]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81
82 #include "internal.h"
83
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96
97 /*
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
103 */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106
107 /*
108 * Randomize the address space (stacks, mmaps, brk, etc.).
109 *
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
112 */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 1;
116 #else
117 2;
118 #endif
119
120 static int __init disable_randmaps(char *s)
121 {
122 randomize_va_space = 0;
123 return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129
130 unsigned long highest_memmap_pfn __read_mostly;
131
132 /*
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 */
135 static int __init init_zero_pfn(void)
136 {
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
139 }
140 core_initcall(init_zero_pfn);
141
142
143 #if defined(SPLIT_RSS_COUNTING)
144
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 int i;
148
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
153 }
154 }
155 current->rss_stat.events = 0;
156 }
157
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 struct task_struct *task = current;
161
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187
188 #endif /* SPLIT_RSS_COUNTING */
189
190 #ifdef HAVE_GENERIC_MMU_GATHER
191
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 struct mmu_gather_batch *batch;
195
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
200 }
201
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
204
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
208
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
213
214 tlb->active->next = batch;
215 tlb->active = batch;
216
217 return true;
218 }
219
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb);
251 #endif
252 __tlb_reset_range(tlb);
253 }
254
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 struct mmu_gather_batch *batch;
258
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
278 {
279 struct mmu_gather_batch *batch, *next;
280
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
283
284 tlb_flush_mmu(tlb);
285
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
288
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
292 }
293 tlb->local.next = NULL;
294 }
295
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
302 */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 struct mmu_gather_batch *batch;
306
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
309
310 batch = tlb->active;
311 /*
312 * Add the page and check if we are full. If so
313 * force a flush.
314 */
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
320 }
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322
323 return false;
324 }
325
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329
330 /*
331 * See the comment near struct mmu_table_batch.
332 */
333
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336 /* Simply deliver the interrupt */
337 }
338
339 static void tlb_remove_table_one(void *table)
340 {
341 /*
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
344 *
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
347 */
348 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 __tlb_remove_table(table);
350 }
351
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354 struct mmu_table_batch *batch;
355 int i;
356
357 batch = container_of(head, struct mmu_table_batch, rcu);
358
359 for (i = 0; i < batch->nr; i++)
360 __tlb_remove_table(batch->tables[i]);
361
362 free_page((unsigned long)batch);
363 }
364
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367 struct mmu_table_batch **batch = &tlb->batch;
368
369 if (*batch) {
370 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 *batch = NULL;
372 }
373 }
374
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377 struct mmu_table_batch **batch = &tlb->batch;
378
379 /*
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
382 */
383 if (atomic_read(&tlb->mm->mm_users) < 2) {
384 __tlb_remove_table(table);
385 return;
386 }
387
388 if (*batch == NULL) {
389 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 if (*batch == NULL) {
391 tlb_remove_table_one(table);
392 return;
393 }
394 (*batch)->nr = 0;
395 }
396 (*batch)->tables[(*batch)->nr++] = table;
397 if ((*batch)->nr == MAX_TABLE_BATCH)
398 tlb_table_flush(tlb);
399 }
400
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402
403 /* tlb_gather_mmu
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
407 */
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 unsigned long start, unsigned long end)
410 {
411 arch_tlb_gather_mmu(tlb, mm, start, end);
412 inc_tlb_flush_pending(tlb->mm);
413 }
414
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 unsigned long start, unsigned long end)
417 {
418 /*
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
424 */
425 bool force = mm_tlb_flush_nested(tlb->mm);
426
427 arch_tlb_finish_mmu(tlb, start, end, force);
428 dec_tlb_flush_pending(tlb->mm);
429 }
430
431 /*
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
434 */
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 unsigned long addr)
437 {
438 pgtable_t token = pmd_pgtable(*pmd);
439 pmd_clear(pmd);
440 pte_free_tlb(tlb, token, addr);
441 mm_dec_nr_ptes(tlb->mm);
442 }
443
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 unsigned long addr, unsigned long end,
446 unsigned long floor, unsigned long ceiling)
447 {
448 pmd_t *pmd;
449 unsigned long next;
450 unsigned long start;
451
452 start = addr;
453 pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
457 continue;
458 free_pte_range(tlb, pmd, addr);
459 } while (pmd++, addr = next, addr != end);
460
461 start &= PUD_MASK;
462 if (start < floor)
463 return;
464 if (ceiling) {
465 ceiling &= PUD_MASK;
466 if (!ceiling)
467 return;
468 }
469 if (end - 1 > ceiling - 1)
470 return;
471
472 pmd = pmd_offset(pud, start);
473 pud_clear(pud);
474 pmd_free_tlb(tlb, pmd, start);
475 mm_dec_nr_pmds(tlb->mm);
476 }
477
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 unsigned long addr, unsigned long end,
480 unsigned long floor, unsigned long ceiling)
481 {
482 pud_t *pud;
483 unsigned long next;
484 unsigned long start;
485
486 start = addr;
487 pud = pud_offset(p4d, addr);
488 do {
489 next = pud_addr_end(addr, end);
490 if (pud_none_or_clear_bad(pud))
491 continue;
492 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 } while (pud++, addr = next, addr != end);
494
495 start &= P4D_MASK;
496 if (start < floor)
497 return;
498 if (ceiling) {
499 ceiling &= P4D_MASK;
500 if (!ceiling)
501 return;
502 }
503 if (end - 1 > ceiling - 1)
504 return;
505
506 pud = pud_offset(p4d, start);
507 p4d_clear(p4d);
508 pud_free_tlb(tlb, pud, start);
509 mm_dec_nr_puds(tlb->mm);
510 }
511
512 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
513 unsigned long addr, unsigned long end,
514 unsigned long floor, unsigned long ceiling)
515 {
516 p4d_t *p4d;
517 unsigned long next;
518 unsigned long start;
519
520 start = addr;
521 p4d = p4d_offset(pgd, addr);
522 do {
523 next = p4d_addr_end(addr, end);
524 if (p4d_none_or_clear_bad(p4d))
525 continue;
526 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
527 } while (p4d++, addr = next, addr != end);
528
529 start &= PGDIR_MASK;
530 if (start < floor)
531 return;
532 if (ceiling) {
533 ceiling &= PGDIR_MASK;
534 if (!ceiling)
535 return;
536 }
537 if (end - 1 > ceiling - 1)
538 return;
539
540 p4d = p4d_offset(pgd, start);
541 pgd_clear(pgd);
542 p4d_free_tlb(tlb, p4d, start);
543 }
544
545 /*
546 * This function frees user-level page tables of a process.
547 */
548 void free_pgd_range(struct mmu_gather *tlb,
549 unsigned long addr, unsigned long end,
550 unsigned long floor, unsigned long ceiling)
551 {
552 pgd_t *pgd;
553 unsigned long next;
554
555 /*
556 * The next few lines have given us lots of grief...
557 *
558 * Why are we testing PMD* at this top level? Because often
559 * there will be no work to do at all, and we'd prefer not to
560 * go all the way down to the bottom just to discover that.
561 *
562 * Why all these "- 1"s? Because 0 represents both the bottom
563 * of the address space and the top of it (using -1 for the
564 * top wouldn't help much: the masks would do the wrong thing).
565 * The rule is that addr 0 and floor 0 refer to the bottom of
566 * the address space, but end 0 and ceiling 0 refer to the top
567 * Comparisons need to use "end - 1" and "ceiling - 1" (though
568 * that end 0 case should be mythical).
569 *
570 * Wherever addr is brought up or ceiling brought down, we must
571 * be careful to reject "the opposite 0" before it confuses the
572 * subsequent tests. But what about where end is brought down
573 * by PMD_SIZE below? no, end can't go down to 0 there.
574 *
575 * Whereas we round start (addr) and ceiling down, by different
576 * masks at different levels, in order to test whether a table
577 * now has no other vmas using it, so can be freed, we don't
578 * bother to round floor or end up - the tests don't need that.
579 */
580
581 addr &= PMD_MASK;
582 if (addr < floor) {
583 addr += PMD_SIZE;
584 if (!addr)
585 return;
586 }
587 if (ceiling) {
588 ceiling &= PMD_MASK;
589 if (!ceiling)
590 return;
591 }
592 if (end - 1 > ceiling - 1)
593 end -= PMD_SIZE;
594 if (addr > end - 1)
595 return;
596 /*
597 * We add page table cache pages with PAGE_SIZE,
598 * (see pte_free_tlb()), flush the tlb if we need
599 */
600 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
601 pgd = pgd_offset(tlb->mm, addr);
602 do {
603 next = pgd_addr_end(addr, end);
604 if (pgd_none_or_clear_bad(pgd))
605 continue;
606 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
607 } while (pgd++, addr = next, addr != end);
608 }
609
610 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
611 unsigned long floor, unsigned long ceiling)
612 {
613 while (vma) {
614 struct vm_area_struct *next = vma->vm_next;
615 unsigned long addr = vma->vm_start;
616
617 /*
618 * Hide vma from rmap and truncate_pagecache before freeing
619 * pgtables
620 */
621 unlink_anon_vmas(vma);
622 unlink_file_vma(vma);
623
624 if (is_vm_hugetlb_page(vma)) {
625 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
626 floor, next ? next->vm_start : ceiling);
627 } else {
628 /*
629 * Optimization: gather nearby vmas into one call down
630 */
631 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
632 && !is_vm_hugetlb_page(next)) {
633 vma = next;
634 next = vma->vm_next;
635 unlink_anon_vmas(vma);
636 unlink_file_vma(vma);
637 }
638 free_pgd_range(tlb, addr, vma->vm_end,
639 floor, next ? next->vm_start : ceiling);
640 }
641 vma = next;
642 }
643 }
644
645 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
646 {
647 spinlock_t *ptl;
648 pgtable_t new = pte_alloc_one(mm, address);
649 if (!new)
650 return -ENOMEM;
651
652 /*
653 * Ensure all pte setup (eg. pte page lock and page clearing) are
654 * visible before the pte is made visible to other CPUs by being
655 * put into page tables.
656 *
657 * The other side of the story is the pointer chasing in the page
658 * table walking code (when walking the page table without locking;
659 * ie. most of the time). Fortunately, these data accesses consist
660 * of a chain of data-dependent loads, meaning most CPUs (alpha
661 * being the notable exception) will already guarantee loads are
662 * seen in-order. See the alpha page table accessors for the
663 * smp_read_barrier_depends() barriers in page table walking code.
664 */
665 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
666
667 ptl = pmd_lock(mm, pmd);
668 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
669 mm_inc_nr_ptes(mm);
670 pmd_populate(mm, pmd, new);
671 new = NULL;
672 }
673 spin_unlock(ptl);
674 if (new)
675 pte_free(mm, new);
676 return 0;
677 }
678
679 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
680 {
681 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
682 if (!new)
683 return -ENOMEM;
684
685 smp_wmb(); /* See comment in __pte_alloc */
686
687 spin_lock(&init_mm.page_table_lock);
688 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
689 pmd_populate_kernel(&init_mm, pmd, new);
690 new = NULL;
691 }
692 spin_unlock(&init_mm.page_table_lock);
693 if (new)
694 pte_free_kernel(&init_mm, new);
695 return 0;
696 }
697
698 static inline void init_rss_vec(int *rss)
699 {
700 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
701 }
702
703 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
704 {
705 int i;
706
707 if (current->mm == mm)
708 sync_mm_rss(mm);
709 for (i = 0; i < NR_MM_COUNTERS; i++)
710 if (rss[i])
711 add_mm_counter(mm, i, rss[i]);
712 }
713
714 /*
715 * This function is called to print an error when a bad pte
716 * is found. For example, we might have a PFN-mapped pte in
717 * a region that doesn't allow it.
718 *
719 * The calling function must still handle the error.
720 */
721 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
722 pte_t pte, struct page *page)
723 {
724 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
725 p4d_t *p4d = p4d_offset(pgd, addr);
726 pud_t *pud = pud_offset(p4d, addr);
727 pmd_t *pmd = pmd_offset(pud, addr);
728 struct address_space *mapping;
729 pgoff_t index;
730 static unsigned long resume;
731 static unsigned long nr_shown;
732 static unsigned long nr_unshown;
733
734 /*
735 * Allow a burst of 60 reports, then keep quiet for that minute;
736 * or allow a steady drip of one report per second.
737 */
738 if (nr_shown == 60) {
739 if (time_before(jiffies, resume)) {
740 nr_unshown++;
741 return;
742 }
743 if (nr_unshown) {
744 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
745 nr_unshown);
746 nr_unshown = 0;
747 }
748 nr_shown = 0;
749 }
750 if (nr_shown++ == 0)
751 resume = jiffies + 60 * HZ;
752
753 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
754 index = linear_page_index(vma, addr);
755
756 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
757 current->comm,
758 (long long)pte_val(pte), (long long)pmd_val(*pmd));
759 if (page)
760 dump_page(page, "bad pte");
761 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
762 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
763 /*
764 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
765 */
766 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
767 vma->vm_file,
768 vma->vm_ops ? vma->vm_ops->fault : NULL,
769 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
770 mapping ? mapping->a_ops->readpage : NULL);
771 dump_stack();
772 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
773 }
774
775 /*
776 * vm_normal_page -- This function gets the "struct page" associated with a pte.
777 *
778 * "Special" mappings do not wish to be associated with a "struct page" (either
779 * it doesn't exist, or it exists but they don't want to touch it). In this
780 * case, NULL is returned here. "Normal" mappings do have a struct page.
781 *
782 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
783 * pte bit, in which case this function is trivial. Secondly, an architecture
784 * may not have a spare pte bit, which requires a more complicated scheme,
785 * described below.
786 *
787 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
788 * special mapping (even if there are underlying and valid "struct pages").
789 * COWed pages of a VM_PFNMAP are always normal.
790 *
791 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
792 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
793 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
794 * mapping will always honor the rule
795 *
796 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
797 *
798 * And for normal mappings this is false.
799 *
800 * This restricts such mappings to be a linear translation from virtual address
801 * to pfn. To get around this restriction, we allow arbitrary mappings so long
802 * as the vma is not a COW mapping; in that case, we know that all ptes are
803 * special (because none can have been COWed).
804 *
805 *
806 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
807 *
808 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
809 * page" backing, however the difference is that _all_ pages with a struct
810 * page (that is, those where pfn_valid is true) are refcounted and considered
811 * normal pages by the VM. The disadvantage is that pages are refcounted
812 * (which can be slower and simply not an option for some PFNMAP users). The
813 * advantage is that we don't have to follow the strict linearity rule of
814 * PFNMAP mappings in order to support COWable mappings.
815 *
816 */
817 #ifdef __HAVE_ARCH_PTE_SPECIAL
818 # define HAVE_PTE_SPECIAL 1
819 #else
820 # define HAVE_PTE_SPECIAL 0
821 #endif
822 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
823 pte_t pte, bool with_public_device)
824 {
825 unsigned long pfn = pte_pfn(pte);
826
827 if (HAVE_PTE_SPECIAL) {
828 if (likely(!pte_special(pte)))
829 goto check_pfn;
830 if (vma->vm_ops && vma->vm_ops->find_special_page)
831 return vma->vm_ops->find_special_page(vma, addr);
832 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
833 return NULL;
834 if (is_zero_pfn(pfn))
835 return NULL;
836
837 /*
838 * Device public pages are special pages (they are ZONE_DEVICE
839 * pages but different from persistent memory). They behave
840 * allmost like normal pages. The difference is that they are
841 * not on the lru and thus should never be involve with any-
842 * thing that involve lru manipulation (mlock, numa balancing,
843 * ...).
844 *
845 * This is why we still want to return NULL for such page from
846 * vm_normal_page() so that we do not have to special case all
847 * call site of vm_normal_page().
848 */
849 if (likely(pfn <= highest_memmap_pfn)) {
850 struct page *page = pfn_to_page(pfn);
851
852 if (is_device_public_page(page)) {
853 if (with_public_device)
854 return page;
855 return NULL;
856 }
857 }
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
861
862 /* !HAVE_PTE_SPECIAL case follows: */
863
864 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
865 if (vma->vm_flags & VM_MIXEDMAP) {
866 if (!pfn_valid(pfn))
867 return NULL;
868 goto out;
869 } else {
870 unsigned long off;
871 off = (addr - vma->vm_start) >> PAGE_SHIFT;
872 if (pfn == vma->vm_pgoff + off)
873 return NULL;
874 if (!is_cow_mapping(vma->vm_flags))
875 return NULL;
876 }
877 }
878
879 if (is_zero_pfn(pfn))
880 return NULL;
881 check_pfn:
882 if (unlikely(pfn > highest_memmap_pfn)) {
883 print_bad_pte(vma, addr, pte, NULL);
884 return NULL;
885 }
886
887 /*
888 * NOTE! We still have PageReserved() pages in the page tables.
889 * eg. VDSO mappings can cause them to exist.
890 */
891 out:
892 return pfn_to_page(pfn);
893 }
894
895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
897 pmd_t pmd)
898 {
899 unsigned long pfn = pmd_pfn(pmd);
900
901 /*
902 * There is no pmd_special() but there may be special pmds, e.g.
903 * in a direct-access (dax) mapping, so let's just replicate the
904 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
905 */
906 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
907 if (vma->vm_flags & VM_MIXEDMAP) {
908 if (!pfn_valid(pfn))
909 return NULL;
910 goto out;
911 } else {
912 unsigned long off;
913 off = (addr - vma->vm_start) >> PAGE_SHIFT;
914 if (pfn == vma->vm_pgoff + off)
915 return NULL;
916 if (!is_cow_mapping(vma->vm_flags))
917 return NULL;
918 }
919 }
920
921 if (is_zero_pfn(pfn))
922 return NULL;
923 if (unlikely(pfn > highest_memmap_pfn))
924 return NULL;
925
926 /*
927 * NOTE! We still have PageReserved() pages in the page tables.
928 * eg. VDSO mappings can cause them to exist.
929 */
930 out:
931 return pfn_to_page(pfn);
932 }
933 #endif
934
935 /*
936 * copy one vm_area from one task to the other. Assumes the page tables
937 * already present in the new task to be cleared in the whole range
938 * covered by this vma.
939 */
940
941 static inline unsigned long
942 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
944 unsigned long addr, int *rss)
945 {
946 unsigned long vm_flags = vma->vm_flags;
947 pte_t pte = *src_pte;
948 struct page *page;
949
950 /* pte contains position in swap or file, so copy. */
951 if (unlikely(!pte_present(pte))) {
952 swp_entry_t entry = pte_to_swp_entry(pte);
953
954 if (likely(!non_swap_entry(entry))) {
955 if (swap_duplicate(entry) < 0)
956 return entry.val;
957
958 /* make sure dst_mm is on swapoff's mmlist. */
959 if (unlikely(list_empty(&dst_mm->mmlist))) {
960 spin_lock(&mmlist_lock);
961 if (list_empty(&dst_mm->mmlist))
962 list_add(&dst_mm->mmlist,
963 &src_mm->mmlist);
964 spin_unlock(&mmlist_lock);
965 }
966 rss[MM_SWAPENTS]++;
967 } else if (is_migration_entry(entry)) {
968 page = migration_entry_to_page(entry);
969
970 rss[mm_counter(page)]++;
971
972 if (is_write_migration_entry(entry) &&
973 is_cow_mapping(vm_flags)) {
974 /*
975 * COW mappings require pages in both
976 * parent and child to be set to read.
977 */
978 make_migration_entry_read(&entry);
979 pte = swp_entry_to_pte(entry);
980 if (pte_swp_soft_dirty(*src_pte))
981 pte = pte_swp_mksoft_dirty(pte);
982 set_pte_at(src_mm, addr, src_pte, pte);
983 }
984 } else if (is_device_private_entry(entry)) {
985 page = device_private_entry_to_page(entry);
986
987 /*
988 * Update rss count even for unaddressable pages, as
989 * they should treated just like normal pages in this
990 * respect.
991 *
992 * We will likely want to have some new rss counters
993 * for unaddressable pages, at some point. But for now
994 * keep things as they are.
995 */
996 get_page(page);
997 rss[mm_counter(page)]++;
998 page_dup_rmap(page, false);
999
1000 /*
1001 * We do not preserve soft-dirty information, because so
1002 * far, checkpoint/restore is the only feature that
1003 * requires that. And checkpoint/restore does not work
1004 * when a device driver is involved (you cannot easily
1005 * save and restore device driver state).
1006 */
1007 if (is_write_device_private_entry(entry) &&
1008 is_cow_mapping(vm_flags)) {
1009 make_device_private_entry_read(&entry);
1010 pte = swp_entry_to_pte(entry);
1011 set_pte_at(src_mm, addr, src_pte, pte);
1012 }
1013 }
1014 goto out_set_pte;
1015 }
1016
1017 /*
1018 * If it's a COW mapping, write protect it both
1019 * in the parent and the child
1020 */
1021 if (is_cow_mapping(vm_flags)) {
1022 ptep_set_wrprotect(src_mm, addr, src_pte);
1023 pte = pte_wrprotect(pte);
1024 }
1025
1026 /*
1027 * If it's a shared mapping, mark it clean in
1028 * the child
1029 */
1030 if (vm_flags & VM_SHARED)
1031 pte = pte_mkclean(pte);
1032 pte = pte_mkold(pte);
1033
1034 page = vm_normal_page(vma, addr, pte);
1035 if (page) {
1036 get_page(page);
1037 page_dup_rmap(page, false);
1038 rss[mm_counter(page)]++;
1039 } else if (pte_devmap(pte)) {
1040 page = pte_page(pte);
1041
1042 /*
1043 * Cache coherent device memory behave like regular page and
1044 * not like persistent memory page. For more informations see
1045 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 */
1047 if (is_device_public_page(page)) {
1048 get_page(page);
1049 page_dup_rmap(page, false);
1050 rss[mm_counter(page)]++;
1051 }
1052 }
1053
1054 out_set_pte:
1055 set_pte_at(dst_mm, addr, dst_pte, pte);
1056 return 0;
1057 }
1058
1059 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1061 unsigned long addr, unsigned long end)
1062 {
1063 pte_t *orig_src_pte, *orig_dst_pte;
1064 pte_t *src_pte, *dst_pte;
1065 spinlock_t *src_ptl, *dst_ptl;
1066 int progress = 0;
1067 int rss[NR_MM_COUNTERS];
1068 swp_entry_t entry = (swp_entry_t){0};
1069
1070 again:
1071 init_rss_vec(rss);
1072
1073 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1074 if (!dst_pte)
1075 return -ENOMEM;
1076 src_pte = pte_offset_map(src_pmd, addr);
1077 src_ptl = pte_lockptr(src_mm, src_pmd);
1078 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1079 orig_src_pte = src_pte;
1080 orig_dst_pte = dst_pte;
1081 arch_enter_lazy_mmu_mode();
1082
1083 do {
1084 /*
1085 * We are holding two locks at this point - either of them
1086 * could generate latencies in another task on another CPU.
1087 */
1088 if (progress >= 32) {
1089 progress = 0;
1090 if (need_resched() ||
1091 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1092 break;
1093 }
1094 if (pte_none(*src_pte)) {
1095 progress++;
1096 continue;
1097 }
1098 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1099 vma, addr, rss);
1100 if (entry.val)
1101 break;
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104
1105 arch_leave_lazy_mmu_mode();
1106 spin_unlock(src_ptl);
1107 pte_unmap(orig_src_pte);
1108 add_mm_rss_vec(dst_mm, rss);
1109 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 cond_resched();
1111
1112 if (entry.val) {
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1114 return -ENOMEM;
1115 progress = 0;
1116 }
1117 if (addr != end)
1118 goto again;
1119 return 0;
1120 }
1121
1122 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125 {
1126 pmd_t *src_pmd, *dst_pmd;
1127 unsigned long next;
1128
1129 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1130 if (!dst_pmd)
1131 return -ENOMEM;
1132 src_pmd = pmd_offset(src_pud, addr);
1133 do {
1134 next = pmd_addr_end(addr, end);
1135 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1136 || pmd_devmap(*src_pmd)) {
1137 int err;
1138 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1139 err = copy_huge_pmd(dst_mm, src_mm,
1140 dst_pmd, src_pmd, addr, vma);
1141 if (err == -ENOMEM)
1142 return -ENOMEM;
1143 if (!err)
1144 continue;
1145 /* fall through */
1146 }
1147 if (pmd_none_or_clear_bad(src_pmd))
1148 continue;
1149 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1150 vma, addr, next))
1151 return -ENOMEM;
1152 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1153 return 0;
1154 }
1155
1156 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1157 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1158 unsigned long addr, unsigned long end)
1159 {
1160 pud_t *src_pud, *dst_pud;
1161 unsigned long next;
1162
1163 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1164 if (!dst_pud)
1165 return -ENOMEM;
1166 src_pud = pud_offset(src_p4d, addr);
1167 do {
1168 next = pud_addr_end(addr, end);
1169 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1170 int err;
1171
1172 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1173 err = copy_huge_pud(dst_mm, src_mm,
1174 dst_pud, src_pud, addr, vma);
1175 if (err == -ENOMEM)
1176 return -ENOMEM;
1177 if (!err)
1178 continue;
1179 /* fall through */
1180 }
1181 if (pud_none_or_clear_bad(src_pud))
1182 continue;
1183 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1184 vma, addr, next))
1185 return -ENOMEM;
1186 } while (dst_pud++, src_pud++, addr = next, addr != end);
1187 return 0;
1188 }
1189
1190 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1192 unsigned long addr, unsigned long end)
1193 {
1194 p4d_t *src_p4d, *dst_p4d;
1195 unsigned long next;
1196
1197 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1198 if (!dst_p4d)
1199 return -ENOMEM;
1200 src_p4d = p4d_offset(src_pgd, addr);
1201 do {
1202 next = p4d_addr_end(addr, end);
1203 if (p4d_none_or_clear_bad(src_p4d))
1204 continue;
1205 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1206 vma, addr, next))
1207 return -ENOMEM;
1208 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1209 return 0;
1210 }
1211
1212 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1213 struct vm_area_struct *vma)
1214 {
1215 pgd_t *src_pgd, *dst_pgd;
1216 unsigned long next;
1217 unsigned long addr = vma->vm_start;
1218 unsigned long end = vma->vm_end;
1219 unsigned long mmun_start; /* For mmu_notifiers */
1220 unsigned long mmun_end; /* For mmu_notifiers */
1221 bool is_cow;
1222 int ret;
1223
1224 /*
1225 * Don't copy ptes where a page fault will fill them correctly.
1226 * Fork becomes much lighter when there are big shared or private
1227 * readonly mappings. The tradeoff is that copy_page_range is more
1228 * efficient than faulting.
1229 */
1230 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231 !vma->anon_vma)
1232 return 0;
1233
1234 if (is_vm_hugetlb_page(vma))
1235 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236
1237 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 /*
1239 * We do not free on error cases below as remove_vma
1240 * gets called on error from higher level routine
1241 */
1242 ret = track_pfn_copy(vma);
1243 if (ret)
1244 return ret;
1245 }
1246
1247 /*
1248 * We need to invalidate the secondary MMU mappings only when
1249 * there could be a permission downgrade on the ptes of the
1250 * parent mm. And a permission downgrade will only happen if
1251 * is_cow_mapping() returns true.
1252 */
1253 is_cow = is_cow_mapping(vma->vm_flags);
1254 mmun_start = addr;
1255 mmun_end = end;
1256 if (is_cow)
1257 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1258 mmun_end);
1259
1260 ret = 0;
1261 dst_pgd = pgd_offset(dst_mm, addr);
1262 src_pgd = pgd_offset(src_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
1265 if (pgd_none_or_clear_bad(src_pgd))
1266 continue;
1267 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1268 vma, addr, next))) {
1269 ret = -ENOMEM;
1270 break;
1271 }
1272 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273
1274 if (is_cow)
1275 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1276 return ret;
1277 }
1278
1279 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma, pmd_t *pmd,
1281 unsigned long addr, unsigned long end,
1282 struct zap_details *details)
1283 {
1284 struct mm_struct *mm = tlb->mm;
1285 int force_flush = 0;
1286 int rss[NR_MM_COUNTERS];
1287 spinlock_t *ptl;
1288 pte_t *start_pte;
1289 pte_t *pte;
1290 swp_entry_t entry;
1291
1292 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1293 again:
1294 init_rss_vec(rss);
1295 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1296 pte = start_pte;
1297 flush_tlb_batched_pending(mm);
1298 arch_enter_lazy_mmu_mode();
1299 do {
1300 pte_t ptent = *pte;
1301 if (pte_none(ptent))
1302 continue;
1303
1304 if (pte_present(ptent)) {
1305 struct page *page;
1306
1307 page = _vm_normal_page(vma, addr, ptent, true);
1308 if (unlikely(details) && page) {
1309 /*
1310 * unmap_shared_mapping_pages() wants to
1311 * invalidate cache without truncating:
1312 * unmap shared but keep private pages.
1313 */
1314 if (details->check_mapping &&
1315 details->check_mapping != page_rmapping(page))
1316 continue;
1317 }
1318 ptent = ptep_get_and_clear_full(mm, addr, pte,
1319 tlb->fullmm);
1320 tlb_remove_tlb_entry(tlb, pte, addr);
1321 if (unlikely(!page))
1322 continue;
1323
1324 if (!PageAnon(page)) {
1325 if (pte_dirty(ptent)) {
1326 force_flush = 1;
1327 set_page_dirty(page);
1328 }
1329 if (pte_young(ptent) &&
1330 likely(!(vma->vm_flags & VM_SEQ_READ)))
1331 mark_page_accessed(page);
1332 }
1333 rss[mm_counter(page)]--;
1334 page_remove_rmap(page, false);
1335 if (unlikely(page_mapcount(page) < 0))
1336 print_bad_pte(vma, addr, ptent, page);
1337 if (unlikely(__tlb_remove_page(tlb, page))) {
1338 force_flush = 1;
1339 addr += PAGE_SIZE;
1340 break;
1341 }
1342 continue;
1343 }
1344
1345 entry = pte_to_swp_entry(ptent);
1346 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1347 struct page *page = device_private_entry_to_page(entry);
1348
1349 if (unlikely(details && details->check_mapping)) {
1350 /*
1351 * unmap_shared_mapping_pages() wants to
1352 * invalidate cache without truncating:
1353 * unmap shared but keep private pages.
1354 */
1355 if (details->check_mapping !=
1356 page_rmapping(page))
1357 continue;
1358 }
1359
1360 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1361 rss[mm_counter(page)]--;
1362 page_remove_rmap(page, false);
1363 put_page(page);
1364 continue;
1365 }
1366
1367 /* If details->check_mapping, we leave swap entries. */
1368 if (unlikely(details))
1369 continue;
1370
1371 entry = pte_to_swp_entry(ptent);
1372 if (!non_swap_entry(entry))
1373 rss[MM_SWAPENTS]--;
1374 else if (is_migration_entry(entry)) {
1375 struct page *page;
1376
1377 page = migration_entry_to_page(entry);
1378 rss[mm_counter(page)]--;
1379 }
1380 if (unlikely(!free_swap_and_cache(entry)))
1381 print_bad_pte(vma, addr, ptent, NULL);
1382 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1383 } while (pte++, addr += PAGE_SIZE, addr != end);
1384
1385 add_mm_rss_vec(mm, rss);
1386 arch_leave_lazy_mmu_mode();
1387
1388 /* Do the actual TLB flush before dropping ptl */
1389 if (force_flush)
1390 tlb_flush_mmu_tlbonly(tlb);
1391 pte_unmap_unlock(start_pte, ptl);
1392
1393 /*
1394 * If we forced a TLB flush (either due to running out of
1395 * batch buffers or because we needed to flush dirty TLB
1396 * entries before releasing the ptl), free the batched
1397 * memory too. Restart if we didn't do everything.
1398 */
1399 if (force_flush) {
1400 force_flush = 0;
1401 tlb_flush_mmu_free(tlb);
1402 if (addr != end)
1403 goto again;
1404 }
1405
1406 return addr;
1407 }
1408
1409 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1410 struct vm_area_struct *vma, pud_t *pud,
1411 unsigned long addr, unsigned long end,
1412 struct zap_details *details)
1413 {
1414 pmd_t *pmd;
1415 unsigned long next;
1416
1417 pmd = pmd_offset(pud, addr);
1418 do {
1419 next = pmd_addr_end(addr, end);
1420 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1421 if (next - addr != HPAGE_PMD_SIZE) {
1422 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1423 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1424 __split_huge_pmd(vma, pmd, addr, false, NULL);
1425 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1426 goto next;
1427 /* fall through */
1428 }
1429 /*
1430 * Here there can be other concurrent MADV_DONTNEED or
1431 * trans huge page faults running, and if the pmd is
1432 * none or trans huge it can change under us. This is
1433 * because MADV_DONTNEED holds the mmap_sem in read
1434 * mode.
1435 */
1436 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1437 goto next;
1438 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1439 next:
1440 cond_resched();
1441 } while (pmd++, addr = next, addr != end);
1442
1443 return addr;
1444 }
1445
1446 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1447 struct vm_area_struct *vma, p4d_t *p4d,
1448 unsigned long addr, unsigned long end,
1449 struct zap_details *details)
1450 {
1451 pud_t *pud;
1452 unsigned long next;
1453
1454 pud = pud_offset(p4d, addr);
1455 do {
1456 next = pud_addr_end(addr, end);
1457 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1458 if (next - addr != HPAGE_PUD_SIZE) {
1459 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1460 split_huge_pud(vma, pud, addr);
1461 } else if (zap_huge_pud(tlb, vma, pud, addr))
1462 goto next;
1463 /* fall through */
1464 }
1465 if (pud_none_or_clear_bad(pud))
1466 continue;
1467 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1468 next:
1469 cond_resched();
1470 } while (pud++, addr = next, addr != end);
1471
1472 return addr;
1473 }
1474
1475 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1476 struct vm_area_struct *vma, pgd_t *pgd,
1477 unsigned long addr, unsigned long end,
1478 struct zap_details *details)
1479 {
1480 p4d_t *p4d;
1481 unsigned long next;
1482
1483 p4d = p4d_offset(pgd, addr);
1484 do {
1485 next = p4d_addr_end(addr, end);
1486 if (p4d_none_or_clear_bad(p4d))
1487 continue;
1488 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1489 } while (p4d++, addr = next, addr != end);
1490
1491 return addr;
1492 }
1493
1494 void unmap_page_range(struct mmu_gather *tlb,
1495 struct vm_area_struct *vma,
1496 unsigned long addr, unsigned long end,
1497 struct zap_details *details)
1498 {
1499 pgd_t *pgd;
1500 unsigned long next;
1501
1502 BUG_ON(addr >= end);
1503 tlb_start_vma(tlb, vma);
1504 pgd = pgd_offset(vma->vm_mm, addr);
1505 do {
1506 next = pgd_addr_end(addr, end);
1507 if (pgd_none_or_clear_bad(pgd))
1508 continue;
1509 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1510 } while (pgd++, addr = next, addr != end);
1511 tlb_end_vma(tlb, vma);
1512 }
1513
1514
1515 static void unmap_single_vma(struct mmu_gather *tlb,
1516 struct vm_area_struct *vma, unsigned long start_addr,
1517 unsigned long end_addr,
1518 struct zap_details *details)
1519 {
1520 unsigned long start = max(vma->vm_start, start_addr);
1521 unsigned long end;
1522
1523 if (start >= vma->vm_end)
1524 return;
1525 end = min(vma->vm_end, end_addr);
1526 if (end <= vma->vm_start)
1527 return;
1528
1529 if (vma->vm_file)
1530 uprobe_munmap(vma, start, end);
1531
1532 if (unlikely(vma->vm_flags & VM_PFNMAP))
1533 untrack_pfn(vma, 0, 0);
1534
1535 if (start != end) {
1536 if (unlikely(is_vm_hugetlb_page(vma))) {
1537 /*
1538 * It is undesirable to test vma->vm_file as it
1539 * should be non-null for valid hugetlb area.
1540 * However, vm_file will be NULL in the error
1541 * cleanup path of mmap_region. When
1542 * hugetlbfs ->mmap method fails,
1543 * mmap_region() nullifies vma->vm_file
1544 * before calling this function to clean up.
1545 * Since no pte has actually been setup, it is
1546 * safe to do nothing in this case.
1547 */
1548 if (vma->vm_file) {
1549 i_mmap_lock_write(vma->vm_file->f_mapping);
1550 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1551 i_mmap_unlock_write(vma->vm_file->f_mapping);
1552 }
1553 } else
1554 unmap_page_range(tlb, vma, start, end, details);
1555 }
1556 }
1557
1558 /**
1559 * unmap_vmas - unmap a range of memory covered by a list of vma's
1560 * @tlb: address of the caller's struct mmu_gather
1561 * @vma: the starting vma
1562 * @start_addr: virtual address at which to start unmapping
1563 * @end_addr: virtual address at which to end unmapping
1564 *
1565 * Unmap all pages in the vma list.
1566 *
1567 * Only addresses between `start' and `end' will be unmapped.
1568 *
1569 * The VMA list must be sorted in ascending virtual address order.
1570 *
1571 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572 * range after unmap_vmas() returns. So the only responsibility here is to
1573 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574 * drops the lock and schedules.
1575 */
1576 void unmap_vmas(struct mmu_gather *tlb,
1577 struct vm_area_struct *vma, unsigned long start_addr,
1578 unsigned long end_addr)
1579 {
1580 struct mm_struct *mm = vma->vm_mm;
1581
1582 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1583 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1584 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1585 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1586 }
1587
1588 /**
1589 * zap_page_range - remove user pages in a given range
1590 * @vma: vm_area_struct holding the applicable pages
1591 * @start: starting address of pages to zap
1592 * @size: number of bytes to zap
1593 *
1594 * Caller must protect the VMA list
1595 */
1596 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1597 unsigned long size)
1598 {
1599 struct mm_struct *mm = vma->vm_mm;
1600 struct mmu_gather tlb;
1601 unsigned long end = start + size;
1602
1603 lru_add_drain();
1604 tlb_gather_mmu(&tlb, mm, start, end);
1605 update_hiwater_rss(mm);
1606 mmu_notifier_invalidate_range_start(mm, start, end);
1607 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1608 unmap_single_vma(&tlb, vma, start, end, NULL);
1609
1610 /*
1611 * zap_page_range does not specify whether mmap_sem should be
1612 * held for read or write. That allows parallel zap_page_range
1613 * operations to unmap a PTE and defer a flush meaning that
1614 * this call observes pte_none and fails to flush the TLB.
1615 * Rather than adding a complex API, ensure that no stale
1616 * TLB entries exist when this call returns.
1617 */
1618 flush_tlb_range(vma, start, end);
1619 }
1620
1621 mmu_notifier_invalidate_range_end(mm, start, end);
1622 tlb_finish_mmu(&tlb, start, end);
1623 }
1624
1625 /**
1626 * zap_page_range_single - remove user pages in a given range
1627 * @vma: vm_area_struct holding the applicable pages
1628 * @address: starting address of pages to zap
1629 * @size: number of bytes to zap
1630 * @details: details of shared cache invalidation
1631 *
1632 * The range must fit into one VMA.
1633 */
1634 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long size, struct zap_details *details)
1636 {
1637 struct mm_struct *mm = vma->vm_mm;
1638 struct mmu_gather tlb;
1639 unsigned long end = address + size;
1640
1641 lru_add_drain();
1642 tlb_gather_mmu(&tlb, mm, address, end);
1643 update_hiwater_rss(mm);
1644 mmu_notifier_invalidate_range_start(mm, address, end);
1645 unmap_single_vma(&tlb, vma, address, end, details);
1646 mmu_notifier_invalidate_range_end(mm, address, end);
1647 tlb_finish_mmu(&tlb, address, end);
1648 }
1649
1650 /**
1651 * zap_vma_ptes - remove ptes mapping the vma
1652 * @vma: vm_area_struct holding ptes to be zapped
1653 * @address: starting address of pages to zap
1654 * @size: number of bytes to zap
1655 *
1656 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 *
1658 * The entire address range must be fully contained within the vma.
1659 *
1660 * Returns 0 if successful.
1661 */
1662 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1663 unsigned long size)
1664 {
1665 if (address < vma->vm_start || address + size > vma->vm_end ||
1666 !(vma->vm_flags & VM_PFNMAP))
1667 return -1;
1668 zap_page_range_single(vma, address, size, NULL);
1669 return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1672
1673 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1674 spinlock_t **ptl)
1675 {
1676 pgd_t *pgd;
1677 p4d_t *p4d;
1678 pud_t *pud;
1679 pmd_t *pmd;
1680
1681 pgd = pgd_offset(mm, addr);
1682 p4d = p4d_alloc(mm, pgd, addr);
1683 if (!p4d)
1684 return NULL;
1685 pud = pud_alloc(mm, p4d, addr);
1686 if (!pud)
1687 return NULL;
1688 pmd = pmd_alloc(mm, pud, addr);
1689 if (!pmd)
1690 return NULL;
1691
1692 VM_BUG_ON(pmd_trans_huge(*pmd));
1693 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1694 }
1695
1696 /*
1697 * This is the old fallback for page remapping.
1698 *
1699 * For historical reasons, it only allows reserved pages. Only
1700 * old drivers should use this, and they needed to mark their
1701 * pages reserved for the old functions anyway.
1702 */
1703 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1704 struct page *page, pgprot_t prot)
1705 {
1706 struct mm_struct *mm = vma->vm_mm;
1707 int retval;
1708 pte_t *pte;
1709 spinlock_t *ptl;
1710
1711 retval = -EINVAL;
1712 if (PageAnon(page))
1713 goto out;
1714 retval = -ENOMEM;
1715 flush_dcache_page(page);
1716 pte = get_locked_pte(mm, addr, &ptl);
1717 if (!pte)
1718 goto out;
1719 retval = -EBUSY;
1720 if (!pte_none(*pte))
1721 goto out_unlock;
1722
1723 /* Ok, finally just insert the thing.. */
1724 get_page(page);
1725 inc_mm_counter_fast(mm, mm_counter_file(page));
1726 page_add_file_rmap(page, false);
1727 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1728
1729 retval = 0;
1730 pte_unmap_unlock(pte, ptl);
1731 return retval;
1732 out_unlock:
1733 pte_unmap_unlock(pte, ptl);
1734 out:
1735 return retval;
1736 }
1737
1738 /**
1739 * vm_insert_page - insert single page into user vma
1740 * @vma: user vma to map to
1741 * @addr: target user address of this page
1742 * @page: source kernel page
1743 *
1744 * This allows drivers to insert individual pages they've allocated
1745 * into a user vma.
1746 *
1747 * The page has to be a nice clean _individual_ kernel allocation.
1748 * If you allocate a compound page, you need to have marked it as
1749 * such (__GFP_COMP), or manually just split the page up yourself
1750 * (see split_page()).
1751 *
1752 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753 * took an arbitrary page protection parameter. This doesn't allow
1754 * that. Your vma protection will have to be set up correctly, which
1755 * means that if you want a shared writable mapping, you'd better
1756 * ask for a shared writable mapping!
1757 *
1758 * The page does not need to be reserved.
1759 *
1760 * Usually this function is called from f_op->mmap() handler
1761 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763 * function from other places, for example from page-fault handler.
1764 */
1765 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1766 struct page *page)
1767 {
1768 if (addr < vma->vm_start || addr >= vma->vm_end)
1769 return -EFAULT;
1770 if (!page_count(page))
1771 return -EINVAL;
1772 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1773 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1774 BUG_ON(vma->vm_flags & VM_PFNMAP);
1775 vma->vm_flags |= VM_MIXEDMAP;
1776 }
1777 return insert_page(vma, addr, page, vma->vm_page_prot);
1778 }
1779 EXPORT_SYMBOL(vm_insert_page);
1780
1781 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1782 pfn_t pfn, pgprot_t prot, bool mkwrite)
1783 {
1784 struct mm_struct *mm = vma->vm_mm;
1785 int retval;
1786 pte_t *pte, entry;
1787 spinlock_t *ptl;
1788
1789 retval = -ENOMEM;
1790 pte = get_locked_pte(mm, addr, &ptl);
1791 if (!pte)
1792 goto out;
1793 retval = -EBUSY;
1794 if (!pte_none(*pte)) {
1795 if (mkwrite) {
1796 /*
1797 * For read faults on private mappings the PFN passed
1798 * in may not match the PFN we have mapped if the
1799 * mapped PFN is a writeable COW page. In the mkwrite
1800 * case we are creating a writable PTE for a shared
1801 * mapping and we expect the PFNs to match.
1802 */
1803 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1804 goto out_unlock;
1805 entry = *pte;
1806 goto out_mkwrite;
1807 } else
1808 goto out_unlock;
1809 }
1810
1811 /* Ok, finally just insert the thing.. */
1812 if (pfn_t_devmap(pfn))
1813 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1814 else
1815 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1816
1817 out_mkwrite:
1818 if (mkwrite) {
1819 entry = pte_mkyoung(entry);
1820 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1821 }
1822
1823 set_pte_at(mm, addr, pte, entry);
1824 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1825
1826 retval = 0;
1827 out_unlock:
1828 pte_unmap_unlock(pte, ptl);
1829 out:
1830 return retval;
1831 }
1832
1833 /**
1834 * vm_insert_pfn - insert single pfn into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @pfn: source kernel pfn
1838 *
1839 * Similar to vm_insert_page, this allows drivers to insert individual pages
1840 * they've allocated into a user vma. Same comments apply.
1841 *
1842 * This function should only be called from a vm_ops->fault handler, and
1843 * in that case the handler should return NULL.
1844 *
1845 * vma cannot be a COW mapping.
1846 *
1847 * As this is called only for pages that do not currently exist, we
1848 * do not need to flush old virtual caches or the TLB.
1849 */
1850 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1851 unsigned long pfn)
1852 {
1853 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1854 }
1855 EXPORT_SYMBOL(vm_insert_pfn);
1856
1857 /**
1858 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859 * @vma: user vma to map to
1860 * @addr: target user address of this page
1861 * @pfn: source kernel pfn
1862 * @pgprot: pgprot flags for the inserted page
1863 *
1864 * This is exactly like vm_insert_pfn, except that it allows drivers to
1865 * to override pgprot on a per-page basis.
1866 *
1867 * This only makes sense for IO mappings, and it makes no sense for
1868 * cow mappings. In general, using multiple vmas is preferable;
1869 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1870 * impractical.
1871 */
1872 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1873 unsigned long pfn, pgprot_t pgprot)
1874 {
1875 int ret;
1876 /*
1877 * Technically, architectures with pte_special can avoid all these
1878 * restrictions (same for remap_pfn_range). However we would like
1879 * consistency in testing and feature parity among all, so we should
1880 * try to keep these invariants in place for everybody.
1881 */
1882 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1883 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1884 (VM_PFNMAP|VM_MIXEDMAP));
1885 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1886 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1887
1888 if (addr < vma->vm_start || addr >= vma->vm_end)
1889 return -EFAULT;
1890
1891 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1892
1893 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1894 false);
1895
1896 return ret;
1897 }
1898 EXPORT_SYMBOL(vm_insert_pfn_prot);
1899
1900 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1901 pfn_t pfn, bool mkwrite)
1902 {
1903 pgprot_t pgprot = vma->vm_page_prot;
1904
1905 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1906
1907 if (addr < vma->vm_start || addr >= vma->vm_end)
1908 return -EFAULT;
1909
1910 track_pfn_insert(vma, &pgprot, pfn);
1911
1912 /*
1913 * If we don't have pte special, then we have to use the pfn_valid()
1914 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1915 * refcount the page if pfn_valid is true (hence insert_page rather
1916 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1917 * without pte special, it would there be refcounted as a normal page.
1918 */
1919 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1920 struct page *page;
1921
1922 /*
1923 * At this point we are committed to insert_page()
1924 * regardless of whether the caller specified flags that
1925 * result in pfn_t_has_page() == false.
1926 */
1927 page = pfn_to_page(pfn_t_to_pfn(pfn));
1928 return insert_page(vma, addr, page, pgprot);
1929 }
1930 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1931 }
1932
1933 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1934 pfn_t pfn)
1935 {
1936 return __vm_insert_mixed(vma, addr, pfn, false);
1937
1938 }
1939 EXPORT_SYMBOL(vm_insert_mixed);
1940
1941 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1942 pfn_t pfn)
1943 {
1944 return __vm_insert_mixed(vma, addr, pfn, true);
1945 }
1946 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1947
1948 /*
1949 * maps a range of physical memory into the requested pages. the old
1950 * mappings are removed. any references to nonexistent pages results
1951 * in null mappings (currently treated as "copy-on-access")
1952 */
1953 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954 unsigned long addr, unsigned long end,
1955 unsigned long pfn, pgprot_t prot)
1956 {
1957 pte_t *pte;
1958 spinlock_t *ptl;
1959
1960 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1961 if (!pte)
1962 return -ENOMEM;
1963 arch_enter_lazy_mmu_mode();
1964 do {
1965 BUG_ON(!pte_none(*pte));
1966 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1967 pfn++;
1968 } while (pte++, addr += PAGE_SIZE, addr != end);
1969 arch_leave_lazy_mmu_mode();
1970 pte_unmap_unlock(pte - 1, ptl);
1971 return 0;
1972 }
1973
1974 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1975 unsigned long addr, unsigned long end,
1976 unsigned long pfn, pgprot_t prot)
1977 {
1978 pmd_t *pmd;
1979 unsigned long next;
1980
1981 pfn -= addr >> PAGE_SHIFT;
1982 pmd = pmd_alloc(mm, pud, addr);
1983 if (!pmd)
1984 return -ENOMEM;
1985 VM_BUG_ON(pmd_trans_huge(*pmd));
1986 do {
1987 next = pmd_addr_end(addr, end);
1988 if (remap_pte_range(mm, pmd, addr, next,
1989 pfn + (addr >> PAGE_SHIFT), prot))
1990 return -ENOMEM;
1991 } while (pmd++, addr = next, addr != end);
1992 return 0;
1993 }
1994
1995 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1996 unsigned long addr, unsigned long end,
1997 unsigned long pfn, pgprot_t prot)
1998 {
1999 pud_t *pud;
2000 unsigned long next;
2001
2002 pfn -= addr >> PAGE_SHIFT;
2003 pud = pud_alloc(mm, p4d, addr);
2004 if (!pud)
2005 return -ENOMEM;
2006 do {
2007 next = pud_addr_end(addr, end);
2008 if (remap_pmd_range(mm, pud, addr, next,
2009 pfn + (addr >> PAGE_SHIFT), prot))
2010 return -ENOMEM;
2011 } while (pud++, addr = next, addr != end);
2012 return 0;
2013 }
2014
2015 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2016 unsigned long addr, unsigned long end,
2017 unsigned long pfn, pgprot_t prot)
2018 {
2019 p4d_t *p4d;
2020 unsigned long next;
2021
2022 pfn -= addr >> PAGE_SHIFT;
2023 p4d = p4d_alloc(mm, pgd, addr);
2024 if (!p4d)
2025 return -ENOMEM;
2026 do {
2027 next = p4d_addr_end(addr, end);
2028 if (remap_pud_range(mm, p4d, addr, next,
2029 pfn + (addr >> PAGE_SHIFT), prot))
2030 return -ENOMEM;
2031 } while (p4d++, addr = next, addr != end);
2032 return 0;
2033 }
2034
2035 /**
2036 * remap_pfn_range - remap kernel memory to userspace
2037 * @vma: user vma to map to
2038 * @addr: target user address to start at
2039 * @pfn: physical address of kernel memory
2040 * @size: size of map area
2041 * @prot: page protection flags for this mapping
2042 *
2043 * Note: this is only safe if the mm semaphore is held when called.
2044 */
2045 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2046 unsigned long pfn, unsigned long size, pgprot_t prot)
2047 {
2048 pgd_t *pgd;
2049 unsigned long next;
2050 unsigned long end = addr + PAGE_ALIGN(size);
2051 struct mm_struct *mm = vma->vm_mm;
2052 unsigned long remap_pfn = pfn;
2053 int err;
2054
2055 /*
2056 * Physically remapped pages are special. Tell the
2057 * rest of the world about it:
2058 * VM_IO tells people not to look at these pages
2059 * (accesses can have side effects).
2060 * VM_PFNMAP tells the core MM that the base pages are just
2061 * raw PFN mappings, and do not have a "struct page" associated
2062 * with them.
2063 * VM_DONTEXPAND
2064 * Disable vma merging and expanding with mremap().
2065 * VM_DONTDUMP
2066 * Omit vma from core dump, even when VM_IO turned off.
2067 *
2068 * There's a horrible special case to handle copy-on-write
2069 * behaviour that some programs depend on. We mark the "original"
2070 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2071 * See vm_normal_page() for details.
2072 */
2073 if (is_cow_mapping(vma->vm_flags)) {
2074 if (addr != vma->vm_start || end != vma->vm_end)
2075 return -EINVAL;
2076 vma->vm_pgoff = pfn;
2077 }
2078
2079 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2080 if (err)
2081 return -EINVAL;
2082
2083 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2084
2085 BUG_ON(addr >= end);
2086 pfn -= addr >> PAGE_SHIFT;
2087 pgd = pgd_offset(mm, addr);
2088 flush_cache_range(vma, addr, end);
2089 do {
2090 next = pgd_addr_end(addr, end);
2091 err = remap_p4d_range(mm, pgd, addr, next,
2092 pfn + (addr >> PAGE_SHIFT), prot);
2093 if (err)
2094 break;
2095 } while (pgd++, addr = next, addr != end);
2096
2097 if (err)
2098 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2099
2100 return err;
2101 }
2102 EXPORT_SYMBOL(remap_pfn_range);
2103
2104 /**
2105 * vm_iomap_memory - remap memory to userspace
2106 * @vma: user vma to map to
2107 * @start: start of area
2108 * @len: size of area
2109 *
2110 * This is a simplified io_remap_pfn_range() for common driver use. The
2111 * driver just needs to give us the physical memory range to be mapped,
2112 * we'll figure out the rest from the vma information.
2113 *
2114 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2115 * whatever write-combining details or similar.
2116 */
2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2118 {
2119 unsigned long vm_len, pfn, pages;
2120
2121 /* Check that the physical memory area passed in looks valid */
2122 if (start + len < start)
2123 return -EINVAL;
2124 /*
2125 * You *really* shouldn't map things that aren't page-aligned,
2126 * but we've historically allowed it because IO memory might
2127 * just have smaller alignment.
2128 */
2129 len += start & ~PAGE_MASK;
2130 pfn = start >> PAGE_SHIFT;
2131 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2132 if (pfn + pages < pfn)
2133 return -EINVAL;
2134
2135 /* We start the mapping 'vm_pgoff' pages into the area */
2136 if (vma->vm_pgoff > pages)
2137 return -EINVAL;
2138 pfn += vma->vm_pgoff;
2139 pages -= vma->vm_pgoff;
2140
2141 /* Can we fit all of the mapping? */
2142 vm_len = vma->vm_end - vma->vm_start;
2143 if (vm_len >> PAGE_SHIFT > pages)
2144 return -EINVAL;
2145
2146 /* Ok, let it rip */
2147 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2148 }
2149 EXPORT_SYMBOL(vm_iomap_memory);
2150
2151 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2152 unsigned long addr, unsigned long end,
2153 pte_fn_t fn, void *data)
2154 {
2155 pte_t *pte;
2156 int err;
2157 pgtable_t token;
2158 spinlock_t *uninitialized_var(ptl);
2159
2160 pte = (mm == &init_mm) ?
2161 pte_alloc_kernel(pmd, addr) :
2162 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163 if (!pte)
2164 return -ENOMEM;
2165
2166 BUG_ON(pmd_huge(*pmd));
2167
2168 arch_enter_lazy_mmu_mode();
2169
2170 token = pmd_pgtable(*pmd);
2171
2172 do {
2173 err = fn(pte++, token, addr, data);
2174 if (err)
2175 break;
2176 } while (addr += PAGE_SIZE, addr != end);
2177
2178 arch_leave_lazy_mmu_mode();
2179
2180 if (mm != &init_mm)
2181 pte_unmap_unlock(pte-1, ptl);
2182 return err;
2183 }
2184
2185 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2186 unsigned long addr, unsigned long end,
2187 pte_fn_t fn, void *data)
2188 {
2189 pmd_t *pmd;
2190 unsigned long next;
2191 int err;
2192
2193 BUG_ON(pud_huge(*pud));
2194
2195 pmd = pmd_alloc(mm, pud, addr);
2196 if (!pmd)
2197 return -ENOMEM;
2198 do {
2199 next = pmd_addr_end(addr, end);
2200 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2201 if (err)
2202 break;
2203 } while (pmd++, addr = next, addr != end);
2204 return err;
2205 }
2206
2207 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2208 unsigned long addr, unsigned long end,
2209 pte_fn_t fn, void *data)
2210 {
2211 pud_t *pud;
2212 unsigned long next;
2213 int err;
2214
2215 pud = pud_alloc(mm, p4d, addr);
2216 if (!pud)
2217 return -ENOMEM;
2218 do {
2219 next = pud_addr_end(addr, end);
2220 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2221 if (err)
2222 break;
2223 } while (pud++, addr = next, addr != end);
2224 return err;
2225 }
2226
2227 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2228 unsigned long addr, unsigned long end,
2229 pte_fn_t fn, void *data)
2230 {
2231 p4d_t *p4d;
2232 unsigned long next;
2233 int err;
2234
2235 p4d = p4d_alloc(mm, pgd, addr);
2236 if (!p4d)
2237 return -ENOMEM;
2238 do {
2239 next = p4d_addr_end(addr, end);
2240 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2241 if (err)
2242 break;
2243 } while (p4d++, addr = next, addr != end);
2244 return err;
2245 }
2246
2247 /*
2248 * Scan a region of virtual memory, filling in page tables as necessary
2249 * and calling a provided function on each leaf page table.
2250 */
2251 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2252 unsigned long size, pte_fn_t fn, void *data)
2253 {
2254 pgd_t *pgd;
2255 unsigned long next;
2256 unsigned long end = addr + size;
2257 int err;
2258
2259 if (WARN_ON(addr >= end))
2260 return -EINVAL;
2261
2262 pgd = pgd_offset(mm, addr);
2263 do {
2264 next = pgd_addr_end(addr, end);
2265 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2266 if (err)
2267 break;
2268 } while (pgd++, addr = next, addr != end);
2269
2270 return err;
2271 }
2272 EXPORT_SYMBOL_GPL(apply_to_page_range);
2273
2274 /*
2275 * handle_pte_fault chooses page fault handler according to an entry which was
2276 * read non-atomically. Before making any commitment, on those architectures
2277 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2278 * parts, do_swap_page must check under lock before unmapping the pte and
2279 * proceeding (but do_wp_page is only called after already making such a check;
2280 * and do_anonymous_page can safely check later on).
2281 */
2282 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2283 pte_t *page_table, pte_t orig_pte)
2284 {
2285 int same = 1;
2286 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2287 if (sizeof(pte_t) > sizeof(unsigned long)) {
2288 spinlock_t *ptl = pte_lockptr(mm, pmd);
2289 spin_lock(ptl);
2290 same = pte_same(*page_table, orig_pte);
2291 spin_unlock(ptl);
2292 }
2293 #endif
2294 pte_unmap(page_table);
2295 return same;
2296 }
2297
2298 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2299 {
2300 debug_dma_assert_idle(src);
2301
2302 /*
2303 * If the source page was a PFN mapping, we don't have
2304 * a "struct page" for it. We do a best-effort copy by
2305 * just copying from the original user address. If that
2306 * fails, we just zero-fill it. Live with it.
2307 */
2308 if (unlikely(!src)) {
2309 void *kaddr = kmap_atomic(dst);
2310 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2311
2312 /*
2313 * This really shouldn't fail, because the page is there
2314 * in the page tables. But it might just be unreadable,
2315 * in which case we just give up and fill the result with
2316 * zeroes.
2317 */
2318 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2319 clear_page(kaddr);
2320 kunmap_atomic(kaddr);
2321 flush_dcache_page(dst);
2322 } else
2323 copy_user_highpage(dst, src, va, vma);
2324 }
2325
2326 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2327 {
2328 struct file *vm_file = vma->vm_file;
2329
2330 if (vm_file)
2331 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2332
2333 /*
2334 * Special mappings (e.g. VDSO) do not have any file so fake
2335 * a default GFP_KERNEL for them.
2336 */
2337 return GFP_KERNEL;
2338 }
2339
2340 /*
2341 * Notify the address space that the page is about to become writable so that
2342 * it can prohibit this or wait for the page to get into an appropriate state.
2343 *
2344 * We do this without the lock held, so that it can sleep if it needs to.
2345 */
2346 static int do_page_mkwrite(struct vm_fault *vmf)
2347 {
2348 int ret;
2349 struct page *page = vmf->page;
2350 unsigned int old_flags = vmf->flags;
2351
2352 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2353
2354 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2355 /* Restore original flags so that caller is not surprised */
2356 vmf->flags = old_flags;
2357 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2358 return ret;
2359 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2360 lock_page(page);
2361 if (!page->mapping) {
2362 unlock_page(page);
2363 return 0; /* retry */
2364 }
2365 ret |= VM_FAULT_LOCKED;
2366 } else
2367 VM_BUG_ON_PAGE(!PageLocked(page), page);
2368 return ret;
2369 }
2370
2371 /*
2372 * Handle dirtying of a page in shared file mapping on a write fault.
2373 *
2374 * The function expects the page to be locked and unlocks it.
2375 */
2376 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2377 struct page *page)
2378 {
2379 struct address_space *mapping;
2380 bool dirtied;
2381 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2382
2383 dirtied = set_page_dirty(page);
2384 VM_BUG_ON_PAGE(PageAnon(page), page);
2385 /*
2386 * Take a local copy of the address_space - page.mapping may be zeroed
2387 * by truncate after unlock_page(). The address_space itself remains
2388 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2389 * release semantics to prevent the compiler from undoing this copying.
2390 */
2391 mapping = page_rmapping(page);
2392 unlock_page(page);
2393
2394 if ((dirtied || page_mkwrite) && mapping) {
2395 /*
2396 * Some device drivers do not set page.mapping
2397 * but still dirty their pages
2398 */
2399 balance_dirty_pages_ratelimited(mapping);
2400 }
2401
2402 if (!page_mkwrite)
2403 file_update_time(vma->vm_file);
2404 }
2405
2406 /*
2407 * Handle write page faults for pages that can be reused in the current vma
2408 *
2409 * This can happen either due to the mapping being with the VM_SHARED flag,
2410 * or due to us being the last reference standing to the page. In either
2411 * case, all we need to do here is to mark the page as writable and update
2412 * any related book-keeping.
2413 */
2414 static inline void wp_page_reuse(struct vm_fault *vmf)
2415 __releases(vmf->ptl)
2416 {
2417 struct vm_area_struct *vma = vmf->vma;
2418 struct page *page = vmf->page;
2419 pte_t entry;
2420 /*
2421 * Clear the pages cpupid information as the existing
2422 * information potentially belongs to a now completely
2423 * unrelated process.
2424 */
2425 if (page)
2426 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2427
2428 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2429 entry = pte_mkyoung(vmf->orig_pte);
2430 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2431 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2432 update_mmu_cache(vma, vmf->address, vmf->pte);
2433 pte_unmap_unlock(vmf->pte, vmf->ptl);
2434 }
2435
2436 /*
2437 * Handle the case of a page which we actually need to copy to a new page.
2438 *
2439 * Called with mmap_sem locked and the old page referenced, but
2440 * without the ptl held.
2441 *
2442 * High level logic flow:
2443 *
2444 * - Allocate a page, copy the content of the old page to the new one.
2445 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2446 * - Take the PTL. If the pte changed, bail out and release the allocated page
2447 * - If the pte is still the way we remember it, update the page table and all
2448 * relevant references. This includes dropping the reference the page-table
2449 * held to the old page, as well as updating the rmap.
2450 * - In any case, unlock the PTL and drop the reference we took to the old page.
2451 */
2452 static int wp_page_copy(struct vm_fault *vmf)
2453 {
2454 struct vm_area_struct *vma = vmf->vma;
2455 struct mm_struct *mm = vma->vm_mm;
2456 struct page *old_page = vmf->page;
2457 struct page *new_page = NULL;
2458 pte_t entry;
2459 int page_copied = 0;
2460 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2461 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2462 struct mem_cgroup *memcg;
2463
2464 if (unlikely(anon_vma_prepare(vma)))
2465 goto oom;
2466
2467 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2468 new_page = alloc_zeroed_user_highpage_movable(vma,
2469 vmf->address);
2470 if (!new_page)
2471 goto oom;
2472 } else {
2473 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2474 vmf->address);
2475 if (!new_page)
2476 goto oom;
2477 cow_user_page(new_page, old_page, vmf->address, vma);
2478 }
2479
2480 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2481 goto oom_free_new;
2482
2483 __SetPageUptodate(new_page);
2484
2485 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486
2487 /*
2488 * Re-check the pte - we dropped the lock
2489 */
2490 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2491 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2492 if (old_page) {
2493 if (!PageAnon(old_page)) {
2494 dec_mm_counter_fast(mm,
2495 mm_counter_file(old_page));
2496 inc_mm_counter_fast(mm, MM_ANONPAGES);
2497 }
2498 } else {
2499 inc_mm_counter_fast(mm, MM_ANONPAGES);
2500 }
2501 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2502 entry = mk_pte(new_page, vma->vm_page_prot);
2503 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2504 /*
2505 * Clear the pte entry and flush it first, before updating the
2506 * pte with the new entry. This will avoid a race condition
2507 * seen in the presence of one thread doing SMC and another
2508 * thread doing COW.
2509 */
2510 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2511 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2512 mem_cgroup_commit_charge(new_page, memcg, false, false);
2513 lru_cache_add_active_or_unevictable(new_page, vma);
2514 /*
2515 * We call the notify macro here because, when using secondary
2516 * mmu page tables (such as kvm shadow page tables), we want the
2517 * new page to be mapped directly into the secondary page table.
2518 */
2519 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2520 update_mmu_cache(vma, vmf->address, vmf->pte);
2521 if (old_page) {
2522 /*
2523 * Only after switching the pte to the new page may
2524 * we remove the mapcount here. Otherwise another
2525 * process may come and find the rmap count decremented
2526 * before the pte is switched to the new page, and
2527 * "reuse" the old page writing into it while our pte
2528 * here still points into it and can be read by other
2529 * threads.
2530 *
2531 * The critical issue is to order this
2532 * page_remove_rmap with the ptp_clear_flush above.
2533 * Those stores are ordered by (if nothing else,)
2534 * the barrier present in the atomic_add_negative
2535 * in page_remove_rmap.
2536 *
2537 * Then the TLB flush in ptep_clear_flush ensures that
2538 * no process can access the old page before the
2539 * decremented mapcount is visible. And the old page
2540 * cannot be reused until after the decremented
2541 * mapcount is visible. So transitively, TLBs to
2542 * old page will be flushed before it can be reused.
2543 */
2544 page_remove_rmap(old_page, false);
2545 }
2546
2547 /* Free the old page.. */
2548 new_page = old_page;
2549 page_copied = 1;
2550 } else {
2551 mem_cgroup_cancel_charge(new_page, memcg, false);
2552 }
2553
2554 if (new_page)
2555 put_page(new_page);
2556
2557 pte_unmap_unlock(vmf->pte, vmf->ptl);
2558 /*
2559 * No need to double call mmu_notifier->invalidate_range() callback as
2560 * the above ptep_clear_flush_notify() did already call it.
2561 */
2562 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2563 if (old_page) {
2564 /*
2565 * Don't let another task, with possibly unlocked vma,
2566 * keep the mlocked page.
2567 */
2568 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2569 lock_page(old_page); /* LRU manipulation */
2570 if (PageMlocked(old_page))
2571 munlock_vma_page(old_page);
2572 unlock_page(old_page);
2573 }
2574 put_page(old_page);
2575 }
2576 return page_copied ? VM_FAULT_WRITE : 0;
2577 oom_free_new:
2578 put_page(new_page);
2579 oom:
2580 if (old_page)
2581 put_page(old_page);
2582 return VM_FAULT_OOM;
2583 }
2584
2585 /**
2586 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2587 * writeable once the page is prepared
2588 *
2589 * @vmf: structure describing the fault
2590 *
2591 * This function handles all that is needed to finish a write page fault in a
2592 * shared mapping due to PTE being read-only once the mapped page is prepared.
2593 * It handles locking of PTE and modifying it. The function returns
2594 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2595 * lock.
2596 *
2597 * The function expects the page to be locked or other protection against
2598 * concurrent faults / writeback (such as DAX radix tree locks).
2599 */
2600 int finish_mkwrite_fault(struct vm_fault *vmf)
2601 {
2602 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2603 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2604 &vmf->ptl);
2605 /*
2606 * We might have raced with another page fault while we released the
2607 * pte_offset_map_lock.
2608 */
2609 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610 pte_unmap_unlock(vmf->pte, vmf->ptl);
2611 return VM_FAULT_NOPAGE;
2612 }
2613 wp_page_reuse(vmf);
2614 return 0;
2615 }
2616
2617 /*
2618 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2619 * mapping
2620 */
2621 static int wp_pfn_shared(struct vm_fault *vmf)
2622 {
2623 struct vm_area_struct *vma = vmf->vma;
2624
2625 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2626 int ret;
2627
2628 pte_unmap_unlock(vmf->pte, vmf->ptl);
2629 vmf->flags |= FAULT_FLAG_MKWRITE;
2630 ret = vma->vm_ops->pfn_mkwrite(vmf);
2631 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2632 return ret;
2633 return finish_mkwrite_fault(vmf);
2634 }
2635 wp_page_reuse(vmf);
2636 return VM_FAULT_WRITE;
2637 }
2638
2639 static int wp_page_shared(struct vm_fault *vmf)
2640 __releases(vmf->ptl)
2641 {
2642 struct vm_area_struct *vma = vmf->vma;
2643
2644 get_page(vmf->page);
2645
2646 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2647 int tmp;
2648
2649 pte_unmap_unlock(vmf->pte, vmf->ptl);
2650 tmp = do_page_mkwrite(vmf);
2651 if (unlikely(!tmp || (tmp &
2652 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2653 put_page(vmf->page);
2654 return tmp;
2655 }
2656 tmp = finish_mkwrite_fault(vmf);
2657 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2658 unlock_page(vmf->page);
2659 put_page(vmf->page);
2660 return tmp;
2661 }
2662 } else {
2663 wp_page_reuse(vmf);
2664 lock_page(vmf->page);
2665 }
2666 fault_dirty_shared_page(vma, vmf->page);
2667 put_page(vmf->page);
2668
2669 return VM_FAULT_WRITE;
2670 }
2671
2672 /*
2673 * This routine handles present pages, when users try to write
2674 * to a shared page. It is done by copying the page to a new address
2675 * and decrementing the shared-page counter for the old page.
2676 *
2677 * Note that this routine assumes that the protection checks have been
2678 * done by the caller (the low-level page fault routine in most cases).
2679 * Thus we can safely just mark it writable once we've done any necessary
2680 * COW.
2681 *
2682 * We also mark the page dirty at this point even though the page will
2683 * change only once the write actually happens. This avoids a few races,
2684 * and potentially makes it more efficient.
2685 *
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), with pte both mapped and locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
2689 */
2690 static int do_wp_page(struct vm_fault *vmf)
2691 __releases(vmf->ptl)
2692 {
2693 struct vm_area_struct *vma = vmf->vma;
2694
2695 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2696 if (!vmf->page) {
2697 /*
2698 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2699 * VM_PFNMAP VMA.
2700 *
2701 * We should not cow pages in a shared writeable mapping.
2702 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2703 */
2704 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2705 (VM_WRITE|VM_SHARED))
2706 return wp_pfn_shared(vmf);
2707
2708 pte_unmap_unlock(vmf->pte, vmf->ptl);
2709 return wp_page_copy(vmf);
2710 }
2711
2712 /*
2713 * Take out anonymous pages first, anonymous shared vmas are
2714 * not dirty accountable.
2715 */
2716 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2717 int total_map_swapcount;
2718 if (!trylock_page(vmf->page)) {
2719 get_page(vmf->page);
2720 pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 lock_page(vmf->page);
2722 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2723 vmf->address, &vmf->ptl);
2724 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2725 unlock_page(vmf->page);
2726 pte_unmap_unlock(vmf->pte, vmf->ptl);
2727 put_page(vmf->page);
2728 return 0;
2729 }
2730 put_page(vmf->page);
2731 }
2732 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2733 if (total_map_swapcount == 1) {
2734 /*
2735 * The page is all ours. Move it to
2736 * our anon_vma so the rmap code will
2737 * not search our parent or siblings.
2738 * Protected against the rmap code by
2739 * the page lock.
2740 */
2741 page_move_anon_rmap(vmf->page, vma);
2742 }
2743 unlock_page(vmf->page);
2744 wp_page_reuse(vmf);
2745 return VM_FAULT_WRITE;
2746 }
2747 unlock_page(vmf->page);
2748 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749 (VM_WRITE|VM_SHARED))) {
2750 return wp_page_shared(vmf);
2751 }
2752
2753 /*
2754 * Ok, we need to copy. Oh, well..
2755 */
2756 get_page(vmf->page);
2757
2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 return wp_page_copy(vmf);
2760 }
2761
2762 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2763 unsigned long start_addr, unsigned long end_addr,
2764 struct zap_details *details)
2765 {
2766 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2767 }
2768
2769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2770 struct zap_details *details)
2771 {
2772 struct vm_area_struct *vma;
2773 pgoff_t vba, vea, zba, zea;
2774
2775 vma_interval_tree_foreach(vma, root,
2776 details->first_index, details->last_index) {
2777
2778 vba = vma->vm_pgoff;
2779 vea = vba + vma_pages(vma) - 1;
2780 zba = details->first_index;
2781 if (zba < vba)
2782 zba = vba;
2783 zea = details->last_index;
2784 if (zea > vea)
2785 zea = vea;
2786
2787 unmap_mapping_range_vma(vma,
2788 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2789 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2790 details);
2791 }
2792 }
2793
2794 /**
2795 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796 * address_space corresponding to the specified page range in the underlying
2797 * file.
2798 *
2799 * @mapping: the address space containing mmaps to be unmapped.
2800 * @holebegin: byte in first page to unmap, relative to the start of
2801 * the underlying file. This will be rounded down to a PAGE_SIZE
2802 * boundary. Note that this is different from truncate_pagecache(), which
2803 * must keep the partial page. In contrast, we must get rid of
2804 * partial pages.
2805 * @holelen: size of prospective hole in bytes. This will be rounded
2806 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2807 * end of the file.
2808 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809 * but 0 when invalidating pagecache, don't throw away private data.
2810 */
2811 void unmap_mapping_range(struct address_space *mapping,
2812 loff_t const holebegin, loff_t const holelen, int even_cows)
2813 {
2814 struct zap_details details = { };
2815 pgoff_t hba = holebegin >> PAGE_SHIFT;
2816 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817
2818 /* Check for overflow. */
2819 if (sizeof(holelen) > sizeof(hlen)) {
2820 long long holeend =
2821 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2822 if (holeend & ~(long long)ULONG_MAX)
2823 hlen = ULONG_MAX - hba + 1;
2824 }
2825
2826 details.check_mapping = even_cows ? NULL : mapping;
2827 details.first_index = hba;
2828 details.last_index = hba + hlen - 1;
2829 if (details.last_index < details.first_index)
2830 details.last_index = ULONG_MAX;
2831
2832 i_mmap_lock_write(mapping);
2833 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2834 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2835 i_mmap_unlock_write(mapping);
2836 }
2837 EXPORT_SYMBOL(unmap_mapping_range);
2838
2839 /*
2840 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841 * but allow concurrent faults), and pte mapped but not yet locked.
2842 * We return with pte unmapped and unlocked.
2843 *
2844 * We return with the mmap_sem locked or unlocked in the same cases
2845 * as does filemap_fault().
2846 */
2847 int do_swap_page(struct vm_fault *vmf)
2848 {
2849 struct vm_area_struct *vma = vmf->vma;
2850 struct page *page = NULL, *swapcache = NULL;
2851 struct mem_cgroup *memcg;
2852 struct vma_swap_readahead swap_ra;
2853 swp_entry_t entry;
2854 pte_t pte;
2855 int locked;
2856 int exclusive = 0;
2857 int ret = 0;
2858 bool vma_readahead = swap_use_vma_readahead();
2859
2860 if (vma_readahead) {
2861 page = swap_readahead_detect(vmf, &swap_ra);
2862 swapcache = page;
2863 }
2864
2865 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2866 if (page)
2867 put_page(page);
2868 goto out;
2869 }
2870
2871 entry = pte_to_swp_entry(vmf->orig_pte);
2872 if (unlikely(non_swap_entry(entry))) {
2873 if (is_migration_entry(entry)) {
2874 migration_entry_wait(vma->vm_mm, vmf->pmd,
2875 vmf->address);
2876 } else if (is_device_private_entry(entry)) {
2877 /*
2878 * For un-addressable device memory we call the pgmap
2879 * fault handler callback. The callback must migrate
2880 * the page back to some CPU accessible page.
2881 */
2882 ret = device_private_entry_fault(vma, vmf->address, entry,
2883 vmf->flags, vmf->pmd);
2884 } else if (is_hwpoison_entry(entry)) {
2885 ret = VM_FAULT_HWPOISON;
2886 } else {
2887 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2888 ret = VM_FAULT_SIGBUS;
2889 }
2890 goto out;
2891 }
2892
2893
2894 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2895 if (!page) {
2896 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2897 vmf->address);
2898 swapcache = page;
2899 }
2900
2901 if (!page) {
2902 struct swap_info_struct *si = swp_swap_info(entry);
2903
2904 if (si->flags & SWP_SYNCHRONOUS_IO &&
2905 __swap_count(si, entry) == 1) {
2906 /* skip swapcache */
2907 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2908 if (page) {
2909 __SetPageLocked(page);
2910 __SetPageSwapBacked(page);
2911 set_page_private(page, entry.val);
2912 lru_cache_add_anon(page);
2913 swap_readpage(page, true);
2914 }
2915 } else {
2916 if (vma_readahead)
2917 page = do_swap_page_readahead(entry,
2918 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2919 else
2920 page = swapin_readahead(entry,
2921 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2922 swapcache = page;
2923 }
2924
2925 if (!page) {
2926 /*
2927 * Back out if somebody else faulted in this pte
2928 * while we released the pte lock.
2929 */
2930 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2931 vmf->address, &vmf->ptl);
2932 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2933 ret = VM_FAULT_OOM;
2934 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2935 goto unlock;
2936 }
2937
2938 /* Had to read the page from swap area: Major fault */
2939 ret = VM_FAULT_MAJOR;
2940 count_vm_event(PGMAJFAULT);
2941 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2942 } else if (PageHWPoison(page)) {
2943 /*
2944 * hwpoisoned dirty swapcache pages are kept for killing
2945 * owner processes (which may be unknown at hwpoison time)
2946 */
2947 ret = VM_FAULT_HWPOISON;
2948 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2949 swapcache = page;
2950 goto out_release;
2951 }
2952
2953 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2954
2955 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956 if (!locked) {
2957 ret |= VM_FAULT_RETRY;
2958 goto out_release;
2959 }
2960
2961 /*
2962 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2963 * release the swapcache from under us. The page pin, and pte_same
2964 * test below, are not enough to exclude that. Even if it is still
2965 * swapcache, we need to check that the page's swap has not changed.
2966 */
2967 if (unlikely((!PageSwapCache(page) ||
2968 page_private(page) != entry.val)) && swapcache)
2969 goto out_page;
2970
2971 page = ksm_might_need_to_copy(page, vma, vmf->address);
2972 if (unlikely(!page)) {
2973 ret = VM_FAULT_OOM;
2974 page = swapcache;
2975 goto out_page;
2976 }
2977
2978 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2979 &memcg, false)) {
2980 ret = VM_FAULT_OOM;
2981 goto out_page;
2982 }
2983
2984 /*
2985 * Back out if somebody else already faulted in this pte.
2986 */
2987 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2988 &vmf->ptl);
2989 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2990 goto out_nomap;
2991
2992 if (unlikely(!PageUptodate(page))) {
2993 ret = VM_FAULT_SIGBUS;
2994 goto out_nomap;
2995 }
2996
2997 /*
2998 * The page isn't present yet, go ahead with the fault.
2999 *
3000 * Be careful about the sequence of operations here.
3001 * To get its accounting right, reuse_swap_page() must be called
3002 * while the page is counted on swap but not yet in mapcount i.e.
3003 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3004 * must be called after the swap_free(), or it will never succeed.
3005 */
3006
3007 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3008 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3009 pte = mk_pte(page, vma->vm_page_prot);
3010 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3011 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012 vmf->flags &= ~FAULT_FLAG_WRITE;
3013 ret |= VM_FAULT_WRITE;
3014 exclusive = RMAP_EXCLUSIVE;
3015 }
3016 flush_icache_page(vma, page);
3017 if (pte_swp_soft_dirty(vmf->orig_pte))
3018 pte = pte_mksoft_dirty(pte);
3019 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3020 vmf->orig_pte = pte;
3021
3022 /* ksm created a completely new copy */
3023 if (unlikely(page != swapcache && swapcache)) {
3024 page_add_new_anon_rmap(page, vma, vmf->address, false);
3025 mem_cgroup_commit_charge(page, memcg, false, false);
3026 lru_cache_add_active_or_unevictable(page, vma);
3027 } else {
3028 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3029 mem_cgroup_commit_charge(page, memcg, true, false);
3030 activate_page(page);
3031 }
3032
3033 swap_free(entry);
3034 if (mem_cgroup_swap_full(page) ||
3035 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3036 try_to_free_swap(page);
3037 unlock_page(page);
3038 if (page != swapcache && swapcache) {
3039 /*
3040 * Hold the lock to avoid the swap entry to be reused
3041 * until we take the PT lock for the pte_same() check
3042 * (to avoid false positives from pte_same). For
3043 * further safety release the lock after the swap_free
3044 * so that the swap count won't change under a
3045 * parallel locked swapcache.
3046 */
3047 unlock_page(swapcache);
3048 put_page(swapcache);
3049 }
3050
3051 if (vmf->flags & FAULT_FLAG_WRITE) {
3052 ret |= do_wp_page(vmf);
3053 if (ret & VM_FAULT_ERROR)
3054 ret &= VM_FAULT_ERROR;
3055 goto out;
3056 }
3057
3058 /* No need to invalidate - it was non-present before */
3059 update_mmu_cache(vma, vmf->address, vmf->pte);
3060 unlock:
3061 pte_unmap_unlock(vmf->pte, vmf->ptl);
3062 out:
3063 return ret;
3064 out_nomap:
3065 mem_cgroup_cancel_charge(page, memcg, false);
3066 pte_unmap_unlock(vmf->pte, vmf->ptl);
3067 out_page:
3068 unlock_page(page);
3069 out_release:
3070 put_page(page);
3071 if (page != swapcache && swapcache) {
3072 unlock_page(swapcache);
3073 put_page(swapcache);
3074 }
3075 return ret;
3076 }
3077
3078 /*
3079 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3080 * but allow concurrent faults), and pte mapped but not yet locked.
3081 * We return with mmap_sem still held, but pte unmapped and unlocked.
3082 */
3083 static int do_anonymous_page(struct vm_fault *vmf)
3084 {
3085 struct vm_area_struct *vma = vmf->vma;
3086 struct mem_cgroup *memcg;
3087 struct page *page;
3088 int ret = 0;
3089 pte_t entry;
3090
3091 /* File mapping without ->vm_ops ? */
3092 if (vma->vm_flags & VM_SHARED)
3093 return VM_FAULT_SIGBUS;
3094
3095 /*
3096 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3097 * pte_offset_map() on pmds where a huge pmd might be created
3098 * from a different thread.
3099 *
3100 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3101 * parallel threads are excluded by other means.
3102 *
3103 * Here we only have down_read(mmap_sem).
3104 */
3105 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3106 return VM_FAULT_OOM;
3107
3108 /* See the comment in pte_alloc_one_map() */
3109 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3110 return 0;
3111
3112 /* Use the zero-page for reads */
3113 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3114 !mm_forbids_zeropage(vma->vm_mm)) {
3115 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3116 vma->vm_page_prot));
3117 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3118 vmf->address, &vmf->ptl);
3119 if (!pte_none(*vmf->pte))
3120 goto unlock;
3121 ret = check_stable_address_space(vma->vm_mm);
3122 if (ret)
3123 goto unlock;
3124 /* Deliver the page fault to userland, check inside PT lock */
3125 if (userfaultfd_missing(vma)) {
3126 pte_unmap_unlock(vmf->pte, vmf->ptl);
3127 return handle_userfault(vmf, VM_UFFD_MISSING);
3128 }
3129 goto setpte;
3130 }
3131
3132 /* Allocate our own private page. */
3133 if (unlikely(anon_vma_prepare(vma)))
3134 goto oom;
3135 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3136 if (!page)
3137 goto oom;
3138
3139 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3140 goto oom_free_page;
3141
3142 /*
3143 * The memory barrier inside __SetPageUptodate makes sure that
3144 * preceeding stores to the page contents become visible before
3145 * the set_pte_at() write.
3146 */
3147 __SetPageUptodate(page);
3148
3149 entry = mk_pte(page, vma->vm_page_prot);
3150 if (vma->vm_flags & VM_WRITE)
3151 entry = pte_mkwrite(pte_mkdirty(entry));
3152
3153 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3154 &vmf->ptl);
3155 if (!pte_none(*vmf->pte))
3156 goto release;
3157
3158 ret = check_stable_address_space(vma->vm_mm);
3159 if (ret)
3160 goto release;
3161
3162 /* Deliver the page fault to userland, check inside PT lock */
3163 if (userfaultfd_missing(vma)) {
3164 pte_unmap_unlock(vmf->pte, vmf->ptl);
3165 mem_cgroup_cancel_charge(page, memcg, false);
3166 put_page(page);
3167 return handle_userfault(vmf, VM_UFFD_MISSING);
3168 }
3169
3170 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3171 page_add_new_anon_rmap(page, vma, vmf->address, false);
3172 mem_cgroup_commit_charge(page, memcg, false, false);
3173 lru_cache_add_active_or_unevictable(page, vma);
3174 setpte:
3175 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3176
3177 /* No need to invalidate - it was non-present before */
3178 update_mmu_cache(vma, vmf->address, vmf->pte);
3179 unlock:
3180 pte_unmap_unlock(vmf->pte, vmf->ptl);
3181 return ret;
3182 release:
3183 mem_cgroup_cancel_charge(page, memcg, false);
3184 put_page(page);
3185 goto unlock;
3186 oom_free_page:
3187 put_page(page);
3188 oom:
3189 return VM_FAULT_OOM;
3190 }
3191
3192 /*
3193 * The mmap_sem must have been held on entry, and may have been
3194 * released depending on flags and vma->vm_ops->fault() return value.
3195 * See filemap_fault() and __lock_page_retry().
3196 */
3197 static int __do_fault(struct vm_fault *vmf)
3198 {
3199 struct vm_area_struct *vma = vmf->vma;
3200 int ret;
3201
3202 ret = vma->vm_ops->fault(vmf);
3203 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3204 VM_FAULT_DONE_COW)))
3205 return ret;
3206
3207 if (unlikely(PageHWPoison(vmf->page))) {
3208 if (ret & VM_FAULT_LOCKED)
3209 unlock_page(vmf->page);
3210 put_page(vmf->page);
3211 vmf->page = NULL;
3212 return VM_FAULT_HWPOISON;
3213 }
3214
3215 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3216 lock_page(vmf->page);
3217 else
3218 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3219
3220 return ret;
3221 }
3222
3223 /*
3224 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3225 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3226 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3227 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3228 */
3229 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3230 {
3231 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3232 }
3233
3234 static int pte_alloc_one_map(struct vm_fault *vmf)
3235 {
3236 struct vm_area_struct *vma = vmf->vma;
3237
3238 if (!pmd_none(*vmf->pmd))
3239 goto map_pte;
3240 if (vmf->prealloc_pte) {
3241 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3242 if (unlikely(!pmd_none(*vmf->pmd))) {
3243 spin_unlock(vmf->ptl);
3244 goto map_pte;
3245 }
3246
3247 mm_inc_nr_ptes(vma->vm_mm);
3248 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3249 spin_unlock(vmf->ptl);
3250 vmf->prealloc_pte = NULL;
3251 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3252 return VM_FAULT_OOM;
3253 }
3254 map_pte:
3255 /*
3256 * If a huge pmd materialized under us just retry later. Use
3257 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3258 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3259 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3260 * running immediately after a huge pmd fault in a different thread of
3261 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3262 * All we have to ensure is that it is a regular pmd that we can walk
3263 * with pte_offset_map() and we can do that through an atomic read in
3264 * C, which is what pmd_trans_unstable() provides.
3265 */
3266 if (pmd_devmap_trans_unstable(vmf->pmd))
3267 return VM_FAULT_NOPAGE;
3268
3269 /*
3270 * At this point we know that our vmf->pmd points to a page of ptes
3271 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3272 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3273 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3274 * be valid and we will re-check to make sure the vmf->pte isn't
3275 * pte_none() under vmf->ptl protection when we return to
3276 * alloc_set_pte().
3277 */
3278 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3279 &vmf->ptl);
3280 return 0;
3281 }
3282
3283 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3284
3285 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3286 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3287 unsigned long haddr)
3288 {
3289 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3290 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3291 return false;
3292 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3293 return false;
3294 return true;
3295 }
3296
3297 static void deposit_prealloc_pte(struct vm_fault *vmf)
3298 {
3299 struct vm_area_struct *vma = vmf->vma;
3300
3301 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3302 /*
3303 * We are going to consume the prealloc table,
3304 * count that as nr_ptes.
3305 */
3306 mm_inc_nr_ptes(vma->vm_mm);
3307 vmf->prealloc_pte = NULL;
3308 }
3309
3310 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3311 {
3312 struct vm_area_struct *vma = vmf->vma;
3313 bool write = vmf->flags & FAULT_FLAG_WRITE;
3314 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3315 pmd_t entry;
3316 int i, ret;
3317
3318 if (!transhuge_vma_suitable(vma, haddr))
3319 return VM_FAULT_FALLBACK;
3320
3321 ret = VM_FAULT_FALLBACK;
3322 page = compound_head(page);
3323
3324 /*
3325 * Archs like ppc64 need additonal space to store information
3326 * related to pte entry. Use the preallocated table for that.
3327 */
3328 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3329 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3330 if (!vmf->prealloc_pte)
3331 return VM_FAULT_OOM;
3332 smp_wmb(); /* See comment in __pte_alloc() */
3333 }
3334
3335 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3336 if (unlikely(!pmd_none(*vmf->pmd)))
3337 goto out;
3338
3339 for (i = 0; i < HPAGE_PMD_NR; i++)
3340 flush_icache_page(vma, page + i);
3341
3342 entry = mk_huge_pmd(page, vma->vm_page_prot);
3343 if (write)
3344 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3345
3346 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3347 page_add_file_rmap(page, true);
3348 /*
3349 * deposit and withdraw with pmd lock held
3350 */
3351 if (arch_needs_pgtable_deposit())
3352 deposit_prealloc_pte(vmf);
3353
3354 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3355
3356 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3357
3358 /* fault is handled */
3359 ret = 0;
3360 count_vm_event(THP_FILE_MAPPED);
3361 out:
3362 spin_unlock(vmf->ptl);
3363 return ret;
3364 }
3365 #else
3366 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3367 {
3368 BUILD_BUG();
3369 return 0;
3370 }
3371 #endif
3372
3373 /**
3374 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3375 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3376 *
3377 * @vmf: fault environment
3378 * @memcg: memcg to charge page (only for private mappings)
3379 * @page: page to map
3380 *
3381 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3382 * return.
3383 *
3384 * Target users are page handler itself and implementations of
3385 * vm_ops->map_pages.
3386 */
3387 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3388 struct page *page)
3389 {
3390 struct vm_area_struct *vma = vmf->vma;
3391 bool write = vmf->flags & FAULT_FLAG_WRITE;
3392 pte_t entry;
3393 int ret;
3394
3395 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3396 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3397 /* THP on COW? */
3398 VM_BUG_ON_PAGE(memcg, page);
3399
3400 ret = do_set_pmd(vmf, page);
3401 if (ret != VM_FAULT_FALLBACK)
3402 return ret;
3403 }
3404
3405 if (!vmf->pte) {
3406 ret = pte_alloc_one_map(vmf);
3407 if (ret)
3408 return ret;
3409 }
3410
3411 /* Re-check under ptl */
3412 if (unlikely(!pte_none(*vmf->pte)))
3413 return VM_FAULT_NOPAGE;
3414
3415 flush_icache_page(vma, page);
3416 entry = mk_pte(page, vma->vm_page_prot);
3417 if (write)
3418 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419 /* copy-on-write page */
3420 if (write && !(vma->vm_flags & VM_SHARED)) {
3421 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3422 page_add_new_anon_rmap(page, vma, vmf->address, false);
3423 mem_cgroup_commit_charge(page, memcg, false, false);
3424 lru_cache_add_active_or_unevictable(page, vma);
3425 } else {
3426 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3427 page_add_file_rmap(page, false);
3428 }
3429 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3430
3431 /* no need to invalidate: a not-present page won't be cached */
3432 update_mmu_cache(vma, vmf->address, vmf->pte);
3433
3434 return 0;
3435 }
3436
3437
3438 /**
3439 * finish_fault - finish page fault once we have prepared the page to fault
3440 *
3441 * @vmf: structure describing the fault
3442 *
3443 * This function handles all that is needed to finish a page fault once the
3444 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3445 * given page, adds reverse page mapping, handles memcg charges and LRU
3446 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3447 * error.
3448 *
3449 * The function expects the page to be locked and on success it consumes a
3450 * reference of a page being mapped (for the PTE which maps it).
3451 */
3452 int finish_fault(struct vm_fault *vmf)
3453 {
3454 struct page *page;
3455 int ret = 0;
3456
3457 /* Did we COW the page? */
3458 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3459 !(vmf->vma->vm_flags & VM_SHARED))
3460 page = vmf->cow_page;
3461 else
3462 page = vmf->page;
3463
3464 /*
3465 * check even for read faults because we might have lost our CoWed
3466 * page
3467 */
3468 if (!(vmf->vma->vm_flags & VM_SHARED))
3469 ret = check_stable_address_space(vmf->vma->vm_mm);
3470 if (!ret)
3471 ret = alloc_set_pte(vmf, vmf->memcg, page);
3472 if (vmf->pte)
3473 pte_unmap_unlock(vmf->pte, vmf->ptl);
3474 return ret;
3475 }
3476
3477 static unsigned long fault_around_bytes __read_mostly =
3478 rounddown_pow_of_two(65536);
3479
3480 #ifdef CONFIG_DEBUG_FS
3481 static int fault_around_bytes_get(void *data, u64 *val)
3482 {
3483 *val = fault_around_bytes;
3484 return 0;
3485 }
3486
3487 /*
3488 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3489 * rounded down to nearest page order. It's what do_fault_around() expects to
3490 * see.
3491 */
3492 static int fault_around_bytes_set(void *data, u64 val)
3493 {
3494 if (val / PAGE_SIZE > PTRS_PER_PTE)
3495 return -EINVAL;
3496 if (val > PAGE_SIZE)
3497 fault_around_bytes = rounddown_pow_of_two(val);
3498 else
3499 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3500 return 0;
3501 }
3502 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3503 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3504
3505 static int __init fault_around_debugfs(void)
3506 {
3507 void *ret;
3508
3509 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3510 &fault_around_bytes_fops);
3511 if (!ret)
3512 pr_warn("Failed to create fault_around_bytes in debugfs");
3513 return 0;
3514 }
3515 late_initcall(fault_around_debugfs);
3516 #endif
3517
3518 /*
3519 * do_fault_around() tries to map few pages around the fault address. The hope
3520 * is that the pages will be needed soon and this will lower the number of
3521 * faults to handle.
3522 *
3523 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3524 * not ready to be mapped: not up-to-date, locked, etc.
3525 *
3526 * This function is called with the page table lock taken. In the split ptlock
3527 * case the page table lock only protects only those entries which belong to
3528 * the page table corresponding to the fault address.
3529 *
3530 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3531 * only once.
3532 *
3533 * fault_around_pages() defines how many pages we'll try to map.
3534 * do_fault_around() expects it to return a power of two less than or equal to
3535 * PTRS_PER_PTE.
3536 *
3537 * The virtual address of the area that we map is naturally aligned to the
3538 * fault_around_pages() value (and therefore to page order). This way it's
3539 * easier to guarantee that we don't cross page table boundaries.
3540 */
3541 static int do_fault_around(struct vm_fault *vmf)
3542 {
3543 unsigned long address = vmf->address, nr_pages, mask;
3544 pgoff_t start_pgoff = vmf->pgoff;
3545 pgoff_t end_pgoff;
3546 int off, ret = 0;
3547
3548 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3549 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3550
3551 vmf->address = max(address & mask, vmf->vma->vm_start);
3552 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3553 start_pgoff -= off;
3554
3555 /*
3556 * end_pgoff is either end of page table or end of vma
3557 * or fault_around_pages() from start_pgoff, depending what is nearest.
3558 */
3559 end_pgoff = start_pgoff -
3560 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3561 PTRS_PER_PTE - 1;
3562 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3563 start_pgoff + nr_pages - 1);
3564
3565 if (pmd_none(*vmf->pmd)) {
3566 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3567 vmf->address);
3568 if (!vmf->prealloc_pte)
3569 goto out;
3570 smp_wmb(); /* See comment in __pte_alloc() */
3571 }
3572
3573 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3574
3575 /* Huge page is mapped? Page fault is solved */
3576 if (pmd_trans_huge(*vmf->pmd)) {
3577 ret = VM_FAULT_NOPAGE;
3578 goto out;
3579 }
3580
3581 /* ->map_pages() haven't done anything useful. Cold page cache? */
3582 if (!vmf->pte)
3583 goto out;
3584
3585 /* check if the page fault is solved */
3586 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3587 if (!pte_none(*vmf->pte))
3588 ret = VM_FAULT_NOPAGE;
3589 pte_unmap_unlock(vmf->pte, vmf->ptl);
3590 out:
3591 vmf->address = address;
3592 vmf->pte = NULL;
3593 return ret;
3594 }
3595
3596 static int do_read_fault(struct vm_fault *vmf)
3597 {
3598 struct vm_area_struct *vma = vmf->vma;
3599 int ret = 0;
3600
3601 /*
3602 * Let's call ->map_pages() first and use ->fault() as fallback
3603 * if page by the offset is not ready to be mapped (cold cache or
3604 * something).
3605 */
3606 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3607 ret = do_fault_around(vmf);
3608 if (ret)
3609 return ret;
3610 }
3611
3612 ret = __do_fault(vmf);
3613 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3614 return ret;
3615
3616 ret |= finish_fault(vmf);
3617 unlock_page(vmf->page);
3618 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3619 put_page(vmf->page);
3620 return ret;
3621 }
3622
3623 static int do_cow_fault(struct vm_fault *vmf)
3624 {
3625 struct vm_area_struct *vma = vmf->vma;
3626 int ret;
3627
3628 if (unlikely(anon_vma_prepare(vma)))
3629 return VM_FAULT_OOM;
3630
3631 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3632 if (!vmf->cow_page)
3633 return VM_FAULT_OOM;
3634
3635 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3636 &vmf->memcg, false)) {
3637 put_page(vmf->cow_page);
3638 return VM_FAULT_OOM;
3639 }
3640
3641 ret = __do_fault(vmf);
3642 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3643 goto uncharge_out;
3644 if (ret & VM_FAULT_DONE_COW)
3645 return ret;
3646
3647 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3648 __SetPageUptodate(vmf->cow_page);
3649
3650 ret |= finish_fault(vmf);
3651 unlock_page(vmf->page);
3652 put_page(vmf->page);
3653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654 goto uncharge_out;
3655 return ret;
3656 uncharge_out:
3657 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3658 put_page(vmf->cow_page);
3659 return ret;
3660 }
3661
3662 static int do_shared_fault(struct vm_fault *vmf)
3663 {
3664 struct vm_area_struct *vma = vmf->vma;
3665 int ret, tmp;
3666
3667 ret = __do_fault(vmf);
3668 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3669 return ret;
3670
3671 /*
3672 * Check if the backing address space wants to know that the page is
3673 * about to become writable
3674 */
3675 if (vma->vm_ops->page_mkwrite) {
3676 unlock_page(vmf->page);
3677 tmp = do_page_mkwrite(vmf);
3678 if (unlikely(!tmp ||
3679 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3680 put_page(vmf->page);
3681 return tmp;
3682 }
3683 }
3684
3685 ret |= finish_fault(vmf);
3686 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3687 VM_FAULT_RETRY))) {
3688 unlock_page(vmf->page);
3689 put_page(vmf->page);
3690 return ret;
3691 }
3692
3693 fault_dirty_shared_page(vma, vmf->page);
3694 return ret;
3695 }
3696
3697 /*
3698 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3699 * but allow concurrent faults).
3700 * The mmap_sem may have been released depending on flags and our
3701 * return value. See filemap_fault() and __lock_page_or_retry().
3702 */
3703 static int do_fault(struct vm_fault *vmf)
3704 {
3705 struct vm_area_struct *vma = vmf->vma;
3706 int ret;
3707
3708 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3709 if (!vma->vm_ops->fault)
3710 ret = VM_FAULT_SIGBUS;
3711 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3712 ret = do_read_fault(vmf);
3713 else if (!(vma->vm_flags & VM_SHARED))
3714 ret = do_cow_fault(vmf);
3715 else
3716 ret = do_shared_fault(vmf);
3717
3718 /* preallocated pagetable is unused: free it */
3719 if (vmf->prealloc_pte) {
3720 pte_free(vma->vm_mm, vmf->prealloc_pte);
3721 vmf->prealloc_pte = NULL;
3722 }
3723 return ret;
3724 }
3725
3726 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3727 unsigned long addr, int page_nid,
3728 int *flags)
3729 {
3730 get_page(page);
3731
3732 count_vm_numa_event(NUMA_HINT_FAULTS);
3733 if (page_nid == numa_node_id()) {
3734 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3735 *flags |= TNF_FAULT_LOCAL;
3736 }
3737
3738 return mpol_misplaced(page, vma, addr);
3739 }
3740
3741 static int do_numa_page(struct vm_fault *vmf)
3742 {
3743 struct vm_area_struct *vma = vmf->vma;
3744 struct page *page = NULL;
3745 int page_nid = -1;
3746 int last_cpupid;
3747 int target_nid;
3748 bool migrated = false;
3749 pte_t pte;
3750 bool was_writable = pte_savedwrite(vmf->orig_pte);
3751 int flags = 0;
3752
3753 /*
3754 * The "pte" at this point cannot be used safely without
3755 * validation through pte_unmap_same(). It's of NUMA type but
3756 * the pfn may be screwed if the read is non atomic.
3757 */
3758 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3759 spin_lock(vmf->ptl);
3760 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3761 pte_unmap_unlock(vmf->pte, vmf->ptl);
3762 goto out;
3763 }
3764
3765 /*
3766 * Make it present again, Depending on how arch implementes non
3767 * accessible ptes, some can allow access by kernel mode.
3768 */
3769 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3770 pte = pte_modify(pte, vma->vm_page_prot);
3771 pte = pte_mkyoung(pte);
3772 if (was_writable)
3773 pte = pte_mkwrite(pte);
3774 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3775 update_mmu_cache(vma, vmf->address, vmf->pte);
3776
3777 page = vm_normal_page(vma, vmf->address, pte);
3778 if (!page) {
3779 pte_unmap_unlock(vmf->pte, vmf->ptl);
3780 return 0;
3781 }
3782
3783 /* TODO: handle PTE-mapped THP */
3784 if (PageCompound(page)) {
3785 pte_unmap_unlock(vmf->pte, vmf->ptl);
3786 return 0;
3787 }
3788
3789 /*
3790 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3791 * much anyway since they can be in shared cache state. This misses
3792 * the case where a mapping is writable but the process never writes
3793 * to it but pte_write gets cleared during protection updates and
3794 * pte_dirty has unpredictable behaviour between PTE scan updates,
3795 * background writeback, dirty balancing and application behaviour.
3796 */
3797 if (!pte_write(pte))
3798 flags |= TNF_NO_GROUP;
3799
3800 /*
3801 * Flag if the page is shared between multiple address spaces. This
3802 * is later used when determining whether to group tasks together
3803 */
3804 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3805 flags |= TNF_SHARED;
3806
3807 last_cpupid = page_cpupid_last(page);
3808 page_nid = page_to_nid(page);
3809 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3810 &flags);
3811 pte_unmap_unlock(vmf->pte, vmf->ptl);
3812 if (target_nid == -1) {
3813 put_page(page);
3814 goto out;
3815 }
3816
3817 /* Migrate to the requested node */
3818 migrated = migrate_misplaced_page(page, vma, target_nid);
3819 if (migrated) {
3820 page_nid = target_nid;
3821 flags |= TNF_MIGRATED;
3822 } else
3823 flags |= TNF_MIGRATE_FAIL;
3824
3825 out:
3826 if (page_nid != -1)
3827 task_numa_fault(last_cpupid, page_nid, 1, flags);
3828 return 0;
3829 }
3830
3831 static inline int create_huge_pmd(struct vm_fault *vmf)
3832 {
3833 if (vma_is_anonymous(vmf->vma))
3834 return do_huge_pmd_anonymous_page(vmf);
3835 if (vmf->vma->vm_ops->huge_fault)
3836 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3837 return VM_FAULT_FALLBACK;
3838 }
3839
3840 /* `inline' is required to avoid gcc 4.1.2 build error */
3841 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3842 {
3843 if (vma_is_anonymous(vmf->vma))
3844 return do_huge_pmd_wp_page(vmf, orig_pmd);
3845 if (vmf->vma->vm_ops->huge_fault)
3846 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3847
3848 /* COW handled on pte level: split pmd */
3849 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3850 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3851
3852 return VM_FAULT_FALLBACK;
3853 }
3854
3855 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3856 {
3857 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3858 }
3859
3860 static int create_huge_pud(struct vm_fault *vmf)
3861 {
3862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3863 /* No support for anonymous transparent PUD pages yet */
3864 if (vma_is_anonymous(vmf->vma))
3865 return VM_FAULT_FALLBACK;
3866 if (vmf->vma->vm_ops->huge_fault)
3867 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3869 return VM_FAULT_FALLBACK;
3870 }
3871
3872 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3873 {
3874 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3875 /* No support for anonymous transparent PUD pages yet */
3876 if (vma_is_anonymous(vmf->vma))
3877 return VM_FAULT_FALLBACK;
3878 if (vmf->vma->vm_ops->huge_fault)
3879 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3880 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3881 return VM_FAULT_FALLBACK;
3882 }
3883
3884 /*
3885 * These routines also need to handle stuff like marking pages dirty
3886 * and/or accessed for architectures that don't do it in hardware (most
3887 * RISC architectures). The early dirtying is also good on the i386.
3888 *
3889 * There is also a hook called "update_mmu_cache()" that architectures
3890 * with external mmu caches can use to update those (ie the Sparc or
3891 * PowerPC hashed page tables that act as extended TLBs).
3892 *
3893 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3894 * concurrent faults).
3895 *
3896 * The mmap_sem may have been released depending on flags and our return value.
3897 * See filemap_fault() and __lock_page_or_retry().
3898 */
3899 static int handle_pte_fault(struct vm_fault *vmf)
3900 {
3901 pte_t entry;
3902
3903 if (unlikely(pmd_none(*vmf->pmd))) {
3904 /*
3905 * Leave __pte_alloc() until later: because vm_ops->fault may
3906 * want to allocate huge page, and if we expose page table
3907 * for an instant, it will be difficult to retract from
3908 * concurrent faults and from rmap lookups.
3909 */
3910 vmf->pte = NULL;
3911 } else {
3912 /* See comment in pte_alloc_one_map() */
3913 if (pmd_devmap_trans_unstable(vmf->pmd))
3914 return 0;
3915 /*
3916 * A regular pmd is established and it can't morph into a huge
3917 * pmd from under us anymore at this point because we hold the
3918 * mmap_sem read mode and khugepaged takes it in write mode.
3919 * So now it's safe to run pte_offset_map().
3920 */
3921 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3922 vmf->orig_pte = *vmf->pte;
3923
3924 /*
3925 * some architectures can have larger ptes than wordsize,
3926 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3927 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3928 * accesses. The code below just needs a consistent view
3929 * for the ifs and we later double check anyway with the
3930 * ptl lock held. So here a barrier will do.
3931 */
3932 barrier();
3933 if (pte_none(vmf->orig_pte)) {
3934 pte_unmap(vmf->pte);
3935 vmf->pte = NULL;
3936 }
3937 }
3938
3939 if (!vmf->pte) {
3940 if (vma_is_anonymous(vmf->vma))
3941 return do_anonymous_page(vmf);
3942 else
3943 return do_fault(vmf);
3944 }
3945
3946 if (!pte_present(vmf->orig_pte))
3947 return do_swap_page(vmf);
3948
3949 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3950 return do_numa_page(vmf);
3951
3952 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3953 spin_lock(vmf->ptl);
3954 entry = vmf->orig_pte;
3955 if (unlikely(!pte_same(*vmf->pte, entry)))
3956 goto unlock;
3957 if (vmf->flags & FAULT_FLAG_WRITE) {
3958 if (!pte_write(entry))
3959 return do_wp_page(vmf);
3960 entry = pte_mkdirty(entry);
3961 }
3962 entry = pte_mkyoung(entry);
3963 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3964 vmf->flags & FAULT_FLAG_WRITE)) {
3965 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3966 } else {
3967 /*
3968 * This is needed only for protection faults but the arch code
3969 * is not yet telling us if this is a protection fault or not.
3970 * This still avoids useless tlb flushes for .text page faults
3971 * with threads.
3972 */
3973 if (vmf->flags & FAULT_FLAG_WRITE)
3974 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3975 }
3976 unlock:
3977 pte_unmap_unlock(vmf->pte, vmf->ptl);
3978 return 0;
3979 }
3980
3981 /*
3982 * By the time we get here, we already hold the mm semaphore
3983 *
3984 * The mmap_sem may have been released depending on flags and our
3985 * return value. See filemap_fault() and __lock_page_or_retry().
3986 */
3987 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3988 unsigned int flags)
3989 {
3990 struct vm_fault vmf = {
3991 .vma = vma,
3992 .address = address & PAGE_MASK,
3993 .flags = flags,
3994 .pgoff = linear_page_index(vma, address),
3995 .gfp_mask = __get_fault_gfp_mask(vma),
3996 };
3997 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3998 struct mm_struct *mm = vma->vm_mm;
3999 pgd_t *pgd;
4000 p4d_t *p4d;
4001 int ret;
4002
4003 pgd = pgd_offset(mm, address);
4004 p4d = p4d_alloc(mm, pgd, address);
4005 if (!p4d)
4006 return VM_FAULT_OOM;
4007
4008 vmf.pud = pud_alloc(mm, p4d, address);
4009 if (!vmf.pud)
4010 return VM_FAULT_OOM;
4011 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4012 ret = create_huge_pud(&vmf);
4013 if (!(ret & VM_FAULT_FALLBACK))
4014 return ret;
4015 } else {
4016 pud_t orig_pud = *vmf.pud;
4017
4018 barrier();
4019 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4020
4021 /* NUMA case for anonymous PUDs would go here */
4022
4023 if (dirty && !pud_write(orig_pud)) {
4024 ret = wp_huge_pud(&vmf, orig_pud);
4025 if (!(ret & VM_FAULT_FALLBACK))
4026 return ret;
4027 } else {
4028 huge_pud_set_accessed(&vmf, orig_pud);
4029 return 0;
4030 }
4031 }
4032 }
4033
4034 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4035 if (!vmf.pmd)
4036 return VM_FAULT_OOM;
4037 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4038 ret = create_huge_pmd(&vmf);
4039 if (!(ret & VM_FAULT_FALLBACK))
4040 return ret;
4041 } else {
4042 pmd_t orig_pmd = *vmf.pmd;
4043
4044 barrier();
4045 if (unlikely(is_swap_pmd(orig_pmd))) {
4046 VM_BUG_ON(thp_migration_supported() &&
4047 !is_pmd_migration_entry(orig_pmd));
4048 if (is_pmd_migration_entry(orig_pmd))
4049 pmd_migration_entry_wait(mm, vmf.pmd);
4050 return 0;
4051 }
4052 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4053 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4054 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4055
4056 if (dirty && !pmd_write(orig_pmd)) {
4057 ret = wp_huge_pmd(&vmf, orig_pmd);
4058 if (!(ret & VM_FAULT_FALLBACK))
4059 return ret;
4060 } else {
4061 huge_pmd_set_accessed(&vmf, orig_pmd);
4062 return 0;
4063 }
4064 }
4065 }
4066
4067 return handle_pte_fault(&vmf);
4068 }
4069
4070 /*
4071 * By the time we get here, we already hold the mm semaphore
4072 *
4073 * The mmap_sem may have been released depending on flags and our
4074 * return value. See filemap_fault() and __lock_page_or_retry().
4075 */
4076 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4077 unsigned int flags)
4078 {
4079 int ret;
4080
4081 __set_current_state(TASK_RUNNING);
4082
4083 count_vm_event(PGFAULT);
4084 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4085
4086 /* do counter updates before entering really critical section. */
4087 check_sync_rss_stat(current);
4088
4089 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4090 flags & FAULT_FLAG_INSTRUCTION,
4091 flags & FAULT_FLAG_REMOTE))
4092 return VM_FAULT_SIGSEGV;
4093
4094 /*
4095 * Enable the memcg OOM handling for faults triggered in user
4096 * space. Kernel faults are handled more gracefully.
4097 */
4098 if (flags & FAULT_FLAG_USER)
4099 mem_cgroup_oom_enable();
4100
4101 if (unlikely(is_vm_hugetlb_page(vma)))
4102 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4103 else
4104 ret = __handle_mm_fault(vma, address, flags);
4105
4106 if (flags & FAULT_FLAG_USER) {
4107 mem_cgroup_oom_disable();
4108 /*
4109 * The task may have entered a memcg OOM situation but
4110 * if the allocation error was handled gracefully (no
4111 * VM_FAULT_OOM), there is no need to kill anything.
4112 * Just clean up the OOM state peacefully.
4113 */
4114 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4115 mem_cgroup_oom_synchronize(false);
4116 }
4117
4118 return ret;
4119 }
4120 EXPORT_SYMBOL_GPL(handle_mm_fault);
4121
4122 #ifndef __PAGETABLE_P4D_FOLDED
4123 /*
4124 * Allocate p4d page table.
4125 * We've already handled the fast-path in-line.
4126 */
4127 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4128 {
4129 p4d_t *new = p4d_alloc_one(mm, address);
4130 if (!new)
4131 return -ENOMEM;
4132
4133 smp_wmb(); /* See comment in __pte_alloc */
4134
4135 spin_lock(&mm->page_table_lock);
4136 if (pgd_present(*pgd)) /* Another has populated it */
4137 p4d_free(mm, new);
4138 else
4139 pgd_populate(mm, pgd, new);
4140 spin_unlock(&mm->page_table_lock);
4141 return 0;
4142 }
4143 #endif /* __PAGETABLE_P4D_FOLDED */
4144
4145 #ifndef __PAGETABLE_PUD_FOLDED
4146 /*
4147 * Allocate page upper directory.
4148 * We've already handled the fast-path in-line.
4149 */
4150 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4151 {
4152 pud_t *new = pud_alloc_one(mm, address);
4153 if (!new)
4154 return -ENOMEM;
4155
4156 smp_wmb(); /* See comment in __pte_alloc */
4157
4158 spin_lock(&mm->page_table_lock);
4159 #ifndef __ARCH_HAS_5LEVEL_HACK
4160 if (!p4d_present(*p4d)) {
4161 mm_inc_nr_puds(mm);
4162 p4d_populate(mm, p4d, new);
4163 } else /* Another has populated it */
4164 pud_free(mm, new);
4165 #else
4166 if (!pgd_present(*p4d)) {
4167 mm_inc_nr_puds(mm);
4168 pgd_populate(mm, p4d, new);
4169 } else /* Another has populated it */
4170 pud_free(mm, new);
4171 #endif /* __ARCH_HAS_5LEVEL_HACK */
4172 spin_unlock(&mm->page_table_lock);
4173 return 0;
4174 }
4175 #endif /* __PAGETABLE_PUD_FOLDED */
4176
4177 #ifndef __PAGETABLE_PMD_FOLDED
4178 /*
4179 * Allocate page middle directory.
4180 * We've already handled the fast-path in-line.
4181 */
4182 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4183 {
4184 spinlock_t *ptl;
4185 pmd_t *new = pmd_alloc_one(mm, address);
4186 if (!new)
4187 return -ENOMEM;
4188
4189 smp_wmb(); /* See comment in __pte_alloc */
4190
4191 ptl = pud_lock(mm, pud);
4192 #ifndef __ARCH_HAS_4LEVEL_HACK
4193 if (!pud_present(*pud)) {
4194 mm_inc_nr_pmds(mm);
4195 pud_populate(mm, pud, new);
4196 } else /* Another has populated it */
4197 pmd_free(mm, new);
4198 #else
4199 if (!pgd_present(*pud)) {
4200 mm_inc_nr_pmds(mm);
4201 pgd_populate(mm, pud, new);
4202 } else /* Another has populated it */
4203 pmd_free(mm, new);
4204 #endif /* __ARCH_HAS_4LEVEL_HACK */
4205 spin_unlock(ptl);
4206 return 0;
4207 }
4208 #endif /* __PAGETABLE_PMD_FOLDED */
4209
4210 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4211 unsigned long *start, unsigned long *end,
4212 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4213 {
4214 pgd_t *pgd;
4215 p4d_t *p4d;
4216 pud_t *pud;
4217 pmd_t *pmd;
4218 pte_t *ptep;
4219
4220 pgd = pgd_offset(mm, address);
4221 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4222 goto out;
4223
4224 p4d = p4d_offset(pgd, address);
4225 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4226 goto out;
4227
4228 pud = pud_offset(p4d, address);
4229 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4230 goto out;
4231
4232 pmd = pmd_offset(pud, address);
4233 VM_BUG_ON(pmd_trans_huge(*pmd));
4234
4235 if (pmd_huge(*pmd)) {
4236 if (!pmdpp)
4237 goto out;
4238
4239 if (start && end) {
4240 *start = address & PMD_MASK;
4241 *end = *start + PMD_SIZE;
4242 mmu_notifier_invalidate_range_start(mm, *start, *end);
4243 }
4244 *ptlp = pmd_lock(mm, pmd);
4245 if (pmd_huge(*pmd)) {
4246 *pmdpp = pmd;
4247 return 0;
4248 }
4249 spin_unlock(*ptlp);
4250 if (start && end)
4251 mmu_notifier_invalidate_range_end(mm, *start, *end);
4252 }
4253
4254 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4255 goto out;
4256
4257 if (start && end) {
4258 *start = address & PAGE_MASK;
4259 *end = *start + PAGE_SIZE;
4260 mmu_notifier_invalidate_range_start(mm, *start, *end);
4261 }
4262 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4263 if (!pte_present(*ptep))
4264 goto unlock;
4265 *ptepp = ptep;
4266 return 0;
4267 unlock:
4268 pte_unmap_unlock(ptep, *ptlp);
4269 if (start && end)
4270 mmu_notifier_invalidate_range_end(mm, *start, *end);
4271 out:
4272 return -EINVAL;
4273 }
4274
4275 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4276 pte_t **ptepp, spinlock_t **ptlp)
4277 {
4278 int res;
4279
4280 /* (void) is needed to make gcc happy */
4281 (void) __cond_lock(*ptlp,
4282 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4283 ptepp, NULL, ptlp)));
4284 return res;
4285 }
4286
4287 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4288 unsigned long *start, unsigned long *end,
4289 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4290 {
4291 int res;
4292
4293 /* (void) is needed to make gcc happy */
4294 (void) __cond_lock(*ptlp,
4295 !(res = __follow_pte_pmd(mm, address, start, end,
4296 ptepp, pmdpp, ptlp)));
4297 return res;
4298 }
4299 EXPORT_SYMBOL(follow_pte_pmd);
4300
4301 /**
4302 * follow_pfn - look up PFN at a user virtual address
4303 * @vma: memory mapping
4304 * @address: user virtual address
4305 * @pfn: location to store found PFN
4306 *
4307 * Only IO mappings and raw PFN mappings are allowed.
4308 *
4309 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4310 */
4311 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4312 unsigned long *pfn)
4313 {
4314 int ret = -EINVAL;
4315 spinlock_t *ptl;
4316 pte_t *ptep;
4317
4318 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4319 return ret;
4320
4321 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4322 if (ret)
4323 return ret;
4324 *pfn = pte_pfn(*ptep);
4325 pte_unmap_unlock(ptep, ptl);
4326 return 0;
4327 }
4328 EXPORT_SYMBOL(follow_pfn);
4329
4330 #ifdef CONFIG_HAVE_IOREMAP_PROT
4331 int follow_phys(struct vm_area_struct *vma,
4332 unsigned long address, unsigned int flags,
4333 unsigned long *prot, resource_size_t *phys)
4334 {
4335 int ret = -EINVAL;
4336 pte_t *ptep, pte;
4337 spinlock_t *ptl;
4338
4339 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4340 goto out;
4341
4342 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4343 goto out;
4344 pte = *ptep;
4345
4346 if ((flags & FOLL_WRITE) && !pte_write(pte))
4347 goto unlock;
4348
4349 *prot = pgprot_val(pte_pgprot(pte));
4350 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4351
4352 ret = 0;
4353 unlock:
4354 pte_unmap_unlock(ptep, ptl);
4355 out:
4356 return ret;
4357 }
4358
4359 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4360 void *buf, int len, int write)
4361 {
4362 resource_size_t phys_addr;
4363 unsigned long prot = 0;
4364 void __iomem *maddr;
4365 int offset = addr & (PAGE_SIZE-1);
4366
4367 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4368 return -EINVAL;
4369
4370 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4371 if (write)
4372 memcpy_toio(maddr + offset, buf, len);
4373 else
4374 memcpy_fromio(buf, maddr + offset, len);
4375 iounmap(maddr);
4376
4377 return len;
4378 }
4379 EXPORT_SYMBOL_GPL(generic_access_phys);
4380 #endif
4381
4382 /*
4383 * Access another process' address space as given in mm. If non-NULL, use the
4384 * given task for page fault accounting.
4385 */
4386 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4387 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4388 {
4389 struct vm_area_struct *vma;
4390 void *old_buf = buf;
4391 int write = gup_flags & FOLL_WRITE;
4392
4393 down_read(&mm->mmap_sem);
4394 /* ignore errors, just check how much was successfully transferred */
4395 while (len) {
4396 int bytes, ret, offset;
4397 void *maddr;
4398 struct page *page = NULL;
4399
4400 ret = get_user_pages_remote(tsk, mm, addr, 1,
4401 gup_flags, &page, &vma, NULL);
4402 if (ret <= 0) {
4403 #ifndef CONFIG_HAVE_IOREMAP_PROT
4404 break;
4405 #else
4406 /*
4407 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4408 * we can access using slightly different code.
4409 */
4410 vma = find_vma(mm, addr);
4411 if (!vma || vma->vm_start > addr)
4412 break;
4413 if (vma->vm_ops && vma->vm_ops->access)
4414 ret = vma->vm_ops->access(vma, addr, buf,
4415 len, write);
4416 if (ret <= 0)
4417 break;
4418 bytes = ret;
4419 #endif
4420 } else {
4421 bytes = len;
4422 offset = addr & (PAGE_SIZE-1);
4423 if (bytes > PAGE_SIZE-offset)
4424 bytes = PAGE_SIZE-offset;
4425
4426 maddr = kmap(page);
4427 if (write) {
4428 copy_to_user_page(vma, page, addr,
4429 maddr + offset, buf, bytes);
4430 set_page_dirty_lock(page);
4431 } else {
4432 copy_from_user_page(vma, page, addr,
4433 buf, maddr + offset, bytes);
4434 }
4435 kunmap(page);
4436 put_page(page);
4437 }
4438 len -= bytes;
4439 buf += bytes;
4440 addr += bytes;
4441 }
4442 up_read(&mm->mmap_sem);
4443
4444 return buf - old_buf;
4445 }
4446
4447 /**
4448 * access_remote_vm - access another process' address space
4449 * @mm: the mm_struct of the target address space
4450 * @addr: start address to access
4451 * @buf: source or destination buffer
4452 * @len: number of bytes to transfer
4453 * @gup_flags: flags modifying lookup behaviour
4454 *
4455 * The caller must hold a reference on @mm.
4456 */
4457 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4458 void *buf, int len, unsigned int gup_flags)
4459 {
4460 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4461 }
4462
4463 /*
4464 * Access another process' address space.
4465 * Source/target buffer must be kernel space,
4466 * Do not walk the page table directly, use get_user_pages
4467 */
4468 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4469 void *buf, int len, unsigned int gup_flags)
4470 {
4471 struct mm_struct *mm;
4472 int ret;
4473
4474 mm = get_task_mm(tsk);
4475 if (!mm)
4476 return 0;
4477
4478 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4479
4480 mmput(mm);
4481
4482 return ret;
4483 }
4484 EXPORT_SYMBOL_GPL(access_process_vm);
4485
4486 /*
4487 * Print the name of a VMA.
4488 */
4489 void print_vma_addr(char *prefix, unsigned long ip)
4490 {
4491 struct mm_struct *mm = current->mm;
4492 struct vm_area_struct *vma;
4493
4494 /*
4495 * we might be running from an atomic context so we cannot sleep
4496 */
4497 if (!down_read_trylock(&mm->mmap_sem))
4498 return;
4499
4500 vma = find_vma(mm, ip);
4501 if (vma && vma->vm_file) {
4502 struct file *f = vma->vm_file;
4503 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4504 if (buf) {
4505 char *p;
4506
4507 p = file_path(f, buf, PAGE_SIZE);
4508 if (IS_ERR(p))
4509 p = "?";
4510 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4511 vma->vm_start,
4512 vma->vm_end - vma->vm_start);
4513 free_page((unsigned long)buf);
4514 }
4515 }
4516 up_read(&mm->mmap_sem);
4517 }
4518
4519 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4520 void __might_fault(const char *file, int line)
4521 {
4522 /*
4523 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4524 * holding the mmap_sem, this is safe because kernel memory doesn't
4525 * get paged out, therefore we'll never actually fault, and the
4526 * below annotations will generate false positives.
4527 */
4528 if (uaccess_kernel())
4529 return;
4530 if (pagefault_disabled())
4531 return;
4532 __might_sleep(file, line, 0);
4533 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4534 if (current->mm)
4535 might_lock_read(&current->mm->mmap_sem);
4536 #endif
4537 }
4538 EXPORT_SYMBOL(__might_fault);
4539 #endif
4540
4541 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4542 static void clear_gigantic_page(struct page *page,
4543 unsigned long addr,
4544 unsigned int pages_per_huge_page)
4545 {
4546 int i;
4547 struct page *p = page;
4548
4549 might_sleep();
4550 for (i = 0; i < pages_per_huge_page;
4551 i++, p = mem_map_next(p, page, i)) {
4552 cond_resched();
4553 clear_user_highpage(p, addr + i * PAGE_SIZE);
4554 }
4555 }
4556 void clear_huge_page(struct page *page,
4557 unsigned long addr_hint, unsigned int pages_per_huge_page)
4558 {
4559 int i, n, base, l;
4560 unsigned long addr = addr_hint &
4561 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4562
4563 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4564 clear_gigantic_page(page, addr, pages_per_huge_page);
4565 return;
4566 }
4567
4568 /* Clear sub-page to access last to keep its cache lines hot */
4569 might_sleep();
4570 n = (addr_hint - addr) / PAGE_SIZE;
4571 if (2 * n <= pages_per_huge_page) {
4572 /* If sub-page to access in first half of huge page */
4573 base = 0;
4574 l = n;
4575 /* Clear sub-pages at the end of huge page */
4576 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4577 cond_resched();
4578 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4579 }
4580 } else {
4581 /* If sub-page to access in second half of huge page */
4582 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4583 l = pages_per_huge_page - n;
4584 /* Clear sub-pages at the begin of huge page */
4585 for (i = 0; i < base; i++) {
4586 cond_resched();
4587 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4588 }
4589 }
4590 /*
4591 * Clear remaining sub-pages in left-right-left-right pattern
4592 * towards the sub-page to access
4593 */
4594 for (i = 0; i < l; i++) {
4595 int left_idx = base + i;
4596 int right_idx = base + 2 * l - 1 - i;
4597
4598 cond_resched();
4599 clear_user_highpage(page + left_idx,
4600 addr + left_idx * PAGE_SIZE);
4601 cond_resched();
4602 clear_user_highpage(page + right_idx,
4603 addr + right_idx * PAGE_SIZE);
4604 }
4605 }
4606
4607 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4608 unsigned long addr,
4609 struct vm_area_struct *vma,
4610 unsigned int pages_per_huge_page)
4611 {
4612 int i;
4613 struct page *dst_base = dst;
4614 struct page *src_base = src;
4615
4616 for (i = 0; i < pages_per_huge_page; ) {
4617 cond_resched();
4618 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4619
4620 i++;
4621 dst = mem_map_next(dst, dst_base, i);
4622 src = mem_map_next(src, src_base, i);
4623 }
4624 }
4625
4626 void copy_user_huge_page(struct page *dst, struct page *src,
4627 unsigned long addr, struct vm_area_struct *vma,
4628 unsigned int pages_per_huge_page)
4629 {
4630 int i;
4631
4632 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4633 copy_user_gigantic_page(dst, src, addr, vma,
4634 pages_per_huge_page);
4635 return;
4636 }
4637
4638 might_sleep();
4639 for (i = 0; i < pages_per_huge_page; i++) {
4640 cond_resched();
4641 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4642 }
4643 }
4644
4645 long copy_huge_page_from_user(struct page *dst_page,
4646 const void __user *usr_src,
4647 unsigned int pages_per_huge_page,
4648 bool allow_pagefault)
4649 {
4650 void *src = (void *)usr_src;
4651 void *page_kaddr;
4652 unsigned long i, rc = 0;
4653 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4654
4655 for (i = 0; i < pages_per_huge_page; i++) {
4656 if (allow_pagefault)
4657 page_kaddr = kmap(dst_page + i);
4658 else
4659 page_kaddr = kmap_atomic(dst_page + i);
4660 rc = copy_from_user(page_kaddr,
4661 (const void __user *)(src + i * PAGE_SIZE),
4662 PAGE_SIZE);
4663 if (allow_pagefault)
4664 kunmap(dst_page + i);
4665 else
4666 kunmap_atomic(page_kaddr);
4667
4668 ret_val -= (PAGE_SIZE - rc);
4669 if (rc)
4670 break;
4671
4672 cond_resched();
4673 }
4674 return ret_val;
4675 }
4676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4677
4678 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4679
4680 static struct kmem_cache *page_ptl_cachep;
4681
4682 void __init ptlock_cache_init(void)
4683 {
4684 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4685 SLAB_PANIC, NULL);
4686 }
4687
4688 bool ptlock_alloc(struct page *page)
4689 {
4690 spinlock_t *ptl;
4691
4692 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4693 if (!ptl)
4694 return false;
4695 page->ptl = ptl;
4696 return true;
4697 }
4698
4699 void ptlock_free(struct page *page)
4700 {
4701 kmem_cache_free(page_ptl_cachep, page->ptl);
4702 }
4703 #endif