pmd, addr, src_vma);
1051 if (err == -ENOMEM)
1052 return -ENOMEM;
1053 if (!err)
1054 continue;
1055 /* fall through */
1056 }
1057 if (pmd_none_or_clear_bad(src_pmd))
1058 continue;
1059 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1060 addr, next))
1061 return -ENOMEM;
1062 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1063 return 0;
1064 }
1065
1066 static inline int
1067 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1068 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1069 unsigned long end)
1070 {
1071 struct mm_struct *dst_mm = dst_vma->vm_mm;
1072 struct mm_struct *src_mm = src_vma->vm_mm;
1073 pud_t *src_pud, *dst_pud;
1074 unsigned long next;
1075
1076 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1077 if (!dst_pud)
1078 return -ENOMEM;
1079 src_pud = pud_offset(src_p4d, addr);
1080 do {
1081 next = pud_addr_end(addr, end);
1082 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1083 int err;
1084
1085 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1086 err = copy_huge_pud(dst_mm, src_mm,
1087 dst_pud, src_pud, addr, src_vma);
1088 if (err == -ENOMEM)
1089 return -ENOMEM;
1090 if (!err)
1091 continue;
1092 /* fall through */
1093 }
1094 if (pud_none_or_clear_bad(src_pud))
1095 continue;
1096 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1097 addr, next))
1098 return -ENOMEM;
1099 } while (dst_pud++, src_pud++, addr = next, addr != end);
1100 return 0;
1101 }
1102
1103 static inline int
1104 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1105 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1106 unsigned long end)
1107 {
1108 struct mm_struct *dst_mm = dst_vma->vm_mm;
1109 p4d_t *src_p4d, *dst_p4d;
1110 unsigned long next;
1111
1112 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1113 if (!dst_p4d)
1114 return -ENOMEM;
1115 src_p4d = p4d_offset(src_pgd, addr);
1116 do {
1117 next = p4d_addr_end(addr, end);
1118 if (p4d_none_or_clear_bad(src_p4d))
1119 continue;
1120 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1121 addr, next))
1122 return -ENOMEM;
1123 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1124 return 0;
1125 }
1126
1127 int
1128 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1129 {
1130 pgd_t *src_pgd, *dst_pgd;
1131 unsigned long next;
1132 unsigned long addr = src_vma->vm_start;
1133 unsigned long end = src_vma->vm_end;
1134 struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 struct mm_struct *src_mm = src_vma->vm_mm;
1136 struct mmu_notifier_range range;
1137 bool is_cow;
1138 int ret;
1139
1140 /*
1141 * Don't copy ptes where a page fault will fill them correctly.
1142 * Fork becomes much lighter when there are big shared or private
1143 * readonly mappings. The tradeoff is that copy_page_range is more
1144 * efficient than faulting.
1145 */
1146 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1147 !src_vma->anon_vma)
1148 return 0;
1149
1150 if (is_vm_hugetlb_page(src_vma))
1151 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1152
1153 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1154 /*
1155 * We do not free on error cases below as remove_vma
1156 * gets called on error from higher level routine
1157 */
1158 ret = track_pfn_copy(src_vma);
1159 if (ret)
1160 return ret;
1161 }
1162
1163 /*
1164 * We need to invalidate the secondary MMU mappings only when
1165 * there could be a permission downgrade on the ptes of the
1166 * parent mm. And a permission downgrade will only happen if
1167 * is_cow_mapping() returns true.
1168 */
1169 is_cow = is_cow_mapping(src_vma->vm_flags);
1170
1171 if (is_cow) {
1172 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1173 0, src_vma, src_mm, addr, end);
1174 mmu_notifier_invalidate_range_start(&range);
1175 }
1176
1177 ret = 0;
1178 dst_pgd = pgd_offset(dst_mm, addr);
1179 src_pgd = pgd_offset(src_mm, addr);
1180 do {
1181 next = pgd_addr_end(addr, end);
1182 if (pgd_none_or_clear_bad(src_pgd))
1183 continue;
1184 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1185 addr, next))) {
1186 ret = -ENOMEM;
1187 break;
1188 }
1189 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1190
1191 if (is_cow)
1192 mmu_notifier_invalidate_range_end(&range);
1193 return ret;
1194 }
1195
1196 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1197 struct vm_area_struct *vma, pmd_t *pmd,
1198 unsigned long addr, unsigned long end,
1199 struct zap_details *details)
1200 {
1201 struct mm_struct *mm = tlb->mm;
1202 int force_flush = 0;
1203 int rss[NR_MM_COUNTERS];
1204 spinlock_t *ptl;
1205 pte_t *start_pte;
1206 pte_t *pte;
1207 swp_entry_t entry;
1208
1209 tlb_change_page_size(tlb, PAGE_SIZE);
1210 again:
1211 init_rss_vec(rss);
1212 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1213 pte = start_pte;
1214 flush_tlb_batched_pending(mm);
1215 arch_enter_lazy_mmu_mode();
1216 do {
1217 pte_t ptent = *pte;
1218 if (pte_none(ptent))
1219 continue;
1220
1221 if (need_resched())
1222 break;
1223
1224 if (pte_present(ptent)) {
1225 struct page *page;
1226
1227 page = vm_normal_page(vma, addr, ptent);
1228 if (unlikely(details) && page) {
1229 /*
1230 * unmap_shared_mapping_pages() wants to
1231 * invalidate cache without truncating:
1232 * unmap shared but keep private pages.
1233 */
1234 if (details->check_mapping &&
1235 details->check_mapping != page_rmapping(page))
1236 continue;
1237 }
1238 ptent = ptep_get_and_clear_full(mm, addr, pte,
1239 tlb->fullmm);
1240 tlb_remove_tlb_entry(tlb, pte, addr);
1241 if (unlikely(!page))
1242 continue;
1243
1244 if (!PageAnon(page)) {
1245 if (pte_dirty(ptent)) {
1246 force_flush = 1;
1247 set_page_dirty(page);
1248 }
1249 if (pte_young(ptent) &&
1250 likely(!(vma->vm_flags & VM_SEQ_READ)))
1251 mark_page_accessed(page);
1252 }
1253 rss[mm_counter(page)]--;
1254 page_remove_rmap(page, false);
1255 if (unlikely(page_mapcount(page) < 0))
1256 print_bad_pte(vma, addr, ptent, page);
1257 if (unlikely(__tlb_remove_page(tlb, page))) {
1258 force_flush = 1;
1259 addr += PAGE_SIZE;
1260 break;
1261 }
1262 continue;
1263 }
1264
1265 entry = pte_to_swp_entry(ptent);
1266 if (is_device_private_entry(entry)) {
1267 struct page *page = device_private_entry_to_page(entry);
1268
1269 if (unlikely(details && details->check_mapping)) {
1270 /*
1271 * unmap_shared_mapping_pages() wants to
1272 * invalidate cache without truncating:
1273 * unmap shared but keep private pages.
1274 */
1275 if (details->check_mapping !=
1276 page_rmapping(page))
1277 continue;
1278 }
1279
1280 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1281 rss[mm_counter(page)]--;
1282 page_remove_rmap(page, false);
1283 put_page(page);
1284 continue;
1285 }
1286
1287 /* If details->check_mapping, we leave swap entries. */
1288 if (unlikely(details))
1289 continue;
1290
1291 if (!non_swap_entry(entry))
1292 rss[MM_SWAPENTS]--;
1293 else if (is_migration_entry(entry)) {
1294 struct page *page;
1295
1296 page = migration_entry_to_page(entry);
1297 rss[mm_counter(page)]--;
1298 }
1299 if (unlikely(!free_swap_and_cache(entry)))
1300 print_bad_pte(vma, addr, ptent, NULL);
1301 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1302 } while (pte++, addr += PAGE_SIZE, addr != end);
1303
1304 add_mm_rss_vec(mm, rss);
1305 arch_leave_lazy_mmu_mode();
1306
1307 /* Do the actual TLB flush before dropping ptl */
1308 if (force_flush)
1309 tlb_flush_mmu_tlbonly(tlb);
1310 pte_unmap_unlock(start_pte, ptl);
1311
1312 /*
1313 * If we forced a TLB flush (either due to running out of
1314 * batch buffers or because we needed to flush dirty TLB
1315 * entries before releasing the ptl), free the batched
1316 * memory too. Restart if we didn't do everything.
1317 */
1318 if (force_flush) {
1319 force_flush = 0;
1320 tlb_flush_mmu(tlb);
1321 }
1322
1323 if (addr != end) {
1324 cond_resched();
1325 goto again;
1326 }
1327
1328 return addr;
1329 }
1330
1331 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1332 struct vm_area_struct *vma, pud_t *pud,
1333 unsigned long addr, unsigned long end,
1334 struct zap_details *details)
1335 {
1336 pmd_t *pmd;
1337 unsigned long next;
1338
1339 pmd = pmd_offset(pud, addr);
1340 do {
1341 next = pmd_addr_end(addr, end);
1342 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1343 if (next - addr != HPAGE_PMD_SIZE)
1344 __split_huge_pmd(vma, pmd, addr, false, NULL);
1345 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1346 goto next;
1347 /* fall through */
1348 }
1349 /*
1350 * Here there can be other concurrent MADV_DONTNEED or
1351 * trans huge page faults running, and if the pmd is
1352 * none or trans huge it can change under us. This is
1353 * because MADV_DONTNEED holds the mmap_lock in read
1354 * mode.
1355 */
1356 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1357 goto next;
1358 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1359 next:
1360 cond_resched();
1361 } while (pmd++, addr = next, addr != end);
1362
1363 return addr;
1364 }
1365
1366 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1367 struct vm_area_struct *vma, p4d_t *p4d,
1368 unsigned long addr, unsigned long end,
1369 struct zap_details *details)
1370 {
1371 pud_t *pud;
1372 unsigned long next;
1373
1374 pud = pud_offset(p4d, addr);
1375 do {
1376 next = pud_addr_end(addr, end);
1377 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1378 if (next - addr != HPAGE_PUD_SIZE) {
1379 mmap_assert_locked(tlb->mm);
1380 split_huge_pud(vma, pud, addr);
1381 } else if (zap_huge_pud(tlb, vma, pud, addr))
1382 goto next;
1383 /* fall through */
1384 }
1385 if (pud_none_or_clear_bad(pud))
1386 continue;
1387 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1388 next:
1389 cond_resched();
1390 } while (pud++, addr = next, addr != end);
1391
1392 return addr;
1393 }
1394
1395 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1396 struct vm_area_struct *vma, pgd_t *pgd,
1397 unsigned long addr, unsigned long end,
1398 struct zap_details *details)
1399 {
1400 p4d_t *p4d;
1401 unsigned long next;
1402
1403 p4d = p4d_offset(pgd, addr);
1404 do {
1405 next = p4d_addr_end(addr, end);
1406 if (p4d_none_or_clear_bad(p4d))
1407 continue;
1408 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1409 } while (p4d++, addr = next, addr != end);
1410
1411 return addr;
1412 }
1413
1414 void unmap_page_range(struct mmu_gather *tlb,
1415 struct vm_area_struct *vma,
1416 unsigned long addr, unsigned long end,
1417 struct zap_details *details)
1418 {
1419 pgd_t *pgd;
1420 unsigned long next;
1421
1422 BUG_ON(addr >= end);
1423 tlb_start_vma(tlb, vma);
1424 pgd = pgd_offset(vma->vm_mm, addr);
1425 do {
1426 next = pgd_addr_end(addr, end);
1427 if (pgd_none_or_clear_bad(pgd))
1428 continue;
1429 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1430 } while (pgd++, addr = next, addr != end);
1431 tlb_end_vma(tlb, vma);
1432 }
1433
1434
1435 static void unmap_single_vma(struct mmu_gather *tlb,
1436 struct vm_area_struct *vma, unsigned long start_addr,
1437 unsigned long end_addr,
1438 struct zap_details *details)
1439 {
1440 unsigned long start = max(vma->vm_start, start_addr);
1441 unsigned long end;
1442
1443 if (start >= vma->vm_end)
1444 return;
1445 end = min(vma->vm_end, end_addr);
1446 if (end <= vma->vm_start)
1447 return;
1448
1449 if (vma->vm_file)
1450 uprobe_munmap(vma, start, end);
1451
1452 if (unlikely(vma->vm_flags & VM_PFNMAP))
1453 untrack_pfn(vma, 0, 0);
1454
1455 if (start != end) {
1456 if (unlikely(is_vm_hugetlb_page(vma))) {
1457 /*
1458 * It is undesirable to test vma->vm_file as it
1459 * should be non-null for valid hugetlb area.
1460 * However, vm_file will be NULL in the error
1461 * cleanup path of mmap_region. When
1462 * hugetlbfs ->mmap method fails,
1463 * mmap_region() nullifies vma->vm_file
1464 * before calling this function to clean up.
1465 * Since no pte has actually been setup, it is
1466 * safe to do nothing in this case.
1467 */
1468 if (vma->vm_file) {
1469 i_mmap_lock_write(vma->vm_file->f_mapping);
1470 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1471 i_mmap_unlock_write(vma->vm_file->f_mapping);
1472 }
1473 } else
1474 unmap_page_range(tlb, vma, start, end, details);
1475 }
1476 }
1477
1478 /**
1479 * unmap_vmas - unmap a range of memory covered by a list of vma's
1480 * @tlb: address of the caller's struct mmu_gather
1481 * @vma: the starting vma
1482 * @start_addr: virtual address at which to start unmapping
1483 * @end_addr: virtual address at which to end unmapping
1484 *
1485 * Unmap all pages in the vma list.
1486 *
1487 * Only addresses between `start' and `end' will be unmapped.
1488 *
1489 * The VMA list must be sorted in ascending virtual address order.
1490 *
1491 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1492 * range after unmap_vmas() returns. So the only responsibility here is to
1493 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1494 * drops the lock and schedules.
1495 */
1496 void unmap_vmas(struct mmu_gather *tlb,
1497 struct vm_area_struct *vma, unsigned long start_addr,
1498 unsigned long end_addr)
1499 {
1500 struct mmu_notifier_range range;
1501
1502 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1503 start_addr, end_addr);
1504 mmu_notifier_invalidate_range_start(&range);
1505 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1506 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1507 mmu_notifier_invalidate_range_end(&range);
1508 }
1509
1510 /**
1511 * zap_page_range - remove user pages in a given range
1512 * @vma: vm_area_struct holding the applicable pages
1513 * @start: starting address of pages to zap
1514 * @size: number of bytes to zap
1515 *
1516 * Caller must protect the VMA list
1517 */
1518 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1519 unsigned long size)
1520 {
1521 struct mmu_notifier_range range;
1522 struct mmu_gather tlb;
1523
1524 lru_add_drain();
1525 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1526 start, start + size);
1527 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1528 update_hiwater_rss(vma->vm_mm);
1529 mmu_notifier_invalidate_range_start(&range);
1530 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1531 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1532 mmu_notifier_invalidate_range_end(&range);
1533 tlb_finish_mmu(&tlb, start, range.end);
1534 }
1535
1536 /**
1537 * zap_page_range_single - remove user pages in a given range
1538 * @vma: vm_area_struct holding the applicable pages
1539 * @address: starting address of pages to zap
1540 * @size: number of bytes to zap
1541 * @details: details of shared cache invalidation
1542 *
1543 * The range must fit into one VMA.
1544 */
1545 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1546 unsigned long size, struct zap_details *details)
1547 {
1548 struct mmu_notifier_range range;
1549 struct mmu_gather tlb;
1550
1551 lru_add_drain();
1552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1553 address, address + size);
1554 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1555 update_hiwater_rss(vma->vm_mm);
1556 mmu_notifier_invalidate_range_start(&range);
1557 unmap_single_vma(&tlb, vma, address, range.end, details);
1558 mmu_notifier_invalidate_range_end(&range);
1559 tlb_finish_mmu(&tlb, address, range.end);
1560 }
1561
1562 /**
1563 * zap_vma_ptes - remove ptes mapping the vma
1564 * @vma: vm_area_struct holding ptes to be zapped
1565 * @address: starting address of pages to zap
1566 * @size: number of bytes to zap
1567 *
1568 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1569 *
1570 * The entire address range must be fully contained within the vma.
1571 *
1572 */
1573 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1574 unsigned long size)
1575 {
1576 if (address < vma->vm_start || address + size > vma->vm_end ||
1577 !(vma->vm_flags & VM_PFNMAP))
1578 return;
1579
1580 zap_page_range_single(vma, address, size, NULL);
1581 }
1582 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1583
1584 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1585 {
1586 pgd_t *pgd;
1587 p4d_t *p4d;
1588 pud_t *pud;
1589 pmd_t *pmd;
1590
1591 pgd = pgd_offset(mm, addr);
1592 p4d = p4d_alloc(mm, pgd, addr);
1593 if (!p4d)
1594 return NULL;
1595 pud = pud_alloc(mm, p4d, addr);
1596 if (!pud)
1597 return NULL;
1598 pmd = pmd_alloc(mm, pud, addr);
1599 if (!pmd)
1600 return NULL;
1601
1602 VM_BUG_ON(pmd_trans_huge(*pmd));
1603 return pmd;
1604 }
1605
1606 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1607 spinlock_t **ptl)
1608 {
1609 pmd_t *pmd = walk_to_pmd(mm, addr);
1610
1611 if (!pmd)
1612 return NULL;
1613 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1614 }
1615
1616 static int validate_page_before_insert(struct page *page)
1617 {
1618 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1619 return -EINVAL;
1620 flush_dcache_page(page);
1621 return 0;
1622 }
1623
1624 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1625 unsigned long addr, struct page *page, pgprot_t prot)
1626 {
1627 if (!pte_none(*pte))
1628 return -EBUSY;
1629 /* Ok, finally just insert the thing.. */
1630 get_page(page);
1631 inc_mm_counter_fast(mm, mm_counter_file(page));
1632 page_add_file_rmap(page, false);
1633 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1634 return 0;
1635 }
1636
1637 /*
1638 * This is the old fallback for page remapping.
1639 *
1640 * For historical reasons, it only allows reserved pages. Only
1641 * old drivers should use this, and they needed to mark their
1642 * pages reserved for the old functions anyway.
1643 */
1644 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1645 struct page *page, pgprot_t prot)
1646 {
1647 struct mm_struct *mm = vma->vm_mm;
1648 int retval;
1649 pte_t *pte;
1650 spinlock_t *ptl;
1651
1652 retval = validate_page_before_insert(page);
1653 if (retval)
1654 goto out;
1655 retval = -ENOMEM;
1656 pte = get_locked_pte(mm, addr, &ptl);
1657 if (!pte)
1658 goto out;
1659 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1660 pte_unmap_unlock(pte, ptl);
1661 out:
1662 return retval;
1663 }
1664
1665 #ifdef pte_index
1666 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1667 unsigned long addr, struct page *page, pgprot_t prot)
1668 {
1669 int err;
1670
1671 if (!page_count(page))
1672 return -EINVAL;
1673 err = validate_page_before_insert(page);
1674 if (err)
1675 return err;
1676 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1677 }
1678
1679 /* insert_pages() amortizes the cost of spinlock operations
1680 * when inserting pages in a loop. Arch *must* define pte_index.
1681 */
1682 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1683 struct page **pages, unsigned long *num, pgprot_t prot)
1684 {
1685 pmd_t *pmd = NULL;
1686 pte_t *start_pte, *pte;
1687 spinlock_t *pte_lock;
1688 struct mm_struct *const mm = vma->vm_mm;
1689 unsigned long curr_page_idx = 0;
1690 unsigned long remaining_pages_total = *num;
1691 unsigned long pages_to_write_in_pmd;
1692 int ret;
1693 more:
1694 ret = -EFAULT;
1695 pmd = walk_to_pmd(mm, addr);
1696 if (!pmd)
1697 goto out;
1698
1699 pages_to_write_in_pmd = min_t(unsigned long,
1700 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1701
1702 /* Allocate the PTE if necessary; takes PMD lock once only. */
1703 ret = -ENOMEM;
1704 if (pte_alloc(mm, pmd))
1705 goto out;
1706
1707 while (pages_to_write_in_pmd) {
1708 int pte_idx = 0;
1709 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1710
1711 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1712 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1713 int err = insert_page_in_batch_locked(mm, pte,
1714 addr, pages[curr_page_idx], prot);
1715 if (unlikely(err)) {
1716 pte_unmap_unlock(start_pte, pte_lock);
1717 ret = err;
1718 remaining_pages_total -= pte_idx;
1719 goto out;
1720 }
1721 addr += PAGE_SIZE;
1722 ++curr_page_idx;
1723 }
1724 pte_unmap_unlock(start_pte, pte_lock);
1725 pages_to_write_in_pmd -= batch_size;
1726 remaining_pages_total -= batch_size;
1727 }
1728 if (remaining_pages_total)
1729 goto more;
1730 ret = 0;
1731 out:
1732 *num = remaining_pages_total;
1733 return ret;
1734 }
1735 #endif /* ifdef pte_index */
1736
1737 /**
1738 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1739 * @vma: user vma to map to
1740 * @addr: target start user address of these pages
1741 * @pages: source kernel pages
1742 * @num: in: number of pages to map. out: number of pages that were *not*
1743 * mapped. (0 means all pages were successfully mapped).
1744 *
1745 * Preferred over vm_insert_page() when inserting multiple pages.
1746 *
1747 * In case of error, we may have mapped a subset of the provided
1748 * pages. It is the caller's responsibility to account for this case.
1749 *
1750 * The same restrictions apply as in vm_insert_page().
1751 */
1752 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1753 struct page **pages, unsigned long *num)
1754 {
1755 #ifdef pte_index
1756 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1757
1758 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1759 return -EFAULT;
1760 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1761 BUG_ON(mmap_read_trylock(vma->vm_mm));
1762 BUG_ON(vma->vm_flags & VM_PFNMAP);
1763 vma->vm_flags |= VM_MIXEDMAP;
1764 }
1765 /* Defer page refcount checking till we're about to map that page. */
1766 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1767 #else
1768 unsigned long idx = 0, pgcount = *num;
1769 int err = -EINVAL;
1770
1771 for (; idx < pgcount; ++idx) {
1772 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1773 if (err)
1774 break;
1775 }
1776 *num = pgcount - idx;
1777 return err;
1778 #endif /* ifdef pte_index */
1779 }
1780 EXPORT_SYMBOL(vm_insert_pages);
1781
1782 /**
1783 * vm_insert_page - insert single page into user vma
1784 * @vma: user vma to map to
1785 * @addr: target user address of this page
1786 * @page: source kernel page
1787 *
1788 * This allows drivers to insert individual pages they've allocated
1789 * into a user vma.
1790 *
1791 * The page has to be a nice clean _individual_ kernel allocation.
1792 * If you allocate a compound page, you need to have marked it as
1793 * such (__GFP_COMP), or manually just split the page up yourself
1794 * (see split_page()).
1795 *
1796 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1797 * took an arbitrary page protection parameter. This doesn't allow
1798 * that. Your vma protection will have to be set up correctly, which
1799 * means that if you want a shared writable mapping, you'd better
1800 * ask for a shared writable mapping!
1801 *
1802 * The page does not need to be reserved.
1803 *
1804 * Usually this function is called from f_op->mmap() handler
1805 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1806 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1807 * function from other places, for example from page-fault handler.
1808 *
1809 * Return: %0 on success, negative error code otherwise.
1810 */
1811 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1812 struct page *page)
1813 {
1814 if (addr < vma->vm_start || addr >= vma->vm_end)
1815 return -EFAULT;
1816 if (!page_count(page))
1817 return -EINVAL;
1818 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1819 BUG_ON(mmap_read_trylock(vma->vm_mm));
1820 BUG_ON(vma->vm_flags & VM_PFNMAP);
1821 vma->vm_flags |= VM_MIXEDMAP;
1822 }
1823 return insert_page(vma, addr, page, vma->vm_page_prot);
1824 }
1825 EXPORT_SYMBOL(vm_insert_page);
1826
1827 /*
1828 * __vm_map_pages - maps range of kernel pages into user vma
1829 * @vma: user vma to map to
1830 * @pages: pointer to array of source kernel pages
1831 * @num: number of pages in page array
1832 * @offset: user's requested vm_pgoff
1833 *
1834 * This allows drivers to map range of kernel pages into a user vma.
1835 *
1836 * Return: 0 on success and error code otherwise.
1837 */
1838 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1839 unsigned long num, unsigned long offset)
1840 {
1841 unsigned long count = vma_pages(vma);
1842 unsigned long uaddr = vma->vm_start;
1843 int ret, i;
1844
1845 /* Fail if the user requested offset is beyond the end of the object */
1846 if (offset >= num)
1847 return -ENXIO;
1848
1849 /* Fail if the user requested size exceeds available object size */
1850 if (count > num - offset)
1851 return -ENXIO;
1852
1853 for (i = 0; i < count; i++) {
1854 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1855 if (ret < 0)
1856 return ret;
1857 uaddr += PAGE_SIZE;
1858 }
1859
1860 return 0;
1861 }
1862
1863 /**
1864 * vm_map_pages - maps range of kernel pages starts with non zero offset
1865 * @vma: user vma to map to
1866 * @pages: pointer to array of source kernel pages
1867 * @num: number of pages in page array
1868 *
1869 * Maps an object consisting of @num pages, catering for the user's
1870 * requested vm_pgoff
1871 *
1872 * If we fail to insert any page into the vma, the function will return
1873 * immediately leaving any previously inserted pages present. Callers
1874 * from the mmap handler may immediately return the error as their caller
1875 * will destroy the vma, removing any successfully inserted pages. Other
1876 * callers should make their own arrangements for calling unmap_region().
1877 *
1878 * Context: Process context. Called by mmap handlers.
1879 * Return: 0 on success and error code otherwise.
1880 */
1881 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1882 unsigned long num)
1883 {
1884 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1885 }
1886 EXPORT_SYMBOL(vm_map_pages);
1887
1888 /**
1889 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1890 * @vma: user vma to map to
1891 * @pages: pointer to array of source kernel pages
1892 * @num: number of pages in page array
1893 *
1894 * Similar to vm_map_pages(), except that it explicitly sets the offset
1895 * to 0. This function is intended for the drivers that did not consider
1896 * vm_pgoff.
1897 *
1898 * Context: Process context. Called by mmap handlers.
1899 * Return: 0 on success and error code otherwise.
1900 */
1901 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1902 unsigned long num)
1903 {
1904 return __vm_map_pages(vma, pages, num, 0);
1905 }
1906 EXPORT_SYMBOL(vm_map_pages_zero);
1907
1908 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1909 pfn_t pfn, pgprot_t prot, bool mkwrite)
1910 {
1911 struct mm_struct *mm = vma->vm_mm;
1912 pte_t *pte, entry;
1913 spinlock_t *ptl;
1914
1915 pte = get_locked_pte(mm, addr, &ptl);
1916 if (!pte)
1917 return VM_FAULT_OOM;
1918 if (!pte_none(*pte)) {
1919 if (mkwrite) {
1920 /*
1921 * For read faults on private mappings the PFN passed
1922 * in may not match the PFN we have mapped if the
1923 * mapped PFN is a writeable COW page. In the mkwrite
1924 * case we are creating a writable PTE for a shared
1925 * mapping and we expect the PFNs to match. If they
1926 * don't match, we are likely racing with block
1927 * allocation and mapping invalidation so just skip the
1928 * update.
1929 */
1930 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1931 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1932 goto out_unlock;
1933 }
1934 entry = pte_mkyoung(*pte);
1935 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1936 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1937 update_mmu_cache(vma, addr, pte);
1938 }
1939 goto out_unlock;
1940 }
1941
1942 /* Ok, finally just insert the thing.. */
1943 if (pfn_t_devmap(pfn))
1944 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1945 else
1946 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1947
1948 if (mkwrite) {
1949 entry = pte_mkyoung(entry);
1950 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1951 }
1952
1953 set_pte_at(mm, addr, pte, entry);
1954 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1955
1956 out_unlock:
1957 pte_unmap_unlock(pte, ptl);
1958 return VM_FAULT_NOPAGE;
1959 }
1960
1961 /**
1962 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1963 * @vma: user vma to map to
1964 * @addr: target user address of this page
1965 * @pfn: source kernel pfn
1966 * @pgprot: pgprot flags for the inserted page
1967 *
1968 * This is exactly like vmf_insert_pfn(), except that it allows drivers
1969 * to override pgprot on a per-page basis.
1970 *
1971 * This only makes sense for IO mappings, and it makes no sense for
1972 * COW mappings. In general, using multiple vmas is preferable;
1973 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1974 * impractical.
1975 *
1976 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1977 * a value of @pgprot different from that of @vma->vm_page_prot.
1978 *
1979 * Context: Process context. May allocate using %GFP_KERNEL.
1980 * Return: vm_fault_t value.
1981 */
1982 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1983 unsigned long pfn, pgprot_t pgprot)
1984 {
1985 /*
1986 * Technically, architectures with pte_special can avoid all these
1987 * restrictions (same for remap_pfn_range). However we would like
1988 * consistency in testing and feature parity among all, so we should
1989 * try to keep these invariants in place for everybody.
1990 */
1991 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1992 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1993 (VM_PFNMAP|VM_MIXEDMAP));
1994 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1995 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1996
1997 if (addr < vma->vm_start || addr >= vma->vm_end)
1998 return VM_FAULT_SIGBUS;
1999
2000 if (!pfn_modify_allowed(pfn, pgprot))
2001 return VM_FAULT_SIGBUS;
2002
2003 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2004
2005 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2006 false);
2007 }
2008 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2009
2010 /**
2011 * vmf_insert_pfn - insert single pfn into user vma
2012 * @vma: user vma to map to
2013 * @addr: target user address of this page
2014 * @pfn: source kernel pfn
2015 *
2016 * Similar to vm_insert_page, this allows drivers to insert individual pages
2017 * they've allocated into a user vma. Same comments apply.
2018 *
2019 * This function should only be called from a vm_ops->fault handler, and
2020 * in that case the handler should return the result of this function.
2021 *
2022 * vma cannot be a COW mapping.
2023 *
2024 * As this is called only for pages that do not currently exist, we
2025 * do not need to flush old virtual caches or the TLB.
2026 *
2027 * Context: Process context. May allocate using %GFP_KERNEL.
2028 * Return: vm_fault_t value.
2029 */
2030 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2031 unsigned long pfn)
2032 {
2033 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2034 }
2035 EXPORT_SYMBOL(vmf_insert_pfn);
2036
2037 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2038 {
2039 /* these checks mirror the abort conditions in vm_normal_page */
2040 if (vma->vm_flags & VM_MIXEDMAP)
2041 return true;
2042 if (pfn_t_devmap(pfn))
2043 return true;
2044 if (pfn_t_special(pfn))
2045 return true;
2046 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2047 return true;
2048 return false;
2049 }
2050
2051 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2052 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2053 bool mkwrite)
2054 {
2055 int err;
2056
2057 BUG_ON(!vm_mixed_ok(vma, pfn));
2058
2059 if (addr < vma->vm_start || addr >= vma->vm_end)
2060 return VM_FAULT_SIGBUS;
2061
2062 track_pfn_insert(vma, &pgprot, pfn);
2063
2064 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2065 return VM_FAULT_SIGBUS;
2066
2067 /*
2068 * If we don't have pte special, then we have to use the pfn_valid()
2069 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2070 * refcount the page if pfn_valid is true (hence insert_page rather
2071 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2072 * without pte special, it would there be refcounted as a normal page.
2073 */
2074 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2075 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2076 struct page *page;
2077
2078 /*
2079 * At this point we are committed to insert_page()
2080 * regardless of whether the caller specified flags that
2081 * result in pfn_t_has_page() == false.
2082 */
2083 page = pfn_to_page(pfn_t_to_pfn(pfn));
2084 err = insert_page(vma, addr, page, pgprot);
2085 } else {
2086 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2087 }
2088
2089 if (err == -ENOMEM)
2090 return VM_FAULT_OOM;
2091 if (err < 0 && err != -EBUSY)
2092 return VM_FAULT_SIGBUS;
2093
2094 return VM_FAULT_NOPAGE;
2095 }
2096
2097 /**
2098 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2099 * @vma: user vma to map to
2100 * @addr: target user address of this page
2101 * @pfn: source kernel pfn
2102 * @pgprot: pgprot flags for the inserted page
2103 *
2104 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2105 * to override pgprot on a per-page basis.
2106 *
2107 * Typically this function should be used by drivers to set caching- and
2108 * encryption bits different than those of @vma->vm_page_prot, because
2109 * the caching- or encryption mode may not be known at mmap() time.
2110 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2111 * to set caching and encryption bits for those vmas (except for COW pages).
2112 * This is ensured by core vm only modifying these page table entries using
2113 * functions that don't touch caching- or encryption bits, using pte_modify()
2114 * if needed. (See for example mprotect()).
2115 * Also when new page-table entries are created, this is only done using the
2116 * fault() callback, and never using the value of vma->vm_page_prot,
2117 * except for page-table entries that point to anonymous pages as the result
2118 * of COW.
2119 *
2120 * Context: Process context. May allocate using %GFP_KERNEL.
2121 * Return: vm_fault_t value.
2122 */
2123 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2124 pfn_t pfn, pgprot_t pgprot)
2125 {
2126 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2127 }
2128 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2129
2130 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2131 pfn_t pfn)
2132 {
2133 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2134 }
2135 EXPORT_SYMBOL(vmf_insert_mixed);
2136
2137 /*
2138 * If the insertion of PTE failed because someone else already added a
2139 * different entry in the mean time, we treat that as success as we assume
2140 * the same entry was actually inserted.
2141 */
2142 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2143 unsigned long addr, pfn_t pfn)
2144 {
2145 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2146 }
2147 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2148
2149 /*
2150 * maps a range of physical memory into the requested pages. the old
2151 * mappings are removed. any references to nonexistent pages results
2152 * in null mappings (currently treated as "copy-on-access")
2153 */
2154 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2155 unsigned long addr, unsigned long end,
2156 unsigned long pfn, pgprot_t prot)
2157 {
2158 pte_t *pte;
2159 spinlock_t *ptl;
2160 int err = 0;
2161
2162 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163 if (!pte)
2164 return -ENOMEM;
2165 arch_enter_lazy_mmu_mode();
2166 do {
2167 BUG_ON(!pte_none(*pte));
2168 if (!pfn_modify_allowed(pfn, prot)) {
2169 err = -EACCES;
2170 break;
2171 }
2172 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2173 pfn++;
2174 } while (pte++, addr += PAGE_SIZE, addr != end);
2175 arch_leave_lazy_mmu_mode();
2176 pte_unmap_unlock(pte - 1, ptl);
2177 return err;
2178 }
2179
2180 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2181 unsigned long addr, unsigned long end,
2182 unsigned long pfn, pgprot_t prot)
2183 {
2184 pmd_t *pmd;
2185 unsigned long next;
2186 int err;
2187
2188 pfn -= addr >> PAGE_SHIFT;
2189 pmd = pmd_alloc(mm, pud, addr);
2190 if (!pmd)
2191 return -ENOMEM;
2192 VM_BUG_ON(pmd_trans_huge(*pmd));
2193 do {
2194 next = pmd_addr_end(addr, end);
2195 err = remap_pte_range(mm, pmd, addr, next,
2196 pfn + (addr >> PAGE_SHIFT), prot);
2197 if (err)
2198 return err;
2199 } while (pmd++, addr = next, addr != end);
2200 return 0;
2201 }
2202
2203 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2204 unsigned long addr, unsigned long end,
2205 unsigned long pfn, pgprot_t prot)
2206 {
2207 pud_t *pud;
2208 unsigned long next;
2209 int err;
2210
2211 pfn -= addr >> PAGE_SHIFT;
2212 pud = pud_alloc(mm, p4d, addr);
2213 if (!pud)
2214 return -ENOMEM;
2215 do {
2216 next = pud_addr_end(addr, end);
2217 err = remap_pmd_range(mm, pud, addr, next,
2218 pfn + (addr >> PAGE_SHIFT), prot);
2219 if (err)
2220 return err;
2221 } while (pud++, addr = next, addr != end);
2222 return 0;
2223 }
2224
2225 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2226 unsigned long addr, unsigned long end,
2227 unsigned long pfn, pgprot_t prot)
2228 {
2229 p4d_t *p4d;
2230 unsigned long next;
2231 int err;
2232
2233 pfn -= addr >> PAGE_SHIFT;
2234 p4d = p4d_alloc(mm, pgd, addr);
2235 if (!p4d)
2236 return -ENOMEM;
2237 do {
2238 next = p4d_addr_end(addr, end);
2239 err = remap_pud_range(mm, p4d, addr, next,
2240 pfn + (addr >> PAGE_SHIFT), prot);
2241 if (err)
2242 return err;
2243 } while (p4d++, addr = next, addr != end);
2244 return 0;
2245 }
2246
2247 /**
2248 * remap_pfn_range - remap kernel memory to userspace
2249 * @vma: user vma to map to
2250 * @addr: target page aligned user address to start at
2251 * @pfn: page frame number of kernel physical memory address
2252 * @size: size of mapping area
2253 * @prot: page protection flags for this mapping
2254 *
2255 * Note: this is only safe if the mm semaphore is held when called.
2256 *
2257 * Return: %0 on success, negative error code otherwise.
2258 */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260 unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262 pgd_t *pgd;
2263 unsigned long next;
2264 unsigned long end = addr + PAGE_ALIGN(size);
2265 struct mm_struct *mm = vma->vm_mm;
2266 unsigned long remap_pfn = pfn;
2267 int err;
2268
2269 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2270 return -EINVAL;
2271
2272 /*
2273 * Physically remapped pages are special. Tell the
2274 * rest of the world about it:
2275 * VM_IO tells people not to look at these pages
2276 * (accesses can have side effects).
2277 * VM_PFNMAP tells the core MM that the base pages are just
2278 * raw PFN mappings, and do not have a "struct page" associated
2279 * with them.
2280 * VM_DONTEXPAND
2281 * Disable vma merging and expanding with mremap().
2282 * VM_DONTDUMP
2283 * Omit vma from core dump, even when VM_IO turned off.
2284 *
2285 * There's a horrible special case to handle copy-on-write
2286 * behaviour that some programs depend on. We mark the "original"
2287 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2288 * See vm_normal_page() for details.
2289 */
2290 if (is_cow_mapping(vma->vm_flags)) {
2291 if (addr != vma->vm_start || end != vma->vm_end)
2292 return -EINVAL;
2293 vma->vm_pgoff = pfn;
2294 }
2295
2296 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2297 if (err)
2298 return -EINVAL;
2299
2300 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2301
2302 BUG_ON(addr >= end);
2303 pfn -= addr >> PAGE_SHIFT;
2304 pgd = pgd_offset(mm, addr);
2305 flush_cache_range(vma, addr, end);
2306 do {
2307 next = pgd_addr_end(addr, end);
2308 err = remap_p4d_range(mm, pgd, addr, next,
2309 pfn + (addr >> PAGE_SHIFT), prot);
2310 if (err)
2311 break;
2312 } while (pgd++, addr = next, addr != end);
2313
2314 if (err)
2315 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2316
2317 return err;
2318 }
2319 EXPORT_SYMBOL(remap_pfn_range);
2320
2321 /**
2322 * vm_iomap_memory - remap memory to userspace
2323 * @vma: user vma to map to
2324 * @start: start of the physical memory to be mapped
2325 * @len: size of area
2326 *
2327 * This is a simplified io_remap_pfn_range() for common driver use. The
2328 * driver just needs to give us the physical memory range to be mapped,
2329 * we'll figure out the rest from the vma information.
2330 *
2331 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2332 * whatever write-combining details or similar.
2333 *
2334 * Return: %0 on success, negative error code otherwise.
2335 */
2336 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2337 {
2338 unsigned long vm_len, pfn, pages;
2339
2340 /* Check that the physical memory area passed in looks valid */
2341 if (start + len < start)
2342 return -EINVAL;
2343 /*
2344 * You *really* shouldn't map things that aren't page-aligned,
2345 * but we've historically allowed it because IO memory might
2346 * just have smaller alignment.
2347 */
2348 len += start & ~PAGE_MASK;
2349 pfn = start >> PAGE_SHIFT;
2350 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2351 if (pfn + pages < pfn)
2352 return -EINVAL;
2353
2354 /* We start the mapping 'vm_pgoff' pages into the area */
2355 if (vma->vm_pgoff > pages)
2356 return -EINVAL;
2357 pfn += vma->vm_pgoff;
2358 pages -= vma->vm_pgoff;
2359
2360 /* Can we fit all of the mapping? */
2361 vm_len = vma->vm_end - vma->vm_start;
2362 if (vm_len >> PAGE_SHIFT > pages)
2363 return -EINVAL;
2364
2365 /* Ok, let it rip */
2366 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2367 }
2368 EXPORT_SYMBOL(vm_iomap_memory);
2369
2370 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371 unsigned long addr, unsigned long end,
2372 pte_fn_t fn, void *data, bool create,
2373 pgtbl_mod_mask *mask)
2374 {
2375 pte_t *pte;
2376 int err = 0;
2377 spinlock_t *ptl;
2378
2379 if (create) {
2380 pte = (mm == &init_mm) ?
2381 pte_alloc_kernel_track(pmd, addr, mask) :
2382 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2383 if (!pte)
2384 return -ENOMEM;
2385 } else {
2386 pte = (mm == &init_mm) ?
2387 pte_offset_kernel(pmd, addr) :
2388 pte_offset_map_lock(mm, pmd, addr, &ptl);
2389 }
2390
2391 BUG_ON(pmd_huge(*pmd));
2392
2393 arch_enter_lazy_mmu_mode();
2394
2395 do {
2396 if (create || !pte_none(*pte)) {
2397 err = fn(pte++, addr, data);
2398 if (err)
2399 break;
2400 }
2401 } while (addr += PAGE_SIZE, addr != end);
2402 *mask |= PGTBL_PTE_MODIFIED;
2403
2404 arch_leave_lazy_mmu_mode();
2405
2406 if (mm != &init_mm)
2407 pte_unmap_unlock(pte-1, ptl);
2408 return err;
2409 }
2410
2411 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2412 unsigned long addr, unsigned long end,
2413 pte_fn_t fn, void *data, bool create,
2414 pgtbl_mod_mask *mask)
2415 {
2416 pmd_t *pmd;
2417 unsigned long next;
2418 int err = 0;
2419
2420 BUG_ON(pud_huge(*pud));
2421
2422 if (create) {
2423 pmd = pmd_alloc_track(mm, pud, addr, mask);
2424 if (!pmd)
2425 return -ENOMEM;
2426 } else {
2427 pmd = pmd_offset(pud, addr);
2428 }
2429 do {
2430 next = pmd_addr_end(addr, end);
2431 if (create || !pmd_none_or_clear_bad(pmd)) {
2432 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2433 create, mask);
2434 if (err)
2435 break;
2436 }
2437 } while (pmd++, addr = next, addr != end);
2438 return err;
2439 }
2440
2441 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2442 unsigned long addr, unsigned long end,
2443 pte_fn_t fn, void *data, bool create,
2444 pgtbl_mod_mask *mask)
2445 {
2446 pud_t *pud;
2447 unsigned long next;
2448 int err = 0;
2449
2450 if (create) {
2451 pud = pud_alloc_track(mm, p4d, addr, mask);
2452 if (!pud)
2453 return -ENOMEM;
2454 } else {
2455 pud = pud_offset(p4d, addr);
2456 }
2457 do {
2458 next = pud_addr_end(addr, end);
2459 if (create || !pud_none_or_clear_bad(pud)) {
2460 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2461 create, mask);
2462 if (err)
2463 break;
2464 }
2465 } while (pud++, addr = next, addr != end);
2466 return err;
2467 }
2468
2469 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2470 unsigned long addr, unsigned long end,
2471 pte_fn_t fn, void *data, bool create,
2472 pgtbl_mod_mask *mask)
2473 {
2474 p4d_t *p4d;
2475 unsigned long next;
2476 int err = 0;
2477
2478 if (create) {
2479 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2480 if (!p4d)
2481 return -ENOMEM;
2482 } else {
2483 p4d = p4d_offset(pgd, addr);
2484 }
2485 do {
2486 next = p4d_addr_end(addr, end);
2487 if (create || !p4d_none_or_clear_bad(p4d)) {
2488 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2489 create, mask);
2490 if (err)
2491 break;
2492 }
2493 } while (p4d++, addr = next, addr != end);
2494 return err;
2495 }
2496
2497 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2498 unsigned long size, pte_fn_t fn,
2499 void *data, bool create)
2500 {
2501 pgd_t *pgd;
2502 unsigned long start = addr, next;
2503 unsigned long end = addr + size;
2504 pgtbl_mod_mask mask = 0;
2505 int err = 0;
2506
2507 if (WARN_ON(addr >= end))
2508 return -EINVAL;
2509
2510 pgd = pgd_offset(mm, addr);
2511 do {
2512 next = pgd_addr_end(addr, end);
2513 if (!create && pgd_none_or_clear_bad(pgd))
2514 continue;
2515 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2516 if (err)
2517 break;
2518 } while (pgd++, addr = next, addr != end);
2519
2520 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2521 arch_sync_kernel_mappings(start, start + size);
2522
2523 return err;
2524 }
2525
2526 /*
2527 * Scan a region of virtual memory, filling in page tables as necessary
2528 * and calling a provided function on each leaf page table.
2529 */
2530 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2531 unsigned long size, pte_fn_t fn, void *data)
2532 {
2533 return __apply_to_page_range(mm, addr, size, fn, data, true);
2534 }
2535 EXPORT_SYMBOL_GPL(apply_to_page_range);
2536
2537 /*
2538 * Scan a region of virtual memory, calling a provided function on
2539 * each leaf page table where it exists.
2540 *
2541 * Unlike apply_to_page_range, this does _not_ fill in page tables
2542 * where they are absent.
2543 */
2544 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2545 unsigned long size, pte_fn_t fn, void *data)
2546 {
2547 return __apply_to_page_range(mm, addr, size, fn, data, false);
2548 }
2549 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2550
2551 /*
2552 * handle_pte_fault chooses page fault handler according to an entry which was
2553 * read non-atomically. Before making any commitment, on those architectures
2554 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2555 * parts, do_swap_page must check under lock before unmapping the pte and
2556 * proceeding (but do_wp_page is only called after already making such a check;
2557 * and do_anonymous_page can safely check later on).
2558 */
2559 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2560 pte_t *page_table, pte_t orig_pte)
2561 {
2562 int same = 1;
2563 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2564 if (sizeof(pte_t) > sizeof(unsigned long)) {
2565 spinlock_t *ptl = pte_lockptr(mm, pmd);
2566 spin_lock(ptl);
2567 same = pte_same(*page_table, orig_pte);
2568 spin_unlock(ptl);
2569 }
2570 #endif
2571 pte_unmap(page_table);
2572 return same;
2573 }
2574
2575 static inline bool cow_user_page(struct page *dst, struct page *src,
2576 struct vm_fault *vmf)
2577 {
2578 bool ret;
2579 void *kaddr;
2580 void __user *uaddr;
2581 bool locked = false;
2582 struct vm_area_struct *vma = vmf->vma;
2583 struct mm_struct *mm = vma->vm_mm;
2584 unsigned long addr = vmf->address;
2585
2586 if (likely(src)) {
2587 copy_user_highpage(dst, src, addr, vma);
2588 return true;
2589 }
2590
2591 /*
2592 * If the source page was a PFN mapping, we don't have
2593 * a "struct page" for it. We do a best-effort copy by
2594 * just copying from the original user address. If that
2595 * fails, we just zero-fill it. Live with it.
2596 */
2597 kaddr = kmap_atomic(dst);
2598 uaddr = (void __user *)(addr & PAGE_MASK);
2599
2600 /*
2601 * On architectures with software "accessed" bits, we would
2602 * take a double page fault, so mark it accessed here.
2603 */
2604 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2605 pte_t entry;
2606
2607 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2608 locked = true;
2609 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2610 /*
2611 * Other thread has already handled the fault
2612 * and update local tlb only
2613 */
2614 update_mmu_tlb(vma, addr, vmf->pte);
2615 ret = false;
2616 goto pte_unlock;
2617 }
2618
2619 entry = pte_mkyoung(vmf->orig_pte);
2620 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2621 update_mmu_cache(vma, addr, vmf->pte);
2622 }
2623
2624 /*
2625 * This really shouldn't fail, because the page is there
2626 * in the page tables. But it might just be unreadable,
2627 * in which case we just give up and fill the result with
2628 * zeroes.
2629 */
2630 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2631 if (locked)
2632 goto warn;
2633
2634 /* Re-validate under PTL if the page is still mapped */
2635 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2636 locked = true;
2637 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638 /* The PTE changed under us, update local tlb */
2639 update_mmu_tlb(vma, addr, vmf->pte);
2640 ret = false;
2641 goto pte_unlock;
2642 }
2643
2644 /*
2645 * The same page can be mapped back since last copy attempt.
2646 * Try to copy again under PTL.
2647 */
2648 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649 /*
2650 * Give a warn in case there can be some obscure
2651 * use-case
2652 */
2653 warn:
2654 WARN_ON_ONCE(1);
2655 clear_page(kaddr);
2656 }
2657 }
2658
2659 ret = true;
2660
2661 pte_unlock:
2662 if (locked)
2663 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664 kunmap_atomic(kaddr);
2665 flush_dcache_page(dst);
2666
2667 return ret;
2668 }
2669
2670 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2671 {
2672 struct file *vm_file = vma->vm_file;
2673
2674 if (vm_file)
2675 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2676
2677 /*
2678 * Special mappings (e.g. VDSO) do not have any file so fake
2679 * a default GFP_KERNEL for them.
2680 */
2681 return GFP_KERNEL;
2682 }
2683
2684 /*
2685 * Notify the address space that the page is about to become writable so that
2686 * it can prohibit this or wait for the page to get into an appropriate state.
2687 *
2688 * We do this without the lock held, so that it can sleep if it needs to.
2689 */
2690 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2691 {
2692 vm_fault_t ret;
2693 struct page *page = vmf->page;
2694 unsigned int old_flags = vmf->flags;
2695
2696 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2697
2698 if (vmf->vma->vm_file &&
2699 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2700 return VM_FAULT_SIGBUS;
2701
2702 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2703 /* Restore original flags so that caller is not surprised */
2704 vmf->flags = old_flags;
2705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2706 return ret;
2707 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2708 lock_page(page);
2709 if (!page->mapping) {
2710 unlock_page(page);
2711 return 0; /* retry */
2712 }
2713 ret |= VM_FAULT_LOCKED;
2714 } else
2715 VM_BUG_ON_PAGE(!PageLocked(page), page);
2716 return ret;
2717 }
2718
2719 /*
2720 * Handle dirtying of a page in shared file mapping on a write fault.
2721 *
2722 * The function expects the page to be locked and unlocks it.
2723 */
2724 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2725 {
2726 struct vm_area_struct *vma = vmf->vma;
2727 struct address_space *mapping;
2728 struct page *page = vmf->page;
2729 bool dirtied;
2730 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2731
2732 dirtied = set_page_dirty(page);
2733 VM_BUG_ON_PAGE(PageAnon(page), page);
2734 /*
2735 * Take a local copy of the address_space - page.mapping may be zeroed
2736 * by truncate after unlock_page(). The address_space itself remains
2737 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2738 * release semantics to prevent the compiler from undoing this copying.
2739 */
2740 mapping = page_rmapping(page);
2741 unlock_page(page);
2742
2743 if (!page_mkwrite)
2744 file_update_time(vma->vm_file);
2745
2746 /*
2747 * Throttle page dirtying rate down to writeback speed.
2748 *
2749 * mapping may be NULL here because some device drivers do not
2750 * set page.mapping but still dirty their pages
2751 *
2752 * Drop the mmap_lock before waiting on IO, if we can. The file
2753 * is pinning the mapping, as per above.
2754 */
2755 if ((dirtied || page_mkwrite) && mapping) {
2756 struct file *fpin;
2757
2758 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2759 balance_dirty_pages_ratelimited(mapping);
2760 if (fpin) {
2761 fput(fpin);
2762 return VM_FAULT_RETRY;
2763 }
2764 }
2765
2766 return 0;
2767 }
2768
2769 /*
2770 * Handle write page faults for pages that can be reused in the current vma
2771 *
2772 * This can happen either due to the mapping being with the VM_SHARED flag,
2773 * or due to us being the last reference standing to the page. In either
2774 * case, all we need to do here is to mark the page as writable and update
2775 * any related book-keeping.
2776 */
2777 static inline void wp_page_reuse(struct vm_fault *vmf)
2778 __releases(vmf->ptl)
2779 {
2780 struct vm_area_struct *vma = vmf->vma;
2781 struct page *page = vmf->page;
2782 pte_t entry;
2783 /*
2784 * Clear the pages cpupid information as the existing
2785 * information potentially belongs to a now completely
2786 * unrelated process.
2787 */
2788 if (page)
2789 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2790
2791 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2792 entry = pte_mkyoung(vmf->orig_pte);
2793 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2794 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2795 update_mmu_cache(vma, vmf->address, vmf->pte);
2796 pte_unmap_unlock(vmf->pte, vmf->ptl);
2797 count_vm_event(PGREUSE);
2798 }
2799
2800 /*
2801 * Handle the case of a page which we actually need to copy to a new page.
2802 *
2803 * Called with mmap_lock locked and the old page referenced, but
2804 * without the ptl held.
2805 *
2806 * High level logic flow:
2807 *
2808 * - Allocate a page, copy the content of the old page to the new one.
2809 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2810 * - Take the PTL. If the pte changed, bail out and release the allocated page
2811 * - If the pte is still the way we remember it, update the page table and all
2812 * relevant references. This includes dropping the reference the page-table
2813 * held to the old page, as well as updating the rmap.
2814 * - In any case, unlock the PTL and drop the reference we took to the old page.
2815 */
2816 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2817 {
2818 struct vm_area_struct *vma = vmf->vma;
2819 struct mm_struct *mm = vma->vm_mm;
2820 struct page *old_page = vmf->page;
2821 struct page *new_page = NULL;
2822 pte_t entry;
2823 int page_copied = 0;
2824 struct mmu_notifier_range range;
2825
2826 if (unlikely(anon_vma_prepare(vma)))
2827 goto oom;
2828
2829 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2830 new_page = alloc_zeroed_user_highpage_movable(vma,
2831 vmf->address);
2832 if (!new_page)
2833 goto oom;
2834 } else {
2835 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2836 vmf->address);
2837 if (!new_page)
2838 goto oom;
2839
2840 if (!cow_user_page(new_page, old_page, vmf)) {
2841 /*
2842 * COW failed, if the fault was solved by other,
2843 * it's fine. If not, userspace would re-fault on
2844 * the same address and we will handle the fault
2845 * from the second attempt.
2846 */
2847 put_page(new_page);
2848 if (old_page)
2849 put_page(old_page);
2850 return 0;
2851 }
2852 }
2853
2854 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2855 goto oom_free_new;
2856 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2857
2858 __SetPageUptodate(new_page);
2859
2860 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2861 vmf->address & PAGE_MASK,
2862 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2863 mmu_notifier_invalidate_range_start(&range);
2864
2865 /*
2866 * Re-check the pte - we dropped the lock
2867 */
2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2869 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2870 if (old_page) {
2871 if (!PageAnon(old_page)) {
2872 dec_mm_counter_fast(mm,
2873 mm_counter_file(old_page));
2874 inc_mm_counter_fast(mm, MM_ANONPAGES);
2875 }
2876 } else {
2877 inc_mm_counter_fast(mm, MM_ANONPAGES);
2878 }
2879 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2880 entry = mk_pte(new_page, vma->vm_page_prot);
2881 entry = pte_sw_mkyoung(entry);
2882 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2883 /*
2884 * Clear the pte entry and flush it first, before updating the
2885 * pte with the new entry. This will avoid a race condition
2886 * seen in the presence of one thread doing SMC and another
2887 * thread doing COW.
2888 */
2889 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2890 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2891 lru_cache_add_inactive_or_unevictable(new_page, vma);
2892 /*
2893 * We call the notify macro here because, when using secondary
2894 * mmu page tables (such as kvm shadow page tables), we want the
2895 * new page to be mapped directly into the secondary page table.
2896 */
2897 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2898 update_mmu_cache(vma, vmf->address, vmf->pte);
2899 if (old_page) {
2900 /*
2901 * Only after switching the pte to the new page may
2902 * we remove the mapcount here. Otherwise another
2903 * process may come and find the rmap count decremented
2904 * before the pte is switched to the new page, and
2905 * "reuse" the old page writing into it while our pte
2906 * here still points into it and can be read by other
2907 * threads.
2908 *
2909 * The critical issue is to order this
2910 * page_remove_rmap with the ptp_clear_flush above.
2911 * Those stores are ordered by (if nothing else,)
2912 * the barrier present in the atomic_add_negative
2913 * in page_remove_rmap.
2914 *
2915 * Then the TLB flush in ptep_clear_flush ensures that
2916 * no process can access the old page before the
2917 * decremented mapcount is visible. And the old page
2918 * cannot be reused until after the decremented
2919 * mapcount is visible. So transitively, TLBs to
2920 * old page will be flushed before it can be reused.
2921 */
2922 page_remove_rmap(old_page, false);
2923 }
2924
2925 /* Free the old page.. */
2926 new_page = old_page;
2927 page_copied = 1;
2928 } else {
2929 update_mmu_tlb(vma, vmf->address, vmf->pte);
2930 }
2931
2932 if (new_page)
2933 put_page(new_page);
2934
2935 pte_unmap_unlock(vmf->pte, vmf->ptl);
2936 /*
2937 * No need to double call mmu_notifier->invalidate_range() callback as
2938 * the above ptep_clear_flush_notify() did already call it.
2939 */
2940 mmu_notifier_invalidate_range_only_end(&range);
2941 if (old_page) {
2942 /*
2943 * Don't let another task, with possibly unlocked vma,
2944 * keep the mlocked page.
2945 */
2946 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2947 lock_page(old_page); /* LRU manipulation */
2948 if (PageMlocked(old_page))
2949 munlock_vma_page(old_page);
2950 unlock_page(old_page);
2951 }
2952 put_page(old_page);
2953 }
2954 return page_copied ? VM_FAULT_WRITE : 0;
2955 oom_free_new:
2956 put_page(new_page);
2957 oom:
2958 if (old_page)
2959 put_page(old_page);
2960 return VM_FAULT_OOM;
2961 }
2962
2963 /**
2964 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2965 * writeable once the page is prepared
2966 *
2967 * @vmf: structure describing the fault
2968 *
2969 * This function handles all that is needed to finish a write page fault in a
2970 * shared mapping due to PTE being read-only once the mapped page is prepared.
2971 * It handles locking of PTE and modifying it.
2972 *
2973 * The function expects the page to be locked or other protection against
2974 * concurrent faults / writeback (such as DAX radix tree locks).
2975 *
2976 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2977 * we acquired PTE lock.
2978 */
2979 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2980 {
2981 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2982 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2983 &vmf->ptl);
2984 /*
2985 * We might have raced with another page fault while we released the
2986 * pte_offset_map_lock.
2987 */
2988 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2989 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2990 pte_unmap_unlock(vmf->pte, vmf->ptl);
2991 return VM_FAULT_NOPAGE;
2992 }
2993 wp_page_reuse(vmf);
2994 return 0;
2995 }
2996
2997 /*
2998 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2999 * mapping
3000 */
3001 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3002 {
3003 struct vm_area_struct *vma = vmf->vma;
3004
3005 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3006 vm_fault_t ret;
3007
3008 pte_unmap_unlock(vmf->pte, vmf->ptl);
3009 vmf->flags |= FAULT_FLAG_MKWRITE;
3010 ret = vma->vm_ops->pfn_mkwrite(vmf);
3011 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3012 return ret;
3013 return finish_mkwrite_fault(vmf);
3014 }
3015 wp_page_reuse(vmf);
3016 return VM_FAULT_WRITE;
3017 }
3018
3019 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3020 __releases(vmf->ptl)
3021 {
3022 struct vm_area_struct *vma = vmf->vma;
3023 vm_fault_t ret = VM_FAULT_WRITE;
3024
3025 get_page(vmf->page);
3026
3027 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3028 vm_fault_t tmp;
3029
3030 pte_unmap_unlock(vmf->pte, vmf->ptl);
3031 tmp = do_page_mkwrite(vmf);
3032 if (unlikely(!tmp || (tmp &
3033 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3034 put_page(vmf->page);
3035 return tmp;
3036 }
3037 tmp = finish_mkwrite_fault(vmf);
3038 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3039 unlock_page(vmf->page);
3040 put_page(vmf->page);
3041 return tmp;
3042 }
3043 } else {
3044 wp_page_reuse(vmf);
3045 lock_page(vmf->page);
3046 }
3047 ret |= fault_dirty_shared_page(vmf);
3048 put_page(vmf->page);
3049
3050 return ret;
3051 }
3052
3053 /*
3054 * This routine handles present pages, when users try to write
3055 * to a shared page. It is done by copying the page to a new address
3056 * and decrementing the shared-page counter for the old page.
3057 *
3058 * Note that this routine assumes that the protection checks have been
3059 * done by the caller (the low-level page fault routine in most cases).
3060 * Thus we can safely just mark it writable once we've done any necessary
3061 * COW.
3062 *
3063 * We also mark the page dirty at this point even though the page will
3064 * change only once the write actually happens. This avoids a few races,
3065 * and potentially makes it more efficient.
3066 *
3067 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3068 * but allow concurrent faults), with pte both mapped and locked.
3069 * We return with mmap_lock still held, but pte unmapped and unlocked.
3070 */
3071 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3072 __releases(vmf->ptl)
3073 {
3074 struct vm_area_struct *vma = vmf->vma;
3075
3076 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3077 pte_unmap_unlock(vmf->pte, vmf->ptl);
3078 return handle_userfault(vmf, VM_UFFD_WP);
3079 }
3080
3081 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3082 if (!vmf->page) {
3083 /*
3084 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3085 * VM_PFNMAP VMA.
3086 *
3087 * We should not cow pages in a shared writeable mapping.
3088 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3089 */
3090 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3091 (VM_WRITE|VM_SHARED))
3092 return wp_pfn_shared(vmf);
3093
3094 pte_unmap_unlock(vmf->pte, vmf->ptl);
3095 return wp_page_copy(vmf);
3096 }
3097
3098 /*
3099 * Take out anonymous pages first, anonymous shared vmas are
3100 * not dirty accountable.
3101 */
3102 if (PageAnon(vmf->page)) {
3103 struct page *page = vmf->page;
3104
3105 /* PageKsm() doesn't necessarily raise the page refcount */
3106 if (PageKsm(page) || page_count(page) != 1)
3107 goto copy;
3108 if (!trylock_page(page))
3109 goto copy;
3110 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3111 unlock_page(page);
3112 goto copy;
3113 }
3114 /*
3115 * Ok, we've got the only map reference, and the only
3116 * page count reference, and the page is locked,
3117 * it's dark out, and we're wearing sunglasses. Hit it.
3118 */
3119 unlock_page(page);
3120 wp_page_reuse(vmf);
3121 return VM_FAULT_WRITE;
3122 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3123 (VM_WRITE|VM_SHARED))) {
3124 return wp_page_shared(vmf);
3125 }
3126 copy:
3127 /*
3128 * Ok, we need to copy. Oh, well..
3129 */
3130 get_page(vmf->page);
3131
3132 pte_unmap_unlock(vmf->pte, vmf->ptl);
3133 return wp_page_copy(vmf);
3134 }
3135
3136 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3137 unsigned long start_addr, unsigned long end_addr,
3138 struct zap_details *details)
3139 {
3140 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3141 }
3142
3143 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3144 struct zap_details *details)
3145 {
3146 struct vm_area_struct *vma;
3147 pgoff_t vba, vea, zba, zea;
3148
3149 vma_interval_tree_foreach(vma, root,
3150 details->first_index, details->last_index) {
3151
3152 vba = vma->vm_pgoff;
3153 vea = vba + vma_pages(vma) - 1;
3154 zba = details->first_index;
3155 if (zba < vba)
3156 zba = vba;
3157 zea = details->last_index;
3158 if (zea > vea)
3159 zea = vea;
3160
3161 unmap_mapping_range_vma(vma,
3162 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3163 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3164 details);
3165 }
3166 }
3167
3168 /**
3169 * unmap_mapping_pages() - Unmap pages from processes.
3170 * @mapping: The address space containing pages to be unmapped.
3171 * @start: Index of first page to be unmapped.
3172 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3173 * @even_cows: Whether to unmap even private COWed pages.
3174 *
3175 * Unmap the pages in this address space from any userspace process which
3176 * has them mmaped. Generally, you want to remove COWed pages as well when
3177 * a file is being truncated, but not when invalidating pages from the page
3178 * cache.
3179 */
3180 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3181 pgoff_t nr, bool even_cows)
3182 {
3183 struct zap_details details = { };
3184
3185 details.check_mapping = even_cows ? NULL : mapping;
3186 details.first_index = start;
3187 details.last_index = start + nr - 1;
3188 if (details.last_index < details.first_index)
3189 details.last_index = ULONG_MAX;
3190
3191 i_mmap_lock_write(mapping);
3192 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3193 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3194 i_mmap_unlock_write(mapping);
3195 }
3196
3197 /**
3198 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3199 * address_space corresponding to the specified byte range in the underlying
3200 * file.
3201 *
3202 * @mapping: the address space containing mmaps to be unmapped.
3203 * @holebegin: byte in first page to unmap, relative to the start of
3204 * the underlying file. This will be rounded down to a PAGE_SIZE
3205 * boundary. Note that this is different from truncate_pagecache(), which
3206 * must keep the partial page. In contrast, we must get rid of
3207 * partial pages.
3208 * @holelen: size of prospective hole in bytes. This will be rounded
3209 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3210 * end of the file.
3211 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3212 * but 0 when invalidating pagecache, don't throw away private data.
3213 */
3214 void unmap_mapping_range(struct address_space *mapping,
3215 loff_t const holebegin, loff_t const holelen, int even_cows)
3216 {
3217 pgoff_t hba = holebegin >> PAGE_SHIFT;
3218 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3219
3220 /* Check for overflow. */
3221 if (sizeof(holelen) > sizeof(hlen)) {
3222 long long holeend =
3223 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3224 if (holeend & ~(long long)ULONG_MAX)
3225 hlen = ULONG_MAX - hba + 1;
3226 }
3227
3228 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3229 }
3230 EXPORT_SYMBOL(unmap_mapping_range);
3231
3232 /*
3233 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3234 * but allow concurrent faults), and pte mapped but not yet locked.
3235 * We return with pte unmapped and unlocked.
3236 *
3237 * We return with the mmap_lock locked or unlocked in the same cases
3238 * as does filemap_fault().
3239 */
3240 vm_fault_t do_swap_page(struct vm_fault *vmf)
3241 {
3242 struct vm_area_struct *vma = vmf->vma;
3243 struct page *page = NULL, *swapcache;
3244 swp_entry_t entry;
3245 pte_t pte;
3246 int locked;
3247 int exclusive = 0;
3248 vm_fault_t ret = 0;
3249 void *shadow = NULL;
3250
3251 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3252 goto out;
3253
3254 entry = pte_to_swp_entry(vmf->orig_pte);
3255 if (unlikely(non_swap_entry(entry))) {
3256 if (is_migration_entry(entry)) {
3257 migration_entry_wait(vma->vm_mm, vmf->pmd,
3258 vmf->address);
3259 } else if (is_device_private_entry(entry)) {
3260 vmf->page = device_private_entry_to_page(entry);
3261 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3262 } else if (is_hwpoison_entry(entry)) {
3263 ret = VM_FAULT_HWPOISON;
3264 } else {
3265 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3266 ret = VM_FAULT_SIGBUS;
3267 }
3268 goto out;
3269 }
3270
3271
3272 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3273 page = lookup_swap_cache(entry, vma, vmf->address);
3274 swapcache = page;
3275
3276 if (!page) {
3277 struct swap_info_struct *si = swp_swap_info(entry);
3278
3279 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3280 __swap_count(entry) == 1) {
3281 /* skip swapcache */
3282 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3283 vmf->address);
3284 if (page) {
3285 int err;
3286
3287 __SetPageLocked(page);
3288 __SetPageSwapBacked(page);
3289 set_page_private(page, entry.val);
3290
3291 /* Tell memcg to use swap ownership records */
3292 SetPageSwapCache(page);
3293 err = mem_cgroup_charge(page, vma->vm_mm,
3294 GFP_KERNEL);
3295 ClearPageSwapCache(page);
3296 if (err) {
3297 ret = VM_FAULT_OOM;
3298 goto out_page;
3299 }
3300
3301 shadow = get_shadow_from_swap_cache(entry);
3302 if (shadow)
3303 workingset_refault(page, shadow);
3304
3305 lru_cache_add(page);
3306 swap_readpage(page, true);
3307 }
3308 } else {
3309 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3310 vmf);
3311 swapcache = page;
3312 }
3313
3314 if (!page) {
3315 /*
3316 * Back out if somebody else faulted in this pte
3317 * while we released the pte lock.
3318 */
3319 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3320 vmf->address, &vmf->ptl);
3321 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3322 ret = VM_FAULT_OOM;
3323 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3324 goto unlock;
3325 }
3326
3327 /* Had to read the page from swap area: Major fault */
3328 ret = VM_FAULT_MAJOR;
3329 count_vm_event(PGMAJFAULT);
3330 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3331 } else if (PageHWPoison(page)) {
3332 /*
3333 * hwpoisoned dirty swapcache pages are kept for killing
3334 * owner processes (which may be unknown at hwpoison time)
3335 */
3336 ret = VM_FAULT_HWPOISON;
3337 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3338 goto out_release;
3339 }
3340
3341 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3342
3343 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3344 if (!locked) {
3345 ret |= VM_FAULT_RETRY;
3346 goto out_release;
3347 }
3348
3349 /*
3350 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3351 * release the swapcache from under us. The page pin, and pte_same
3352 * test below, are not enough to exclude that. Even if it is still
3353 * swapcache, we need to check that the page's swap has not changed.
3354 */
3355 if (unlikely((!PageSwapCache(page) ||
3356 page_private(page) != entry.val)) && swapcache)
3357 goto out_page;
3358
3359 page = ksm_might_need_to_copy(page, vma, vmf->address);
3360 if (unlikely(!page)) {
3361 ret = VM_FAULT_OOM;
3362 page = swapcache;
3363 goto out_page;
3364 }
3365
3366 cgroup_throttle_swaprate(page, GFP_KERNEL);
3367
3368 /*
3369 * Back out if somebody else already faulted in this pte.
3370 */
3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372 &vmf->ptl);
3373 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3374 goto out_nomap;
3375
3376 if (unlikely(!PageUptodate(page))) {
3377 ret = VM_FAULT_SIGBUS;
3378 goto out_nomap;
3379 }
3380
3381 /*
3382 * The page isn't present yet, go ahead with the fault.
3383 *
3384 * Be careful about the sequence of operations here.
3385 * To get its accounting right, reuse_swap_page() must be called
3386 * while the page is counted on swap but not yet in mapcount i.e.
3387 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3388 * must be called after the swap_free(), or it will never succeed.
3389 */
3390
3391 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3392 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3393 pte = mk_pte(page, vma->vm_page_prot);
3394 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3395 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3396 vmf->flags &= ~FAULT_FLAG_WRITE;
3397 ret |= VM_FAULT_WRITE;
3398 exclusive = RMAP_EXCLUSIVE;
3399 }
3400 flush_icache_page(vma, page);
3401 if (pte_swp_soft_dirty(vmf->orig_pte))
3402 pte = pte_mksoft_dirty(pte);
3403 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3404 pte = pte_mkuffd_wp(pte);
3405 pte = pte_wrprotect(pte);
3406 }
3407 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3408 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3409 vmf->orig_pte = pte;
3410
3411 /* ksm created a completely new copy */
3412 if (unlikely(page != swapcache && swapcache)) {
3413 page_add_new_anon_rmap(page, vma, vmf->address, false);
3414 lru_cache_add_inactive_or_unevictable(page, vma);
3415 } else {
3416 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3417 }
3418
3419 swap_free(entry);
3420 if (mem_cgroup_swap_full(page) ||
3421 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3422 try_to_free_swap(page);
3423 unlock_page(page);
3424 if (page != swapcache && swapcache) {
3425 /*
3426 * Hold the lock to avoid the swap entry to be reused
3427 * until we take the PT lock for the pte_same() check
3428 * (to avoid false positives from pte_same). For
3429 * further safety release the lock after the swap_free
3430 * so that the swap count won't change under a
3431 * parallel locked swapcache.
3432 */
3433 unlock_page(swapcache);
3434 put_page(swapcache);
3435 }
3436
3437 if (vmf->flags & FAULT_FLAG_WRITE) {
3438 ret |= do_wp_page(vmf);
3439 if (ret & VM_FAULT_ERROR)
3440 ret &= VM_FAULT_ERROR;
3441 goto out;
3442 }
3443
3444 /* No need to invalidate - it was non-present before */
3445 update_mmu_cache(vma, vmf->address, vmf->pte);
3446 unlock:
3447 pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 out:
3449 return ret;
3450 out_nomap:
3451 pte_unmap_unlock(vmf->pte, vmf->ptl);
3452 out_page:
3453 unlock_page(page);
3454 out_release:
3455 put_page(page);
3456 if (page != swapcache && swapcache) {
3457 unlock_page(swapcache);
3458 put_page(swapcache);
3459 }
3460 return ret;
3461 }
3462
3463 /*
3464 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3465 * but allow concurrent faults), and pte mapped but not yet locked.
3466 * We return with mmap_lock still held, but pte unmapped and unlocked.
3467 */
3468 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3469 {
3470 struct vm_area_struct *vma = vmf->vma;
3471 struct page *page;
3472 vm_fault_t ret = 0;
3473 pte_t entry;
3474
3475 /* File mapping without ->vm_ops ? */
3476 if (vma->vm_flags & VM_SHARED)
3477 return VM_FAULT_SIGBUS;
3478
3479 /*
3480 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3481 * pte_offset_map() on pmds where a huge pmd might be created
3482 * from a different thread.
3483 *
3484 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3485 * parallel threads are excluded by other means.
3486 *
3487 * Here we only have mmap_read_lock(mm).
3488 */
3489 if (pte_alloc(vma->vm_mm, vmf->pmd))
3490 return VM_FAULT_OOM;
3491
3492 /* See the comment in pte_alloc_one_map() */
3493 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3494 return 0;
3495
3496 /* Use the zero-page for reads */
3497 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3498 !mm_forbids_zeropage(vma->vm_mm)) {
3499 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3500 vma->vm_page_prot));
3501 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3502 vmf->address, &vmf->ptl);
3503 if (!pte_none(*vmf->pte)) {
3504 update_mmu_tlb(vma, vmf->address, vmf->pte);
3505 goto unlock;
3506 }
3507 ret = check_stable_address_space(vma->vm_mm);
3508 if (ret)
3509 goto unlock;
3510 /* Deliver the page fault to userland, check inside PT lock */
3511 if (userfaultfd_missing(vma)) {
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 return handle_userfault(vmf, VM_UFFD_MISSING);
3514 }
3515 goto setpte;
3516 }
3517
3518 /* Allocate our own private page. */
3519 if (unlikely(anon_vma_prepare(vma)))
3520 goto oom;
3521 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3522 if (!page)
3523 goto oom;
3524
3525 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3526 goto oom_free_page;
3527 cgroup_throttle_swaprate(page, GFP_KERNEL);
3528
3529 /*
3530 * The memory barrier inside __SetPageUptodate makes sure that
3531 * preceding stores to the page contents become visible before
3532 * the set_pte_at() write.
3533 */
3534 __SetPageUptodate(page);
3535
3536 entry = mk_pte(page, vma->vm_page_prot);
3537 entry = pte_sw_mkyoung(entry);
3538 if (vma->vm_flags & VM_WRITE)
3539 entry = pte_mkwrite(pte_mkdirty(entry));
3540
3541 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3542 &vmf->ptl);
3543 if (!pte_none(*vmf->pte)) {
3544 update_mmu_cache(vma, vmf->address, vmf->pte);
3545 goto release;
3546 }
3547
3548 ret = check_stable_address_space(vma->vm_mm);
3549 if (ret)
3550 goto release;
3551
3552 /* Deliver the page fault to userland, check inside PT lock */
3553 if (userfaultfd_missing(vma)) {
3554 pte_unmap_unlock(vmf->pte, vmf->ptl);
3555 put_page(page);
3556 return handle_userfault(vmf, VM_UFFD_MISSING);
3557 }
3558
3559 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3560 page_add_new_anon_rmap(page, vma, vmf->address, false);
3561 lru_cache_add_inactive_or_unevictable(page, vma);
3562 setpte:
3563 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3564
3565 /* No need to invalidate - it was non-present before */
3566 update_mmu_cache(vma, vmf->address, vmf->pte);
3567 unlock:
3568 pte_unmap_unlock(vmf->pte, vmf->ptl);
3569 return ret;
3570 release:
3571 put_page(page);
3572 goto unlock;
3573 oom_free_page:
3574 put_page(page);
3575 oom:
3576 return VM_FAULT_OOM;
3577 }
3578
3579 /*
3580 * The mmap_lock must have been held on entry, and may have been
3581 * released depending on flags and vma->vm_ops->fault() return value.
3582 * See filemap_fault() and __lock_page_retry().
3583 */
3584 static vm_fault_t __do_fault(struct vm_fault *vmf)
3585 {
3586 struct vm_area_struct *vma = vmf->vma;
3587 vm_fault_t ret;
3588
3589 /*
3590 * Preallocate pte before we take page_lock because this might lead to
3591 * deadlocks for memcg reclaim which waits for pages under writeback:
3592 * lock_page(A)
3593 * SetPageWriteback(A)
3594 * unlock_page(A)
3595 * lock_page(B)
3596 * lock_page(B)
3597 * pte_alloc_one
3598 * shrink_page_list
3599 * wait_on_page_writeback(A)
3600 * SetPageWriteback(B)
3601 * unlock_page(B)
3602 * # flush A, B to clear the writeback
3603 */
3604 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3605 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3606 if (!vmf->prealloc_pte)
3607 return VM_FAULT_OOM;
3608 smp_wmb(); /* See comment in __pte_alloc() */
3609 }
3610
3611 ret = vma->vm_ops->fault(vmf);
3612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3613 VM_FAULT_DONE_COW)))
3614 return ret;
3615
3616 if (unlikely(PageHWPoison(vmf->page))) {
3617 if (ret & VM_FAULT_LOCKED)
3618 unlock_page(vmf->page);
3619 put_page(vmf->page);
3620 vmf->page = NULL;
3621 return VM_FAULT_HWPOISON;
3622 }
3623
3624 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3625 lock_page(vmf->page);
3626 else
3627 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3628
3629 return ret;
3630 }
3631
3632 /*
3633 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3634 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3635 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3636 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3637 */
3638 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3639 {
3640 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3641 }
3642
3643 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3644 {
3645 struct vm_area_struct *vma = vmf->vma;
3646
3647 if (!pmd_none(*vmf->pmd))
3648 goto map_pte;
3649 if (vmf->prealloc_pte) {
3650 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3651 if (unlikely(!pmd_none(*vmf->pmd))) {
3652 spin_unlock(vmf->ptl);
3653 goto map_pte;
3654 }
3655
3656 mm_inc_nr_ptes(vma->vm_mm);
3657 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3658 spin_unlock(vmf->ptl);
3659 vmf->prealloc_pte = NULL;
3660 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3661 return VM_FAULT_OOM;
3662 }
3663 map_pte:
3664 /*
3665 * If a huge pmd materialized under us just retry later. Use
3666 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3667 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3668 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3669 * running immediately after a huge pmd fault in a different thread of
3670 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3671 * All we have to ensure is that it is a regular pmd that we can walk
3672 * with pte_offset_map() and we can do that through an atomic read in
3673 * C, which is what pmd_trans_unstable() provides.
3674 */
3675 if (pmd_devmap_trans_unstable(vmf->pmd))
3676 return VM_FAULT_NOPAGE;
3677
3678 /*
3679 * At this point we know that our vmf->pmd points to a page of ptes
3680 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3681 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3682 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3683 * be valid and we will re-check to make sure the vmf->pte isn't
3684 * pte_none() under vmf->ptl protection when we return to
3685 * alloc_set_pte().
3686 */
3687 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3688 &vmf->ptl);
3689 return 0;
3690 }
3691
3692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3693 static void deposit_prealloc_pte(struct vm_fault *vmf)
3694 {
3695 struct vm_area_struct *vma = vmf->vma;
3696
3697 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3698 /*
3699 * We are going to consume the prealloc table,
3700 * count that as nr_ptes.
3701 */
3702 mm_inc_nr_ptes(vma->vm_mm);
3703 vmf->prealloc_pte = NULL;
3704 }
3705
3706 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3707 {
3708 struct vm_area_struct *vma = vmf->vma;
3709 bool write = vmf->flags & FAULT_FLAG_WRITE;
3710 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3711 pmd_t entry;
3712 int i;
3713 vm_fault_t ret;
3714
3715 if (!transhuge_vma_suitable(vma, haddr))
3716 return VM_FAULT_FALLBACK;
3717
3718 ret = VM_FAULT_FALLBACK;
3719 page = compound_head(page);
3720
3721 /*
3722 * Archs like ppc64 need additonal space to store information
3723 * related to pte entry. Use the preallocated table for that.
3724 */
3725 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3726 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3727 if (!vmf->prealloc_pte)
3728 return VM_FAULT_OOM;
3729 smp_wmb(); /* See comment in __pte_alloc() */
3730 }
3731
3732 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3733 if (unlikely(!pmd_none(*vmf->pmd)))
3734 goto out;
3735
3736 for (i = 0; i < HPAGE_PMD_NR; i++)
3737 flush_icache_page(vma, page + i);
3738
3739 entry = mk_huge_pmd(page, vma->vm_page_prot);
3740 if (write)
3741 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3742
3743 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3744 page_add_file_rmap(page, true);
3745 /*
3746 * deposit and withdraw with pmd lock held
3747 */
3748 if (arch_needs_pgtable_deposit())
3749 deposit_prealloc_pte(vmf);
3750
3751 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3752
3753 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3754
3755 /* fault is handled */
3756 ret = 0;
3757 count_vm_event(THP_FILE_MAPPED);
3758 out:
3759 spin_unlock(vmf->ptl);
3760 return ret;
3761 }
3762 #else
3763 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3764 {
3765 BUILD_BUG();
3766 return 0;
3767 }
3768 #endif
3769
3770 /**
3771 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3772 * mapping. If needed, the function allocates page table or use pre-allocated.
3773 *
3774 * @vmf: fault environment
3775 * @page: page to map
3776 *
3777 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3778 * return.
3779 *
3780 * Target users are page handler itself and implementations of
3781 * vm_ops->map_pages.
3782 *
3783 * Return: %0 on success, %VM_FAULT_ code in case of error.
3784 */
3785 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3786 {
3787 struct vm_area_struct *vma = vmf->vma;
3788 bool write = vmf->flags & FAULT_FLAG_WRITE;
3789 pte_t entry;
3790 vm_fault_t ret;
3791
3792 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3793 ret = do_set_pmd(vmf, page);
3794 if (ret != VM_FAULT_FALLBACK)
3795 return ret;
3796 }
3797
3798 if (!vmf->pte) {
3799 ret = pte_alloc_one_map(vmf);
3800 if (ret)
3801 return ret;
3802 }
3803
3804 /* Re-check under ptl */
3805 if (unlikely(!pte_none(*vmf->pte))) {
3806 update_mmu_tlb(vma, vmf->address, vmf->pte);
3807 return VM_FAULT_NOPAGE;
3808 }
3809
3810 flush_icache_page(vma, page);
3811 entry = mk_pte(page, vma->vm_page_prot);
3812 entry = pte_sw_mkyoung(entry);
3813 if (write)
3814 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3815 /* copy-on-write page */
3816 if (write && !(vma->vm_flags & VM_SHARED)) {
3817 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3818 page_add_new_anon_rmap(page, vma, vmf->address, false);
3819 lru_cache_add_inactive_or_unevictable(page, vma);
3820 } else {
3821 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3822 page_add_file_rmap(page, false);
3823 }
3824 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3825
3826 /* no need to invalidate: a not-present page won't be cached */
3827 update_mmu_cache(vma, vmf->address, vmf->pte);
3828
3829 return 0;
3830 }
3831
3832
3833 /**
3834 * finish_fault - finish page fault once we have prepared the page to fault
3835 *
3836 * @vmf: structure describing the fault
3837 *
3838 * This function handles all that is needed to finish a page fault once the
3839 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3840 * given page, adds reverse page mapping, handles memcg charges and LRU
3841 * addition.
3842 *
3843 * The function expects the page to be locked and on success it consumes a
3844 * reference of a page being mapped (for the PTE which maps it).
3845 *
3846 * Return: %0 on success, %VM_FAULT_ code in case of error.
3847 */
3848 vm_fault_t finish_fault(struct vm_fault *vmf)
3849 {
3850 struct page *page;
3851 vm_fault_t ret = 0;
3852
3853 /* Did we COW the page? */
3854 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3855 !(vmf->vma->vm_flags & VM_SHARED))
3856 page = vmf->cow_page;
3857 else
3858 page = vmf->page;
3859
3860 /*
3861 * check even for read faults because we might have lost our CoWed
3862 * page
3863 */
3864 if (!(vmf->vma->vm_flags & VM_SHARED))
3865 ret = check_stable_address_space(vmf->vma->vm_mm);
3866 if (!ret)
3867 ret = alloc_set_pte(vmf, page);
3868 if (vmf->pte)
3869 pte_unmap_unlock(vmf->pte, vmf->ptl);
3870 return ret;
3871 }
3872
3873 static unsigned long fault_around_bytes __read_mostly =
3874 rounddown_pow_of_two(65536);
3875
3876 #ifdef CONFIG_DEBUG_FS
3877 static int fault_around_bytes_get(void *data, u64 *val)
3878 {
3879 *val = fault_around_bytes;
3880 return 0;
3881 }
3882
3883 /*
3884 * fault_around_bytes must be rounded down to the nearest page order as it's
3885 * what do_fault_around() expects to see.
3886 */
3887 static int fault_around_bytes_set(void *data, u64 val)
3888 {
3889 if (val / PAGE_SIZE > PTRS_PER_PTE)
3890 return -EINVAL;
3891 if (val > PAGE_SIZE)
3892 fault_around_bytes = rounddown_pow_of_two(val);
3893 else
3894 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3895 return 0;
3896 }
3897 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3898 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3899
3900 static int __init fault_around_debugfs(void)
3901 {
3902 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3903 &fault_around_bytes_fops);
3904 return 0;
3905 }
3906 late_initcall(fault_around_debugfs);
3907 #endif
3908
3909 /*
3910 * do_fault_around() tries to map few pages around the fault address. The hope
3911 * is that the pages will be needed soon and this will lower the number of
3912 * faults to handle.
3913 *
3914 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3915 * not ready to be mapped: not up-to-date, locked, etc.
3916 *
3917 * This function is called with the page table lock taken. In the split ptlock
3918 * case the page table lock only protects only those entries which belong to
3919 * the page table corresponding to the fault address.
3920 *
3921 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3922 * only once.
3923 *
3924 * fault_around_bytes defines how many bytes we'll try to map.
3925 * do_fault_around() expects it to be set to a power of two less than or equal
3926 * to PTRS_PER_PTE.
3927 *
3928 * The virtual address of the area that we map is naturally aligned to
3929 * fault_around_bytes rounded down to the machine page size
3930 * (and therefore to page order). This way it's easier to guarantee
3931 * that we don't cross page table boundaries.
3932 */
3933 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3934 {
3935 unsigned long address = vmf->address, nr_pages, mask;
3936 pgoff_t start_pgoff = vmf->pgoff;
3937 pgoff_t end_pgoff;
3938 int off;
3939 vm_fault_t ret = 0;
3940
3941 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3942 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3943
3944 vmf->address = max(address & mask, vmf->vma->vm_start);
3945 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3946 start_pgoff -= off;
3947
3948 /*
3949 * end_pgoff is either the end of the page table, the end of
3950 * the vma or nr_pages from start_pgoff, depending what is nearest.
3951 */
3952 end_pgoff = start_pgoff -
3953 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3954 PTRS_PER_PTE - 1;
3955 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3956 start_pgoff + nr_pages - 1);
3957
3958 if (pmd_none(*vmf->pmd)) {
3959 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3960 if (!vmf->prealloc_pte)
3961 goto out;
3962 smp_wmb(); /* See comment in __pte_alloc() */
3963 }
3964
3965 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3966
3967 /* Huge page is mapped? Page fault is solved */
3968 if (pmd_trans_huge(*vmf->pmd)) {
3969 ret = VM_FAULT_NOPAGE;
3970 goto out;
3971 }
3972
3973 /* ->map_pages() haven't done anything useful. Cold page cache? */
3974 if (!vmf->pte)
3975 goto out;
3976
3977 /* check if the page fault is solved */
3978 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3979 if (!pte_none(*vmf->pte))
3980 ret = VM_FAULT_NOPAGE;
3981 pte_unmap_unlock(vmf->pte, vmf->ptl);
3982 out:
3983 vmf->address = address;
3984 vmf->pte = NULL;
3985 return ret;
3986 }
3987
3988 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3989 {
3990 struct vm_area_struct *vma = vmf->vma;
3991 vm_fault_t ret = 0;
3992
3993 /*
3994 * Let's call ->map_pages() first and use ->fault() as fallback
3995 * if page by the offset is not ready to be mapped (cold cache or
3996 * something).
3997 */
3998 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3999 ret = do_fault_around(vmf);
4000 if (ret)
4001 return ret;
4002 }
4003
4004 ret = __do_fault(vmf);
4005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4006 return ret;
4007
4008 ret |= finish_fault(vmf);
4009 unlock_page(vmf->page);
4010 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4011 put_page(vmf->page);
4012 return ret;
4013 }
4014
4015 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4016 {
4017 struct vm_area_struct *vma = vmf->vma;
4018 vm_fault_t ret;
4019
4020 if (unlikely(anon_vma_prepare(vma)))
4021 return VM_FAULT_OOM;
4022
4023 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4024 if (!vmf->cow_page)
4025 return VM_FAULT_OOM;
4026
4027 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4028 put_page(vmf->cow_page);
4029 return VM_FAULT_OOM;
4030 }
4031 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4032
4033 ret = __do_fault(vmf);
4034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4035 goto uncharge_out;
4036 if (ret & VM_FAULT_DONE_COW)
4037 return ret;
4038
4039 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4040 __SetPageUptodate(vmf->cow_page);
4041
4042 ret |= finish_fault(vmf);
4043 unlock_page(vmf->page);
4044 put_page(vmf->page);
4045 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4046 goto uncharge_out;
4047 return ret;
4048 uncharge_out:
4049 put_page(vmf->cow_page);
4050 return ret;
4051 }
4052
4053 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4054 {
4055 struct vm_area_struct *vma = vmf->vma;
4056 vm_fault_t ret, tmp;
4057
4058 ret = __do_fault(vmf);
4059 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4060 return ret;
4061
4062 /*
4063 * Check if the backing address space wants to know that the page is
4064 * about to become writable
4065 */
4066 if (vma->vm_ops->page_mkwrite) {
4067 unlock_page(vmf->page);
4068 tmp = do_page_mkwrite(vmf);
4069 if (unlikely(!tmp ||
4070 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4071 put_page(vmf->page);
4072 return tmp;
4073 }
4074 }
4075
4076 ret |= finish_fault(vmf);
4077 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4078 VM_FAULT_RETRY))) {
4079 unlock_page(vmf->page);
4080 put_page(vmf->page);
4081 return ret;
4082 }
4083
4084 ret |= fault_dirty_shared_page(vmf);
4085 return ret;
4086 }
4087
4088 /*
4089 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4090 * but allow concurrent faults).
4091 * The mmap_lock may have been released depending on flags and our
4092 * return value. See filemap_fault() and __lock_page_or_retry().
4093 * If mmap_lock is released, vma may become invalid (for example
4094 * by other thread calling munmap()).
4095 */
4096 static vm_fault_t do_fault(struct vm_fault *vmf)
4097 {
4098 struct vm_area_struct *vma = vmf->vma;
4099 struct mm_struct *vm_mm = vma->vm_mm;
4100 vm_fault_t ret;
4101
4102 /*
4103 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4104 */
4105 if (!vma->vm_ops->fault) {
4106 /*
4107 * If we find a migration pmd entry or a none pmd entry, which
4108 * should never happen, return SIGBUS
4109 */
4110 if (unlikely(!pmd_present(*vmf->pmd)))
4111 ret = VM_FAULT_SIGBUS;
4112 else {
4113 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4114 vmf->pmd,
4115 vmf->address,
4116 &vmf->ptl);
4117 /*
4118 * Make sure this is not a temporary clearing of pte
4119 * by holding ptl and checking again. A R/M/W update
4120 * of pte involves: take ptl, clearing the pte so that
4121 * we don't have concurrent modification by hardware
4122 * followed by an update.
4123 */
4124 if (unlikely(pte_none(*vmf->pte)))
4125 ret = VM_FAULT_SIGBUS;
4126 else
4127 ret = VM_FAULT_NOPAGE;
4128
4129 pte_unmap_unlock(vmf->pte, vmf->ptl);
4130 }
4131 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4132 ret = do_read_fault(vmf);
4133 else if (!(vma->vm_flags & VM_SHARED))
4134 ret = do_cow_fault(vmf);
4135 else
4136 ret = do_shared_fault(vmf);
4137
4138 /* preallocated pagetable is unused: free it */
4139 if (vmf->prealloc_pte) {
4140 pte_free(vm_mm, vmf->prealloc_pte);
4141 vmf->prealloc_pte = NULL;
4142 }
4143 return ret;
4144 }
4145
4146 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4147 unsigned long addr, int page_nid,
4148 int *flags)
4149 {
4150 get_page(page);
4151
4152 count_vm_numa_event(NUMA_HINT_FAULTS);
4153 if (page_nid == numa_node_id()) {
4154 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4155 *flags |= TNF_FAULT_LOCAL;
4156 }
4157
4158 return mpol_misplaced(page, vma, addr);
4159 }
4160
4161 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4162 {
4163 struct vm_area_struct *vma = vmf->vma;
4164 struct page *page = NULL;
4165 int page_nid = NUMA_NO_NODE;
4166 int last_cpupid;
4167 int target_nid;
4168 bool migrated = false;
4169 pte_t pte, old_pte;
4170 bool was_writable = pte_savedwrite(vmf->orig_pte);
4171 int flags = 0;
4172
4173 /*
4174 * The "pte" at this point cannot be used safely without
4175 * validation through pte_unmap_same(). It's of NUMA type but
4176 * the pfn may be screwed if the read is non atomic.
4177 */
4178 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4179 spin_lock(vmf->ptl);
4180 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4181 pte_unmap_unlock(vmf->pte, vmf->ptl);
4182 goto out;
4183 }
4184
4185 /*
4186 * Make it present again, Depending on how arch implementes non
4187 * accessible ptes, some can allow access by kernel mode.
4188 */
4189 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4190 pte = pte_modify(old_pte, vma->vm_page_prot);
4191 pte = pte_mkyoung(pte);
4192 if (was_writable)
4193 pte = pte_mkwrite(pte);
4194 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4195 update_mmu_cache(vma, vmf->address, vmf->pte);
4196
4197 page = vm_normal_page(vma, vmf->address, pte);
4198 if (!page) {
4199 pte_unmap_unlock(vmf->pte, vmf->ptl);
4200 return 0;
4201 }
4202
4203 /* TODO: handle PTE-mapped THP */
4204 if (PageCompound(page)) {
4205 pte_unmap_unlock(vmf->pte, vmf->ptl);
4206 return 0;
4207 }
4208
4209 /*
4210 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4211 * much anyway since they can be in shared cache state. This misses
4212 * the case where a mapping is writable but the process never writes
4213 * to it but pte_write gets cleared during protection updates and
4214 * pte_dirty has unpredictable behaviour between PTE scan updates,
4215 * background writeback, dirty balancing and application behaviour.
4216 */
4217 if (!pte_write(pte))
4218 flags |= TNF_NO_GROUP;
4219
4220 /*
4221 * Flag if the page is shared between multiple address spaces. This
4222 * is later used when determining whether to group tasks together
4223 */
4224 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4225 flags |= TNF_SHARED;
4226
4227 last_cpupid = page_cpupid_last(page);
4228 page_nid = page_to_nid(page);
4229 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4230 &flags);
4231 pte_unmap_unlock(vmf->pte, vmf->ptl);
4232 if (target_nid == NUMA_NO_NODE) {
4233 put_page(page);
4234 goto out;
4235 }
4236
4237 /* Migrate to the requested node */
4238 migrated = migrate_misplaced_page(page, vma, target_nid);
4239 if (migrated) {
4240 page_nid = target_nid;
4241 flags |= TNF_MIGRATED;
4242 } else
4243 flags |= TNF_MIGRATE_FAIL;
4244
4245 out:
4246 if (page_nid != NUMA_NO_NODE)
4247 task_numa_fault(last_cpupid, page_nid, 1, flags);
4248 return 0;
4249 }
4250
4251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4252 {
4253 if (vma_is_anonymous(vmf->vma))
4254 return do_huge_pmd_anonymous_page(vmf);
4255 if (vmf->vma->vm_ops->huge_fault)
4256 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4257 return VM_FAULT_FALLBACK;
4258 }
4259
4260 /* `inline' is required to avoid gcc 4.1.2 build error */
4261 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4262 {
4263 if (vma_is_anonymous(vmf->vma)) {
4264 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4265 return handle_userfault(vmf, VM_UFFD_WP);
4266 return do_huge_pmd_wp_page(vmf, orig_pmd);
4267 }
4268 if (vmf->vma->vm_ops->huge_fault) {
4269 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4270
4271 if (!(ret & VM_FAULT_FALLBACK))
4272 return ret;
4273 }
4274
4275 /* COW or write-notify handled on pte level: split pmd. */
4276 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4277
4278 return VM_FAULT_FALLBACK;
4279 }
4280
4281 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4282 {
4283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4284 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4285 /* No support for anonymous transparent PUD pages yet */
4286 if (vma_is_anonymous(vmf->vma))
4287 goto split;
4288 if (vmf->vma->vm_ops->huge_fault) {
4289 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4290
4291 if (!(ret & VM_FAULT_FALLBACK))
4292 return ret;
4293 }
4294 split:
4295 /* COW or write-notify not handled on PUD level: split pud.*/
4296 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4298 return VM_FAULT_FALLBACK;
4299 }
4300
4301 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4302 {
4303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4304 /* No support for anonymous transparent PUD pages yet */
4305 if (vma_is_anonymous(vmf->vma))
4306 return VM_FAULT_FALLBACK;
4307 if (vmf->vma->vm_ops->huge_fault)
4308 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4309 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4310 return VM_FAULT_FALLBACK;
4311 }
4312
4313 /*
4314 * These routines also need to handle stuff like marking pages dirty
4315 * and/or accessed for architectures that don't do it in hardware (most
4316 * RISC architectures). The early dirtying is also good on the i386.
4317 *
4318 * There is also a hook called "update_mmu_cache()" that architectures
4319 * with external mmu caches can use to update those (ie the Sparc or
4320 * PowerPC hashed page tables that act as extended TLBs).
4321 *
4322 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4323 * concurrent faults).
4324 *
4325 * The mmap_lock may have been released depending on flags and our return value.
4326 * See filemap_fault() and __lock_page_or_retry().
4327 */
4328 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4329 {
4330 pte_t entry;
4331
4332 if (unlikely(pmd_none(*vmf->pmd))) {
4333 /*
4334 * Leave __pte_alloc() until later: because vm_ops->fault may
4335 * want to allocate huge page, and if we expose page table
4336 * for an instant, it will be difficult to retract from
4337 * concurrent faults and from rmap lookups.
4338 */
4339 vmf->pte = NULL;
4340 } else {
4341 /* See comment in pte_alloc_one_map() */
4342 if (pmd_devmap_trans_unstable(vmf->pmd))
4343 return 0;
4344 /*
4345 * A regular pmd is established and it can't morph into a huge
4346 * pmd from under us anymore at this point because we hold the
4347 * mmap_lock read mode and khugepaged takes it in write mode.
4348 * So now it's safe to run pte_offset_map().
4349 */
4350 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4351 vmf->orig_pte = *vmf->pte;
4352
4353 /*
4354 * some architectures can have larger ptes than wordsize,
4355 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4356 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4357 * accesses. The code below just needs a consistent view
4358 * for the ifs and we later double check anyway with the
4359 * ptl lock held. So here a barrier will do.
4360 */
4361 barrier();
4362 if (pte_none(vmf->orig_pte)) {
4363 pte_unmap(vmf->pte);
4364 vmf->pte = NULL;
4365 }
4366 }
4367
4368 if (!vmf->pte) {
4369 if (vma_is_anonymous(vmf->vma))
4370 return do_anonymous_page(vmf);
4371 else
4372 return do_fault(vmf);
4373 }
4374
4375 if (!pte_present(vmf->orig_pte))
4376 return do_swap_page(vmf);
4377
4378 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4379 return do_numa_page(vmf);
4380
4381 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4382 spin_lock(vmf->ptl);
4383 entry = vmf->orig_pte;
4384 if (unlikely(!pte_same(*vmf->pte, entry))) {
4385 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4386 goto unlock;
4387 }
4388 if (vmf->flags & FAULT_FLAG_WRITE) {
4389 if (!pte_write(entry))
4390 return do_wp_page(vmf);
4391 entry = pte_mkdirty(entry);
4392 }
4393 entry = pte_mkyoung(entry);
4394 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4395 vmf->flags & FAULT_FLAG_WRITE)) {
4396 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4397 } else {
4398 /* Skip spurious TLB flush for retried page fault */
4399 if (vmf->flags & FAULT_FLAG_TRIED)
4400 goto unlock;
4401 /*
4402 * This is needed only for protection faults but the arch code
4403 * is not yet telling us if this is a protection fault or not.
4404 * This still avoids useless tlb flushes for .text page faults
4405 * with threads.
4406 */
4407 if (vmf->flags & FAULT_FLAG_WRITE)
4408 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4409 }
4410 unlock:
4411 pte_unmap_unlock(vmf->pte, vmf->ptl);
4412 return 0;
4413 }
4414
4415 /*
4416 * By the time we get here, we already hold the mm semaphore
4417 *
4418 * The mmap_lock may have been released depending on flags and our
4419 * return value. See filemap_fault() and __lock_page_or_retry().
4420 */
4421 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4422 unsigned long address, unsigned int flags)
4423 {
4424 struct vm_fault vmf = {
4425 .vma = vma,
4426 .address = address & PAGE_MASK,
4427 .flags = flags,
4428 .pgoff = linear_page_index(vma, address),
4429 .gfp_mask = __get_fault_gfp_mask(vma),
4430 };
4431 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4432 struct mm_struct *mm = vma->vm_mm;
4433 pgd_t *pgd;
4434 p4d_t *p4d;
4435 vm_fault_t ret;
4436
4437 pgd = pgd_offset(mm, address);
4438 p4d = p4d_alloc(mm, pgd, address);
4439 if (!p4d)
4440 return VM_FAULT_OOM;
4441
4442 vmf.pud = pud_alloc(mm, p4d, address);
4443 if (!vmf.pud)
4444 return VM_FAULT_OOM;
4445 retry_pud:
4446 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4447 ret = create_huge_pud(&vmf);
4448 if (!(ret & VM_FAULT_FALLBACK))
4449 return ret;
4450 } else {
4451 pud_t orig_pud = *vmf.pud;
4452
4453 barrier();
4454 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4455
4456 /* NUMA case for anonymous PUDs would go here */
4457
4458 if (dirty && !pud_write(orig_pud)) {
4459 ret = wp_huge_pud(&vmf, orig_pud);
4460 if (!(ret & VM_FAULT_FALLBACK))
4461 return ret;
4462 } else {
4463 huge_pud_set_accessed(&vmf, orig_pud);
4464 return 0;
4465 }
4466 }
4467 }
4468
4469 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4470 if (!vmf.pmd)
4471 return VM_FAULT_OOM;
4472
4473 /* Huge pud page fault raced with pmd_alloc? */
4474 if (pud_trans_unstable(vmf.pud))
4475 goto retry_pud;
4476
4477 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4478 ret = create_huge_pmd(&vmf);
4479 if (!(ret & VM_FAULT_FALLBACK))
4480 return ret;
4481 } else {
4482 pmd_t orig_pmd = *vmf.pmd;
4483
4484 barrier();
4485 if (unlikely(is_swap_pmd(orig_pmd))) {
4486 VM_BUG_ON(thp_migration_supported() &&
4487 !is_pmd_migration_entry(orig_pmd));
4488 if (is_pmd_migration_entry(orig_pmd))
4489 pmd_migration_entry_wait(mm, vmf.pmd);
4490 return 0;
4491 }
4492 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4493 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4494 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4495
4496 if (dirty && !pmd_write(orig_pmd)) {
4497 ret = wp_huge_pmd(&vmf, orig_pmd);
4498 if (!(ret & VM_FAULT_FALLBACK))
4499 return ret;
4500 } else {
4501 huge_pmd_set_accessed(&vmf, orig_pmd);
4502 return 0;
4503 }
4504 }
4505 }
4506
4507 return handle_pte_fault(&vmf);
4508 }
4509
4510 /**
4511 * mm_account_fault - Do page fault accountings
4512 *
4513 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4514 * of perf event counters, but we'll still do the per-task accounting to
4515 * the task who triggered this page fault.
4516 * @address: the faulted address.
4517 * @flags: the fault flags.
4518 * @ret: the fault retcode.
4519 *
4520 * This will take care of most of the page fault accountings. Meanwhile, it
4521 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4522 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4523 * still be in per-arch page fault handlers at the entry of page fault.
4524 */
4525 static inline void mm_account_fault(struct pt_regs *regs,
4526 unsigned long address, unsigned int flags,
4527 vm_fault_t ret)
4528 {
4529 bool major;
4530
4531 /*
4532 * We don't do accounting for some specific faults:
4533 *
4534 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4535 * includes arch_vma_access_permitted() failing before reaching here.
4536 * So this is not a "this many hardware page faults" counter. We
4537 * should use the hw profiling for that.
4538 *
4539 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4540 * once they're completed.
4541 */
4542 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4543 return;
4544
4545 /*
4546 * We define the fault as a major fault when the final successful fault
4547 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4548 * handle it immediately previously).
4549 */
4550 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4551
4552 if (major)
4553 current->maj_flt++;
4554 else
4555 current->min_flt++;
4556
4557 /*
4558 * If the fault is done for GUP, regs will be NULL. We only do the
4559 * accounting for the per thread fault counters who triggered the
4560 * fault, and we skip the perf event updates.
4561 */
4562 if (!regs)
4563 return;
4564
4565 if (major)
4566 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4567 else
4568 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4569 }
4570
4571 /*
4572 * By the time we get here, we already hold the mm semaphore
4573 *
4574 * The mmap_lock may have been released depending on flags and our
4575 * return value. See filemap_fault() and __lock_page_or_retry().
4576 */
4577 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4578 unsigned int flags, struct pt_regs *regs)
4579 {
4580 vm_fault_t ret;
4581
4582 __set_current_state(TASK_RUNNING);
4583
4584 count_vm_event(PGFAULT);
4585 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4586
4587 /* do counter updates before entering really critical section. */
4588 check_sync_rss_stat(current);
4589
4590 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4591 flags & FAULT_FLAG_INSTRUCTION,
4592 flags & FAULT_FLAG_REMOTE))
4593 return VM_FAULT_SIGSEGV;
4594
4595 /*
4596 * Enable the memcg OOM handling for faults triggered in user
4597 * space. Kernel faults are handled more gracefully.
4598 */
4599 if (flags & FAULT_FLAG_USER)
4600 mem_cgroup_enter_user_fault();
4601
4602 if (unlikely(is_vm_hugetlb_page(vma)))
4603 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4604 else
4605 ret = __handle_mm_fault(vma, address, flags);
4606
4607 if (flags & FAULT_FLAG_USER) {
4608 mem_cgroup_exit_user_fault();
4609 /*
4610 * The task may have entered a memcg OOM situation but
4611 * if the allocation error was handled gracefully (no
4612 * VM_FAULT_OOM), there is no need to kill anything.
4613 * Just clean up the OOM state peacefully.
4614 */
4615 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4616 mem_cgroup_oom_synchronize(false);
4617 }
4618
4619 mm_account_fault(regs, address, flags, ret);
4620
4621 return ret;
4622 }
4623 EXPORT_SYMBOL_GPL(handle_mm_fault);
4624
4625 #ifndef __PAGETABLE_P4D_FOLDED
4626 /*
4627 * Allocate p4d page table.
4628 * We've already handled the fast-path in-line.
4629 */
4630 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4631 {
4632 p4d_t *new = p4d_alloc_one(mm, address);
4633 if (!new)
4634 return -ENOMEM;
4635
4636 smp_wmb(); /* See comment in __pte_alloc */
4637
4638 spin_lock(&mm->page_table_lock);
4639 if (pgd_present(*pgd)) /* Another has populated it */
4640 p4d_free(mm, new);
4641 else
4642 pgd_populate(mm, pgd, new);
4643 spin_unlock(&mm->page_table_lock);
4644 return 0;
4645 }
4646 #endif /* __PAGETABLE_P4D_FOLDED */
4647
4648 #ifndef __PAGETABLE_PUD_FOLDED
4649 /*
4650 * Allocate page upper directory.
4651 * We've already handled the fast-path in-line.
4652 */
4653 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4654 {
4655 pud_t *new = pud_alloc_one(mm, address);
4656 if (!new)
4657 return -ENOMEM;
4658
4659 smp_wmb(); /* See comment in __pte_alloc */
4660
4661 spin_lock(&mm->page_table_lock);
4662 if (!p4d_present(*p4d)) {
4663 mm_inc_nr_puds(mm);
4664 p4d_populate(mm, p4d, new);
4665 } else /* Another has populated it */
4666 pud_free(mm, new);
4667 spin_unlock(&mm->page_table_lock);
4668 return 0;
4669 }
4670 #endif /* __PAGETABLE_PUD_FOLDED */
4671
4672 #ifndef __PAGETABLE_PMD_FOLDED
4673 /*
4674 * Allocate page middle directory.
4675 * We've already handled the fast-path in-line.
4676 */
4677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4678 {
4679 spinlock_t *ptl;
4680 pmd_t *new = pmd_alloc_one(mm, address);
4681 if (!new)
4682 return -ENOMEM;
4683
4684 smp_wmb(); /* See comment in __pte_alloc */
4685
4686 ptl = pud_lock(mm, pud);
4687 if (!pud_present(*pud)) {
4688 mm_inc_nr_pmds(mm);
4689 pud_populate(mm, pud, new);
4690 } else /* Another has populated it */
4691 pmd_free(mm, new);
4692 spin_unlock(ptl);
4693 return 0;
4694 }
4695 #endif /* __PAGETABLE_PMD_FOLDED */
4696
4697 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4698 struct mmu_notifier_range *range,
4699 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4700 {
4701 pgd_t *pgd;
4702 p4d_t *p4d;
4703 pud_t *pud;
4704 pmd_t *pmd;
4705 pte_t *ptep;
4706
4707 pgd = pgd_offset(mm, address);
4708 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4709 goto out;
4710
4711 p4d = p4d_offset(pgd, address);
4712 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4713 goto out;
4714
4715 pud = pud_offset(p4d, address);
4716 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4717 goto out;
4718
4719 pmd = pmd_offset(pud, address);
4720 VM_BUG_ON(pmd_trans_huge(*pmd));
4721
4722 if (pmd_huge(*pmd)) {
4723 if (!pmdpp)
4724 goto out;
4725
4726 if (range) {
4727 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4728 NULL, mm, address & PMD_MASK,
4729 (address & PMD_MASK) + PMD_SIZE);
4730 mmu_notifier_invalidate_range_start(range);
4731 }
4732 *ptlp = pmd_lock(mm, pmd);
4733 if (pmd_huge(*pmd)) {
4734 *pmdpp = pmd;
4735 return 0;
4736 }
4737 spin_unlock(*ptlp);
4738 if (range)
4739 mmu_notifier_invalidate_range_end(range);
4740 }
4741
4742 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4743 goto out;
4744
4745 if (range) {
4746 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4747 address & PAGE_MASK,
4748 (address & PAGE_MASK) + PAGE_SIZE);
4749 mmu_notifier_invalidate_range_start(range);
4750 }
4751 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4752 if (!pte_present(*ptep))
4753 goto unlock;
4754 *ptepp = ptep;
4755 return 0;
4756 unlock:
4757 pte_unmap_unlock(ptep, *ptlp);
4758 if (range)
4759 mmu_notifier_invalidate_range_end(range);
4760 out:
4761 return -EINVAL;
4762 }
4763
4764 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4765 pte_t **ptepp, spinlock_t **ptlp)
4766 {
4767 int res;
4768
4769 /* (void) is needed to make gcc happy */
4770 (void) __cond_lock(*ptlp,
4771 !(res = __follow_pte_pmd(mm, address, NULL,
4772 ptepp, NULL, ptlp)));
4773 return res;
4774 }
4775
4776 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4777 struct mmu_notifier_range *range,
4778 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4779 {
4780 int res;
4781
4782 /* (void) is needed to make gcc happy */
4783 (void) __cond_lock(*ptlp,
4784 !(res = __follow_pte_pmd(mm, address, range,
4785 ptepp, pmdpp, ptlp)));
4786 return res;
4787 }
4788 EXPORT_SYMBOL(follow_pte_pmd);
4789
4790 /**
4791 * follow_pfn - look up PFN at a user virtual address
4792 * @vma: memory mapping
4793 * @address: user virtual address
4794 * @pfn: location to store found PFN
4795 *
4796 * Only IO mappings and raw PFN mappings are allowed.
4797 *
4798 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4799 */
4800 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4801 unsigned long *pfn)
4802 {
4803 int ret = -EINVAL;
4804 spinlock_t *ptl;
4805 pte_t *ptep;
4806
4807 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4808 return ret;
4809
4810 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4811 if (ret)
4812 return ret;
4813 *pfn = pte_pfn(*ptep);
4814 pte_unmap_unlock(ptep, ptl);
4815 return 0;
4816 }
4817 EXPORT_SYMBOL(follow_pfn);
4818
4819 #ifdef CONFIG_HAVE_IOREMAP_PROT
4820 int follow_phys(struct vm_area_struct *vma,
4821 unsigned long address, unsigned int flags,
4822 unsigned long *prot, resource_size_t *phys)
4823 {
4824 int ret = -EINVAL;
4825 pte_t *ptep, pte;
4826 spinlock_t *ptl;
4827
4828 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4829 goto out;
4830
4831 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4832 goto out;
4833 pte = *ptep;
4834
4835 if ((flags & FOLL_WRITE) && !pte_write(pte))
4836 goto unlock;
4837
4838 *prot = pgprot_val(pte_pgprot(pte));
4839 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4840
4841 ret = 0;
4842 unlock:
4843 pte_unmap_unlock(ptep, ptl);
4844 out:
4845 return ret;
4846 }
4847
4848 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4849 void *buf, int len, int write)
4850 {
4851 resource_size_t phys_addr;
4852 unsigned long prot = 0;
4853 void __iomem *maddr;
4854 int offset = addr & (PAGE_SIZE-1);
4855
4856 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4857 return -EINVAL;
4858
4859 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4860 if (!maddr)
4861 return -ENOMEM;
4862
4863 if (write)
4864 memcpy_toio(maddr + offset, buf, len);
4865 else
4866 memcpy_fromio(buf, maddr + offset, len);
4867 iounmap(maddr);
4868
4869 return len;
4870 }
4871 EXPORT_SYMBOL_GPL(generic_access_phys);
4872 #endif
4873
4874 /*
4875 * Access another process' address space as given in mm. If non-NULL, use the
4876 * given task for page fault accounting.
4877 */
4878 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4879 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4880 {
4881 struct vm_area_struct *vma;
4882 void *old_buf = buf;
4883 int write = gup_flags & FOLL_WRITE;
4884
4885 if (mmap_read_lock_killable(mm))
4886 return 0;
4887
4888 /* ignore errors, just check how much was successfully transferred */
4889 while (len) {
4890 int bytes, ret, offset;
4891 void *maddr;
4892 struct page *page = NULL;
4893
4894 ret = get_user_pages_remote(mm, addr, 1,
4895 gup_flags, &page, &vma, NULL);
4896 if (ret <= 0) {
4897 #ifndef CONFIG_HAVE_IOREMAP_PROT
4898 break;
4899 #else
4900 /*
4901 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4902 * we can access using slightly different code.
4903 */
4904 vma = find_vma(mm, addr);
4905 if (!vma || vma->vm_start > addr)
4906 break;
4907 if (vma->vm_ops && vma->vm_ops->access)
4908 ret = vma->vm_ops->access(vma, addr, buf,
4909 len, write);
4910 if (ret <= 0)
4911 break;
4912 bytes = ret;
4913 #endif
4914 } else {
4915 bytes = len;
4916 offset = addr & (PAGE_SIZE-1);
4917 if (bytes > PAGE_SIZE-offset)
4918 bytes = PAGE_SIZE-offset;
4919
4920 maddr = kmap(page);
4921 if (write) {
4922 copy_to_user_page(vma, page, addr,
4923 maddr + offset, buf, bytes);
4924 set_page_dirty_lock(page);
4925 } else {
4926 copy_from_user_page(vma, page, addr,
4927 buf, maddr + offset, bytes);
4928 }
4929 kunmap(page);
4930 put_page(page);
4931 }
4932 len -= bytes;
4933 buf += bytes;
4934 addr += bytes;
4935 }
4936 mmap_read_unlock(mm);
4937
4938 return buf - old_buf;
4939 }
4940
4941 /**
4942 * access_remote_vm - access another process' address space
4943 * @mm: the mm_struct of the target address space
4944 * @addr: start address to access
4945 * @buf: source or destination buffer
4946 * @len: number of bytes to transfer
4947 * @gup_flags: flags modifying lookup behaviour
4948 *
4949 * The caller must hold a reference on @mm.
4950 *
4951 * Return: number of bytes copied from source to destination.
4952 */
4953 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4954 void *buf, int len, unsigned int gup_flags)
4955 {
4956 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4957 }
4958
4959 /*
4960 * Access another process' address space.
4961 * Source/target buffer must be kernel space,
4962 * Do not walk the page table directly, use get_user_pages
4963 */
4964 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4965 void *buf, int len, unsigned int gup_flags)
4966 {
4967 struct mm_struct *mm;
4968 int ret;
4969
4970 mm = get_task_mm(tsk);
4971 if (!mm)
4972 return 0;
4973
4974 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4975
4976 mmput(mm);
4977
4978 return ret;
4979 }
4980 EXPORT_SYMBOL_GPL(access_process_vm);
4981
4982 /*
4983 * Print the name of a VMA.
4984 */
4985 void print_vma_addr(char *prefix, unsigned long ip)
4986 {
4987 struct mm_struct *mm = current->mm;
4988 struct vm_area_struct *vma;
4989
4990 /*
4991 * we might be running from an atomic context so we cannot sleep
4992 */
4993 if (!mmap_read_trylock(mm))
4994 return;
4995
4996 vma = find_vma(mm, ip);
4997 if (vma && vma->vm_file) {
4998 struct file *f = vma->vm_file;
4999 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5000 if (buf) {
5001 char *p;
5002
5003 p = file_path(f, buf, PAGE_SIZE);
5004 if (IS_ERR(p))
5005 p = "?";
5006 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5007 vma->vm_start,
5008 vma->vm_end - vma->vm_start);
5009 free_page((unsigned long)buf);
5010 }
5011 }
5012 mmap_read_unlock(mm);
5013 }
5014
5015 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5016 void __might_fault(const char *file, int line)
5017 {
5018 /*
5019 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5020 * holding the mmap_lock, this is safe because kernel memory doesn't
5021 * get paged out, therefore we'll never actually fault, and the
5022 * below annotations will generate false positives.
5023 */
5024 if (uaccess_kernel())
5025 return;
5026 if (pagefault_disabled())
5027 return;
5028 __might_sleep(file, line, 0);
5029 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5030 if (current->mm)
5031 might_lock_read(&current->mm->mmap_lock);
5032 #endif
5033 }
5034 EXPORT_SYMBOL(__might_fault);
5035 #endif
5036
5037 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5038 /*
5039 * Process all subpages of the specified huge page with the specified
5040 * operation. The target subpage will be processed last to keep its
5041 * cache lines hot.
5042 */
5043 static inline void process_huge_page(
5044 unsigned long addr_hint, unsigned int pages_per_huge_page,
5045 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5046 void *arg)
5047 {
5048 int i, n, base, l;
5049 unsigned long addr = addr_hint &
5050 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5051
5052 /* Process target subpage last to keep its cache lines hot */
5053 might_sleep();
5054 n = (addr_hint - addr) / PAGE_SIZE;
5055 if (2 * n <= pages_per_huge_page) {
5056 /* If target subpage in first half of huge page */
5057 base = 0;
5058 l = n;
5059 /* Process subpages at the end of huge page */
5060 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5061 cond_resched();
5062 process_subpage(addr + i * PAGE_SIZE, i, arg);
5063 }
5064 } else {
5065 /* If target subpage in second half of huge page */
5066 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5067 l = pages_per_huge_page - n;
5068 /* Process subpages at the begin of huge page */
5069 for (i = 0; i < base; i++) {
5070 cond_resched();
5071 process_subpage(addr + i * PAGE_SIZE, i, arg);
5072 }
5073 }
5074 /*
5075 * Process remaining subpages in left-right-left-right pattern
5076 * towards the target subpage
5077 */
5078 for (i = 0; i < l; i++) {
5079 int left_idx = base + i;
5080 int right_idx = base + 2 * l - 1 - i;
5081
5082 cond_resched();
5083 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5084 cond_resched();
5085 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5086 }
5087 }
5088
5089 static void clear_gigantic_page(struct page *page,
5090 unsigned long addr,
5091 unsigned int pages_per_huge_page)
5092 {
5093 int i;
5094 struct page *p = page;
5095
5096 might_sleep();
5097 for (i = 0; i < pages_per_huge_page;
5098 i++, p = mem_map_next(p, page, i)) {
5099 cond_resched();
5100 clear_user_highpage(p, addr + i * PAGE_SIZE);
5101 }
5102 }
5103
5104 static void clear_subpage(unsigned long addr, int idx, void *arg)
5105 {
5106 struct page *page = arg;
5107
5108 clear_user_highpage(page + idx, addr);
5109 }
5110
5111 void clear_huge_page(struct page *page,
5112 unsigned long addr_hint, unsigned int pages_per_huge_page)
5113 {
5114 unsigned long addr = addr_hint &
5115 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5116
5117 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5118 clear_gigantic_page(page, addr, pages_per_huge_page);
5119 return;
5120 }
5121
5122 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5123 }
5124
5125 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5126 unsigned long addr,
5127 struct vm_area_struct *vma,
5128 unsigned int pages_per_huge_page)
5129 {
5130 int i;
5131 struct page *dst_base = dst;
5132 struct page *src_base = src;
5133
5134 for (i = 0; i < pages_per_huge_page; ) {
5135 cond_resched();
5136 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5137
5138 i++;
5139 dst = mem_map_next(dst, dst_base, i);
5140 src = mem_map_next(src, src_base, i);
5141 }
5142 }
5143
5144 struct copy_subpage_arg {
5145 struct page *dst;
5146 struct page *src;
5147 struct vm_area_struct *vma;
5148 };
5149
5150 static void copy_subpage(unsigned long addr, int idx, void *arg)
5151 {
5152 struct copy_subpage_arg *copy_arg = arg;
5153
5154 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5155 addr, copy_arg->vma);
5156 }
5157
5158 void copy_user_huge_page(struct page *dst, struct page *src,
5159 unsigned long addr_hint, struct vm_area_struct *vma,
5160 unsigned int pages_per_huge_page)
5161 {
5162 unsigned long addr = addr_hint &
5163 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5164 struct copy_subpage_arg arg = {
5165 .dst = dst,
5166 .src = src,
5167 .vma = vma,
5168 };
5169
5170 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5171 copy_user_gigantic_page(dst, src, addr, vma,
5172 pages_per_huge_page);
5173 return;
5174 }
5175
5176 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5177 }
5178
5179 long copy_huge_page_from_user(struct page *dst_page,
5180 const void __user *usr_src,
5181 unsigned int pages_per_huge_page,
5182 bool allow_pagefault)
5183 {
5184 void *src = (void *)usr_src;
5185 void *page_kaddr;
5186 unsigned long i, rc = 0;
5187 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5188
5189 for (i = 0; i < pages_per_huge_page; i++) {
5190 if (allow_pagefault)
5191 page_kaddr = kmap(dst_page + i);
5192 else
5193 page_kaddr = kmap_atomic(dst_page + i);
5194 rc = copy_from_user(page_kaddr,
5195 (const void __user *)(src + i * PAGE_SIZE),
5196 PAGE_SIZE);
5197 if (allow_pagefault)
5198 kunmap(dst_page + i);
5199 else
5200 kunmap_atomic(page_kaddr);
5201
5202 ret_val -= (PAGE_SIZE - rc);
5203 if (rc)
5204 break;
5205
5206 cond_resched();
5207 }
5208 return ret_val;
5209 }
5210 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5211
5212 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5213
5214 static struct kmem_cache *page_ptl_cachep;
5215
5216 void __init ptlock_cache_init(void)
5217 {
5218 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5219 SLAB_PANIC, NULL);
5220 }
5221
5222 bool ptlock_alloc(struct page *page)
5223 {
5224 spinlock_t *ptl;
5225
5226 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5227 if (!ptl)
5228 return false;
5229 page->ptl = ptl;
5230 return true;
5231 }
5232
5233 void ptlock_free(struct page *page)
5234 {
5235 kmem_cache_free(page_ptl_cachep, page->ptl);
5236 }
5237 #endif