]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
Merge tag 'backlight-next-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 1;
115 #else
116 2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121 randomize_va_space = 0;
122 return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134 static int __init init_zero_pfn(void)
135 {
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 struct mm_struct __maybe_unused *mm = arg;
332 /*
333 * On most architectures this does nothing. Simply delivering the
334 * interrupt is enough to prevent races with software page table
335 * walking like that done in get_user_pages_fast.
336 *
337 * See the comment near struct mmu_table_batch.
338 */
339 tlb_flush_remove_tables_local(mm);
340 }
341
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344 /*
345 * This isn't an RCU grace period and hence the page-tables cannot be
346 * assumed to be actually RCU-freed.
347 *
348 * It is however sufficient for software page-table walkers that rely on
349 * IRQ disabling. See the comment near struct mmu_table_batch.
350 */
351 smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352 __tlb_remove_table(table);
353 }
354
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357 struct mmu_table_batch *batch;
358 int i;
359
360 batch = container_of(head, struct mmu_table_batch, rcu);
361
362 for (i = 0; i < batch->nr; i++)
363 __tlb_remove_table(batch->tables[i]);
364
365 free_page((unsigned long)batch);
366 }
367
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370 struct mmu_table_batch **batch = &tlb->batch;
371
372 tlb_flush_remove_tables(tlb->mm);
373
374 if (*batch) {
375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 *batch = NULL;
377 }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 /*
385 * When there's less then two users of this mm there cannot be a
386 * concurrent page-table walk.
387 */
388 if (atomic_read(&tlb->mm->mm_users) < 2) {
389 __tlb_remove_table(table);
390 return;
391 }
392
393 if (*batch == NULL) {
394 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395 if (*batch == NULL) {
396 tlb_remove_table_one(table, tlb);
397 return;
398 }
399 (*batch)->nr = 0;
400 }
401 (*batch)->tables[(*batch)->nr++] = table;
402 if ((*batch)->nr == MAX_TABLE_BATCH)
403 tlb_table_flush(tlb);
404 }
405
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407
408 /**
409 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410 * @tlb: the mmu_gather structure to initialize
411 * @mm: the mm_struct of the target address space
412 * @start: start of the region that will be removed from the page-table
413 * @end: end of the region that will be removed from the page-table
414 *
415 * Called to initialize an (on-stack) mmu_gather structure for page-table
416 * tear-down from @mm. The @start and @end are set to 0 and -1
417 * respectively when @mm is without users and we're going to destroy
418 * the full address space (exit/execve).
419 */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421 unsigned long start, unsigned long end)
422 {
423 arch_tlb_gather_mmu(tlb, mm, start, end);
424 inc_tlb_flush_pending(tlb->mm);
425 }
426
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428 unsigned long start, unsigned long end)
429 {
430 /*
431 * If there are parallel threads are doing PTE changes on same range
432 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433 * flush by batching, a thread has stable TLB entry can fail to flush
434 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435 * forcefully if we detect parallel PTE batching threads.
436 */
437 bool force = mm_tlb_flush_nested(tlb->mm);
438
439 arch_tlb_finish_mmu(tlb, start, end, force);
440 dec_tlb_flush_pending(tlb->mm);
441 }
442
443 /*
444 * Note: this doesn't free the actual pages themselves. That
445 * has been handled earlier when unmapping all the memory regions.
446 */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448 unsigned long addr)
449 {
450 pgtable_t token = pmd_pgtable(*pmd);
451 pmd_clear(pmd);
452 pte_free_tlb(tlb, token, addr);
453 mm_dec_nr_ptes(tlb->mm);
454 }
455
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457 unsigned long addr, unsigned long end,
458 unsigned long floor, unsigned long ceiling)
459 {
460 pmd_t *pmd;
461 unsigned long next;
462 unsigned long start;
463
464 start = addr;
465 pmd = pmd_offset(pud, addr);
466 do {
467 next = pmd_addr_end(addr, end);
468 if (pmd_none_or_clear_bad(pmd))
469 continue;
470 free_pte_range(tlb, pmd, addr);
471 } while (pmd++, addr = next, addr != end);
472
473 start &= PUD_MASK;
474 if (start < floor)
475 return;
476 if (ceiling) {
477 ceiling &= PUD_MASK;
478 if (!ceiling)
479 return;
480 }
481 if (end - 1 > ceiling - 1)
482 return;
483
484 pmd = pmd_offset(pud, start);
485 pud_clear(pud);
486 pmd_free_tlb(tlb, pmd, start);
487 mm_dec_nr_pmds(tlb->mm);
488 }
489
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
493 {
494 pud_t *pud;
495 unsigned long next;
496 unsigned long start;
497
498 start = addr;
499 pud = pud_offset(p4d, addr);
500 do {
501 next = pud_addr_end(addr, end);
502 if (pud_none_or_clear_bad(pud))
503 continue;
504 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505 } while (pud++, addr = next, addr != end);
506
507 start &= P4D_MASK;
508 if (start < floor)
509 return;
510 if (ceiling) {
511 ceiling &= P4D_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 return;
517
518 pud = pud_offset(p4d, start);
519 p4d_clear(p4d);
520 pud_free_tlb(tlb, pud, start);
521 mm_dec_nr_puds(tlb->mm);
522 }
523
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 unsigned long floor, unsigned long ceiling)
527 {
528 p4d_t *p4d;
529 unsigned long next;
530 unsigned long start;
531
532 start = addr;
533 p4d = p4d_offset(pgd, addr);
534 do {
535 next = p4d_addr_end(addr, end);
536 if (p4d_none_or_clear_bad(p4d))
537 continue;
538 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539 } while (p4d++, addr = next, addr != end);
540
541 start &= PGDIR_MASK;
542 if (start < floor)
543 return;
544 if (ceiling) {
545 ceiling &= PGDIR_MASK;
546 if (!ceiling)
547 return;
548 }
549 if (end - 1 > ceiling - 1)
550 return;
551
552 p4d = p4d_offset(pgd, start);
553 pgd_clear(pgd);
554 p4d_free_tlb(tlb, p4d, start);
555 }
556
557 /*
558 * This function frees user-level page tables of a process.
559 */
560 void free_pgd_range(struct mmu_gather *tlb,
561 unsigned long addr, unsigned long end,
562 unsigned long floor, unsigned long ceiling)
563 {
564 pgd_t *pgd;
565 unsigned long next;
566
567 /*
568 * The next few lines have given us lots of grief...
569 *
570 * Why are we testing PMD* at this top level? Because often
571 * there will be no work to do at all, and we'd prefer not to
572 * go all the way down to the bottom just to discover that.
573 *
574 * Why all these "- 1"s? Because 0 represents both the bottom
575 * of the address space and the top of it (using -1 for the
576 * top wouldn't help much: the masks would do the wrong thing).
577 * The rule is that addr 0 and floor 0 refer to the bottom of
578 * the address space, but end 0 and ceiling 0 refer to the top
579 * Comparisons need to use "end - 1" and "ceiling - 1" (though
580 * that end 0 case should be mythical).
581 *
582 * Wherever addr is brought up or ceiling brought down, we must
583 * be careful to reject "the opposite 0" before it confuses the
584 * subsequent tests. But what about where end is brought down
585 * by PMD_SIZE below? no, end can't go down to 0 there.
586 *
587 * Whereas we round start (addr) and ceiling down, by different
588 * masks at different levels, in order to test whether a table
589 * now has no other vmas using it, so can be freed, we don't
590 * bother to round floor or end up - the tests don't need that.
591 */
592
593 addr &= PMD_MASK;
594 if (addr < floor) {
595 addr += PMD_SIZE;
596 if (!addr)
597 return;
598 }
599 if (ceiling) {
600 ceiling &= PMD_MASK;
601 if (!ceiling)
602 return;
603 }
604 if (end - 1 > ceiling - 1)
605 end -= PMD_SIZE;
606 if (addr > end - 1)
607 return;
608 /*
609 * We add page table cache pages with PAGE_SIZE,
610 * (see pte_free_tlb()), flush the tlb if we need
611 */
612 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613 pgd = pgd_offset(tlb->mm, addr);
614 do {
615 next = pgd_addr_end(addr, end);
616 if (pgd_none_or_clear_bad(pgd))
617 continue;
618 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619 } while (pgd++, addr = next, addr != end);
620 }
621
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623 unsigned long floor, unsigned long ceiling)
624 {
625 while (vma) {
626 struct vm_area_struct *next = vma->vm_next;
627 unsigned long addr = vma->vm_start;
628
629 /*
630 * Hide vma from rmap and truncate_pagecache before freeing
631 * pgtables
632 */
633 unlink_anon_vmas(vma);
634 unlink_file_vma(vma);
635
636 if (is_vm_hugetlb_page(vma)) {
637 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638 floor, next ? next->vm_start : ceiling);
639 } else {
640 /*
641 * Optimization: gather nearby vmas into one call down
642 */
643 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644 && !is_vm_hugetlb_page(next)) {
645 vma = next;
646 next = vma->vm_next;
647 unlink_anon_vmas(vma);
648 unlink_file_vma(vma);
649 }
650 free_pgd_range(tlb, addr, vma->vm_end,
651 floor, next ? next->vm_start : ceiling);
652 }
653 vma = next;
654 }
655 }
656
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659 spinlock_t *ptl;
660 pgtable_t new = pte_alloc_one(mm, address);
661 if (!new)
662 return -ENOMEM;
663
664 /*
665 * Ensure all pte setup (eg. pte page lock and page clearing) are
666 * visible before the pte is made visible to other CPUs by being
667 * put into page tables.
668 *
669 * The other side of the story is the pointer chasing in the page
670 * table walking code (when walking the page table without locking;
671 * ie. most of the time). Fortunately, these data accesses consist
672 * of a chain of data-dependent loads, meaning most CPUs (alpha
673 * being the notable exception) will already guarantee loads are
674 * seen in-order. See the alpha page table accessors for the
675 * smp_read_barrier_depends() barriers in page table walking code.
676 */
677 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
679 ptl = pmd_lock(mm, pmd);
680 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
681 mm_inc_nr_ptes(mm);
682 pmd_populate(mm, pmd, new);
683 new = NULL;
684 }
685 spin_unlock(ptl);
686 if (new)
687 pte_free(mm, new);
688 return 0;
689 }
690
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694 if (!new)
695 return -ENOMEM;
696
697 smp_wmb(); /* See comment in __pte_alloc */
698
699 spin_lock(&init_mm.page_table_lock);
700 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
701 pmd_populate_kernel(&init_mm, pmd, new);
702 new = NULL;
703 }
704 spin_unlock(&init_mm.page_table_lock);
705 if (new)
706 pte_free_kernel(&init_mm, new);
707 return 0;
708 }
709
710 static inline void init_rss_vec(int *rss)
711 {
712 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717 int i;
718
719 if (current->mm == mm)
720 sync_mm_rss(mm);
721 for (i = 0; i < NR_MM_COUNTERS; i++)
722 if (rss[i])
723 add_mm_counter(mm, i, rss[i]);
724 }
725
726 /*
727 * This function is called to print an error when a bad pte
728 * is found. For example, we might have a PFN-mapped pte in
729 * a region that doesn't allow it.
730 *
731 * The calling function must still handle the error.
732 */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734 pte_t pte, struct page *page)
735 {
736 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737 p4d_t *p4d = p4d_offset(pgd, addr);
738 pud_t *pud = pud_offset(p4d, addr);
739 pmd_t *pmd = pmd_offset(pud, addr);
740 struct address_space *mapping;
741 pgoff_t index;
742 static unsigned long resume;
743 static unsigned long nr_shown;
744 static unsigned long nr_unshown;
745
746 /*
747 * Allow a burst of 60 reports, then keep quiet for that minute;
748 * or allow a steady drip of one report per second.
749 */
750 if (nr_shown == 60) {
751 if (time_before(jiffies, resume)) {
752 nr_unshown++;
753 return;
754 }
755 if (nr_unshown) {
756 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757 nr_unshown);
758 nr_unshown = 0;
759 }
760 nr_shown = 0;
761 }
762 if (nr_shown++ == 0)
763 resume = jiffies + 60 * HZ;
764
765 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766 index = linear_page_index(vma, addr);
767
768 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
769 current->comm,
770 (long long)pte_val(pte), (long long)pmd_val(*pmd));
771 if (page)
772 dump_page(page, "bad pte");
773 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
780 dump_stack();
781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 *
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 *
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
799 *
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
813 *
814 *
815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
825 */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827 pte_t pte, bool with_public_device)
828 {
829 unsigned long pfn = pte_pfn(pte);
830
831 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832 if (likely(!pte_special(pte)))
833 goto check_pfn;
834 if (vma->vm_ops && vma->vm_ops->find_special_page)
835 return vma->vm_ops->find_special_page(vma, addr);
836 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837 return NULL;
838 if (is_zero_pfn(pfn))
839 return NULL;
840
841 /*
842 * Device public pages are special pages (they are ZONE_DEVICE
843 * pages but different from persistent memory). They behave
844 * allmost like normal pages. The difference is that they are
845 * not on the lru and thus should never be involve with any-
846 * thing that involve lru manipulation (mlock, numa balancing,
847 * ...).
848 *
849 * This is why we still want to return NULL for such page from
850 * vm_normal_page() so that we do not have to special case all
851 * call site of vm_normal_page().
852 */
853 if (likely(pfn <= highest_memmap_pfn)) {
854 struct page *page = pfn_to_page(pfn);
855
856 if (is_device_public_page(page)) {
857 if (with_public_device)
858 return page;
859 return NULL;
860 }
861 }
862
863 if (pte_devmap(pte))
864 return NULL;
865
866 print_bad_pte(vma, addr, pte, NULL);
867 return NULL;
868 }
869
870 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
871
872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 if (vma->vm_flags & VM_MIXEDMAP) {
874 if (!pfn_valid(pfn))
875 return NULL;
876 goto out;
877 } else {
878 unsigned long off;
879 off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 if (pfn == vma->vm_pgoff + off)
881 return NULL;
882 if (!is_cow_mapping(vma->vm_flags))
883 return NULL;
884 }
885 }
886
887 if (is_zero_pfn(pfn))
888 return NULL;
889
890 check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
895
896 /*
897 * NOTE! We still have PageReserved() pages in the page tables.
898 * eg. VDSO mappings can cause them to exist.
899 */
900 out:
901 return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907 {
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (pmd_devmap(pmd))
931 return NULL;
932 if (is_zero_pfn(pfn))
933 return NULL;
934 if (unlikely(pfn > highest_memmap_pfn))
935 return NULL;
936
937 /*
938 * NOTE! We still have PageReserved() pages in the page tables.
939 * eg. VDSO mappings can cause them to exist.
940 */
941 out:
942 return pfn_to_page(pfn);
943 }
944 #endif
945
946 /*
947 * copy one vm_area from one task to the other. Assumes the page tables
948 * already present in the new task to be cleared in the whole range
949 * covered by this vma.
950 */
951
952 static inline unsigned long
953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
954 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
955 unsigned long addr, int *rss)
956 {
957 unsigned long vm_flags = vma->vm_flags;
958 pte_t pte = *src_pte;
959 struct page *page;
960
961 /* pte contains position in swap or file, so copy. */
962 if (unlikely(!pte_present(pte))) {
963 swp_entry_t entry = pte_to_swp_entry(pte);
964
965 if (likely(!non_swap_entry(entry))) {
966 if (swap_duplicate(entry) < 0)
967 return entry.val;
968
969 /* make sure dst_mm is on swapoff's mmlist. */
970 if (unlikely(list_empty(&dst_mm->mmlist))) {
971 spin_lock(&mmlist_lock);
972 if (list_empty(&dst_mm->mmlist))
973 list_add(&dst_mm->mmlist,
974 &src_mm->mmlist);
975 spin_unlock(&mmlist_lock);
976 }
977 rss[MM_SWAPENTS]++;
978 } else if (is_migration_entry(entry)) {
979 page = migration_entry_to_page(entry);
980
981 rss[mm_counter(page)]++;
982
983 if (is_write_migration_entry(entry) &&
984 is_cow_mapping(vm_flags)) {
985 /*
986 * COW mappings require pages in both
987 * parent and child to be set to read.
988 */
989 make_migration_entry_read(&entry);
990 pte = swp_entry_to_pte(entry);
991 if (pte_swp_soft_dirty(*src_pte))
992 pte = pte_swp_mksoft_dirty(pte);
993 set_pte_at(src_mm, addr, src_pte, pte);
994 }
995 } else if (is_device_private_entry(entry)) {
996 page = device_private_entry_to_page(entry);
997
998 /*
999 * Update rss count even for unaddressable pages, as
1000 * they should treated just like normal pages in this
1001 * respect.
1002 *
1003 * We will likely want to have some new rss counters
1004 * for unaddressable pages, at some point. But for now
1005 * keep things as they are.
1006 */
1007 get_page(page);
1008 rss[mm_counter(page)]++;
1009 page_dup_rmap(page, false);
1010
1011 /*
1012 * We do not preserve soft-dirty information, because so
1013 * far, checkpoint/restore is the only feature that
1014 * requires that. And checkpoint/restore does not work
1015 * when a device driver is involved (you cannot easily
1016 * save and restore device driver state).
1017 */
1018 if (is_write_device_private_entry(entry) &&
1019 is_cow_mapping(vm_flags)) {
1020 make_device_private_entry_read(&entry);
1021 pte = swp_entry_to_pte(entry);
1022 set_pte_at(src_mm, addr, src_pte, pte);
1023 }
1024 }
1025 goto out_set_pte;
1026 }
1027
1028 /*
1029 * If it's a COW mapping, write protect it both
1030 * in the parent and the child
1031 */
1032 if (is_cow_mapping(vm_flags)) {
1033 ptep_set_wrprotect(src_mm, addr, src_pte);
1034 pte = pte_wrprotect(pte);
1035 }
1036
1037 /*
1038 * If it's a shared mapping, mark it clean in
1039 * the child
1040 */
1041 if (vm_flags & VM_SHARED)
1042 pte = pte_mkclean(pte);
1043 pte = pte_mkold(pte);
1044
1045 page = vm_normal_page(vma, addr, pte);
1046 if (page) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1050 } else if (pte_devmap(pte)) {
1051 page = pte_page(pte);
1052
1053 /*
1054 * Cache coherent device memory behave like regular page and
1055 * not like persistent memory page. For more informations see
1056 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057 */
1058 if (is_device_public_page(page)) {
1059 get_page(page);
1060 page_dup_rmap(page, false);
1061 rss[mm_counter(page)]++;
1062 }
1063 }
1064
1065 out_set_pte:
1066 set_pte_at(dst_mm, addr, dst_pte, pte);
1067 return 0;
1068 }
1069
1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1071 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072 unsigned long addr, unsigned long end)
1073 {
1074 pte_t *orig_src_pte, *orig_dst_pte;
1075 pte_t *src_pte, *dst_pte;
1076 spinlock_t *src_ptl, *dst_ptl;
1077 int progress = 0;
1078 int rss[NR_MM_COUNTERS];
1079 swp_entry_t entry = (swp_entry_t){0};
1080
1081 again:
1082 init_rss_vec(rss);
1083
1084 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1085 if (!dst_pte)
1086 return -ENOMEM;
1087 src_pte = pte_offset_map(src_pmd, addr);
1088 src_ptl = pte_lockptr(src_mm, src_pmd);
1089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090 orig_src_pte = src_pte;
1091 orig_dst_pte = dst_pte;
1092 arch_enter_lazy_mmu_mode();
1093
1094 do {
1095 /*
1096 * We are holding two locks at this point - either of them
1097 * could generate latencies in another task on another CPU.
1098 */
1099 if (progress >= 32) {
1100 progress = 0;
1101 if (need_resched() ||
1102 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103 break;
1104 }
1105 if (pte_none(*src_pte)) {
1106 progress++;
1107 continue;
1108 }
1109 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110 vma, addr, rss);
1111 if (entry.val)
1112 break;
1113 progress += 8;
1114 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115
1116 arch_leave_lazy_mmu_mode();
1117 spin_unlock(src_ptl);
1118 pte_unmap(orig_src_pte);
1119 add_mm_rss_vec(dst_mm, rss);
1120 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1121 cond_resched();
1122
1123 if (entry.val) {
1124 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125 return -ENOMEM;
1126 progress = 0;
1127 }
1128 if (addr != end)
1129 goto again;
1130 return 0;
1131 }
1132
1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135 unsigned long addr, unsigned long end)
1136 {
1137 pmd_t *src_pmd, *dst_pmd;
1138 unsigned long next;
1139
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 if (!dst_pmd)
1142 return -ENOMEM;
1143 src_pmd = pmd_offset(src_pud, addr);
1144 do {
1145 next = pmd_addr_end(addr, end);
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
1148 int err;
1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1150 err = copy_huge_pmd(dst_mm, src_mm,
1151 dst_pmd, src_pmd, addr, vma);
1152 if (err == -ENOMEM)
1153 return -ENOMEM;
1154 if (!err)
1155 continue;
1156 /* fall through */
1157 }
1158 if (pmd_none_or_clear_bad(src_pmd))
1159 continue;
1160 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161 vma, addr, next))
1162 return -ENOMEM;
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 return 0;
1165 }
1166
1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1168 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1169 unsigned long addr, unsigned long end)
1170 {
1171 pud_t *src_pud, *dst_pud;
1172 unsigned long next;
1173
1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175 if (!dst_pud)
1176 return -ENOMEM;
1177 src_pud = pud_offset(src_p4d, addr);
1178 do {
1179 next = pud_addr_end(addr, end);
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 int err;
1182
1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184 err = copy_huge_pud(dst_mm, src_mm,
1185 dst_pud, src_pud, addr, vma);
1186 if (err == -ENOMEM)
1187 return -ENOMEM;
1188 if (!err)
1189 continue;
1190 /* fall through */
1191 }
1192 if (pud_none_or_clear_bad(src_pud))
1193 continue;
1194 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195 vma, addr, next))
1196 return -ENOMEM;
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1198 return 0;
1199 }
1200
1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203 unsigned long addr, unsigned long end)
1204 {
1205 p4d_t *src_p4d, *dst_p4d;
1206 unsigned long next;
1207
1208 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209 if (!dst_p4d)
1210 return -ENOMEM;
1211 src_p4d = p4d_offset(src_pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(src_p4d))
1215 continue;
1216 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217 vma, addr, next))
1218 return -ENOMEM;
1219 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220 return 0;
1221 }
1222
1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224 struct vm_area_struct *vma)
1225 {
1226 pgd_t *src_pgd, *dst_pgd;
1227 unsigned long next;
1228 unsigned long addr = vma->vm_start;
1229 unsigned long end = vma->vm_end;
1230 unsigned long mmun_start; /* For mmu_notifiers */
1231 unsigned long mmun_end; /* For mmu_notifiers */
1232 bool is_cow;
1233 int ret;
1234
1235 /*
1236 * Don't copy ptes where a page fault will fill them correctly.
1237 * Fork becomes much lighter when there are big shared or private
1238 * readonly mappings. The tradeoff is that copy_page_range is more
1239 * efficient than faulting.
1240 */
1241 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242 !vma->anon_vma)
1243 return 0;
1244
1245 if (is_vm_hugetlb_page(vma))
1246 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247
1248 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1249 /*
1250 * We do not free on error cases below as remove_vma
1251 * gets called on error from higher level routine
1252 */
1253 ret = track_pfn_copy(vma);
1254 if (ret)
1255 return ret;
1256 }
1257
1258 /*
1259 * We need to invalidate the secondary MMU mappings only when
1260 * there could be a permission downgrade on the ptes of the
1261 * parent mm. And a permission downgrade will only happen if
1262 * is_cow_mapping() returns true.
1263 */
1264 is_cow = is_cow_mapping(vma->vm_flags);
1265 mmun_start = addr;
1266 mmun_end = end;
1267 if (is_cow)
1268 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269 mmun_end);
1270
1271 ret = 0;
1272 dst_pgd = pgd_offset(dst_mm, addr);
1273 src_pgd = pgd_offset(src_mm, addr);
1274 do {
1275 next = pgd_addr_end(addr, end);
1276 if (pgd_none_or_clear_bad(src_pgd))
1277 continue;
1278 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1279 vma, addr, next))) {
1280 ret = -ENOMEM;
1281 break;
1282 }
1283 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1284
1285 if (is_cow)
1286 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1287 return ret;
1288 }
1289
1290 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1291 struct vm_area_struct *vma, pmd_t *pmd,
1292 unsigned long addr, unsigned long end,
1293 struct zap_details *details)
1294 {
1295 struct mm_struct *mm = tlb->mm;
1296 int force_flush = 0;
1297 int rss[NR_MM_COUNTERS];
1298 spinlock_t *ptl;
1299 pte_t *start_pte;
1300 pte_t *pte;
1301 swp_entry_t entry;
1302
1303 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1304 again:
1305 init_rss_vec(rss);
1306 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307 pte = start_pte;
1308 flush_tlb_batched_pending(mm);
1309 arch_enter_lazy_mmu_mode();
1310 do {
1311 pte_t ptent = *pte;
1312 if (pte_none(ptent))
1313 continue;
1314
1315 if (pte_present(ptent)) {
1316 struct page *page;
1317
1318 page = _vm_normal_page(vma, addr, ptent, true);
1319 if (unlikely(details) && page) {
1320 /*
1321 * unmap_shared_mapping_pages() wants to
1322 * invalidate cache without truncating:
1323 * unmap shared but keep private pages.
1324 */
1325 if (details->check_mapping &&
1326 details->check_mapping != page_rmapping(page))
1327 continue;
1328 }
1329 ptent = ptep_get_and_clear_full(mm, addr, pte,
1330 tlb->fullmm);
1331 tlb_remove_tlb_entry(tlb, pte, addr);
1332 if (unlikely(!page))
1333 continue;
1334
1335 if (!PageAnon(page)) {
1336 if (pte_dirty(ptent)) {
1337 force_flush = 1;
1338 set_page_dirty(page);
1339 }
1340 if (pte_young(ptent) &&
1341 likely(!(vma->vm_flags & VM_SEQ_READ)))
1342 mark_page_accessed(page);
1343 }
1344 rss[mm_counter(page)]--;
1345 page_remove_rmap(page, false);
1346 if (unlikely(page_mapcount(page) < 0))
1347 print_bad_pte(vma, addr, ptent, page);
1348 if (unlikely(__tlb_remove_page(tlb, page))) {
1349 force_flush = 1;
1350 addr += PAGE_SIZE;
1351 break;
1352 }
1353 continue;
1354 }
1355
1356 entry = pte_to_swp_entry(ptent);
1357 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358 struct page *page = device_private_entry_to_page(entry);
1359
1360 if (unlikely(details && details->check_mapping)) {
1361 /*
1362 * unmap_shared_mapping_pages() wants to
1363 * invalidate cache without truncating:
1364 * unmap shared but keep private pages.
1365 */
1366 if (details->check_mapping !=
1367 page_rmapping(page))
1368 continue;
1369 }
1370
1371 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372 rss[mm_counter(page)]--;
1373 page_remove_rmap(page, false);
1374 put_page(page);
1375 continue;
1376 }
1377
1378 /* If details->check_mapping, we leave swap entries. */
1379 if (unlikely(details))
1380 continue;
1381
1382 entry = pte_to_swp_entry(ptent);
1383 if (!non_swap_entry(entry))
1384 rss[MM_SWAPENTS]--;
1385 else if (is_migration_entry(entry)) {
1386 struct page *page;
1387
1388 page = migration_entry_to_page(entry);
1389 rss[mm_counter(page)]--;
1390 }
1391 if (unlikely(!free_swap_and_cache(entry)))
1392 print_bad_pte(vma, addr, ptent, NULL);
1393 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1394 } while (pte++, addr += PAGE_SIZE, addr != end);
1395
1396 add_mm_rss_vec(mm, rss);
1397 arch_leave_lazy_mmu_mode();
1398
1399 /* Do the actual TLB flush before dropping ptl */
1400 if (force_flush)
1401 tlb_flush_mmu_tlbonly(tlb);
1402 pte_unmap_unlock(start_pte, ptl);
1403
1404 /*
1405 * If we forced a TLB flush (either due to running out of
1406 * batch buffers or because we needed to flush dirty TLB
1407 * entries before releasing the ptl), free the batched
1408 * memory too. Restart if we didn't do everything.
1409 */
1410 if (force_flush) {
1411 force_flush = 0;
1412 tlb_flush_mmu_free(tlb);
1413 if (addr != end)
1414 goto again;
1415 }
1416
1417 return addr;
1418 }
1419
1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1421 struct vm_area_struct *vma, pud_t *pud,
1422 unsigned long addr, unsigned long end,
1423 struct zap_details *details)
1424 {
1425 pmd_t *pmd;
1426 unsigned long next;
1427
1428 pmd = pmd_offset(pud, addr);
1429 do {
1430 next = pmd_addr_end(addr, end);
1431 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1432 if (next - addr != HPAGE_PMD_SIZE)
1433 __split_huge_pmd(vma, pmd, addr, false, NULL);
1434 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435 goto next;
1436 /* fall through */
1437 }
1438 /*
1439 * Here there can be other concurrent MADV_DONTNEED or
1440 * trans huge page faults running, and if the pmd is
1441 * none or trans huge it can change under us. This is
1442 * because MADV_DONTNEED holds the mmap_sem in read
1443 * mode.
1444 */
1445 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446 goto next;
1447 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449 cond_resched();
1450 } while (pmd++, addr = next, addr != end);
1451
1452 return addr;
1453 }
1454
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456 struct vm_area_struct *vma, p4d_t *p4d,
1457 unsigned long addr, unsigned long end,
1458 struct zap_details *details)
1459 {
1460 pud_t *pud;
1461 unsigned long next;
1462
1463 pud = pud_offset(p4d, addr);
1464 do {
1465 next = pud_addr_end(addr, end);
1466 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467 if (next - addr != HPAGE_PUD_SIZE) {
1468 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469 split_huge_pud(vma, pud, addr);
1470 } else if (zap_huge_pud(tlb, vma, pud, addr))
1471 goto next;
1472 /* fall through */
1473 }
1474 if (pud_none_or_clear_bad(pud))
1475 continue;
1476 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478 cond_resched();
1479 } while (pud++, addr = next, addr != end);
1480
1481 return addr;
1482 }
1483
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485 struct vm_area_struct *vma, pgd_t *pgd,
1486 unsigned long addr, unsigned long end,
1487 struct zap_details *details)
1488 {
1489 p4d_t *p4d;
1490 unsigned long next;
1491
1492 p4d = p4d_offset(pgd, addr);
1493 do {
1494 next = p4d_addr_end(addr, end);
1495 if (p4d_none_or_clear_bad(p4d))
1496 continue;
1497 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498 } while (p4d++, addr = next, addr != end);
1499
1500 return addr;
1501 }
1502
1503 void unmap_page_range(struct mmu_gather *tlb,
1504 struct vm_area_struct *vma,
1505 unsigned long addr, unsigned long end,
1506 struct zap_details *details)
1507 {
1508 pgd_t *pgd;
1509 unsigned long next;
1510
1511 BUG_ON(addr >= end);
1512 tlb_start_vma(tlb, vma);
1513 pgd = pgd_offset(vma->vm_mm, addr);
1514 do {
1515 next = pgd_addr_end(addr, end);
1516 if (pgd_none_or_clear_bad(pgd))
1517 continue;
1518 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519 } while (pgd++, addr = next, addr != end);
1520 tlb_end_vma(tlb, vma);
1521 }
1522
1523
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525 struct vm_area_struct *vma, unsigned long start_addr,
1526 unsigned long end_addr,
1527 struct zap_details *details)
1528 {
1529 unsigned long start = max(vma->vm_start, start_addr);
1530 unsigned long end;
1531
1532 if (start >= vma->vm_end)
1533 return;
1534 end = min(vma->vm_end, end_addr);
1535 if (end <= vma->vm_start)
1536 return;
1537
1538 if (vma->vm_file)
1539 uprobe_munmap(vma, start, end);
1540
1541 if (unlikely(vma->vm_flags & VM_PFNMAP))
1542 untrack_pfn(vma, 0, 0);
1543
1544 if (start != end) {
1545 if (unlikely(is_vm_hugetlb_page(vma))) {
1546 /*
1547 * It is undesirable to test vma->vm_file as it
1548 * should be non-null for valid hugetlb area.
1549 * However, vm_file will be NULL in the error
1550 * cleanup path of mmap_region. When
1551 * hugetlbfs ->mmap method fails,
1552 * mmap_region() nullifies vma->vm_file
1553 * before calling this function to clean up.
1554 * Since no pte has actually been setup, it is
1555 * safe to do nothing in this case.
1556 */
1557 if (vma->vm_file) {
1558 i_mmap_lock_write(vma->vm_file->f_mapping);
1559 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561 }
1562 } else
1563 unmap_page_range(tlb, vma, start, end, details);
1564 }
1565 }
1566
1567 /**
1568 * unmap_vmas - unmap a range of memory covered by a list of vma's
1569 * @tlb: address of the caller's struct mmu_gather
1570 * @vma: the starting vma
1571 * @start_addr: virtual address at which to start unmapping
1572 * @end_addr: virtual address at which to end unmapping
1573 *
1574 * Unmap all pages in the vma list.
1575 *
1576 * Only addresses between `start' and `end' will be unmapped.
1577 *
1578 * The VMA list must be sorted in ascending virtual address order.
1579 *
1580 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581 * range after unmap_vmas() returns. So the only responsibility here is to
1582 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583 * drops the lock and schedules.
1584 */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586 struct vm_area_struct *vma, unsigned long start_addr,
1587 unsigned long end_addr)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590
1591 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596
1597 /**
1598 * zap_page_range - remove user pages in a given range
1599 * @vma: vm_area_struct holding the applicable pages
1600 * @start: starting address of pages to zap
1601 * @size: number of bytes to zap
1602 *
1603 * Caller must protect the VMA list
1604 */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long size)
1607 {
1608 struct mm_struct *mm = vma->vm_mm;
1609 struct mmu_gather tlb;
1610 unsigned long end = start + size;
1611
1612 lru_add_drain();
1613 tlb_gather_mmu(&tlb, mm, start, end);
1614 update_hiwater_rss(mm);
1615 mmu_notifier_invalidate_range_start(mm, start, end);
1616 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1617 unmap_single_vma(&tlb, vma, start, end, NULL);
1618 mmu_notifier_invalidate_range_end(mm, start, end);
1619 tlb_finish_mmu(&tlb, start, end);
1620 }
1621
1622 /**
1623 * zap_page_range_single - remove user pages in a given range
1624 * @vma: vm_area_struct holding the applicable pages
1625 * @address: starting address of pages to zap
1626 * @size: number of bytes to zap
1627 * @details: details of shared cache invalidation
1628 *
1629 * The range must fit into one VMA.
1630 */
1631 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1632 unsigned long size, struct zap_details *details)
1633 {
1634 struct mm_struct *mm = vma->vm_mm;
1635 struct mmu_gather tlb;
1636 unsigned long end = address + size;
1637
1638 lru_add_drain();
1639 tlb_gather_mmu(&tlb, mm, address, end);
1640 update_hiwater_rss(mm);
1641 mmu_notifier_invalidate_range_start(mm, address, end);
1642 unmap_single_vma(&tlb, vma, address, end, details);
1643 mmu_notifier_invalidate_range_end(mm, address, end);
1644 tlb_finish_mmu(&tlb, address, end);
1645 }
1646
1647 /**
1648 * zap_vma_ptes - remove ptes mapping the vma
1649 * @vma: vm_area_struct holding ptes to be zapped
1650 * @address: starting address of pages to zap
1651 * @size: number of bytes to zap
1652 *
1653 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1654 *
1655 * The entire address range must be fully contained within the vma.
1656 *
1657 */
1658 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1659 unsigned long size)
1660 {
1661 if (address < vma->vm_start || address + size > vma->vm_end ||
1662 !(vma->vm_flags & VM_PFNMAP))
1663 return;
1664
1665 zap_page_range_single(vma, address, size, NULL);
1666 }
1667 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1668
1669 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1670 spinlock_t **ptl)
1671 {
1672 pgd_t *pgd;
1673 p4d_t *p4d;
1674 pud_t *pud;
1675 pmd_t *pmd;
1676
1677 pgd = pgd_offset(mm, addr);
1678 p4d = p4d_alloc(mm, pgd, addr);
1679 if (!p4d)
1680 return NULL;
1681 pud = pud_alloc(mm, p4d, addr);
1682 if (!pud)
1683 return NULL;
1684 pmd = pmd_alloc(mm, pud, addr);
1685 if (!pmd)
1686 return NULL;
1687
1688 VM_BUG_ON(pmd_trans_huge(*pmd));
1689 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1690 }
1691
1692 /*
1693 * This is the old fallback for page remapping.
1694 *
1695 * For historical reasons, it only allows reserved pages. Only
1696 * old drivers should use this, and they needed to mark their
1697 * pages reserved for the old functions anyway.
1698 */
1699 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1700 struct page *page, pgprot_t prot)
1701 {
1702 struct mm_struct *mm = vma->vm_mm;
1703 int retval;
1704 pte_t *pte;
1705 spinlock_t *ptl;
1706
1707 retval = -EINVAL;
1708 if (PageAnon(page))
1709 goto out;
1710 retval = -ENOMEM;
1711 flush_dcache_page(page);
1712 pte = get_locked_pte(mm, addr, &ptl);
1713 if (!pte)
1714 goto out;
1715 retval = -EBUSY;
1716 if (!pte_none(*pte))
1717 goto out_unlock;
1718
1719 /* Ok, finally just insert the thing.. */
1720 get_page(page);
1721 inc_mm_counter_fast(mm, mm_counter_file(page));
1722 page_add_file_rmap(page, false);
1723 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1724
1725 retval = 0;
1726 pte_unmap_unlock(pte, ptl);
1727 return retval;
1728 out_unlock:
1729 pte_unmap_unlock(pte, ptl);
1730 out:
1731 return retval;
1732 }
1733
1734 /**
1735 * vm_insert_page - insert single page into user vma
1736 * @vma: user vma to map to
1737 * @addr: target user address of this page
1738 * @page: source kernel page
1739 *
1740 * This allows drivers to insert individual pages they've allocated
1741 * into a user vma.
1742 *
1743 * The page has to be a nice clean _individual_ kernel allocation.
1744 * If you allocate a compound page, you need to have marked it as
1745 * such (__GFP_COMP), or manually just split the page up yourself
1746 * (see split_page()).
1747 *
1748 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1749 * took an arbitrary page protection parameter. This doesn't allow
1750 * that. Your vma protection will have to be set up correctly, which
1751 * means that if you want a shared writable mapping, you'd better
1752 * ask for a shared writable mapping!
1753 *
1754 * The page does not need to be reserved.
1755 *
1756 * Usually this function is called from f_op->mmap() handler
1757 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1758 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1759 * function from other places, for example from page-fault handler.
1760 */
1761 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1762 struct page *page)
1763 {
1764 if (addr < vma->vm_start || addr >= vma->vm_end)
1765 return -EFAULT;
1766 if (!page_count(page))
1767 return -EINVAL;
1768 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1769 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1770 BUG_ON(vma->vm_flags & VM_PFNMAP);
1771 vma->vm_flags |= VM_MIXEDMAP;
1772 }
1773 return insert_page(vma, addr, page, vma->vm_page_prot);
1774 }
1775 EXPORT_SYMBOL(vm_insert_page);
1776
1777 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1778 pfn_t pfn, pgprot_t prot, bool mkwrite)
1779 {
1780 struct mm_struct *mm = vma->vm_mm;
1781 int retval;
1782 pte_t *pte, entry;
1783 spinlock_t *ptl;
1784
1785 retval = -ENOMEM;
1786 pte = get_locked_pte(mm, addr, &ptl);
1787 if (!pte)
1788 goto out;
1789 retval = -EBUSY;
1790 if (!pte_none(*pte)) {
1791 if (mkwrite) {
1792 /*
1793 * For read faults on private mappings the PFN passed
1794 * in may not match the PFN we have mapped if the
1795 * mapped PFN is a writeable COW page. In the mkwrite
1796 * case we are creating a writable PTE for a shared
1797 * mapping and we expect the PFNs to match.
1798 */
1799 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1800 goto out_unlock;
1801 entry = *pte;
1802 goto out_mkwrite;
1803 } else
1804 goto out_unlock;
1805 }
1806
1807 /* Ok, finally just insert the thing.. */
1808 if (pfn_t_devmap(pfn))
1809 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1810 else
1811 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1812
1813 out_mkwrite:
1814 if (mkwrite) {
1815 entry = pte_mkyoung(entry);
1816 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1817 }
1818
1819 set_pte_at(mm, addr, pte, entry);
1820 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1821
1822 retval = 0;
1823 out_unlock:
1824 pte_unmap_unlock(pte, ptl);
1825 out:
1826 return retval;
1827 }
1828
1829 /**
1830 * vm_insert_pfn - insert single pfn into user vma
1831 * @vma: user vma to map to
1832 * @addr: target user address of this page
1833 * @pfn: source kernel pfn
1834 *
1835 * Similar to vm_insert_page, this allows drivers to insert individual pages
1836 * they've allocated into a user vma. Same comments apply.
1837 *
1838 * This function should only be called from a vm_ops->fault handler, and
1839 * in that case the handler should return NULL.
1840 *
1841 * vma cannot be a COW mapping.
1842 *
1843 * As this is called only for pages that do not currently exist, we
1844 * do not need to flush old virtual caches or the TLB.
1845 */
1846 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1847 unsigned long pfn)
1848 {
1849 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1850 }
1851 EXPORT_SYMBOL(vm_insert_pfn);
1852
1853 /**
1854 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1855 * @vma: user vma to map to
1856 * @addr: target user address of this page
1857 * @pfn: source kernel pfn
1858 * @pgprot: pgprot flags for the inserted page
1859 *
1860 * This is exactly like vm_insert_pfn, except that it allows drivers to
1861 * to override pgprot on a per-page basis.
1862 *
1863 * This only makes sense for IO mappings, and it makes no sense for
1864 * cow mappings. In general, using multiple vmas is preferable;
1865 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1866 * impractical.
1867 */
1868 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1869 unsigned long pfn, pgprot_t pgprot)
1870 {
1871 int ret;
1872 /*
1873 * Technically, architectures with pte_special can avoid all these
1874 * restrictions (same for remap_pfn_range). However we would like
1875 * consistency in testing and feature parity among all, so we should
1876 * try to keep these invariants in place for everybody.
1877 */
1878 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1879 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1880 (VM_PFNMAP|VM_MIXEDMAP));
1881 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1882 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1883
1884 if (addr < vma->vm_start || addr >= vma->vm_end)
1885 return -EFAULT;
1886
1887 if (!pfn_modify_allowed(pfn, pgprot))
1888 return -EACCES;
1889
1890 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1891
1892 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893 false);
1894
1895 return ret;
1896 }
1897 EXPORT_SYMBOL(vm_insert_pfn_prot);
1898
1899 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1900 {
1901 /* these checks mirror the abort conditions in vm_normal_page */
1902 if (vma->vm_flags & VM_MIXEDMAP)
1903 return true;
1904 if (pfn_t_devmap(pfn))
1905 return true;
1906 if (pfn_t_special(pfn))
1907 return true;
1908 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1909 return true;
1910 return false;
1911 }
1912
1913 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1914 pfn_t pfn, bool mkwrite)
1915 {
1916 pgprot_t pgprot = vma->vm_page_prot;
1917
1918 BUG_ON(!vm_mixed_ok(vma, pfn));
1919
1920 if (addr < vma->vm_start || addr >= vma->vm_end)
1921 return -EFAULT;
1922
1923 track_pfn_insert(vma, &pgprot, pfn);
1924
1925 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1926 return -EACCES;
1927
1928 /*
1929 * If we don't have pte special, then we have to use the pfn_valid()
1930 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931 * refcount the page if pfn_valid is true (hence insert_page rather
1932 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1933 * without pte special, it would there be refcounted as a normal page.
1934 */
1935 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1936 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1937 struct page *page;
1938
1939 /*
1940 * At this point we are committed to insert_page()
1941 * regardless of whether the caller specified flags that
1942 * result in pfn_t_has_page() == false.
1943 */
1944 page = pfn_to_page(pfn_t_to_pfn(pfn));
1945 return insert_page(vma, addr, page, pgprot);
1946 }
1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1948 }
1949
1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1951 pfn_t pfn)
1952 {
1953 return __vm_insert_mixed(vma, addr, pfn, false);
1954
1955 }
1956 EXPORT_SYMBOL(vm_insert_mixed);
1957
1958 /*
1959 * If the insertion of PTE failed because someone else already added a
1960 * different entry in the mean time, we treat that as success as we assume
1961 * the same entry was actually inserted.
1962 */
1963
1964 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1965 unsigned long addr, pfn_t pfn)
1966 {
1967 int err;
1968
1969 err = __vm_insert_mixed(vma, addr, pfn, true);
1970 if (err == -ENOMEM)
1971 return VM_FAULT_OOM;
1972 if (err < 0 && err != -EBUSY)
1973 return VM_FAULT_SIGBUS;
1974 return VM_FAULT_NOPAGE;
1975 }
1976 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1977
1978 /*
1979 * maps a range of physical memory into the requested pages. the old
1980 * mappings are removed. any references to nonexistent pages results
1981 * in null mappings (currently treated as "copy-on-access")
1982 */
1983 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1984 unsigned long addr, unsigned long end,
1985 unsigned long pfn, pgprot_t prot)
1986 {
1987 pte_t *pte;
1988 spinlock_t *ptl;
1989 int err = 0;
1990
1991 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1992 if (!pte)
1993 return -ENOMEM;
1994 arch_enter_lazy_mmu_mode();
1995 do {
1996 BUG_ON(!pte_none(*pte));
1997 if (!pfn_modify_allowed(pfn, prot)) {
1998 err = -EACCES;
1999 break;
2000 }
2001 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2002 pfn++;
2003 } while (pte++, addr += PAGE_SIZE, addr != end);
2004 arch_leave_lazy_mmu_mode();
2005 pte_unmap_unlock(pte - 1, ptl);
2006 return err;
2007 }
2008
2009 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2010 unsigned long addr, unsigned long end,
2011 unsigned long pfn, pgprot_t prot)
2012 {
2013 pmd_t *pmd;
2014 unsigned long next;
2015 int err;
2016
2017 pfn -= addr >> PAGE_SHIFT;
2018 pmd = pmd_alloc(mm, pud, addr);
2019 if (!pmd)
2020 return -ENOMEM;
2021 VM_BUG_ON(pmd_trans_huge(*pmd));
2022 do {
2023 next = pmd_addr_end(addr, end);
2024 err = remap_pte_range(mm, pmd, addr, next,
2025 pfn + (addr >> PAGE_SHIFT), prot);
2026 if (err)
2027 return err;
2028 } while (pmd++, addr = next, addr != end);
2029 return 0;
2030 }
2031
2032 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2033 unsigned long addr, unsigned long end,
2034 unsigned long pfn, pgprot_t prot)
2035 {
2036 pud_t *pud;
2037 unsigned long next;
2038 int err;
2039
2040 pfn -= addr >> PAGE_SHIFT;
2041 pud = pud_alloc(mm, p4d, addr);
2042 if (!pud)
2043 return -ENOMEM;
2044 do {
2045 next = pud_addr_end(addr, end);
2046 err = remap_pmd_range(mm, pud, addr, next,
2047 pfn + (addr >> PAGE_SHIFT), prot);
2048 if (err)
2049 return err;
2050 } while (pud++, addr = next, addr != end);
2051 return 0;
2052 }
2053
2054 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2055 unsigned long addr, unsigned long end,
2056 unsigned long pfn, pgprot_t prot)
2057 {
2058 p4d_t *p4d;
2059 unsigned long next;
2060 int err;
2061
2062 pfn -= addr >> PAGE_SHIFT;
2063 p4d = p4d_alloc(mm, pgd, addr);
2064 if (!p4d)
2065 return -ENOMEM;
2066 do {
2067 next = p4d_addr_end(addr, end);
2068 err = remap_pud_range(mm, p4d, addr, next,
2069 pfn + (addr >> PAGE_SHIFT), prot);
2070 if (err)
2071 return err;
2072 } while (p4d++, addr = next, addr != end);
2073 return 0;
2074 }
2075
2076 /**
2077 * remap_pfn_range - remap kernel memory to userspace
2078 * @vma: user vma to map to
2079 * @addr: target user address to start at
2080 * @pfn: physical address of kernel memory
2081 * @size: size of map area
2082 * @prot: page protection flags for this mapping
2083 *
2084 * Note: this is only safe if the mm semaphore is held when called.
2085 */
2086 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2087 unsigned long pfn, unsigned long size, pgprot_t prot)
2088 {
2089 pgd_t *pgd;
2090 unsigned long next;
2091 unsigned long end = addr + PAGE_ALIGN(size);
2092 struct mm_struct *mm = vma->vm_mm;
2093 unsigned long remap_pfn = pfn;
2094 int err;
2095
2096 /*
2097 * Physically remapped pages are special. Tell the
2098 * rest of the world about it:
2099 * VM_IO tells people not to look at these pages
2100 * (accesses can have side effects).
2101 * VM_PFNMAP tells the core MM that the base pages are just
2102 * raw PFN mappings, and do not have a "struct page" associated
2103 * with them.
2104 * VM_DONTEXPAND
2105 * Disable vma merging and expanding with mremap().
2106 * VM_DONTDUMP
2107 * Omit vma from core dump, even when VM_IO turned off.
2108 *
2109 * There's a horrible special case to handle copy-on-write
2110 * behaviour that some programs depend on. We mark the "original"
2111 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2112 * See vm_normal_page() for details.
2113 */
2114 if (is_cow_mapping(vma->vm_flags)) {
2115 if (addr != vma->vm_start || end != vma->vm_end)
2116 return -EINVAL;
2117 vma->vm_pgoff = pfn;
2118 }
2119
2120 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2121 if (err)
2122 return -EINVAL;
2123
2124 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2125
2126 BUG_ON(addr >= end);
2127 pfn -= addr >> PAGE_SHIFT;
2128 pgd = pgd_offset(mm, addr);
2129 flush_cache_range(vma, addr, end);
2130 do {
2131 next = pgd_addr_end(addr, end);
2132 err = remap_p4d_range(mm, pgd, addr, next,
2133 pfn + (addr >> PAGE_SHIFT), prot);
2134 if (err)
2135 break;
2136 } while (pgd++, addr = next, addr != end);
2137
2138 if (err)
2139 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2140
2141 return err;
2142 }
2143 EXPORT_SYMBOL(remap_pfn_range);
2144
2145 /**
2146 * vm_iomap_memory - remap memory to userspace
2147 * @vma: user vma to map to
2148 * @start: start of area
2149 * @len: size of area
2150 *
2151 * This is a simplified io_remap_pfn_range() for common driver use. The
2152 * driver just needs to give us the physical memory range to be mapped,
2153 * we'll figure out the rest from the vma information.
2154 *
2155 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2156 * whatever write-combining details or similar.
2157 */
2158 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2159 {
2160 unsigned long vm_len, pfn, pages;
2161
2162 /* Check that the physical memory area passed in looks valid */
2163 if (start + len < start)
2164 return -EINVAL;
2165 /*
2166 * You *really* shouldn't map things that aren't page-aligned,
2167 * but we've historically allowed it because IO memory might
2168 * just have smaller alignment.
2169 */
2170 len += start & ~PAGE_MASK;
2171 pfn = start >> PAGE_SHIFT;
2172 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2173 if (pfn + pages < pfn)
2174 return -EINVAL;
2175
2176 /* We start the mapping 'vm_pgoff' pages into the area */
2177 if (vma->vm_pgoff > pages)
2178 return -EINVAL;
2179 pfn += vma->vm_pgoff;
2180 pages -= vma->vm_pgoff;
2181
2182 /* Can we fit all of the mapping? */
2183 vm_len = vma->vm_end - vma->vm_start;
2184 if (vm_len >> PAGE_SHIFT > pages)
2185 return -EINVAL;
2186
2187 /* Ok, let it rip */
2188 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2189 }
2190 EXPORT_SYMBOL(vm_iomap_memory);
2191
2192 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2193 unsigned long addr, unsigned long end,
2194 pte_fn_t fn, void *data)
2195 {
2196 pte_t *pte;
2197 int err;
2198 pgtable_t token;
2199 spinlock_t *uninitialized_var(ptl);
2200
2201 pte = (mm == &init_mm) ?
2202 pte_alloc_kernel(pmd, addr) :
2203 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2204 if (!pte)
2205 return -ENOMEM;
2206
2207 BUG_ON(pmd_huge(*pmd));
2208
2209 arch_enter_lazy_mmu_mode();
2210
2211 token = pmd_pgtable(*pmd);
2212
2213 do {
2214 err = fn(pte++, token, addr, data);
2215 if (err)
2216 break;
2217 } while (addr += PAGE_SIZE, addr != end);
2218
2219 arch_leave_lazy_mmu_mode();
2220
2221 if (mm != &init_mm)
2222 pte_unmap_unlock(pte-1, ptl);
2223 return err;
2224 }
2225
2226 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2227 unsigned long addr, unsigned long end,
2228 pte_fn_t fn, void *data)
2229 {
2230 pmd_t *pmd;
2231 unsigned long next;
2232 int err;
2233
2234 BUG_ON(pud_huge(*pud));
2235
2236 pmd = pmd_alloc(mm, pud, addr);
2237 if (!pmd)
2238 return -ENOMEM;
2239 do {
2240 next = pmd_addr_end(addr, end);
2241 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2242 if (err)
2243 break;
2244 } while (pmd++, addr = next, addr != end);
2245 return err;
2246 }
2247
2248 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2249 unsigned long addr, unsigned long end,
2250 pte_fn_t fn, void *data)
2251 {
2252 pud_t *pud;
2253 unsigned long next;
2254 int err;
2255
2256 pud = pud_alloc(mm, p4d, addr);
2257 if (!pud)
2258 return -ENOMEM;
2259 do {
2260 next = pud_addr_end(addr, end);
2261 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2262 if (err)
2263 break;
2264 } while (pud++, addr = next, addr != end);
2265 return err;
2266 }
2267
2268 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2269 unsigned long addr, unsigned long end,
2270 pte_fn_t fn, void *data)
2271 {
2272 p4d_t *p4d;
2273 unsigned long next;
2274 int err;
2275
2276 p4d = p4d_alloc(mm, pgd, addr);
2277 if (!p4d)
2278 return -ENOMEM;
2279 do {
2280 next = p4d_addr_end(addr, end);
2281 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2282 if (err)
2283 break;
2284 } while (p4d++, addr = next, addr != end);
2285 return err;
2286 }
2287
2288 /*
2289 * Scan a region of virtual memory, filling in page tables as necessary
2290 * and calling a provided function on each leaf page table.
2291 */
2292 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2293 unsigned long size, pte_fn_t fn, void *data)
2294 {
2295 pgd_t *pgd;
2296 unsigned long next;
2297 unsigned long end = addr + size;
2298 int err;
2299
2300 if (WARN_ON(addr >= end))
2301 return -EINVAL;
2302
2303 pgd = pgd_offset(mm, addr);
2304 do {
2305 next = pgd_addr_end(addr, end);
2306 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2307 if (err)
2308 break;
2309 } while (pgd++, addr = next, addr != end);
2310
2311 return err;
2312 }
2313 EXPORT_SYMBOL_GPL(apply_to_page_range);
2314
2315 /*
2316 * handle_pte_fault chooses page fault handler according to an entry which was
2317 * read non-atomically. Before making any commitment, on those architectures
2318 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2319 * parts, do_swap_page must check under lock before unmapping the pte and
2320 * proceeding (but do_wp_page is only called after already making such a check;
2321 * and do_anonymous_page can safely check later on).
2322 */
2323 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2324 pte_t *page_table, pte_t orig_pte)
2325 {
2326 int same = 1;
2327 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2328 if (sizeof(pte_t) > sizeof(unsigned long)) {
2329 spinlock_t *ptl = pte_lockptr(mm, pmd);
2330 spin_lock(ptl);
2331 same = pte_same(*page_table, orig_pte);
2332 spin_unlock(ptl);
2333 }
2334 #endif
2335 pte_unmap(page_table);
2336 return same;
2337 }
2338
2339 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2340 {
2341 debug_dma_assert_idle(src);
2342
2343 /*
2344 * If the source page was a PFN mapping, we don't have
2345 * a "struct page" for it. We do a best-effort copy by
2346 * just copying from the original user address. If that
2347 * fails, we just zero-fill it. Live with it.
2348 */
2349 if (unlikely(!src)) {
2350 void *kaddr = kmap_atomic(dst);
2351 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2352
2353 /*
2354 * This really shouldn't fail, because the page is there
2355 * in the page tables. But it might just be unreadable,
2356 * in which case we just give up and fill the result with
2357 * zeroes.
2358 */
2359 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2360 clear_page(kaddr);
2361 kunmap_atomic(kaddr);
2362 flush_dcache_page(dst);
2363 } else
2364 copy_user_highpage(dst, src, va, vma);
2365 }
2366
2367 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2368 {
2369 struct file *vm_file = vma->vm_file;
2370
2371 if (vm_file)
2372 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2373
2374 /*
2375 * Special mappings (e.g. VDSO) do not have any file so fake
2376 * a default GFP_KERNEL for them.
2377 */
2378 return GFP_KERNEL;
2379 }
2380
2381 /*
2382 * Notify the address space that the page is about to become writable so that
2383 * it can prohibit this or wait for the page to get into an appropriate state.
2384 *
2385 * We do this without the lock held, so that it can sleep if it needs to.
2386 */
2387 static int do_page_mkwrite(struct vm_fault *vmf)
2388 {
2389 int ret;
2390 struct page *page = vmf->page;
2391 unsigned int old_flags = vmf->flags;
2392
2393 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2394
2395 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396 /* Restore original flags so that caller is not surprised */
2397 vmf->flags = old_flags;
2398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399 return ret;
2400 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401 lock_page(page);
2402 if (!page->mapping) {
2403 unlock_page(page);
2404 return 0; /* retry */
2405 }
2406 ret |= VM_FAULT_LOCKED;
2407 } else
2408 VM_BUG_ON_PAGE(!PageLocked(page), page);
2409 return ret;
2410 }
2411
2412 /*
2413 * Handle dirtying of a page in shared file mapping on a write fault.
2414 *
2415 * The function expects the page to be locked and unlocks it.
2416 */
2417 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2418 struct page *page)
2419 {
2420 struct address_space *mapping;
2421 bool dirtied;
2422 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2423
2424 dirtied = set_page_dirty(page);
2425 VM_BUG_ON_PAGE(PageAnon(page), page);
2426 /*
2427 * Take a local copy of the address_space - page.mapping may be zeroed
2428 * by truncate after unlock_page(). The address_space itself remains
2429 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2430 * release semantics to prevent the compiler from undoing this copying.
2431 */
2432 mapping = page_rmapping(page);
2433 unlock_page(page);
2434
2435 if ((dirtied || page_mkwrite) && mapping) {
2436 /*
2437 * Some device drivers do not set page.mapping
2438 * but still dirty their pages
2439 */
2440 balance_dirty_pages_ratelimited(mapping);
2441 }
2442
2443 if (!page_mkwrite)
2444 file_update_time(vma->vm_file);
2445 }
2446
2447 /*
2448 * Handle write page faults for pages that can be reused in the current vma
2449 *
2450 * This can happen either due to the mapping being with the VM_SHARED flag,
2451 * or due to us being the last reference standing to the page. In either
2452 * case, all we need to do here is to mark the page as writable and update
2453 * any related book-keeping.
2454 */
2455 static inline void wp_page_reuse(struct vm_fault *vmf)
2456 __releases(vmf->ptl)
2457 {
2458 struct vm_area_struct *vma = vmf->vma;
2459 struct page *page = vmf->page;
2460 pte_t entry;
2461 /*
2462 * Clear the pages cpupid information as the existing
2463 * information potentially belongs to a now completely
2464 * unrelated process.
2465 */
2466 if (page)
2467 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2468
2469 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2470 entry = pte_mkyoung(vmf->orig_pte);
2471 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2472 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2473 update_mmu_cache(vma, vmf->address, vmf->pte);
2474 pte_unmap_unlock(vmf->pte, vmf->ptl);
2475 }
2476
2477 /*
2478 * Handle the case of a page which we actually need to copy to a new page.
2479 *
2480 * Called with mmap_sem locked and the old page referenced, but
2481 * without the ptl held.
2482 *
2483 * High level logic flow:
2484 *
2485 * - Allocate a page, copy the content of the old page to the new one.
2486 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2487 * - Take the PTL. If the pte changed, bail out and release the allocated page
2488 * - If the pte is still the way we remember it, update the page table and all
2489 * relevant references. This includes dropping the reference the page-table
2490 * held to the old page, as well as updating the rmap.
2491 * - In any case, unlock the PTL and drop the reference we took to the old page.
2492 */
2493 static int wp_page_copy(struct vm_fault *vmf)
2494 {
2495 struct vm_area_struct *vma = vmf->vma;
2496 struct mm_struct *mm = vma->vm_mm;
2497 struct page *old_page = vmf->page;
2498 struct page *new_page = NULL;
2499 pte_t entry;
2500 int page_copied = 0;
2501 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2502 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2503 struct mem_cgroup *memcg;
2504
2505 if (unlikely(anon_vma_prepare(vma)))
2506 goto oom;
2507
2508 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2509 new_page = alloc_zeroed_user_highpage_movable(vma,
2510 vmf->address);
2511 if (!new_page)
2512 goto oom;
2513 } else {
2514 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2515 vmf->address);
2516 if (!new_page)
2517 goto oom;
2518 cow_user_page(new_page, old_page, vmf->address, vma);
2519 }
2520
2521 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2522 goto oom_free_new;
2523
2524 __SetPageUptodate(new_page);
2525
2526 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2527
2528 /*
2529 * Re-check the pte - we dropped the lock
2530 */
2531 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2532 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2533 if (old_page) {
2534 if (!PageAnon(old_page)) {
2535 dec_mm_counter_fast(mm,
2536 mm_counter_file(old_page));
2537 inc_mm_counter_fast(mm, MM_ANONPAGES);
2538 }
2539 } else {
2540 inc_mm_counter_fast(mm, MM_ANONPAGES);
2541 }
2542 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2543 entry = mk_pte(new_page, vma->vm_page_prot);
2544 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2545 /*
2546 * Clear the pte entry and flush it first, before updating the
2547 * pte with the new entry. This will avoid a race condition
2548 * seen in the presence of one thread doing SMC and another
2549 * thread doing COW.
2550 */
2551 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2552 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2553 mem_cgroup_commit_charge(new_page, memcg, false, false);
2554 lru_cache_add_active_or_unevictable(new_page, vma);
2555 /*
2556 * We call the notify macro here because, when using secondary
2557 * mmu page tables (such as kvm shadow page tables), we want the
2558 * new page to be mapped directly into the secondary page table.
2559 */
2560 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2561 update_mmu_cache(vma, vmf->address, vmf->pte);
2562 if (old_page) {
2563 /*
2564 * Only after switching the pte to the new page may
2565 * we remove the mapcount here. Otherwise another
2566 * process may come and find the rmap count decremented
2567 * before the pte is switched to the new page, and
2568 * "reuse" the old page writing into it while our pte
2569 * here still points into it and can be read by other
2570 * threads.
2571 *
2572 * The critical issue is to order this
2573 * page_remove_rmap with the ptp_clear_flush above.
2574 * Those stores are ordered by (if nothing else,)
2575 * the barrier present in the atomic_add_negative
2576 * in page_remove_rmap.
2577 *
2578 * Then the TLB flush in ptep_clear_flush ensures that
2579 * no process can access the old page before the
2580 * decremented mapcount is visible. And the old page
2581 * cannot be reused until after the decremented
2582 * mapcount is visible. So transitively, TLBs to
2583 * old page will be flushed before it can be reused.
2584 */
2585 page_remove_rmap(old_page, false);
2586 }
2587
2588 /* Free the old page.. */
2589 new_page = old_page;
2590 page_copied = 1;
2591 } else {
2592 mem_cgroup_cancel_charge(new_page, memcg, false);
2593 }
2594
2595 if (new_page)
2596 put_page(new_page);
2597
2598 pte_unmap_unlock(vmf->pte, vmf->ptl);
2599 /*
2600 * No need to double call mmu_notifier->invalidate_range() callback as
2601 * the above ptep_clear_flush_notify() did already call it.
2602 */
2603 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2604 if (old_page) {
2605 /*
2606 * Don't let another task, with possibly unlocked vma,
2607 * keep the mlocked page.
2608 */
2609 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2610 lock_page(old_page); /* LRU manipulation */
2611 if (PageMlocked(old_page))
2612 munlock_vma_page(old_page);
2613 unlock_page(old_page);
2614 }
2615 put_page(old_page);
2616 }
2617 return page_copied ? VM_FAULT_WRITE : 0;
2618 oom_free_new:
2619 put_page(new_page);
2620 oom:
2621 if (old_page)
2622 put_page(old_page);
2623 return VM_FAULT_OOM;
2624 }
2625
2626 /**
2627 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2628 * writeable once the page is prepared
2629 *
2630 * @vmf: structure describing the fault
2631 *
2632 * This function handles all that is needed to finish a write page fault in a
2633 * shared mapping due to PTE being read-only once the mapped page is prepared.
2634 * It handles locking of PTE and modifying it. The function returns
2635 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2636 * lock.
2637 *
2638 * The function expects the page to be locked or other protection against
2639 * concurrent faults / writeback (such as DAX radix tree locks).
2640 */
2641 int finish_mkwrite_fault(struct vm_fault *vmf)
2642 {
2643 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2644 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2645 &vmf->ptl);
2646 /*
2647 * We might have raced with another page fault while we released the
2648 * pte_offset_map_lock.
2649 */
2650 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2651 pte_unmap_unlock(vmf->pte, vmf->ptl);
2652 return VM_FAULT_NOPAGE;
2653 }
2654 wp_page_reuse(vmf);
2655 return 0;
2656 }
2657
2658 /*
2659 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2660 * mapping
2661 */
2662 static int wp_pfn_shared(struct vm_fault *vmf)
2663 {
2664 struct vm_area_struct *vma = vmf->vma;
2665
2666 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2667 int ret;
2668
2669 pte_unmap_unlock(vmf->pte, vmf->ptl);
2670 vmf->flags |= FAULT_FLAG_MKWRITE;
2671 ret = vma->vm_ops->pfn_mkwrite(vmf);
2672 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2673 return ret;
2674 return finish_mkwrite_fault(vmf);
2675 }
2676 wp_page_reuse(vmf);
2677 return VM_FAULT_WRITE;
2678 }
2679
2680 static int wp_page_shared(struct vm_fault *vmf)
2681 __releases(vmf->ptl)
2682 {
2683 struct vm_area_struct *vma = vmf->vma;
2684
2685 get_page(vmf->page);
2686
2687 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2688 int tmp;
2689
2690 pte_unmap_unlock(vmf->pte, vmf->ptl);
2691 tmp = do_page_mkwrite(vmf);
2692 if (unlikely(!tmp || (tmp &
2693 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2694 put_page(vmf->page);
2695 return tmp;
2696 }
2697 tmp = finish_mkwrite_fault(vmf);
2698 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2699 unlock_page(vmf->page);
2700 put_page(vmf->page);
2701 return tmp;
2702 }
2703 } else {
2704 wp_page_reuse(vmf);
2705 lock_page(vmf->page);
2706 }
2707 fault_dirty_shared_page(vma, vmf->page);
2708 put_page(vmf->page);
2709
2710 return VM_FAULT_WRITE;
2711 }
2712
2713 /*
2714 * This routine handles present pages, when users try to write
2715 * to a shared page. It is done by copying the page to a new address
2716 * and decrementing the shared-page counter for the old page.
2717 *
2718 * Note that this routine assumes that the protection checks have been
2719 * done by the caller (the low-level page fault routine in most cases).
2720 * Thus we can safely just mark it writable once we've done any necessary
2721 * COW.
2722 *
2723 * We also mark the page dirty at this point even though the page will
2724 * change only once the write actually happens. This avoids a few races,
2725 * and potentially makes it more efficient.
2726 *
2727 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2728 * but allow concurrent faults), with pte both mapped and locked.
2729 * We return with mmap_sem still held, but pte unmapped and unlocked.
2730 */
2731 static int do_wp_page(struct vm_fault *vmf)
2732 __releases(vmf->ptl)
2733 {
2734 struct vm_area_struct *vma = vmf->vma;
2735
2736 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2737 if (!vmf->page) {
2738 /*
2739 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2740 * VM_PFNMAP VMA.
2741 *
2742 * We should not cow pages in a shared writeable mapping.
2743 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2744 */
2745 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2746 (VM_WRITE|VM_SHARED))
2747 return wp_pfn_shared(vmf);
2748
2749 pte_unmap_unlock(vmf->pte, vmf->ptl);
2750 return wp_page_copy(vmf);
2751 }
2752
2753 /*
2754 * Take out anonymous pages first, anonymous shared vmas are
2755 * not dirty accountable.
2756 */
2757 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2758 int total_map_swapcount;
2759 if (!trylock_page(vmf->page)) {
2760 get_page(vmf->page);
2761 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 lock_page(vmf->page);
2763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2764 vmf->address, &vmf->ptl);
2765 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2766 unlock_page(vmf->page);
2767 pte_unmap_unlock(vmf->pte, vmf->ptl);
2768 put_page(vmf->page);
2769 return 0;
2770 }
2771 put_page(vmf->page);
2772 }
2773 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2774 if (total_map_swapcount == 1) {
2775 /*
2776 * The page is all ours. Move it to
2777 * our anon_vma so the rmap code will
2778 * not search our parent or siblings.
2779 * Protected against the rmap code by
2780 * the page lock.
2781 */
2782 page_move_anon_rmap(vmf->page, vma);
2783 }
2784 unlock_page(vmf->page);
2785 wp_page_reuse(vmf);
2786 return VM_FAULT_WRITE;
2787 }
2788 unlock_page(vmf->page);
2789 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2790 (VM_WRITE|VM_SHARED))) {
2791 return wp_page_shared(vmf);
2792 }
2793
2794 /*
2795 * Ok, we need to copy. Oh, well..
2796 */
2797 get_page(vmf->page);
2798
2799 pte_unmap_unlock(vmf->pte, vmf->ptl);
2800 return wp_page_copy(vmf);
2801 }
2802
2803 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2804 unsigned long start_addr, unsigned long end_addr,
2805 struct zap_details *details)
2806 {
2807 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2808 }
2809
2810 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2811 struct zap_details *details)
2812 {
2813 struct vm_area_struct *vma;
2814 pgoff_t vba, vea, zba, zea;
2815
2816 vma_interval_tree_foreach(vma, root,
2817 details->first_index, details->last_index) {
2818
2819 vba = vma->vm_pgoff;
2820 vea = vba + vma_pages(vma) - 1;
2821 zba = details->first_index;
2822 if (zba < vba)
2823 zba = vba;
2824 zea = details->last_index;
2825 if (zea > vea)
2826 zea = vea;
2827
2828 unmap_mapping_range_vma(vma,
2829 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2830 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2831 details);
2832 }
2833 }
2834
2835 /**
2836 * unmap_mapping_pages() - Unmap pages from processes.
2837 * @mapping: The address space containing pages to be unmapped.
2838 * @start: Index of first page to be unmapped.
2839 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2840 * @even_cows: Whether to unmap even private COWed pages.
2841 *
2842 * Unmap the pages in this address space from any userspace process which
2843 * has them mmaped. Generally, you want to remove COWed pages as well when
2844 * a file is being truncated, but not when invalidating pages from the page
2845 * cache.
2846 */
2847 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2848 pgoff_t nr, bool even_cows)
2849 {
2850 struct zap_details details = { };
2851
2852 details.check_mapping = even_cows ? NULL : mapping;
2853 details.first_index = start;
2854 details.last_index = start + nr - 1;
2855 if (details.last_index < details.first_index)
2856 details.last_index = ULONG_MAX;
2857
2858 i_mmap_lock_write(mapping);
2859 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2860 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2861 i_mmap_unlock_write(mapping);
2862 }
2863
2864 /**
2865 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2866 * address_space corresponding to the specified byte range in the underlying
2867 * file.
2868 *
2869 * @mapping: the address space containing mmaps to be unmapped.
2870 * @holebegin: byte in first page to unmap, relative to the start of
2871 * the underlying file. This will be rounded down to a PAGE_SIZE
2872 * boundary. Note that this is different from truncate_pagecache(), which
2873 * must keep the partial page. In contrast, we must get rid of
2874 * partial pages.
2875 * @holelen: size of prospective hole in bytes. This will be rounded
2876 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2877 * end of the file.
2878 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2879 * but 0 when invalidating pagecache, don't throw away private data.
2880 */
2881 void unmap_mapping_range(struct address_space *mapping,
2882 loff_t const holebegin, loff_t const holelen, int even_cows)
2883 {
2884 pgoff_t hba = holebegin >> PAGE_SHIFT;
2885 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886
2887 /* Check for overflow. */
2888 if (sizeof(holelen) > sizeof(hlen)) {
2889 long long holeend =
2890 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891 if (holeend & ~(long long)ULONG_MAX)
2892 hlen = ULONG_MAX - hba + 1;
2893 }
2894
2895 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2896 }
2897 EXPORT_SYMBOL(unmap_mapping_range);
2898
2899 /*
2900 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2901 * but allow concurrent faults), and pte mapped but not yet locked.
2902 * We return with pte unmapped and unlocked.
2903 *
2904 * We return with the mmap_sem locked or unlocked in the same cases
2905 * as does filemap_fault().
2906 */
2907 int do_swap_page(struct vm_fault *vmf)
2908 {
2909 struct vm_area_struct *vma = vmf->vma;
2910 struct page *page = NULL, *swapcache;
2911 struct mem_cgroup *memcg;
2912 swp_entry_t entry;
2913 pte_t pte;
2914 int locked;
2915 int exclusive = 0;
2916 int ret = 0;
2917
2918 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2919 goto out;
2920
2921 entry = pte_to_swp_entry(vmf->orig_pte);
2922 if (unlikely(non_swap_entry(entry))) {
2923 if (is_migration_entry(entry)) {
2924 migration_entry_wait(vma->vm_mm, vmf->pmd,
2925 vmf->address);
2926 } else if (is_device_private_entry(entry)) {
2927 /*
2928 * For un-addressable device memory we call the pgmap
2929 * fault handler callback. The callback must migrate
2930 * the page back to some CPU accessible page.
2931 */
2932 ret = device_private_entry_fault(vma, vmf->address, entry,
2933 vmf->flags, vmf->pmd);
2934 } else if (is_hwpoison_entry(entry)) {
2935 ret = VM_FAULT_HWPOISON;
2936 } else {
2937 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2938 ret = VM_FAULT_SIGBUS;
2939 }
2940 goto out;
2941 }
2942
2943
2944 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2945 page = lookup_swap_cache(entry, vma, vmf->address);
2946 swapcache = page;
2947
2948 if (!page) {
2949 struct swap_info_struct *si = swp_swap_info(entry);
2950
2951 if (si->flags & SWP_SYNCHRONOUS_IO &&
2952 __swap_count(si, entry) == 1) {
2953 /* skip swapcache */
2954 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2955 vmf->address);
2956 if (page) {
2957 __SetPageLocked(page);
2958 __SetPageSwapBacked(page);
2959 set_page_private(page, entry.val);
2960 lru_cache_add_anon(page);
2961 swap_readpage(page, true);
2962 }
2963 } else {
2964 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2965 vmf);
2966 swapcache = page;
2967 }
2968
2969 if (!page) {
2970 /*
2971 * Back out if somebody else faulted in this pte
2972 * while we released the pte lock.
2973 */
2974 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2975 vmf->address, &vmf->ptl);
2976 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2977 ret = VM_FAULT_OOM;
2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979 goto unlock;
2980 }
2981
2982 /* Had to read the page from swap area: Major fault */
2983 ret = VM_FAULT_MAJOR;
2984 count_vm_event(PGMAJFAULT);
2985 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2986 } else if (PageHWPoison(page)) {
2987 /*
2988 * hwpoisoned dirty swapcache pages are kept for killing
2989 * owner processes (which may be unknown at hwpoison time)
2990 */
2991 ret = VM_FAULT_HWPOISON;
2992 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2993 goto out_release;
2994 }
2995
2996 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2997
2998 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2999 if (!locked) {
3000 ret |= VM_FAULT_RETRY;
3001 goto out_release;
3002 }
3003
3004 /*
3005 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3006 * release the swapcache from under us. The page pin, and pte_same
3007 * test below, are not enough to exclude that. Even if it is still
3008 * swapcache, we need to check that the page's swap has not changed.
3009 */
3010 if (unlikely((!PageSwapCache(page) ||
3011 page_private(page) != entry.val)) && swapcache)
3012 goto out_page;
3013
3014 page = ksm_might_need_to_copy(page, vma, vmf->address);
3015 if (unlikely(!page)) {
3016 ret = VM_FAULT_OOM;
3017 page = swapcache;
3018 goto out_page;
3019 }
3020
3021 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3022 &memcg, false)) {
3023 ret = VM_FAULT_OOM;
3024 goto out_page;
3025 }
3026
3027 /*
3028 * Back out if somebody else already faulted in this pte.
3029 */
3030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3031 &vmf->ptl);
3032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3033 goto out_nomap;
3034
3035 if (unlikely(!PageUptodate(page))) {
3036 ret = VM_FAULT_SIGBUS;
3037 goto out_nomap;
3038 }
3039
3040 /*
3041 * The page isn't present yet, go ahead with the fault.
3042 *
3043 * Be careful about the sequence of operations here.
3044 * To get its accounting right, reuse_swap_page() must be called
3045 * while the page is counted on swap but not yet in mapcount i.e.
3046 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3047 * must be called after the swap_free(), or it will never succeed.
3048 */
3049
3050 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3051 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3052 pte = mk_pte(page, vma->vm_page_prot);
3053 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3054 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3055 vmf->flags &= ~FAULT_FLAG_WRITE;
3056 ret |= VM_FAULT_WRITE;
3057 exclusive = RMAP_EXCLUSIVE;
3058 }
3059 flush_icache_page(vma, page);
3060 if (pte_swp_soft_dirty(vmf->orig_pte))
3061 pte = pte_mksoft_dirty(pte);
3062 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3063 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3064 vmf->orig_pte = pte;
3065
3066 /* ksm created a completely new copy */
3067 if (unlikely(page != swapcache && swapcache)) {
3068 page_add_new_anon_rmap(page, vma, vmf->address, false);
3069 mem_cgroup_commit_charge(page, memcg, false, false);
3070 lru_cache_add_active_or_unevictable(page, vma);
3071 } else {
3072 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3073 mem_cgroup_commit_charge(page, memcg, true, false);
3074 activate_page(page);
3075 }
3076
3077 swap_free(entry);
3078 if (mem_cgroup_swap_full(page) ||
3079 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3080 try_to_free_swap(page);
3081 unlock_page(page);
3082 if (page != swapcache && swapcache) {
3083 /*
3084 * Hold the lock to avoid the swap entry to be reused
3085 * until we take the PT lock for the pte_same() check
3086 * (to avoid false positives from pte_same). For
3087 * further safety release the lock after the swap_free
3088 * so that the swap count won't change under a
3089 * parallel locked swapcache.
3090 */
3091 unlock_page(swapcache);
3092 put_page(swapcache);
3093 }
3094
3095 if (vmf->flags & FAULT_FLAG_WRITE) {
3096 ret |= do_wp_page(vmf);
3097 if (ret & VM_FAULT_ERROR)
3098 ret &= VM_FAULT_ERROR;
3099 goto out;
3100 }
3101
3102 /* No need to invalidate - it was non-present before */
3103 update_mmu_cache(vma, vmf->address, vmf->pte);
3104 unlock:
3105 pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 out:
3107 return ret;
3108 out_nomap:
3109 mem_cgroup_cancel_charge(page, memcg, false);
3110 pte_unmap_unlock(vmf->pte, vmf->ptl);
3111 out_page:
3112 unlock_page(page);
3113 out_release:
3114 put_page(page);
3115 if (page != swapcache && swapcache) {
3116 unlock_page(swapcache);
3117 put_page(swapcache);
3118 }
3119 return ret;
3120 }
3121
3122 /*
3123 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3124 * but allow concurrent faults), and pte mapped but not yet locked.
3125 * We return with mmap_sem still held, but pte unmapped and unlocked.
3126 */
3127 static int do_anonymous_page(struct vm_fault *vmf)
3128 {
3129 struct vm_area_struct *vma = vmf->vma;
3130 struct mem_cgroup *memcg;
3131 struct page *page;
3132 int ret = 0;
3133 pte_t entry;
3134
3135 /* File mapping without ->vm_ops ? */
3136 if (vma->vm_flags & VM_SHARED)
3137 return VM_FAULT_SIGBUS;
3138
3139 /*
3140 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3141 * pte_offset_map() on pmds where a huge pmd might be created
3142 * from a different thread.
3143 *
3144 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3145 * parallel threads are excluded by other means.
3146 *
3147 * Here we only have down_read(mmap_sem).
3148 */
3149 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3150 return VM_FAULT_OOM;
3151
3152 /* See the comment in pte_alloc_one_map() */
3153 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3154 return 0;
3155
3156 /* Use the zero-page for reads */
3157 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3158 !mm_forbids_zeropage(vma->vm_mm)) {
3159 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3160 vma->vm_page_prot));
3161 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3162 vmf->address, &vmf->ptl);
3163 if (!pte_none(*vmf->pte))
3164 goto unlock;
3165 ret = check_stable_address_space(vma->vm_mm);
3166 if (ret)
3167 goto unlock;
3168 /* Deliver the page fault to userland, check inside PT lock */
3169 if (userfaultfd_missing(vma)) {
3170 pte_unmap_unlock(vmf->pte, vmf->ptl);
3171 return handle_userfault(vmf, VM_UFFD_MISSING);
3172 }
3173 goto setpte;
3174 }
3175
3176 /* Allocate our own private page. */
3177 if (unlikely(anon_vma_prepare(vma)))
3178 goto oom;
3179 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3180 if (!page)
3181 goto oom;
3182
3183 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3184 false))
3185 goto oom_free_page;
3186
3187 /*
3188 * The memory barrier inside __SetPageUptodate makes sure that
3189 * preceeding stores to the page contents become visible before
3190 * the set_pte_at() write.
3191 */
3192 __SetPageUptodate(page);
3193
3194 entry = mk_pte(page, vma->vm_page_prot);
3195 if (vma->vm_flags & VM_WRITE)
3196 entry = pte_mkwrite(pte_mkdirty(entry));
3197
3198 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3199 &vmf->ptl);
3200 if (!pte_none(*vmf->pte))
3201 goto release;
3202
3203 ret = check_stable_address_space(vma->vm_mm);
3204 if (ret)
3205 goto release;
3206
3207 /* Deliver the page fault to userland, check inside PT lock */
3208 if (userfaultfd_missing(vma)) {
3209 pte_unmap_unlock(vmf->pte, vmf->ptl);
3210 mem_cgroup_cancel_charge(page, memcg, false);
3211 put_page(page);
3212 return handle_userfault(vmf, VM_UFFD_MISSING);
3213 }
3214
3215 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3216 page_add_new_anon_rmap(page, vma, vmf->address, false);
3217 mem_cgroup_commit_charge(page, memcg, false, false);
3218 lru_cache_add_active_or_unevictable(page, vma);
3219 setpte:
3220 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3221
3222 /* No need to invalidate - it was non-present before */
3223 update_mmu_cache(vma, vmf->address, vmf->pte);
3224 unlock:
3225 pte_unmap_unlock(vmf->pte, vmf->ptl);
3226 return ret;
3227 release:
3228 mem_cgroup_cancel_charge(page, memcg, false);
3229 put_page(page);
3230 goto unlock;
3231 oom_free_page:
3232 put_page(page);
3233 oom:
3234 return VM_FAULT_OOM;
3235 }
3236
3237 /*
3238 * The mmap_sem must have been held on entry, and may have been
3239 * released depending on flags and vma->vm_ops->fault() return value.
3240 * See filemap_fault() and __lock_page_retry().
3241 */
3242 static int __do_fault(struct vm_fault *vmf)
3243 {
3244 struct vm_area_struct *vma = vmf->vma;
3245 int ret;
3246
3247 ret = vma->vm_ops->fault(vmf);
3248 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3249 VM_FAULT_DONE_COW)))
3250 return ret;
3251
3252 if (unlikely(PageHWPoison(vmf->page))) {
3253 if (ret & VM_FAULT_LOCKED)
3254 unlock_page(vmf->page);
3255 put_page(vmf->page);
3256 vmf->page = NULL;
3257 return VM_FAULT_HWPOISON;
3258 }
3259
3260 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3261 lock_page(vmf->page);
3262 else
3263 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3264
3265 return ret;
3266 }
3267
3268 /*
3269 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3270 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3271 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3272 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3273 */
3274 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3275 {
3276 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3277 }
3278
3279 static int pte_alloc_one_map(struct vm_fault *vmf)
3280 {
3281 struct vm_area_struct *vma = vmf->vma;
3282
3283 if (!pmd_none(*vmf->pmd))
3284 goto map_pte;
3285 if (vmf->prealloc_pte) {
3286 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3287 if (unlikely(!pmd_none(*vmf->pmd))) {
3288 spin_unlock(vmf->ptl);
3289 goto map_pte;
3290 }
3291
3292 mm_inc_nr_ptes(vma->vm_mm);
3293 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3294 spin_unlock(vmf->ptl);
3295 vmf->prealloc_pte = NULL;
3296 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3297 return VM_FAULT_OOM;
3298 }
3299 map_pte:
3300 /*
3301 * If a huge pmd materialized under us just retry later. Use
3302 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3303 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3304 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3305 * running immediately after a huge pmd fault in a different thread of
3306 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3307 * All we have to ensure is that it is a regular pmd that we can walk
3308 * with pte_offset_map() and we can do that through an atomic read in
3309 * C, which is what pmd_trans_unstable() provides.
3310 */
3311 if (pmd_devmap_trans_unstable(vmf->pmd))
3312 return VM_FAULT_NOPAGE;
3313
3314 /*
3315 * At this point we know that our vmf->pmd points to a page of ptes
3316 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3317 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3318 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3319 * be valid and we will re-check to make sure the vmf->pte isn't
3320 * pte_none() under vmf->ptl protection when we return to
3321 * alloc_set_pte().
3322 */
3323 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3324 &vmf->ptl);
3325 return 0;
3326 }
3327
3328 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3329
3330 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3331 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3332 unsigned long haddr)
3333 {
3334 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3335 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3336 return false;
3337 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3338 return false;
3339 return true;
3340 }
3341
3342 static void deposit_prealloc_pte(struct vm_fault *vmf)
3343 {
3344 struct vm_area_struct *vma = vmf->vma;
3345
3346 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3347 /*
3348 * We are going to consume the prealloc table,
3349 * count that as nr_ptes.
3350 */
3351 mm_inc_nr_ptes(vma->vm_mm);
3352 vmf->prealloc_pte = NULL;
3353 }
3354
3355 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3356 {
3357 struct vm_area_struct *vma = vmf->vma;
3358 bool write = vmf->flags & FAULT_FLAG_WRITE;
3359 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3360 pmd_t entry;
3361 int i, ret;
3362
3363 if (!transhuge_vma_suitable(vma, haddr))
3364 return VM_FAULT_FALLBACK;
3365
3366 ret = VM_FAULT_FALLBACK;
3367 page = compound_head(page);
3368
3369 /*
3370 * Archs like ppc64 need additonal space to store information
3371 * related to pte entry. Use the preallocated table for that.
3372 */
3373 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3374 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3375 if (!vmf->prealloc_pte)
3376 return VM_FAULT_OOM;
3377 smp_wmb(); /* See comment in __pte_alloc() */
3378 }
3379
3380 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3381 if (unlikely(!pmd_none(*vmf->pmd)))
3382 goto out;
3383
3384 for (i = 0; i < HPAGE_PMD_NR; i++)
3385 flush_icache_page(vma, page + i);
3386
3387 entry = mk_huge_pmd(page, vma->vm_page_prot);
3388 if (write)
3389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3390
3391 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3392 page_add_file_rmap(page, true);
3393 /*
3394 * deposit and withdraw with pmd lock held
3395 */
3396 if (arch_needs_pgtable_deposit())
3397 deposit_prealloc_pte(vmf);
3398
3399 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3400
3401 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3402
3403 /* fault is handled */
3404 ret = 0;
3405 count_vm_event(THP_FILE_MAPPED);
3406 out:
3407 spin_unlock(vmf->ptl);
3408 return ret;
3409 }
3410 #else
3411 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 BUILD_BUG();
3414 return 0;
3415 }
3416 #endif
3417
3418 /**
3419 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3420 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3421 *
3422 * @vmf: fault environment
3423 * @memcg: memcg to charge page (only for private mappings)
3424 * @page: page to map
3425 *
3426 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3427 * return.
3428 *
3429 * Target users are page handler itself and implementations of
3430 * vm_ops->map_pages.
3431 */
3432 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3433 struct page *page)
3434 {
3435 struct vm_area_struct *vma = vmf->vma;
3436 bool write = vmf->flags & FAULT_FLAG_WRITE;
3437 pte_t entry;
3438 int ret;
3439
3440 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3441 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3442 /* THP on COW? */
3443 VM_BUG_ON_PAGE(memcg, page);
3444
3445 ret = do_set_pmd(vmf, page);
3446 if (ret != VM_FAULT_FALLBACK)
3447 return ret;
3448 }
3449
3450 if (!vmf->pte) {
3451 ret = pte_alloc_one_map(vmf);
3452 if (ret)
3453 return ret;
3454 }
3455
3456 /* Re-check under ptl */
3457 if (unlikely(!pte_none(*vmf->pte)))
3458 return VM_FAULT_NOPAGE;
3459
3460 flush_icache_page(vma, page);
3461 entry = mk_pte(page, vma->vm_page_prot);
3462 if (write)
3463 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3464 /* copy-on-write page */
3465 if (write && !(vma->vm_flags & VM_SHARED)) {
3466 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3467 page_add_new_anon_rmap(page, vma, vmf->address, false);
3468 mem_cgroup_commit_charge(page, memcg, false, false);
3469 lru_cache_add_active_or_unevictable(page, vma);
3470 } else {
3471 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3472 page_add_file_rmap(page, false);
3473 }
3474 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3475
3476 /* no need to invalidate: a not-present page won't be cached */
3477 update_mmu_cache(vma, vmf->address, vmf->pte);
3478
3479 return 0;
3480 }
3481
3482
3483 /**
3484 * finish_fault - finish page fault once we have prepared the page to fault
3485 *
3486 * @vmf: structure describing the fault
3487 *
3488 * This function handles all that is needed to finish a page fault once the
3489 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3490 * given page, adds reverse page mapping, handles memcg charges and LRU
3491 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3492 * error.
3493 *
3494 * The function expects the page to be locked and on success it consumes a
3495 * reference of a page being mapped (for the PTE which maps it).
3496 */
3497 int finish_fault(struct vm_fault *vmf)
3498 {
3499 struct page *page;
3500 int ret = 0;
3501
3502 /* Did we COW the page? */
3503 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3504 !(vmf->vma->vm_flags & VM_SHARED))
3505 page = vmf->cow_page;
3506 else
3507 page = vmf->page;
3508
3509 /*
3510 * check even for read faults because we might have lost our CoWed
3511 * page
3512 */
3513 if (!(vmf->vma->vm_flags & VM_SHARED))
3514 ret = check_stable_address_space(vmf->vma->vm_mm);
3515 if (!ret)
3516 ret = alloc_set_pte(vmf, vmf->memcg, page);
3517 if (vmf->pte)
3518 pte_unmap_unlock(vmf->pte, vmf->ptl);
3519 return ret;
3520 }
3521
3522 static unsigned long fault_around_bytes __read_mostly =
3523 rounddown_pow_of_two(65536);
3524
3525 #ifdef CONFIG_DEBUG_FS
3526 static int fault_around_bytes_get(void *data, u64 *val)
3527 {
3528 *val = fault_around_bytes;
3529 return 0;
3530 }
3531
3532 /*
3533 * fault_around_bytes must be rounded down to the nearest page order as it's
3534 * what do_fault_around() expects to see.
3535 */
3536 static int fault_around_bytes_set(void *data, u64 val)
3537 {
3538 if (val / PAGE_SIZE > PTRS_PER_PTE)
3539 return -EINVAL;
3540 if (val > PAGE_SIZE)
3541 fault_around_bytes = rounddown_pow_of_two(val);
3542 else
3543 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3544 return 0;
3545 }
3546 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3547 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3548
3549 static int __init fault_around_debugfs(void)
3550 {
3551 void *ret;
3552
3553 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3554 &fault_around_bytes_fops);
3555 if (!ret)
3556 pr_warn("Failed to create fault_around_bytes in debugfs");
3557 return 0;
3558 }
3559 late_initcall(fault_around_debugfs);
3560 #endif
3561
3562 /*
3563 * do_fault_around() tries to map few pages around the fault address. The hope
3564 * is that the pages will be needed soon and this will lower the number of
3565 * faults to handle.
3566 *
3567 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3568 * not ready to be mapped: not up-to-date, locked, etc.
3569 *
3570 * This function is called with the page table lock taken. In the split ptlock
3571 * case the page table lock only protects only those entries which belong to
3572 * the page table corresponding to the fault address.
3573 *
3574 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3575 * only once.
3576 *
3577 * fault_around_bytes defines how many bytes we'll try to map.
3578 * do_fault_around() expects it to be set to a power of two less than or equal
3579 * to PTRS_PER_PTE.
3580 *
3581 * The virtual address of the area that we map is naturally aligned to
3582 * fault_around_bytes rounded down to the machine page size
3583 * (and therefore to page order). This way it's easier to guarantee
3584 * that we don't cross page table boundaries.
3585 */
3586 static int do_fault_around(struct vm_fault *vmf)
3587 {
3588 unsigned long address = vmf->address, nr_pages, mask;
3589 pgoff_t start_pgoff = vmf->pgoff;
3590 pgoff_t end_pgoff;
3591 int off, ret = 0;
3592
3593 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3594 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3595
3596 vmf->address = max(address & mask, vmf->vma->vm_start);
3597 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3598 start_pgoff -= off;
3599
3600 /*
3601 * end_pgoff is either the end of the page table, the end of
3602 * the vma or nr_pages from start_pgoff, depending what is nearest.
3603 */
3604 end_pgoff = start_pgoff -
3605 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3606 PTRS_PER_PTE - 1;
3607 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3608 start_pgoff + nr_pages - 1);
3609
3610 if (pmd_none(*vmf->pmd)) {
3611 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3612 vmf->address);
3613 if (!vmf->prealloc_pte)
3614 goto out;
3615 smp_wmb(); /* See comment in __pte_alloc() */
3616 }
3617
3618 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3619
3620 /* Huge page is mapped? Page fault is solved */
3621 if (pmd_trans_huge(*vmf->pmd)) {
3622 ret = VM_FAULT_NOPAGE;
3623 goto out;
3624 }
3625
3626 /* ->map_pages() haven't done anything useful. Cold page cache? */
3627 if (!vmf->pte)
3628 goto out;
3629
3630 /* check if the page fault is solved */
3631 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3632 if (!pte_none(*vmf->pte))
3633 ret = VM_FAULT_NOPAGE;
3634 pte_unmap_unlock(vmf->pte, vmf->ptl);
3635 out:
3636 vmf->address = address;
3637 vmf->pte = NULL;
3638 return ret;
3639 }
3640
3641 static int do_read_fault(struct vm_fault *vmf)
3642 {
3643 struct vm_area_struct *vma = vmf->vma;
3644 int ret = 0;
3645
3646 /*
3647 * Let's call ->map_pages() first and use ->fault() as fallback
3648 * if page by the offset is not ready to be mapped (cold cache or
3649 * something).
3650 */
3651 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3652 ret = do_fault_around(vmf);
3653 if (ret)
3654 return ret;
3655 }
3656
3657 ret = __do_fault(vmf);
3658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659 return ret;
3660
3661 ret |= finish_fault(vmf);
3662 unlock_page(vmf->page);
3663 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3664 put_page(vmf->page);
3665 return ret;
3666 }
3667
3668 static int do_cow_fault(struct vm_fault *vmf)
3669 {
3670 struct vm_area_struct *vma = vmf->vma;
3671 int ret;
3672
3673 if (unlikely(anon_vma_prepare(vma)))
3674 return VM_FAULT_OOM;
3675
3676 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3677 if (!vmf->cow_page)
3678 return VM_FAULT_OOM;
3679
3680 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3681 &vmf->memcg, false)) {
3682 put_page(vmf->cow_page);
3683 return VM_FAULT_OOM;
3684 }
3685
3686 ret = __do_fault(vmf);
3687 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3688 goto uncharge_out;
3689 if (ret & VM_FAULT_DONE_COW)
3690 return ret;
3691
3692 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3693 __SetPageUptodate(vmf->cow_page);
3694
3695 ret |= finish_fault(vmf);
3696 unlock_page(vmf->page);
3697 put_page(vmf->page);
3698 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699 goto uncharge_out;
3700 return ret;
3701 uncharge_out:
3702 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3703 put_page(vmf->cow_page);
3704 return ret;
3705 }
3706
3707 static int do_shared_fault(struct vm_fault *vmf)
3708 {
3709 struct vm_area_struct *vma = vmf->vma;
3710 int ret, tmp;
3711
3712 ret = __do_fault(vmf);
3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714 return ret;
3715
3716 /*
3717 * Check if the backing address space wants to know that the page is
3718 * about to become writable
3719 */
3720 if (vma->vm_ops->page_mkwrite) {
3721 unlock_page(vmf->page);
3722 tmp = do_page_mkwrite(vmf);
3723 if (unlikely(!tmp ||
3724 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3725 put_page(vmf->page);
3726 return tmp;
3727 }
3728 }
3729
3730 ret |= finish_fault(vmf);
3731 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3732 VM_FAULT_RETRY))) {
3733 unlock_page(vmf->page);
3734 put_page(vmf->page);
3735 return ret;
3736 }
3737
3738 fault_dirty_shared_page(vma, vmf->page);
3739 return ret;
3740 }
3741
3742 /*
3743 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3744 * but allow concurrent faults).
3745 * The mmap_sem may have been released depending on flags and our
3746 * return value. See filemap_fault() and __lock_page_or_retry().
3747 */
3748 static int do_fault(struct vm_fault *vmf)
3749 {
3750 struct vm_area_struct *vma = vmf->vma;
3751 int ret;
3752
3753 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3754 if (!vma->vm_ops->fault)
3755 ret = VM_FAULT_SIGBUS;
3756 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3757 ret = do_read_fault(vmf);
3758 else if (!(vma->vm_flags & VM_SHARED))
3759 ret = do_cow_fault(vmf);
3760 else
3761 ret = do_shared_fault(vmf);
3762
3763 /* preallocated pagetable is unused: free it */
3764 if (vmf->prealloc_pte) {
3765 pte_free(vma->vm_mm, vmf->prealloc_pte);
3766 vmf->prealloc_pte = NULL;
3767 }
3768 return ret;
3769 }
3770
3771 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3772 unsigned long addr, int page_nid,
3773 int *flags)
3774 {
3775 get_page(page);
3776
3777 count_vm_numa_event(NUMA_HINT_FAULTS);
3778 if (page_nid == numa_node_id()) {
3779 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3780 *flags |= TNF_FAULT_LOCAL;
3781 }
3782
3783 return mpol_misplaced(page, vma, addr);
3784 }
3785
3786 static int do_numa_page(struct vm_fault *vmf)
3787 {
3788 struct vm_area_struct *vma = vmf->vma;
3789 struct page *page = NULL;
3790 int page_nid = -1;
3791 int last_cpupid;
3792 int target_nid;
3793 bool migrated = false;
3794 pte_t pte;
3795 bool was_writable = pte_savedwrite(vmf->orig_pte);
3796 int flags = 0;
3797
3798 /*
3799 * The "pte" at this point cannot be used safely without
3800 * validation through pte_unmap_same(). It's of NUMA type but
3801 * the pfn may be screwed if the read is non atomic.
3802 */
3803 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3804 spin_lock(vmf->ptl);
3805 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3806 pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 goto out;
3808 }
3809
3810 /*
3811 * Make it present again, Depending on how arch implementes non
3812 * accessible ptes, some can allow access by kernel mode.
3813 */
3814 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3815 pte = pte_modify(pte, vma->vm_page_prot);
3816 pte = pte_mkyoung(pte);
3817 if (was_writable)
3818 pte = pte_mkwrite(pte);
3819 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3820 update_mmu_cache(vma, vmf->address, vmf->pte);
3821
3822 page = vm_normal_page(vma, vmf->address, pte);
3823 if (!page) {
3824 pte_unmap_unlock(vmf->pte, vmf->ptl);
3825 return 0;
3826 }
3827
3828 /* TODO: handle PTE-mapped THP */
3829 if (PageCompound(page)) {
3830 pte_unmap_unlock(vmf->pte, vmf->ptl);
3831 return 0;
3832 }
3833
3834 /*
3835 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3836 * much anyway since they can be in shared cache state. This misses
3837 * the case where a mapping is writable but the process never writes
3838 * to it but pte_write gets cleared during protection updates and
3839 * pte_dirty has unpredictable behaviour between PTE scan updates,
3840 * background writeback, dirty balancing and application behaviour.
3841 */
3842 if (!pte_write(pte))
3843 flags |= TNF_NO_GROUP;
3844
3845 /*
3846 * Flag if the page is shared between multiple address spaces. This
3847 * is later used when determining whether to group tasks together
3848 */
3849 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3850 flags |= TNF_SHARED;
3851
3852 last_cpupid = page_cpupid_last(page);
3853 page_nid = page_to_nid(page);
3854 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3855 &flags);
3856 pte_unmap_unlock(vmf->pte, vmf->ptl);
3857 if (target_nid == -1) {
3858 put_page(page);
3859 goto out;
3860 }
3861
3862 /* Migrate to the requested node */
3863 migrated = migrate_misplaced_page(page, vma, target_nid);
3864 if (migrated) {
3865 page_nid = target_nid;
3866 flags |= TNF_MIGRATED;
3867 } else
3868 flags |= TNF_MIGRATE_FAIL;
3869
3870 out:
3871 if (page_nid != -1)
3872 task_numa_fault(last_cpupid, page_nid, 1, flags);
3873 return 0;
3874 }
3875
3876 static inline int create_huge_pmd(struct vm_fault *vmf)
3877 {
3878 if (vma_is_anonymous(vmf->vma))
3879 return do_huge_pmd_anonymous_page(vmf);
3880 if (vmf->vma->vm_ops->huge_fault)
3881 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3882 return VM_FAULT_FALLBACK;
3883 }
3884
3885 /* `inline' is required to avoid gcc 4.1.2 build error */
3886 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3887 {
3888 if (vma_is_anonymous(vmf->vma))
3889 return do_huge_pmd_wp_page(vmf, orig_pmd);
3890 if (vmf->vma->vm_ops->huge_fault)
3891 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3892
3893 /* COW handled on pte level: split pmd */
3894 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3895 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3896
3897 return VM_FAULT_FALLBACK;
3898 }
3899
3900 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3901 {
3902 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3903 }
3904
3905 static int create_huge_pud(struct vm_fault *vmf)
3906 {
3907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3908 /* No support for anonymous transparent PUD pages yet */
3909 if (vma_is_anonymous(vmf->vma))
3910 return VM_FAULT_FALLBACK;
3911 if (vmf->vma->vm_ops->huge_fault)
3912 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3913 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3914 return VM_FAULT_FALLBACK;
3915 }
3916
3917 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3927 }
3928
3929 /*
3930 * These routines also need to handle stuff like marking pages dirty
3931 * and/or accessed for architectures that don't do it in hardware (most
3932 * RISC architectures). The early dirtying is also good on the i386.
3933 *
3934 * There is also a hook called "update_mmu_cache()" that architectures
3935 * with external mmu caches can use to update those (ie the Sparc or
3936 * PowerPC hashed page tables that act as extended TLBs).
3937 *
3938 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3939 * concurrent faults).
3940 *
3941 * The mmap_sem may have been released depending on flags and our return value.
3942 * See filemap_fault() and __lock_page_or_retry().
3943 */
3944 static int handle_pte_fault(struct vm_fault *vmf)
3945 {
3946 pte_t entry;
3947
3948 if (unlikely(pmd_none(*vmf->pmd))) {
3949 /*
3950 * Leave __pte_alloc() until later: because vm_ops->fault may
3951 * want to allocate huge page, and if we expose page table
3952 * for an instant, it will be difficult to retract from
3953 * concurrent faults and from rmap lookups.
3954 */
3955 vmf->pte = NULL;
3956 } else {
3957 /* See comment in pte_alloc_one_map() */
3958 if (pmd_devmap_trans_unstable(vmf->pmd))
3959 return 0;
3960 /*
3961 * A regular pmd is established and it can't morph into a huge
3962 * pmd from under us anymore at this point because we hold the
3963 * mmap_sem read mode and khugepaged takes it in write mode.
3964 * So now it's safe to run pte_offset_map().
3965 */
3966 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3967 vmf->orig_pte = *vmf->pte;
3968
3969 /*
3970 * some architectures can have larger ptes than wordsize,
3971 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3972 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3973 * accesses. The code below just needs a consistent view
3974 * for the ifs and we later double check anyway with the
3975 * ptl lock held. So here a barrier will do.
3976 */
3977 barrier();
3978 if (pte_none(vmf->orig_pte)) {
3979 pte_unmap(vmf->pte);
3980 vmf->pte = NULL;
3981 }
3982 }
3983
3984 if (!vmf->pte) {
3985 if (vma_is_anonymous(vmf->vma))
3986 return do_anonymous_page(vmf);
3987 else
3988 return do_fault(vmf);
3989 }
3990
3991 if (!pte_present(vmf->orig_pte))
3992 return do_swap_page(vmf);
3993
3994 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3995 return do_numa_page(vmf);
3996
3997 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3998 spin_lock(vmf->ptl);
3999 entry = vmf->orig_pte;
4000 if (unlikely(!pte_same(*vmf->pte, entry)))
4001 goto unlock;
4002 if (vmf->flags & FAULT_FLAG_WRITE) {
4003 if (!pte_write(entry))
4004 return do_wp_page(vmf);
4005 entry = pte_mkdirty(entry);
4006 }
4007 entry = pte_mkyoung(entry);
4008 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4009 vmf->flags & FAULT_FLAG_WRITE)) {
4010 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4011 } else {
4012 /*
4013 * This is needed only for protection faults but the arch code
4014 * is not yet telling us if this is a protection fault or not.
4015 * This still avoids useless tlb flushes for .text page faults
4016 * with threads.
4017 */
4018 if (vmf->flags & FAULT_FLAG_WRITE)
4019 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4020 }
4021 unlock:
4022 pte_unmap_unlock(vmf->pte, vmf->ptl);
4023 return 0;
4024 }
4025
4026 /*
4027 * By the time we get here, we already hold the mm semaphore
4028 *
4029 * The mmap_sem may have been released depending on flags and our
4030 * return value. See filemap_fault() and __lock_page_or_retry().
4031 */
4032 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4033 unsigned int flags)
4034 {
4035 struct vm_fault vmf = {
4036 .vma = vma,
4037 .address = address & PAGE_MASK,
4038 .flags = flags,
4039 .pgoff = linear_page_index(vma, address),
4040 .gfp_mask = __get_fault_gfp_mask(vma),
4041 };
4042 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4043 struct mm_struct *mm = vma->vm_mm;
4044 pgd_t *pgd;
4045 p4d_t *p4d;
4046 int ret;
4047
4048 pgd = pgd_offset(mm, address);
4049 p4d = p4d_alloc(mm, pgd, address);
4050 if (!p4d)
4051 return VM_FAULT_OOM;
4052
4053 vmf.pud = pud_alloc(mm, p4d, address);
4054 if (!vmf.pud)
4055 return VM_FAULT_OOM;
4056 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4057 ret = create_huge_pud(&vmf);
4058 if (!(ret & VM_FAULT_FALLBACK))
4059 return ret;
4060 } else {
4061 pud_t orig_pud = *vmf.pud;
4062
4063 barrier();
4064 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4065
4066 /* NUMA case for anonymous PUDs would go here */
4067
4068 if (dirty && !pud_write(orig_pud)) {
4069 ret = wp_huge_pud(&vmf, orig_pud);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 huge_pud_set_accessed(&vmf, orig_pud);
4074 return 0;
4075 }
4076 }
4077 }
4078
4079 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4080 if (!vmf.pmd)
4081 return VM_FAULT_OOM;
4082 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4083 ret = create_huge_pmd(&vmf);
4084 if (!(ret & VM_FAULT_FALLBACK))
4085 return ret;
4086 } else {
4087 pmd_t orig_pmd = *vmf.pmd;
4088
4089 barrier();
4090 if (unlikely(is_swap_pmd(orig_pmd))) {
4091 VM_BUG_ON(thp_migration_supported() &&
4092 !is_pmd_migration_entry(orig_pmd));
4093 if (is_pmd_migration_entry(orig_pmd))
4094 pmd_migration_entry_wait(mm, vmf.pmd);
4095 return 0;
4096 }
4097 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4098 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4099 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4100
4101 if (dirty && !pmd_write(orig_pmd)) {
4102 ret = wp_huge_pmd(&vmf, orig_pmd);
4103 if (!(ret & VM_FAULT_FALLBACK))
4104 return ret;
4105 } else {
4106 huge_pmd_set_accessed(&vmf, orig_pmd);
4107 return 0;
4108 }
4109 }
4110 }
4111
4112 return handle_pte_fault(&vmf);
4113 }
4114
4115 /*
4116 * By the time we get here, we already hold the mm semaphore
4117 *
4118 * The mmap_sem may have been released depending on flags and our
4119 * return value. See filemap_fault() and __lock_page_or_retry().
4120 */
4121 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4122 unsigned int flags)
4123 {
4124 int ret;
4125
4126 __set_current_state(TASK_RUNNING);
4127
4128 count_vm_event(PGFAULT);
4129 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4130
4131 /* do counter updates before entering really critical section. */
4132 check_sync_rss_stat(current);
4133
4134 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4135 flags & FAULT_FLAG_INSTRUCTION,
4136 flags & FAULT_FLAG_REMOTE))
4137 return VM_FAULT_SIGSEGV;
4138
4139 /*
4140 * Enable the memcg OOM handling for faults triggered in user
4141 * space. Kernel faults are handled more gracefully.
4142 */
4143 if (flags & FAULT_FLAG_USER)
4144 mem_cgroup_enter_user_fault();
4145
4146 if (unlikely(is_vm_hugetlb_page(vma)))
4147 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4148 else
4149 ret = __handle_mm_fault(vma, address, flags);
4150
4151 if (flags & FAULT_FLAG_USER) {
4152 mem_cgroup_exit_user_fault();
4153 /*
4154 * The task may have entered a memcg OOM situation but
4155 * if the allocation error was handled gracefully (no
4156 * VM_FAULT_OOM), there is no need to kill anything.
4157 * Just clean up the OOM state peacefully.
4158 */
4159 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4160 mem_cgroup_oom_synchronize(false);
4161 }
4162
4163 return ret;
4164 }
4165 EXPORT_SYMBOL_GPL(handle_mm_fault);
4166
4167 #ifndef __PAGETABLE_P4D_FOLDED
4168 /*
4169 * Allocate p4d page table.
4170 * We've already handled the fast-path in-line.
4171 */
4172 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4173 {
4174 p4d_t *new = p4d_alloc_one(mm, address);
4175 if (!new)
4176 return -ENOMEM;
4177
4178 smp_wmb(); /* See comment in __pte_alloc */
4179
4180 spin_lock(&mm->page_table_lock);
4181 if (pgd_present(*pgd)) /* Another has populated it */
4182 p4d_free(mm, new);
4183 else
4184 pgd_populate(mm, pgd, new);
4185 spin_unlock(&mm->page_table_lock);
4186 return 0;
4187 }
4188 #endif /* __PAGETABLE_P4D_FOLDED */
4189
4190 #ifndef __PAGETABLE_PUD_FOLDED
4191 /*
4192 * Allocate page upper directory.
4193 * We've already handled the fast-path in-line.
4194 */
4195 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4196 {
4197 pud_t *new = pud_alloc_one(mm, address);
4198 if (!new)
4199 return -ENOMEM;
4200
4201 smp_wmb(); /* See comment in __pte_alloc */
4202
4203 spin_lock(&mm->page_table_lock);
4204 #ifndef __ARCH_HAS_5LEVEL_HACK
4205 if (!p4d_present(*p4d)) {
4206 mm_inc_nr_puds(mm);
4207 p4d_populate(mm, p4d, new);
4208 } else /* Another has populated it */
4209 pud_free(mm, new);
4210 #else
4211 if (!pgd_present(*p4d)) {
4212 mm_inc_nr_puds(mm);
4213 pgd_populate(mm, p4d, new);
4214 } else /* Another has populated it */
4215 pud_free(mm, new);
4216 #endif /* __ARCH_HAS_5LEVEL_HACK */
4217 spin_unlock(&mm->page_table_lock);
4218 return 0;
4219 }
4220 #endif /* __PAGETABLE_PUD_FOLDED */
4221
4222 #ifndef __PAGETABLE_PMD_FOLDED
4223 /*
4224 * Allocate page middle directory.
4225 * We've already handled the fast-path in-line.
4226 */
4227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4228 {
4229 spinlock_t *ptl;
4230 pmd_t *new = pmd_alloc_one(mm, address);
4231 if (!new)
4232 return -ENOMEM;
4233
4234 smp_wmb(); /* See comment in __pte_alloc */
4235
4236 ptl = pud_lock(mm, pud);
4237 #ifndef __ARCH_HAS_4LEVEL_HACK
4238 if (!pud_present(*pud)) {
4239 mm_inc_nr_pmds(mm);
4240 pud_populate(mm, pud, new);
4241 } else /* Another has populated it */
4242 pmd_free(mm, new);
4243 #else
4244 if (!pgd_present(*pud)) {
4245 mm_inc_nr_pmds(mm);
4246 pgd_populate(mm, pud, new);
4247 } else /* Another has populated it */
4248 pmd_free(mm, new);
4249 #endif /* __ARCH_HAS_4LEVEL_HACK */
4250 spin_unlock(ptl);
4251 return 0;
4252 }
4253 #endif /* __PAGETABLE_PMD_FOLDED */
4254
4255 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4256 unsigned long *start, unsigned long *end,
4257 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4258 {
4259 pgd_t *pgd;
4260 p4d_t *p4d;
4261 pud_t *pud;
4262 pmd_t *pmd;
4263 pte_t *ptep;
4264
4265 pgd = pgd_offset(mm, address);
4266 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4267 goto out;
4268
4269 p4d = p4d_offset(pgd, address);
4270 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4271 goto out;
4272
4273 pud = pud_offset(p4d, address);
4274 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4275 goto out;
4276
4277 pmd = pmd_offset(pud, address);
4278 VM_BUG_ON(pmd_trans_huge(*pmd));
4279
4280 if (pmd_huge(*pmd)) {
4281 if (!pmdpp)
4282 goto out;
4283
4284 if (start && end) {
4285 *start = address & PMD_MASK;
4286 *end = *start + PMD_SIZE;
4287 mmu_notifier_invalidate_range_start(mm, *start, *end);
4288 }
4289 *ptlp = pmd_lock(mm, pmd);
4290 if (pmd_huge(*pmd)) {
4291 *pmdpp = pmd;
4292 return 0;
4293 }
4294 spin_unlock(*ptlp);
4295 if (start && end)
4296 mmu_notifier_invalidate_range_end(mm, *start, *end);
4297 }
4298
4299 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4300 goto out;
4301
4302 if (start && end) {
4303 *start = address & PAGE_MASK;
4304 *end = *start + PAGE_SIZE;
4305 mmu_notifier_invalidate_range_start(mm, *start, *end);
4306 }
4307 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4308 if (!pte_present(*ptep))
4309 goto unlock;
4310 *ptepp = ptep;
4311 return 0;
4312 unlock:
4313 pte_unmap_unlock(ptep, *ptlp);
4314 if (start && end)
4315 mmu_notifier_invalidate_range_end(mm, *start, *end);
4316 out:
4317 return -EINVAL;
4318 }
4319
4320 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4321 pte_t **ptepp, spinlock_t **ptlp)
4322 {
4323 int res;
4324
4325 /* (void) is needed to make gcc happy */
4326 (void) __cond_lock(*ptlp,
4327 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4328 ptepp, NULL, ptlp)));
4329 return res;
4330 }
4331
4332 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4333 unsigned long *start, unsigned long *end,
4334 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4335 {
4336 int res;
4337
4338 /* (void) is needed to make gcc happy */
4339 (void) __cond_lock(*ptlp,
4340 !(res = __follow_pte_pmd(mm, address, start, end,
4341 ptepp, pmdpp, ptlp)));
4342 return res;
4343 }
4344 EXPORT_SYMBOL(follow_pte_pmd);
4345
4346 /**
4347 * follow_pfn - look up PFN at a user virtual address
4348 * @vma: memory mapping
4349 * @address: user virtual address
4350 * @pfn: location to store found PFN
4351 *
4352 * Only IO mappings and raw PFN mappings are allowed.
4353 *
4354 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4355 */
4356 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4357 unsigned long *pfn)
4358 {
4359 int ret = -EINVAL;
4360 spinlock_t *ptl;
4361 pte_t *ptep;
4362
4363 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4364 return ret;
4365
4366 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4367 if (ret)
4368 return ret;
4369 *pfn = pte_pfn(*ptep);
4370 pte_unmap_unlock(ptep, ptl);
4371 return 0;
4372 }
4373 EXPORT_SYMBOL(follow_pfn);
4374
4375 #ifdef CONFIG_HAVE_IOREMAP_PROT
4376 int follow_phys(struct vm_area_struct *vma,
4377 unsigned long address, unsigned int flags,
4378 unsigned long *prot, resource_size_t *phys)
4379 {
4380 int ret = -EINVAL;
4381 pte_t *ptep, pte;
4382 spinlock_t *ptl;
4383
4384 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4385 goto out;
4386
4387 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4388 goto out;
4389 pte = *ptep;
4390
4391 if ((flags & FOLL_WRITE) && !pte_write(pte))
4392 goto unlock;
4393
4394 *prot = pgprot_val(pte_pgprot(pte));
4395 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4396
4397 ret = 0;
4398 unlock:
4399 pte_unmap_unlock(ptep, ptl);
4400 out:
4401 return ret;
4402 }
4403
4404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4405 void *buf, int len, int write)
4406 {
4407 resource_size_t phys_addr;
4408 unsigned long prot = 0;
4409 void __iomem *maddr;
4410 int offset = addr & (PAGE_SIZE-1);
4411
4412 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4413 return -EINVAL;
4414
4415 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4416 if (!maddr)
4417 return -ENOMEM;
4418
4419 if (write)
4420 memcpy_toio(maddr + offset, buf, len);
4421 else
4422 memcpy_fromio(buf, maddr + offset, len);
4423 iounmap(maddr);
4424
4425 return len;
4426 }
4427 EXPORT_SYMBOL_GPL(generic_access_phys);
4428 #endif
4429
4430 /*
4431 * Access another process' address space as given in mm. If non-NULL, use the
4432 * given task for page fault accounting.
4433 */
4434 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4435 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4436 {
4437 struct vm_area_struct *vma;
4438 void *old_buf = buf;
4439 int write = gup_flags & FOLL_WRITE;
4440
4441 down_read(&mm->mmap_sem);
4442 /* ignore errors, just check how much was successfully transferred */
4443 while (len) {
4444 int bytes, ret, offset;
4445 void *maddr;
4446 struct page *page = NULL;
4447
4448 ret = get_user_pages_remote(tsk, mm, addr, 1,
4449 gup_flags, &page, &vma, NULL);
4450 if (ret <= 0) {
4451 #ifndef CONFIG_HAVE_IOREMAP_PROT
4452 break;
4453 #else
4454 /*
4455 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4456 * we can access using slightly different code.
4457 */
4458 vma = find_vma(mm, addr);
4459 if (!vma || vma->vm_start > addr)
4460 break;
4461 if (vma->vm_ops && vma->vm_ops->access)
4462 ret = vma->vm_ops->access(vma, addr, buf,
4463 len, write);
4464 if (ret <= 0)
4465 break;
4466 bytes = ret;
4467 #endif
4468 } else {
4469 bytes = len;
4470 offset = addr & (PAGE_SIZE-1);
4471 if (bytes > PAGE_SIZE-offset)
4472 bytes = PAGE_SIZE-offset;
4473
4474 maddr = kmap(page);
4475 if (write) {
4476 copy_to_user_page(vma, page, addr,
4477 maddr + offset, buf, bytes);
4478 set_page_dirty_lock(page);
4479 } else {
4480 copy_from_user_page(vma, page, addr,
4481 buf, maddr + offset, bytes);
4482 }
4483 kunmap(page);
4484 put_page(page);
4485 }
4486 len -= bytes;
4487 buf += bytes;
4488 addr += bytes;
4489 }
4490 up_read(&mm->mmap_sem);
4491
4492 return buf - old_buf;
4493 }
4494
4495 /**
4496 * access_remote_vm - access another process' address space
4497 * @mm: the mm_struct of the target address space
4498 * @addr: start address to access
4499 * @buf: source or destination buffer
4500 * @len: number of bytes to transfer
4501 * @gup_flags: flags modifying lookup behaviour
4502 *
4503 * The caller must hold a reference on @mm.
4504 */
4505 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4506 void *buf, int len, unsigned int gup_flags)
4507 {
4508 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4509 }
4510
4511 /*
4512 * Access another process' address space.
4513 * Source/target buffer must be kernel space,
4514 * Do not walk the page table directly, use get_user_pages
4515 */
4516 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4517 void *buf, int len, unsigned int gup_flags)
4518 {
4519 struct mm_struct *mm;
4520 int ret;
4521
4522 mm = get_task_mm(tsk);
4523 if (!mm)
4524 return 0;
4525
4526 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4527
4528 mmput(mm);
4529
4530 return ret;
4531 }
4532 EXPORT_SYMBOL_GPL(access_process_vm);
4533
4534 /*
4535 * Print the name of a VMA.
4536 */
4537 void print_vma_addr(char *prefix, unsigned long ip)
4538 {
4539 struct mm_struct *mm = current->mm;
4540 struct vm_area_struct *vma;
4541
4542 /*
4543 * we might be running from an atomic context so we cannot sleep
4544 */
4545 if (!down_read_trylock(&mm->mmap_sem))
4546 return;
4547
4548 vma = find_vma(mm, ip);
4549 if (vma && vma->vm_file) {
4550 struct file *f = vma->vm_file;
4551 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4552 if (buf) {
4553 char *p;
4554
4555 p = file_path(f, buf, PAGE_SIZE);
4556 if (IS_ERR(p))
4557 p = "?";
4558 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4559 vma->vm_start,
4560 vma->vm_end - vma->vm_start);
4561 free_page((unsigned long)buf);
4562 }
4563 }
4564 up_read(&mm->mmap_sem);
4565 }
4566
4567 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 void __might_fault(const char *file, int line)
4569 {
4570 /*
4571 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4572 * holding the mmap_sem, this is safe because kernel memory doesn't
4573 * get paged out, therefore we'll never actually fault, and the
4574 * below annotations will generate false positives.
4575 */
4576 if (uaccess_kernel())
4577 return;
4578 if (pagefault_disabled())
4579 return;
4580 __might_sleep(file, line, 0);
4581 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4582 if (current->mm)
4583 might_lock_read(&current->mm->mmap_sem);
4584 #endif
4585 }
4586 EXPORT_SYMBOL(__might_fault);
4587 #endif
4588
4589 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4590 /*
4591 * Process all subpages of the specified huge page with the specified
4592 * operation. The target subpage will be processed last to keep its
4593 * cache lines hot.
4594 */
4595 static inline void process_huge_page(
4596 unsigned long addr_hint, unsigned int pages_per_huge_page,
4597 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4598 void *arg)
4599 {
4600 int i, n, base, l;
4601 unsigned long addr = addr_hint &
4602 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4603
4604 /* Process target subpage last to keep its cache lines hot */
4605 might_sleep();
4606 n = (addr_hint - addr) / PAGE_SIZE;
4607 if (2 * n <= pages_per_huge_page) {
4608 /* If target subpage in first half of huge page */
4609 base = 0;
4610 l = n;
4611 /* Process subpages at the end of huge page */
4612 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4613 cond_resched();
4614 process_subpage(addr + i * PAGE_SIZE, i, arg);
4615 }
4616 } else {
4617 /* If target subpage in second half of huge page */
4618 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4619 l = pages_per_huge_page - n;
4620 /* Process subpages at the begin of huge page */
4621 for (i = 0; i < base; i++) {
4622 cond_resched();
4623 process_subpage(addr + i * PAGE_SIZE, i, arg);
4624 }
4625 }
4626 /*
4627 * Process remaining subpages in left-right-left-right pattern
4628 * towards the target subpage
4629 */
4630 for (i = 0; i < l; i++) {
4631 int left_idx = base + i;
4632 int right_idx = base + 2 * l - 1 - i;
4633
4634 cond_resched();
4635 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4636 cond_resched();
4637 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4638 }
4639 }
4640
4641 static void clear_gigantic_page(struct page *page,
4642 unsigned long addr,
4643 unsigned int pages_per_huge_page)
4644 {
4645 int i;
4646 struct page *p = page;
4647
4648 might_sleep();
4649 for (i = 0; i < pages_per_huge_page;
4650 i++, p = mem_map_next(p, page, i)) {
4651 cond_resched();
4652 clear_user_highpage(p, addr + i * PAGE_SIZE);
4653 }
4654 }
4655
4656 static void clear_subpage(unsigned long addr, int idx, void *arg)
4657 {
4658 struct page *page = arg;
4659
4660 clear_user_highpage(page + idx, addr);
4661 }
4662
4663 void clear_huge_page(struct page *page,
4664 unsigned long addr_hint, unsigned int pages_per_huge_page)
4665 {
4666 unsigned long addr = addr_hint &
4667 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4668
4669 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4670 clear_gigantic_page(page, addr, pages_per_huge_page);
4671 return;
4672 }
4673
4674 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4675 }
4676
4677 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4678 unsigned long addr,
4679 struct vm_area_struct *vma,
4680 unsigned int pages_per_huge_page)
4681 {
4682 int i;
4683 struct page *dst_base = dst;
4684 struct page *src_base = src;
4685
4686 for (i = 0; i < pages_per_huge_page; ) {
4687 cond_resched();
4688 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4689
4690 i++;
4691 dst = mem_map_next(dst, dst_base, i);
4692 src = mem_map_next(src, src_base, i);
4693 }
4694 }
4695
4696 struct copy_subpage_arg {
4697 struct page *dst;
4698 struct page *src;
4699 struct vm_area_struct *vma;
4700 };
4701
4702 static void copy_subpage(unsigned long addr, int idx, void *arg)
4703 {
4704 struct copy_subpage_arg *copy_arg = arg;
4705
4706 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4707 addr, copy_arg->vma);
4708 }
4709
4710 void copy_user_huge_page(struct page *dst, struct page *src,
4711 unsigned long addr_hint, struct vm_area_struct *vma,
4712 unsigned int pages_per_huge_page)
4713 {
4714 unsigned long addr = addr_hint &
4715 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4716 struct copy_subpage_arg arg = {
4717 .dst = dst,
4718 .src = src,
4719 .vma = vma,
4720 };
4721
4722 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4723 copy_user_gigantic_page(dst, src, addr, vma,
4724 pages_per_huge_page);
4725 return;
4726 }
4727
4728 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4729 }
4730
4731 long copy_huge_page_from_user(struct page *dst_page,
4732 const void __user *usr_src,
4733 unsigned int pages_per_huge_page,
4734 bool allow_pagefault)
4735 {
4736 void *src = (void *)usr_src;
4737 void *page_kaddr;
4738 unsigned long i, rc = 0;
4739 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4740
4741 for (i = 0; i < pages_per_huge_page; i++) {
4742 if (allow_pagefault)
4743 page_kaddr = kmap(dst_page + i);
4744 else
4745 page_kaddr = kmap_atomic(dst_page + i);
4746 rc = copy_from_user(page_kaddr,
4747 (const void __user *)(src + i * PAGE_SIZE),
4748 PAGE_SIZE);
4749 if (allow_pagefault)
4750 kunmap(dst_page + i);
4751 else
4752 kunmap_atomic(page_kaddr);
4753
4754 ret_val -= (PAGE_SIZE - rc);
4755 if (rc)
4756 break;
4757
4758 cond_resched();
4759 }
4760 return ret_val;
4761 }
4762 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4763
4764 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4765
4766 static struct kmem_cache *page_ptl_cachep;
4767
4768 void __init ptlock_cache_init(void)
4769 {
4770 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4771 SLAB_PANIC, NULL);
4772 }
4773
4774 bool ptlock_alloc(struct page *page)
4775 {
4776 spinlock_t *ptl;
4777
4778 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4779 if (!ptl)
4780 return false;
4781 page->ptl = ptl;
4782 return true;
4783 }
4784
4785 void ptlock_free(struct page *page)
4786 {
4787 kmem_cache_free(page_ptl_cachep, page->ptl);
4788 }
4789 #endif