4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <linux/uaccess.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr
;
85 EXPORT_SYMBOL(max_mapnr
);
88 EXPORT_SYMBOL(mem_map
);
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
99 EXPORT_SYMBOL(high_memory
);
102 * Randomize the address space (stacks, mmaps, brk, etc.).
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
107 int randomize_va_space __read_mostly
=
108 #ifdef CONFIG_COMPAT_BRK
114 static int __init
disable_randmaps(char *s
)
116 randomize_va_space
= 0;
119 __setup("norandmaps", disable_randmaps
);
121 unsigned long zero_pfn __read_mostly
;
122 EXPORT_SYMBOL(zero_pfn
);
124 unsigned long highest_memmap_pfn __read_mostly
;
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 static int __init
init_zero_pfn(void)
131 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
134 core_initcall(init_zero_pfn
);
137 #if defined(SPLIT_RSS_COUNTING)
139 void sync_mm_rss(struct mm_struct
*mm
)
143 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
144 if (current
->rss_stat
.count
[i
]) {
145 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
146 current
->rss_stat
.count
[i
] = 0;
149 current
->rss_stat
.events
= 0;
152 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
154 struct task_struct
*task
= current
;
156 if (likely(task
->mm
== mm
))
157 task
->rss_stat
.count
[member
] += val
;
159 add_mm_counter(mm
, member
, val
);
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct
*task
)
168 if (unlikely(task
!= current
))
170 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
171 sync_mm_rss(task
->mm
);
173 #else /* SPLIT_RSS_COUNTING */
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 static void check_sync_rss_stat(struct task_struct
*task
)
182 #endif /* SPLIT_RSS_COUNTING */
184 #ifdef HAVE_GENERIC_MMU_GATHER
186 static bool tlb_next_batch(struct mmu_gather
*tlb
)
188 struct mmu_gather_batch
*batch
;
192 tlb
->active
= batch
->next
;
196 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
199 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
206 batch
->max
= MAX_GATHER_BATCH
;
208 tlb
->active
->next
= batch
;
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
219 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
223 /* Is it from 0 to ~0? */
224 tlb
->fullmm
= !(start
| (end
+1));
225 tlb
->need_flush_all
= 0;
226 tlb
->local
.next
= NULL
;
228 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
229 tlb
->active
= &tlb
->local
;
230 tlb
->batch_count
= 0;
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
237 __tlb_reset_range(tlb
);
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
246 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb
);
250 __tlb_reset_range(tlb
);
253 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
255 struct mmu_gather_batch
*batch
;
257 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
258 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
261 tlb
->active
= &tlb
->local
;
264 void tlb_flush_mmu(struct mmu_gather
*tlb
)
266 tlb_flush_mmu_tlbonly(tlb
);
267 tlb_flush_mmu_free(tlb
);
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
274 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
276 struct mmu_gather_batch
*batch
, *next
;
280 /* keep the page table cache within bounds */
283 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
285 free_pages((unsigned long)batch
, 0);
287 tlb
->local
.next
= NULL
;
291 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292 * handling the additional races in SMP caused by other CPUs caching valid
293 * mappings in their TLBs. Returns the number of free page slots left.
294 * When out of page slots we must call tlb_flush_mmu().
295 *returns true if the caller should flush.
297 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
299 struct mmu_gather_batch
*batch
;
301 VM_BUG_ON(!tlb
->end
);
302 VM_WARN_ON(tlb
->page_size
!= page_size
);
306 * Add the page and check if we are full. If so
309 batch
->pages
[batch
->nr
++] = page
;
310 if (batch
->nr
== batch
->max
) {
311 if (!tlb_next_batch(tlb
))
315 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
320 #endif /* HAVE_GENERIC_MMU_GATHER */
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325 * See the comment near struct mmu_table_batch.
328 static void tlb_remove_table_smp_sync(void *arg
)
330 /* Simply deliver the interrupt */
333 static void tlb_remove_table_one(void *table
)
336 * This isn't an RCU grace period and hence the page-tables cannot be
337 * assumed to be actually RCU-freed.
339 * It is however sufficient for software page-table walkers that rely on
340 * IRQ disabling. See the comment near struct mmu_table_batch.
342 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
343 __tlb_remove_table(table
);
346 static void tlb_remove_table_rcu(struct rcu_head
*head
)
348 struct mmu_table_batch
*batch
;
351 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
353 for (i
= 0; i
< batch
->nr
; i
++)
354 __tlb_remove_table(batch
->tables
[i
]);
356 free_page((unsigned long)batch
);
359 void tlb_table_flush(struct mmu_gather
*tlb
)
361 struct mmu_table_batch
**batch
= &tlb
->batch
;
364 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
369 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
371 struct mmu_table_batch
**batch
= &tlb
->batch
;
374 * When there's less then two users of this mm there cannot be a
375 * concurrent page-table walk.
377 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
378 __tlb_remove_table(table
);
382 if (*batch
== NULL
) {
383 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
384 if (*batch
== NULL
) {
385 tlb_remove_table_one(table
);
390 (*batch
)->tables
[(*batch
)->nr
++] = table
;
391 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
392 tlb_table_flush(tlb
);
395 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398 * Note: this doesn't free the actual pages themselves. That
399 * has been handled earlier when unmapping all the memory regions.
401 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
404 pgtable_t token
= pmd_pgtable(*pmd
);
406 pte_free_tlb(tlb
, token
, addr
);
407 atomic_long_dec(&tlb
->mm
->nr_ptes
);
410 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
411 unsigned long addr
, unsigned long end
,
412 unsigned long floor
, unsigned long ceiling
)
419 pmd
= pmd_offset(pud
, addr
);
421 next
= pmd_addr_end(addr
, end
);
422 if (pmd_none_or_clear_bad(pmd
))
424 free_pte_range(tlb
, pmd
, addr
);
425 } while (pmd
++, addr
= next
, addr
!= end
);
435 if (end
- 1 > ceiling
- 1)
438 pmd
= pmd_offset(pud
, start
);
440 pmd_free_tlb(tlb
, pmd
, start
);
441 mm_dec_nr_pmds(tlb
->mm
);
444 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
445 unsigned long addr
, unsigned long end
,
446 unsigned long floor
, unsigned long ceiling
)
453 pud
= pud_offset(pgd
, addr
);
455 next
= pud_addr_end(addr
, end
);
456 if (pud_none_or_clear_bad(pud
))
458 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
459 } while (pud
++, addr
= next
, addr
!= end
);
465 ceiling
&= PGDIR_MASK
;
469 if (end
- 1 > ceiling
- 1)
472 pud
= pud_offset(pgd
, start
);
474 pud_free_tlb(tlb
, pud
, start
);
478 * This function frees user-level page tables of a process.
480 void free_pgd_range(struct mmu_gather
*tlb
,
481 unsigned long addr
, unsigned long end
,
482 unsigned long floor
, unsigned long ceiling
)
488 * The next few lines have given us lots of grief...
490 * Why are we testing PMD* at this top level? Because often
491 * there will be no work to do at all, and we'd prefer not to
492 * go all the way down to the bottom just to discover that.
494 * Why all these "- 1"s? Because 0 represents both the bottom
495 * of the address space and the top of it (using -1 for the
496 * top wouldn't help much: the masks would do the wrong thing).
497 * The rule is that addr 0 and floor 0 refer to the bottom of
498 * the address space, but end 0 and ceiling 0 refer to the top
499 * Comparisons need to use "end - 1" and "ceiling - 1" (though
500 * that end 0 case should be mythical).
502 * Wherever addr is brought up or ceiling brought down, we must
503 * be careful to reject "the opposite 0" before it confuses the
504 * subsequent tests. But what about where end is brought down
505 * by PMD_SIZE below? no, end can't go down to 0 there.
507 * Whereas we round start (addr) and ceiling down, by different
508 * masks at different levels, in order to test whether a table
509 * now has no other vmas using it, so can be freed, we don't
510 * bother to round floor or end up - the tests don't need that.
524 if (end
- 1 > ceiling
- 1)
529 * We add page table cache pages with PAGE_SIZE,
530 * (see pte_free_tlb()), flush the tlb if we need
532 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
533 pgd
= pgd_offset(tlb
->mm
, addr
);
535 next
= pgd_addr_end(addr
, end
);
536 if (pgd_none_or_clear_bad(pgd
))
538 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
539 } while (pgd
++, addr
= next
, addr
!= end
);
542 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
543 unsigned long floor
, unsigned long ceiling
)
546 struct vm_area_struct
*next
= vma
->vm_next
;
547 unsigned long addr
= vma
->vm_start
;
550 * Hide vma from rmap and truncate_pagecache before freeing
553 unlink_anon_vmas(vma
);
554 unlink_file_vma(vma
);
556 if (is_vm_hugetlb_page(vma
)) {
557 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
558 floor
, next
? next
->vm_start
: ceiling
);
561 * Optimization: gather nearby vmas into one call down
563 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
564 && !is_vm_hugetlb_page(next
)) {
567 unlink_anon_vmas(vma
);
568 unlink_file_vma(vma
);
570 free_pgd_range(tlb
, addr
, vma
->vm_end
,
571 floor
, next
? next
->vm_start
: ceiling
);
577 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
580 pgtable_t
new = pte_alloc_one(mm
, address
);
585 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 * visible before the pte is made visible to other CPUs by being
587 * put into page tables.
589 * The other side of the story is the pointer chasing in the page
590 * table walking code (when walking the page table without locking;
591 * ie. most of the time). Fortunately, these data accesses consist
592 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 * being the notable exception) will already guarantee loads are
594 * seen in-order. See the alpha page table accessors for the
595 * smp_read_barrier_depends() barriers in page table walking code.
597 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599 ptl
= pmd_lock(mm
, pmd
);
600 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
601 atomic_long_inc(&mm
->nr_ptes
);
602 pmd_populate(mm
, pmd
, new);
611 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
613 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
617 smp_wmb(); /* See comment in __pte_alloc */
619 spin_lock(&init_mm
.page_table_lock
);
620 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
621 pmd_populate_kernel(&init_mm
, pmd
, new);
624 spin_unlock(&init_mm
.page_table_lock
);
626 pte_free_kernel(&init_mm
, new);
630 static inline void init_rss_vec(int *rss
)
632 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
635 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
639 if (current
->mm
== mm
)
641 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
643 add_mm_counter(mm
, i
, rss
[i
]);
647 * This function is called to print an error when a bad pte
648 * is found. For example, we might have a PFN-mapped pte in
649 * a region that doesn't allow it.
651 * The calling function must still handle the error.
653 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
654 pte_t pte
, struct page
*page
)
656 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
657 pud_t
*pud
= pud_offset(pgd
, addr
);
658 pmd_t
*pmd
= pmd_offset(pud
, addr
);
659 struct address_space
*mapping
;
661 static unsigned long resume
;
662 static unsigned long nr_shown
;
663 static unsigned long nr_unshown
;
666 * Allow a burst of 60 reports, then keep quiet for that minute;
667 * or allow a steady drip of one report per second.
669 if (nr_shown
== 60) {
670 if (time_before(jiffies
, resume
)) {
675 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
682 resume
= jiffies
+ 60 * HZ
;
684 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
685 index
= linear_page_index(vma
, addr
);
687 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
689 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
691 dump_page(page
, "bad pte");
692 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
693 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
695 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
697 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
699 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
700 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
701 mapping
? mapping
->a_ops
->readpage
: NULL
);
703 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
709 * "Special" mappings do not wish to be associated with a "struct page" (either
710 * it doesn't exist, or it exists but they don't want to touch it). In this
711 * case, NULL is returned here. "Normal" mappings do have a struct page.
713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714 * pte bit, in which case this function is trivial. Secondly, an architecture
715 * may not have a spare pte bit, which requires a more complicated scheme,
718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719 * special mapping (even if there are underlying and valid "struct pages").
720 * COWed pages of a VM_PFNMAP are always normal.
722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725 * mapping will always honor the rule
727 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729 * And for normal mappings this is false.
731 * This restricts such mappings to be a linear translation from virtual address
732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
733 * as the vma is not a COW mapping; in that case, we know that all ptes are
734 * special (because none can have been COWed).
737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740 * page" backing, however the difference is that _all_ pages with a struct
741 * page (that is, those where pfn_valid is true) are refcounted and considered
742 * normal pages by the VM. The disadvantage is that pages are refcounted
743 * (which can be slower and simply not an option for some PFNMAP users). The
744 * advantage is that we don't have to follow the strict linearity rule of
745 * PFNMAP mappings in order to support COWable mappings.
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
751 # define HAVE_PTE_SPECIAL 0
753 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
756 unsigned long pfn
= pte_pfn(pte
);
758 if (HAVE_PTE_SPECIAL
) {
759 if (likely(!pte_special(pte
)))
761 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
762 return vma
->vm_ops
->find_special_page(vma
, addr
);
763 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
765 if (!is_zero_pfn(pfn
))
766 print_bad_pte(vma
, addr
, pte
, NULL
);
770 /* !HAVE_PTE_SPECIAL case follows: */
772 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
773 if (vma
->vm_flags
& VM_MIXEDMAP
) {
779 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
780 if (pfn
== vma
->vm_pgoff
+ off
)
782 if (!is_cow_mapping(vma
->vm_flags
))
787 if (is_zero_pfn(pfn
))
790 if (unlikely(pfn
> highest_memmap_pfn
)) {
791 print_bad_pte(vma
, addr
, pte
, NULL
);
796 * NOTE! We still have PageReserved() pages in the page tables.
797 * eg. VDSO mappings can cause them to exist.
800 return pfn_to_page(pfn
);
803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
807 unsigned long pfn
= pmd_pfn(pmd
);
810 * There is no pmd_special() but there may be special pmds, e.g.
811 * in a direct-access (dax) mapping, so let's just replicate the
812 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
814 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
815 if (vma
->vm_flags
& VM_MIXEDMAP
) {
821 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
822 if (pfn
== vma
->vm_pgoff
+ off
)
824 if (!is_cow_mapping(vma
->vm_flags
))
829 if (is_zero_pfn(pfn
))
831 if (unlikely(pfn
> highest_memmap_pfn
))
835 * NOTE! We still have PageReserved() pages in the page tables.
836 * eg. VDSO mappings can cause them to exist.
839 return pfn_to_page(pfn
);
844 * copy one vm_area from one task to the other. Assumes the page tables
845 * already present in the new task to be cleared in the whole range
846 * covered by this vma.
849 static inline unsigned long
850 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
851 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
852 unsigned long addr
, int *rss
)
854 unsigned long vm_flags
= vma
->vm_flags
;
855 pte_t pte
= *src_pte
;
858 /* pte contains position in swap or file, so copy. */
859 if (unlikely(!pte_present(pte
))) {
860 swp_entry_t entry
= pte_to_swp_entry(pte
);
862 if (likely(!non_swap_entry(entry
))) {
863 if (swap_duplicate(entry
) < 0)
866 /* make sure dst_mm is on swapoff's mmlist. */
867 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
868 spin_lock(&mmlist_lock
);
869 if (list_empty(&dst_mm
->mmlist
))
870 list_add(&dst_mm
->mmlist
,
872 spin_unlock(&mmlist_lock
);
875 } else if (is_migration_entry(entry
)) {
876 page
= migration_entry_to_page(entry
);
878 rss
[mm_counter(page
)]++;
880 if (is_write_migration_entry(entry
) &&
881 is_cow_mapping(vm_flags
)) {
883 * COW mappings require pages in both
884 * parent and child to be set to read.
886 make_migration_entry_read(&entry
);
887 pte
= swp_entry_to_pte(entry
);
888 if (pte_swp_soft_dirty(*src_pte
))
889 pte
= pte_swp_mksoft_dirty(pte
);
890 set_pte_at(src_mm
, addr
, src_pte
, pte
);
897 * If it's a COW mapping, write protect it both
898 * in the parent and the child
900 if (is_cow_mapping(vm_flags
)) {
901 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
902 pte
= pte_wrprotect(pte
);
906 * If it's a shared mapping, mark it clean in
909 if (vm_flags
& VM_SHARED
)
910 pte
= pte_mkclean(pte
);
911 pte
= pte_mkold(pte
);
913 page
= vm_normal_page(vma
, addr
, pte
);
916 page_dup_rmap(page
, false);
917 rss
[mm_counter(page
)]++;
921 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
925 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
926 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
927 unsigned long addr
, unsigned long end
)
929 pte_t
*orig_src_pte
, *orig_dst_pte
;
930 pte_t
*src_pte
, *dst_pte
;
931 spinlock_t
*src_ptl
, *dst_ptl
;
933 int rss
[NR_MM_COUNTERS
];
934 swp_entry_t entry
= (swp_entry_t
){0};
939 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
942 src_pte
= pte_offset_map(src_pmd
, addr
);
943 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
944 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
945 orig_src_pte
= src_pte
;
946 orig_dst_pte
= dst_pte
;
947 arch_enter_lazy_mmu_mode();
951 * We are holding two locks at this point - either of them
952 * could generate latencies in another task on another CPU.
954 if (progress
>= 32) {
956 if (need_resched() ||
957 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
960 if (pte_none(*src_pte
)) {
964 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
969 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
971 arch_leave_lazy_mmu_mode();
972 spin_unlock(src_ptl
);
973 pte_unmap(orig_src_pte
);
974 add_mm_rss_vec(dst_mm
, rss
);
975 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
979 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
988 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
989 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
990 unsigned long addr
, unsigned long end
)
992 pmd_t
*src_pmd
, *dst_pmd
;
995 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
998 src_pmd
= pmd_offset(src_pud
, addr
);
1000 next
= pmd_addr_end(addr
, end
);
1001 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
1003 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1004 err
= copy_huge_pmd(dst_mm
, src_mm
,
1005 dst_pmd
, src_pmd
, addr
, vma
);
1012 if (pmd_none_or_clear_bad(src_pmd
))
1014 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1017 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1021 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1022 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1023 unsigned long addr
, unsigned long end
)
1025 pud_t
*src_pud
, *dst_pud
;
1028 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1031 src_pud
= pud_offset(src_pgd
, addr
);
1033 next
= pud_addr_end(addr
, end
);
1034 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1037 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1038 err
= copy_huge_pud(dst_mm
, src_mm
,
1039 dst_pud
, src_pud
, addr
, vma
);
1046 if (pud_none_or_clear_bad(src_pud
))
1048 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1051 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1055 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1056 struct vm_area_struct
*vma
)
1058 pgd_t
*src_pgd
, *dst_pgd
;
1060 unsigned long addr
= vma
->vm_start
;
1061 unsigned long end
= vma
->vm_end
;
1062 unsigned long mmun_start
; /* For mmu_notifiers */
1063 unsigned long mmun_end
; /* For mmu_notifiers */
1068 * Don't copy ptes where a page fault will fill them correctly.
1069 * Fork becomes much lighter when there are big shared or private
1070 * readonly mappings. The tradeoff is that copy_page_range is more
1071 * efficient than faulting.
1073 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1077 if (is_vm_hugetlb_page(vma
))
1078 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1080 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1082 * We do not free on error cases below as remove_vma
1083 * gets called on error from higher level routine
1085 ret
= track_pfn_copy(vma
);
1091 * We need to invalidate the secondary MMU mappings only when
1092 * there could be a permission downgrade on the ptes of the
1093 * parent mm. And a permission downgrade will only happen if
1094 * is_cow_mapping() returns true.
1096 is_cow
= is_cow_mapping(vma
->vm_flags
);
1100 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1104 dst_pgd
= pgd_offset(dst_mm
, addr
);
1105 src_pgd
= pgd_offset(src_mm
, addr
);
1107 next
= pgd_addr_end(addr
, end
);
1108 if (pgd_none_or_clear_bad(src_pgd
))
1110 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1111 vma
, addr
, next
))) {
1115 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1118 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1122 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1123 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1124 unsigned long addr
, unsigned long end
,
1125 struct zap_details
*details
)
1127 struct mm_struct
*mm
= tlb
->mm
;
1128 int force_flush
= 0;
1129 int rss
[NR_MM_COUNTERS
];
1135 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1138 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1140 arch_enter_lazy_mmu_mode();
1143 if (pte_none(ptent
))
1146 if (pte_present(ptent
)) {
1149 page
= vm_normal_page(vma
, addr
, ptent
);
1150 if (unlikely(details
) && page
) {
1152 * unmap_shared_mapping_pages() wants to
1153 * invalidate cache without truncating:
1154 * unmap shared but keep private pages.
1156 if (details
->check_mapping
&&
1157 details
->check_mapping
!= page_rmapping(page
))
1160 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1162 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1163 if (unlikely(!page
))
1166 if (!PageAnon(page
)) {
1167 if (pte_dirty(ptent
)) {
1169 set_page_dirty(page
);
1171 if (pte_young(ptent
) &&
1172 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1173 mark_page_accessed(page
);
1175 rss
[mm_counter(page
)]--;
1176 page_remove_rmap(page
, false);
1177 if (unlikely(page_mapcount(page
) < 0))
1178 print_bad_pte(vma
, addr
, ptent
, page
);
1179 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1186 /* If details->check_mapping, we leave swap entries. */
1187 if (unlikely(details
))
1190 entry
= pte_to_swp_entry(ptent
);
1191 if (!non_swap_entry(entry
))
1193 else if (is_migration_entry(entry
)) {
1196 page
= migration_entry_to_page(entry
);
1197 rss
[mm_counter(page
)]--;
1199 if (unlikely(!free_swap_and_cache(entry
)))
1200 print_bad_pte(vma
, addr
, ptent
, NULL
);
1201 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1202 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1204 add_mm_rss_vec(mm
, rss
);
1205 arch_leave_lazy_mmu_mode();
1207 /* Do the actual TLB flush before dropping ptl */
1209 tlb_flush_mmu_tlbonly(tlb
);
1210 pte_unmap_unlock(start_pte
, ptl
);
1213 * If we forced a TLB flush (either due to running out of
1214 * batch buffers or because we needed to flush dirty TLB
1215 * entries before releasing the ptl), free the batched
1216 * memory too. Restart if we didn't do everything.
1220 tlb_flush_mmu_free(tlb
);
1228 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1229 struct vm_area_struct
*vma
, pud_t
*pud
,
1230 unsigned long addr
, unsigned long end
,
1231 struct zap_details
*details
)
1236 pmd
= pmd_offset(pud
, addr
);
1238 next
= pmd_addr_end(addr
, end
);
1239 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1240 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1241 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1242 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1243 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1244 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1257 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1260 } while (pmd
++, addr
= next
, addr
!= end
);
1265 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1266 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1267 unsigned long addr
, unsigned long end
,
1268 struct zap_details
*details
)
1273 pud
= pud_offset(pgd
, addr
);
1275 next
= pud_addr_end(addr
, end
);
1276 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1277 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1278 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1279 split_huge_pud(vma
, pud
, addr
);
1280 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1284 if (pud_none_or_clear_bad(pud
))
1286 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1289 } while (pud
++, addr
= next
, addr
!= end
);
1294 void unmap_page_range(struct mmu_gather
*tlb
,
1295 struct vm_area_struct
*vma
,
1296 unsigned long addr
, unsigned long end
,
1297 struct zap_details
*details
)
1302 BUG_ON(addr
>= end
);
1303 tlb_start_vma(tlb
, vma
);
1304 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1306 next
= pgd_addr_end(addr
, end
);
1307 if (pgd_none_or_clear_bad(pgd
))
1309 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1310 } while (pgd
++, addr
= next
, addr
!= end
);
1311 tlb_end_vma(tlb
, vma
);
1315 static void unmap_single_vma(struct mmu_gather
*tlb
,
1316 struct vm_area_struct
*vma
, unsigned long start_addr
,
1317 unsigned long end_addr
,
1318 struct zap_details
*details
)
1320 unsigned long start
= max(vma
->vm_start
, start_addr
);
1323 if (start
>= vma
->vm_end
)
1325 end
= min(vma
->vm_end
, end_addr
);
1326 if (end
<= vma
->vm_start
)
1330 uprobe_munmap(vma
, start
, end
);
1332 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1333 untrack_pfn(vma
, 0, 0);
1336 if (unlikely(is_vm_hugetlb_page(vma
))) {
1338 * It is undesirable to test vma->vm_file as it
1339 * should be non-null for valid hugetlb area.
1340 * However, vm_file will be NULL in the error
1341 * cleanup path of mmap_region. When
1342 * hugetlbfs ->mmap method fails,
1343 * mmap_region() nullifies vma->vm_file
1344 * before calling this function to clean up.
1345 * Since no pte has actually been setup, it is
1346 * safe to do nothing in this case.
1349 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1350 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1351 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1354 unmap_page_range(tlb
, vma
, start
, end
, details
);
1359 * unmap_vmas - unmap a range of memory covered by a list of vma's
1360 * @tlb: address of the caller's struct mmu_gather
1361 * @vma: the starting vma
1362 * @start_addr: virtual address at which to start unmapping
1363 * @end_addr: virtual address at which to end unmapping
1365 * Unmap all pages in the vma list.
1367 * Only addresses between `start' and `end' will be unmapped.
1369 * The VMA list must be sorted in ascending virtual address order.
1371 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1372 * range after unmap_vmas() returns. So the only responsibility here is to
1373 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1374 * drops the lock and schedules.
1376 void unmap_vmas(struct mmu_gather
*tlb
,
1377 struct vm_area_struct
*vma
, unsigned long start_addr
,
1378 unsigned long end_addr
)
1380 struct mm_struct
*mm
= vma
->vm_mm
;
1382 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1383 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1384 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1385 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1389 * zap_page_range - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @start: starting address of pages to zap
1392 * @size: number of bytes to zap
1394 * Caller must protect the VMA list
1396 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1399 struct mm_struct
*mm
= vma
->vm_mm
;
1400 struct mmu_gather tlb
;
1401 unsigned long end
= start
+ size
;
1404 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1405 update_hiwater_rss(mm
);
1406 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1407 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1408 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1409 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1410 tlb_finish_mmu(&tlb
, start
, end
);
1414 * zap_page_range_single - remove user pages in a given range
1415 * @vma: vm_area_struct holding the applicable pages
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 * @details: details of shared cache invalidation
1420 * The range must fit into one VMA.
1422 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1423 unsigned long size
, struct zap_details
*details
)
1425 struct mm_struct
*mm
= vma
->vm_mm
;
1426 struct mmu_gather tlb
;
1427 unsigned long end
= address
+ size
;
1430 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1431 update_hiwater_rss(mm
);
1432 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1433 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1434 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1435 tlb_finish_mmu(&tlb
, address
, end
);
1439 * zap_vma_ptes - remove ptes mapping the vma
1440 * @vma: vm_area_struct holding ptes to be zapped
1441 * @address: starting address of pages to zap
1442 * @size: number of bytes to zap
1444 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1446 * The entire address range must be fully contained within the vma.
1448 * Returns 0 if successful.
1450 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1453 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1454 !(vma
->vm_flags
& VM_PFNMAP
))
1456 zap_page_range_single(vma
, address
, size
, NULL
);
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1461 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1464 pgd_t
*pgd
= pgd_offset(mm
, addr
);
1465 pud_t
*pud
= pud_alloc(mm
, pgd
, addr
);
1467 pmd_t
*pmd
= pmd_alloc(mm
, pud
, addr
);
1469 VM_BUG_ON(pmd_trans_huge(*pmd
));
1470 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1477 * This is the old fallback for page remapping.
1479 * For historical reasons, it only allows reserved pages. Only
1480 * old drivers should use this, and they needed to mark their
1481 * pages reserved for the old functions anyway.
1483 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1484 struct page
*page
, pgprot_t prot
)
1486 struct mm_struct
*mm
= vma
->vm_mm
;
1495 flush_dcache_page(page
);
1496 pte
= get_locked_pte(mm
, addr
, &ptl
);
1500 if (!pte_none(*pte
))
1503 /* Ok, finally just insert the thing.. */
1505 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1506 page_add_file_rmap(page
, false);
1507 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1510 pte_unmap_unlock(pte
, ptl
);
1513 pte_unmap_unlock(pte
, ptl
);
1519 * vm_insert_page - insert single page into user vma
1520 * @vma: user vma to map to
1521 * @addr: target user address of this page
1522 * @page: source kernel page
1524 * This allows drivers to insert individual pages they've allocated
1527 * The page has to be a nice clean _individual_ kernel allocation.
1528 * If you allocate a compound page, you need to have marked it as
1529 * such (__GFP_COMP), or manually just split the page up yourself
1530 * (see split_page()).
1532 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1533 * took an arbitrary page protection parameter. This doesn't allow
1534 * that. Your vma protection will have to be set up correctly, which
1535 * means that if you want a shared writable mapping, you'd better
1536 * ask for a shared writable mapping!
1538 * The page does not need to be reserved.
1540 * Usually this function is called from f_op->mmap() handler
1541 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1542 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1543 * function from other places, for example from page-fault handler.
1545 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1548 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1550 if (!page_count(page
))
1552 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1553 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1554 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1555 vma
->vm_flags
|= VM_MIXEDMAP
;
1557 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1559 EXPORT_SYMBOL(vm_insert_page
);
1561 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1562 pfn_t pfn
, pgprot_t prot
)
1564 struct mm_struct
*mm
= vma
->vm_mm
;
1570 pte
= get_locked_pte(mm
, addr
, &ptl
);
1574 if (!pte_none(*pte
))
1577 /* Ok, finally just insert the thing.. */
1578 if (pfn_t_devmap(pfn
))
1579 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1581 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1582 set_pte_at(mm
, addr
, pte
, entry
);
1583 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1587 pte_unmap_unlock(pte
, ptl
);
1593 * vm_insert_pfn - insert single pfn into user vma
1594 * @vma: user vma to map to
1595 * @addr: target user address of this page
1596 * @pfn: source kernel pfn
1598 * Similar to vm_insert_page, this allows drivers to insert individual pages
1599 * they've allocated into a user vma. Same comments apply.
1601 * This function should only be called from a vm_ops->fault handler, and
1602 * in that case the handler should return NULL.
1604 * vma cannot be a COW mapping.
1606 * As this is called only for pages that do not currently exist, we
1607 * do not need to flush old virtual caches or the TLB.
1609 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1612 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1614 EXPORT_SYMBOL(vm_insert_pfn
);
1617 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1618 * @vma: user vma to map to
1619 * @addr: target user address of this page
1620 * @pfn: source kernel pfn
1621 * @pgprot: pgprot flags for the inserted page
1623 * This is exactly like vm_insert_pfn, except that it allows drivers to
1624 * to override pgprot on a per-page basis.
1626 * This only makes sense for IO mappings, and it makes no sense for
1627 * cow mappings. In general, using multiple vmas is preferable;
1628 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1631 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1632 unsigned long pfn
, pgprot_t pgprot
)
1636 * Technically, architectures with pte_special can avoid all these
1637 * restrictions (same for remap_pfn_range). However we would like
1638 * consistency in testing and feature parity among all, so we should
1639 * try to keep these invariants in place for everybody.
1641 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1642 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1643 (VM_PFNMAP
|VM_MIXEDMAP
));
1644 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1645 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1647 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1650 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1652 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1656 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1658 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1661 pgprot_t pgprot
= vma
->vm_page_prot
;
1663 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1665 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1668 track_pfn_insert(vma
, &pgprot
, pfn
);
1671 * If we don't have pte special, then we have to use the pfn_valid()
1672 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1673 * refcount the page if pfn_valid is true (hence insert_page rather
1674 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1675 * without pte special, it would there be refcounted as a normal page.
1677 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1681 * At this point we are committed to insert_page()
1682 * regardless of whether the caller specified flags that
1683 * result in pfn_t_has_page() == false.
1685 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1686 return insert_page(vma
, addr
, page
, pgprot
);
1688 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1690 EXPORT_SYMBOL(vm_insert_mixed
);
1693 * maps a range of physical memory into the requested pages. the old
1694 * mappings are removed. any references to nonexistent pages results
1695 * in null mappings (currently treated as "copy-on-access")
1697 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1698 unsigned long addr
, unsigned long end
,
1699 unsigned long pfn
, pgprot_t prot
)
1704 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1707 arch_enter_lazy_mmu_mode();
1709 BUG_ON(!pte_none(*pte
));
1710 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1712 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1713 arch_leave_lazy_mmu_mode();
1714 pte_unmap_unlock(pte
- 1, ptl
);
1718 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1719 unsigned long addr
, unsigned long end
,
1720 unsigned long pfn
, pgprot_t prot
)
1725 pfn
-= addr
>> PAGE_SHIFT
;
1726 pmd
= pmd_alloc(mm
, pud
, addr
);
1729 VM_BUG_ON(pmd_trans_huge(*pmd
));
1731 next
= pmd_addr_end(addr
, end
);
1732 if (remap_pte_range(mm
, pmd
, addr
, next
,
1733 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1735 } while (pmd
++, addr
= next
, addr
!= end
);
1739 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1740 unsigned long addr
, unsigned long end
,
1741 unsigned long pfn
, pgprot_t prot
)
1746 pfn
-= addr
>> PAGE_SHIFT
;
1747 pud
= pud_alloc(mm
, pgd
, addr
);
1751 next
= pud_addr_end(addr
, end
);
1752 if (remap_pmd_range(mm
, pud
, addr
, next
,
1753 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1755 } while (pud
++, addr
= next
, addr
!= end
);
1760 * remap_pfn_range - remap kernel memory to userspace
1761 * @vma: user vma to map to
1762 * @addr: target user address to start at
1763 * @pfn: physical address of kernel memory
1764 * @size: size of map area
1765 * @prot: page protection flags for this mapping
1767 * Note: this is only safe if the mm semaphore is held when called.
1769 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1770 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1774 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1775 struct mm_struct
*mm
= vma
->vm_mm
;
1776 unsigned long remap_pfn
= pfn
;
1780 * Physically remapped pages are special. Tell the
1781 * rest of the world about it:
1782 * VM_IO tells people not to look at these pages
1783 * (accesses can have side effects).
1784 * VM_PFNMAP tells the core MM that the base pages are just
1785 * raw PFN mappings, and do not have a "struct page" associated
1788 * Disable vma merging and expanding with mremap().
1790 * Omit vma from core dump, even when VM_IO turned off.
1792 * There's a horrible special case to handle copy-on-write
1793 * behaviour that some programs depend on. We mark the "original"
1794 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1795 * See vm_normal_page() for details.
1797 if (is_cow_mapping(vma
->vm_flags
)) {
1798 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1800 vma
->vm_pgoff
= pfn
;
1803 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1807 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1809 BUG_ON(addr
>= end
);
1810 pfn
-= addr
>> PAGE_SHIFT
;
1811 pgd
= pgd_offset(mm
, addr
);
1812 flush_cache_range(vma
, addr
, end
);
1814 next
= pgd_addr_end(addr
, end
);
1815 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1816 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1819 } while (pgd
++, addr
= next
, addr
!= end
);
1822 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1826 EXPORT_SYMBOL(remap_pfn_range
);
1829 * vm_iomap_memory - remap memory to userspace
1830 * @vma: user vma to map to
1831 * @start: start of area
1832 * @len: size of area
1834 * This is a simplified io_remap_pfn_range() for common driver use. The
1835 * driver just needs to give us the physical memory range to be mapped,
1836 * we'll figure out the rest from the vma information.
1838 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1839 * whatever write-combining details or similar.
1841 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1843 unsigned long vm_len
, pfn
, pages
;
1845 /* Check that the physical memory area passed in looks valid */
1846 if (start
+ len
< start
)
1849 * You *really* shouldn't map things that aren't page-aligned,
1850 * but we've historically allowed it because IO memory might
1851 * just have smaller alignment.
1853 len
+= start
& ~PAGE_MASK
;
1854 pfn
= start
>> PAGE_SHIFT
;
1855 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1856 if (pfn
+ pages
< pfn
)
1859 /* We start the mapping 'vm_pgoff' pages into the area */
1860 if (vma
->vm_pgoff
> pages
)
1862 pfn
+= vma
->vm_pgoff
;
1863 pages
-= vma
->vm_pgoff
;
1865 /* Can we fit all of the mapping? */
1866 vm_len
= vma
->vm_end
- vma
->vm_start
;
1867 if (vm_len
>> PAGE_SHIFT
> pages
)
1870 /* Ok, let it rip */
1871 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1873 EXPORT_SYMBOL(vm_iomap_memory
);
1875 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1876 unsigned long addr
, unsigned long end
,
1877 pte_fn_t fn
, void *data
)
1882 spinlock_t
*uninitialized_var(ptl
);
1884 pte
= (mm
== &init_mm
) ?
1885 pte_alloc_kernel(pmd
, addr
) :
1886 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1890 BUG_ON(pmd_huge(*pmd
));
1892 arch_enter_lazy_mmu_mode();
1894 token
= pmd_pgtable(*pmd
);
1897 err
= fn(pte
++, token
, addr
, data
);
1900 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1902 arch_leave_lazy_mmu_mode();
1905 pte_unmap_unlock(pte
-1, ptl
);
1909 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1910 unsigned long addr
, unsigned long end
,
1911 pte_fn_t fn
, void *data
)
1917 BUG_ON(pud_huge(*pud
));
1919 pmd
= pmd_alloc(mm
, pud
, addr
);
1923 next
= pmd_addr_end(addr
, end
);
1924 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1927 } while (pmd
++, addr
= next
, addr
!= end
);
1931 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1932 unsigned long addr
, unsigned long end
,
1933 pte_fn_t fn
, void *data
)
1939 pud
= pud_alloc(mm
, pgd
, addr
);
1943 next
= pud_addr_end(addr
, end
);
1944 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1947 } while (pud
++, addr
= next
, addr
!= end
);
1952 * Scan a region of virtual memory, filling in page tables as necessary
1953 * and calling a provided function on each leaf page table.
1955 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1956 unsigned long size
, pte_fn_t fn
, void *data
)
1960 unsigned long end
= addr
+ size
;
1963 if (WARN_ON(addr
>= end
))
1966 pgd
= pgd_offset(mm
, addr
);
1968 next
= pgd_addr_end(addr
, end
);
1969 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1972 } while (pgd
++, addr
= next
, addr
!= end
);
1976 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1979 * handle_pte_fault chooses page fault handler according to an entry which was
1980 * read non-atomically. Before making any commitment, on those architectures
1981 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1982 * parts, do_swap_page must check under lock before unmapping the pte and
1983 * proceeding (but do_wp_page is only called after already making such a check;
1984 * and do_anonymous_page can safely check later on).
1986 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1987 pte_t
*page_table
, pte_t orig_pte
)
1990 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1991 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1992 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1994 same
= pte_same(*page_table
, orig_pte
);
1998 pte_unmap(page_table
);
2002 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2004 debug_dma_assert_idle(src
);
2007 * If the source page was a PFN mapping, we don't have
2008 * a "struct page" for it. We do a best-effort copy by
2009 * just copying from the original user address. If that
2010 * fails, we just zero-fill it. Live with it.
2012 if (unlikely(!src
)) {
2013 void *kaddr
= kmap_atomic(dst
);
2014 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2017 * This really shouldn't fail, because the page is there
2018 * in the page tables. But it might just be unreadable,
2019 * in which case we just give up and fill the result with
2022 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2024 kunmap_atomic(kaddr
);
2025 flush_dcache_page(dst
);
2027 copy_user_highpage(dst
, src
, va
, vma
);
2030 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2032 struct file
*vm_file
= vma
->vm_file
;
2035 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2038 * Special mappings (e.g. VDSO) do not have any file so fake
2039 * a default GFP_KERNEL for them.
2045 * Notify the address space that the page is about to become writable so that
2046 * it can prohibit this or wait for the page to get into an appropriate state.
2048 * We do this without the lock held, so that it can sleep if it needs to.
2050 static int do_page_mkwrite(struct vm_fault
*vmf
)
2053 struct page
*page
= vmf
->page
;
2054 unsigned int old_flags
= vmf
->flags
;
2056 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2058 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2059 /* Restore original flags so that caller is not surprised */
2060 vmf
->flags
= old_flags
;
2061 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2063 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2065 if (!page
->mapping
) {
2067 return 0; /* retry */
2069 ret
|= VM_FAULT_LOCKED
;
2071 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2076 * Handle dirtying of a page in shared file mapping on a write fault.
2078 * The function expects the page to be locked and unlocks it.
2080 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2083 struct address_space
*mapping
;
2085 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2087 dirtied
= set_page_dirty(page
);
2088 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2090 * Take a local copy of the address_space - page.mapping may be zeroed
2091 * by truncate after unlock_page(). The address_space itself remains
2092 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2093 * release semantics to prevent the compiler from undoing this copying.
2095 mapping
= page_rmapping(page
);
2098 if ((dirtied
|| page_mkwrite
) && mapping
) {
2100 * Some device drivers do not set page.mapping
2101 * but still dirty their pages
2103 balance_dirty_pages_ratelimited(mapping
);
2107 file_update_time(vma
->vm_file
);
2111 * Handle write page faults for pages that can be reused in the current vma
2113 * This can happen either due to the mapping being with the VM_SHARED flag,
2114 * or due to us being the last reference standing to the page. In either
2115 * case, all we need to do here is to mark the page as writable and update
2116 * any related book-keeping.
2118 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2119 __releases(vmf
->ptl
)
2121 struct vm_area_struct
*vma
= vmf
->vma
;
2122 struct page
*page
= vmf
->page
;
2125 * Clear the pages cpupid information as the existing
2126 * information potentially belongs to a now completely
2127 * unrelated process.
2130 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2132 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2133 entry
= pte_mkyoung(vmf
->orig_pte
);
2134 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2135 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2136 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2137 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2141 * Handle the case of a page which we actually need to copy to a new page.
2143 * Called with mmap_sem locked and the old page referenced, but
2144 * without the ptl held.
2146 * High level logic flow:
2148 * - Allocate a page, copy the content of the old page to the new one.
2149 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2150 * - Take the PTL. If the pte changed, bail out and release the allocated page
2151 * - If the pte is still the way we remember it, update the page table and all
2152 * relevant references. This includes dropping the reference the page-table
2153 * held to the old page, as well as updating the rmap.
2154 * - In any case, unlock the PTL and drop the reference we took to the old page.
2156 static int wp_page_copy(struct vm_fault
*vmf
)
2158 struct vm_area_struct
*vma
= vmf
->vma
;
2159 struct mm_struct
*mm
= vma
->vm_mm
;
2160 struct page
*old_page
= vmf
->page
;
2161 struct page
*new_page
= NULL
;
2163 int page_copied
= 0;
2164 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2165 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2166 struct mem_cgroup
*memcg
;
2168 if (unlikely(anon_vma_prepare(vma
)))
2171 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2172 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2177 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2181 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2184 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2187 __SetPageUptodate(new_page
);
2189 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2192 * Re-check the pte - we dropped the lock
2194 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2195 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2197 if (!PageAnon(old_page
)) {
2198 dec_mm_counter_fast(mm
,
2199 mm_counter_file(old_page
));
2200 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2203 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2205 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2206 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2207 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2209 * Clear the pte entry and flush it first, before updating the
2210 * pte with the new entry. This will avoid a race condition
2211 * seen in the presence of one thread doing SMC and another
2214 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2215 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2216 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2217 lru_cache_add_active_or_unevictable(new_page
, vma
);
2219 * We call the notify macro here because, when using secondary
2220 * mmu page tables (such as kvm shadow page tables), we want the
2221 * new page to be mapped directly into the secondary page table.
2223 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2224 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2227 * Only after switching the pte to the new page may
2228 * we remove the mapcount here. Otherwise another
2229 * process may come and find the rmap count decremented
2230 * before the pte is switched to the new page, and
2231 * "reuse" the old page writing into it while our pte
2232 * here still points into it and can be read by other
2235 * The critical issue is to order this
2236 * page_remove_rmap with the ptp_clear_flush above.
2237 * Those stores are ordered by (if nothing else,)
2238 * the barrier present in the atomic_add_negative
2239 * in page_remove_rmap.
2241 * Then the TLB flush in ptep_clear_flush ensures that
2242 * no process can access the old page before the
2243 * decremented mapcount is visible. And the old page
2244 * cannot be reused until after the decremented
2245 * mapcount is visible. So transitively, TLBs to
2246 * old page will be flushed before it can be reused.
2248 page_remove_rmap(old_page
, false);
2251 /* Free the old page.. */
2252 new_page
= old_page
;
2255 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2261 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2262 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2265 * Don't let another task, with possibly unlocked vma,
2266 * keep the mlocked page.
2268 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2269 lock_page(old_page
); /* LRU manipulation */
2270 if (PageMlocked(old_page
))
2271 munlock_vma_page(old_page
);
2272 unlock_page(old_page
);
2276 return page_copied
? VM_FAULT_WRITE
: 0;
2282 return VM_FAULT_OOM
;
2286 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2287 * writeable once the page is prepared
2289 * @vmf: structure describing the fault
2291 * This function handles all that is needed to finish a write page fault in a
2292 * shared mapping due to PTE being read-only once the mapped page is prepared.
2293 * It handles locking of PTE and modifying it. The function returns
2294 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2297 * The function expects the page to be locked or other protection against
2298 * concurrent faults / writeback (such as DAX radix tree locks).
2300 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2302 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2303 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2306 * We might have raced with another page fault while we released the
2307 * pte_offset_map_lock.
2309 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2310 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2311 return VM_FAULT_NOPAGE
;
2318 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2321 static int wp_pfn_shared(struct vm_fault
*vmf
)
2323 struct vm_area_struct
*vma
= vmf
->vma
;
2325 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2328 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2329 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2330 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2331 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2333 return finish_mkwrite_fault(vmf
);
2336 return VM_FAULT_WRITE
;
2339 static int wp_page_shared(struct vm_fault
*vmf
)
2340 __releases(vmf
->ptl
)
2342 struct vm_area_struct
*vma
= vmf
->vma
;
2344 get_page(vmf
->page
);
2346 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2349 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2350 tmp
= do_page_mkwrite(vmf
);
2351 if (unlikely(!tmp
|| (tmp
&
2352 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2353 put_page(vmf
->page
);
2356 tmp
= finish_mkwrite_fault(vmf
);
2357 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2358 unlock_page(vmf
->page
);
2359 put_page(vmf
->page
);
2364 lock_page(vmf
->page
);
2366 fault_dirty_shared_page(vma
, vmf
->page
);
2367 put_page(vmf
->page
);
2369 return VM_FAULT_WRITE
;
2373 * This routine handles present pages, when users try to write
2374 * to a shared page. It is done by copying the page to a new address
2375 * and decrementing the shared-page counter for the old page.
2377 * Note that this routine assumes that the protection checks have been
2378 * done by the caller (the low-level page fault routine in most cases).
2379 * Thus we can safely just mark it writable once we've done any necessary
2382 * We also mark the page dirty at this point even though the page will
2383 * change only once the write actually happens. This avoids a few races,
2384 * and potentially makes it more efficient.
2386 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2387 * but allow concurrent faults), with pte both mapped and locked.
2388 * We return with mmap_sem still held, but pte unmapped and unlocked.
2390 static int do_wp_page(struct vm_fault
*vmf
)
2391 __releases(vmf
->ptl
)
2393 struct vm_area_struct
*vma
= vmf
->vma
;
2395 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2398 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2401 * We should not cow pages in a shared writeable mapping.
2402 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2404 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2405 (VM_WRITE
|VM_SHARED
))
2406 return wp_pfn_shared(vmf
);
2408 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2409 return wp_page_copy(vmf
);
2413 * Take out anonymous pages first, anonymous shared vmas are
2414 * not dirty accountable.
2416 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2418 if (!trylock_page(vmf
->page
)) {
2419 get_page(vmf
->page
);
2420 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2421 lock_page(vmf
->page
);
2422 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2423 vmf
->address
, &vmf
->ptl
);
2424 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2425 unlock_page(vmf
->page
);
2426 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2427 put_page(vmf
->page
);
2430 put_page(vmf
->page
);
2432 if (reuse_swap_page(vmf
->page
, &total_mapcount
)) {
2433 if (total_mapcount
== 1) {
2435 * The page is all ours. Move it to
2436 * our anon_vma so the rmap code will
2437 * not search our parent or siblings.
2438 * Protected against the rmap code by
2441 page_move_anon_rmap(vmf
->page
, vma
);
2443 unlock_page(vmf
->page
);
2445 return VM_FAULT_WRITE
;
2447 unlock_page(vmf
->page
);
2448 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2449 (VM_WRITE
|VM_SHARED
))) {
2450 return wp_page_shared(vmf
);
2454 * Ok, we need to copy. Oh, well..
2456 get_page(vmf
->page
);
2458 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2459 return wp_page_copy(vmf
);
2462 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2463 unsigned long start_addr
, unsigned long end_addr
,
2464 struct zap_details
*details
)
2466 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2469 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2470 struct zap_details
*details
)
2472 struct vm_area_struct
*vma
;
2473 pgoff_t vba
, vea
, zba
, zea
;
2475 vma_interval_tree_foreach(vma
, root
,
2476 details
->first_index
, details
->last_index
) {
2478 vba
= vma
->vm_pgoff
;
2479 vea
= vba
+ vma_pages(vma
) - 1;
2480 zba
= details
->first_index
;
2483 zea
= details
->last_index
;
2487 unmap_mapping_range_vma(vma
,
2488 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2489 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2495 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2496 * address_space corresponding to the specified page range in the underlying
2499 * @mapping: the address space containing mmaps to be unmapped.
2500 * @holebegin: byte in first page to unmap, relative to the start of
2501 * the underlying file. This will be rounded down to a PAGE_SIZE
2502 * boundary. Note that this is different from truncate_pagecache(), which
2503 * must keep the partial page. In contrast, we must get rid of
2505 * @holelen: size of prospective hole in bytes. This will be rounded
2506 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2508 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2509 * but 0 when invalidating pagecache, don't throw away private data.
2511 void unmap_mapping_range(struct address_space
*mapping
,
2512 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2514 struct zap_details details
= { };
2515 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2516 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2518 /* Check for overflow. */
2519 if (sizeof(holelen
) > sizeof(hlen
)) {
2521 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2522 if (holeend
& ~(long long)ULONG_MAX
)
2523 hlen
= ULONG_MAX
- hba
+ 1;
2526 details
.check_mapping
= even_cows
? NULL
: mapping
;
2527 details
.first_index
= hba
;
2528 details
.last_index
= hba
+ hlen
- 1;
2529 if (details
.last_index
< details
.first_index
)
2530 details
.last_index
= ULONG_MAX
;
2532 i_mmap_lock_write(mapping
);
2533 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2534 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2535 i_mmap_unlock_write(mapping
);
2537 EXPORT_SYMBOL(unmap_mapping_range
);
2540 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2541 * but allow concurrent faults), and pte mapped but not yet locked.
2542 * We return with pte unmapped and unlocked.
2544 * We return with the mmap_sem locked or unlocked in the same cases
2545 * as does filemap_fault().
2547 int do_swap_page(struct vm_fault
*vmf
)
2549 struct vm_area_struct
*vma
= vmf
->vma
;
2550 struct page
*page
, *swapcache
;
2551 struct mem_cgroup
*memcg
;
2558 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2561 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2562 if (unlikely(non_swap_entry(entry
))) {
2563 if (is_migration_entry(entry
)) {
2564 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2566 } else if (is_hwpoison_entry(entry
)) {
2567 ret
= VM_FAULT_HWPOISON
;
2569 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2570 ret
= VM_FAULT_SIGBUS
;
2574 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2575 page
= lookup_swap_cache(entry
);
2577 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
, vma
,
2581 * Back out if somebody else faulted in this pte
2582 * while we released the pte lock.
2584 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2585 vmf
->address
, &vmf
->ptl
);
2586 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2588 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2592 /* Had to read the page from swap area: Major fault */
2593 ret
= VM_FAULT_MAJOR
;
2594 count_vm_event(PGMAJFAULT
);
2595 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2596 } else if (PageHWPoison(page
)) {
2598 * hwpoisoned dirty swapcache pages are kept for killing
2599 * owner processes (which may be unknown at hwpoison time)
2601 ret
= VM_FAULT_HWPOISON
;
2602 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2608 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2610 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2612 ret
|= VM_FAULT_RETRY
;
2617 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2618 * release the swapcache from under us. The page pin, and pte_same
2619 * test below, are not enough to exclude that. Even if it is still
2620 * swapcache, we need to check that the page's swap has not changed.
2622 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2625 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2626 if (unlikely(!page
)) {
2632 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2639 * Back out if somebody else already faulted in this pte.
2641 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2643 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2646 if (unlikely(!PageUptodate(page
))) {
2647 ret
= VM_FAULT_SIGBUS
;
2652 * The page isn't present yet, go ahead with the fault.
2654 * Be careful about the sequence of operations here.
2655 * To get its accounting right, reuse_swap_page() must be called
2656 * while the page is counted on swap but not yet in mapcount i.e.
2657 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2658 * must be called after the swap_free(), or it will never succeed.
2661 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2662 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2663 pte
= mk_pte(page
, vma
->vm_page_prot
);
2664 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2665 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2666 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2667 ret
|= VM_FAULT_WRITE
;
2668 exclusive
= RMAP_EXCLUSIVE
;
2670 flush_icache_page(vma
, page
);
2671 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2672 pte
= pte_mksoft_dirty(pte
);
2673 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2674 vmf
->orig_pte
= pte
;
2675 if (page
== swapcache
) {
2676 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2677 mem_cgroup_commit_charge(page
, memcg
, true, false);
2678 activate_page(page
);
2679 } else { /* ksm created a completely new copy */
2680 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2681 mem_cgroup_commit_charge(page
, memcg
, false, false);
2682 lru_cache_add_active_or_unevictable(page
, vma
);
2686 if (mem_cgroup_swap_full(page
) ||
2687 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2688 try_to_free_swap(page
);
2690 if (page
!= swapcache
) {
2692 * Hold the lock to avoid the swap entry to be reused
2693 * until we take the PT lock for the pte_same() check
2694 * (to avoid false positives from pte_same). For
2695 * further safety release the lock after the swap_free
2696 * so that the swap count won't change under a
2697 * parallel locked swapcache.
2699 unlock_page(swapcache
);
2700 put_page(swapcache
);
2703 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2704 ret
|= do_wp_page(vmf
);
2705 if (ret
& VM_FAULT_ERROR
)
2706 ret
&= VM_FAULT_ERROR
;
2710 /* No need to invalidate - it was non-present before */
2711 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2713 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2717 mem_cgroup_cancel_charge(page
, memcg
, false);
2718 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2723 if (page
!= swapcache
) {
2724 unlock_page(swapcache
);
2725 put_page(swapcache
);
2731 * This is like a special single-page "expand_{down|up}wards()",
2732 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2733 * doesn't hit another vma.
2735 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2737 address
&= PAGE_MASK
;
2738 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2739 struct vm_area_struct
*prev
= vma
->vm_prev
;
2742 * Is there a mapping abutting this one below?
2744 * That's only ok if it's the same stack mapping
2745 * that has gotten split..
2747 if (prev
&& prev
->vm_end
== address
)
2748 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2750 return expand_downwards(vma
, address
- PAGE_SIZE
);
2752 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2753 struct vm_area_struct
*next
= vma
->vm_next
;
2755 /* As VM_GROWSDOWN but s/below/above/ */
2756 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2757 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2759 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2765 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2766 * but allow concurrent faults), and pte mapped but not yet locked.
2767 * We return with mmap_sem still held, but pte unmapped and unlocked.
2769 static int do_anonymous_page(struct vm_fault
*vmf
)
2771 struct vm_area_struct
*vma
= vmf
->vma
;
2772 struct mem_cgroup
*memcg
;
2776 /* File mapping without ->vm_ops ? */
2777 if (vma
->vm_flags
& VM_SHARED
)
2778 return VM_FAULT_SIGBUS
;
2780 /* Check if we need to add a guard page to the stack */
2781 if (check_stack_guard_page(vma
, vmf
->address
) < 0)
2782 return VM_FAULT_SIGSEGV
;
2785 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2786 * pte_offset_map() on pmds where a huge pmd might be created
2787 * from a different thread.
2789 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2790 * parallel threads are excluded by other means.
2792 * Here we only have down_read(mmap_sem).
2794 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
2795 return VM_FAULT_OOM
;
2797 /* See the comment in pte_alloc_one_map() */
2798 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2801 /* Use the zero-page for reads */
2802 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2803 !mm_forbids_zeropage(vma
->vm_mm
)) {
2804 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2805 vma
->vm_page_prot
));
2806 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2807 vmf
->address
, &vmf
->ptl
);
2808 if (!pte_none(*vmf
->pte
))
2810 /* Deliver the page fault to userland, check inside PT lock */
2811 if (userfaultfd_missing(vma
)) {
2812 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2813 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2818 /* Allocate our own private page. */
2819 if (unlikely(anon_vma_prepare(vma
)))
2821 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2825 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2829 * The memory barrier inside __SetPageUptodate makes sure that
2830 * preceeding stores to the page contents become visible before
2831 * the set_pte_at() write.
2833 __SetPageUptodate(page
);
2835 entry
= mk_pte(page
, vma
->vm_page_prot
);
2836 if (vma
->vm_flags
& VM_WRITE
)
2837 entry
= pte_mkwrite(pte_mkdirty(entry
));
2839 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2841 if (!pte_none(*vmf
->pte
))
2844 /* Deliver the page fault to userland, check inside PT lock */
2845 if (userfaultfd_missing(vma
)) {
2846 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2847 mem_cgroup_cancel_charge(page
, memcg
, false);
2849 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2852 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2853 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2854 mem_cgroup_commit_charge(page
, memcg
, false, false);
2855 lru_cache_add_active_or_unevictable(page
, vma
);
2857 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2859 /* No need to invalidate - it was non-present before */
2860 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2862 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2865 mem_cgroup_cancel_charge(page
, memcg
, false);
2871 return VM_FAULT_OOM
;
2875 * The mmap_sem must have been held on entry, and may have been
2876 * released depending on flags and vma->vm_ops->fault() return value.
2877 * See filemap_fault() and __lock_page_retry().
2879 static int __do_fault(struct vm_fault
*vmf
)
2881 struct vm_area_struct
*vma
= vmf
->vma
;
2884 ret
= vma
->vm_ops
->fault(vmf
);
2885 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
2886 VM_FAULT_DONE_COW
)))
2889 if (unlikely(PageHWPoison(vmf
->page
))) {
2890 if (ret
& VM_FAULT_LOCKED
)
2891 unlock_page(vmf
->page
);
2892 put_page(vmf
->page
);
2894 return VM_FAULT_HWPOISON
;
2897 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2898 lock_page(vmf
->page
);
2900 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
2905 static int pte_alloc_one_map(struct vm_fault
*vmf
)
2907 struct vm_area_struct
*vma
= vmf
->vma
;
2909 if (!pmd_none(*vmf
->pmd
))
2911 if (vmf
->prealloc_pte
) {
2912 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
2913 if (unlikely(!pmd_none(*vmf
->pmd
))) {
2914 spin_unlock(vmf
->ptl
);
2918 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2919 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2920 spin_unlock(vmf
->ptl
);
2921 vmf
->prealloc_pte
= NULL
;
2922 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
2923 return VM_FAULT_OOM
;
2927 * If a huge pmd materialized under us just retry later. Use
2928 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2929 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2930 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2931 * in a different thread of this mm, in turn leading to a misleading
2932 * pmd_trans_huge() retval. All we have to ensure is that it is a
2933 * regular pmd that we can walk with pte_offset_map() and we can do that
2934 * through an atomic read in C, which is what pmd_trans_unstable()
2937 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
2938 return VM_FAULT_NOPAGE
;
2940 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2945 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2947 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2948 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
2949 unsigned long haddr
)
2951 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
2952 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
2954 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
2959 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
2961 struct vm_area_struct
*vma
= vmf
->vma
;
2963 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2965 * We are going to consume the prealloc table,
2966 * count that as nr_ptes.
2968 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2969 vmf
->prealloc_pte
= NULL
;
2972 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
2974 struct vm_area_struct
*vma
= vmf
->vma
;
2975 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
2976 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
2980 if (!transhuge_vma_suitable(vma
, haddr
))
2981 return VM_FAULT_FALLBACK
;
2983 ret
= VM_FAULT_FALLBACK
;
2984 page
= compound_head(page
);
2987 * Archs like ppc64 need additonal space to store information
2988 * related to pte entry. Use the preallocated table for that.
2990 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
2991 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
2992 if (!vmf
->prealloc_pte
)
2993 return VM_FAULT_OOM
;
2994 smp_wmb(); /* See comment in __pte_alloc() */
2997 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
2998 if (unlikely(!pmd_none(*vmf
->pmd
)))
3001 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3002 flush_icache_page(vma
, page
+ i
);
3004 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3006 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3008 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3009 page_add_file_rmap(page
, true);
3011 * deposit and withdraw with pmd lock held
3013 if (arch_needs_pgtable_deposit())
3014 deposit_prealloc_pte(vmf
);
3016 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3018 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3020 /* fault is handled */
3022 count_vm_event(THP_FILE_MAPPED
);
3024 spin_unlock(vmf
->ptl
);
3028 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3036 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3037 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3039 * @vmf: fault environment
3040 * @memcg: memcg to charge page (only for private mappings)
3041 * @page: page to map
3043 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3046 * Target users are page handler itself and implementations of
3047 * vm_ops->map_pages.
3049 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3052 struct vm_area_struct
*vma
= vmf
->vma
;
3053 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3057 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3058 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3060 VM_BUG_ON_PAGE(memcg
, page
);
3062 ret
= do_set_pmd(vmf
, page
);
3063 if (ret
!= VM_FAULT_FALLBACK
)
3068 ret
= pte_alloc_one_map(vmf
);
3073 /* Re-check under ptl */
3074 if (unlikely(!pte_none(*vmf
->pte
)))
3075 return VM_FAULT_NOPAGE
;
3077 flush_icache_page(vma
, page
);
3078 entry
= mk_pte(page
, vma
->vm_page_prot
);
3080 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3081 /* copy-on-write page */
3082 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3083 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3084 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3085 mem_cgroup_commit_charge(page
, memcg
, false, false);
3086 lru_cache_add_active_or_unevictable(page
, vma
);
3088 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3089 page_add_file_rmap(page
, false);
3091 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3093 /* no need to invalidate: a not-present page won't be cached */
3094 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3101 * finish_fault - finish page fault once we have prepared the page to fault
3103 * @vmf: structure describing the fault
3105 * This function handles all that is needed to finish a page fault once the
3106 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3107 * given page, adds reverse page mapping, handles memcg charges and LRU
3108 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3111 * The function expects the page to be locked and on success it consumes a
3112 * reference of a page being mapped (for the PTE which maps it).
3114 int finish_fault(struct vm_fault
*vmf
)
3119 /* Did we COW the page? */
3120 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3121 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3122 page
= vmf
->cow_page
;
3125 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3127 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3131 static unsigned long fault_around_bytes __read_mostly
=
3132 rounddown_pow_of_two(65536);
3134 #ifdef CONFIG_DEBUG_FS
3135 static int fault_around_bytes_get(void *data
, u64
*val
)
3137 *val
= fault_around_bytes
;
3142 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3143 * rounded down to nearest page order. It's what do_fault_around() expects to
3146 static int fault_around_bytes_set(void *data
, u64 val
)
3148 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3150 if (val
> PAGE_SIZE
)
3151 fault_around_bytes
= rounddown_pow_of_two(val
);
3153 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3156 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
3157 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3159 static int __init
fault_around_debugfs(void)
3163 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
3164 &fault_around_bytes_fops
);
3166 pr_warn("Failed to create fault_around_bytes in debugfs");
3169 late_initcall(fault_around_debugfs
);
3173 * do_fault_around() tries to map few pages around the fault address. The hope
3174 * is that the pages will be needed soon and this will lower the number of
3177 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3178 * not ready to be mapped: not up-to-date, locked, etc.
3180 * This function is called with the page table lock taken. In the split ptlock
3181 * case the page table lock only protects only those entries which belong to
3182 * the page table corresponding to the fault address.
3184 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3187 * fault_around_pages() defines how many pages we'll try to map.
3188 * do_fault_around() expects it to return a power of two less than or equal to
3191 * The virtual address of the area that we map is naturally aligned to the
3192 * fault_around_pages() value (and therefore to page order). This way it's
3193 * easier to guarantee that we don't cross page table boundaries.
3195 static int do_fault_around(struct vm_fault
*vmf
)
3197 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3198 pgoff_t start_pgoff
= vmf
->pgoff
;
3202 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3203 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3205 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3206 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3210 * end_pgoff is either end of page table or end of vma
3211 * or fault_around_pages() from start_pgoff, depending what is nearest.
3213 end_pgoff
= start_pgoff
-
3214 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3216 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3217 start_pgoff
+ nr_pages
- 1);
3219 if (pmd_none(*vmf
->pmd
)) {
3220 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3222 if (!vmf
->prealloc_pte
)
3224 smp_wmb(); /* See comment in __pte_alloc() */
3227 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3229 /* Huge page is mapped? Page fault is solved */
3230 if (pmd_trans_huge(*vmf
->pmd
)) {
3231 ret
= VM_FAULT_NOPAGE
;
3235 /* ->map_pages() haven't done anything useful. Cold page cache? */
3239 /* check if the page fault is solved */
3240 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3241 if (!pte_none(*vmf
->pte
))
3242 ret
= VM_FAULT_NOPAGE
;
3243 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3245 vmf
->address
= address
;
3250 static int do_read_fault(struct vm_fault
*vmf
)
3252 struct vm_area_struct
*vma
= vmf
->vma
;
3256 * Let's call ->map_pages() first and use ->fault() as fallback
3257 * if page by the offset is not ready to be mapped (cold cache or
3260 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3261 ret
= do_fault_around(vmf
);
3266 ret
= __do_fault(vmf
);
3267 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3270 ret
|= finish_fault(vmf
);
3271 unlock_page(vmf
->page
);
3272 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3273 put_page(vmf
->page
);
3277 static int do_cow_fault(struct vm_fault
*vmf
)
3279 struct vm_area_struct
*vma
= vmf
->vma
;
3282 if (unlikely(anon_vma_prepare(vma
)))
3283 return VM_FAULT_OOM
;
3285 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3287 return VM_FAULT_OOM
;
3289 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3290 &vmf
->memcg
, false)) {
3291 put_page(vmf
->cow_page
);
3292 return VM_FAULT_OOM
;
3295 ret
= __do_fault(vmf
);
3296 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3298 if (ret
& VM_FAULT_DONE_COW
)
3301 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3302 __SetPageUptodate(vmf
->cow_page
);
3304 ret
|= finish_fault(vmf
);
3305 unlock_page(vmf
->page
);
3306 put_page(vmf
->page
);
3307 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3311 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3312 put_page(vmf
->cow_page
);
3316 static int do_shared_fault(struct vm_fault
*vmf
)
3318 struct vm_area_struct
*vma
= vmf
->vma
;
3321 ret
= __do_fault(vmf
);
3322 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3326 * Check if the backing address space wants to know that the page is
3327 * about to become writable
3329 if (vma
->vm_ops
->page_mkwrite
) {
3330 unlock_page(vmf
->page
);
3331 tmp
= do_page_mkwrite(vmf
);
3332 if (unlikely(!tmp
||
3333 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3334 put_page(vmf
->page
);
3339 ret
|= finish_fault(vmf
);
3340 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3342 unlock_page(vmf
->page
);
3343 put_page(vmf
->page
);
3347 fault_dirty_shared_page(vma
, vmf
->page
);
3352 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3353 * but allow concurrent faults).
3354 * The mmap_sem may have been released depending on flags and our
3355 * return value. See filemap_fault() and __lock_page_or_retry().
3357 static int do_fault(struct vm_fault
*vmf
)
3359 struct vm_area_struct
*vma
= vmf
->vma
;
3362 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3363 if (!vma
->vm_ops
->fault
)
3364 ret
= VM_FAULT_SIGBUS
;
3365 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3366 ret
= do_read_fault(vmf
);
3367 else if (!(vma
->vm_flags
& VM_SHARED
))
3368 ret
= do_cow_fault(vmf
);
3370 ret
= do_shared_fault(vmf
);
3372 /* preallocated pagetable is unused: free it */
3373 if (vmf
->prealloc_pte
) {
3374 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3375 vmf
->prealloc_pte
= NULL
;
3380 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3381 unsigned long addr
, int page_nid
,
3386 count_vm_numa_event(NUMA_HINT_FAULTS
);
3387 if (page_nid
== numa_node_id()) {
3388 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3389 *flags
|= TNF_FAULT_LOCAL
;
3392 return mpol_misplaced(page
, vma
, addr
);
3395 static int do_numa_page(struct vm_fault
*vmf
)
3397 struct vm_area_struct
*vma
= vmf
->vma
;
3398 struct page
*page
= NULL
;
3402 bool migrated
= false;
3404 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3408 * The "pte" at this point cannot be used safely without
3409 * validation through pte_unmap_same(). It's of NUMA type but
3410 * the pfn may be screwed if the read is non atomic.
3412 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3413 spin_lock(vmf
->ptl
);
3414 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3415 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3420 * Make it present again, Depending on how arch implementes non
3421 * accessible ptes, some can allow access by kernel mode.
3423 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3424 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3425 pte
= pte_mkyoung(pte
);
3427 pte
= pte_mkwrite(pte
);
3428 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3429 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3431 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3433 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3437 /* TODO: handle PTE-mapped THP */
3438 if (PageCompound(page
)) {
3439 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3444 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3445 * much anyway since they can be in shared cache state. This misses
3446 * the case where a mapping is writable but the process never writes
3447 * to it but pte_write gets cleared during protection updates and
3448 * pte_dirty has unpredictable behaviour between PTE scan updates,
3449 * background writeback, dirty balancing and application behaviour.
3451 if (!pte_write(pte
))
3452 flags
|= TNF_NO_GROUP
;
3455 * Flag if the page is shared between multiple address spaces. This
3456 * is later used when determining whether to group tasks together
3458 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3459 flags
|= TNF_SHARED
;
3461 last_cpupid
= page_cpupid_last(page
);
3462 page_nid
= page_to_nid(page
);
3463 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3465 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3466 if (target_nid
== -1) {
3471 /* Migrate to the requested node */
3472 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3474 page_nid
= target_nid
;
3475 flags
|= TNF_MIGRATED
;
3477 flags
|= TNF_MIGRATE_FAIL
;
3481 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3485 static int create_huge_pmd(struct vm_fault
*vmf
)
3487 if (vma_is_anonymous(vmf
->vma
))
3488 return do_huge_pmd_anonymous_page(vmf
);
3489 if (vmf
->vma
->vm_ops
->huge_fault
)
3490 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3491 return VM_FAULT_FALLBACK
;
3494 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3496 if (vma_is_anonymous(vmf
->vma
))
3497 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3498 if (vmf
->vma
->vm_ops
->huge_fault
)
3499 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3501 /* COW handled on pte level: split pmd */
3502 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3503 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3505 return VM_FAULT_FALLBACK
;
3508 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3510 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3513 static int create_huge_pud(struct vm_fault
*vmf
)
3515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3516 /* No support for anonymous transparent PUD pages yet */
3517 if (vma_is_anonymous(vmf
->vma
))
3518 return VM_FAULT_FALLBACK
;
3519 if (vmf
->vma
->vm_ops
->huge_fault
)
3520 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3521 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3522 return VM_FAULT_FALLBACK
;
3525 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3528 /* No support for anonymous transparent PUD pages yet */
3529 if (vma_is_anonymous(vmf
->vma
))
3530 return VM_FAULT_FALLBACK
;
3531 if (vmf
->vma
->vm_ops
->huge_fault
)
3532 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3533 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3534 return VM_FAULT_FALLBACK
;
3538 * These routines also need to handle stuff like marking pages dirty
3539 * and/or accessed for architectures that don't do it in hardware (most
3540 * RISC architectures). The early dirtying is also good on the i386.
3542 * There is also a hook called "update_mmu_cache()" that architectures
3543 * with external mmu caches can use to update those (ie the Sparc or
3544 * PowerPC hashed page tables that act as extended TLBs).
3546 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3547 * concurrent faults).
3549 * The mmap_sem may have been released depending on flags and our return value.
3550 * See filemap_fault() and __lock_page_or_retry().
3552 static int handle_pte_fault(struct vm_fault
*vmf
)
3556 if (unlikely(pmd_none(*vmf
->pmd
))) {
3558 * Leave __pte_alloc() until later: because vm_ops->fault may
3559 * want to allocate huge page, and if we expose page table
3560 * for an instant, it will be difficult to retract from
3561 * concurrent faults and from rmap lookups.
3565 /* See comment in pte_alloc_one_map() */
3566 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
3569 * A regular pmd is established and it can't morph into a huge
3570 * pmd from under us anymore at this point because we hold the
3571 * mmap_sem read mode and khugepaged takes it in write mode.
3572 * So now it's safe to run pte_offset_map().
3574 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3575 vmf
->orig_pte
= *vmf
->pte
;
3578 * some architectures can have larger ptes than wordsize,
3579 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3580 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3581 * atomic accesses. The code below just needs a consistent
3582 * view for the ifs and we later double check anyway with the
3583 * ptl lock held. So here a barrier will do.
3586 if (pte_none(vmf
->orig_pte
)) {
3587 pte_unmap(vmf
->pte
);
3593 if (vma_is_anonymous(vmf
->vma
))
3594 return do_anonymous_page(vmf
);
3596 return do_fault(vmf
);
3599 if (!pte_present(vmf
->orig_pte
))
3600 return do_swap_page(vmf
);
3602 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3603 return do_numa_page(vmf
);
3605 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3606 spin_lock(vmf
->ptl
);
3607 entry
= vmf
->orig_pte
;
3608 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3610 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3611 if (!pte_write(entry
))
3612 return do_wp_page(vmf
);
3613 entry
= pte_mkdirty(entry
);
3615 entry
= pte_mkyoung(entry
);
3616 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3617 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3618 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3621 * This is needed only for protection faults but the arch code
3622 * is not yet telling us if this is a protection fault or not.
3623 * This still avoids useless tlb flushes for .text page faults
3626 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3627 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3630 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3635 * By the time we get here, we already hold the mm semaphore
3637 * The mmap_sem may have been released depending on flags and our
3638 * return value. See filemap_fault() and __lock_page_or_retry().
3640 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3643 struct vm_fault vmf
= {
3645 .address
= address
& PAGE_MASK
,
3647 .pgoff
= linear_page_index(vma
, address
),
3648 .gfp_mask
= __get_fault_gfp_mask(vma
),
3650 struct mm_struct
*mm
= vma
->vm_mm
;
3654 pgd
= pgd_offset(mm
, address
);
3656 vmf
.pud
= pud_alloc(mm
, pgd
, address
);
3658 return VM_FAULT_OOM
;
3659 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
3660 ret
= create_huge_pud(&vmf
);
3661 if (!(ret
& VM_FAULT_FALLBACK
))
3664 pud_t orig_pud
= *vmf
.pud
;
3667 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3668 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3670 /* NUMA case for anonymous PUDs would go here */
3672 if (dirty
&& !pud_write(orig_pud
)) {
3673 ret
= wp_huge_pud(&vmf
, orig_pud
);
3674 if (!(ret
& VM_FAULT_FALLBACK
))
3677 huge_pud_set_accessed(&vmf
, orig_pud
);
3683 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3685 return VM_FAULT_OOM
;
3686 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
3687 ret
= create_huge_pmd(&vmf
);
3688 if (!(ret
& VM_FAULT_FALLBACK
))
3691 pmd_t orig_pmd
= *vmf
.pmd
;
3694 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3695 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3696 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3698 if ((vmf
.flags
& FAULT_FLAG_WRITE
) &&
3699 !pmd_write(orig_pmd
)) {
3700 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3701 if (!(ret
& VM_FAULT_FALLBACK
))
3704 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3710 return handle_pte_fault(&vmf
);
3714 * By the time we get here, we already hold the mm semaphore
3716 * The mmap_sem may have been released depending on flags and our
3717 * return value. See filemap_fault() and __lock_page_or_retry().
3719 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3724 __set_current_state(TASK_RUNNING
);
3726 count_vm_event(PGFAULT
);
3727 mem_cgroup_count_vm_event(vma
->vm_mm
, PGFAULT
);
3729 /* do counter updates before entering really critical section. */
3730 check_sync_rss_stat(current
);
3733 * Enable the memcg OOM handling for faults triggered in user
3734 * space. Kernel faults are handled more gracefully.
3736 if (flags
& FAULT_FLAG_USER
)
3737 mem_cgroup_oom_enable();
3739 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3740 flags
& FAULT_FLAG_INSTRUCTION
,
3741 flags
& FAULT_FLAG_REMOTE
))
3742 return VM_FAULT_SIGSEGV
;
3744 if (unlikely(is_vm_hugetlb_page(vma
)))
3745 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3747 ret
= __handle_mm_fault(vma
, address
, flags
);
3749 if (flags
& FAULT_FLAG_USER
) {
3750 mem_cgroup_oom_disable();
3752 * The task may have entered a memcg OOM situation but
3753 * if the allocation error was handled gracefully (no
3754 * VM_FAULT_OOM), there is no need to kill anything.
3755 * Just clean up the OOM state peacefully.
3757 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3758 mem_cgroup_oom_synchronize(false);
3762 * This mm has been already reaped by the oom reaper and so the
3763 * refault cannot be trusted in general. Anonymous refaults would
3764 * lose data and give a zero page instead e.g. This is especially
3765 * problem for use_mm() because regular tasks will just die and
3766 * the corrupted data will not be visible anywhere while kthread
3767 * will outlive the oom victim and potentially propagate the date
3770 if (unlikely((current
->flags
& PF_KTHREAD
) && !(ret
& VM_FAULT_ERROR
)
3771 && test_bit(MMF_UNSTABLE
, &vma
->vm_mm
->flags
)))
3772 ret
= VM_FAULT_SIGBUS
;
3776 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3778 #ifndef __PAGETABLE_PUD_FOLDED
3780 * Allocate page upper directory.
3781 * We've already handled the fast-path in-line.
3783 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3785 pud_t
*new = pud_alloc_one(mm
, address
);
3789 smp_wmb(); /* See comment in __pte_alloc */
3791 spin_lock(&mm
->page_table_lock
);
3792 if (pgd_present(*pgd
)) /* Another has populated it */
3795 pgd_populate(mm
, pgd
, new);
3796 spin_unlock(&mm
->page_table_lock
);
3799 #endif /* __PAGETABLE_PUD_FOLDED */
3801 #ifndef __PAGETABLE_PMD_FOLDED
3803 * Allocate page middle directory.
3804 * We've already handled the fast-path in-line.
3806 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3809 pmd_t
*new = pmd_alloc_one(mm
, address
);
3813 smp_wmb(); /* See comment in __pte_alloc */
3815 ptl
= pud_lock(mm
, pud
);
3816 #ifndef __ARCH_HAS_4LEVEL_HACK
3817 if (!pud_present(*pud
)) {
3819 pud_populate(mm
, pud
, new);
3820 } else /* Another has populated it */
3823 if (!pgd_present(*pud
)) {
3825 pgd_populate(mm
, pud
, new);
3826 } else /* Another has populated it */
3828 #endif /* __ARCH_HAS_4LEVEL_HACK */
3832 #endif /* __PAGETABLE_PMD_FOLDED */
3834 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3835 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3842 pgd
= pgd_offset(mm
, address
);
3843 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3846 pud
= pud_offset(pgd
, address
);
3847 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3850 pmd
= pmd_offset(pud
, address
);
3851 VM_BUG_ON(pmd_trans_huge(*pmd
));
3853 if (pmd_huge(*pmd
)) {
3857 *ptlp
= pmd_lock(mm
, pmd
);
3858 if (pmd_huge(*pmd
)) {
3865 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3868 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3871 if (!pte_present(*ptep
))
3876 pte_unmap_unlock(ptep
, *ptlp
);
3881 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3882 pte_t
**ptepp
, spinlock_t
**ptlp
)
3886 /* (void) is needed to make gcc happy */
3887 (void) __cond_lock(*ptlp
,
3888 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, NULL
,
3893 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3894 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3898 /* (void) is needed to make gcc happy */
3899 (void) __cond_lock(*ptlp
,
3900 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, pmdpp
,
3904 EXPORT_SYMBOL(follow_pte_pmd
);
3907 * follow_pfn - look up PFN at a user virtual address
3908 * @vma: memory mapping
3909 * @address: user virtual address
3910 * @pfn: location to store found PFN
3912 * Only IO mappings and raw PFN mappings are allowed.
3914 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3916 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3923 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3926 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3929 *pfn
= pte_pfn(*ptep
);
3930 pte_unmap_unlock(ptep
, ptl
);
3933 EXPORT_SYMBOL(follow_pfn
);
3935 #ifdef CONFIG_HAVE_IOREMAP_PROT
3936 int follow_phys(struct vm_area_struct
*vma
,
3937 unsigned long address
, unsigned int flags
,
3938 unsigned long *prot
, resource_size_t
*phys
)
3944 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3947 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3951 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3954 *prot
= pgprot_val(pte_pgprot(pte
));
3955 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3959 pte_unmap_unlock(ptep
, ptl
);
3964 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3965 void *buf
, int len
, int write
)
3967 resource_size_t phys_addr
;
3968 unsigned long prot
= 0;
3969 void __iomem
*maddr
;
3970 int offset
= addr
& (PAGE_SIZE
-1);
3972 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3975 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3977 memcpy_toio(maddr
+ offset
, buf
, len
);
3979 memcpy_fromio(buf
, maddr
+ offset
, len
);
3984 EXPORT_SYMBOL_GPL(generic_access_phys
);
3988 * Access another process' address space as given in mm. If non-NULL, use the
3989 * given task for page fault accounting.
3991 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3992 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
3994 struct vm_area_struct
*vma
;
3995 void *old_buf
= buf
;
3996 int write
= gup_flags
& FOLL_WRITE
;
3998 down_read(&mm
->mmap_sem
);
3999 /* ignore errors, just check how much was successfully transferred */
4001 int bytes
, ret
, offset
;
4003 struct page
*page
= NULL
;
4005 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4006 gup_flags
, &page
, &vma
, NULL
);
4008 #ifndef CONFIG_HAVE_IOREMAP_PROT
4012 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4013 * we can access using slightly different code.
4015 vma
= find_vma(mm
, addr
);
4016 if (!vma
|| vma
->vm_start
> addr
)
4018 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4019 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4027 offset
= addr
& (PAGE_SIZE
-1);
4028 if (bytes
> PAGE_SIZE
-offset
)
4029 bytes
= PAGE_SIZE
-offset
;
4033 copy_to_user_page(vma
, page
, addr
,
4034 maddr
+ offset
, buf
, bytes
);
4035 set_page_dirty_lock(page
);
4037 copy_from_user_page(vma
, page
, addr
,
4038 buf
, maddr
+ offset
, bytes
);
4047 up_read(&mm
->mmap_sem
);
4049 return buf
- old_buf
;
4053 * access_remote_vm - access another process' address space
4054 * @mm: the mm_struct of the target address space
4055 * @addr: start address to access
4056 * @buf: source or destination buffer
4057 * @len: number of bytes to transfer
4058 * @gup_flags: flags modifying lookup behaviour
4060 * The caller must hold a reference on @mm.
4062 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4063 void *buf
, int len
, unsigned int gup_flags
)
4065 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4069 * Access another process' address space.
4070 * Source/target buffer must be kernel space,
4071 * Do not walk the page table directly, use get_user_pages
4073 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4074 void *buf
, int len
, unsigned int gup_flags
)
4076 struct mm_struct
*mm
;
4079 mm
= get_task_mm(tsk
);
4083 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4089 EXPORT_SYMBOL_GPL(access_process_vm
);
4092 * Print the name of a VMA.
4094 void print_vma_addr(char *prefix
, unsigned long ip
)
4096 struct mm_struct
*mm
= current
->mm
;
4097 struct vm_area_struct
*vma
;
4100 * Do not print if we are in atomic
4101 * contexts (in exception stacks, etc.):
4103 if (preempt_count())
4106 down_read(&mm
->mmap_sem
);
4107 vma
= find_vma(mm
, ip
);
4108 if (vma
&& vma
->vm_file
) {
4109 struct file
*f
= vma
->vm_file
;
4110 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4114 p
= file_path(f
, buf
, PAGE_SIZE
);
4117 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4119 vma
->vm_end
- vma
->vm_start
);
4120 free_page((unsigned long)buf
);
4123 up_read(&mm
->mmap_sem
);
4126 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4127 void __might_fault(const char *file
, int line
)
4130 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4131 * holding the mmap_sem, this is safe because kernel memory doesn't
4132 * get paged out, therefore we'll never actually fault, and the
4133 * below annotations will generate false positives.
4135 if (segment_eq(get_fs(), KERNEL_DS
))
4137 if (pagefault_disabled())
4139 __might_sleep(file
, line
, 0);
4140 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4142 might_lock_read(¤t
->mm
->mmap_sem
);
4145 EXPORT_SYMBOL(__might_fault
);
4148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4149 static void clear_gigantic_page(struct page
*page
,
4151 unsigned int pages_per_huge_page
)
4154 struct page
*p
= page
;
4157 for (i
= 0; i
< pages_per_huge_page
;
4158 i
++, p
= mem_map_next(p
, page
, i
)) {
4160 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4163 void clear_huge_page(struct page
*page
,
4164 unsigned long addr
, unsigned int pages_per_huge_page
)
4168 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4169 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4174 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4176 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4180 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4182 struct vm_area_struct
*vma
,
4183 unsigned int pages_per_huge_page
)
4186 struct page
*dst_base
= dst
;
4187 struct page
*src_base
= src
;
4189 for (i
= 0; i
< pages_per_huge_page
; ) {
4191 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4194 dst
= mem_map_next(dst
, dst_base
, i
);
4195 src
= mem_map_next(src
, src_base
, i
);
4199 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4200 unsigned long addr
, struct vm_area_struct
*vma
,
4201 unsigned int pages_per_huge_page
)
4205 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4206 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4207 pages_per_huge_page
);
4212 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4214 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4218 long copy_huge_page_from_user(struct page
*dst_page
,
4219 const void __user
*usr_src
,
4220 unsigned int pages_per_huge_page
,
4221 bool allow_pagefault
)
4223 void *src
= (void *)usr_src
;
4225 unsigned long i
, rc
= 0;
4226 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4228 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4229 if (allow_pagefault
)
4230 page_kaddr
= kmap(dst_page
+ i
);
4232 page_kaddr
= kmap_atomic(dst_page
+ i
);
4233 rc
= copy_from_user(page_kaddr
,
4234 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4236 if (allow_pagefault
)
4237 kunmap(dst_page
+ i
);
4239 kunmap_atomic(page_kaddr
);
4241 ret_val
-= (PAGE_SIZE
- rc
);
4249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4251 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4253 static struct kmem_cache
*page_ptl_cachep
;
4255 void __init
ptlock_cache_init(void)
4257 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4261 bool ptlock_alloc(struct page
*page
)
4265 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4272 void ptlock_free(struct page
*page
)
4274 kmem_cache_free(page_ptl_cachep
, page
->ptl
);