]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
Merge tag 'gpio-v5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 1;
119 #else
120 2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137 randomize_va_space = 0;
138 return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150 static int __init init_zero_pfn(void)
151 {
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
172 }
173 }
174 current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
215 {
216 pgtable_t token = pmd_pgtable(*pmd);
217 pmd_clear(pmd);
218 pte_free_tlb(tlb, token, addr);
219 mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
225 {
226 pmd_t *pmd;
227 unsigned long next;
228 unsigned long start;
229
230 start = addr;
231 pmd = pmd_offset(pud, addr);
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
236 free_pte_range(tlb, pmd, addr);
237 } while (pmd++, addr = next, addr != end);
238
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
246 }
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
252 pmd_free_tlb(tlb, pmd, start);
253 mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
259 {
260 pud_t *pud;
261 unsigned long next;
262 unsigned long start;
263
264 start = addr;
265 pud = pud_offset(p4d, addr);
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 } while (pud++, addr = next, addr != end);
272
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
287 mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293 {
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
314 }
315 if (end - 1 > ceiling - 1)
316 return;
317
318 p4d = p4d_offset(pgd, start);
319 pgd_clear(pgd);
320 p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324 * This function frees user-level page tables of a process.
325 */
326 void free_pgd_range(struct mmu_gather *tlb,
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
329 {
330 pgd_t *pgd;
331 unsigned long next;
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
358
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
378 tlb_change_page_size(tlb, PAGE_SIZE);
379 pgd = pgd_offset(tlb->mm, addr);
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 unsigned long floor, unsigned long ceiling)
390 {
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
395 /*
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
398 */
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
401
402 if (is_vm_hugetlb_page(vma)) {
403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 && !is_vm_hugetlb_page(next)) {
411 vma = next;
412 next = vma->vm_next;
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 }
419 vma = next;
420 }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 spinlock_t *ptl;
426 pgtable_t new = pte_alloc_one(mm);
427 if (!new)
428 return -ENOMEM;
429
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445 ptl = pmd_lock(mm, pmd);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 mm_inc_nr_ptes(mm);
448 pmd_populate(mm, pmd, new);
449 new = NULL;
450 }
451 spin_unlock(ptl);
452 if (new)
453 pte_free(mm, new);
454 return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
462
463 smp_wmb(); /* See comment in __pte_alloc */
464
465 spin_lock(&init_mm.page_table_lock);
466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 int i;
484
485 if (current->mm == mm)
486 sync_mm_rss(mm);
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
496 *
497 * The calling function must still handle the error.
498 */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
501 {
502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 if (page)
538 dump_page(page, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
546 dump_stack();
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 *
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 *
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
565 *
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
579 *
580 *
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
591 */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
594 {
595 unsigned long pfn = pte_pfn(pte);
596
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
607 return NULL;
608
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
611 }
612
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
628 }
629
630 if (is_zero_pfn(pfn))
631 return NULL;
632
633 check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
638
639 /*
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
642 */
643 out:
644 return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650 {
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
673 if (pmd_devmap(pmd))
674 return NULL;
675 if (is_huge_zero_pmd(pmd))
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684 out:
685 return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
693 */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 unsigned long addr, int *rss)
699 {
700 unsigned long vm_flags = vma->vm_flags;
701 pte_t pte = *src_pte;
702 struct page *page;
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
724 rss[mm_counter(page)]++;
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 set_pte_at(src_mm, addr, src_pte, pte);
737 }
738 } else if (is_device_private_entry(entry)) {
739 page = device_private_entry_to_page(entry);
740
741 /*
742 * Update rss count even for unaddressable pages, as
743 * they should treated just like normal pages in this
744 * respect.
745 *
746 * We will likely want to have some new rss counters
747 * for unaddressable pages, at some point. But for now
748 * keep things as they are.
749 */
750 get_page(page);
751 rss[mm_counter(page)]++;
752 page_dup_rmap(page, false);
753
754 /*
755 * We do not preserve soft-dirty information, because so
756 * far, checkpoint/restore is the only feature that
757 * requires that. And checkpoint/restore does not work
758 * when a device driver is involved (you cannot easily
759 * save and restore device driver state).
760 */
761 if (is_write_device_private_entry(entry) &&
762 is_cow_mapping(vm_flags)) {
763 make_device_private_entry_read(&entry);
764 pte = swp_entry_to_pte(entry);
765 set_pte_at(src_mm, addr, src_pte, pte);
766 }
767 }
768 goto out_set_pte;
769 }
770
771 /*
772 * If it's a COW mapping, write protect it both
773 * in the parent and the child
774 */
775 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776 ptep_set_wrprotect(src_mm, addr, src_pte);
777 pte = pte_wrprotect(pte);
778 }
779
780 /*
781 * If it's a shared mapping, mark it clean in
782 * the child
783 */
784 if (vm_flags & VM_SHARED)
785 pte = pte_mkclean(pte);
786 pte = pte_mkold(pte);
787
788 page = vm_normal_page(vma, addr, pte);
789 if (page) {
790 get_page(page);
791 page_dup_rmap(page, false);
792 rss[mm_counter(page)]++;
793 } else if (pte_devmap(pte)) {
794 page = pte_page(pte);
795 }
796
797 out_set_pte:
798 set_pte_at(dst_mm, addr, dst_pte, pte);
799 return 0;
800 }
801
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 unsigned long addr, unsigned long end)
805 {
806 pte_t *orig_src_pte, *orig_dst_pte;
807 pte_t *src_pte, *dst_pte;
808 spinlock_t *src_ptl, *dst_ptl;
809 int progress = 0;
810 int rss[NR_MM_COUNTERS];
811 swp_entry_t entry = (swp_entry_t){0};
812
813 again:
814 init_rss_vec(rss);
815
816 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817 if (!dst_pte)
818 return -ENOMEM;
819 src_pte = pte_offset_map(src_pmd, addr);
820 src_ptl = pte_lockptr(src_mm, src_pmd);
821 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822 orig_src_pte = src_pte;
823 orig_dst_pte = dst_pte;
824 arch_enter_lazy_mmu_mode();
825
826 do {
827 /*
828 * We are holding two locks at this point - either of them
829 * could generate latencies in another task on another CPU.
830 */
831 if (progress >= 32) {
832 progress = 0;
833 if (need_resched() ||
834 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835 break;
836 }
837 if (pte_none(*src_pte)) {
838 progress++;
839 continue;
840 }
841 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842 vma, addr, rss);
843 if (entry.val)
844 break;
845 progress += 8;
846 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847
848 arch_leave_lazy_mmu_mode();
849 spin_unlock(src_ptl);
850 pte_unmap(orig_src_pte);
851 add_mm_rss_vec(dst_mm, rss);
852 pte_unmap_unlock(orig_dst_pte, dst_ptl);
853 cond_resched();
854
855 if (entry.val) {
856 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857 return -ENOMEM;
858 progress = 0;
859 }
860 if (addr != end)
861 goto again;
862 return 0;
863 }
864
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 unsigned long addr, unsigned long end)
868 {
869 pmd_t *src_pmd, *dst_pmd;
870 unsigned long next;
871
872 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873 if (!dst_pmd)
874 return -ENOMEM;
875 src_pmd = pmd_offset(src_pud, addr);
876 do {
877 next = pmd_addr_end(addr, end);
878 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 || pmd_devmap(*src_pmd)) {
880 int err;
881 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882 err = copy_huge_pmd(dst_mm, src_mm,
883 dst_pmd, src_pmd, addr, vma);
884 if (err == -ENOMEM)
885 return -ENOMEM;
886 if (!err)
887 continue;
888 /* fall through */
889 }
890 if (pmd_none_or_clear_bad(src_pmd))
891 continue;
892 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893 vma, addr, next))
894 return -ENOMEM;
895 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
896 return 0;
897 }
898
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901 unsigned long addr, unsigned long end)
902 {
903 pud_t *src_pud, *dst_pud;
904 unsigned long next;
905
906 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907 if (!dst_pud)
908 return -ENOMEM;
909 src_pud = pud_offset(src_p4d, addr);
910 do {
911 next = pud_addr_end(addr, end);
912 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913 int err;
914
915 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 err = copy_huge_pud(dst_mm, src_mm,
917 dst_pud, src_pud, addr, vma);
918 if (err == -ENOMEM)
919 return -ENOMEM;
920 if (!err)
921 continue;
922 /* fall through */
923 }
924 if (pud_none_or_clear_bad(src_pud))
925 continue;
926 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927 vma, addr, next))
928 return -ENOMEM;
929 } while (dst_pud++, src_pud++, addr = next, addr != end);
930 return 0;
931 }
932
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 unsigned long addr, unsigned long end)
936 {
937 p4d_t *src_p4d, *dst_p4d;
938 unsigned long next;
939
940 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941 if (!dst_p4d)
942 return -ENOMEM;
943 src_p4d = p4d_offset(src_pgd, addr);
944 do {
945 next = p4d_addr_end(addr, end);
946 if (p4d_none_or_clear_bad(src_p4d))
947 continue;
948 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949 vma, addr, next))
950 return -ENOMEM;
951 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
952 return 0;
953 }
954
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 struct vm_area_struct *vma)
957 {
958 pgd_t *src_pgd, *dst_pgd;
959 unsigned long next;
960 unsigned long addr = vma->vm_start;
961 unsigned long end = vma->vm_end;
962 struct mmu_notifier_range range;
963 bool is_cow;
964 int ret;
965
966 /*
967 * Don't copy ptes where a page fault will fill them correctly.
968 * Fork becomes much lighter when there are big shared or private
969 * readonly mappings. The tradeoff is that copy_page_range is more
970 * efficient than faulting.
971 */
972 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973 !vma->anon_vma)
974 return 0;
975
976 if (is_vm_hugetlb_page(vma))
977 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978
979 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980 /*
981 * We do not free on error cases below as remove_vma
982 * gets called on error from higher level routine
983 */
984 ret = track_pfn_copy(vma);
985 if (ret)
986 return ret;
987 }
988
989 /*
990 * We need to invalidate the secondary MMU mappings only when
991 * there could be a permission downgrade on the ptes of the
992 * parent mm. And a permission downgrade will only happen if
993 * is_cow_mapping() returns true.
994 */
995 is_cow = is_cow_mapping(vma->vm_flags);
996
997 if (is_cow) {
998 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 0, vma, src_mm, addr, end);
1000 mmu_notifier_invalidate_range_start(&range);
1001 }
1002
1003 ret = 0;
1004 dst_pgd = pgd_offset(dst_mm, addr);
1005 src_pgd = pgd_offset(src_mm, addr);
1006 do {
1007 next = pgd_addr_end(addr, end);
1008 if (pgd_none_or_clear_bad(src_pgd))
1009 continue;
1010 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011 vma, addr, next))) {
1012 ret = -ENOMEM;
1013 break;
1014 }
1015 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016
1017 if (is_cow)
1018 mmu_notifier_invalidate_range_end(&range);
1019 return ret;
1020 }
1021
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023 struct vm_area_struct *vma, pmd_t *pmd,
1024 unsigned long addr, unsigned long end,
1025 struct zap_details *details)
1026 {
1027 struct mm_struct *mm = tlb->mm;
1028 int force_flush = 0;
1029 int rss[NR_MM_COUNTERS];
1030 spinlock_t *ptl;
1031 pte_t *start_pte;
1032 pte_t *pte;
1033 swp_entry_t entry;
1034
1035 tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037 init_rss_vec(rss);
1038 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039 pte = start_pte;
1040 flush_tlb_batched_pending(mm);
1041 arch_enter_lazy_mmu_mode();
1042 do {
1043 pte_t ptent = *pte;
1044 if (pte_none(ptent))
1045 continue;
1046
1047 if (need_resched())
1048 break;
1049
1050 if (pte_present(ptent)) {
1051 struct page *page;
1052
1053 page = vm_normal_page(vma, addr, ptent);
1054 if (unlikely(details) && page) {
1055 /*
1056 * unmap_shared_mapping_pages() wants to
1057 * invalidate cache without truncating:
1058 * unmap shared but keep private pages.
1059 */
1060 if (details->check_mapping &&
1061 details->check_mapping != page_rmapping(page))
1062 continue;
1063 }
1064 ptent = ptep_get_and_clear_full(mm, addr, pte,
1065 tlb->fullmm);
1066 tlb_remove_tlb_entry(tlb, pte, addr);
1067 if (unlikely(!page))
1068 continue;
1069
1070 if (!PageAnon(page)) {
1071 if (pte_dirty(ptent)) {
1072 force_flush = 1;
1073 set_page_dirty(page);
1074 }
1075 if (pte_young(ptent) &&
1076 likely(!(vma->vm_flags & VM_SEQ_READ)))
1077 mark_page_accessed(page);
1078 }
1079 rss[mm_counter(page)]--;
1080 page_remove_rmap(page, false);
1081 if (unlikely(page_mapcount(page) < 0))
1082 print_bad_pte(vma, addr, ptent, page);
1083 if (unlikely(__tlb_remove_page(tlb, page))) {
1084 force_flush = 1;
1085 addr += PAGE_SIZE;
1086 break;
1087 }
1088 continue;
1089 }
1090
1091 entry = pte_to_swp_entry(ptent);
1092 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 struct page *page = device_private_entry_to_page(entry);
1094
1095 if (unlikely(details && details->check_mapping)) {
1096 /*
1097 * unmap_shared_mapping_pages() wants to
1098 * invalidate cache without truncating:
1099 * unmap shared but keep private pages.
1100 */
1101 if (details->check_mapping !=
1102 page_rmapping(page))
1103 continue;
1104 }
1105
1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 rss[mm_counter(page)]--;
1108 page_remove_rmap(page, false);
1109 put_page(page);
1110 continue;
1111 }
1112
1113 /* If details->check_mapping, we leave swap entries. */
1114 if (unlikely(details))
1115 continue;
1116
1117 if (!non_swap_entry(entry))
1118 rss[MM_SWAPENTS]--;
1119 else if (is_migration_entry(entry)) {
1120 struct page *page;
1121
1122 page = migration_entry_to_page(entry);
1123 rss[mm_counter(page)]--;
1124 }
1125 if (unlikely(!free_swap_and_cache(entry)))
1126 print_bad_pte(vma, addr, ptent, NULL);
1127 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128 } while (pte++, addr += PAGE_SIZE, addr != end);
1129
1130 add_mm_rss_vec(mm, rss);
1131 arch_leave_lazy_mmu_mode();
1132
1133 /* Do the actual TLB flush before dropping ptl */
1134 if (force_flush)
1135 tlb_flush_mmu_tlbonly(tlb);
1136 pte_unmap_unlock(start_pte, ptl);
1137
1138 /*
1139 * If we forced a TLB flush (either due to running out of
1140 * batch buffers or because we needed to flush dirty TLB
1141 * entries before releasing the ptl), free the batched
1142 * memory too. Restart if we didn't do everything.
1143 */
1144 if (force_flush) {
1145 force_flush = 0;
1146 tlb_flush_mmu(tlb);
1147 }
1148
1149 if (addr != end) {
1150 cond_resched();
1151 goto again;
1152 }
1153
1154 return addr;
1155 }
1156
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158 struct vm_area_struct *vma, pud_t *pud,
1159 unsigned long addr, unsigned long end,
1160 struct zap_details *details)
1161 {
1162 pmd_t *pmd;
1163 unsigned long next;
1164
1165 pmd = pmd_offset(pud, addr);
1166 do {
1167 next = pmd_addr_end(addr, end);
1168 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169 if (next - addr != HPAGE_PMD_SIZE)
1170 __split_huge_pmd(vma, pmd, addr, false, NULL);
1171 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172 goto next;
1173 /* fall through */
1174 }
1175 /*
1176 * Here there can be other concurrent MADV_DONTNEED or
1177 * trans huge page faults running, and if the pmd is
1178 * none or trans huge it can change under us. This is
1179 * because MADV_DONTNEED holds the mmap_sem in read
1180 * mode.
1181 */
1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183 goto next;
1184 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186 cond_resched();
1187 } while (pmd++, addr = next, addr != end);
1188
1189 return addr;
1190 }
1191
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193 struct vm_area_struct *vma, p4d_t *p4d,
1194 unsigned long addr, unsigned long end,
1195 struct zap_details *details)
1196 {
1197 pud_t *pud;
1198 unsigned long next;
1199
1200 pud = pud_offset(p4d, addr);
1201 do {
1202 next = pud_addr_end(addr, end);
1203 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 if (next - addr != HPAGE_PUD_SIZE) {
1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 split_huge_pud(vma, pud, addr);
1207 } else if (zap_huge_pud(tlb, vma, pud, addr))
1208 goto next;
1209 /* fall through */
1210 }
1211 if (pud_none_or_clear_bad(pud))
1212 continue;
1213 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215 cond_resched();
1216 } while (pud++, addr = next, addr != end);
1217
1218 return addr;
1219 }
1220
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pgd_t *pgd,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1225 {
1226 p4d_t *p4d;
1227 unsigned long next;
1228
1229 p4d = p4d_offset(pgd, addr);
1230 do {
1231 next = p4d_addr_end(addr, end);
1232 if (p4d_none_or_clear_bad(p4d))
1233 continue;
1234 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 } while (p4d++, addr = next, addr != end);
1236
1237 return addr;
1238 }
1239
1240 void unmap_page_range(struct mmu_gather *tlb,
1241 struct vm_area_struct *vma,
1242 unsigned long addr, unsigned long end,
1243 struct zap_details *details)
1244 {
1245 pgd_t *pgd;
1246 unsigned long next;
1247
1248 BUG_ON(addr >= end);
1249 tlb_start_vma(tlb, vma);
1250 pgd = pgd_offset(vma->vm_mm, addr);
1251 do {
1252 next = pgd_addr_end(addr, end);
1253 if (pgd_none_or_clear_bad(pgd))
1254 continue;
1255 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256 } while (pgd++, addr = next, addr != end);
1257 tlb_end_vma(tlb, vma);
1258 }
1259
1260
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 struct vm_area_struct *vma, unsigned long start_addr,
1263 unsigned long end_addr,
1264 struct zap_details *details)
1265 {
1266 unsigned long start = max(vma->vm_start, start_addr);
1267 unsigned long end;
1268
1269 if (start >= vma->vm_end)
1270 return;
1271 end = min(vma->vm_end, end_addr);
1272 if (end <= vma->vm_start)
1273 return;
1274
1275 if (vma->vm_file)
1276 uprobe_munmap(vma, start, end);
1277
1278 if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 untrack_pfn(vma, 0, 0);
1280
1281 if (start != end) {
1282 if (unlikely(is_vm_hugetlb_page(vma))) {
1283 /*
1284 * It is undesirable to test vma->vm_file as it
1285 * should be non-null for valid hugetlb area.
1286 * However, vm_file will be NULL in the error
1287 * cleanup path of mmap_region. When
1288 * hugetlbfs ->mmap method fails,
1289 * mmap_region() nullifies vma->vm_file
1290 * before calling this function to clean up.
1291 * Since no pte has actually been setup, it is
1292 * safe to do nothing in this case.
1293 */
1294 if (vma->vm_file) {
1295 i_mmap_lock_write(vma->vm_file->f_mapping);
1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 i_mmap_unlock_write(vma->vm_file->f_mapping);
1298 }
1299 } else
1300 unmap_page_range(tlb, vma, start, end, details);
1301 }
1302 }
1303
1304 /**
1305 * unmap_vmas - unmap a range of memory covered by a list of vma's
1306 * @tlb: address of the caller's struct mmu_gather
1307 * @vma: the starting vma
1308 * @start_addr: virtual address at which to start unmapping
1309 * @end_addr: virtual address at which to end unmapping
1310 *
1311 * Unmap all pages in the vma list.
1312 *
1313 * Only addresses between `start' and `end' will be unmapped.
1314 *
1315 * The VMA list must be sorted in ascending virtual address order.
1316 *
1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318 * range after unmap_vmas() returns. So the only responsibility here is to
1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320 * drops the lock and schedules.
1321 */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 struct vm_area_struct *vma, unsigned long start_addr,
1324 unsigned long end_addr)
1325 {
1326 struct mmu_notifier_range range;
1327
1328 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 start_addr, end_addr);
1330 mmu_notifier_invalidate_range_start(&range);
1331 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333 mmu_notifier_invalidate_range_end(&range);
1334 }
1335
1336 /**
1337 * zap_page_range - remove user pages in a given range
1338 * @vma: vm_area_struct holding the applicable pages
1339 * @start: starting address of pages to zap
1340 * @size: number of bytes to zap
1341 *
1342 * Caller must protect the VMA list
1343 */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345 unsigned long size)
1346 {
1347 struct mmu_notifier_range range;
1348 struct mmu_gather tlb;
1349
1350 lru_add_drain();
1351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352 start, start + size);
1353 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 update_hiwater_rss(vma->vm_mm);
1355 mmu_notifier_invalidate_range_start(&range);
1356 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 mmu_notifier_invalidate_range_end(&range);
1359 tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361
1362 /**
1363 * zap_page_range_single - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @address: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1368 *
1369 * The range must fit into one VMA.
1370 */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372 unsigned long size, struct zap_details *details)
1373 {
1374 struct mmu_notifier_range range;
1375 struct mmu_gather tlb;
1376
1377 lru_add_drain();
1378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 address, address + size);
1380 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 update_hiwater_rss(vma->vm_mm);
1382 mmu_notifier_invalidate_range_start(&range);
1383 unmap_single_vma(&tlb, vma, address, range.end, details);
1384 mmu_notifier_invalidate_range_end(&range);
1385 tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387
1388 /**
1389 * zap_vma_ptes - remove ptes mapping the vma
1390 * @vma: vm_area_struct holding ptes to be zapped
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 *
1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395 *
1396 * The entire address range must be fully contained within the vma.
1397 *
1398 */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400 unsigned long size)
1401 {
1402 if (address < vma->vm_start || address + size > vma->vm_end ||
1403 !(vma->vm_flags & VM_PFNMAP))
1404 return;
1405
1406 zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411 spinlock_t **ptl)
1412 {
1413 pgd_t *pgd;
1414 p4d_t *p4d;
1415 pud_t *pud;
1416 pmd_t *pmd;
1417
1418 pgd = pgd_offset(mm, addr);
1419 p4d = p4d_alloc(mm, pgd, addr);
1420 if (!p4d)
1421 return NULL;
1422 pud = pud_alloc(mm, p4d, addr);
1423 if (!pud)
1424 return NULL;
1425 pmd = pmd_alloc(mm, pud, addr);
1426 if (!pmd)
1427 return NULL;
1428
1429 VM_BUG_ON(pmd_trans_huge(*pmd));
1430 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432
1433 /*
1434 * This is the old fallback for page remapping.
1435 *
1436 * For historical reasons, it only allows reserved pages. Only
1437 * old drivers should use this, and they needed to mark their
1438 * pages reserved for the old functions anyway.
1439 */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 struct page *page, pgprot_t prot)
1442 {
1443 struct mm_struct *mm = vma->vm_mm;
1444 int retval;
1445 pte_t *pte;
1446 spinlock_t *ptl;
1447
1448 retval = -EINVAL;
1449 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450 goto out;
1451 retval = -ENOMEM;
1452 flush_dcache_page(page);
1453 pte = get_locked_pte(mm, addr, &ptl);
1454 if (!pte)
1455 goto out;
1456 retval = -EBUSY;
1457 if (!pte_none(*pte))
1458 goto out_unlock;
1459
1460 /* Ok, finally just insert the thing.. */
1461 get_page(page);
1462 inc_mm_counter_fast(mm, mm_counter_file(page));
1463 page_add_file_rmap(page, false);
1464 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465
1466 retval = 0;
1467 out_unlock:
1468 pte_unmap_unlock(pte, ptl);
1469 out:
1470 return retval;
1471 }
1472
1473 /**
1474 * vm_insert_page - insert single page into user vma
1475 * @vma: user vma to map to
1476 * @addr: target user address of this page
1477 * @page: source kernel page
1478 *
1479 * This allows drivers to insert individual pages they've allocated
1480 * into a user vma.
1481 *
1482 * The page has to be a nice clean _individual_ kernel allocation.
1483 * If you allocate a compound page, you need to have marked it as
1484 * such (__GFP_COMP), or manually just split the page up yourself
1485 * (see split_page()).
1486 *
1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488 * took an arbitrary page protection parameter. This doesn't allow
1489 * that. Your vma protection will have to be set up correctly, which
1490 * means that if you want a shared writable mapping, you'd better
1491 * ask for a shared writable mapping!
1492 *
1493 * The page does not need to be reserved.
1494 *
1495 * Usually this function is called from f_op->mmap() handler
1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498 * function from other places, for example from page-fault handler.
1499 *
1500 * Return: %0 on success, negative error code otherwise.
1501 */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 struct page *page)
1504 {
1505 if (addr < vma->vm_start || addr >= vma->vm_end)
1506 return -EFAULT;
1507 if (!page_count(page))
1508 return -EINVAL;
1509 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 vma->vm_flags |= VM_MIXEDMAP;
1513 }
1514 return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517
1518 /*
1519 * __vm_map_pages - maps range of kernel pages into user vma
1520 * @vma: user vma to map to
1521 * @pages: pointer to array of source kernel pages
1522 * @num: number of pages in page array
1523 * @offset: user's requested vm_pgoff
1524 *
1525 * This allows drivers to map range of kernel pages into a user vma.
1526 *
1527 * Return: 0 on success and error code otherwise.
1528 */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 unsigned long num, unsigned long offset)
1531 {
1532 unsigned long count = vma_pages(vma);
1533 unsigned long uaddr = vma->vm_start;
1534 int ret, i;
1535
1536 /* Fail if the user requested offset is beyond the end of the object */
1537 if (offset >= num)
1538 return -ENXIO;
1539
1540 /* Fail if the user requested size exceeds available object size */
1541 if (count > num - offset)
1542 return -ENXIO;
1543
1544 for (i = 0; i < count; i++) {
1545 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546 if (ret < 0)
1547 return ret;
1548 uaddr += PAGE_SIZE;
1549 }
1550
1551 return 0;
1552 }
1553
1554 /**
1555 * vm_map_pages - maps range of kernel pages starts with non zero offset
1556 * @vma: user vma to map to
1557 * @pages: pointer to array of source kernel pages
1558 * @num: number of pages in page array
1559 *
1560 * Maps an object consisting of @num pages, catering for the user's
1561 * requested vm_pgoff
1562 *
1563 * If we fail to insert any page into the vma, the function will return
1564 * immediately leaving any previously inserted pages present. Callers
1565 * from the mmap handler may immediately return the error as their caller
1566 * will destroy the vma, removing any successfully inserted pages. Other
1567 * callers should make their own arrangements for calling unmap_region().
1568 *
1569 * Context: Process context. Called by mmap handlers.
1570 * Return: 0 on success and error code otherwise.
1571 */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573 unsigned long num)
1574 {
1575 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578
1579 /**
1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581 * @vma: user vma to map to
1582 * @pages: pointer to array of source kernel pages
1583 * @num: number of pages in page array
1584 *
1585 * Similar to vm_map_pages(), except that it explicitly sets the offset
1586 * to 0. This function is intended for the drivers that did not consider
1587 * vm_pgoff.
1588 *
1589 * Context: Process context. Called by mmap handlers.
1590 * Return: 0 on success and error code otherwise.
1591 */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593 unsigned long num)
1594 {
1595 return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602 struct mm_struct *mm = vma->vm_mm;
1603 pte_t *pte, entry;
1604 spinlock_t *ptl;
1605
1606 pte = get_locked_pte(mm, addr, &ptl);
1607 if (!pte)
1608 return VM_FAULT_OOM;
1609 if (!pte_none(*pte)) {
1610 if (mkwrite) {
1611 /*
1612 * For read faults on private mappings the PFN passed
1613 * in may not match the PFN we have mapped if the
1614 * mapped PFN is a writeable COW page. In the mkwrite
1615 * case we are creating a writable PTE for a shared
1616 * mapping and we expect the PFNs to match. If they
1617 * don't match, we are likely racing with block
1618 * allocation and mapping invalidation so just skip the
1619 * update.
1620 */
1621 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623 goto out_unlock;
1624 }
1625 entry = pte_mkyoung(*pte);
1626 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 update_mmu_cache(vma, addr, pte);
1629 }
1630 goto out_unlock;
1631 }
1632
1633 /* Ok, finally just insert the thing.. */
1634 if (pfn_t_devmap(pfn))
1635 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636 else
1637 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638
1639 if (mkwrite) {
1640 entry = pte_mkyoung(entry);
1641 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642 }
1643
1644 set_pte_at(mm, addr, pte, entry);
1645 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646
1647 out_unlock:
1648 pte_unmap_unlock(pte, ptl);
1649 return VM_FAULT_NOPAGE;
1650 }
1651
1652 /**
1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654 * @vma: user vma to map to
1655 * @addr: target user address of this page
1656 * @pfn: source kernel pfn
1657 * @pgprot: pgprot flags for the inserted page
1658 *
1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660 * to override pgprot on a per-page basis.
1661 *
1662 * This only makes sense for IO mappings, and it makes no sense for
1663 * COW mappings. In general, using multiple vmas is preferable;
1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665 * impractical.
1666 *
1667 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668 * a value of @pgprot different from that of @vma->vm_page_prot.
1669 *
1670 * Context: Process context. May allocate using %GFP_KERNEL.
1671 * Return: vm_fault_t value.
1672 */
1673 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674 unsigned long pfn, pgprot_t pgprot)
1675 {
1676 /*
1677 * Technically, architectures with pte_special can avoid all these
1678 * restrictions (same for remap_pfn_range). However we would like
1679 * consistency in testing and feature parity among all, so we should
1680 * try to keep these invariants in place for everybody.
1681 */
1682 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684 (VM_PFNMAP|VM_MIXEDMAP));
1685 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1687
1688 if (addr < vma->vm_start || addr >= vma->vm_end)
1689 return VM_FAULT_SIGBUS;
1690
1691 if (!pfn_modify_allowed(pfn, pgprot))
1692 return VM_FAULT_SIGBUS;
1693
1694 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1695
1696 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1697 false);
1698 }
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1700
1701 /**
1702 * vmf_insert_pfn - insert single pfn into user vma
1703 * @vma: user vma to map to
1704 * @addr: target user address of this page
1705 * @pfn: source kernel pfn
1706 *
1707 * Similar to vm_insert_page, this allows drivers to insert individual pages
1708 * they've allocated into a user vma. Same comments apply.
1709 *
1710 * This function should only be called from a vm_ops->fault handler, and
1711 * in that case the handler should return the result of this function.
1712 *
1713 * vma cannot be a COW mapping.
1714 *
1715 * As this is called only for pages that do not currently exist, we
1716 * do not need to flush old virtual caches or the TLB.
1717 *
1718 * Context: Process context. May allocate using %GFP_KERNEL.
1719 * Return: vm_fault_t value.
1720 */
1721 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1722 unsigned long pfn)
1723 {
1724 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1725 }
1726 EXPORT_SYMBOL(vmf_insert_pfn);
1727
1728 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1729 {
1730 /* these checks mirror the abort conditions in vm_normal_page */
1731 if (vma->vm_flags & VM_MIXEDMAP)
1732 return true;
1733 if (pfn_t_devmap(pfn))
1734 return true;
1735 if (pfn_t_special(pfn))
1736 return true;
1737 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1738 return true;
1739 return false;
1740 }
1741
1742 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1743 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1744 bool mkwrite)
1745 {
1746 int err;
1747
1748 BUG_ON(!vm_mixed_ok(vma, pfn));
1749
1750 if (addr < vma->vm_start || addr >= vma->vm_end)
1751 return VM_FAULT_SIGBUS;
1752
1753 track_pfn_insert(vma, &pgprot, pfn);
1754
1755 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1756 return VM_FAULT_SIGBUS;
1757
1758 /*
1759 * If we don't have pte special, then we have to use the pfn_valid()
1760 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 * refcount the page if pfn_valid is true (hence insert_page rather
1762 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1763 * without pte special, it would there be refcounted as a normal page.
1764 */
1765 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1767 struct page *page;
1768
1769 /*
1770 * At this point we are committed to insert_page()
1771 * regardless of whether the caller specified flags that
1772 * result in pfn_t_has_page() == false.
1773 */
1774 page = pfn_to_page(pfn_t_to_pfn(pfn));
1775 err = insert_page(vma, addr, page, pgprot);
1776 } else {
1777 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1778 }
1779
1780 if (err == -ENOMEM)
1781 return VM_FAULT_OOM;
1782 if (err < 0 && err != -EBUSY)
1783 return VM_FAULT_SIGBUS;
1784
1785 return VM_FAULT_NOPAGE;
1786 }
1787
1788 /**
1789 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790 * @vma: user vma to map to
1791 * @addr: target user address of this page
1792 * @pfn: source kernel pfn
1793 * @pgprot: pgprot flags for the inserted page
1794 *
1795 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796 * to override pgprot on a per-page basis.
1797 *
1798 * Typically this function should be used by drivers to set caching- and
1799 * encryption bits different than those of @vma->vm_page_prot, because
1800 * the caching- or encryption mode may not be known at mmap() time.
1801 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802 * to set caching and encryption bits for those vmas (except for COW pages).
1803 * This is ensured by core vm only modifying these page table entries using
1804 * functions that don't touch caching- or encryption bits, using pte_modify()
1805 * if needed. (See for example mprotect()).
1806 * Also when new page-table entries are created, this is only done using the
1807 * fault() callback, and never using the value of vma->vm_page_prot,
1808 * except for page-table entries that point to anonymous pages as the result
1809 * of COW.
1810 *
1811 * Context: Process context. May allocate using %GFP_KERNEL.
1812 * Return: vm_fault_t value.
1813 */
1814 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815 pfn_t pfn, pgprot_t pgprot)
1816 {
1817 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1818 }
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1820
1821 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1822 pfn_t pfn)
1823 {
1824 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1825 }
1826 EXPORT_SYMBOL(vmf_insert_mixed);
1827
1828 /*
1829 * If the insertion of PTE failed because someone else already added a
1830 * different entry in the mean time, we treat that as success as we assume
1831 * the same entry was actually inserted.
1832 */
1833 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1834 unsigned long addr, pfn_t pfn)
1835 {
1836 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1839
1840 /*
1841 * maps a range of physical memory into the requested pages. the old
1842 * mappings are removed. any references to nonexistent pages results
1843 * in null mappings (currently treated as "copy-on-access")
1844 */
1845 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846 unsigned long addr, unsigned long end,
1847 unsigned long pfn, pgprot_t prot)
1848 {
1849 pte_t *pte;
1850 spinlock_t *ptl;
1851 int err = 0;
1852
1853 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1854 if (!pte)
1855 return -ENOMEM;
1856 arch_enter_lazy_mmu_mode();
1857 do {
1858 BUG_ON(!pte_none(*pte));
1859 if (!pfn_modify_allowed(pfn, prot)) {
1860 err = -EACCES;
1861 break;
1862 }
1863 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1864 pfn++;
1865 } while (pte++, addr += PAGE_SIZE, addr != end);
1866 arch_leave_lazy_mmu_mode();
1867 pte_unmap_unlock(pte - 1, ptl);
1868 return err;
1869 }
1870
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872 unsigned long addr, unsigned long end,
1873 unsigned long pfn, pgprot_t prot)
1874 {
1875 pmd_t *pmd;
1876 unsigned long next;
1877 int err;
1878
1879 pfn -= addr >> PAGE_SHIFT;
1880 pmd = pmd_alloc(mm, pud, addr);
1881 if (!pmd)
1882 return -ENOMEM;
1883 VM_BUG_ON(pmd_trans_huge(*pmd));
1884 do {
1885 next = pmd_addr_end(addr, end);
1886 err = remap_pte_range(mm, pmd, addr, next,
1887 pfn + (addr >> PAGE_SHIFT), prot);
1888 if (err)
1889 return err;
1890 } while (pmd++, addr = next, addr != end);
1891 return 0;
1892 }
1893
1894 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1895 unsigned long addr, unsigned long end,
1896 unsigned long pfn, pgprot_t prot)
1897 {
1898 pud_t *pud;
1899 unsigned long next;
1900 int err;
1901
1902 pfn -= addr >> PAGE_SHIFT;
1903 pud = pud_alloc(mm, p4d, addr);
1904 if (!pud)
1905 return -ENOMEM;
1906 do {
1907 next = pud_addr_end(addr, end);
1908 err = remap_pmd_range(mm, pud, addr, next,
1909 pfn + (addr >> PAGE_SHIFT), prot);
1910 if (err)
1911 return err;
1912 } while (pud++, addr = next, addr != end);
1913 return 0;
1914 }
1915
1916 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1917 unsigned long addr, unsigned long end,
1918 unsigned long pfn, pgprot_t prot)
1919 {
1920 p4d_t *p4d;
1921 unsigned long next;
1922 int err;
1923
1924 pfn -= addr >> PAGE_SHIFT;
1925 p4d = p4d_alloc(mm, pgd, addr);
1926 if (!p4d)
1927 return -ENOMEM;
1928 do {
1929 next = p4d_addr_end(addr, end);
1930 err = remap_pud_range(mm, p4d, addr, next,
1931 pfn + (addr >> PAGE_SHIFT), prot);
1932 if (err)
1933 return err;
1934 } while (p4d++, addr = next, addr != end);
1935 return 0;
1936 }
1937
1938 /**
1939 * remap_pfn_range - remap kernel memory to userspace
1940 * @vma: user vma to map to
1941 * @addr: target user address to start at
1942 * @pfn: page frame number of kernel physical memory address
1943 * @size: size of map area
1944 * @prot: page protection flags for this mapping
1945 *
1946 * Note: this is only safe if the mm semaphore is held when called.
1947 *
1948 * Return: %0 on success, negative error code otherwise.
1949 */
1950 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1951 unsigned long pfn, unsigned long size, pgprot_t prot)
1952 {
1953 pgd_t *pgd;
1954 unsigned long next;
1955 unsigned long end = addr + PAGE_ALIGN(size);
1956 struct mm_struct *mm = vma->vm_mm;
1957 unsigned long remap_pfn = pfn;
1958 int err;
1959
1960 /*
1961 * Physically remapped pages are special. Tell the
1962 * rest of the world about it:
1963 * VM_IO tells people not to look at these pages
1964 * (accesses can have side effects).
1965 * VM_PFNMAP tells the core MM that the base pages are just
1966 * raw PFN mappings, and do not have a "struct page" associated
1967 * with them.
1968 * VM_DONTEXPAND
1969 * Disable vma merging and expanding with mremap().
1970 * VM_DONTDUMP
1971 * Omit vma from core dump, even when VM_IO turned off.
1972 *
1973 * There's a horrible special case to handle copy-on-write
1974 * behaviour that some programs depend on. We mark the "original"
1975 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976 * See vm_normal_page() for details.
1977 */
1978 if (is_cow_mapping(vma->vm_flags)) {
1979 if (addr != vma->vm_start || end != vma->vm_end)
1980 return -EINVAL;
1981 vma->vm_pgoff = pfn;
1982 }
1983
1984 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1985 if (err)
1986 return -EINVAL;
1987
1988 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1989
1990 BUG_ON(addr >= end);
1991 pfn -= addr >> PAGE_SHIFT;
1992 pgd = pgd_offset(mm, addr);
1993 flush_cache_range(vma, addr, end);
1994 do {
1995 next = pgd_addr_end(addr, end);
1996 err = remap_p4d_range(mm, pgd, addr, next,
1997 pfn + (addr >> PAGE_SHIFT), prot);
1998 if (err)
1999 break;
2000 } while (pgd++, addr = next, addr != end);
2001
2002 if (err)
2003 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2004
2005 return err;
2006 }
2007 EXPORT_SYMBOL(remap_pfn_range);
2008
2009 /**
2010 * vm_iomap_memory - remap memory to userspace
2011 * @vma: user vma to map to
2012 * @start: start of the physical memory to be mapped
2013 * @len: size of area
2014 *
2015 * This is a simplified io_remap_pfn_range() for common driver use. The
2016 * driver just needs to give us the physical memory range to be mapped,
2017 * we'll figure out the rest from the vma information.
2018 *
2019 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020 * whatever write-combining details or similar.
2021 *
2022 * Return: %0 on success, negative error code otherwise.
2023 */
2024 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2025 {
2026 unsigned long vm_len, pfn, pages;
2027
2028 /* Check that the physical memory area passed in looks valid */
2029 if (start + len < start)
2030 return -EINVAL;
2031 /*
2032 * You *really* shouldn't map things that aren't page-aligned,
2033 * but we've historically allowed it because IO memory might
2034 * just have smaller alignment.
2035 */
2036 len += start & ~PAGE_MASK;
2037 pfn = start >> PAGE_SHIFT;
2038 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2039 if (pfn + pages < pfn)
2040 return -EINVAL;
2041
2042 /* We start the mapping 'vm_pgoff' pages into the area */
2043 if (vma->vm_pgoff > pages)
2044 return -EINVAL;
2045 pfn += vma->vm_pgoff;
2046 pages -= vma->vm_pgoff;
2047
2048 /* Can we fit all of the mapping? */
2049 vm_len = vma->vm_end - vma->vm_start;
2050 if (vm_len >> PAGE_SHIFT > pages)
2051 return -EINVAL;
2052
2053 /* Ok, let it rip */
2054 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_iomap_memory);
2057
2058 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2059 unsigned long addr, unsigned long end,
2060 pte_fn_t fn, void *data, bool create)
2061 {
2062 pte_t *pte;
2063 int err = 0;
2064 spinlock_t *uninitialized_var(ptl);
2065
2066 if (create) {
2067 pte = (mm == &init_mm) ?
2068 pte_alloc_kernel(pmd, addr) :
2069 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070 if (!pte)
2071 return -ENOMEM;
2072 } else {
2073 pte = (mm == &init_mm) ?
2074 pte_offset_kernel(pmd, addr) :
2075 pte_offset_map_lock(mm, pmd, addr, &ptl);
2076 }
2077
2078 BUG_ON(pmd_huge(*pmd));
2079
2080 arch_enter_lazy_mmu_mode();
2081
2082 do {
2083 if (create || !pte_none(*pte)) {
2084 err = fn(pte++, addr, data);
2085 if (err)
2086 break;
2087 }
2088 } while (addr += PAGE_SIZE, addr != end);
2089
2090 arch_leave_lazy_mmu_mode();
2091
2092 if (mm != &init_mm)
2093 pte_unmap_unlock(pte-1, ptl);
2094 return err;
2095 }
2096
2097 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2098 unsigned long addr, unsigned long end,
2099 pte_fn_t fn, void *data, bool create)
2100 {
2101 pmd_t *pmd;
2102 unsigned long next;
2103 int err = 0;
2104
2105 BUG_ON(pud_huge(*pud));
2106
2107 if (create) {
2108 pmd = pmd_alloc(mm, pud, addr);
2109 if (!pmd)
2110 return -ENOMEM;
2111 } else {
2112 pmd = pmd_offset(pud, addr);
2113 }
2114 do {
2115 next = pmd_addr_end(addr, end);
2116 if (create || !pmd_none_or_clear_bad(pmd)) {
2117 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2118 create);
2119 if (err)
2120 break;
2121 }
2122 } while (pmd++, addr = next, addr != end);
2123 return err;
2124 }
2125
2126 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2127 unsigned long addr, unsigned long end,
2128 pte_fn_t fn, void *data, bool create)
2129 {
2130 pud_t *pud;
2131 unsigned long next;
2132 int err = 0;
2133
2134 if (create) {
2135 pud = pud_alloc(mm, p4d, addr);
2136 if (!pud)
2137 return -ENOMEM;
2138 } else {
2139 pud = pud_offset(p4d, addr);
2140 }
2141 do {
2142 next = pud_addr_end(addr, end);
2143 if (create || !pud_none_or_clear_bad(pud)) {
2144 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2145 create);
2146 if (err)
2147 break;
2148 }
2149 } while (pud++, addr = next, addr != end);
2150 return err;
2151 }
2152
2153 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2154 unsigned long addr, unsigned long end,
2155 pte_fn_t fn, void *data, bool create)
2156 {
2157 p4d_t *p4d;
2158 unsigned long next;
2159 int err = 0;
2160
2161 if (create) {
2162 p4d = p4d_alloc(mm, pgd, addr);
2163 if (!p4d)
2164 return -ENOMEM;
2165 } else {
2166 p4d = p4d_offset(pgd, addr);
2167 }
2168 do {
2169 next = p4d_addr_end(addr, end);
2170 if (create || !p4d_none_or_clear_bad(p4d)) {
2171 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2172 create);
2173 if (err)
2174 break;
2175 }
2176 } while (p4d++, addr = next, addr != end);
2177 return err;
2178 }
2179
2180 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2181 unsigned long size, pte_fn_t fn,
2182 void *data, bool create)
2183 {
2184 pgd_t *pgd;
2185 unsigned long next;
2186 unsigned long end = addr + size;
2187 int err = 0;
2188
2189 if (WARN_ON(addr >= end))
2190 return -EINVAL;
2191
2192 pgd = pgd_offset(mm, addr);
2193 do {
2194 next = pgd_addr_end(addr, end);
2195 if (!create && pgd_none_or_clear_bad(pgd))
2196 continue;
2197 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2198 if (err)
2199 break;
2200 } while (pgd++, addr = next, addr != end);
2201
2202 return err;
2203 }
2204
2205 /*
2206 * Scan a region of virtual memory, filling in page tables as necessary
2207 * and calling a provided function on each leaf page table.
2208 */
2209 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2210 unsigned long size, pte_fn_t fn, void *data)
2211 {
2212 return __apply_to_page_range(mm, addr, size, fn, data, true);
2213 }
2214 EXPORT_SYMBOL_GPL(apply_to_page_range);
2215
2216 /*
2217 * Scan a region of virtual memory, calling a provided function on
2218 * each leaf page table where it exists.
2219 *
2220 * Unlike apply_to_page_range, this does _not_ fill in page tables
2221 * where they are absent.
2222 */
2223 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2224 unsigned long size, pte_fn_t fn, void *data)
2225 {
2226 return __apply_to_page_range(mm, addr, size, fn, data, false);
2227 }
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2229
2230 /*
2231 * handle_pte_fault chooses page fault handler according to an entry which was
2232 * read non-atomically. Before making any commitment, on those architectures
2233 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234 * parts, do_swap_page must check under lock before unmapping the pte and
2235 * proceeding (but do_wp_page is only called after already making such a check;
2236 * and do_anonymous_page can safely check later on).
2237 */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239 pte_t *page_table, pte_t orig_pte)
2240 {
2241 int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243 if (sizeof(pte_t) > sizeof(unsigned long)) {
2244 spinlock_t *ptl = pte_lockptr(mm, pmd);
2245 spin_lock(ptl);
2246 same = pte_same(*page_table, orig_pte);
2247 spin_unlock(ptl);
2248 }
2249 #endif
2250 pte_unmap(page_table);
2251 return same;
2252 }
2253
2254 static inline bool cow_user_page(struct page *dst, struct page *src,
2255 struct vm_fault *vmf)
2256 {
2257 bool ret;
2258 void *kaddr;
2259 void __user *uaddr;
2260 bool locked = false;
2261 struct vm_area_struct *vma = vmf->vma;
2262 struct mm_struct *mm = vma->vm_mm;
2263 unsigned long addr = vmf->address;
2264
2265 debug_dma_assert_idle(src);
2266
2267 if (likely(src)) {
2268 copy_user_highpage(dst, src, addr, vma);
2269 return true;
2270 }
2271
2272 /*
2273 * If the source page was a PFN mapping, we don't have
2274 * a "struct page" for it. We do a best-effort copy by
2275 * just copying from the original user address. If that
2276 * fails, we just zero-fill it. Live with it.
2277 */
2278 kaddr = kmap_atomic(dst);
2279 uaddr = (void __user *)(addr & PAGE_MASK);
2280
2281 /*
2282 * On architectures with software "accessed" bits, we would
2283 * take a double page fault, so mark it accessed here.
2284 */
2285 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2286 pte_t entry;
2287
2288 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2289 locked = true;
2290 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2291 /*
2292 * Other thread has already handled the fault
2293 * and we don't need to do anything. If it's
2294 * not the case, the fault will be triggered
2295 * again on the same address.
2296 */
2297 ret = false;
2298 goto pte_unlock;
2299 }
2300
2301 entry = pte_mkyoung(vmf->orig_pte);
2302 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2303 update_mmu_cache(vma, addr, vmf->pte);
2304 }
2305
2306 /*
2307 * This really shouldn't fail, because the page is there
2308 * in the page tables. But it might just be unreadable,
2309 * in which case we just give up and fill the result with
2310 * zeroes.
2311 */
2312 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2313 if (locked)
2314 goto warn;
2315
2316 /* Re-validate under PTL if the page is still mapped */
2317 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2318 locked = true;
2319 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2320 /* The PTE changed under us. Retry page fault. */
2321 ret = false;
2322 goto pte_unlock;
2323 }
2324
2325 /*
2326 * The same page can be mapped back since last copy attampt.
2327 * Try to copy again under PTL.
2328 */
2329 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2330 /*
2331 * Give a warn in case there can be some obscure
2332 * use-case
2333 */
2334 warn:
2335 WARN_ON_ONCE(1);
2336 clear_page(kaddr);
2337 }
2338 }
2339
2340 ret = true;
2341
2342 pte_unlock:
2343 if (locked)
2344 pte_unmap_unlock(vmf->pte, vmf->ptl);
2345 kunmap_atomic(kaddr);
2346 flush_dcache_page(dst);
2347
2348 return ret;
2349 }
2350
2351 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2352 {
2353 struct file *vm_file = vma->vm_file;
2354
2355 if (vm_file)
2356 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2357
2358 /*
2359 * Special mappings (e.g. VDSO) do not have any file so fake
2360 * a default GFP_KERNEL for them.
2361 */
2362 return GFP_KERNEL;
2363 }
2364
2365 /*
2366 * Notify the address space that the page is about to become writable so that
2367 * it can prohibit this or wait for the page to get into an appropriate state.
2368 *
2369 * We do this without the lock held, so that it can sleep if it needs to.
2370 */
2371 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2372 {
2373 vm_fault_t ret;
2374 struct page *page = vmf->page;
2375 unsigned int old_flags = vmf->flags;
2376
2377 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2378
2379 if (vmf->vma->vm_file &&
2380 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2381 return VM_FAULT_SIGBUS;
2382
2383 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384 /* Restore original flags so that caller is not surprised */
2385 vmf->flags = old_flags;
2386 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2387 return ret;
2388 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2389 lock_page(page);
2390 if (!page->mapping) {
2391 unlock_page(page);
2392 return 0; /* retry */
2393 }
2394 ret |= VM_FAULT_LOCKED;
2395 } else
2396 VM_BUG_ON_PAGE(!PageLocked(page), page);
2397 return ret;
2398 }
2399
2400 /*
2401 * Handle dirtying of a page in shared file mapping on a write fault.
2402 *
2403 * The function expects the page to be locked and unlocks it.
2404 */
2405 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2406 {
2407 struct vm_area_struct *vma = vmf->vma;
2408 struct address_space *mapping;
2409 struct page *page = vmf->page;
2410 bool dirtied;
2411 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2412
2413 dirtied = set_page_dirty(page);
2414 VM_BUG_ON_PAGE(PageAnon(page), page);
2415 /*
2416 * Take a local copy of the address_space - page.mapping may be zeroed
2417 * by truncate after unlock_page(). The address_space itself remains
2418 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2419 * release semantics to prevent the compiler from undoing this copying.
2420 */
2421 mapping = page_rmapping(page);
2422 unlock_page(page);
2423
2424 if (!page_mkwrite)
2425 file_update_time(vma->vm_file);
2426
2427 /*
2428 * Throttle page dirtying rate down to writeback speed.
2429 *
2430 * mapping may be NULL here because some device drivers do not
2431 * set page.mapping but still dirty their pages
2432 *
2433 * Drop the mmap_sem before waiting on IO, if we can. The file
2434 * is pinning the mapping, as per above.
2435 */
2436 if ((dirtied || page_mkwrite) && mapping) {
2437 struct file *fpin;
2438
2439 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2440 balance_dirty_pages_ratelimited(mapping);
2441 if (fpin) {
2442 fput(fpin);
2443 return VM_FAULT_RETRY;
2444 }
2445 }
2446
2447 return 0;
2448 }
2449
2450 /*
2451 * Handle write page faults for pages that can be reused in the current vma
2452 *
2453 * This can happen either due to the mapping being with the VM_SHARED flag,
2454 * or due to us being the last reference standing to the page. In either
2455 * case, all we need to do here is to mark the page as writable and update
2456 * any related book-keeping.
2457 */
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459 __releases(vmf->ptl)
2460 {
2461 struct vm_area_struct *vma = vmf->vma;
2462 struct page *page = vmf->page;
2463 pte_t entry;
2464 /*
2465 * Clear the pages cpupid information as the existing
2466 * information potentially belongs to a now completely
2467 * unrelated process.
2468 */
2469 if (page)
2470 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471
2472 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473 entry = pte_mkyoung(vmf->orig_pte);
2474 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476 update_mmu_cache(vma, vmf->address, vmf->pte);
2477 pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 }
2479
2480 /*
2481 * Handle the case of a page which we actually need to copy to a new page.
2482 *
2483 * Called with mmap_sem locked and the old page referenced, but
2484 * without the ptl held.
2485 *
2486 * High level logic flow:
2487 *
2488 * - Allocate a page, copy the content of the old page to the new one.
2489 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490 * - Take the PTL. If the pte changed, bail out and release the allocated page
2491 * - If the pte is still the way we remember it, update the page table and all
2492 * relevant references. This includes dropping the reference the page-table
2493 * held to the old page, as well as updating the rmap.
2494 * - In any case, unlock the PTL and drop the reference we took to the old page.
2495 */
2496 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2497 {
2498 struct vm_area_struct *vma = vmf->vma;
2499 struct mm_struct *mm = vma->vm_mm;
2500 struct page *old_page = vmf->page;
2501 struct page *new_page = NULL;
2502 pte_t entry;
2503 int page_copied = 0;
2504 struct mem_cgroup *memcg;
2505 struct mmu_notifier_range range;
2506
2507 if (unlikely(anon_vma_prepare(vma)))
2508 goto oom;
2509
2510 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2511 new_page = alloc_zeroed_user_highpage_movable(vma,
2512 vmf->address);
2513 if (!new_page)
2514 goto oom;
2515 } else {
2516 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2517 vmf->address);
2518 if (!new_page)
2519 goto oom;
2520
2521 if (!cow_user_page(new_page, old_page, vmf)) {
2522 /*
2523 * COW failed, if the fault was solved by other,
2524 * it's fine. If not, userspace would re-fault on
2525 * the same address and we will handle the fault
2526 * from the second attempt.
2527 */
2528 put_page(new_page);
2529 if (old_page)
2530 put_page(old_page);
2531 return 0;
2532 }
2533 }
2534
2535 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2536 goto oom_free_new;
2537
2538 __SetPageUptodate(new_page);
2539
2540 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2541 vmf->address & PAGE_MASK,
2542 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2543 mmu_notifier_invalidate_range_start(&range);
2544
2545 /*
2546 * Re-check the pte - we dropped the lock
2547 */
2548 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2549 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2550 if (old_page) {
2551 if (!PageAnon(old_page)) {
2552 dec_mm_counter_fast(mm,
2553 mm_counter_file(old_page));
2554 inc_mm_counter_fast(mm, MM_ANONPAGES);
2555 }
2556 } else {
2557 inc_mm_counter_fast(mm, MM_ANONPAGES);
2558 }
2559 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2560 entry = mk_pte(new_page, vma->vm_page_prot);
2561 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2562 /*
2563 * Clear the pte entry and flush it first, before updating the
2564 * pte with the new entry. This will avoid a race condition
2565 * seen in the presence of one thread doing SMC and another
2566 * thread doing COW.
2567 */
2568 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2569 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2570 mem_cgroup_commit_charge(new_page, memcg, false, false);
2571 lru_cache_add_active_or_unevictable(new_page, vma);
2572 /*
2573 * We call the notify macro here because, when using secondary
2574 * mmu page tables (such as kvm shadow page tables), we want the
2575 * new page to be mapped directly into the secondary page table.
2576 */
2577 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2578 update_mmu_cache(vma, vmf->address, vmf->pte);
2579 if (old_page) {
2580 /*
2581 * Only after switching the pte to the new page may
2582 * we remove the mapcount here. Otherwise another
2583 * process may come and find the rmap count decremented
2584 * before the pte is switched to the new page, and
2585 * "reuse" the old page writing into it while our pte
2586 * here still points into it and can be read by other
2587 * threads.
2588 *
2589 * The critical issue is to order this
2590 * page_remove_rmap with the ptp_clear_flush above.
2591 * Those stores are ordered by (if nothing else,)
2592 * the barrier present in the atomic_add_negative
2593 * in page_remove_rmap.
2594 *
2595 * Then the TLB flush in ptep_clear_flush ensures that
2596 * no process can access the old page before the
2597 * decremented mapcount is visible. And the old page
2598 * cannot be reused until after the decremented
2599 * mapcount is visible. So transitively, TLBs to
2600 * old page will be flushed before it can be reused.
2601 */
2602 page_remove_rmap(old_page, false);
2603 }
2604
2605 /* Free the old page.. */
2606 new_page = old_page;
2607 page_copied = 1;
2608 } else {
2609 mem_cgroup_cancel_charge(new_page, memcg, false);
2610 }
2611
2612 if (new_page)
2613 put_page(new_page);
2614
2615 pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 /*
2617 * No need to double call mmu_notifier->invalidate_range() callback as
2618 * the above ptep_clear_flush_notify() did already call it.
2619 */
2620 mmu_notifier_invalidate_range_only_end(&range);
2621 if (old_page) {
2622 /*
2623 * Don't let another task, with possibly unlocked vma,
2624 * keep the mlocked page.
2625 */
2626 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2627 lock_page(old_page); /* LRU manipulation */
2628 if (PageMlocked(old_page))
2629 munlock_vma_page(old_page);
2630 unlock_page(old_page);
2631 }
2632 put_page(old_page);
2633 }
2634 return page_copied ? VM_FAULT_WRITE : 0;
2635 oom_free_new:
2636 put_page(new_page);
2637 oom:
2638 if (old_page)
2639 put_page(old_page);
2640 return VM_FAULT_OOM;
2641 }
2642
2643 /**
2644 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2645 * writeable once the page is prepared
2646 *
2647 * @vmf: structure describing the fault
2648 *
2649 * This function handles all that is needed to finish a write page fault in a
2650 * shared mapping due to PTE being read-only once the mapped page is prepared.
2651 * It handles locking of PTE and modifying it.
2652 *
2653 * The function expects the page to be locked or other protection against
2654 * concurrent faults / writeback (such as DAX radix tree locks).
2655 *
2656 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2657 * we acquired PTE lock.
2658 */
2659 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2660 {
2661 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2662 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2663 &vmf->ptl);
2664 /*
2665 * We might have raced with another page fault while we released the
2666 * pte_offset_map_lock.
2667 */
2668 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2669 pte_unmap_unlock(vmf->pte, vmf->ptl);
2670 return VM_FAULT_NOPAGE;
2671 }
2672 wp_page_reuse(vmf);
2673 return 0;
2674 }
2675
2676 /*
2677 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2678 * mapping
2679 */
2680 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2681 {
2682 struct vm_area_struct *vma = vmf->vma;
2683
2684 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2685 vm_fault_t ret;
2686
2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 vmf->flags |= FAULT_FLAG_MKWRITE;
2689 ret = vma->vm_ops->pfn_mkwrite(vmf);
2690 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2691 return ret;
2692 return finish_mkwrite_fault(vmf);
2693 }
2694 wp_page_reuse(vmf);
2695 return VM_FAULT_WRITE;
2696 }
2697
2698 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2699 __releases(vmf->ptl)
2700 {
2701 struct vm_area_struct *vma = vmf->vma;
2702 vm_fault_t ret = VM_FAULT_WRITE;
2703
2704 get_page(vmf->page);
2705
2706 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2707 vm_fault_t tmp;
2708
2709 pte_unmap_unlock(vmf->pte, vmf->ptl);
2710 tmp = do_page_mkwrite(vmf);
2711 if (unlikely(!tmp || (tmp &
2712 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2713 put_page(vmf->page);
2714 return tmp;
2715 }
2716 tmp = finish_mkwrite_fault(vmf);
2717 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2718 unlock_page(vmf->page);
2719 put_page(vmf->page);
2720 return tmp;
2721 }
2722 } else {
2723 wp_page_reuse(vmf);
2724 lock_page(vmf->page);
2725 }
2726 ret |= fault_dirty_shared_page(vmf);
2727 put_page(vmf->page);
2728
2729 return ret;
2730 }
2731
2732 /*
2733 * This routine handles present pages, when users try to write
2734 * to a shared page. It is done by copying the page to a new address
2735 * and decrementing the shared-page counter for the old page.
2736 *
2737 * Note that this routine assumes that the protection checks have been
2738 * done by the caller (the low-level page fault routine in most cases).
2739 * Thus we can safely just mark it writable once we've done any necessary
2740 * COW.
2741 *
2742 * We also mark the page dirty at this point even though the page will
2743 * change only once the write actually happens. This avoids a few races,
2744 * and potentially makes it more efficient.
2745 *
2746 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747 * but allow concurrent faults), with pte both mapped and locked.
2748 * We return with mmap_sem still held, but pte unmapped and unlocked.
2749 */
2750 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2751 __releases(vmf->ptl)
2752 {
2753 struct vm_area_struct *vma = vmf->vma;
2754
2755 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2756 if (!vmf->page) {
2757 /*
2758 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2759 * VM_PFNMAP VMA.
2760 *
2761 * We should not cow pages in a shared writeable mapping.
2762 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2763 */
2764 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2765 (VM_WRITE|VM_SHARED))
2766 return wp_pfn_shared(vmf);
2767
2768 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 return wp_page_copy(vmf);
2770 }
2771
2772 /*
2773 * Take out anonymous pages first, anonymous shared vmas are
2774 * not dirty accountable.
2775 */
2776 if (PageAnon(vmf->page)) {
2777 int total_map_swapcount;
2778 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2779 page_count(vmf->page) != 1))
2780 goto copy;
2781 if (!trylock_page(vmf->page)) {
2782 get_page(vmf->page);
2783 pte_unmap_unlock(vmf->pte, vmf->ptl);
2784 lock_page(vmf->page);
2785 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2786 vmf->address, &vmf->ptl);
2787 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2788 unlock_page(vmf->page);
2789 pte_unmap_unlock(vmf->pte, vmf->ptl);
2790 put_page(vmf->page);
2791 return 0;
2792 }
2793 put_page(vmf->page);
2794 }
2795 if (PageKsm(vmf->page)) {
2796 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2797 vmf->address);
2798 unlock_page(vmf->page);
2799 if (!reused)
2800 goto copy;
2801 wp_page_reuse(vmf);
2802 return VM_FAULT_WRITE;
2803 }
2804 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2805 if (total_map_swapcount == 1) {
2806 /*
2807 * The page is all ours. Move it to
2808 * our anon_vma so the rmap code will
2809 * not search our parent or siblings.
2810 * Protected against the rmap code by
2811 * the page lock.
2812 */
2813 page_move_anon_rmap(vmf->page, vma);
2814 }
2815 unlock_page(vmf->page);
2816 wp_page_reuse(vmf);
2817 return VM_FAULT_WRITE;
2818 }
2819 unlock_page(vmf->page);
2820 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2821 (VM_WRITE|VM_SHARED))) {
2822 return wp_page_shared(vmf);
2823 }
2824 copy:
2825 /*
2826 * Ok, we need to copy. Oh, well..
2827 */
2828 get_page(vmf->page);
2829
2830 pte_unmap_unlock(vmf->pte, vmf->ptl);
2831 return wp_page_copy(vmf);
2832 }
2833
2834 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2835 unsigned long start_addr, unsigned long end_addr,
2836 struct zap_details *details)
2837 {
2838 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2839 }
2840
2841 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2842 struct zap_details *details)
2843 {
2844 struct vm_area_struct *vma;
2845 pgoff_t vba, vea, zba, zea;
2846
2847 vma_interval_tree_foreach(vma, root,
2848 details->first_index, details->last_index) {
2849
2850 vba = vma->vm_pgoff;
2851 vea = vba + vma_pages(vma) - 1;
2852 zba = details->first_index;
2853 if (zba < vba)
2854 zba = vba;
2855 zea = details->last_index;
2856 if (zea > vea)
2857 zea = vea;
2858
2859 unmap_mapping_range_vma(vma,
2860 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2861 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2862 details);
2863 }
2864 }
2865
2866 /**
2867 * unmap_mapping_pages() - Unmap pages from processes.
2868 * @mapping: The address space containing pages to be unmapped.
2869 * @start: Index of first page to be unmapped.
2870 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2871 * @even_cows: Whether to unmap even private COWed pages.
2872 *
2873 * Unmap the pages in this address space from any userspace process which
2874 * has them mmaped. Generally, you want to remove COWed pages as well when
2875 * a file is being truncated, but not when invalidating pages from the page
2876 * cache.
2877 */
2878 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2879 pgoff_t nr, bool even_cows)
2880 {
2881 struct zap_details details = { };
2882
2883 details.check_mapping = even_cows ? NULL : mapping;
2884 details.first_index = start;
2885 details.last_index = start + nr - 1;
2886 if (details.last_index < details.first_index)
2887 details.last_index = ULONG_MAX;
2888
2889 i_mmap_lock_write(mapping);
2890 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2891 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2892 i_mmap_unlock_write(mapping);
2893 }
2894
2895 /**
2896 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2897 * address_space corresponding to the specified byte range in the underlying
2898 * file.
2899 *
2900 * @mapping: the address space containing mmaps to be unmapped.
2901 * @holebegin: byte in first page to unmap, relative to the start of
2902 * the underlying file. This will be rounded down to a PAGE_SIZE
2903 * boundary. Note that this is different from truncate_pagecache(), which
2904 * must keep the partial page. In contrast, we must get rid of
2905 * partial pages.
2906 * @holelen: size of prospective hole in bytes. This will be rounded
2907 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2908 * end of the file.
2909 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910 * but 0 when invalidating pagecache, don't throw away private data.
2911 */
2912 void unmap_mapping_range(struct address_space *mapping,
2913 loff_t const holebegin, loff_t const holelen, int even_cows)
2914 {
2915 pgoff_t hba = holebegin >> PAGE_SHIFT;
2916 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2917
2918 /* Check for overflow. */
2919 if (sizeof(holelen) > sizeof(hlen)) {
2920 long long holeend =
2921 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2922 if (holeend & ~(long long)ULONG_MAX)
2923 hlen = ULONG_MAX - hba + 1;
2924 }
2925
2926 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2927 }
2928 EXPORT_SYMBOL(unmap_mapping_range);
2929
2930 /*
2931 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2932 * but allow concurrent faults), and pte mapped but not yet locked.
2933 * We return with pte unmapped and unlocked.
2934 *
2935 * We return with the mmap_sem locked or unlocked in the same cases
2936 * as does filemap_fault().
2937 */
2938 vm_fault_t do_swap_page(struct vm_fault *vmf)
2939 {
2940 struct vm_area_struct *vma = vmf->vma;
2941 struct page *page = NULL, *swapcache;
2942 struct mem_cgroup *memcg;
2943 swp_entry_t entry;
2944 pte_t pte;
2945 int locked;
2946 int exclusive = 0;
2947 vm_fault_t ret = 0;
2948
2949 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2950 goto out;
2951
2952 entry = pte_to_swp_entry(vmf->orig_pte);
2953 if (unlikely(non_swap_entry(entry))) {
2954 if (is_migration_entry(entry)) {
2955 migration_entry_wait(vma->vm_mm, vmf->pmd,
2956 vmf->address);
2957 } else if (is_device_private_entry(entry)) {
2958 vmf->page = device_private_entry_to_page(entry);
2959 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2960 } else if (is_hwpoison_entry(entry)) {
2961 ret = VM_FAULT_HWPOISON;
2962 } else {
2963 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2964 ret = VM_FAULT_SIGBUS;
2965 }
2966 goto out;
2967 }
2968
2969
2970 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2971 page = lookup_swap_cache(entry, vma, vmf->address);
2972 swapcache = page;
2973
2974 if (!page) {
2975 struct swap_info_struct *si = swp_swap_info(entry);
2976
2977 if (si->flags & SWP_SYNCHRONOUS_IO &&
2978 __swap_count(entry) == 1) {
2979 /* skip swapcache */
2980 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2981 vmf->address);
2982 if (page) {
2983 __SetPageLocked(page);
2984 __SetPageSwapBacked(page);
2985 set_page_private(page, entry.val);
2986 lru_cache_add_anon(page);
2987 swap_readpage(page, true);
2988 }
2989 } else {
2990 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2991 vmf);
2992 swapcache = page;
2993 }
2994
2995 if (!page) {
2996 /*
2997 * Back out if somebody else faulted in this pte
2998 * while we released the pte lock.
2999 */
3000 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3001 vmf->address, &vmf->ptl);
3002 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3003 ret = VM_FAULT_OOM;
3004 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005 goto unlock;
3006 }
3007
3008 /* Had to read the page from swap area: Major fault */
3009 ret = VM_FAULT_MAJOR;
3010 count_vm_event(PGMAJFAULT);
3011 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3012 } else if (PageHWPoison(page)) {
3013 /*
3014 * hwpoisoned dirty swapcache pages are kept for killing
3015 * owner processes (which may be unknown at hwpoison time)
3016 */
3017 ret = VM_FAULT_HWPOISON;
3018 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3019 goto out_release;
3020 }
3021
3022 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3023
3024 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3025 if (!locked) {
3026 ret |= VM_FAULT_RETRY;
3027 goto out_release;
3028 }
3029
3030 /*
3031 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3032 * release the swapcache from under us. The page pin, and pte_same
3033 * test below, are not enough to exclude that. Even if it is still
3034 * swapcache, we need to check that the page's swap has not changed.
3035 */
3036 if (unlikely((!PageSwapCache(page) ||
3037 page_private(page) != entry.val)) && swapcache)
3038 goto out_page;
3039
3040 page = ksm_might_need_to_copy(page, vma, vmf->address);
3041 if (unlikely(!page)) {
3042 ret = VM_FAULT_OOM;
3043 page = swapcache;
3044 goto out_page;
3045 }
3046
3047 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3048 &memcg, false)) {
3049 ret = VM_FAULT_OOM;
3050 goto out_page;
3051 }
3052
3053 /*
3054 * Back out if somebody else already faulted in this pte.
3055 */
3056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057 &vmf->ptl);
3058 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3059 goto out_nomap;
3060
3061 if (unlikely(!PageUptodate(page))) {
3062 ret = VM_FAULT_SIGBUS;
3063 goto out_nomap;
3064 }
3065
3066 /*
3067 * The page isn't present yet, go ahead with the fault.
3068 *
3069 * Be careful about the sequence of operations here.
3070 * To get its accounting right, reuse_swap_page() must be called
3071 * while the page is counted on swap but not yet in mapcount i.e.
3072 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073 * must be called after the swap_free(), or it will never succeed.
3074 */
3075
3076 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3077 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3078 pte = mk_pte(page, vma->vm_page_prot);
3079 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3080 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3081 vmf->flags &= ~FAULT_FLAG_WRITE;
3082 ret |= VM_FAULT_WRITE;
3083 exclusive = RMAP_EXCLUSIVE;
3084 }
3085 flush_icache_page(vma, page);
3086 if (pte_swp_soft_dirty(vmf->orig_pte))
3087 pte = pte_mksoft_dirty(pte);
3088 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3089 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3090 vmf->orig_pte = pte;
3091
3092 /* ksm created a completely new copy */
3093 if (unlikely(page != swapcache && swapcache)) {
3094 page_add_new_anon_rmap(page, vma, vmf->address, false);
3095 mem_cgroup_commit_charge(page, memcg, false, false);
3096 lru_cache_add_active_or_unevictable(page, vma);
3097 } else {
3098 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3099 mem_cgroup_commit_charge(page, memcg, true, false);
3100 activate_page(page);
3101 }
3102
3103 swap_free(entry);
3104 if (mem_cgroup_swap_full(page) ||
3105 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3106 try_to_free_swap(page);
3107 unlock_page(page);
3108 if (page != swapcache && swapcache) {
3109 /*
3110 * Hold the lock to avoid the swap entry to be reused
3111 * until we take the PT lock for the pte_same() check
3112 * (to avoid false positives from pte_same). For
3113 * further safety release the lock after the swap_free
3114 * so that the swap count won't change under a
3115 * parallel locked swapcache.
3116 */
3117 unlock_page(swapcache);
3118 put_page(swapcache);
3119 }
3120
3121 if (vmf->flags & FAULT_FLAG_WRITE) {
3122 ret |= do_wp_page(vmf);
3123 if (ret & VM_FAULT_ERROR)
3124 ret &= VM_FAULT_ERROR;
3125 goto out;
3126 }
3127
3128 /* No need to invalidate - it was non-present before */
3129 update_mmu_cache(vma, vmf->address, vmf->pte);
3130 unlock:
3131 pte_unmap_unlock(vmf->pte, vmf->ptl);
3132 out:
3133 return ret;
3134 out_nomap:
3135 mem_cgroup_cancel_charge(page, memcg, false);
3136 pte_unmap_unlock(vmf->pte, vmf->ptl);
3137 out_page:
3138 unlock_page(page);
3139 out_release:
3140 put_page(page);
3141 if (page != swapcache && swapcache) {
3142 unlock_page(swapcache);
3143 put_page(swapcache);
3144 }
3145 return ret;
3146 }
3147
3148 /*
3149 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150 * but allow concurrent faults), and pte mapped but not yet locked.
3151 * We return with mmap_sem still held, but pte unmapped and unlocked.
3152 */
3153 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3154 {
3155 struct vm_area_struct *vma = vmf->vma;
3156 struct mem_cgroup *memcg;
3157 struct page *page;
3158 vm_fault_t ret = 0;
3159 pte_t entry;
3160
3161 /* File mapping without ->vm_ops ? */
3162 if (vma->vm_flags & VM_SHARED)
3163 return VM_FAULT_SIGBUS;
3164
3165 /*
3166 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3167 * pte_offset_map() on pmds where a huge pmd might be created
3168 * from a different thread.
3169 *
3170 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3171 * parallel threads are excluded by other means.
3172 *
3173 * Here we only have down_read(mmap_sem).
3174 */
3175 if (pte_alloc(vma->vm_mm, vmf->pmd))
3176 return VM_FAULT_OOM;
3177
3178 /* See the comment in pte_alloc_one_map() */
3179 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3180 return 0;
3181
3182 /* Use the zero-page for reads */
3183 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3184 !mm_forbids_zeropage(vma->vm_mm)) {
3185 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3186 vma->vm_page_prot));
3187 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3188 vmf->address, &vmf->ptl);
3189 if (!pte_none(*vmf->pte))
3190 goto unlock;
3191 ret = check_stable_address_space(vma->vm_mm);
3192 if (ret)
3193 goto unlock;
3194 /* Deliver the page fault to userland, check inside PT lock */
3195 if (userfaultfd_missing(vma)) {
3196 pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 return handle_userfault(vmf, VM_UFFD_MISSING);
3198 }
3199 goto setpte;
3200 }
3201
3202 /* Allocate our own private page. */
3203 if (unlikely(anon_vma_prepare(vma)))
3204 goto oom;
3205 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3206 if (!page)
3207 goto oom;
3208
3209 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3210 false))
3211 goto oom_free_page;
3212
3213 /*
3214 * The memory barrier inside __SetPageUptodate makes sure that
3215 * preceding stores to the page contents become visible before
3216 * the set_pte_at() write.
3217 */
3218 __SetPageUptodate(page);
3219
3220 entry = mk_pte(page, vma->vm_page_prot);
3221 if (vma->vm_flags & VM_WRITE)
3222 entry = pte_mkwrite(pte_mkdirty(entry));
3223
3224 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3225 &vmf->ptl);
3226 if (!pte_none(*vmf->pte))
3227 goto release;
3228
3229 ret = check_stable_address_space(vma->vm_mm);
3230 if (ret)
3231 goto release;
3232
3233 /* Deliver the page fault to userland, check inside PT lock */
3234 if (userfaultfd_missing(vma)) {
3235 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 mem_cgroup_cancel_charge(page, memcg, false);
3237 put_page(page);
3238 return handle_userfault(vmf, VM_UFFD_MISSING);
3239 }
3240
3241 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3242 page_add_new_anon_rmap(page, vma, vmf->address, false);
3243 mem_cgroup_commit_charge(page, memcg, false, false);
3244 lru_cache_add_active_or_unevictable(page, vma);
3245 setpte:
3246 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3247
3248 /* No need to invalidate - it was non-present before */
3249 update_mmu_cache(vma, vmf->address, vmf->pte);
3250 unlock:
3251 pte_unmap_unlock(vmf->pte, vmf->ptl);
3252 return ret;
3253 release:
3254 mem_cgroup_cancel_charge(page, memcg, false);
3255 put_page(page);
3256 goto unlock;
3257 oom_free_page:
3258 put_page(page);
3259 oom:
3260 return VM_FAULT_OOM;
3261 }
3262
3263 /*
3264 * The mmap_sem must have been held on entry, and may have been
3265 * released depending on flags and vma->vm_ops->fault() return value.
3266 * See filemap_fault() and __lock_page_retry().
3267 */
3268 static vm_fault_t __do_fault(struct vm_fault *vmf)
3269 {
3270 struct vm_area_struct *vma = vmf->vma;
3271 vm_fault_t ret;
3272
3273 /*
3274 * Preallocate pte before we take page_lock because this might lead to
3275 * deadlocks for memcg reclaim which waits for pages under writeback:
3276 * lock_page(A)
3277 * SetPageWriteback(A)
3278 * unlock_page(A)
3279 * lock_page(B)
3280 * lock_page(B)
3281 * pte_alloc_pne
3282 * shrink_page_list
3283 * wait_on_page_writeback(A)
3284 * SetPageWriteback(B)
3285 * unlock_page(B)
3286 * # flush A, B to clear the writeback
3287 */
3288 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3289 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3290 if (!vmf->prealloc_pte)
3291 return VM_FAULT_OOM;
3292 smp_wmb(); /* See comment in __pte_alloc() */
3293 }
3294
3295 ret = vma->vm_ops->fault(vmf);
3296 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3297 VM_FAULT_DONE_COW)))
3298 return ret;
3299
3300 if (unlikely(PageHWPoison(vmf->page))) {
3301 if (ret & VM_FAULT_LOCKED)
3302 unlock_page(vmf->page);
3303 put_page(vmf->page);
3304 vmf->page = NULL;
3305 return VM_FAULT_HWPOISON;
3306 }
3307
3308 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3309 lock_page(vmf->page);
3310 else
3311 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3312
3313 return ret;
3314 }
3315
3316 /*
3317 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3318 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3319 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3320 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3321 */
3322 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3323 {
3324 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3325 }
3326
3327 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3328 {
3329 struct vm_area_struct *vma = vmf->vma;
3330
3331 if (!pmd_none(*vmf->pmd))
3332 goto map_pte;
3333 if (vmf->prealloc_pte) {
3334 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3335 if (unlikely(!pmd_none(*vmf->pmd))) {
3336 spin_unlock(vmf->ptl);
3337 goto map_pte;
3338 }
3339
3340 mm_inc_nr_ptes(vma->vm_mm);
3341 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342 spin_unlock(vmf->ptl);
3343 vmf->prealloc_pte = NULL;
3344 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3345 return VM_FAULT_OOM;
3346 }
3347 map_pte:
3348 /*
3349 * If a huge pmd materialized under us just retry later. Use
3350 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3351 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3352 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3353 * running immediately after a huge pmd fault in a different thread of
3354 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3355 * All we have to ensure is that it is a regular pmd that we can walk
3356 * with pte_offset_map() and we can do that through an atomic read in
3357 * C, which is what pmd_trans_unstable() provides.
3358 */
3359 if (pmd_devmap_trans_unstable(vmf->pmd))
3360 return VM_FAULT_NOPAGE;
3361
3362 /*
3363 * At this point we know that our vmf->pmd points to a page of ptes
3364 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3365 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3366 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3367 * be valid and we will re-check to make sure the vmf->pte isn't
3368 * pte_none() under vmf->ptl protection when we return to
3369 * alloc_set_pte().
3370 */
3371 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372 &vmf->ptl);
3373 return 0;
3374 }
3375
3376 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3377 static void deposit_prealloc_pte(struct vm_fault *vmf)
3378 {
3379 struct vm_area_struct *vma = vmf->vma;
3380
3381 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3382 /*
3383 * We are going to consume the prealloc table,
3384 * count that as nr_ptes.
3385 */
3386 mm_inc_nr_ptes(vma->vm_mm);
3387 vmf->prealloc_pte = NULL;
3388 }
3389
3390 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3391 {
3392 struct vm_area_struct *vma = vmf->vma;
3393 bool write = vmf->flags & FAULT_FLAG_WRITE;
3394 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3395 pmd_t entry;
3396 int i;
3397 vm_fault_t ret;
3398
3399 if (!transhuge_vma_suitable(vma, haddr))
3400 return VM_FAULT_FALLBACK;
3401
3402 ret = VM_FAULT_FALLBACK;
3403 page = compound_head(page);
3404
3405 /*
3406 * Archs like ppc64 need additonal space to store information
3407 * related to pte entry. Use the preallocated table for that.
3408 */
3409 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3410 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3411 if (!vmf->prealloc_pte)
3412 return VM_FAULT_OOM;
3413 smp_wmb(); /* See comment in __pte_alloc() */
3414 }
3415
3416 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3417 if (unlikely(!pmd_none(*vmf->pmd)))
3418 goto out;
3419
3420 for (i = 0; i < HPAGE_PMD_NR; i++)
3421 flush_icache_page(vma, page + i);
3422
3423 entry = mk_huge_pmd(page, vma->vm_page_prot);
3424 if (write)
3425 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3426
3427 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3428 page_add_file_rmap(page, true);
3429 /*
3430 * deposit and withdraw with pmd lock held
3431 */
3432 if (arch_needs_pgtable_deposit())
3433 deposit_prealloc_pte(vmf);
3434
3435 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3436
3437 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3438
3439 /* fault is handled */
3440 ret = 0;
3441 count_vm_event(THP_FILE_MAPPED);
3442 out:
3443 spin_unlock(vmf->ptl);
3444 return ret;
3445 }
3446 #else
3447 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3448 {
3449 BUILD_BUG();
3450 return 0;
3451 }
3452 #endif
3453
3454 /**
3455 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3456 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3457 *
3458 * @vmf: fault environment
3459 * @memcg: memcg to charge page (only for private mappings)
3460 * @page: page to map
3461 *
3462 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3463 * return.
3464 *
3465 * Target users are page handler itself and implementations of
3466 * vm_ops->map_pages.
3467 *
3468 * Return: %0 on success, %VM_FAULT_ code in case of error.
3469 */
3470 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3471 struct page *page)
3472 {
3473 struct vm_area_struct *vma = vmf->vma;
3474 bool write = vmf->flags & FAULT_FLAG_WRITE;
3475 pte_t entry;
3476 vm_fault_t ret;
3477
3478 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3479 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3480 /* THP on COW? */
3481 VM_BUG_ON_PAGE(memcg, page);
3482
3483 ret = do_set_pmd(vmf, page);
3484 if (ret != VM_FAULT_FALLBACK)
3485 return ret;
3486 }
3487
3488 if (!vmf->pte) {
3489 ret = pte_alloc_one_map(vmf);
3490 if (ret)
3491 return ret;
3492 }
3493
3494 /* Re-check under ptl */
3495 if (unlikely(!pte_none(*vmf->pte)))
3496 return VM_FAULT_NOPAGE;
3497
3498 flush_icache_page(vma, page);
3499 entry = mk_pte(page, vma->vm_page_prot);
3500 if (write)
3501 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3502 /* copy-on-write page */
3503 if (write && !(vma->vm_flags & VM_SHARED)) {
3504 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3505 page_add_new_anon_rmap(page, vma, vmf->address, false);
3506 mem_cgroup_commit_charge(page, memcg, false, false);
3507 lru_cache_add_active_or_unevictable(page, vma);
3508 } else {
3509 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3510 page_add_file_rmap(page, false);
3511 }
3512 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3513
3514 /* no need to invalidate: a not-present page won't be cached */
3515 update_mmu_cache(vma, vmf->address, vmf->pte);
3516
3517 return 0;
3518 }
3519
3520
3521 /**
3522 * finish_fault - finish page fault once we have prepared the page to fault
3523 *
3524 * @vmf: structure describing the fault
3525 *
3526 * This function handles all that is needed to finish a page fault once the
3527 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3528 * given page, adds reverse page mapping, handles memcg charges and LRU
3529 * addition.
3530 *
3531 * The function expects the page to be locked and on success it consumes a
3532 * reference of a page being mapped (for the PTE which maps it).
3533 *
3534 * Return: %0 on success, %VM_FAULT_ code in case of error.
3535 */
3536 vm_fault_t finish_fault(struct vm_fault *vmf)
3537 {
3538 struct page *page;
3539 vm_fault_t ret = 0;
3540
3541 /* Did we COW the page? */
3542 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3543 !(vmf->vma->vm_flags & VM_SHARED))
3544 page = vmf->cow_page;
3545 else
3546 page = vmf->page;
3547
3548 /*
3549 * check even for read faults because we might have lost our CoWed
3550 * page
3551 */
3552 if (!(vmf->vma->vm_flags & VM_SHARED))
3553 ret = check_stable_address_space(vmf->vma->vm_mm);
3554 if (!ret)
3555 ret = alloc_set_pte(vmf, vmf->memcg, page);
3556 if (vmf->pte)
3557 pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 return ret;
3559 }
3560
3561 static unsigned long fault_around_bytes __read_mostly =
3562 rounddown_pow_of_two(65536);
3563
3564 #ifdef CONFIG_DEBUG_FS
3565 static int fault_around_bytes_get(void *data, u64 *val)
3566 {
3567 *val = fault_around_bytes;
3568 return 0;
3569 }
3570
3571 /*
3572 * fault_around_bytes must be rounded down to the nearest page order as it's
3573 * what do_fault_around() expects to see.
3574 */
3575 static int fault_around_bytes_set(void *data, u64 val)
3576 {
3577 if (val / PAGE_SIZE > PTRS_PER_PTE)
3578 return -EINVAL;
3579 if (val > PAGE_SIZE)
3580 fault_around_bytes = rounddown_pow_of_two(val);
3581 else
3582 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3583 return 0;
3584 }
3585 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3586 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3587
3588 static int __init fault_around_debugfs(void)
3589 {
3590 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3591 &fault_around_bytes_fops);
3592 return 0;
3593 }
3594 late_initcall(fault_around_debugfs);
3595 #endif
3596
3597 /*
3598 * do_fault_around() tries to map few pages around the fault address. The hope
3599 * is that the pages will be needed soon and this will lower the number of
3600 * faults to handle.
3601 *
3602 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3603 * not ready to be mapped: not up-to-date, locked, etc.
3604 *
3605 * This function is called with the page table lock taken. In the split ptlock
3606 * case the page table lock only protects only those entries which belong to
3607 * the page table corresponding to the fault address.
3608 *
3609 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3610 * only once.
3611 *
3612 * fault_around_bytes defines how many bytes we'll try to map.
3613 * do_fault_around() expects it to be set to a power of two less than or equal
3614 * to PTRS_PER_PTE.
3615 *
3616 * The virtual address of the area that we map is naturally aligned to
3617 * fault_around_bytes rounded down to the machine page size
3618 * (and therefore to page order). This way it's easier to guarantee
3619 * that we don't cross page table boundaries.
3620 */
3621 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3622 {
3623 unsigned long address = vmf->address, nr_pages, mask;
3624 pgoff_t start_pgoff = vmf->pgoff;
3625 pgoff_t end_pgoff;
3626 int off;
3627 vm_fault_t ret = 0;
3628
3629 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3630 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3631
3632 vmf->address = max(address & mask, vmf->vma->vm_start);
3633 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3634 start_pgoff -= off;
3635
3636 /*
3637 * end_pgoff is either the end of the page table, the end of
3638 * the vma or nr_pages from start_pgoff, depending what is nearest.
3639 */
3640 end_pgoff = start_pgoff -
3641 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3642 PTRS_PER_PTE - 1;
3643 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3644 start_pgoff + nr_pages - 1);
3645
3646 if (pmd_none(*vmf->pmd)) {
3647 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3648 if (!vmf->prealloc_pte)
3649 goto out;
3650 smp_wmb(); /* See comment in __pte_alloc() */
3651 }
3652
3653 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3654
3655 /* Huge page is mapped? Page fault is solved */
3656 if (pmd_trans_huge(*vmf->pmd)) {
3657 ret = VM_FAULT_NOPAGE;
3658 goto out;
3659 }
3660
3661 /* ->map_pages() haven't done anything useful. Cold page cache? */
3662 if (!vmf->pte)
3663 goto out;
3664
3665 /* check if the page fault is solved */
3666 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3667 if (!pte_none(*vmf->pte))
3668 ret = VM_FAULT_NOPAGE;
3669 pte_unmap_unlock(vmf->pte, vmf->ptl);
3670 out:
3671 vmf->address = address;
3672 vmf->pte = NULL;
3673 return ret;
3674 }
3675
3676 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3677 {
3678 struct vm_area_struct *vma = vmf->vma;
3679 vm_fault_t ret = 0;
3680
3681 /*
3682 * Let's call ->map_pages() first and use ->fault() as fallback
3683 * if page by the offset is not ready to be mapped (cold cache or
3684 * something).
3685 */
3686 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3687 ret = do_fault_around(vmf);
3688 if (ret)
3689 return ret;
3690 }
3691
3692 ret = __do_fault(vmf);
3693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 return ret;
3695
3696 ret |= finish_fault(vmf);
3697 unlock_page(vmf->page);
3698 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699 put_page(vmf->page);
3700 return ret;
3701 }
3702
3703 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3704 {
3705 struct vm_area_struct *vma = vmf->vma;
3706 vm_fault_t ret;
3707
3708 if (unlikely(anon_vma_prepare(vma)))
3709 return VM_FAULT_OOM;
3710
3711 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3712 if (!vmf->cow_page)
3713 return VM_FAULT_OOM;
3714
3715 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3716 &vmf->memcg, false)) {
3717 put_page(vmf->cow_page);
3718 return VM_FAULT_OOM;
3719 }
3720
3721 ret = __do_fault(vmf);
3722 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723 goto uncharge_out;
3724 if (ret & VM_FAULT_DONE_COW)
3725 return ret;
3726
3727 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3728 __SetPageUptodate(vmf->cow_page);
3729
3730 ret |= finish_fault(vmf);
3731 unlock_page(vmf->page);
3732 put_page(vmf->page);
3733 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3734 goto uncharge_out;
3735 return ret;
3736 uncharge_out:
3737 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3738 put_page(vmf->cow_page);
3739 return ret;
3740 }
3741
3742 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3743 {
3744 struct vm_area_struct *vma = vmf->vma;
3745 vm_fault_t ret, tmp;
3746
3747 ret = __do_fault(vmf);
3748 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3749 return ret;
3750
3751 /*
3752 * Check if the backing address space wants to know that the page is
3753 * about to become writable
3754 */
3755 if (vma->vm_ops->page_mkwrite) {
3756 unlock_page(vmf->page);
3757 tmp = do_page_mkwrite(vmf);
3758 if (unlikely(!tmp ||
3759 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3760 put_page(vmf->page);
3761 return tmp;
3762 }
3763 }
3764
3765 ret |= finish_fault(vmf);
3766 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3767 VM_FAULT_RETRY))) {
3768 unlock_page(vmf->page);
3769 put_page(vmf->page);
3770 return ret;
3771 }
3772
3773 ret |= fault_dirty_shared_page(vmf);
3774 return ret;
3775 }
3776
3777 /*
3778 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3779 * but allow concurrent faults).
3780 * The mmap_sem may have been released depending on flags and our
3781 * return value. See filemap_fault() and __lock_page_or_retry().
3782 * If mmap_sem is released, vma may become invalid (for example
3783 * by other thread calling munmap()).
3784 */
3785 static vm_fault_t do_fault(struct vm_fault *vmf)
3786 {
3787 struct vm_area_struct *vma = vmf->vma;
3788 struct mm_struct *vm_mm = vma->vm_mm;
3789 vm_fault_t ret;
3790
3791 /*
3792 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3793 */
3794 if (!vma->vm_ops->fault) {
3795 /*
3796 * If we find a migration pmd entry or a none pmd entry, which
3797 * should never happen, return SIGBUS
3798 */
3799 if (unlikely(!pmd_present(*vmf->pmd)))
3800 ret = VM_FAULT_SIGBUS;
3801 else {
3802 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3803 vmf->pmd,
3804 vmf->address,
3805 &vmf->ptl);
3806 /*
3807 * Make sure this is not a temporary clearing of pte
3808 * by holding ptl and checking again. A R/M/W update
3809 * of pte involves: take ptl, clearing the pte so that
3810 * we don't have concurrent modification by hardware
3811 * followed by an update.
3812 */
3813 if (unlikely(pte_none(*vmf->pte)))
3814 ret = VM_FAULT_SIGBUS;
3815 else
3816 ret = VM_FAULT_NOPAGE;
3817
3818 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 }
3820 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3821 ret = do_read_fault(vmf);
3822 else if (!(vma->vm_flags & VM_SHARED))
3823 ret = do_cow_fault(vmf);
3824 else
3825 ret = do_shared_fault(vmf);
3826
3827 /* preallocated pagetable is unused: free it */
3828 if (vmf->prealloc_pte) {
3829 pte_free(vm_mm, vmf->prealloc_pte);
3830 vmf->prealloc_pte = NULL;
3831 }
3832 return ret;
3833 }
3834
3835 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3836 unsigned long addr, int page_nid,
3837 int *flags)
3838 {
3839 get_page(page);
3840
3841 count_vm_numa_event(NUMA_HINT_FAULTS);
3842 if (page_nid == numa_node_id()) {
3843 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3844 *flags |= TNF_FAULT_LOCAL;
3845 }
3846
3847 return mpol_misplaced(page, vma, addr);
3848 }
3849
3850 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3851 {
3852 struct vm_area_struct *vma = vmf->vma;
3853 struct page *page = NULL;
3854 int page_nid = NUMA_NO_NODE;
3855 int last_cpupid;
3856 int target_nid;
3857 bool migrated = false;
3858 pte_t pte, old_pte;
3859 bool was_writable = pte_savedwrite(vmf->orig_pte);
3860 int flags = 0;
3861
3862 /*
3863 * The "pte" at this point cannot be used safely without
3864 * validation through pte_unmap_same(). It's of NUMA type but
3865 * the pfn may be screwed if the read is non atomic.
3866 */
3867 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3868 spin_lock(vmf->ptl);
3869 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3870 pte_unmap_unlock(vmf->pte, vmf->ptl);
3871 goto out;
3872 }
3873
3874 /*
3875 * Make it present again, Depending on how arch implementes non
3876 * accessible ptes, some can allow access by kernel mode.
3877 */
3878 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3879 pte = pte_modify(old_pte, vma->vm_page_prot);
3880 pte = pte_mkyoung(pte);
3881 if (was_writable)
3882 pte = pte_mkwrite(pte);
3883 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3884 update_mmu_cache(vma, vmf->address, vmf->pte);
3885
3886 page = vm_normal_page(vma, vmf->address, pte);
3887 if (!page) {
3888 pte_unmap_unlock(vmf->pte, vmf->ptl);
3889 return 0;
3890 }
3891
3892 /* TODO: handle PTE-mapped THP */
3893 if (PageCompound(page)) {
3894 pte_unmap_unlock(vmf->pte, vmf->ptl);
3895 return 0;
3896 }
3897
3898 /*
3899 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3900 * much anyway since they can be in shared cache state. This misses
3901 * the case where a mapping is writable but the process never writes
3902 * to it but pte_write gets cleared during protection updates and
3903 * pte_dirty has unpredictable behaviour between PTE scan updates,
3904 * background writeback, dirty balancing and application behaviour.
3905 */
3906 if (!pte_write(pte))
3907 flags |= TNF_NO_GROUP;
3908
3909 /*
3910 * Flag if the page is shared between multiple address spaces. This
3911 * is later used when determining whether to group tasks together
3912 */
3913 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3914 flags |= TNF_SHARED;
3915
3916 last_cpupid = page_cpupid_last(page);
3917 page_nid = page_to_nid(page);
3918 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3919 &flags);
3920 pte_unmap_unlock(vmf->pte, vmf->ptl);
3921 if (target_nid == NUMA_NO_NODE) {
3922 put_page(page);
3923 goto out;
3924 }
3925
3926 /* Migrate to the requested node */
3927 migrated = migrate_misplaced_page(page, vma, target_nid);
3928 if (migrated) {
3929 page_nid = target_nid;
3930 flags |= TNF_MIGRATED;
3931 } else
3932 flags |= TNF_MIGRATE_FAIL;
3933
3934 out:
3935 if (page_nid != NUMA_NO_NODE)
3936 task_numa_fault(last_cpupid, page_nid, 1, flags);
3937 return 0;
3938 }
3939
3940 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3941 {
3942 if (vma_is_anonymous(vmf->vma))
3943 return do_huge_pmd_anonymous_page(vmf);
3944 if (vmf->vma->vm_ops->huge_fault)
3945 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3946 return VM_FAULT_FALLBACK;
3947 }
3948
3949 /* `inline' is required to avoid gcc 4.1.2 build error */
3950 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3951 {
3952 if (vma_is_anonymous(vmf->vma))
3953 return do_huge_pmd_wp_page(vmf, orig_pmd);
3954 if (vmf->vma->vm_ops->huge_fault)
3955 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3956
3957 /* COW handled on pte level: split pmd */
3958 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3959 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3960
3961 return VM_FAULT_FALLBACK;
3962 }
3963
3964 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3965 {
3966 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3967 }
3968
3969 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3970 {
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 /* No support for anonymous transparent PUD pages yet */
3973 if (vma_is_anonymous(vmf->vma))
3974 return VM_FAULT_FALLBACK;
3975 if (vmf->vma->vm_ops->huge_fault)
3976 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3978 return VM_FAULT_FALLBACK;
3979 }
3980
3981 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3982 {
3983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3984 /* No support for anonymous transparent PUD pages yet */
3985 if (vma_is_anonymous(vmf->vma))
3986 return VM_FAULT_FALLBACK;
3987 if (vmf->vma->vm_ops->huge_fault)
3988 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3990 return VM_FAULT_FALLBACK;
3991 }
3992
3993 /*
3994 * These routines also need to handle stuff like marking pages dirty
3995 * and/or accessed for architectures that don't do it in hardware (most
3996 * RISC architectures). The early dirtying is also good on the i386.
3997 *
3998 * There is also a hook called "update_mmu_cache()" that architectures
3999 * with external mmu caches can use to update those (ie the Sparc or
4000 * PowerPC hashed page tables that act as extended TLBs).
4001 *
4002 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4003 * concurrent faults).
4004 *
4005 * The mmap_sem may have been released depending on flags and our return value.
4006 * See filemap_fault() and __lock_page_or_retry().
4007 */
4008 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4009 {
4010 pte_t entry;
4011
4012 if (unlikely(pmd_none(*vmf->pmd))) {
4013 /*
4014 * Leave __pte_alloc() until later: because vm_ops->fault may
4015 * want to allocate huge page, and if we expose page table
4016 * for an instant, it will be difficult to retract from
4017 * concurrent faults and from rmap lookups.
4018 */
4019 vmf->pte = NULL;
4020 } else {
4021 /* See comment in pte_alloc_one_map() */
4022 if (pmd_devmap_trans_unstable(vmf->pmd))
4023 return 0;
4024 /*
4025 * A regular pmd is established and it can't morph into a huge
4026 * pmd from under us anymore at this point because we hold the
4027 * mmap_sem read mode and khugepaged takes it in write mode.
4028 * So now it's safe to run pte_offset_map().
4029 */
4030 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4031 vmf->orig_pte = *vmf->pte;
4032
4033 /*
4034 * some architectures can have larger ptes than wordsize,
4035 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4036 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4037 * accesses. The code below just needs a consistent view
4038 * for the ifs and we later double check anyway with the
4039 * ptl lock held. So here a barrier will do.
4040 */
4041 barrier();
4042 if (pte_none(vmf->orig_pte)) {
4043 pte_unmap(vmf->pte);
4044 vmf->pte = NULL;
4045 }
4046 }
4047
4048 if (!vmf->pte) {
4049 if (vma_is_anonymous(vmf->vma))
4050 return do_anonymous_page(vmf);
4051 else
4052 return do_fault(vmf);
4053 }
4054
4055 if (!pte_present(vmf->orig_pte))
4056 return do_swap_page(vmf);
4057
4058 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4059 return do_numa_page(vmf);
4060
4061 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4062 spin_lock(vmf->ptl);
4063 entry = vmf->orig_pte;
4064 if (unlikely(!pte_same(*vmf->pte, entry)))
4065 goto unlock;
4066 if (vmf->flags & FAULT_FLAG_WRITE) {
4067 if (!pte_write(entry))
4068 return do_wp_page(vmf);
4069 entry = pte_mkdirty(entry);
4070 }
4071 entry = pte_mkyoung(entry);
4072 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4073 vmf->flags & FAULT_FLAG_WRITE)) {
4074 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4075 } else {
4076 /*
4077 * This is needed only for protection faults but the arch code
4078 * is not yet telling us if this is a protection fault or not.
4079 * This still avoids useless tlb flushes for .text page faults
4080 * with threads.
4081 */
4082 if (vmf->flags & FAULT_FLAG_WRITE)
4083 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4084 }
4085 unlock:
4086 pte_unmap_unlock(vmf->pte, vmf->ptl);
4087 return 0;
4088 }
4089
4090 /*
4091 * By the time we get here, we already hold the mm semaphore
4092 *
4093 * The mmap_sem may have been released depending on flags and our
4094 * return value. See filemap_fault() and __lock_page_or_retry().
4095 */
4096 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4097 unsigned long address, unsigned int flags)
4098 {
4099 struct vm_fault vmf = {
4100 .vma = vma,
4101 .address = address & PAGE_MASK,
4102 .flags = flags,
4103 .pgoff = linear_page_index(vma, address),
4104 .gfp_mask = __get_fault_gfp_mask(vma),
4105 };
4106 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4107 struct mm_struct *mm = vma->vm_mm;
4108 pgd_t *pgd;
4109 p4d_t *p4d;
4110 vm_fault_t ret;
4111
4112 pgd = pgd_offset(mm, address);
4113 p4d = p4d_alloc(mm, pgd, address);
4114 if (!p4d)
4115 return VM_FAULT_OOM;
4116
4117 vmf.pud = pud_alloc(mm, p4d, address);
4118 if (!vmf.pud)
4119 return VM_FAULT_OOM;
4120 retry_pud:
4121 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4122 ret = create_huge_pud(&vmf);
4123 if (!(ret & VM_FAULT_FALLBACK))
4124 return ret;
4125 } else {
4126 pud_t orig_pud = *vmf.pud;
4127
4128 barrier();
4129 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4130
4131 /* NUMA case for anonymous PUDs would go here */
4132
4133 if (dirty && !pud_write(orig_pud)) {
4134 ret = wp_huge_pud(&vmf, orig_pud);
4135 if (!(ret & VM_FAULT_FALLBACK))
4136 return ret;
4137 } else {
4138 huge_pud_set_accessed(&vmf, orig_pud);
4139 return 0;
4140 }
4141 }
4142 }
4143
4144 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4145 if (!vmf.pmd)
4146 return VM_FAULT_OOM;
4147
4148 /* Huge pud page fault raced with pmd_alloc? */
4149 if (pud_trans_unstable(vmf.pud))
4150 goto retry_pud;
4151
4152 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4153 ret = create_huge_pmd(&vmf);
4154 if (!(ret & VM_FAULT_FALLBACK))
4155 return ret;
4156 } else {
4157 pmd_t orig_pmd = *vmf.pmd;
4158
4159 barrier();
4160 if (unlikely(is_swap_pmd(orig_pmd))) {
4161 VM_BUG_ON(thp_migration_supported() &&
4162 !is_pmd_migration_entry(orig_pmd));
4163 if (is_pmd_migration_entry(orig_pmd))
4164 pmd_migration_entry_wait(mm, vmf.pmd);
4165 return 0;
4166 }
4167 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4168 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4169 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4170
4171 if (dirty && !pmd_write(orig_pmd)) {
4172 ret = wp_huge_pmd(&vmf, orig_pmd);
4173 if (!(ret & VM_FAULT_FALLBACK))
4174 return ret;
4175 } else {
4176 huge_pmd_set_accessed(&vmf, orig_pmd);
4177 return 0;
4178 }
4179 }
4180 }
4181
4182 return handle_pte_fault(&vmf);
4183 }
4184
4185 /*
4186 * By the time we get here, we already hold the mm semaphore
4187 *
4188 * The mmap_sem may have been released depending on flags and our
4189 * return value. See filemap_fault() and __lock_page_or_retry().
4190 */
4191 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4192 unsigned int flags)
4193 {
4194 vm_fault_t ret;
4195
4196 __set_current_state(TASK_RUNNING);
4197
4198 count_vm_event(PGFAULT);
4199 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4200
4201 /* do counter updates before entering really critical section. */
4202 check_sync_rss_stat(current);
4203
4204 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4205 flags & FAULT_FLAG_INSTRUCTION,
4206 flags & FAULT_FLAG_REMOTE))
4207 return VM_FAULT_SIGSEGV;
4208
4209 /*
4210 * Enable the memcg OOM handling for faults triggered in user
4211 * space. Kernel faults are handled more gracefully.
4212 */
4213 if (flags & FAULT_FLAG_USER)
4214 mem_cgroup_enter_user_fault();
4215
4216 if (unlikely(is_vm_hugetlb_page(vma)))
4217 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4218 else
4219 ret = __handle_mm_fault(vma, address, flags);
4220
4221 if (flags & FAULT_FLAG_USER) {
4222 mem_cgroup_exit_user_fault();
4223 /*
4224 * The task may have entered a memcg OOM situation but
4225 * if the allocation error was handled gracefully (no
4226 * VM_FAULT_OOM), there is no need to kill anything.
4227 * Just clean up the OOM state peacefully.
4228 */
4229 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4230 mem_cgroup_oom_synchronize(false);
4231 }
4232
4233 return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(handle_mm_fault);
4236
4237 #ifndef __PAGETABLE_P4D_FOLDED
4238 /*
4239 * Allocate p4d page table.
4240 * We've already handled the fast-path in-line.
4241 */
4242 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4243 {
4244 p4d_t *new = p4d_alloc_one(mm, address);
4245 if (!new)
4246 return -ENOMEM;
4247
4248 smp_wmb(); /* See comment in __pte_alloc */
4249
4250 spin_lock(&mm->page_table_lock);
4251 if (pgd_present(*pgd)) /* Another has populated it */
4252 p4d_free(mm, new);
4253 else
4254 pgd_populate(mm, pgd, new);
4255 spin_unlock(&mm->page_table_lock);
4256 return 0;
4257 }
4258 #endif /* __PAGETABLE_P4D_FOLDED */
4259
4260 #ifndef __PAGETABLE_PUD_FOLDED
4261 /*
4262 * Allocate page upper directory.
4263 * We've already handled the fast-path in-line.
4264 */
4265 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4266 {
4267 pud_t *new = pud_alloc_one(mm, address);
4268 if (!new)
4269 return -ENOMEM;
4270
4271 smp_wmb(); /* See comment in __pte_alloc */
4272
4273 spin_lock(&mm->page_table_lock);
4274 #ifndef __ARCH_HAS_5LEVEL_HACK
4275 if (!p4d_present(*p4d)) {
4276 mm_inc_nr_puds(mm);
4277 p4d_populate(mm, p4d, new);
4278 } else /* Another has populated it */
4279 pud_free(mm, new);
4280 #else
4281 if (!pgd_present(*p4d)) {
4282 mm_inc_nr_puds(mm);
4283 pgd_populate(mm, p4d, new);
4284 } else /* Another has populated it */
4285 pud_free(mm, new);
4286 #endif /* __ARCH_HAS_5LEVEL_HACK */
4287 spin_unlock(&mm->page_table_lock);
4288 return 0;
4289 }
4290 #endif /* __PAGETABLE_PUD_FOLDED */
4291
4292 #ifndef __PAGETABLE_PMD_FOLDED
4293 /*
4294 * Allocate page middle directory.
4295 * We've already handled the fast-path in-line.
4296 */
4297 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4298 {
4299 spinlock_t *ptl;
4300 pmd_t *new = pmd_alloc_one(mm, address);
4301 if (!new)
4302 return -ENOMEM;
4303
4304 smp_wmb(); /* See comment in __pte_alloc */
4305
4306 ptl = pud_lock(mm, pud);
4307 if (!pud_present(*pud)) {
4308 mm_inc_nr_pmds(mm);
4309 pud_populate(mm, pud, new);
4310 } else /* Another has populated it */
4311 pmd_free(mm, new);
4312 spin_unlock(ptl);
4313 return 0;
4314 }
4315 #endif /* __PAGETABLE_PMD_FOLDED */
4316
4317 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4318 struct mmu_notifier_range *range,
4319 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320 {
4321 pgd_t *pgd;
4322 p4d_t *p4d;
4323 pud_t *pud;
4324 pmd_t *pmd;
4325 pte_t *ptep;
4326
4327 pgd = pgd_offset(mm, address);
4328 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4329 goto out;
4330
4331 p4d = p4d_offset(pgd, address);
4332 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4333 goto out;
4334
4335 pud = pud_offset(p4d, address);
4336 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4337 goto out;
4338
4339 pmd = pmd_offset(pud, address);
4340 VM_BUG_ON(pmd_trans_huge(*pmd));
4341
4342 if (pmd_huge(*pmd)) {
4343 if (!pmdpp)
4344 goto out;
4345
4346 if (range) {
4347 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4348 NULL, mm, address & PMD_MASK,
4349 (address & PMD_MASK) + PMD_SIZE);
4350 mmu_notifier_invalidate_range_start(range);
4351 }
4352 *ptlp = pmd_lock(mm, pmd);
4353 if (pmd_huge(*pmd)) {
4354 *pmdpp = pmd;
4355 return 0;
4356 }
4357 spin_unlock(*ptlp);
4358 if (range)
4359 mmu_notifier_invalidate_range_end(range);
4360 }
4361
4362 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4363 goto out;
4364
4365 if (range) {
4366 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4367 address & PAGE_MASK,
4368 (address & PAGE_MASK) + PAGE_SIZE);
4369 mmu_notifier_invalidate_range_start(range);
4370 }
4371 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4372 if (!pte_present(*ptep))
4373 goto unlock;
4374 *ptepp = ptep;
4375 return 0;
4376 unlock:
4377 pte_unmap_unlock(ptep, *ptlp);
4378 if (range)
4379 mmu_notifier_invalidate_range_end(range);
4380 out:
4381 return -EINVAL;
4382 }
4383
4384 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4385 pte_t **ptepp, spinlock_t **ptlp)
4386 {
4387 int res;
4388
4389 /* (void) is needed to make gcc happy */
4390 (void) __cond_lock(*ptlp,
4391 !(res = __follow_pte_pmd(mm, address, NULL,
4392 ptepp, NULL, ptlp)));
4393 return res;
4394 }
4395
4396 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4397 struct mmu_notifier_range *range,
4398 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4399 {
4400 int res;
4401
4402 /* (void) is needed to make gcc happy */
4403 (void) __cond_lock(*ptlp,
4404 !(res = __follow_pte_pmd(mm, address, range,
4405 ptepp, pmdpp, ptlp)));
4406 return res;
4407 }
4408 EXPORT_SYMBOL(follow_pte_pmd);
4409
4410 /**
4411 * follow_pfn - look up PFN at a user virtual address
4412 * @vma: memory mapping
4413 * @address: user virtual address
4414 * @pfn: location to store found PFN
4415 *
4416 * Only IO mappings and raw PFN mappings are allowed.
4417 *
4418 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4419 */
4420 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4421 unsigned long *pfn)
4422 {
4423 int ret = -EINVAL;
4424 spinlock_t *ptl;
4425 pte_t *ptep;
4426
4427 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4428 return ret;
4429
4430 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4431 if (ret)
4432 return ret;
4433 *pfn = pte_pfn(*ptep);
4434 pte_unmap_unlock(ptep, ptl);
4435 return 0;
4436 }
4437 EXPORT_SYMBOL(follow_pfn);
4438
4439 #ifdef CONFIG_HAVE_IOREMAP_PROT
4440 int follow_phys(struct vm_area_struct *vma,
4441 unsigned long address, unsigned int flags,
4442 unsigned long *prot, resource_size_t *phys)
4443 {
4444 int ret = -EINVAL;
4445 pte_t *ptep, pte;
4446 spinlock_t *ptl;
4447
4448 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4449 goto out;
4450
4451 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4452 goto out;
4453 pte = *ptep;
4454
4455 if ((flags & FOLL_WRITE) && !pte_write(pte))
4456 goto unlock;
4457
4458 *prot = pgprot_val(pte_pgprot(pte));
4459 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4460
4461 ret = 0;
4462 unlock:
4463 pte_unmap_unlock(ptep, ptl);
4464 out:
4465 return ret;
4466 }
4467
4468 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4469 void *buf, int len, int write)
4470 {
4471 resource_size_t phys_addr;
4472 unsigned long prot = 0;
4473 void __iomem *maddr;
4474 int offset = addr & (PAGE_SIZE-1);
4475
4476 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4477 return -EINVAL;
4478
4479 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4480 if (!maddr)
4481 return -ENOMEM;
4482
4483 if (write)
4484 memcpy_toio(maddr + offset, buf, len);
4485 else
4486 memcpy_fromio(buf, maddr + offset, len);
4487 iounmap(maddr);
4488
4489 return len;
4490 }
4491 EXPORT_SYMBOL_GPL(generic_access_phys);
4492 #endif
4493
4494 /*
4495 * Access another process' address space as given in mm. If non-NULL, use the
4496 * given task for page fault accounting.
4497 */
4498 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4499 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4500 {
4501 struct vm_area_struct *vma;
4502 void *old_buf = buf;
4503 int write = gup_flags & FOLL_WRITE;
4504
4505 if (down_read_killable(&mm->mmap_sem))
4506 return 0;
4507
4508 /* ignore errors, just check how much was successfully transferred */
4509 while (len) {
4510 int bytes, ret, offset;
4511 void *maddr;
4512 struct page *page = NULL;
4513
4514 ret = get_user_pages_remote(tsk, mm, addr, 1,
4515 gup_flags, &page, &vma, NULL);
4516 if (ret <= 0) {
4517 #ifndef CONFIG_HAVE_IOREMAP_PROT
4518 break;
4519 #else
4520 /*
4521 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4522 * we can access using slightly different code.
4523 */
4524 vma = find_vma(mm, addr);
4525 if (!vma || vma->vm_start > addr)
4526 break;
4527 if (vma->vm_ops && vma->vm_ops->access)
4528 ret = vma->vm_ops->access(vma, addr, buf,
4529 len, write);
4530 if (ret <= 0)
4531 break;
4532 bytes = ret;
4533 #endif
4534 } else {
4535 bytes = len;
4536 offset = addr & (PAGE_SIZE-1);
4537 if (bytes > PAGE_SIZE-offset)
4538 bytes = PAGE_SIZE-offset;
4539
4540 maddr = kmap(page);
4541 if (write) {
4542 copy_to_user_page(vma, page, addr,
4543 maddr + offset, buf, bytes);
4544 set_page_dirty_lock(page);
4545 } else {
4546 copy_from_user_page(vma, page, addr,
4547 buf, maddr + offset, bytes);
4548 }
4549 kunmap(page);
4550 put_page(page);
4551 }
4552 len -= bytes;
4553 buf += bytes;
4554 addr += bytes;
4555 }
4556 up_read(&mm->mmap_sem);
4557
4558 return buf - old_buf;
4559 }
4560
4561 /**
4562 * access_remote_vm - access another process' address space
4563 * @mm: the mm_struct of the target address space
4564 * @addr: start address to access
4565 * @buf: source or destination buffer
4566 * @len: number of bytes to transfer
4567 * @gup_flags: flags modifying lookup behaviour
4568 *
4569 * The caller must hold a reference on @mm.
4570 *
4571 * Return: number of bytes copied from source to destination.
4572 */
4573 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4574 void *buf, int len, unsigned int gup_flags)
4575 {
4576 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4577 }
4578
4579 /*
4580 * Access another process' address space.
4581 * Source/target buffer must be kernel space,
4582 * Do not walk the page table directly, use get_user_pages
4583 */
4584 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4585 void *buf, int len, unsigned int gup_flags)
4586 {
4587 struct mm_struct *mm;
4588 int ret;
4589
4590 mm = get_task_mm(tsk);
4591 if (!mm)
4592 return 0;
4593
4594 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4595
4596 mmput(mm);
4597
4598 return ret;
4599 }
4600 EXPORT_SYMBOL_GPL(access_process_vm);
4601
4602 /*
4603 * Print the name of a VMA.
4604 */
4605 void print_vma_addr(char *prefix, unsigned long ip)
4606 {
4607 struct mm_struct *mm = current->mm;
4608 struct vm_area_struct *vma;
4609
4610 /*
4611 * we might be running from an atomic context so we cannot sleep
4612 */
4613 if (!down_read_trylock(&mm->mmap_sem))
4614 return;
4615
4616 vma = find_vma(mm, ip);
4617 if (vma && vma->vm_file) {
4618 struct file *f = vma->vm_file;
4619 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4620 if (buf) {
4621 char *p;
4622
4623 p = file_path(f, buf, PAGE_SIZE);
4624 if (IS_ERR(p))
4625 p = "?";
4626 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4627 vma->vm_start,
4628 vma->vm_end - vma->vm_start);
4629 free_page((unsigned long)buf);
4630 }
4631 }
4632 up_read(&mm->mmap_sem);
4633 }
4634
4635 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4636 void __might_fault(const char *file, int line)
4637 {
4638 /*
4639 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4640 * holding the mmap_sem, this is safe because kernel memory doesn't
4641 * get paged out, therefore we'll never actually fault, and the
4642 * below annotations will generate false positives.
4643 */
4644 if (uaccess_kernel())
4645 return;
4646 if (pagefault_disabled())
4647 return;
4648 __might_sleep(file, line, 0);
4649 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4650 if (current->mm)
4651 might_lock_read(&current->mm->mmap_sem);
4652 #endif
4653 }
4654 EXPORT_SYMBOL(__might_fault);
4655 #endif
4656
4657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4658 /*
4659 * Process all subpages of the specified huge page with the specified
4660 * operation. The target subpage will be processed last to keep its
4661 * cache lines hot.
4662 */
4663 static inline void process_huge_page(
4664 unsigned long addr_hint, unsigned int pages_per_huge_page,
4665 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4666 void *arg)
4667 {
4668 int i, n, base, l;
4669 unsigned long addr = addr_hint &
4670 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4671
4672 /* Process target subpage last to keep its cache lines hot */
4673 might_sleep();
4674 n = (addr_hint - addr) / PAGE_SIZE;
4675 if (2 * n <= pages_per_huge_page) {
4676 /* If target subpage in first half of huge page */
4677 base = 0;
4678 l = n;
4679 /* Process subpages at the end of huge page */
4680 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4681 cond_resched();
4682 process_subpage(addr + i * PAGE_SIZE, i, arg);
4683 }
4684 } else {
4685 /* If target subpage in second half of huge page */
4686 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4687 l = pages_per_huge_page - n;
4688 /* Process subpages at the begin of huge page */
4689 for (i = 0; i < base; i++) {
4690 cond_resched();
4691 process_subpage(addr + i * PAGE_SIZE, i, arg);
4692 }
4693 }
4694 /*
4695 * Process remaining subpages in left-right-left-right pattern
4696 * towards the target subpage
4697 */
4698 for (i = 0; i < l; i++) {
4699 int left_idx = base + i;
4700 int right_idx = base + 2 * l - 1 - i;
4701
4702 cond_resched();
4703 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4704 cond_resched();
4705 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4706 }
4707 }
4708
4709 static void clear_gigantic_page(struct page *page,
4710 unsigned long addr,
4711 unsigned int pages_per_huge_page)
4712 {
4713 int i;
4714 struct page *p = page;
4715
4716 might_sleep();
4717 for (i = 0; i < pages_per_huge_page;
4718 i++, p = mem_map_next(p, page, i)) {
4719 cond_resched();
4720 clear_user_highpage(p, addr + i * PAGE_SIZE);
4721 }
4722 }
4723
4724 static void clear_subpage(unsigned long addr, int idx, void *arg)
4725 {
4726 struct page *page = arg;
4727
4728 clear_user_highpage(page + idx, addr);
4729 }
4730
4731 void clear_huge_page(struct page *page,
4732 unsigned long addr_hint, unsigned int pages_per_huge_page)
4733 {
4734 unsigned long addr = addr_hint &
4735 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4736
4737 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4738 clear_gigantic_page(page, addr, pages_per_huge_page);
4739 return;
4740 }
4741
4742 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4743 }
4744
4745 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4746 unsigned long addr,
4747 struct vm_area_struct *vma,
4748 unsigned int pages_per_huge_page)
4749 {
4750 int i;
4751 struct page *dst_base = dst;
4752 struct page *src_base = src;
4753
4754 for (i = 0; i < pages_per_huge_page; ) {
4755 cond_resched();
4756 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4757
4758 i++;
4759 dst = mem_map_next(dst, dst_base, i);
4760 src = mem_map_next(src, src_base, i);
4761 }
4762 }
4763
4764 struct copy_subpage_arg {
4765 struct page *dst;
4766 struct page *src;
4767 struct vm_area_struct *vma;
4768 };
4769
4770 static void copy_subpage(unsigned long addr, int idx, void *arg)
4771 {
4772 struct copy_subpage_arg *copy_arg = arg;
4773
4774 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4775 addr, copy_arg->vma);
4776 }
4777
4778 void copy_user_huge_page(struct page *dst, struct page *src,
4779 unsigned long addr_hint, struct vm_area_struct *vma,
4780 unsigned int pages_per_huge_page)
4781 {
4782 unsigned long addr = addr_hint &
4783 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4784 struct copy_subpage_arg arg = {
4785 .dst = dst,
4786 .src = src,
4787 .vma = vma,
4788 };
4789
4790 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4791 copy_user_gigantic_page(dst, src, addr, vma,
4792 pages_per_huge_page);
4793 return;
4794 }
4795
4796 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4797 }
4798
4799 long copy_huge_page_from_user(struct page *dst_page,
4800 const void __user *usr_src,
4801 unsigned int pages_per_huge_page,
4802 bool allow_pagefault)
4803 {
4804 void *src = (void *)usr_src;
4805 void *page_kaddr;
4806 unsigned long i, rc = 0;
4807 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4808
4809 for (i = 0; i < pages_per_huge_page; i++) {
4810 if (allow_pagefault)
4811 page_kaddr = kmap(dst_page + i);
4812 else
4813 page_kaddr = kmap_atomic(dst_page + i);
4814 rc = copy_from_user(page_kaddr,
4815 (const void __user *)(src + i * PAGE_SIZE),
4816 PAGE_SIZE);
4817 if (allow_pagefault)
4818 kunmap(dst_page + i);
4819 else
4820 kunmap_atomic(page_kaddr);
4821
4822 ret_val -= (PAGE_SIZE - rc);
4823 if (rc)
4824 break;
4825
4826 cond_resched();
4827 }
4828 return ret_val;
4829 }
4830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4831
4832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4833
4834 static struct kmem_cache *page_ptl_cachep;
4835
4836 void __init ptlock_cache_init(void)
4837 {
4838 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4839 SLAB_PANIC, NULL);
4840 }
4841
4842 bool ptlock_alloc(struct page *page)
4843 {
4844 spinlock_t *ptl;
4845
4846 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4847 if (!ptl)
4848 return false;
4849 page->ptl = ptl;
4850 return true;
4851 }
4852
4853 void ptlock_free(struct page *page)
4854 {
4855 kmem_cache_free(page_ptl_cachep, page->ptl);
4856 }
4857 #endif