]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/dvrabel/uwb
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 1;
100 #else
101 2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106 randomize_va_space = 0;
107 return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113
114 /*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117 static int __init init_zero_pfn(void)
118 {
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121 }
122 core_initcall(init_zero_pfn);
123
124
125 #if defined(SPLIT_RSS_COUNTING)
126
127 void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
128 {
129 int i;
130
131 for (i = 0; i < NR_MM_COUNTERS; i++) {
132 if (task->rss_stat.count[i]) {
133 add_mm_counter(mm, i, task->rss_stat.count[i]);
134 task->rss_stat.count[i] = 0;
135 }
136 }
137 task->rss_stat.events = 0;
138 }
139
140 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
141 {
142 struct task_struct *task = current;
143
144 if (likely(task->mm == mm))
145 task->rss_stat.count[member] += val;
146 else
147 add_mm_counter(mm, member, val);
148 }
149 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
150 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
151
152 /* sync counter once per 64 page faults */
153 #define TASK_RSS_EVENTS_THRESH (64)
154 static void check_sync_rss_stat(struct task_struct *task)
155 {
156 if (unlikely(task != current))
157 return;
158 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
159 __sync_task_rss_stat(task, task->mm);
160 }
161
162 unsigned long get_mm_counter(struct mm_struct *mm, int member)
163 {
164 long val = 0;
165
166 /*
167 * Don't use task->mm here...for avoiding to use task_get_mm()..
168 * The caller must guarantee task->mm is not invalid.
169 */
170 val = atomic_long_read(&mm->rss_stat.count[member]);
171 /*
172 * counter is updated in asynchronous manner and may go to minus.
173 * But it's never be expected number for users.
174 */
175 if (val < 0)
176 return 0;
177 return (unsigned long)val;
178 }
179
180 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
181 {
182 __sync_task_rss_stat(task, mm);
183 }
184 #else
185
186 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
187 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
188
189 static void check_sync_rss_stat(struct task_struct *task)
190 {
191 }
192
193 #endif
194
195 /*
196 * If a p?d_bad entry is found while walking page tables, report
197 * the error, before resetting entry to p?d_none. Usually (but
198 * very seldom) called out from the p?d_none_or_clear_bad macros.
199 */
200
201 void pgd_clear_bad(pgd_t *pgd)
202 {
203 pgd_ERROR(*pgd);
204 pgd_clear(pgd);
205 }
206
207 void pud_clear_bad(pud_t *pud)
208 {
209 pud_ERROR(*pud);
210 pud_clear(pud);
211 }
212
213 void pmd_clear_bad(pmd_t *pmd)
214 {
215 pmd_ERROR(*pmd);
216 pmd_clear(pmd);
217 }
218
219 /*
220 * Note: this doesn't free the actual pages themselves. That
221 * has been handled earlier when unmapping all the memory regions.
222 */
223 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
224 unsigned long addr)
225 {
226 pgtable_t token = pmd_pgtable(*pmd);
227 pmd_clear(pmd);
228 pte_free_tlb(tlb, token, addr);
229 tlb->mm->nr_ptes--;
230 }
231
232 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pmd_t *pmd;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pmd = pmd_offset(pud, addr);
242 do {
243 next = pmd_addr_end(addr, end);
244 if (pmd_none_or_clear_bad(pmd))
245 continue;
246 free_pte_range(tlb, pmd, addr);
247 } while (pmd++, addr = next, addr != end);
248
249 start &= PUD_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= PUD_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pmd = pmd_offset(pud, start);
261 pud_clear(pud);
262 pmd_free_tlb(tlb, pmd, start);
263 }
264
265 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268 {
269 pud_t *pud;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 pud = pud_offset(pgd, addr);
275 do {
276 next = pud_addr_end(addr, end);
277 if (pud_none_or_clear_bad(pud))
278 continue;
279 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
280 } while (pud++, addr = next, addr != end);
281
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
289 }
290 if (end - 1 > ceiling - 1)
291 return;
292
293 pud = pud_offset(pgd, start);
294 pgd_clear(pgd);
295 pud_free_tlb(tlb, pud, start);
296 }
297
298 /*
299 * This function frees user-level page tables of a process.
300 *
301 * Must be called with pagetable lock held.
302 */
303 void free_pgd_range(struct mmu_gather *tlb,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306 {
307 pgd_t *pgd;
308 unsigned long next;
309 unsigned long start;
310
311 /*
312 * The next few lines have given us lots of grief...
313 *
314 * Why are we testing PMD* at this top level? Because often
315 * there will be no work to do at all, and we'd prefer not to
316 * go all the way down to the bottom just to discover that.
317 *
318 * Why all these "- 1"s? Because 0 represents both the bottom
319 * of the address space and the top of it (using -1 for the
320 * top wouldn't help much: the masks would do the wrong thing).
321 * The rule is that addr 0 and floor 0 refer to the bottom of
322 * the address space, but end 0 and ceiling 0 refer to the top
323 * Comparisons need to use "end - 1" and "ceiling - 1" (though
324 * that end 0 case should be mythical).
325 *
326 * Wherever addr is brought up or ceiling brought down, we must
327 * be careful to reject "the opposite 0" before it confuses the
328 * subsequent tests. But what about where end is brought down
329 * by PMD_SIZE below? no, end can't go down to 0 there.
330 *
331 * Whereas we round start (addr) and ceiling down, by different
332 * masks at different levels, in order to test whether a table
333 * now has no other vmas using it, so can be freed, we don't
334 * bother to round floor or end up - the tests don't need that.
335 */
336
337 addr &= PMD_MASK;
338 if (addr < floor) {
339 addr += PMD_SIZE;
340 if (!addr)
341 return;
342 }
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 end -= PMD_SIZE;
350 if (addr > end - 1)
351 return;
352
353 start = addr;
354 pgd = pgd_offset(tlb->mm, addr);
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
359 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
360 } while (pgd++, addr = next, addr != end);
361 }
362
363 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
364 unsigned long floor, unsigned long ceiling)
365 {
366 while (vma) {
367 struct vm_area_struct *next = vma->vm_next;
368 unsigned long addr = vma->vm_start;
369
370 /*
371 * Hide vma from rmap and truncate_pagecache before freeing
372 * pgtables
373 */
374 unlink_anon_vmas(vma);
375 unlink_file_vma(vma);
376
377 if (is_vm_hugetlb_page(vma)) {
378 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
379 floor, next? next->vm_start: ceiling);
380 } else {
381 /*
382 * Optimization: gather nearby vmas into one call down
383 */
384 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
385 && !is_vm_hugetlb_page(next)) {
386 vma = next;
387 next = vma->vm_next;
388 unlink_anon_vmas(vma);
389 unlink_file_vma(vma);
390 }
391 free_pgd_range(tlb, addr, vma->vm_end,
392 floor, next? next->vm_start: ceiling);
393 }
394 vma = next;
395 }
396 }
397
398 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
399 {
400 pgtable_t new = pte_alloc_one(mm, address);
401 if (!new)
402 return -ENOMEM;
403
404 /*
405 * Ensure all pte setup (eg. pte page lock and page clearing) are
406 * visible before the pte is made visible to other CPUs by being
407 * put into page tables.
408 *
409 * The other side of the story is the pointer chasing in the page
410 * table walking code (when walking the page table without locking;
411 * ie. most of the time). Fortunately, these data accesses consist
412 * of a chain of data-dependent loads, meaning most CPUs (alpha
413 * being the notable exception) will already guarantee loads are
414 * seen in-order. See the alpha page table accessors for the
415 * smp_read_barrier_depends() barriers in page table walking code.
416 */
417 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
418
419 spin_lock(&mm->page_table_lock);
420 if (!pmd_present(*pmd)) { /* Has another populated it ? */
421 mm->nr_ptes++;
422 pmd_populate(mm, pmd, new);
423 new = NULL;
424 }
425 spin_unlock(&mm->page_table_lock);
426 if (new)
427 pte_free(mm, new);
428 return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
432 {
433 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
434 if (!new)
435 return -ENOMEM;
436
437 smp_wmb(); /* See comment in __pte_alloc */
438
439 spin_lock(&init_mm.page_table_lock);
440 if (!pmd_present(*pmd)) { /* Has another populated it ? */
441 pmd_populate_kernel(&init_mm, pmd, new);
442 new = NULL;
443 }
444 spin_unlock(&init_mm.page_table_lock);
445 if (new)
446 pte_free_kernel(&init_mm, new);
447 return 0;
448 }
449
450 static inline void init_rss_vec(int *rss)
451 {
452 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
453 }
454
455 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
456 {
457 int i;
458
459 if (current->mm == mm)
460 sync_mm_rss(current, mm);
461 for (i = 0; i < NR_MM_COUNTERS; i++)
462 if (rss[i])
463 add_mm_counter(mm, i, rss[i]);
464 }
465
466 /*
467 * This function is called to print an error when a bad pte
468 * is found. For example, we might have a PFN-mapped pte in
469 * a region that doesn't allow it.
470 *
471 * The calling function must still handle the error.
472 */
473 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
474 pte_t pte, struct page *page)
475 {
476 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
477 pud_t *pud = pud_offset(pgd, addr);
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
495 printk(KERN_ALERT
496 "BUG: Bad page map: %lu messages suppressed\n",
497 nr_unshown);
498 nr_unshown = 0;
499 }
500 nr_shown = 0;
501 }
502 if (nr_shown++ == 0)
503 resume = jiffies + 60 * HZ;
504
505 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
506 index = linear_page_index(vma, addr);
507
508 printk(KERN_ALERT
509 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
510 current->comm,
511 (long long)pte_val(pte), (long long)pmd_val(*pmd));
512 if (page)
513 dump_page(page);
514 printk(KERN_ALERT
515 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
516 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
517 /*
518 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
519 */
520 if (vma->vm_ops)
521 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
522 (unsigned long)vma->vm_ops->fault);
523 if (vma->vm_file && vma->vm_file->f_op)
524 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
525 (unsigned long)vma->vm_file->f_op->mmap);
526 dump_stack();
527 add_taint(TAINT_BAD_PAGE);
528 }
529
530 static inline int is_cow_mapping(unsigned int flags)
531 {
532 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
533 }
534
535 #ifndef is_zero_pfn
536 static inline int is_zero_pfn(unsigned long pfn)
537 {
538 return pfn == zero_pfn;
539 }
540 #endif
541
542 #ifndef my_zero_pfn
543 static inline unsigned long my_zero_pfn(unsigned long addr)
544 {
545 return zero_pfn;
546 }
547 #endif
548
549 /*
550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
551 *
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
555 *
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
559 * described below.
560 *
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
564 *
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
569 *
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571 *
572 * And for normal mappings this is false.
573 *
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
578 *
579 *
580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581 *
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
589 *
590 */
591 #ifdef __HAVE_ARCH_PTE_SPECIAL
592 # define HAVE_PTE_SPECIAL 1
593 #else
594 # define HAVE_PTE_SPECIAL 0
595 #endif
596 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
597 pte_t pte)
598 {
599 unsigned long pfn = pte_pfn(pte);
600
601 if (HAVE_PTE_SPECIAL) {
602 if (likely(!pte_special(pte)))
603 goto check_pfn;
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
606 if (!is_zero_pfn(pfn))
607 print_bad_pte(vma, addr, pte, NULL);
608 return NULL;
609 }
610
611 /* !HAVE_PTE_SPECIAL case follows: */
612
613 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
614 if (vma->vm_flags & VM_MIXEDMAP) {
615 if (!pfn_valid(pfn))
616 return NULL;
617 goto out;
618 } else {
619 unsigned long off;
620 off = (addr - vma->vm_start) >> PAGE_SHIFT;
621 if (pfn == vma->vm_pgoff + off)
622 return NULL;
623 if (!is_cow_mapping(vma->vm_flags))
624 return NULL;
625 }
626 }
627
628 if (is_zero_pfn(pfn))
629 return NULL;
630 check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
635
636 /*
637 * NOTE! We still have PageReserved() pages in the page tables.
638 * eg. VDSO mappings can cause them to exist.
639 */
640 out:
641 return pfn_to_page(pfn);
642 }
643
644 /*
645 * copy one vm_area from one task to the other. Assumes the page tables
646 * already present in the new task to be cleared in the whole range
647 * covered by this vma.
648 */
649
650 static inline unsigned long
651 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
652 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
653 unsigned long addr, int *rss)
654 {
655 unsigned long vm_flags = vma->vm_flags;
656 pte_t pte = *src_pte;
657 struct page *page;
658
659 /* pte contains position in swap or file, so copy. */
660 if (unlikely(!pte_present(pte))) {
661 if (!pte_file(pte)) {
662 swp_entry_t entry = pte_to_swp_entry(pte);
663
664 if (swap_duplicate(entry) < 0)
665 return entry.val;
666
667 /* make sure dst_mm is on swapoff's mmlist. */
668 if (unlikely(list_empty(&dst_mm->mmlist))) {
669 spin_lock(&mmlist_lock);
670 if (list_empty(&dst_mm->mmlist))
671 list_add(&dst_mm->mmlist,
672 &src_mm->mmlist);
673 spin_unlock(&mmlist_lock);
674 }
675 if (likely(!non_swap_entry(entry)))
676 rss[MM_SWAPENTS]++;
677 else if (is_write_migration_entry(entry) &&
678 is_cow_mapping(vm_flags)) {
679 /*
680 * COW mappings require pages in both parent
681 * and child to be set to read.
682 */
683 make_migration_entry_read(&entry);
684 pte = swp_entry_to_pte(entry);
685 set_pte_at(src_mm, addr, src_pte, pte);
686 }
687 }
688 goto out_set_pte;
689 }
690
691 /*
692 * If it's a COW mapping, write protect it both
693 * in the parent and the child
694 */
695 if (is_cow_mapping(vm_flags)) {
696 ptep_set_wrprotect(src_mm, addr, src_pte);
697 pte = pte_wrprotect(pte);
698 }
699
700 /*
701 * If it's a shared mapping, mark it clean in
702 * the child
703 */
704 if (vm_flags & VM_SHARED)
705 pte = pte_mkclean(pte);
706 pte = pte_mkold(pte);
707
708 page = vm_normal_page(vma, addr, pte);
709 if (page) {
710 get_page(page);
711 page_dup_rmap(page);
712 if (PageAnon(page))
713 rss[MM_ANONPAGES]++;
714 else
715 rss[MM_FILEPAGES]++;
716 }
717
718 out_set_pte:
719 set_pte_at(dst_mm, addr, dst_pte, pte);
720 return 0;
721 }
722
723 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
724 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
725 unsigned long addr, unsigned long end)
726 {
727 pte_t *orig_src_pte, *orig_dst_pte;
728 pte_t *src_pte, *dst_pte;
729 spinlock_t *src_ptl, *dst_ptl;
730 int progress = 0;
731 int rss[NR_MM_COUNTERS];
732 swp_entry_t entry = (swp_entry_t){0};
733
734 again:
735 init_rss_vec(rss);
736
737 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
738 if (!dst_pte)
739 return -ENOMEM;
740 src_pte = pte_offset_map_nested(src_pmd, addr);
741 src_ptl = pte_lockptr(src_mm, src_pmd);
742 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
743 orig_src_pte = src_pte;
744 orig_dst_pte = dst_pte;
745 arch_enter_lazy_mmu_mode();
746
747 do {
748 /*
749 * We are holding two locks at this point - either of them
750 * could generate latencies in another task on another CPU.
751 */
752 if (progress >= 32) {
753 progress = 0;
754 if (need_resched() ||
755 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
756 break;
757 }
758 if (pte_none(*src_pte)) {
759 progress++;
760 continue;
761 }
762 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
763 vma, addr, rss);
764 if (entry.val)
765 break;
766 progress += 8;
767 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
768
769 arch_leave_lazy_mmu_mode();
770 spin_unlock(src_ptl);
771 pte_unmap_nested(orig_src_pte);
772 add_mm_rss_vec(dst_mm, rss);
773 pte_unmap_unlock(orig_dst_pte, dst_ptl);
774 cond_resched();
775
776 if (entry.val) {
777 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
778 return -ENOMEM;
779 progress = 0;
780 }
781 if (addr != end)
782 goto again;
783 return 0;
784 }
785
786 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
787 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
788 unsigned long addr, unsigned long end)
789 {
790 pmd_t *src_pmd, *dst_pmd;
791 unsigned long next;
792
793 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
794 if (!dst_pmd)
795 return -ENOMEM;
796 src_pmd = pmd_offset(src_pud, addr);
797 do {
798 next = pmd_addr_end(addr, end);
799 if (pmd_none_or_clear_bad(src_pmd))
800 continue;
801 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
802 vma, addr, next))
803 return -ENOMEM;
804 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
805 return 0;
806 }
807
808 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
809 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
810 unsigned long addr, unsigned long end)
811 {
812 pud_t *src_pud, *dst_pud;
813 unsigned long next;
814
815 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
816 if (!dst_pud)
817 return -ENOMEM;
818 src_pud = pud_offset(src_pgd, addr);
819 do {
820 next = pud_addr_end(addr, end);
821 if (pud_none_or_clear_bad(src_pud))
822 continue;
823 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
824 vma, addr, next))
825 return -ENOMEM;
826 } while (dst_pud++, src_pud++, addr = next, addr != end);
827 return 0;
828 }
829
830 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
831 struct vm_area_struct *vma)
832 {
833 pgd_t *src_pgd, *dst_pgd;
834 unsigned long next;
835 unsigned long addr = vma->vm_start;
836 unsigned long end = vma->vm_end;
837 int ret;
838
839 /*
840 * Don't copy ptes where a page fault will fill them correctly.
841 * Fork becomes much lighter when there are big shared or private
842 * readonly mappings. The tradeoff is that copy_page_range is more
843 * efficient than faulting.
844 */
845 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
846 if (!vma->anon_vma)
847 return 0;
848 }
849
850 if (is_vm_hugetlb_page(vma))
851 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
852
853 if (unlikely(is_pfn_mapping(vma))) {
854 /*
855 * We do not free on error cases below as remove_vma
856 * gets called on error from higher level routine
857 */
858 ret = track_pfn_vma_copy(vma);
859 if (ret)
860 return ret;
861 }
862
863 /*
864 * We need to invalidate the secondary MMU mappings only when
865 * there could be a permission downgrade on the ptes of the
866 * parent mm. And a permission downgrade will only happen if
867 * is_cow_mapping() returns true.
868 */
869 if (is_cow_mapping(vma->vm_flags))
870 mmu_notifier_invalidate_range_start(src_mm, addr, end);
871
872 ret = 0;
873 dst_pgd = pgd_offset(dst_mm, addr);
874 src_pgd = pgd_offset(src_mm, addr);
875 do {
876 next = pgd_addr_end(addr, end);
877 if (pgd_none_or_clear_bad(src_pgd))
878 continue;
879 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
880 vma, addr, next))) {
881 ret = -ENOMEM;
882 break;
883 }
884 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
885
886 if (is_cow_mapping(vma->vm_flags))
887 mmu_notifier_invalidate_range_end(src_mm,
888 vma->vm_start, end);
889 return ret;
890 }
891
892 static unsigned long zap_pte_range(struct mmu_gather *tlb,
893 struct vm_area_struct *vma, pmd_t *pmd,
894 unsigned long addr, unsigned long end,
895 long *zap_work, struct zap_details *details)
896 {
897 struct mm_struct *mm = tlb->mm;
898 pte_t *pte;
899 spinlock_t *ptl;
900 int rss[NR_MM_COUNTERS];
901
902 init_rss_vec(rss);
903
904 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
905 arch_enter_lazy_mmu_mode();
906 do {
907 pte_t ptent = *pte;
908 if (pte_none(ptent)) {
909 (*zap_work)--;
910 continue;
911 }
912
913 (*zap_work) -= PAGE_SIZE;
914
915 if (pte_present(ptent)) {
916 struct page *page;
917
918 page = vm_normal_page(vma, addr, ptent);
919 if (unlikely(details) && page) {
920 /*
921 * unmap_shared_mapping_pages() wants to
922 * invalidate cache without truncating:
923 * unmap shared but keep private pages.
924 */
925 if (details->check_mapping &&
926 details->check_mapping != page->mapping)
927 continue;
928 /*
929 * Each page->index must be checked when
930 * invalidating or truncating nonlinear.
931 */
932 if (details->nonlinear_vma &&
933 (page->index < details->first_index ||
934 page->index > details->last_index))
935 continue;
936 }
937 ptent = ptep_get_and_clear_full(mm, addr, pte,
938 tlb->fullmm);
939 tlb_remove_tlb_entry(tlb, pte, addr);
940 if (unlikely(!page))
941 continue;
942 if (unlikely(details) && details->nonlinear_vma
943 && linear_page_index(details->nonlinear_vma,
944 addr) != page->index)
945 set_pte_at(mm, addr, pte,
946 pgoff_to_pte(page->index));
947 if (PageAnon(page))
948 rss[MM_ANONPAGES]--;
949 else {
950 if (pte_dirty(ptent))
951 set_page_dirty(page);
952 if (pte_young(ptent) &&
953 likely(!VM_SequentialReadHint(vma)))
954 mark_page_accessed(page);
955 rss[MM_FILEPAGES]--;
956 }
957 page_remove_rmap(page);
958 if (unlikely(page_mapcount(page) < 0))
959 print_bad_pte(vma, addr, ptent, page);
960 tlb_remove_page(tlb, page);
961 continue;
962 }
963 /*
964 * If details->check_mapping, we leave swap entries;
965 * if details->nonlinear_vma, we leave file entries.
966 */
967 if (unlikely(details))
968 continue;
969 if (pte_file(ptent)) {
970 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
971 print_bad_pte(vma, addr, ptent, NULL);
972 } else {
973 swp_entry_t entry = pte_to_swp_entry(ptent);
974
975 if (!non_swap_entry(entry))
976 rss[MM_SWAPENTS]--;
977 if (unlikely(!free_swap_and_cache(entry)))
978 print_bad_pte(vma, addr, ptent, NULL);
979 }
980 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
981 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
982
983 add_mm_rss_vec(mm, rss);
984 arch_leave_lazy_mmu_mode();
985 pte_unmap_unlock(pte - 1, ptl);
986
987 return addr;
988 }
989
990 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
991 struct vm_area_struct *vma, pud_t *pud,
992 unsigned long addr, unsigned long end,
993 long *zap_work, struct zap_details *details)
994 {
995 pmd_t *pmd;
996 unsigned long next;
997
998 pmd = pmd_offset(pud, addr);
999 do {
1000 next = pmd_addr_end(addr, end);
1001 if (pmd_none_or_clear_bad(pmd)) {
1002 (*zap_work)--;
1003 continue;
1004 }
1005 next = zap_pte_range(tlb, vma, pmd, addr, next,
1006 zap_work, details);
1007 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
1008
1009 return addr;
1010 }
1011
1012 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1013 struct vm_area_struct *vma, pgd_t *pgd,
1014 unsigned long addr, unsigned long end,
1015 long *zap_work, struct zap_details *details)
1016 {
1017 pud_t *pud;
1018 unsigned long next;
1019
1020 pud = pud_offset(pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(pud)) {
1024 (*zap_work)--;
1025 continue;
1026 }
1027 next = zap_pmd_range(tlb, vma, pud, addr, next,
1028 zap_work, details);
1029 } while (pud++, addr = next, (addr != end && *zap_work > 0));
1030
1031 return addr;
1032 }
1033
1034 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1035 struct vm_area_struct *vma,
1036 unsigned long addr, unsigned long end,
1037 long *zap_work, struct zap_details *details)
1038 {
1039 pgd_t *pgd;
1040 unsigned long next;
1041
1042 if (details && !details->check_mapping && !details->nonlinear_vma)
1043 details = NULL;
1044
1045 BUG_ON(addr >= end);
1046 mem_cgroup_uncharge_start();
1047 tlb_start_vma(tlb, vma);
1048 pgd = pgd_offset(vma->vm_mm, addr);
1049 do {
1050 next = pgd_addr_end(addr, end);
1051 if (pgd_none_or_clear_bad(pgd)) {
1052 (*zap_work)--;
1053 continue;
1054 }
1055 next = zap_pud_range(tlb, vma, pgd, addr, next,
1056 zap_work, details);
1057 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1058 tlb_end_vma(tlb, vma);
1059 mem_cgroup_uncharge_end();
1060
1061 return addr;
1062 }
1063
1064 #ifdef CONFIG_PREEMPT
1065 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1066 #else
1067 /* No preempt: go for improved straight-line efficiency */
1068 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1069 #endif
1070
1071 /**
1072 * unmap_vmas - unmap a range of memory covered by a list of vma's
1073 * @tlbp: address of the caller's struct mmu_gather
1074 * @vma: the starting vma
1075 * @start_addr: virtual address at which to start unmapping
1076 * @end_addr: virtual address at which to end unmapping
1077 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1078 * @details: details of nonlinear truncation or shared cache invalidation
1079 *
1080 * Returns the end address of the unmapping (restart addr if interrupted).
1081 *
1082 * Unmap all pages in the vma list.
1083 *
1084 * We aim to not hold locks for too long (for scheduling latency reasons).
1085 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1086 * return the ending mmu_gather to the caller.
1087 *
1088 * Only addresses between `start' and `end' will be unmapped.
1089 *
1090 * The VMA list must be sorted in ascending virtual address order.
1091 *
1092 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1093 * range after unmap_vmas() returns. So the only responsibility here is to
1094 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1095 * drops the lock and schedules.
1096 */
1097 unsigned long unmap_vmas(struct mmu_gather **tlbp,
1098 struct vm_area_struct *vma, unsigned long start_addr,
1099 unsigned long end_addr, unsigned long *nr_accounted,
1100 struct zap_details *details)
1101 {
1102 long zap_work = ZAP_BLOCK_SIZE;
1103 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
1104 int tlb_start_valid = 0;
1105 unsigned long start = start_addr;
1106 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1107 int fullmm = (*tlbp)->fullmm;
1108 struct mm_struct *mm = vma->vm_mm;
1109
1110 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1111 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1112 unsigned long end;
1113
1114 start = max(vma->vm_start, start_addr);
1115 if (start >= vma->vm_end)
1116 continue;
1117 end = min(vma->vm_end, end_addr);
1118 if (end <= vma->vm_start)
1119 continue;
1120
1121 if (vma->vm_flags & VM_ACCOUNT)
1122 *nr_accounted += (end - start) >> PAGE_SHIFT;
1123
1124 if (unlikely(is_pfn_mapping(vma)))
1125 untrack_pfn_vma(vma, 0, 0);
1126
1127 while (start != end) {
1128 if (!tlb_start_valid) {
1129 tlb_start = start;
1130 tlb_start_valid = 1;
1131 }
1132
1133 if (unlikely(is_vm_hugetlb_page(vma))) {
1134 /*
1135 * It is undesirable to test vma->vm_file as it
1136 * should be non-null for valid hugetlb area.
1137 * However, vm_file will be NULL in the error
1138 * cleanup path of do_mmap_pgoff. When
1139 * hugetlbfs ->mmap method fails,
1140 * do_mmap_pgoff() nullifies vma->vm_file
1141 * before calling this function to clean up.
1142 * Since no pte has actually been setup, it is
1143 * safe to do nothing in this case.
1144 */
1145 if (vma->vm_file) {
1146 unmap_hugepage_range(vma, start, end, NULL);
1147 zap_work -= (end - start) /
1148 pages_per_huge_page(hstate_vma(vma));
1149 }
1150
1151 start = end;
1152 } else
1153 start = unmap_page_range(*tlbp, vma,
1154 start, end, &zap_work, details);
1155
1156 if (zap_work > 0) {
1157 BUG_ON(start != end);
1158 break;
1159 }
1160
1161 tlb_finish_mmu(*tlbp, tlb_start, start);
1162
1163 if (need_resched() ||
1164 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1165 if (i_mmap_lock) {
1166 *tlbp = NULL;
1167 goto out;
1168 }
1169 cond_resched();
1170 }
1171
1172 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1173 tlb_start_valid = 0;
1174 zap_work = ZAP_BLOCK_SIZE;
1175 }
1176 }
1177 out:
1178 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1179 return start; /* which is now the end (or restart) address */
1180 }
1181
1182 /**
1183 * zap_page_range - remove user pages in a given range
1184 * @vma: vm_area_struct holding the applicable pages
1185 * @address: starting address of pages to zap
1186 * @size: number of bytes to zap
1187 * @details: details of nonlinear truncation or shared cache invalidation
1188 */
1189 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1190 unsigned long size, struct zap_details *details)
1191 {
1192 struct mm_struct *mm = vma->vm_mm;
1193 struct mmu_gather *tlb;
1194 unsigned long end = address + size;
1195 unsigned long nr_accounted = 0;
1196
1197 lru_add_drain();
1198 tlb = tlb_gather_mmu(mm, 0);
1199 update_hiwater_rss(mm);
1200 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1201 if (tlb)
1202 tlb_finish_mmu(tlb, address, end);
1203 return end;
1204 }
1205
1206 /**
1207 * zap_vma_ptes - remove ptes mapping the vma
1208 * @vma: vm_area_struct holding ptes to be zapped
1209 * @address: starting address of pages to zap
1210 * @size: number of bytes to zap
1211 *
1212 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1213 *
1214 * The entire address range must be fully contained within the vma.
1215 *
1216 * Returns 0 if successful.
1217 */
1218 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1219 unsigned long size)
1220 {
1221 if (address < vma->vm_start || address + size > vma->vm_end ||
1222 !(vma->vm_flags & VM_PFNMAP))
1223 return -1;
1224 zap_page_range(vma, address, size, NULL);
1225 return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1228
1229 /*
1230 * Do a quick page-table lookup for a single page.
1231 */
1232 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1233 unsigned int flags)
1234 {
1235 pgd_t *pgd;
1236 pud_t *pud;
1237 pmd_t *pmd;
1238 pte_t *ptep, pte;
1239 spinlock_t *ptl;
1240 struct page *page;
1241 struct mm_struct *mm = vma->vm_mm;
1242
1243 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1244 if (!IS_ERR(page)) {
1245 BUG_ON(flags & FOLL_GET);
1246 goto out;
1247 }
1248
1249 page = NULL;
1250 pgd = pgd_offset(mm, address);
1251 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1252 goto no_page_table;
1253
1254 pud = pud_offset(pgd, address);
1255 if (pud_none(*pud))
1256 goto no_page_table;
1257 if (pud_huge(*pud)) {
1258 BUG_ON(flags & FOLL_GET);
1259 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1260 goto out;
1261 }
1262 if (unlikely(pud_bad(*pud)))
1263 goto no_page_table;
1264
1265 pmd = pmd_offset(pud, address);
1266 if (pmd_none(*pmd))
1267 goto no_page_table;
1268 if (pmd_huge(*pmd)) {
1269 BUG_ON(flags & FOLL_GET);
1270 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1271 goto out;
1272 }
1273 if (unlikely(pmd_bad(*pmd)))
1274 goto no_page_table;
1275
1276 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1277
1278 pte = *ptep;
1279 if (!pte_present(pte))
1280 goto no_page;
1281 if ((flags & FOLL_WRITE) && !pte_write(pte))
1282 goto unlock;
1283
1284 page = vm_normal_page(vma, address, pte);
1285 if (unlikely(!page)) {
1286 if ((flags & FOLL_DUMP) ||
1287 !is_zero_pfn(pte_pfn(pte)))
1288 goto bad_page;
1289 page = pte_page(pte);
1290 }
1291
1292 if (flags & FOLL_GET)
1293 get_page(page);
1294 if (flags & FOLL_TOUCH) {
1295 if ((flags & FOLL_WRITE) &&
1296 !pte_dirty(pte) && !PageDirty(page))
1297 set_page_dirty(page);
1298 /*
1299 * pte_mkyoung() would be more correct here, but atomic care
1300 * is needed to avoid losing the dirty bit: it is easier to use
1301 * mark_page_accessed().
1302 */
1303 mark_page_accessed(page);
1304 }
1305 unlock:
1306 pte_unmap_unlock(ptep, ptl);
1307 out:
1308 return page;
1309
1310 bad_page:
1311 pte_unmap_unlock(ptep, ptl);
1312 return ERR_PTR(-EFAULT);
1313
1314 no_page:
1315 pte_unmap_unlock(ptep, ptl);
1316 if (!pte_none(pte))
1317 return page;
1318
1319 no_page_table:
1320 /*
1321 * When core dumping an enormous anonymous area that nobody
1322 * has touched so far, we don't want to allocate unnecessary pages or
1323 * page tables. Return error instead of NULL to skip handle_mm_fault,
1324 * then get_dump_page() will return NULL to leave a hole in the dump.
1325 * But we can only make this optimization where a hole would surely
1326 * be zero-filled if handle_mm_fault() actually did handle it.
1327 */
1328 if ((flags & FOLL_DUMP) &&
1329 (!vma->vm_ops || !vma->vm_ops->fault))
1330 return ERR_PTR(-EFAULT);
1331 return page;
1332 }
1333
1334 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1335 unsigned long start, int nr_pages, unsigned int gup_flags,
1336 struct page **pages, struct vm_area_struct **vmas)
1337 {
1338 int i;
1339 unsigned long vm_flags;
1340
1341 if (nr_pages <= 0)
1342 return 0;
1343
1344 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1345
1346 /*
1347 * Require read or write permissions.
1348 * If FOLL_FORCE is set, we only require the "MAY" flags.
1349 */
1350 vm_flags = (gup_flags & FOLL_WRITE) ?
1351 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1352 vm_flags &= (gup_flags & FOLL_FORCE) ?
1353 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1354 i = 0;
1355
1356 do {
1357 struct vm_area_struct *vma;
1358
1359 vma = find_extend_vma(mm, start);
1360 if (!vma && in_gate_area(tsk, start)) {
1361 unsigned long pg = start & PAGE_MASK;
1362 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1363 pgd_t *pgd;
1364 pud_t *pud;
1365 pmd_t *pmd;
1366 pte_t *pte;
1367
1368 /* user gate pages are read-only */
1369 if (gup_flags & FOLL_WRITE)
1370 return i ? : -EFAULT;
1371 if (pg > TASK_SIZE)
1372 pgd = pgd_offset_k(pg);
1373 else
1374 pgd = pgd_offset_gate(mm, pg);
1375 BUG_ON(pgd_none(*pgd));
1376 pud = pud_offset(pgd, pg);
1377 BUG_ON(pud_none(*pud));
1378 pmd = pmd_offset(pud, pg);
1379 if (pmd_none(*pmd))
1380 return i ? : -EFAULT;
1381 pte = pte_offset_map(pmd, pg);
1382 if (pte_none(*pte)) {
1383 pte_unmap(pte);
1384 return i ? : -EFAULT;
1385 }
1386 if (pages) {
1387 struct page *page = vm_normal_page(gate_vma, start, *pte);
1388 pages[i] = page;
1389 if (page)
1390 get_page(page);
1391 }
1392 pte_unmap(pte);
1393 if (vmas)
1394 vmas[i] = gate_vma;
1395 i++;
1396 start += PAGE_SIZE;
1397 nr_pages--;
1398 continue;
1399 }
1400
1401 if (!vma ||
1402 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1403 !(vm_flags & vma->vm_flags))
1404 return i ? : -EFAULT;
1405
1406 if (is_vm_hugetlb_page(vma)) {
1407 i = follow_hugetlb_page(mm, vma, pages, vmas,
1408 &start, &nr_pages, i, gup_flags);
1409 continue;
1410 }
1411
1412 do {
1413 struct page *page;
1414 unsigned int foll_flags = gup_flags;
1415
1416 /*
1417 * If we have a pending SIGKILL, don't keep faulting
1418 * pages and potentially allocating memory.
1419 */
1420 if (unlikely(fatal_signal_pending(current)))
1421 return i ? i : -ERESTARTSYS;
1422
1423 cond_resched();
1424 while (!(page = follow_page(vma, start, foll_flags))) {
1425 int ret;
1426
1427 ret = handle_mm_fault(mm, vma, start,
1428 (foll_flags & FOLL_WRITE) ?
1429 FAULT_FLAG_WRITE : 0);
1430
1431 if (ret & VM_FAULT_ERROR) {
1432 if (ret & VM_FAULT_OOM)
1433 return i ? i : -ENOMEM;
1434 if (ret &
1435 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS))
1436 return i ? i : -EFAULT;
1437 BUG();
1438 }
1439 if (ret & VM_FAULT_MAJOR)
1440 tsk->maj_flt++;
1441 else
1442 tsk->min_flt++;
1443
1444 /*
1445 * The VM_FAULT_WRITE bit tells us that
1446 * do_wp_page has broken COW when necessary,
1447 * even if maybe_mkwrite decided not to set
1448 * pte_write. We can thus safely do subsequent
1449 * page lookups as if they were reads. But only
1450 * do so when looping for pte_write is futile:
1451 * in some cases userspace may also be wanting
1452 * to write to the gotten user page, which a
1453 * read fault here might prevent (a readonly
1454 * page might get reCOWed by userspace write).
1455 */
1456 if ((ret & VM_FAULT_WRITE) &&
1457 !(vma->vm_flags & VM_WRITE))
1458 foll_flags &= ~FOLL_WRITE;
1459
1460 cond_resched();
1461 }
1462 if (IS_ERR(page))
1463 return i ? i : PTR_ERR(page);
1464 if (pages) {
1465 pages[i] = page;
1466
1467 flush_anon_page(vma, page, start);
1468 flush_dcache_page(page);
1469 }
1470 if (vmas)
1471 vmas[i] = vma;
1472 i++;
1473 start += PAGE_SIZE;
1474 nr_pages--;
1475 } while (nr_pages && start < vma->vm_end);
1476 } while (nr_pages);
1477 return i;
1478 }
1479
1480 /**
1481 * get_user_pages() - pin user pages in memory
1482 * @tsk: task_struct of target task
1483 * @mm: mm_struct of target mm
1484 * @start: starting user address
1485 * @nr_pages: number of pages from start to pin
1486 * @write: whether pages will be written to by the caller
1487 * @force: whether to force write access even if user mapping is
1488 * readonly. This will result in the page being COWed even
1489 * in MAP_SHARED mappings. You do not want this.
1490 * @pages: array that receives pointers to the pages pinned.
1491 * Should be at least nr_pages long. Or NULL, if caller
1492 * only intends to ensure the pages are faulted in.
1493 * @vmas: array of pointers to vmas corresponding to each page.
1494 * Or NULL if the caller does not require them.
1495 *
1496 * Returns number of pages pinned. This may be fewer than the number
1497 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1498 * were pinned, returns -errno. Each page returned must be released
1499 * with a put_page() call when it is finished with. vmas will only
1500 * remain valid while mmap_sem is held.
1501 *
1502 * Must be called with mmap_sem held for read or write.
1503 *
1504 * get_user_pages walks a process's page tables and takes a reference to
1505 * each struct page that each user address corresponds to at a given
1506 * instant. That is, it takes the page that would be accessed if a user
1507 * thread accesses the given user virtual address at that instant.
1508 *
1509 * This does not guarantee that the page exists in the user mappings when
1510 * get_user_pages returns, and there may even be a completely different
1511 * page there in some cases (eg. if mmapped pagecache has been invalidated
1512 * and subsequently re faulted). However it does guarantee that the page
1513 * won't be freed completely. And mostly callers simply care that the page
1514 * contains data that was valid *at some point in time*. Typically, an IO
1515 * or similar operation cannot guarantee anything stronger anyway because
1516 * locks can't be held over the syscall boundary.
1517 *
1518 * If write=0, the page must not be written to. If the page is written to,
1519 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1520 * after the page is finished with, and before put_page is called.
1521 *
1522 * get_user_pages is typically used for fewer-copy IO operations, to get a
1523 * handle on the memory by some means other than accesses via the user virtual
1524 * addresses. The pages may be submitted for DMA to devices or accessed via
1525 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1526 * use the correct cache flushing APIs.
1527 *
1528 * See also get_user_pages_fast, for performance critical applications.
1529 */
1530 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1531 unsigned long start, int nr_pages, int write, int force,
1532 struct page **pages, struct vm_area_struct **vmas)
1533 {
1534 int flags = FOLL_TOUCH;
1535
1536 if (pages)
1537 flags |= FOLL_GET;
1538 if (write)
1539 flags |= FOLL_WRITE;
1540 if (force)
1541 flags |= FOLL_FORCE;
1542
1543 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1544 }
1545 EXPORT_SYMBOL(get_user_pages);
1546
1547 /**
1548 * get_dump_page() - pin user page in memory while writing it to core dump
1549 * @addr: user address
1550 *
1551 * Returns struct page pointer of user page pinned for dump,
1552 * to be freed afterwards by page_cache_release() or put_page().
1553 *
1554 * Returns NULL on any kind of failure - a hole must then be inserted into
1555 * the corefile, to preserve alignment with its headers; and also returns
1556 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1557 * allowing a hole to be left in the corefile to save diskspace.
1558 *
1559 * Called without mmap_sem, but after all other threads have been killed.
1560 */
1561 #ifdef CONFIG_ELF_CORE
1562 struct page *get_dump_page(unsigned long addr)
1563 {
1564 struct vm_area_struct *vma;
1565 struct page *page;
1566
1567 if (__get_user_pages(current, current->mm, addr, 1,
1568 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1569 return NULL;
1570 flush_cache_page(vma, addr, page_to_pfn(page));
1571 return page;
1572 }
1573 #endif /* CONFIG_ELF_CORE */
1574
1575 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1576 spinlock_t **ptl)
1577 {
1578 pgd_t * pgd = pgd_offset(mm, addr);
1579 pud_t * pud = pud_alloc(mm, pgd, addr);
1580 if (pud) {
1581 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1582 if (pmd)
1583 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1584 }
1585 return NULL;
1586 }
1587
1588 /*
1589 * This is the old fallback for page remapping.
1590 *
1591 * For historical reasons, it only allows reserved pages. Only
1592 * old drivers should use this, and they needed to mark their
1593 * pages reserved for the old functions anyway.
1594 */
1595 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1596 struct page *page, pgprot_t prot)
1597 {
1598 struct mm_struct *mm = vma->vm_mm;
1599 int retval;
1600 pte_t *pte;
1601 spinlock_t *ptl;
1602
1603 retval = -EINVAL;
1604 if (PageAnon(page))
1605 goto out;
1606 retval = -ENOMEM;
1607 flush_dcache_page(page);
1608 pte = get_locked_pte(mm, addr, &ptl);
1609 if (!pte)
1610 goto out;
1611 retval = -EBUSY;
1612 if (!pte_none(*pte))
1613 goto out_unlock;
1614
1615 /* Ok, finally just insert the thing.. */
1616 get_page(page);
1617 inc_mm_counter_fast(mm, MM_FILEPAGES);
1618 page_add_file_rmap(page);
1619 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1620
1621 retval = 0;
1622 pte_unmap_unlock(pte, ptl);
1623 return retval;
1624 out_unlock:
1625 pte_unmap_unlock(pte, ptl);
1626 out:
1627 return retval;
1628 }
1629
1630 /**
1631 * vm_insert_page - insert single page into user vma
1632 * @vma: user vma to map to
1633 * @addr: target user address of this page
1634 * @page: source kernel page
1635 *
1636 * This allows drivers to insert individual pages they've allocated
1637 * into a user vma.
1638 *
1639 * The page has to be a nice clean _individual_ kernel allocation.
1640 * If you allocate a compound page, you need to have marked it as
1641 * such (__GFP_COMP), or manually just split the page up yourself
1642 * (see split_page()).
1643 *
1644 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1645 * took an arbitrary page protection parameter. This doesn't allow
1646 * that. Your vma protection will have to be set up correctly, which
1647 * means that if you want a shared writable mapping, you'd better
1648 * ask for a shared writable mapping!
1649 *
1650 * The page does not need to be reserved.
1651 */
1652 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1653 struct page *page)
1654 {
1655 if (addr < vma->vm_start || addr >= vma->vm_end)
1656 return -EFAULT;
1657 if (!page_count(page))
1658 return -EINVAL;
1659 vma->vm_flags |= VM_INSERTPAGE;
1660 return insert_page(vma, addr, page, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_page);
1663
1664 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1665 unsigned long pfn, pgprot_t prot)
1666 {
1667 struct mm_struct *mm = vma->vm_mm;
1668 int retval;
1669 pte_t *pte, entry;
1670 spinlock_t *ptl;
1671
1672 retval = -ENOMEM;
1673 pte = get_locked_pte(mm, addr, &ptl);
1674 if (!pte)
1675 goto out;
1676 retval = -EBUSY;
1677 if (!pte_none(*pte))
1678 goto out_unlock;
1679
1680 /* Ok, finally just insert the thing.. */
1681 entry = pte_mkspecial(pfn_pte(pfn, prot));
1682 set_pte_at(mm, addr, pte, entry);
1683 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1684
1685 retval = 0;
1686 out_unlock:
1687 pte_unmap_unlock(pte, ptl);
1688 out:
1689 return retval;
1690 }
1691
1692 /**
1693 * vm_insert_pfn - insert single pfn into user vma
1694 * @vma: user vma to map to
1695 * @addr: target user address of this page
1696 * @pfn: source kernel pfn
1697 *
1698 * Similar to vm_inert_page, this allows drivers to insert individual pages
1699 * they've allocated into a user vma. Same comments apply.
1700 *
1701 * This function should only be called from a vm_ops->fault handler, and
1702 * in that case the handler should return NULL.
1703 *
1704 * vma cannot be a COW mapping.
1705 *
1706 * As this is called only for pages that do not currently exist, we
1707 * do not need to flush old virtual caches or the TLB.
1708 */
1709 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1710 unsigned long pfn)
1711 {
1712 int ret;
1713 pgprot_t pgprot = vma->vm_page_prot;
1714 /*
1715 * Technically, architectures with pte_special can avoid all these
1716 * restrictions (same for remap_pfn_range). However we would like
1717 * consistency in testing and feature parity among all, so we should
1718 * try to keep these invariants in place for everybody.
1719 */
1720 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1721 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1722 (VM_PFNMAP|VM_MIXEDMAP));
1723 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1724 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1725
1726 if (addr < vma->vm_start || addr >= vma->vm_end)
1727 return -EFAULT;
1728 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1729 return -EINVAL;
1730
1731 ret = insert_pfn(vma, addr, pfn, pgprot);
1732
1733 if (ret)
1734 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1735
1736 return ret;
1737 }
1738 EXPORT_SYMBOL(vm_insert_pfn);
1739
1740 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1741 unsigned long pfn)
1742 {
1743 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1744
1745 if (addr < vma->vm_start || addr >= vma->vm_end)
1746 return -EFAULT;
1747
1748 /*
1749 * If we don't have pte special, then we have to use the pfn_valid()
1750 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1751 * refcount the page if pfn_valid is true (hence insert_page rather
1752 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1753 * without pte special, it would there be refcounted as a normal page.
1754 */
1755 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1756 struct page *page;
1757
1758 page = pfn_to_page(pfn);
1759 return insert_page(vma, addr, page, vma->vm_page_prot);
1760 }
1761 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1762 }
1763 EXPORT_SYMBOL(vm_insert_mixed);
1764
1765 /*
1766 * maps a range of physical memory into the requested pages. the old
1767 * mappings are removed. any references to nonexistent pages results
1768 * in null mappings (currently treated as "copy-on-access")
1769 */
1770 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1771 unsigned long addr, unsigned long end,
1772 unsigned long pfn, pgprot_t prot)
1773 {
1774 pte_t *pte;
1775 spinlock_t *ptl;
1776
1777 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1778 if (!pte)
1779 return -ENOMEM;
1780 arch_enter_lazy_mmu_mode();
1781 do {
1782 BUG_ON(!pte_none(*pte));
1783 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1784 pfn++;
1785 } while (pte++, addr += PAGE_SIZE, addr != end);
1786 arch_leave_lazy_mmu_mode();
1787 pte_unmap_unlock(pte - 1, ptl);
1788 return 0;
1789 }
1790
1791 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1792 unsigned long addr, unsigned long end,
1793 unsigned long pfn, pgprot_t prot)
1794 {
1795 pmd_t *pmd;
1796 unsigned long next;
1797
1798 pfn -= addr >> PAGE_SHIFT;
1799 pmd = pmd_alloc(mm, pud, addr);
1800 if (!pmd)
1801 return -ENOMEM;
1802 do {
1803 next = pmd_addr_end(addr, end);
1804 if (remap_pte_range(mm, pmd, addr, next,
1805 pfn + (addr >> PAGE_SHIFT), prot))
1806 return -ENOMEM;
1807 } while (pmd++, addr = next, addr != end);
1808 return 0;
1809 }
1810
1811 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1812 unsigned long addr, unsigned long end,
1813 unsigned long pfn, pgprot_t prot)
1814 {
1815 pud_t *pud;
1816 unsigned long next;
1817
1818 pfn -= addr >> PAGE_SHIFT;
1819 pud = pud_alloc(mm, pgd, addr);
1820 if (!pud)
1821 return -ENOMEM;
1822 do {
1823 next = pud_addr_end(addr, end);
1824 if (remap_pmd_range(mm, pud, addr, next,
1825 pfn + (addr >> PAGE_SHIFT), prot))
1826 return -ENOMEM;
1827 } while (pud++, addr = next, addr != end);
1828 return 0;
1829 }
1830
1831 /**
1832 * remap_pfn_range - remap kernel memory to userspace
1833 * @vma: user vma to map to
1834 * @addr: target user address to start at
1835 * @pfn: physical address of kernel memory
1836 * @size: size of map area
1837 * @prot: page protection flags for this mapping
1838 *
1839 * Note: this is only safe if the mm semaphore is held when called.
1840 */
1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1842 unsigned long pfn, unsigned long size, pgprot_t prot)
1843 {
1844 pgd_t *pgd;
1845 unsigned long next;
1846 unsigned long end = addr + PAGE_ALIGN(size);
1847 struct mm_struct *mm = vma->vm_mm;
1848 int err;
1849
1850 /*
1851 * Physically remapped pages are special. Tell the
1852 * rest of the world about it:
1853 * VM_IO tells people not to look at these pages
1854 * (accesses can have side effects).
1855 * VM_RESERVED is specified all over the place, because
1856 * in 2.4 it kept swapout's vma scan off this vma; but
1857 * in 2.6 the LRU scan won't even find its pages, so this
1858 * flag means no more than count its pages in reserved_vm,
1859 * and omit it from core dump, even when VM_IO turned off.
1860 * VM_PFNMAP tells the core MM that the base pages are just
1861 * raw PFN mappings, and do not have a "struct page" associated
1862 * with them.
1863 *
1864 * There's a horrible special case to handle copy-on-write
1865 * behaviour that some programs depend on. We mark the "original"
1866 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1867 */
1868 if (addr == vma->vm_start && end == vma->vm_end) {
1869 vma->vm_pgoff = pfn;
1870 vma->vm_flags |= VM_PFN_AT_MMAP;
1871 } else if (is_cow_mapping(vma->vm_flags))
1872 return -EINVAL;
1873
1874 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1875
1876 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1877 if (err) {
1878 /*
1879 * To indicate that track_pfn related cleanup is not
1880 * needed from higher level routine calling unmap_vmas
1881 */
1882 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1883 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1884 return -EINVAL;
1885 }
1886
1887 BUG_ON(addr >= end);
1888 pfn -= addr >> PAGE_SHIFT;
1889 pgd = pgd_offset(mm, addr);
1890 flush_cache_range(vma, addr, end);
1891 do {
1892 next = pgd_addr_end(addr, end);
1893 err = remap_pud_range(mm, pgd, addr, next,
1894 pfn + (addr >> PAGE_SHIFT), prot);
1895 if (err)
1896 break;
1897 } while (pgd++, addr = next, addr != end);
1898
1899 if (err)
1900 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1901
1902 return err;
1903 }
1904 EXPORT_SYMBOL(remap_pfn_range);
1905
1906 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1907 unsigned long addr, unsigned long end,
1908 pte_fn_t fn, void *data)
1909 {
1910 pte_t *pte;
1911 int err;
1912 pgtable_t token;
1913 spinlock_t *uninitialized_var(ptl);
1914
1915 pte = (mm == &init_mm) ?
1916 pte_alloc_kernel(pmd, addr) :
1917 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1918 if (!pte)
1919 return -ENOMEM;
1920
1921 BUG_ON(pmd_huge(*pmd));
1922
1923 arch_enter_lazy_mmu_mode();
1924
1925 token = pmd_pgtable(*pmd);
1926
1927 do {
1928 err = fn(pte++, token, addr, data);
1929 if (err)
1930 break;
1931 } while (addr += PAGE_SIZE, addr != end);
1932
1933 arch_leave_lazy_mmu_mode();
1934
1935 if (mm != &init_mm)
1936 pte_unmap_unlock(pte-1, ptl);
1937 return err;
1938 }
1939
1940 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1941 unsigned long addr, unsigned long end,
1942 pte_fn_t fn, void *data)
1943 {
1944 pmd_t *pmd;
1945 unsigned long next;
1946 int err;
1947
1948 BUG_ON(pud_huge(*pud));
1949
1950 pmd = pmd_alloc(mm, pud, addr);
1951 if (!pmd)
1952 return -ENOMEM;
1953 do {
1954 next = pmd_addr_end(addr, end);
1955 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1956 if (err)
1957 break;
1958 } while (pmd++, addr = next, addr != end);
1959 return err;
1960 }
1961
1962 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1963 unsigned long addr, unsigned long end,
1964 pte_fn_t fn, void *data)
1965 {
1966 pud_t *pud;
1967 unsigned long next;
1968 int err;
1969
1970 pud = pud_alloc(mm, pgd, addr);
1971 if (!pud)
1972 return -ENOMEM;
1973 do {
1974 next = pud_addr_end(addr, end);
1975 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1976 if (err)
1977 break;
1978 } while (pud++, addr = next, addr != end);
1979 return err;
1980 }
1981
1982 /*
1983 * Scan a region of virtual memory, filling in page tables as necessary
1984 * and calling a provided function on each leaf page table.
1985 */
1986 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1987 unsigned long size, pte_fn_t fn, void *data)
1988 {
1989 pgd_t *pgd;
1990 unsigned long next;
1991 unsigned long start = addr, end = addr + size;
1992 int err;
1993
1994 BUG_ON(addr >= end);
1995 mmu_notifier_invalidate_range_start(mm, start, end);
1996 pgd = pgd_offset(mm, addr);
1997 do {
1998 next = pgd_addr_end(addr, end);
1999 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2000 if (err)
2001 break;
2002 } while (pgd++, addr = next, addr != end);
2003 mmu_notifier_invalidate_range_end(mm, start, end);
2004 return err;
2005 }
2006 EXPORT_SYMBOL_GPL(apply_to_page_range);
2007
2008 /*
2009 * handle_pte_fault chooses page fault handler according to an entry
2010 * which was read non-atomically. Before making any commitment, on
2011 * those architectures or configurations (e.g. i386 with PAE) which
2012 * might give a mix of unmatched parts, do_swap_page and do_file_page
2013 * must check under lock before unmapping the pte and proceeding
2014 * (but do_wp_page is only called after already making such a check;
2015 * and do_anonymous_page and do_no_page can safely check later on).
2016 */
2017 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2018 pte_t *page_table, pte_t orig_pte)
2019 {
2020 int same = 1;
2021 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2022 if (sizeof(pte_t) > sizeof(unsigned long)) {
2023 spinlock_t *ptl = pte_lockptr(mm, pmd);
2024 spin_lock(ptl);
2025 same = pte_same(*page_table, orig_pte);
2026 spin_unlock(ptl);
2027 }
2028 #endif
2029 pte_unmap(page_table);
2030 return same;
2031 }
2032
2033 /*
2034 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
2035 * servicing faults for write access. In the normal case, do always want
2036 * pte_mkwrite. But get_user_pages can cause write faults for mappings
2037 * that do not have writing enabled, when used by access_process_vm.
2038 */
2039 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
2040 {
2041 if (likely(vma->vm_flags & VM_WRITE))
2042 pte = pte_mkwrite(pte);
2043 return pte;
2044 }
2045
2046 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2047 {
2048 /*
2049 * If the source page was a PFN mapping, we don't have
2050 * a "struct page" for it. We do a best-effort copy by
2051 * just copying from the original user address. If that
2052 * fails, we just zero-fill it. Live with it.
2053 */
2054 if (unlikely(!src)) {
2055 void *kaddr = kmap_atomic(dst, KM_USER0);
2056 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2057
2058 /*
2059 * This really shouldn't fail, because the page is there
2060 * in the page tables. But it might just be unreadable,
2061 * in which case we just give up and fill the result with
2062 * zeroes.
2063 */
2064 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2065 memset(kaddr, 0, PAGE_SIZE);
2066 kunmap_atomic(kaddr, KM_USER0);
2067 flush_dcache_page(dst);
2068 } else
2069 copy_user_highpage(dst, src, va, vma);
2070 }
2071
2072 /*
2073 * This routine handles present pages, when users try to write
2074 * to a shared page. It is done by copying the page to a new address
2075 * and decrementing the shared-page counter for the old page.
2076 *
2077 * Note that this routine assumes that the protection checks have been
2078 * done by the caller (the low-level page fault routine in most cases).
2079 * Thus we can safely just mark it writable once we've done any necessary
2080 * COW.
2081 *
2082 * We also mark the page dirty at this point even though the page will
2083 * change only once the write actually happens. This avoids a few races,
2084 * and potentially makes it more efficient.
2085 *
2086 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2087 * but allow concurrent faults), with pte both mapped and locked.
2088 * We return with mmap_sem still held, but pte unmapped and unlocked.
2089 */
2090 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2091 unsigned long address, pte_t *page_table, pmd_t *pmd,
2092 spinlock_t *ptl, pte_t orig_pte)
2093 {
2094 struct page *old_page, *new_page;
2095 pte_t entry;
2096 int reuse = 0, ret = 0;
2097 int page_mkwrite = 0;
2098 struct page *dirty_page = NULL;
2099
2100 old_page = vm_normal_page(vma, address, orig_pte);
2101 if (!old_page) {
2102 /*
2103 * VM_MIXEDMAP !pfn_valid() case
2104 *
2105 * We should not cow pages in a shared writeable mapping.
2106 * Just mark the pages writable as we can't do any dirty
2107 * accounting on raw pfn maps.
2108 */
2109 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2110 (VM_WRITE|VM_SHARED))
2111 goto reuse;
2112 goto gotten;
2113 }
2114
2115 /*
2116 * Take out anonymous pages first, anonymous shared vmas are
2117 * not dirty accountable.
2118 */
2119 if (PageAnon(old_page) && !PageKsm(old_page)) {
2120 if (!trylock_page(old_page)) {
2121 page_cache_get(old_page);
2122 pte_unmap_unlock(page_table, ptl);
2123 lock_page(old_page);
2124 page_table = pte_offset_map_lock(mm, pmd, address,
2125 &ptl);
2126 if (!pte_same(*page_table, orig_pte)) {
2127 unlock_page(old_page);
2128 page_cache_release(old_page);
2129 goto unlock;
2130 }
2131 page_cache_release(old_page);
2132 }
2133 reuse = reuse_swap_page(old_page);
2134 if (reuse)
2135 /*
2136 * The page is all ours. Move it to our anon_vma so
2137 * the rmap code will not search our parent or siblings.
2138 * Protected against the rmap code by the page lock.
2139 */
2140 page_move_anon_rmap(old_page, vma, address);
2141 unlock_page(old_page);
2142 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2143 (VM_WRITE|VM_SHARED))) {
2144 /*
2145 * Only catch write-faults on shared writable pages,
2146 * read-only shared pages can get COWed by
2147 * get_user_pages(.write=1, .force=1).
2148 */
2149 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2150 struct vm_fault vmf;
2151 int tmp;
2152
2153 vmf.virtual_address = (void __user *)(address &
2154 PAGE_MASK);
2155 vmf.pgoff = old_page->index;
2156 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2157 vmf.page = old_page;
2158
2159 /*
2160 * Notify the address space that the page is about to
2161 * become writable so that it can prohibit this or wait
2162 * for the page to get into an appropriate state.
2163 *
2164 * We do this without the lock held, so that it can
2165 * sleep if it needs to.
2166 */
2167 page_cache_get(old_page);
2168 pte_unmap_unlock(page_table, ptl);
2169
2170 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2171 if (unlikely(tmp &
2172 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2173 ret = tmp;
2174 goto unwritable_page;
2175 }
2176 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2177 lock_page(old_page);
2178 if (!old_page->mapping) {
2179 ret = 0; /* retry the fault */
2180 unlock_page(old_page);
2181 goto unwritable_page;
2182 }
2183 } else
2184 VM_BUG_ON(!PageLocked(old_page));
2185
2186 /*
2187 * Since we dropped the lock we need to revalidate
2188 * the PTE as someone else may have changed it. If
2189 * they did, we just return, as we can count on the
2190 * MMU to tell us if they didn't also make it writable.
2191 */
2192 page_table = pte_offset_map_lock(mm, pmd, address,
2193 &ptl);
2194 if (!pte_same(*page_table, orig_pte)) {
2195 unlock_page(old_page);
2196 page_cache_release(old_page);
2197 goto unlock;
2198 }
2199
2200 page_mkwrite = 1;
2201 }
2202 dirty_page = old_page;
2203 get_page(dirty_page);
2204 reuse = 1;
2205 }
2206
2207 if (reuse) {
2208 reuse:
2209 flush_cache_page(vma, address, pte_pfn(orig_pte));
2210 entry = pte_mkyoung(orig_pte);
2211 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2212 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2213 update_mmu_cache(vma, address, page_table);
2214 ret |= VM_FAULT_WRITE;
2215 goto unlock;
2216 }
2217
2218 /*
2219 * Ok, we need to copy. Oh, well..
2220 */
2221 page_cache_get(old_page);
2222 gotten:
2223 pte_unmap_unlock(page_table, ptl);
2224
2225 if (unlikely(anon_vma_prepare(vma)))
2226 goto oom;
2227
2228 if (is_zero_pfn(pte_pfn(orig_pte))) {
2229 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2230 if (!new_page)
2231 goto oom;
2232 } else {
2233 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2234 if (!new_page)
2235 goto oom;
2236 cow_user_page(new_page, old_page, address, vma);
2237 }
2238 __SetPageUptodate(new_page);
2239
2240 /*
2241 * Don't let another task, with possibly unlocked vma,
2242 * keep the mlocked page.
2243 */
2244 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2245 lock_page(old_page); /* for LRU manipulation */
2246 clear_page_mlock(old_page);
2247 unlock_page(old_page);
2248 }
2249
2250 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2251 goto oom_free_new;
2252
2253 /*
2254 * Re-check the pte - we dropped the lock
2255 */
2256 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2257 if (likely(pte_same(*page_table, orig_pte))) {
2258 if (old_page) {
2259 if (!PageAnon(old_page)) {
2260 dec_mm_counter_fast(mm, MM_FILEPAGES);
2261 inc_mm_counter_fast(mm, MM_ANONPAGES);
2262 }
2263 } else
2264 inc_mm_counter_fast(mm, MM_ANONPAGES);
2265 flush_cache_page(vma, address, pte_pfn(orig_pte));
2266 entry = mk_pte(new_page, vma->vm_page_prot);
2267 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2268 /*
2269 * Clear the pte entry and flush it first, before updating the
2270 * pte with the new entry. This will avoid a race condition
2271 * seen in the presence of one thread doing SMC and another
2272 * thread doing COW.
2273 */
2274 ptep_clear_flush(vma, address, page_table);
2275 page_add_new_anon_rmap(new_page, vma, address);
2276 /*
2277 * We call the notify macro here because, when using secondary
2278 * mmu page tables (such as kvm shadow page tables), we want the
2279 * new page to be mapped directly into the secondary page table.
2280 */
2281 set_pte_at_notify(mm, address, page_table, entry);
2282 update_mmu_cache(vma, address, page_table);
2283 if (old_page) {
2284 /*
2285 * Only after switching the pte to the new page may
2286 * we remove the mapcount here. Otherwise another
2287 * process may come and find the rmap count decremented
2288 * before the pte is switched to the new page, and
2289 * "reuse" the old page writing into it while our pte
2290 * here still points into it and can be read by other
2291 * threads.
2292 *
2293 * The critical issue is to order this
2294 * page_remove_rmap with the ptp_clear_flush above.
2295 * Those stores are ordered by (if nothing else,)
2296 * the barrier present in the atomic_add_negative
2297 * in page_remove_rmap.
2298 *
2299 * Then the TLB flush in ptep_clear_flush ensures that
2300 * no process can access the old page before the
2301 * decremented mapcount is visible. And the old page
2302 * cannot be reused until after the decremented
2303 * mapcount is visible. So transitively, TLBs to
2304 * old page will be flushed before it can be reused.
2305 */
2306 page_remove_rmap(old_page);
2307 }
2308
2309 /* Free the old page.. */
2310 new_page = old_page;
2311 ret |= VM_FAULT_WRITE;
2312 } else
2313 mem_cgroup_uncharge_page(new_page);
2314
2315 if (new_page)
2316 page_cache_release(new_page);
2317 if (old_page)
2318 page_cache_release(old_page);
2319 unlock:
2320 pte_unmap_unlock(page_table, ptl);
2321 if (dirty_page) {
2322 /*
2323 * Yes, Virginia, this is actually required to prevent a race
2324 * with clear_page_dirty_for_io() from clearing the page dirty
2325 * bit after it clear all dirty ptes, but before a racing
2326 * do_wp_page installs a dirty pte.
2327 *
2328 * do_no_page is protected similarly.
2329 */
2330 if (!page_mkwrite) {
2331 wait_on_page_locked(dirty_page);
2332 set_page_dirty_balance(dirty_page, page_mkwrite);
2333 }
2334 put_page(dirty_page);
2335 if (page_mkwrite) {
2336 struct address_space *mapping = dirty_page->mapping;
2337
2338 set_page_dirty(dirty_page);
2339 unlock_page(dirty_page);
2340 page_cache_release(dirty_page);
2341 if (mapping) {
2342 /*
2343 * Some device drivers do not set page.mapping
2344 * but still dirty their pages
2345 */
2346 balance_dirty_pages_ratelimited(mapping);
2347 }
2348 }
2349
2350 /* file_update_time outside page_lock */
2351 if (vma->vm_file)
2352 file_update_time(vma->vm_file);
2353 }
2354 return ret;
2355 oom_free_new:
2356 page_cache_release(new_page);
2357 oom:
2358 if (old_page) {
2359 if (page_mkwrite) {
2360 unlock_page(old_page);
2361 page_cache_release(old_page);
2362 }
2363 page_cache_release(old_page);
2364 }
2365 return VM_FAULT_OOM;
2366
2367 unwritable_page:
2368 page_cache_release(old_page);
2369 return ret;
2370 }
2371
2372 /*
2373 * Helper functions for unmap_mapping_range().
2374 *
2375 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2376 *
2377 * We have to restart searching the prio_tree whenever we drop the lock,
2378 * since the iterator is only valid while the lock is held, and anyway
2379 * a later vma might be split and reinserted earlier while lock dropped.
2380 *
2381 * The list of nonlinear vmas could be handled more efficiently, using
2382 * a placeholder, but handle it in the same way until a need is shown.
2383 * It is important to search the prio_tree before nonlinear list: a vma
2384 * may become nonlinear and be shifted from prio_tree to nonlinear list
2385 * while the lock is dropped; but never shifted from list to prio_tree.
2386 *
2387 * In order to make forward progress despite restarting the search,
2388 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2389 * quickly skip it next time around. Since the prio_tree search only
2390 * shows us those vmas affected by unmapping the range in question, we
2391 * can't efficiently keep all vmas in step with mapping->truncate_count:
2392 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2393 * mapping->truncate_count and vma->vm_truncate_count are protected by
2394 * i_mmap_lock.
2395 *
2396 * In order to make forward progress despite repeatedly restarting some
2397 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2398 * and restart from that address when we reach that vma again. It might
2399 * have been split or merged, shrunk or extended, but never shifted: so
2400 * restart_addr remains valid so long as it remains in the vma's range.
2401 * unmap_mapping_range forces truncate_count to leap over page-aligned
2402 * values so we can save vma's restart_addr in its truncate_count field.
2403 */
2404 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2405
2406 static void reset_vma_truncate_counts(struct address_space *mapping)
2407 {
2408 struct vm_area_struct *vma;
2409 struct prio_tree_iter iter;
2410
2411 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2412 vma->vm_truncate_count = 0;
2413 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2414 vma->vm_truncate_count = 0;
2415 }
2416
2417 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2418 unsigned long start_addr, unsigned long end_addr,
2419 struct zap_details *details)
2420 {
2421 unsigned long restart_addr;
2422 int need_break;
2423
2424 /*
2425 * files that support invalidating or truncating portions of the
2426 * file from under mmaped areas must have their ->fault function
2427 * return a locked page (and set VM_FAULT_LOCKED in the return).
2428 * This provides synchronisation against concurrent unmapping here.
2429 */
2430
2431 again:
2432 restart_addr = vma->vm_truncate_count;
2433 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2434 start_addr = restart_addr;
2435 if (start_addr >= end_addr) {
2436 /* Top of vma has been split off since last time */
2437 vma->vm_truncate_count = details->truncate_count;
2438 return 0;
2439 }
2440 }
2441
2442 restart_addr = zap_page_range(vma, start_addr,
2443 end_addr - start_addr, details);
2444 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2445
2446 if (restart_addr >= end_addr) {
2447 /* We have now completed this vma: mark it so */
2448 vma->vm_truncate_count = details->truncate_count;
2449 if (!need_break)
2450 return 0;
2451 } else {
2452 /* Note restart_addr in vma's truncate_count field */
2453 vma->vm_truncate_count = restart_addr;
2454 if (!need_break)
2455 goto again;
2456 }
2457
2458 spin_unlock(details->i_mmap_lock);
2459 cond_resched();
2460 spin_lock(details->i_mmap_lock);
2461 return -EINTR;
2462 }
2463
2464 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2465 struct zap_details *details)
2466 {
2467 struct vm_area_struct *vma;
2468 struct prio_tree_iter iter;
2469 pgoff_t vba, vea, zba, zea;
2470
2471 restart:
2472 vma_prio_tree_foreach(vma, &iter, root,
2473 details->first_index, details->last_index) {
2474 /* Skip quickly over those we have already dealt with */
2475 if (vma->vm_truncate_count == details->truncate_count)
2476 continue;
2477
2478 vba = vma->vm_pgoff;
2479 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2480 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2481 zba = details->first_index;
2482 if (zba < vba)
2483 zba = vba;
2484 zea = details->last_index;
2485 if (zea > vea)
2486 zea = vea;
2487
2488 if (unmap_mapping_range_vma(vma,
2489 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2490 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2491 details) < 0)
2492 goto restart;
2493 }
2494 }
2495
2496 static inline void unmap_mapping_range_list(struct list_head *head,
2497 struct zap_details *details)
2498 {
2499 struct vm_area_struct *vma;
2500
2501 /*
2502 * In nonlinear VMAs there is no correspondence between virtual address
2503 * offset and file offset. So we must perform an exhaustive search
2504 * across *all* the pages in each nonlinear VMA, not just the pages
2505 * whose virtual address lies outside the file truncation point.
2506 */
2507 restart:
2508 list_for_each_entry(vma, head, shared.vm_set.list) {
2509 /* Skip quickly over those we have already dealt with */
2510 if (vma->vm_truncate_count == details->truncate_count)
2511 continue;
2512 details->nonlinear_vma = vma;
2513 if (unmap_mapping_range_vma(vma, vma->vm_start,
2514 vma->vm_end, details) < 0)
2515 goto restart;
2516 }
2517 }
2518
2519 /**
2520 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2521 * @mapping: the address space containing mmaps to be unmapped.
2522 * @holebegin: byte in first page to unmap, relative to the start of
2523 * the underlying file. This will be rounded down to a PAGE_SIZE
2524 * boundary. Note that this is different from truncate_pagecache(), which
2525 * must keep the partial page. In contrast, we must get rid of
2526 * partial pages.
2527 * @holelen: size of prospective hole in bytes. This will be rounded
2528 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2529 * end of the file.
2530 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2531 * but 0 when invalidating pagecache, don't throw away private data.
2532 */
2533 void unmap_mapping_range(struct address_space *mapping,
2534 loff_t const holebegin, loff_t const holelen, int even_cows)
2535 {
2536 struct zap_details details;
2537 pgoff_t hba = holebegin >> PAGE_SHIFT;
2538 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2539
2540 /* Check for overflow. */
2541 if (sizeof(holelen) > sizeof(hlen)) {
2542 long long holeend =
2543 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2544 if (holeend & ~(long long)ULONG_MAX)
2545 hlen = ULONG_MAX - hba + 1;
2546 }
2547
2548 details.check_mapping = even_cows? NULL: mapping;
2549 details.nonlinear_vma = NULL;
2550 details.first_index = hba;
2551 details.last_index = hba + hlen - 1;
2552 if (details.last_index < details.first_index)
2553 details.last_index = ULONG_MAX;
2554 details.i_mmap_lock = &mapping->i_mmap_lock;
2555
2556 spin_lock(&mapping->i_mmap_lock);
2557
2558 /* Protect against endless unmapping loops */
2559 mapping->truncate_count++;
2560 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2561 if (mapping->truncate_count == 0)
2562 reset_vma_truncate_counts(mapping);
2563 mapping->truncate_count++;
2564 }
2565 details.truncate_count = mapping->truncate_count;
2566
2567 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2568 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2569 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2570 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2571 spin_unlock(&mapping->i_mmap_lock);
2572 }
2573 EXPORT_SYMBOL(unmap_mapping_range);
2574
2575 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2576 {
2577 struct address_space *mapping = inode->i_mapping;
2578
2579 /*
2580 * If the underlying filesystem is not going to provide
2581 * a way to truncate a range of blocks (punch a hole) -
2582 * we should return failure right now.
2583 */
2584 if (!inode->i_op->truncate_range)
2585 return -ENOSYS;
2586
2587 mutex_lock(&inode->i_mutex);
2588 down_write(&inode->i_alloc_sem);
2589 unmap_mapping_range(mapping, offset, (end - offset), 1);
2590 truncate_inode_pages_range(mapping, offset, end);
2591 unmap_mapping_range(mapping, offset, (end - offset), 1);
2592 inode->i_op->truncate_range(inode, offset, end);
2593 up_write(&inode->i_alloc_sem);
2594 mutex_unlock(&inode->i_mutex);
2595
2596 return 0;
2597 }
2598
2599 /*
2600 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601 * but allow concurrent faults), and pte mapped but not yet locked.
2602 * We return with mmap_sem still held, but pte unmapped and unlocked.
2603 */
2604 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2605 unsigned long address, pte_t *page_table, pmd_t *pmd,
2606 unsigned int flags, pte_t orig_pte)
2607 {
2608 spinlock_t *ptl;
2609 struct page *page;
2610 swp_entry_t entry;
2611 pte_t pte;
2612 struct mem_cgroup *ptr = NULL;
2613 int ret = 0;
2614
2615 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2616 goto out;
2617
2618 entry = pte_to_swp_entry(orig_pte);
2619 if (unlikely(non_swap_entry(entry))) {
2620 if (is_migration_entry(entry)) {
2621 migration_entry_wait(mm, pmd, address);
2622 } else if (is_hwpoison_entry(entry)) {
2623 ret = VM_FAULT_HWPOISON;
2624 } else {
2625 print_bad_pte(vma, address, orig_pte, NULL);
2626 ret = VM_FAULT_SIGBUS;
2627 }
2628 goto out;
2629 }
2630 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2631 page = lookup_swap_cache(entry);
2632 if (!page) {
2633 grab_swap_token(mm); /* Contend for token _before_ read-in */
2634 page = swapin_readahead(entry,
2635 GFP_HIGHUSER_MOVABLE, vma, address);
2636 if (!page) {
2637 /*
2638 * Back out if somebody else faulted in this pte
2639 * while we released the pte lock.
2640 */
2641 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2642 if (likely(pte_same(*page_table, orig_pte)))
2643 ret = VM_FAULT_OOM;
2644 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2645 goto unlock;
2646 }
2647
2648 /* Had to read the page from swap area: Major fault */
2649 ret = VM_FAULT_MAJOR;
2650 count_vm_event(PGMAJFAULT);
2651 } else if (PageHWPoison(page)) {
2652 /*
2653 * hwpoisoned dirty swapcache pages are kept for killing
2654 * owner processes (which may be unknown at hwpoison time)
2655 */
2656 ret = VM_FAULT_HWPOISON;
2657 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2658 goto out_release;
2659 }
2660
2661 lock_page(page);
2662 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2663
2664 page = ksm_might_need_to_copy(page, vma, address);
2665 if (!page) {
2666 ret = VM_FAULT_OOM;
2667 goto out;
2668 }
2669
2670 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2671 ret = VM_FAULT_OOM;
2672 goto out_page;
2673 }
2674
2675 /*
2676 * Back out if somebody else already faulted in this pte.
2677 */
2678 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2679 if (unlikely(!pte_same(*page_table, orig_pte)))
2680 goto out_nomap;
2681
2682 if (unlikely(!PageUptodate(page))) {
2683 ret = VM_FAULT_SIGBUS;
2684 goto out_nomap;
2685 }
2686
2687 /*
2688 * The page isn't present yet, go ahead with the fault.
2689 *
2690 * Be careful about the sequence of operations here.
2691 * To get its accounting right, reuse_swap_page() must be called
2692 * while the page is counted on swap but not yet in mapcount i.e.
2693 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2694 * must be called after the swap_free(), or it will never succeed.
2695 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2696 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2697 * in page->private. In this case, a record in swap_cgroup is silently
2698 * discarded at swap_free().
2699 */
2700
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 dec_mm_counter_fast(mm, MM_SWAPENTS);
2703 pte = mk_pte(page, vma->vm_page_prot);
2704 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2705 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2706 flags &= ~FAULT_FLAG_WRITE;
2707 }
2708 flush_icache_page(vma, page);
2709 set_pte_at(mm, address, page_table, pte);
2710 page_add_anon_rmap(page, vma, address);
2711 /* It's better to call commit-charge after rmap is established */
2712 mem_cgroup_commit_charge_swapin(page, ptr);
2713
2714 swap_free(entry);
2715 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2716 try_to_free_swap(page);
2717 unlock_page(page);
2718
2719 if (flags & FAULT_FLAG_WRITE) {
2720 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2721 if (ret & VM_FAULT_ERROR)
2722 ret &= VM_FAULT_ERROR;
2723 goto out;
2724 }
2725
2726 /* No need to invalidate - it was non-present before */
2727 update_mmu_cache(vma, address, page_table);
2728 unlock:
2729 pte_unmap_unlock(page_table, ptl);
2730 out:
2731 return ret;
2732 out_nomap:
2733 mem_cgroup_cancel_charge_swapin(ptr);
2734 pte_unmap_unlock(page_table, ptl);
2735 out_page:
2736 unlock_page(page);
2737 out_release:
2738 page_cache_release(page);
2739 return ret;
2740 }
2741
2742 /*
2743 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2744 * but allow concurrent faults), and pte mapped but not yet locked.
2745 * We return with mmap_sem still held, but pte unmapped and unlocked.
2746 */
2747 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2748 unsigned long address, pte_t *page_table, pmd_t *pmd,
2749 unsigned int flags)
2750 {
2751 struct page *page;
2752 spinlock_t *ptl;
2753 pte_t entry;
2754
2755 if (!(flags & FAULT_FLAG_WRITE)) {
2756 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2757 vma->vm_page_prot));
2758 ptl = pte_lockptr(mm, pmd);
2759 spin_lock(ptl);
2760 if (!pte_none(*page_table))
2761 goto unlock;
2762 goto setpte;
2763 }
2764
2765 /* Allocate our own private page. */
2766 pte_unmap(page_table);
2767
2768 if (unlikely(anon_vma_prepare(vma)))
2769 goto oom;
2770 page = alloc_zeroed_user_highpage_movable(vma, address);
2771 if (!page)
2772 goto oom;
2773 __SetPageUptodate(page);
2774
2775 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2776 goto oom_free_page;
2777
2778 entry = mk_pte(page, vma->vm_page_prot);
2779 if (vma->vm_flags & VM_WRITE)
2780 entry = pte_mkwrite(pte_mkdirty(entry));
2781
2782 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2783 if (!pte_none(*page_table))
2784 goto release;
2785
2786 inc_mm_counter_fast(mm, MM_ANONPAGES);
2787 page_add_new_anon_rmap(page, vma, address);
2788 setpte:
2789 set_pte_at(mm, address, page_table, entry);
2790
2791 /* No need to invalidate - it was non-present before */
2792 update_mmu_cache(vma, address, page_table);
2793 unlock:
2794 pte_unmap_unlock(page_table, ptl);
2795 return 0;
2796 release:
2797 mem_cgroup_uncharge_page(page);
2798 page_cache_release(page);
2799 goto unlock;
2800 oom_free_page:
2801 page_cache_release(page);
2802 oom:
2803 return VM_FAULT_OOM;
2804 }
2805
2806 /*
2807 * __do_fault() tries to create a new page mapping. It aggressively
2808 * tries to share with existing pages, but makes a separate copy if
2809 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2810 * the next page fault.
2811 *
2812 * As this is called only for pages that do not currently exist, we
2813 * do not need to flush old virtual caches or the TLB.
2814 *
2815 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2816 * but allow concurrent faults), and pte neither mapped nor locked.
2817 * We return with mmap_sem still held, but pte unmapped and unlocked.
2818 */
2819 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2820 unsigned long address, pmd_t *pmd,
2821 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2822 {
2823 pte_t *page_table;
2824 spinlock_t *ptl;
2825 struct page *page;
2826 pte_t entry;
2827 int anon = 0;
2828 int charged = 0;
2829 struct page *dirty_page = NULL;
2830 struct vm_fault vmf;
2831 int ret;
2832 int page_mkwrite = 0;
2833
2834 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2835 vmf.pgoff = pgoff;
2836 vmf.flags = flags;
2837 vmf.page = NULL;
2838
2839 ret = vma->vm_ops->fault(vma, &vmf);
2840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2841 return ret;
2842
2843 if (unlikely(PageHWPoison(vmf.page))) {
2844 if (ret & VM_FAULT_LOCKED)
2845 unlock_page(vmf.page);
2846 return VM_FAULT_HWPOISON;
2847 }
2848
2849 /*
2850 * For consistency in subsequent calls, make the faulted page always
2851 * locked.
2852 */
2853 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2854 lock_page(vmf.page);
2855 else
2856 VM_BUG_ON(!PageLocked(vmf.page));
2857
2858 /*
2859 * Should we do an early C-O-W break?
2860 */
2861 page = vmf.page;
2862 if (flags & FAULT_FLAG_WRITE) {
2863 if (!(vma->vm_flags & VM_SHARED)) {
2864 anon = 1;
2865 if (unlikely(anon_vma_prepare(vma))) {
2866 ret = VM_FAULT_OOM;
2867 goto out;
2868 }
2869 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2870 vma, address);
2871 if (!page) {
2872 ret = VM_FAULT_OOM;
2873 goto out;
2874 }
2875 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2876 ret = VM_FAULT_OOM;
2877 page_cache_release(page);
2878 goto out;
2879 }
2880 charged = 1;
2881 /*
2882 * Don't let another task, with possibly unlocked vma,
2883 * keep the mlocked page.
2884 */
2885 if (vma->vm_flags & VM_LOCKED)
2886 clear_page_mlock(vmf.page);
2887 copy_user_highpage(page, vmf.page, address, vma);
2888 __SetPageUptodate(page);
2889 } else {
2890 /*
2891 * If the page will be shareable, see if the backing
2892 * address space wants to know that the page is about
2893 * to become writable
2894 */
2895 if (vma->vm_ops->page_mkwrite) {
2896 int tmp;
2897
2898 unlock_page(page);
2899 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2900 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2901 if (unlikely(tmp &
2902 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2903 ret = tmp;
2904 goto unwritable_page;
2905 }
2906 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2907 lock_page(page);
2908 if (!page->mapping) {
2909 ret = 0; /* retry the fault */
2910 unlock_page(page);
2911 goto unwritable_page;
2912 }
2913 } else
2914 VM_BUG_ON(!PageLocked(page));
2915 page_mkwrite = 1;
2916 }
2917 }
2918
2919 }
2920
2921 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2922
2923 /*
2924 * This silly early PAGE_DIRTY setting removes a race
2925 * due to the bad i386 page protection. But it's valid
2926 * for other architectures too.
2927 *
2928 * Note that if FAULT_FLAG_WRITE is set, we either now have
2929 * an exclusive copy of the page, or this is a shared mapping,
2930 * so we can make it writable and dirty to avoid having to
2931 * handle that later.
2932 */
2933 /* Only go through if we didn't race with anybody else... */
2934 if (likely(pte_same(*page_table, orig_pte))) {
2935 flush_icache_page(vma, page);
2936 entry = mk_pte(page, vma->vm_page_prot);
2937 if (flags & FAULT_FLAG_WRITE)
2938 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2939 if (anon) {
2940 inc_mm_counter_fast(mm, MM_ANONPAGES);
2941 page_add_new_anon_rmap(page, vma, address);
2942 } else {
2943 inc_mm_counter_fast(mm, MM_FILEPAGES);
2944 page_add_file_rmap(page);
2945 if (flags & FAULT_FLAG_WRITE) {
2946 dirty_page = page;
2947 get_page(dirty_page);
2948 }
2949 }
2950 set_pte_at(mm, address, page_table, entry);
2951
2952 /* no need to invalidate: a not-present page won't be cached */
2953 update_mmu_cache(vma, address, page_table);
2954 } else {
2955 if (charged)
2956 mem_cgroup_uncharge_page(page);
2957 if (anon)
2958 page_cache_release(page);
2959 else
2960 anon = 1; /* no anon but release faulted_page */
2961 }
2962
2963 pte_unmap_unlock(page_table, ptl);
2964
2965 out:
2966 if (dirty_page) {
2967 struct address_space *mapping = page->mapping;
2968
2969 if (set_page_dirty(dirty_page))
2970 page_mkwrite = 1;
2971 unlock_page(dirty_page);
2972 put_page(dirty_page);
2973 if (page_mkwrite && mapping) {
2974 /*
2975 * Some device drivers do not set page.mapping but still
2976 * dirty their pages
2977 */
2978 balance_dirty_pages_ratelimited(mapping);
2979 }
2980
2981 /* file_update_time outside page_lock */
2982 if (vma->vm_file)
2983 file_update_time(vma->vm_file);
2984 } else {
2985 unlock_page(vmf.page);
2986 if (anon)
2987 page_cache_release(vmf.page);
2988 }
2989
2990 return ret;
2991
2992 unwritable_page:
2993 page_cache_release(page);
2994 return ret;
2995 }
2996
2997 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2998 unsigned long address, pte_t *page_table, pmd_t *pmd,
2999 unsigned int flags, pte_t orig_pte)
3000 {
3001 pgoff_t pgoff = (((address & PAGE_MASK)
3002 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3003
3004 pte_unmap(page_table);
3005 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3006 }
3007
3008 /*
3009 * Fault of a previously existing named mapping. Repopulate the pte
3010 * from the encoded file_pte if possible. This enables swappable
3011 * nonlinear vmas.
3012 *
3013 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3014 * but allow concurrent faults), and pte mapped but not yet locked.
3015 * We return with mmap_sem still held, but pte unmapped and unlocked.
3016 */
3017 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3018 unsigned long address, pte_t *page_table, pmd_t *pmd,
3019 unsigned int flags, pte_t orig_pte)
3020 {
3021 pgoff_t pgoff;
3022
3023 flags |= FAULT_FLAG_NONLINEAR;
3024
3025 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3026 return 0;
3027
3028 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3029 /*
3030 * Page table corrupted: show pte and kill process.
3031 */
3032 print_bad_pte(vma, address, orig_pte, NULL);
3033 return VM_FAULT_SIGBUS;
3034 }
3035
3036 pgoff = pte_to_pgoff(orig_pte);
3037 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3038 }
3039
3040 /*
3041 * These routines also need to handle stuff like marking pages dirty
3042 * and/or accessed for architectures that don't do it in hardware (most
3043 * RISC architectures). The early dirtying is also good on the i386.
3044 *
3045 * There is also a hook called "update_mmu_cache()" that architectures
3046 * with external mmu caches can use to update those (ie the Sparc or
3047 * PowerPC hashed page tables that act as extended TLBs).
3048 *
3049 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3050 * but allow concurrent faults), and pte mapped but not yet locked.
3051 * We return with mmap_sem still held, but pte unmapped and unlocked.
3052 */
3053 static inline int handle_pte_fault(struct mm_struct *mm,
3054 struct vm_area_struct *vma, unsigned long address,
3055 pte_t *pte, pmd_t *pmd, unsigned int flags)
3056 {
3057 pte_t entry;
3058 spinlock_t *ptl;
3059
3060 entry = *pte;
3061 if (!pte_present(entry)) {
3062 if (pte_none(entry)) {
3063 if (vma->vm_ops) {
3064 if (likely(vma->vm_ops->fault))
3065 return do_linear_fault(mm, vma, address,
3066 pte, pmd, flags, entry);
3067 }
3068 return do_anonymous_page(mm, vma, address,
3069 pte, pmd, flags);
3070 }
3071 if (pte_file(entry))
3072 return do_nonlinear_fault(mm, vma, address,
3073 pte, pmd, flags, entry);
3074 return do_swap_page(mm, vma, address,
3075 pte, pmd, flags, entry);
3076 }
3077
3078 ptl = pte_lockptr(mm, pmd);
3079 spin_lock(ptl);
3080 if (unlikely(!pte_same(*pte, entry)))
3081 goto unlock;
3082 if (flags & FAULT_FLAG_WRITE) {
3083 if (!pte_write(entry))
3084 return do_wp_page(mm, vma, address,
3085 pte, pmd, ptl, entry);
3086 entry = pte_mkdirty(entry);
3087 }
3088 entry = pte_mkyoung(entry);
3089 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3090 update_mmu_cache(vma, address, pte);
3091 } else {
3092 /*
3093 * This is needed only for protection faults but the arch code
3094 * is not yet telling us if this is a protection fault or not.
3095 * This still avoids useless tlb flushes for .text page faults
3096 * with threads.
3097 */
3098 if (flags & FAULT_FLAG_WRITE)
3099 flush_tlb_page(vma, address);
3100 }
3101 unlock:
3102 pte_unmap_unlock(pte, ptl);
3103 return 0;
3104 }
3105
3106 /*
3107 * By the time we get here, we already hold the mm semaphore
3108 */
3109 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3110 unsigned long address, unsigned int flags)
3111 {
3112 pgd_t *pgd;
3113 pud_t *pud;
3114 pmd_t *pmd;
3115 pte_t *pte;
3116
3117 __set_current_state(TASK_RUNNING);
3118
3119 count_vm_event(PGFAULT);
3120
3121 /* do counter updates before entering really critical section. */
3122 check_sync_rss_stat(current);
3123
3124 if (unlikely(is_vm_hugetlb_page(vma)))
3125 return hugetlb_fault(mm, vma, address, flags);
3126
3127 pgd = pgd_offset(mm, address);
3128 pud = pud_alloc(mm, pgd, address);
3129 if (!pud)
3130 return VM_FAULT_OOM;
3131 pmd = pmd_alloc(mm, pud, address);
3132 if (!pmd)
3133 return VM_FAULT_OOM;
3134 pte = pte_alloc_map(mm, pmd, address);
3135 if (!pte)
3136 return VM_FAULT_OOM;
3137
3138 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3139 }
3140
3141 #ifndef __PAGETABLE_PUD_FOLDED
3142 /*
3143 * Allocate page upper directory.
3144 * We've already handled the fast-path in-line.
3145 */
3146 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3147 {
3148 pud_t *new = pud_alloc_one(mm, address);
3149 if (!new)
3150 return -ENOMEM;
3151
3152 smp_wmb(); /* See comment in __pte_alloc */
3153
3154 spin_lock(&mm->page_table_lock);
3155 if (pgd_present(*pgd)) /* Another has populated it */
3156 pud_free(mm, new);
3157 else
3158 pgd_populate(mm, pgd, new);
3159 spin_unlock(&mm->page_table_lock);
3160 return 0;
3161 }
3162 #endif /* __PAGETABLE_PUD_FOLDED */
3163
3164 #ifndef __PAGETABLE_PMD_FOLDED
3165 /*
3166 * Allocate page middle directory.
3167 * We've already handled the fast-path in-line.
3168 */
3169 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3170 {
3171 pmd_t *new = pmd_alloc_one(mm, address);
3172 if (!new)
3173 return -ENOMEM;
3174
3175 smp_wmb(); /* See comment in __pte_alloc */
3176
3177 spin_lock(&mm->page_table_lock);
3178 #ifndef __ARCH_HAS_4LEVEL_HACK
3179 if (pud_present(*pud)) /* Another has populated it */
3180 pmd_free(mm, new);
3181 else
3182 pud_populate(mm, pud, new);
3183 #else
3184 if (pgd_present(*pud)) /* Another has populated it */
3185 pmd_free(mm, new);
3186 else
3187 pgd_populate(mm, pud, new);
3188 #endif /* __ARCH_HAS_4LEVEL_HACK */
3189 spin_unlock(&mm->page_table_lock);
3190 return 0;
3191 }
3192 #endif /* __PAGETABLE_PMD_FOLDED */
3193
3194 int make_pages_present(unsigned long addr, unsigned long end)
3195 {
3196 int ret, len, write;
3197 struct vm_area_struct * vma;
3198
3199 vma = find_vma(current->mm, addr);
3200 if (!vma)
3201 return -ENOMEM;
3202 write = (vma->vm_flags & VM_WRITE) != 0;
3203 BUG_ON(addr >= end);
3204 BUG_ON(end > vma->vm_end);
3205 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3206 ret = get_user_pages(current, current->mm, addr,
3207 len, write, 0, NULL, NULL);
3208 if (ret < 0)
3209 return ret;
3210 return ret == len ? 0 : -EFAULT;
3211 }
3212
3213 #if !defined(__HAVE_ARCH_GATE_AREA)
3214
3215 #if defined(AT_SYSINFO_EHDR)
3216 static struct vm_area_struct gate_vma;
3217
3218 static int __init gate_vma_init(void)
3219 {
3220 gate_vma.vm_mm = NULL;
3221 gate_vma.vm_start = FIXADDR_USER_START;
3222 gate_vma.vm_end = FIXADDR_USER_END;
3223 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3224 gate_vma.vm_page_prot = __P101;
3225 /*
3226 * Make sure the vDSO gets into every core dump.
3227 * Dumping its contents makes post-mortem fully interpretable later
3228 * without matching up the same kernel and hardware config to see
3229 * what PC values meant.
3230 */
3231 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3232 return 0;
3233 }
3234 __initcall(gate_vma_init);
3235 #endif
3236
3237 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3238 {
3239 #ifdef AT_SYSINFO_EHDR
3240 return &gate_vma;
3241 #else
3242 return NULL;
3243 #endif
3244 }
3245
3246 int in_gate_area_no_task(unsigned long addr)
3247 {
3248 #ifdef AT_SYSINFO_EHDR
3249 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3250 return 1;
3251 #endif
3252 return 0;
3253 }
3254
3255 #endif /* __HAVE_ARCH_GATE_AREA */
3256
3257 static int follow_pte(struct mm_struct *mm, unsigned long address,
3258 pte_t **ptepp, spinlock_t **ptlp)
3259 {
3260 pgd_t *pgd;
3261 pud_t *pud;
3262 pmd_t *pmd;
3263 pte_t *ptep;
3264
3265 pgd = pgd_offset(mm, address);
3266 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3267 goto out;
3268
3269 pud = pud_offset(pgd, address);
3270 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3271 goto out;
3272
3273 pmd = pmd_offset(pud, address);
3274 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3275 goto out;
3276
3277 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3278 if (pmd_huge(*pmd))
3279 goto out;
3280
3281 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3282 if (!ptep)
3283 goto out;
3284 if (!pte_present(*ptep))
3285 goto unlock;
3286 *ptepp = ptep;
3287 return 0;
3288 unlock:
3289 pte_unmap_unlock(ptep, *ptlp);
3290 out:
3291 return -EINVAL;
3292 }
3293
3294 /**
3295 * follow_pfn - look up PFN at a user virtual address
3296 * @vma: memory mapping
3297 * @address: user virtual address
3298 * @pfn: location to store found PFN
3299 *
3300 * Only IO mappings and raw PFN mappings are allowed.
3301 *
3302 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3303 */
3304 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3305 unsigned long *pfn)
3306 {
3307 int ret = -EINVAL;
3308 spinlock_t *ptl;
3309 pte_t *ptep;
3310
3311 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3312 return ret;
3313
3314 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3315 if (ret)
3316 return ret;
3317 *pfn = pte_pfn(*ptep);
3318 pte_unmap_unlock(ptep, ptl);
3319 return 0;
3320 }
3321 EXPORT_SYMBOL(follow_pfn);
3322
3323 #ifdef CONFIG_HAVE_IOREMAP_PROT
3324 int follow_phys(struct vm_area_struct *vma,
3325 unsigned long address, unsigned int flags,
3326 unsigned long *prot, resource_size_t *phys)
3327 {
3328 int ret = -EINVAL;
3329 pte_t *ptep, pte;
3330 spinlock_t *ptl;
3331
3332 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3333 goto out;
3334
3335 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3336 goto out;
3337 pte = *ptep;
3338
3339 if ((flags & FOLL_WRITE) && !pte_write(pte))
3340 goto unlock;
3341
3342 *prot = pgprot_val(pte_pgprot(pte));
3343 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3344
3345 ret = 0;
3346 unlock:
3347 pte_unmap_unlock(ptep, ptl);
3348 out:
3349 return ret;
3350 }
3351
3352 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3353 void *buf, int len, int write)
3354 {
3355 resource_size_t phys_addr;
3356 unsigned long prot = 0;
3357 void __iomem *maddr;
3358 int offset = addr & (PAGE_SIZE-1);
3359
3360 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3361 return -EINVAL;
3362
3363 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3364 if (write)
3365 memcpy_toio(maddr + offset, buf, len);
3366 else
3367 memcpy_fromio(buf, maddr + offset, len);
3368 iounmap(maddr);
3369
3370 return len;
3371 }
3372 #endif
3373
3374 /*
3375 * Access another process' address space.
3376 * Source/target buffer must be kernel space,
3377 * Do not walk the page table directly, use get_user_pages
3378 */
3379 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3380 {
3381 struct mm_struct *mm;
3382 struct vm_area_struct *vma;
3383 void *old_buf = buf;
3384
3385 mm = get_task_mm(tsk);
3386 if (!mm)
3387 return 0;
3388
3389 down_read(&mm->mmap_sem);
3390 /* ignore errors, just check how much was successfully transferred */
3391 while (len) {
3392 int bytes, ret, offset;
3393 void *maddr;
3394 struct page *page = NULL;
3395
3396 ret = get_user_pages(tsk, mm, addr, 1,
3397 write, 1, &page, &vma);
3398 if (ret <= 0) {
3399 /*
3400 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3401 * we can access using slightly different code.
3402 */
3403 #ifdef CONFIG_HAVE_IOREMAP_PROT
3404 vma = find_vma(mm, addr);
3405 if (!vma)
3406 break;
3407 if (vma->vm_ops && vma->vm_ops->access)
3408 ret = vma->vm_ops->access(vma, addr, buf,
3409 len, write);
3410 if (ret <= 0)
3411 #endif
3412 break;
3413 bytes = ret;
3414 } else {
3415 bytes = len;
3416 offset = addr & (PAGE_SIZE-1);
3417 if (bytes > PAGE_SIZE-offset)
3418 bytes = PAGE_SIZE-offset;
3419
3420 maddr = kmap(page);
3421 if (write) {
3422 copy_to_user_page(vma, page, addr,
3423 maddr + offset, buf, bytes);
3424 set_page_dirty_lock(page);
3425 } else {
3426 copy_from_user_page(vma, page, addr,
3427 buf, maddr + offset, bytes);
3428 }
3429 kunmap(page);
3430 page_cache_release(page);
3431 }
3432 len -= bytes;
3433 buf += bytes;
3434 addr += bytes;
3435 }
3436 up_read(&mm->mmap_sem);
3437 mmput(mm);
3438
3439 return buf - old_buf;
3440 }
3441
3442 /*
3443 * Print the name of a VMA.
3444 */
3445 void print_vma_addr(char *prefix, unsigned long ip)
3446 {
3447 struct mm_struct *mm = current->mm;
3448 struct vm_area_struct *vma;
3449
3450 /*
3451 * Do not print if we are in atomic
3452 * contexts (in exception stacks, etc.):
3453 */
3454 if (preempt_count())
3455 return;
3456
3457 down_read(&mm->mmap_sem);
3458 vma = find_vma(mm, ip);
3459 if (vma && vma->vm_file) {
3460 struct file *f = vma->vm_file;
3461 char *buf = (char *)__get_free_page(GFP_KERNEL);
3462 if (buf) {
3463 char *p, *s;
3464
3465 p = d_path(&f->f_path, buf, PAGE_SIZE);
3466 if (IS_ERR(p))
3467 p = "?";
3468 s = strrchr(p, '/');
3469 if (s)
3470 p = s+1;
3471 printk("%s%s[%lx+%lx]", prefix, p,
3472 vma->vm_start,
3473 vma->vm_end - vma->vm_start);
3474 free_page((unsigned long)buf);
3475 }
3476 }
3477 up_read(&current->mm->mmap_sem);
3478 }
3479
3480 #ifdef CONFIG_PROVE_LOCKING
3481 void might_fault(void)
3482 {
3483 /*
3484 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3485 * holding the mmap_sem, this is safe because kernel memory doesn't
3486 * get paged out, therefore we'll never actually fault, and the
3487 * below annotations will generate false positives.
3488 */
3489 if (segment_eq(get_fs(), KERNEL_DS))
3490 return;
3491
3492 might_sleep();
3493 /*
3494 * it would be nicer only to annotate paths which are not under
3495 * pagefault_disable, however that requires a larger audit and
3496 * providing helpers like get_user_atomic.
3497 */
3498 if (!in_atomic() && current->mm)
3499 might_lock_read(&current->mm->mmap_sem);
3500 }
3501 EXPORT_SYMBOL(might_fault);
3502 #endif