]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory.c
Merge branch 'for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 struct page *mem_map;
86
87 EXPORT_SYMBOL(max_mapnr);
88 EXPORT_SYMBOL(mem_map);
89 #endif
90
91 /*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98 void * high_memory;
99
100 EXPORT_SYMBOL(high_memory);
101
102 /*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108 int randomize_va_space __read_mostly =
109 #ifdef CONFIG_COMPAT_BRK
110 1;
111 #else
112 2;
113 #endif
114
115 static int __init disable_randmaps(char *s)
116 {
117 randomize_va_space = 0;
118 return 1;
119 }
120 __setup("norandmaps", disable_randmaps);
121
122 unsigned long zero_pfn __read_mostly;
123 unsigned long highest_memmap_pfn __read_mostly;
124
125 EXPORT_SYMBOL(zero_pfn);
126
127 /*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130 static int __init init_zero_pfn(void)
131 {
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134 }
135 core_initcall(init_zero_pfn);
136
137
138 #if defined(SPLIT_RSS_COUNTING)
139
140 void sync_mm_rss(struct mm_struct *mm)
141 {
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
148 }
149 }
150 current->rss_stat.events = 0;
151 }
152
153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 {
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161 }
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH (64)
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
172 sync_mm_rss(task->mm);
173 }
174 #else /* SPLIT_RSS_COUNTING */
175
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179 static void check_sync_rss_stat(struct task_struct *task)
180 {
181 }
182
183 #endif /* SPLIT_RSS_COUNTING */
184
185 #ifdef HAVE_GENERIC_MMU_GATHER
186
187 static bool tlb_next_batch(struct mmu_gather *tlb)
188 {
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
194 return true;
195 }
196
197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
198 return false;
199
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
202 return false;
203
204 tlb->batch_count++;
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
212 return true;
213 }
214
215 /* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236
237 __tlb_reset_range(tlb);
238 }
239
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 {
242 if (!tlb->end)
243 return;
244
245 tlb_flush(tlb);
246 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248 tlb_table_flush(tlb);
249 #endif
250 __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255 struct mmu_gather_batch *batch;
256
257 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
258 free_pages_and_swap_cache(batch->pages, batch->nr);
259 batch->nr = 0;
260 }
261 tlb->active = &tlb->local;
262 }
263
264 void tlb_flush_mmu(struct mmu_gather *tlb)
265 {
266 tlb_flush_mmu_tlbonly(tlb);
267 tlb_flush_mmu_free(tlb);
268 }
269
270 /* tlb_finish_mmu
271 * Called at the end of the shootdown operation to free up any resources
272 * that were required.
273 */
274 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275 {
276 struct mmu_gather_batch *batch, *next;
277
278 tlb_flush_mmu(tlb);
279
280 /* keep the page table cache within bounds */
281 check_pgt_cache();
282
283 for (batch = tlb->local.next; batch; batch = next) {
284 next = batch->next;
285 free_pages((unsigned long)batch, 0);
286 }
287 tlb->local.next = NULL;
288 }
289
290 /* __tlb_remove_page
291 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292 * handling the additional races in SMP caused by other CPUs caching valid
293 * mappings in their TLBs. Returns the number of free page slots left.
294 * When out of page slots we must call tlb_flush_mmu().
295 */
296 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
297 {
298 struct mmu_gather_batch *batch;
299
300 VM_BUG_ON(!tlb->end);
301
302 batch = tlb->active;
303 batch->pages[batch->nr++] = page;
304 if (batch->nr == batch->max) {
305 if (!tlb_next_batch(tlb))
306 return 0;
307 batch = tlb->active;
308 }
309 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
310
311 return batch->max - batch->nr;
312 }
313
314 #endif /* HAVE_GENERIC_MMU_GATHER */
315
316 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
317
318 /*
319 * See the comment near struct mmu_table_batch.
320 */
321
322 static void tlb_remove_table_smp_sync(void *arg)
323 {
324 /* Simply deliver the interrupt */
325 }
326
327 static void tlb_remove_table_one(void *table)
328 {
329 /*
330 * This isn't an RCU grace period and hence the page-tables cannot be
331 * assumed to be actually RCU-freed.
332 *
333 * It is however sufficient for software page-table walkers that rely on
334 * IRQ disabling. See the comment near struct mmu_table_batch.
335 */
336 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
337 __tlb_remove_table(table);
338 }
339
340 static void tlb_remove_table_rcu(struct rcu_head *head)
341 {
342 struct mmu_table_batch *batch;
343 int i;
344
345 batch = container_of(head, struct mmu_table_batch, rcu);
346
347 for (i = 0; i < batch->nr; i++)
348 __tlb_remove_table(batch->tables[i]);
349
350 free_page((unsigned long)batch);
351 }
352
353 void tlb_table_flush(struct mmu_gather *tlb)
354 {
355 struct mmu_table_batch **batch = &tlb->batch;
356
357 if (*batch) {
358 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
359 *batch = NULL;
360 }
361 }
362
363 void tlb_remove_table(struct mmu_gather *tlb, void *table)
364 {
365 struct mmu_table_batch **batch = &tlb->batch;
366
367 /*
368 * When there's less then two users of this mm there cannot be a
369 * concurrent page-table walk.
370 */
371 if (atomic_read(&tlb->mm->mm_users) < 2) {
372 __tlb_remove_table(table);
373 return;
374 }
375
376 if (*batch == NULL) {
377 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
378 if (*batch == NULL) {
379 tlb_remove_table_one(table);
380 return;
381 }
382 (*batch)->nr = 0;
383 }
384 (*batch)->tables[(*batch)->nr++] = table;
385 if ((*batch)->nr == MAX_TABLE_BATCH)
386 tlb_table_flush(tlb);
387 }
388
389 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
390
391 /*
392 * Note: this doesn't free the actual pages themselves. That
393 * has been handled earlier when unmapping all the memory regions.
394 */
395 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
396 unsigned long addr)
397 {
398 pgtable_t token = pmd_pgtable(*pmd);
399 pmd_clear(pmd);
400 pte_free_tlb(tlb, token, addr);
401 atomic_long_dec(&tlb->mm->nr_ptes);
402 }
403
404 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
405 unsigned long addr, unsigned long end,
406 unsigned long floor, unsigned long ceiling)
407 {
408 pmd_t *pmd;
409 unsigned long next;
410 unsigned long start;
411
412 start = addr;
413 pmd = pmd_offset(pud, addr);
414 do {
415 next = pmd_addr_end(addr, end);
416 if (pmd_none_or_clear_bad(pmd))
417 continue;
418 free_pte_range(tlb, pmd, addr);
419 } while (pmd++, addr = next, addr != end);
420
421 start &= PUD_MASK;
422 if (start < floor)
423 return;
424 if (ceiling) {
425 ceiling &= PUD_MASK;
426 if (!ceiling)
427 return;
428 }
429 if (end - 1 > ceiling - 1)
430 return;
431
432 pmd = pmd_offset(pud, start);
433 pud_clear(pud);
434 pmd_free_tlb(tlb, pmd, start);
435 mm_dec_nr_pmds(tlb->mm);
436 }
437
438 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
439 unsigned long addr, unsigned long end,
440 unsigned long floor, unsigned long ceiling)
441 {
442 pud_t *pud;
443 unsigned long next;
444 unsigned long start;
445
446 start = addr;
447 pud = pud_offset(pgd, addr);
448 do {
449 next = pud_addr_end(addr, end);
450 if (pud_none_or_clear_bad(pud))
451 continue;
452 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
453 } while (pud++, addr = next, addr != end);
454
455 start &= PGDIR_MASK;
456 if (start < floor)
457 return;
458 if (ceiling) {
459 ceiling &= PGDIR_MASK;
460 if (!ceiling)
461 return;
462 }
463 if (end - 1 > ceiling - 1)
464 return;
465
466 pud = pud_offset(pgd, start);
467 pgd_clear(pgd);
468 pud_free_tlb(tlb, pud, start);
469 }
470
471 /*
472 * This function frees user-level page tables of a process.
473 */
474 void free_pgd_range(struct mmu_gather *tlb,
475 unsigned long addr, unsigned long end,
476 unsigned long floor, unsigned long ceiling)
477 {
478 pgd_t *pgd;
479 unsigned long next;
480
481 /*
482 * The next few lines have given us lots of grief...
483 *
484 * Why are we testing PMD* at this top level? Because often
485 * there will be no work to do at all, and we'd prefer not to
486 * go all the way down to the bottom just to discover that.
487 *
488 * Why all these "- 1"s? Because 0 represents both the bottom
489 * of the address space and the top of it (using -1 for the
490 * top wouldn't help much: the masks would do the wrong thing).
491 * The rule is that addr 0 and floor 0 refer to the bottom of
492 * the address space, but end 0 and ceiling 0 refer to the top
493 * Comparisons need to use "end - 1" and "ceiling - 1" (though
494 * that end 0 case should be mythical).
495 *
496 * Wherever addr is brought up or ceiling brought down, we must
497 * be careful to reject "the opposite 0" before it confuses the
498 * subsequent tests. But what about where end is brought down
499 * by PMD_SIZE below? no, end can't go down to 0 there.
500 *
501 * Whereas we round start (addr) and ceiling down, by different
502 * masks at different levels, in order to test whether a table
503 * now has no other vmas using it, so can be freed, we don't
504 * bother to round floor or end up - the tests don't need that.
505 */
506
507 addr &= PMD_MASK;
508 if (addr < floor) {
509 addr += PMD_SIZE;
510 if (!addr)
511 return;
512 }
513 if (ceiling) {
514 ceiling &= PMD_MASK;
515 if (!ceiling)
516 return;
517 }
518 if (end - 1 > ceiling - 1)
519 end -= PMD_SIZE;
520 if (addr > end - 1)
521 return;
522
523 pgd = pgd_offset(tlb->mm, addr);
524 do {
525 next = pgd_addr_end(addr, end);
526 if (pgd_none_or_clear_bad(pgd))
527 continue;
528 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
529 } while (pgd++, addr = next, addr != end);
530 }
531
532 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
533 unsigned long floor, unsigned long ceiling)
534 {
535 while (vma) {
536 struct vm_area_struct *next = vma->vm_next;
537 unsigned long addr = vma->vm_start;
538
539 /*
540 * Hide vma from rmap and truncate_pagecache before freeing
541 * pgtables
542 */
543 unlink_anon_vmas(vma);
544 unlink_file_vma(vma);
545
546 if (is_vm_hugetlb_page(vma)) {
547 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
548 floor, next? next->vm_start: ceiling);
549 } else {
550 /*
551 * Optimization: gather nearby vmas into one call down
552 */
553 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
554 && !is_vm_hugetlb_page(next)) {
555 vma = next;
556 next = vma->vm_next;
557 unlink_anon_vmas(vma);
558 unlink_file_vma(vma);
559 }
560 free_pgd_range(tlb, addr, vma->vm_end,
561 floor, next? next->vm_start: ceiling);
562 }
563 vma = next;
564 }
565 }
566
567 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
568 {
569 spinlock_t *ptl;
570 pgtable_t new = pte_alloc_one(mm, address);
571 if (!new)
572 return -ENOMEM;
573
574 /*
575 * Ensure all pte setup (eg. pte page lock and page clearing) are
576 * visible before the pte is made visible to other CPUs by being
577 * put into page tables.
578 *
579 * The other side of the story is the pointer chasing in the page
580 * table walking code (when walking the page table without locking;
581 * ie. most of the time). Fortunately, these data accesses consist
582 * of a chain of data-dependent loads, meaning most CPUs (alpha
583 * being the notable exception) will already guarantee loads are
584 * seen in-order. See the alpha page table accessors for the
585 * smp_read_barrier_depends() barriers in page table walking code.
586 */
587 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588
589 ptl = pmd_lock(mm, pmd);
590 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
591 atomic_long_inc(&mm->nr_ptes);
592 pmd_populate(mm, pmd, new);
593 new = NULL;
594 }
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
607 smp_wmb(); /* See comment in __pte_alloc */
608
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
613 }
614 spin_unlock(&init_mm.page_table_lock);
615 if (new)
616 pte_free_kernel(&init_mm, new);
617 return 0;
618 }
619
620 static inline void init_rss_vec(int *rss)
621 {
622 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
623 }
624
625 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 {
627 int i;
628
629 if (current->mm == mm)
630 sync_mm_rss(mm);
631 for (i = 0; i < NR_MM_COUNTERS; i++)
632 if (rss[i])
633 add_mm_counter(mm, i, rss[i]);
634 }
635
636 /*
637 * This function is called to print an error when a bad pte
638 * is found. For example, we might have a PFN-mapped pte in
639 * a region that doesn't allow it.
640 *
641 * The calling function must still handle the error.
642 */
643 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
644 pte_t pte, struct page *page)
645 {
646 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
647 pud_t *pud = pud_offset(pgd, addr);
648 pmd_t *pmd = pmd_offset(pud, addr);
649 struct address_space *mapping;
650 pgoff_t index;
651 static unsigned long resume;
652 static unsigned long nr_shown;
653 static unsigned long nr_unshown;
654
655 /*
656 * Allow a burst of 60 reports, then keep quiet for that minute;
657 * or allow a steady drip of one report per second.
658 */
659 if (nr_shown == 60) {
660 if (time_before(jiffies, resume)) {
661 nr_unshown++;
662 return;
663 }
664 if (nr_unshown) {
665 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
666 nr_unshown);
667 nr_unshown = 0;
668 }
669 nr_shown = 0;
670 }
671 if (nr_shown++ == 0)
672 resume = jiffies + 60 * HZ;
673
674 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
675 index = linear_page_index(vma, addr);
676
677 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
678 current->comm,
679 (long long)pte_val(pte), (long long)pmd_val(*pmd));
680 if (page)
681 dump_page(page, "bad pte");
682 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
683 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
684 /*
685 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686 */
687 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
688 vma->vm_file,
689 vma->vm_ops ? vma->vm_ops->fault : NULL,
690 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
691 mapping ? mapping->a_ops->readpage : NULL);
692 dump_stack();
693 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
694 }
695
696 /*
697 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 *
699 * "Special" mappings do not wish to be associated with a "struct page" (either
700 * it doesn't exist, or it exists but they don't want to touch it). In this
701 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 *
703 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704 * pte bit, in which case this function is trivial. Secondly, an architecture
705 * may not have a spare pte bit, which requires a more complicated scheme,
706 * described below.
707 *
708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709 * special mapping (even if there are underlying and valid "struct pages").
710 * COWed pages of a VM_PFNMAP are always normal.
711 *
712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715 * mapping will always honor the rule
716 *
717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 *
719 * And for normal mappings this is false.
720 *
721 * This restricts such mappings to be a linear translation from virtual address
722 * to pfn. To get around this restriction, we allow arbitrary mappings so long
723 * as the vma is not a COW mapping; in that case, we know that all ptes are
724 * special (because none can have been COWed).
725 *
726 *
727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 *
729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730 * page" backing, however the difference is that _all_ pages with a struct
731 * page (that is, those where pfn_valid is true) are refcounted and considered
732 * normal pages by the VM. The disadvantage is that pages are refcounted
733 * (which can be slower and simply not an option for some PFNMAP users). The
734 * advantage is that we don't have to follow the strict linearity rule of
735 * PFNMAP mappings in order to support COWable mappings.
736 *
737 */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 pte_t pte)
745 {
746 unsigned long pfn = pte_pfn(pte);
747
748 if (HAVE_PTE_SPECIAL) {
749 if (likely(!pte_special(pte)))
750 goto check_pfn;
751 if (vma->vm_ops && vma->vm_ops->find_special_page)
752 return vma->vm_ops->find_special_page(vma, addr);
753 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
754 return NULL;
755 if (!is_zero_pfn(pfn))
756 print_bad_pte(vma, addr, pte, NULL);
757 return NULL;
758 }
759
760 /* !HAVE_PTE_SPECIAL case follows: */
761
762 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
763 if (vma->vm_flags & VM_MIXEDMAP) {
764 if (!pfn_valid(pfn))
765 return NULL;
766 goto out;
767 } else {
768 unsigned long off;
769 off = (addr - vma->vm_start) >> PAGE_SHIFT;
770 if (pfn == vma->vm_pgoff + off)
771 return NULL;
772 if (!is_cow_mapping(vma->vm_flags))
773 return NULL;
774 }
775 }
776
777 if (is_zero_pfn(pfn))
778 return NULL;
779 check_pfn:
780 if (unlikely(pfn > highest_memmap_pfn)) {
781 print_bad_pte(vma, addr, pte, NULL);
782 return NULL;
783 }
784
785 /*
786 * NOTE! We still have PageReserved() pages in the page tables.
787 * eg. VDSO mappings can cause them to exist.
788 */
789 out:
790 return pfn_to_page(pfn);
791 }
792
793 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
794 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
795 pmd_t pmd)
796 {
797 unsigned long pfn = pmd_pfn(pmd);
798
799 /*
800 * There is no pmd_special() but there may be special pmds, e.g.
801 * in a direct-access (dax) mapping, so let's just replicate the
802 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803 */
804 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
805 if (vma->vm_flags & VM_MIXEDMAP) {
806 if (!pfn_valid(pfn))
807 return NULL;
808 goto out;
809 } else {
810 unsigned long off;
811 off = (addr - vma->vm_start) >> PAGE_SHIFT;
812 if (pfn == vma->vm_pgoff + off)
813 return NULL;
814 if (!is_cow_mapping(vma->vm_flags))
815 return NULL;
816 }
817 }
818
819 if (is_zero_pfn(pfn))
820 return NULL;
821 if (unlikely(pfn > highest_memmap_pfn))
822 return NULL;
823
824 /*
825 * NOTE! We still have PageReserved() pages in the page tables.
826 * eg. VDSO mappings can cause them to exist.
827 */
828 out:
829 return pfn_to_page(pfn);
830 }
831 #endif
832
833 /*
834 * copy one vm_area from one task to the other. Assumes the page tables
835 * already present in the new task to be cleared in the whole range
836 * covered by this vma.
837 */
838
839 static inline unsigned long
840 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
841 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
842 unsigned long addr, int *rss)
843 {
844 unsigned long vm_flags = vma->vm_flags;
845 pte_t pte = *src_pte;
846 struct page *page;
847
848 /* pte contains position in swap or file, so copy. */
849 if (unlikely(!pte_present(pte))) {
850 swp_entry_t entry = pte_to_swp_entry(pte);
851
852 if (likely(!non_swap_entry(entry))) {
853 if (swap_duplicate(entry) < 0)
854 return entry.val;
855
856 /* make sure dst_mm is on swapoff's mmlist. */
857 if (unlikely(list_empty(&dst_mm->mmlist))) {
858 spin_lock(&mmlist_lock);
859 if (list_empty(&dst_mm->mmlist))
860 list_add(&dst_mm->mmlist,
861 &src_mm->mmlist);
862 spin_unlock(&mmlist_lock);
863 }
864 rss[MM_SWAPENTS]++;
865 } else if (is_migration_entry(entry)) {
866 page = migration_entry_to_page(entry);
867
868 rss[mm_counter(page)]++;
869
870 if (is_write_migration_entry(entry) &&
871 is_cow_mapping(vm_flags)) {
872 /*
873 * COW mappings require pages in both
874 * parent and child to be set to read.
875 */
876 make_migration_entry_read(&entry);
877 pte = swp_entry_to_pte(entry);
878 if (pte_swp_soft_dirty(*src_pte))
879 pte = pte_swp_mksoft_dirty(pte);
880 set_pte_at(src_mm, addr, src_pte, pte);
881 }
882 }
883 goto out_set_pte;
884 }
885
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
890 if (is_cow_mapping(vm_flags)) {
891 ptep_set_wrprotect(src_mm, addr, src_pte);
892 pte = pte_wrprotect(pte);
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
902
903 page = vm_normal_page(vma, addr, pte);
904 if (page) {
905 get_page(page);
906 page_dup_rmap(page, false);
907 rss[mm_counter(page)]++;
908 }
909
910 out_set_pte:
911 set_pte_at(dst_mm, addr, dst_pte, pte);
912 return 0;
913 }
914
915 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
917 unsigned long addr, unsigned long end)
918 {
919 pte_t *orig_src_pte, *orig_dst_pte;
920 pte_t *src_pte, *dst_pte;
921 spinlock_t *src_ptl, *dst_ptl;
922 int progress = 0;
923 int rss[NR_MM_COUNTERS];
924 swp_entry_t entry = (swp_entry_t){0};
925
926 again:
927 init_rss_vec(rss);
928
929 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
930 if (!dst_pte)
931 return -ENOMEM;
932 src_pte = pte_offset_map(src_pmd, addr);
933 src_ptl = pte_lockptr(src_mm, src_pmd);
934 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
935 orig_src_pte = src_pte;
936 orig_dst_pte = dst_pte;
937 arch_enter_lazy_mmu_mode();
938
939 do {
940 /*
941 * We are holding two locks at this point - either of them
942 * could generate latencies in another task on another CPU.
943 */
944 if (progress >= 32) {
945 progress = 0;
946 if (need_resched() ||
947 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
948 break;
949 }
950 if (pte_none(*src_pte)) {
951 progress++;
952 continue;
953 }
954 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
955 vma, addr, rss);
956 if (entry.val)
957 break;
958 progress += 8;
959 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960
961 arch_leave_lazy_mmu_mode();
962 spin_unlock(src_ptl);
963 pte_unmap(orig_src_pte);
964 add_mm_rss_vec(dst_mm, rss);
965 pte_unmap_unlock(orig_dst_pte, dst_ptl);
966 cond_resched();
967
968 if (entry.val) {
969 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
970 return -ENOMEM;
971 progress = 0;
972 }
973 if (addr != end)
974 goto again;
975 return 0;
976 }
977
978 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
981 {
982 pmd_t *src_pmd, *dst_pmd;
983 unsigned long next;
984
985 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
986 if (!dst_pmd)
987 return -ENOMEM;
988 src_pmd = pmd_offset(src_pud, addr);
989 do {
990 next = pmd_addr_end(addr, end);
991 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
992 int err;
993 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
994 err = copy_huge_pmd(dst_mm, src_mm,
995 dst_pmd, src_pmd, addr, vma);
996 if (err == -ENOMEM)
997 return -ENOMEM;
998 if (!err)
999 continue;
1000 /* fall through */
1001 }
1002 if (pmd_none_or_clear_bad(src_pmd))
1003 continue;
1004 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1005 vma, addr, next))
1006 return -ENOMEM;
1007 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1008 return 0;
1009 }
1010
1011 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1012 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1013 unsigned long addr, unsigned long end)
1014 {
1015 pud_t *src_pud, *dst_pud;
1016 unsigned long next;
1017
1018 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1019 if (!dst_pud)
1020 return -ENOMEM;
1021 src_pud = pud_offset(src_pgd, addr);
1022 do {
1023 next = pud_addr_end(addr, end);
1024 if (pud_none_or_clear_bad(src_pud))
1025 continue;
1026 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1027 vma, addr, next))
1028 return -ENOMEM;
1029 } while (dst_pud++, src_pud++, addr = next, addr != end);
1030 return 0;
1031 }
1032
1033 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 struct vm_area_struct *vma)
1035 {
1036 pgd_t *src_pgd, *dst_pgd;
1037 unsigned long next;
1038 unsigned long addr = vma->vm_start;
1039 unsigned long end = vma->vm_end;
1040 unsigned long mmun_start; /* For mmu_notifiers */
1041 unsigned long mmun_end; /* For mmu_notifiers */
1042 bool is_cow;
1043 int ret;
1044
1045 /*
1046 * Don't copy ptes where a page fault will fill them correctly.
1047 * Fork becomes much lighter when there are big shared or private
1048 * readonly mappings. The tradeoff is that copy_page_range is more
1049 * efficient than faulting.
1050 */
1051 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1052 !vma->anon_vma)
1053 return 0;
1054
1055 if (is_vm_hugetlb_page(vma))
1056 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057
1058 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1059 /*
1060 * We do not free on error cases below as remove_vma
1061 * gets called on error from higher level routine
1062 */
1063 ret = track_pfn_copy(vma);
1064 if (ret)
1065 return ret;
1066 }
1067
1068 /*
1069 * We need to invalidate the secondary MMU mappings only when
1070 * there could be a permission downgrade on the ptes of the
1071 * parent mm. And a permission downgrade will only happen if
1072 * is_cow_mapping() returns true.
1073 */
1074 is_cow = is_cow_mapping(vma->vm_flags);
1075 mmun_start = addr;
1076 mmun_end = end;
1077 if (is_cow)
1078 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1079 mmun_end);
1080
1081 ret = 0;
1082 dst_pgd = pgd_offset(dst_mm, addr);
1083 src_pgd = pgd_offset(src_mm, addr);
1084 do {
1085 next = pgd_addr_end(addr, end);
1086 if (pgd_none_or_clear_bad(src_pgd))
1087 continue;
1088 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1089 vma, addr, next))) {
1090 ret = -ENOMEM;
1091 break;
1092 }
1093 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1094
1095 if (is_cow)
1096 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1097 return ret;
1098 }
1099
1100 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1101 struct vm_area_struct *vma, pmd_t *pmd,
1102 unsigned long addr, unsigned long end,
1103 struct zap_details *details)
1104 {
1105 struct mm_struct *mm = tlb->mm;
1106 int force_flush = 0;
1107 int rss[NR_MM_COUNTERS];
1108 spinlock_t *ptl;
1109 pte_t *start_pte;
1110 pte_t *pte;
1111 swp_entry_t entry;
1112
1113 again:
1114 init_rss_vec(rss);
1115 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116 pte = start_pte;
1117 arch_enter_lazy_mmu_mode();
1118 do {
1119 pte_t ptent = *pte;
1120 if (pte_none(ptent)) {
1121 continue;
1122 }
1123
1124 if (pte_present(ptent)) {
1125 struct page *page;
1126
1127 page = vm_normal_page(vma, addr, ptent);
1128 if (unlikely(details) && page) {
1129 /*
1130 * unmap_shared_mapping_pages() wants to
1131 * invalidate cache without truncating:
1132 * unmap shared but keep private pages.
1133 */
1134 if (details->check_mapping &&
1135 details->check_mapping != page->mapping)
1136 continue;
1137 }
1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 tlb->fullmm);
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143
1144 if (!PageAnon(page)) {
1145 if (pte_dirty(ptent)) {
1146 /*
1147 * oom_reaper cannot tear down dirty
1148 * pages
1149 */
1150 if (unlikely(details && details->ignore_dirty))
1151 continue;
1152 force_flush = 1;
1153 set_page_dirty(page);
1154 }
1155 if (pte_young(ptent) &&
1156 likely(!(vma->vm_flags & VM_SEQ_READ)))
1157 mark_page_accessed(page);
1158 }
1159 rss[mm_counter(page)]--;
1160 page_remove_rmap(page, false);
1161 if (unlikely(page_mapcount(page) < 0))
1162 print_bad_pte(vma, addr, ptent, page);
1163 if (unlikely(!__tlb_remove_page(tlb, page))) {
1164 force_flush = 1;
1165 addr += PAGE_SIZE;
1166 break;
1167 }
1168 continue;
1169 }
1170 /* only check swap_entries if explicitly asked for in details */
1171 if (unlikely(details && !details->check_swap_entries))
1172 continue;
1173
1174 entry = pte_to_swp_entry(ptent);
1175 if (!non_swap_entry(entry))
1176 rss[MM_SWAPENTS]--;
1177 else if (is_migration_entry(entry)) {
1178 struct page *page;
1179
1180 page = migration_entry_to_page(entry);
1181 rss[mm_counter(page)]--;
1182 }
1183 if (unlikely(!free_swap_and_cache(entry)))
1184 print_bad_pte(vma, addr, ptent, NULL);
1185 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1186 } while (pte++, addr += PAGE_SIZE, addr != end);
1187
1188 add_mm_rss_vec(mm, rss);
1189 arch_leave_lazy_mmu_mode();
1190
1191 /* Do the actual TLB flush before dropping ptl */
1192 if (force_flush)
1193 tlb_flush_mmu_tlbonly(tlb);
1194 pte_unmap_unlock(start_pte, ptl);
1195
1196 /*
1197 * If we forced a TLB flush (either due to running out of
1198 * batch buffers or because we needed to flush dirty TLB
1199 * entries before releasing the ptl), free the batched
1200 * memory too. Restart if we didn't do everything.
1201 */
1202 if (force_flush) {
1203 force_flush = 0;
1204 tlb_flush_mmu_free(tlb);
1205
1206 if (addr != end)
1207 goto again;
1208 }
1209
1210 return addr;
1211 }
1212
1213 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1214 struct vm_area_struct *vma, pud_t *pud,
1215 unsigned long addr, unsigned long end,
1216 struct zap_details *details)
1217 {
1218 pmd_t *pmd;
1219 unsigned long next;
1220
1221 pmd = pmd_offset(pud, addr);
1222 do {
1223 next = pmd_addr_end(addr, end);
1224 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1225 if (next - addr != HPAGE_PMD_SIZE) {
1226 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1227 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1228 split_huge_pmd(vma, pmd, addr);
1229 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1230 goto next;
1231 /* fall through */
1232 }
1233 /*
1234 * Here there can be other concurrent MADV_DONTNEED or
1235 * trans huge page faults running, and if the pmd is
1236 * none or trans huge it can change under us. This is
1237 * because MADV_DONTNEED holds the mmap_sem in read
1238 * mode.
1239 */
1240 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241 goto next;
1242 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1243 next:
1244 cond_resched();
1245 } while (pmd++, addr = next, addr != end);
1246
1247 return addr;
1248 }
1249
1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1251 struct vm_area_struct *vma, pgd_t *pgd,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1254 {
1255 pud_t *pud;
1256 unsigned long next;
1257
1258 pud = pud_offset(pgd, addr);
1259 do {
1260 next = pud_addr_end(addr, end);
1261 if (pud_none_or_clear_bad(pud))
1262 continue;
1263 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264 } while (pud++, addr = next, addr != end);
1265
1266 return addr;
1267 }
1268
1269 void unmap_page_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1273 {
1274 pgd_t *pgd;
1275 unsigned long next;
1276
1277 BUG_ON(addr >= end);
1278 tlb_start_vma(tlb, vma);
1279 pgd = pgd_offset(vma->vm_mm, addr);
1280 do {
1281 next = pgd_addr_end(addr, end);
1282 if (pgd_none_or_clear_bad(pgd))
1283 continue;
1284 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1285 } while (pgd++, addr = next, addr != end);
1286 tlb_end_vma(tlb, vma);
1287 }
1288
1289
1290 static void unmap_single_vma(struct mmu_gather *tlb,
1291 struct vm_area_struct *vma, unsigned long start_addr,
1292 unsigned long end_addr,
1293 struct zap_details *details)
1294 {
1295 unsigned long start = max(vma->vm_start, start_addr);
1296 unsigned long end;
1297
1298 if (start >= vma->vm_end)
1299 return;
1300 end = min(vma->vm_end, end_addr);
1301 if (end <= vma->vm_start)
1302 return;
1303
1304 if (vma->vm_file)
1305 uprobe_munmap(vma, start, end);
1306
1307 if (unlikely(vma->vm_flags & VM_PFNMAP))
1308 untrack_pfn(vma, 0, 0);
1309
1310 if (start != end) {
1311 if (unlikely(is_vm_hugetlb_page(vma))) {
1312 /*
1313 * It is undesirable to test vma->vm_file as it
1314 * should be non-null for valid hugetlb area.
1315 * However, vm_file will be NULL in the error
1316 * cleanup path of mmap_region. When
1317 * hugetlbfs ->mmap method fails,
1318 * mmap_region() nullifies vma->vm_file
1319 * before calling this function to clean up.
1320 * Since no pte has actually been setup, it is
1321 * safe to do nothing in this case.
1322 */
1323 if (vma->vm_file) {
1324 i_mmap_lock_write(vma->vm_file->f_mapping);
1325 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1326 i_mmap_unlock_write(vma->vm_file->f_mapping);
1327 }
1328 } else
1329 unmap_page_range(tlb, vma, start, end, details);
1330 }
1331 }
1332
1333 /**
1334 * unmap_vmas - unmap a range of memory covered by a list of vma's
1335 * @tlb: address of the caller's struct mmu_gather
1336 * @vma: the starting vma
1337 * @start_addr: virtual address at which to start unmapping
1338 * @end_addr: virtual address at which to end unmapping
1339 *
1340 * Unmap all pages in the vma list.
1341 *
1342 * Only addresses between `start' and `end' will be unmapped.
1343 *
1344 * The VMA list must be sorted in ascending virtual address order.
1345 *
1346 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1347 * range after unmap_vmas() returns. So the only responsibility here is to
1348 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1349 * drops the lock and schedules.
1350 */
1351 void unmap_vmas(struct mmu_gather *tlb,
1352 struct vm_area_struct *vma, unsigned long start_addr,
1353 unsigned long end_addr)
1354 {
1355 struct mm_struct *mm = vma->vm_mm;
1356
1357 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1358 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1359 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1360 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1361 }
1362
1363 /**
1364 * zap_page_range - remove user pages in a given range
1365 * @vma: vm_area_struct holding the applicable pages
1366 * @start: starting address of pages to zap
1367 * @size: number of bytes to zap
1368 * @details: details of shared cache invalidation
1369 *
1370 * Caller must protect the VMA list
1371 */
1372 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1373 unsigned long size, struct zap_details *details)
1374 {
1375 struct mm_struct *mm = vma->vm_mm;
1376 struct mmu_gather tlb;
1377 unsigned long end = start + size;
1378
1379 lru_add_drain();
1380 tlb_gather_mmu(&tlb, mm, start, end);
1381 update_hiwater_rss(mm);
1382 mmu_notifier_invalidate_range_start(mm, start, end);
1383 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1384 unmap_single_vma(&tlb, vma, start, end, details);
1385 mmu_notifier_invalidate_range_end(mm, start, end);
1386 tlb_finish_mmu(&tlb, start, end);
1387 }
1388
1389 /**
1390 * zap_page_range_single - remove user pages in a given range
1391 * @vma: vm_area_struct holding the applicable pages
1392 * @address: starting address of pages to zap
1393 * @size: number of bytes to zap
1394 * @details: details of shared cache invalidation
1395 *
1396 * The range must fit into one VMA.
1397 */
1398 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1399 unsigned long size, struct zap_details *details)
1400 {
1401 struct mm_struct *mm = vma->vm_mm;
1402 struct mmu_gather tlb;
1403 unsigned long end = address + size;
1404
1405 lru_add_drain();
1406 tlb_gather_mmu(&tlb, mm, address, end);
1407 update_hiwater_rss(mm);
1408 mmu_notifier_invalidate_range_start(mm, address, end);
1409 unmap_single_vma(&tlb, vma, address, end, details);
1410 mmu_notifier_invalidate_range_end(mm, address, end);
1411 tlb_finish_mmu(&tlb, address, end);
1412 }
1413
1414 /**
1415 * zap_vma_ptes - remove ptes mapping the vma
1416 * @vma: vm_area_struct holding ptes to be zapped
1417 * @address: starting address of pages to zap
1418 * @size: number of bytes to zap
1419 *
1420 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1421 *
1422 * The entire address range must be fully contained within the vma.
1423 *
1424 * Returns 0 if successful.
1425 */
1426 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1427 unsigned long size)
1428 {
1429 if (address < vma->vm_start || address + size > vma->vm_end ||
1430 !(vma->vm_flags & VM_PFNMAP))
1431 return -1;
1432 zap_page_range_single(vma, address, size, NULL);
1433 return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1436
1437 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1438 spinlock_t **ptl)
1439 {
1440 pgd_t * pgd = pgd_offset(mm, addr);
1441 pud_t * pud = pud_alloc(mm, pgd, addr);
1442 if (pud) {
1443 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1444 if (pmd) {
1445 VM_BUG_ON(pmd_trans_huge(*pmd));
1446 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1447 }
1448 }
1449 return NULL;
1450 }
1451
1452 /*
1453 * This is the old fallback for page remapping.
1454 *
1455 * For historical reasons, it only allows reserved pages. Only
1456 * old drivers should use this, and they needed to mark their
1457 * pages reserved for the old functions anyway.
1458 */
1459 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1460 struct page *page, pgprot_t prot)
1461 {
1462 struct mm_struct *mm = vma->vm_mm;
1463 int retval;
1464 pte_t *pte;
1465 spinlock_t *ptl;
1466
1467 retval = -EINVAL;
1468 if (PageAnon(page))
1469 goto out;
1470 retval = -ENOMEM;
1471 flush_dcache_page(page);
1472 pte = get_locked_pte(mm, addr, &ptl);
1473 if (!pte)
1474 goto out;
1475 retval = -EBUSY;
1476 if (!pte_none(*pte))
1477 goto out_unlock;
1478
1479 /* Ok, finally just insert the thing.. */
1480 get_page(page);
1481 inc_mm_counter_fast(mm, mm_counter_file(page));
1482 page_add_file_rmap(page);
1483 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1484
1485 retval = 0;
1486 pte_unmap_unlock(pte, ptl);
1487 return retval;
1488 out_unlock:
1489 pte_unmap_unlock(pte, ptl);
1490 out:
1491 return retval;
1492 }
1493
1494 /**
1495 * vm_insert_page - insert single page into user vma
1496 * @vma: user vma to map to
1497 * @addr: target user address of this page
1498 * @page: source kernel page
1499 *
1500 * This allows drivers to insert individual pages they've allocated
1501 * into a user vma.
1502 *
1503 * The page has to be a nice clean _individual_ kernel allocation.
1504 * If you allocate a compound page, you need to have marked it as
1505 * such (__GFP_COMP), or manually just split the page up yourself
1506 * (see split_page()).
1507 *
1508 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1509 * took an arbitrary page protection parameter. This doesn't allow
1510 * that. Your vma protection will have to be set up correctly, which
1511 * means that if you want a shared writable mapping, you'd better
1512 * ask for a shared writable mapping!
1513 *
1514 * The page does not need to be reserved.
1515 *
1516 * Usually this function is called from f_op->mmap() handler
1517 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1518 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1519 * function from other places, for example from page-fault handler.
1520 */
1521 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1522 struct page *page)
1523 {
1524 if (addr < vma->vm_start || addr >= vma->vm_end)
1525 return -EFAULT;
1526 if (!page_count(page))
1527 return -EINVAL;
1528 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1529 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1530 BUG_ON(vma->vm_flags & VM_PFNMAP);
1531 vma->vm_flags |= VM_MIXEDMAP;
1532 }
1533 return insert_page(vma, addr, page, vma->vm_page_prot);
1534 }
1535 EXPORT_SYMBOL(vm_insert_page);
1536
1537 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1538 pfn_t pfn, pgprot_t prot)
1539 {
1540 struct mm_struct *mm = vma->vm_mm;
1541 int retval;
1542 pte_t *pte, entry;
1543 spinlock_t *ptl;
1544
1545 retval = -ENOMEM;
1546 pte = get_locked_pte(mm, addr, &ptl);
1547 if (!pte)
1548 goto out;
1549 retval = -EBUSY;
1550 if (!pte_none(*pte))
1551 goto out_unlock;
1552
1553 /* Ok, finally just insert the thing.. */
1554 if (pfn_t_devmap(pfn))
1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1556 else
1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1558 set_pte_at(mm, addr, pte, entry);
1559 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1560
1561 retval = 0;
1562 out_unlock:
1563 pte_unmap_unlock(pte, ptl);
1564 out:
1565 return retval;
1566 }
1567
1568 /**
1569 * vm_insert_pfn - insert single pfn into user vma
1570 * @vma: user vma to map to
1571 * @addr: target user address of this page
1572 * @pfn: source kernel pfn
1573 *
1574 * Similar to vm_insert_page, this allows drivers to insert individual pages
1575 * they've allocated into a user vma. Same comments apply.
1576 *
1577 * This function should only be called from a vm_ops->fault handler, and
1578 * in that case the handler should return NULL.
1579 *
1580 * vma cannot be a COW mapping.
1581 *
1582 * As this is called only for pages that do not currently exist, we
1583 * do not need to flush old virtual caches or the TLB.
1584 */
1585 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1586 unsigned long pfn)
1587 {
1588 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1589 }
1590 EXPORT_SYMBOL(vm_insert_pfn);
1591
1592 /**
1593 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1594 * @vma: user vma to map to
1595 * @addr: target user address of this page
1596 * @pfn: source kernel pfn
1597 * @pgprot: pgprot flags for the inserted page
1598 *
1599 * This is exactly like vm_insert_pfn, except that it allows drivers to
1600 * to override pgprot on a per-page basis.
1601 *
1602 * This only makes sense for IO mappings, and it makes no sense for
1603 * cow mappings. In general, using multiple vmas is preferable;
1604 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1605 * impractical.
1606 */
1607 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1608 unsigned long pfn, pgprot_t pgprot)
1609 {
1610 int ret;
1611 /*
1612 * Technically, architectures with pte_special can avoid all these
1613 * restrictions (same for remap_pfn_range). However we would like
1614 * consistency in testing and feature parity among all, so we should
1615 * try to keep these invariants in place for everybody.
1616 */
1617 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1618 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1619 (VM_PFNMAP|VM_MIXEDMAP));
1620 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1621 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1622
1623 if (addr < vma->vm_start || addr >= vma->vm_end)
1624 return -EFAULT;
1625 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1626 return -EINVAL;
1627
1628 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1629
1630 return ret;
1631 }
1632 EXPORT_SYMBOL(vm_insert_pfn_prot);
1633
1634 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1635 pfn_t pfn)
1636 {
1637 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1638
1639 if (addr < vma->vm_start || addr >= vma->vm_end)
1640 return -EFAULT;
1641
1642 /*
1643 * If we don't have pte special, then we have to use the pfn_valid()
1644 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1645 * refcount the page if pfn_valid is true (hence insert_page rather
1646 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1647 * without pte special, it would there be refcounted as a normal page.
1648 */
1649 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1650 struct page *page;
1651
1652 /*
1653 * At this point we are committed to insert_page()
1654 * regardless of whether the caller specified flags that
1655 * result in pfn_t_has_page() == false.
1656 */
1657 page = pfn_to_page(pfn_t_to_pfn(pfn));
1658 return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1661 }
1662 EXPORT_SYMBOL(vm_insert_mixed);
1663
1664 /*
1665 * maps a range of physical memory into the requested pages. the old
1666 * mappings are removed. any references to nonexistent pages results
1667 * in null mappings (currently treated as "copy-on-access")
1668 */
1669 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1670 unsigned long addr, unsigned long end,
1671 unsigned long pfn, pgprot_t prot)
1672 {
1673 pte_t *pte;
1674 spinlock_t *ptl;
1675
1676 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1677 if (!pte)
1678 return -ENOMEM;
1679 arch_enter_lazy_mmu_mode();
1680 do {
1681 BUG_ON(!pte_none(*pte));
1682 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1683 pfn++;
1684 } while (pte++, addr += PAGE_SIZE, addr != end);
1685 arch_leave_lazy_mmu_mode();
1686 pte_unmap_unlock(pte - 1, ptl);
1687 return 0;
1688 }
1689
1690 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1691 unsigned long addr, unsigned long end,
1692 unsigned long pfn, pgprot_t prot)
1693 {
1694 pmd_t *pmd;
1695 unsigned long next;
1696
1697 pfn -= addr >> PAGE_SHIFT;
1698 pmd = pmd_alloc(mm, pud, addr);
1699 if (!pmd)
1700 return -ENOMEM;
1701 VM_BUG_ON(pmd_trans_huge(*pmd));
1702 do {
1703 next = pmd_addr_end(addr, end);
1704 if (remap_pte_range(mm, pmd, addr, next,
1705 pfn + (addr >> PAGE_SHIFT), prot))
1706 return -ENOMEM;
1707 } while (pmd++, addr = next, addr != end);
1708 return 0;
1709 }
1710
1711 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1712 unsigned long addr, unsigned long end,
1713 unsigned long pfn, pgprot_t prot)
1714 {
1715 pud_t *pud;
1716 unsigned long next;
1717
1718 pfn -= addr >> PAGE_SHIFT;
1719 pud = pud_alloc(mm, pgd, addr);
1720 if (!pud)
1721 return -ENOMEM;
1722 do {
1723 next = pud_addr_end(addr, end);
1724 if (remap_pmd_range(mm, pud, addr, next,
1725 pfn + (addr >> PAGE_SHIFT), prot))
1726 return -ENOMEM;
1727 } while (pud++, addr = next, addr != end);
1728 return 0;
1729 }
1730
1731 /**
1732 * remap_pfn_range - remap kernel memory to userspace
1733 * @vma: user vma to map to
1734 * @addr: target user address to start at
1735 * @pfn: physical address of kernel memory
1736 * @size: size of map area
1737 * @prot: page protection flags for this mapping
1738 *
1739 * Note: this is only safe if the mm semaphore is held when called.
1740 */
1741 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1742 unsigned long pfn, unsigned long size, pgprot_t prot)
1743 {
1744 pgd_t *pgd;
1745 unsigned long next;
1746 unsigned long end = addr + PAGE_ALIGN(size);
1747 struct mm_struct *mm = vma->vm_mm;
1748 unsigned long remap_pfn = pfn;
1749 int err;
1750
1751 /*
1752 * Physically remapped pages are special. Tell the
1753 * rest of the world about it:
1754 * VM_IO tells people not to look at these pages
1755 * (accesses can have side effects).
1756 * VM_PFNMAP tells the core MM that the base pages are just
1757 * raw PFN mappings, and do not have a "struct page" associated
1758 * with them.
1759 * VM_DONTEXPAND
1760 * Disable vma merging and expanding with mremap().
1761 * VM_DONTDUMP
1762 * Omit vma from core dump, even when VM_IO turned off.
1763 *
1764 * There's a horrible special case to handle copy-on-write
1765 * behaviour that some programs depend on. We mark the "original"
1766 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1767 * See vm_normal_page() for details.
1768 */
1769 if (is_cow_mapping(vma->vm_flags)) {
1770 if (addr != vma->vm_start || end != vma->vm_end)
1771 return -EINVAL;
1772 vma->vm_pgoff = pfn;
1773 }
1774
1775 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1776 if (err)
1777 return -EINVAL;
1778
1779 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1780
1781 BUG_ON(addr >= end);
1782 pfn -= addr >> PAGE_SHIFT;
1783 pgd = pgd_offset(mm, addr);
1784 flush_cache_range(vma, addr, end);
1785 do {
1786 next = pgd_addr_end(addr, end);
1787 err = remap_pud_range(mm, pgd, addr, next,
1788 pfn + (addr >> PAGE_SHIFT), prot);
1789 if (err)
1790 break;
1791 } while (pgd++, addr = next, addr != end);
1792
1793 if (err)
1794 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1795
1796 return err;
1797 }
1798 EXPORT_SYMBOL(remap_pfn_range);
1799
1800 /**
1801 * vm_iomap_memory - remap memory to userspace
1802 * @vma: user vma to map to
1803 * @start: start of area
1804 * @len: size of area
1805 *
1806 * This is a simplified io_remap_pfn_range() for common driver use. The
1807 * driver just needs to give us the physical memory range to be mapped,
1808 * we'll figure out the rest from the vma information.
1809 *
1810 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1811 * whatever write-combining details or similar.
1812 */
1813 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1814 {
1815 unsigned long vm_len, pfn, pages;
1816
1817 /* Check that the physical memory area passed in looks valid */
1818 if (start + len < start)
1819 return -EINVAL;
1820 /*
1821 * You *really* shouldn't map things that aren't page-aligned,
1822 * but we've historically allowed it because IO memory might
1823 * just have smaller alignment.
1824 */
1825 len += start & ~PAGE_MASK;
1826 pfn = start >> PAGE_SHIFT;
1827 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1828 if (pfn + pages < pfn)
1829 return -EINVAL;
1830
1831 /* We start the mapping 'vm_pgoff' pages into the area */
1832 if (vma->vm_pgoff > pages)
1833 return -EINVAL;
1834 pfn += vma->vm_pgoff;
1835 pages -= vma->vm_pgoff;
1836
1837 /* Can we fit all of the mapping? */
1838 vm_len = vma->vm_end - vma->vm_start;
1839 if (vm_len >> PAGE_SHIFT > pages)
1840 return -EINVAL;
1841
1842 /* Ok, let it rip */
1843 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1844 }
1845 EXPORT_SYMBOL(vm_iomap_memory);
1846
1847 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1848 unsigned long addr, unsigned long end,
1849 pte_fn_t fn, void *data)
1850 {
1851 pte_t *pte;
1852 int err;
1853 pgtable_t token;
1854 spinlock_t *uninitialized_var(ptl);
1855
1856 pte = (mm == &init_mm) ?
1857 pte_alloc_kernel(pmd, addr) :
1858 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1859 if (!pte)
1860 return -ENOMEM;
1861
1862 BUG_ON(pmd_huge(*pmd));
1863
1864 arch_enter_lazy_mmu_mode();
1865
1866 token = pmd_pgtable(*pmd);
1867
1868 do {
1869 err = fn(pte++, token, addr, data);
1870 if (err)
1871 break;
1872 } while (addr += PAGE_SIZE, addr != end);
1873
1874 arch_leave_lazy_mmu_mode();
1875
1876 if (mm != &init_mm)
1877 pte_unmap_unlock(pte-1, ptl);
1878 return err;
1879 }
1880
1881 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1882 unsigned long addr, unsigned long end,
1883 pte_fn_t fn, void *data)
1884 {
1885 pmd_t *pmd;
1886 unsigned long next;
1887 int err;
1888
1889 BUG_ON(pud_huge(*pud));
1890
1891 pmd = pmd_alloc(mm, pud, addr);
1892 if (!pmd)
1893 return -ENOMEM;
1894 do {
1895 next = pmd_addr_end(addr, end);
1896 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1897 if (err)
1898 break;
1899 } while (pmd++, addr = next, addr != end);
1900 return err;
1901 }
1902
1903 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1904 unsigned long addr, unsigned long end,
1905 pte_fn_t fn, void *data)
1906 {
1907 pud_t *pud;
1908 unsigned long next;
1909 int err;
1910
1911 pud = pud_alloc(mm, pgd, addr);
1912 if (!pud)
1913 return -ENOMEM;
1914 do {
1915 next = pud_addr_end(addr, end);
1916 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1917 if (err)
1918 break;
1919 } while (pud++, addr = next, addr != end);
1920 return err;
1921 }
1922
1923 /*
1924 * Scan a region of virtual memory, filling in page tables as necessary
1925 * and calling a provided function on each leaf page table.
1926 */
1927 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1928 unsigned long size, pte_fn_t fn, void *data)
1929 {
1930 pgd_t *pgd;
1931 unsigned long next;
1932 unsigned long end = addr + size;
1933 int err;
1934
1935 if (WARN_ON(addr >= end))
1936 return -EINVAL;
1937
1938 pgd = pgd_offset(mm, addr);
1939 do {
1940 next = pgd_addr_end(addr, end);
1941 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1942 if (err)
1943 break;
1944 } while (pgd++, addr = next, addr != end);
1945
1946 return err;
1947 }
1948 EXPORT_SYMBOL_GPL(apply_to_page_range);
1949
1950 /*
1951 * handle_pte_fault chooses page fault handler according to an entry which was
1952 * read non-atomically. Before making any commitment, on those architectures
1953 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1954 * parts, do_swap_page must check under lock before unmapping the pte and
1955 * proceeding (but do_wp_page is only called after already making such a check;
1956 * and do_anonymous_page can safely check later on).
1957 */
1958 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1959 pte_t *page_table, pte_t orig_pte)
1960 {
1961 int same = 1;
1962 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1963 if (sizeof(pte_t) > sizeof(unsigned long)) {
1964 spinlock_t *ptl = pte_lockptr(mm, pmd);
1965 spin_lock(ptl);
1966 same = pte_same(*page_table, orig_pte);
1967 spin_unlock(ptl);
1968 }
1969 #endif
1970 pte_unmap(page_table);
1971 return same;
1972 }
1973
1974 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1975 {
1976 debug_dma_assert_idle(src);
1977
1978 /*
1979 * If the source page was a PFN mapping, we don't have
1980 * a "struct page" for it. We do a best-effort copy by
1981 * just copying from the original user address. If that
1982 * fails, we just zero-fill it. Live with it.
1983 */
1984 if (unlikely(!src)) {
1985 void *kaddr = kmap_atomic(dst);
1986 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1987
1988 /*
1989 * This really shouldn't fail, because the page is there
1990 * in the page tables. But it might just be unreadable,
1991 * in which case we just give up and fill the result with
1992 * zeroes.
1993 */
1994 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1995 clear_page(kaddr);
1996 kunmap_atomic(kaddr);
1997 flush_dcache_page(dst);
1998 } else
1999 copy_user_highpage(dst, src, va, vma);
2000 }
2001
2002 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2003 {
2004 struct file *vm_file = vma->vm_file;
2005
2006 if (vm_file)
2007 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2008
2009 /*
2010 * Special mappings (e.g. VDSO) do not have any file so fake
2011 * a default GFP_KERNEL for them.
2012 */
2013 return GFP_KERNEL;
2014 }
2015
2016 /*
2017 * Notify the address space that the page is about to become writable so that
2018 * it can prohibit this or wait for the page to get into an appropriate state.
2019 *
2020 * We do this without the lock held, so that it can sleep if it needs to.
2021 */
2022 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2023 unsigned long address)
2024 {
2025 struct vm_fault vmf;
2026 int ret;
2027
2028 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2029 vmf.pgoff = page->index;
2030 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2031 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2032 vmf.page = page;
2033 vmf.cow_page = NULL;
2034
2035 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2036 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2037 return ret;
2038 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2039 lock_page(page);
2040 if (!page->mapping) {
2041 unlock_page(page);
2042 return 0; /* retry */
2043 }
2044 ret |= VM_FAULT_LOCKED;
2045 } else
2046 VM_BUG_ON_PAGE(!PageLocked(page), page);
2047 return ret;
2048 }
2049
2050 /*
2051 * Handle write page faults for pages that can be reused in the current vma
2052 *
2053 * This can happen either due to the mapping being with the VM_SHARED flag,
2054 * or due to us being the last reference standing to the page. In either
2055 * case, all we need to do here is to mark the page as writable and update
2056 * any related book-keeping.
2057 */
2058 static inline int wp_page_reuse(struct mm_struct *mm,
2059 struct vm_area_struct *vma, unsigned long address,
2060 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2061 struct page *page, int page_mkwrite,
2062 int dirty_shared)
2063 __releases(ptl)
2064 {
2065 pte_t entry;
2066 /*
2067 * Clear the pages cpupid information as the existing
2068 * information potentially belongs to a now completely
2069 * unrelated process.
2070 */
2071 if (page)
2072 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2073
2074 flush_cache_page(vma, address, pte_pfn(orig_pte));
2075 entry = pte_mkyoung(orig_pte);
2076 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2077 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2078 update_mmu_cache(vma, address, page_table);
2079 pte_unmap_unlock(page_table, ptl);
2080
2081 if (dirty_shared) {
2082 struct address_space *mapping;
2083 int dirtied;
2084
2085 if (!page_mkwrite)
2086 lock_page(page);
2087
2088 dirtied = set_page_dirty(page);
2089 VM_BUG_ON_PAGE(PageAnon(page), page);
2090 mapping = page->mapping;
2091 unlock_page(page);
2092 put_page(page);
2093
2094 if ((dirtied || page_mkwrite) && mapping) {
2095 /*
2096 * Some device drivers do not set page.mapping
2097 * but still dirty their pages
2098 */
2099 balance_dirty_pages_ratelimited(mapping);
2100 }
2101
2102 if (!page_mkwrite)
2103 file_update_time(vma->vm_file);
2104 }
2105
2106 return VM_FAULT_WRITE;
2107 }
2108
2109 /*
2110 * Handle the case of a page which we actually need to copy to a new page.
2111 *
2112 * Called with mmap_sem locked and the old page referenced, but
2113 * without the ptl held.
2114 *
2115 * High level logic flow:
2116 *
2117 * - Allocate a page, copy the content of the old page to the new one.
2118 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2119 * - Take the PTL. If the pte changed, bail out and release the allocated page
2120 * - If the pte is still the way we remember it, update the page table and all
2121 * relevant references. This includes dropping the reference the page-table
2122 * held to the old page, as well as updating the rmap.
2123 * - In any case, unlock the PTL and drop the reference we took to the old page.
2124 */
2125 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2126 unsigned long address, pte_t *page_table, pmd_t *pmd,
2127 pte_t orig_pte, struct page *old_page)
2128 {
2129 struct page *new_page = NULL;
2130 spinlock_t *ptl = NULL;
2131 pte_t entry;
2132 int page_copied = 0;
2133 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2134 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2135 struct mem_cgroup *memcg;
2136
2137 if (unlikely(anon_vma_prepare(vma)))
2138 goto oom;
2139
2140 if (is_zero_pfn(pte_pfn(orig_pte))) {
2141 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2142 if (!new_page)
2143 goto oom;
2144 } else {
2145 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2146 if (!new_page)
2147 goto oom;
2148 cow_user_page(new_page, old_page, address, vma);
2149 }
2150
2151 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2152 goto oom_free_new;
2153
2154 __SetPageUptodate(new_page);
2155
2156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2157
2158 /*
2159 * Re-check the pte - we dropped the lock
2160 */
2161 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2162 if (likely(pte_same(*page_table, orig_pte))) {
2163 if (old_page) {
2164 if (!PageAnon(old_page)) {
2165 dec_mm_counter_fast(mm,
2166 mm_counter_file(old_page));
2167 inc_mm_counter_fast(mm, MM_ANONPAGES);
2168 }
2169 } else {
2170 inc_mm_counter_fast(mm, MM_ANONPAGES);
2171 }
2172 flush_cache_page(vma, address, pte_pfn(orig_pte));
2173 entry = mk_pte(new_page, vma->vm_page_prot);
2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 /*
2176 * Clear the pte entry and flush it first, before updating the
2177 * pte with the new entry. This will avoid a race condition
2178 * seen in the presence of one thread doing SMC and another
2179 * thread doing COW.
2180 */
2181 ptep_clear_flush_notify(vma, address, page_table);
2182 page_add_new_anon_rmap(new_page, vma, address, false);
2183 mem_cgroup_commit_charge(new_page, memcg, false, false);
2184 lru_cache_add_active_or_unevictable(new_page, vma);
2185 /*
2186 * We call the notify macro here because, when using secondary
2187 * mmu page tables (such as kvm shadow page tables), we want the
2188 * new page to be mapped directly into the secondary page table.
2189 */
2190 set_pte_at_notify(mm, address, page_table, entry);
2191 update_mmu_cache(vma, address, page_table);
2192 if (old_page) {
2193 /*
2194 * Only after switching the pte to the new page may
2195 * we remove the mapcount here. Otherwise another
2196 * process may come and find the rmap count decremented
2197 * before the pte is switched to the new page, and
2198 * "reuse" the old page writing into it while our pte
2199 * here still points into it and can be read by other
2200 * threads.
2201 *
2202 * The critical issue is to order this
2203 * page_remove_rmap with the ptp_clear_flush above.
2204 * Those stores are ordered by (if nothing else,)
2205 * the barrier present in the atomic_add_negative
2206 * in page_remove_rmap.
2207 *
2208 * Then the TLB flush in ptep_clear_flush ensures that
2209 * no process can access the old page before the
2210 * decremented mapcount is visible. And the old page
2211 * cannot be reused until after the decremented
2212 * mapcount is visible. So transitively, TLBs to
2213 * old page will be flushed before it can be reused.
2214 */
2215 page_remove_rmap(old_page, false);
2216 }
2217
2218 /* Free the old page.. */
2219 new_page = old_page;
2220 page_copied = 1;
2221 } else {
2222 mem_cgroup_cancel_charge(new_page, memcg, false);
2223 }
2224
2225 if (new_page)
2226 put_page(new_page);
2227
2228 pte_unmap_unlock(page_table, ptl);
2229 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2230 if (old_page) {
2231 /*
2232 * Don't let another task, with possibly unlocked vma,
2233 * keep the mlocked page.
2234 */
2235 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2236 lock_page(old_page); /* LRU manipulation */
2237 if (PageMlocked(old_page))
2238 munlock_vma_page(old_page);
2239 unlock_page(old_page);
2240 }
2241 put_page(old_page);
2242 }
2243 return page_copied ? VM_FAULT_WRITE : 0;
2244 oom_free_new:
2245 put_page(new_page);
2246 oom:
2247 if (old_page)
2248 put_page(old_page);
2249 return VM_FAULT_OOM;
2250 }
2251
2252 /*
2253 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2254 * mapping
2255 */
2256 static int wp_pfn_shared(struct mm_struct *mm,
2257 struct vm_area_struct *vma, unsigned long address,
2258 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2259 pmd_t *pmd)
2260 {
2261 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2262 struct vm_fault vmf = {
2263 .page = NULL,
2264 .pgoff = linear_page_index(vma, address),
2265 .virtual_address = (void __user *)(address & PAGE_MASK),
2266 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2267 };
2268 int ret;
2269
2270 pte_unmap_unlock(page_table, ptl);
2271 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2272 if (ret & VM_FAULT_ERROR)
2273 return ret;
2274 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2275 /*
2276 * We might have raced with another page fault while we
2277 * released the pte_offset_map_lock.
2278 */
2279 if (!pte_same(*page_table, orig_pte)) {
2280 pte_unmap_unlock(page_table, ptl);
2281 return 0;
2282 }
2283 }
2284 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2285 NULL, 0, 0);
2286 }
2287
2288 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2289 unsigned long address, pte_t *page_table,
2290 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2291 struct page *old_page)
2292 __releases(ptl)
2293 {
2294 int page_mkwrite = 0;
2295
2296 get_page(old_page);
2297
2298 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2299 int tmp;
2300
2301 pte_unmap_unlock(page_table, ptl);
2302 tmp = do_page_mkwrite(vma, old_page, address);
2303 if (unlikely(!tmp || (tmp &
2304 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2305 put_page(old_page);
2306 return tmp;
2307 }
2308 /*
2309 * Since we dropped the lock we need to revalidate
2310 * the PTE as someone else may have changed it. If
2311 * they did, we just return, as we can count on the
2312 * MMU to tell us if they didn't also make it writable.
2313 */
2314 page_table = pte_offset_map_lock(mm, pmd, address,
2315 &ptl);
2316 if (!pte_same(*page_table, orig_pte)) {
2317 unlock_page(old_page);
2318 pte_unmap_unlock(page_table, ptl);
2319 put_page(old_page);
2320 return 0;
2321 }
2322 page_mkwrite = 1;
2323 }
2324
2325 return wp_page_reuse(mm, vma, address, page_table, ptl,
2326 orig_pte, old_page, page_mkwrite, 1);
2327 }
2328
2329 /*
2330 * This routine handles present pages, when users try to write
2331 * to a shared page. It is done by copying the page to a new address
2332 * and decrementing the shared-page counter for the old page.
2333 *
2334 * Note that this routine assumes that the protection checks have been
2335 * done by the caller (the low-level page fault routine in most cases).
2336 * Thus we can safely just mark it writable once we've done any necessary
2337 * COW.
2338 *
2339 * We also mark the page dirty at this point even though the page will
2340 * change only once the write actually happens. This avoids a few races,
2341 * and potentially makes it more efficient.
2342 *
2343 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2344 * but allow concurrent faults), with pte both mapped and locked.
2345 * We return with mmap_sem still held, but pte unmapped and unlocked.
2346 */
2347 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2348 unsigned long address, pte_t *page_table, pmd_t *pmd,
2349 spinlock_t *ptl, pte_t orig_pte)
2350 __releases(ptl)
2351 {
2352 struct page *old_page;
2353
2354 old_page = vm_normal_page(vma, address, orig_pte);
2355 if (!old_page) {
2356 /*
2357 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2358 * VM_PFNMAP VMA.
2359 *
2360 * We should not cow pages in a shared writeable mapping.
2361 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2362 */
2363 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2364 (VM_WRITE|VM_SHARED))
2365 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2366 orig_pte, pmd);
2367
2368 pte_unmap_unlock(page_table, ptl);
2369 return wp_page_copy(mm, vma, address, page_table, pmd,
2370 orig_pte, old_page);
2371 }
2372
2373 /*
2374 * Take out anonymous pages first, anonymous shared vmas are
2375 * not dirty accountable.
2376 */
2377 if (PageAnon(old_page) && !PageKsm(old_page)) {
2378 int total_mapcount;
2379 if (!trylock_page(old_page)) {
2380 get_page(old_page);
2381 pte_unmap_unlock(page_table, ptl);
2382 lock_page(old_page);
2383 page_table = pte_offset_map_lock(mm, pmd, address,
2384 &ptl);
2385 if (!pte_same(*page_table, orig_pte)) {
2386 unlock_page(old_page);
2387 pte_unmap_unlock(page_table, ptl);
2388 put_page(old_page);
2389 return 0;
2390 }
2391 put_page(old_page);
2392 }
2393 if (reuse_swap_page(old_page, &total_mapcount)) {
2394 if (total_mapcount == 1) {
2395 /*
2396 * The page is all ours. Move it to
2397 * our anon_vma so the rmap code will
2398 * not search our parent or siblings.
2399 * Protected against the rmap code by
2400 * the page lock.
2401 */
2402 page_move_anon_rmap(old_page, vma);
2403 }
2404 unlock_page(old_page);
2405 return wp_page_reuse(mm, vma, address, page_table, ptl,
2406 orig_pte, old_page, 0, 0);
2407 }
2408 unlock_page(old_page);
2409 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2410 (VM_WRITE|VM_SHARED))) {
2411 return wp_page_shared(mm, vma, address, page_table, pmd,
2412 ptl, orig_pte, old_page);
2413 }
2414
2415 /*
2416 * Ok, we need to copy. Oh, well..
2417 */
2418 get_page(old_page);
2419
2420 pte_unmap_unlock(page_table, ptl);
2421 return wp_page_copy(mm, vma, address, page_table, pmd,
2422 orig_pte, old_page);
2423 }
2424
2425 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2426 unsigned long start_addr, unsigned long end_addr,
2427 struct zap_details *details)
2428 {
2429 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2430 }
2431
2432 static inline void unmap_mapping_range_tree(struct rb_root *root,
2433 struct zap_details *details)
2434 {
2435 struct vm_area_struct *vma;
2436 pgoff_t vba, vea, zba, zea;
2437
2438 vma_interval_tree_foreach(vma, root,
2439 details->first_index, details->last_index) {
2440
2441 vba = vma->vm_pgoff;
2442 vea = vba + vma_pages(vma) - 1;
2443 zba = details->first_index;
2444 if (zba < vba)
2445 zba = vba;
2446 zea = details->last_index;
2447 if (zea > vea)
2448 zea = vea;
2449
2450 unmap_mapping_range_vma(vma,
2451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2453 details);
2454 }
2455 }
2456
2457 /**
2458 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2459 * address_space corresponding to the specified page range in the underlying
2460 * file.
2461 *
2462 * @mapping: the address space containing mmaps to be unmapped.
2463 * @holebegin: byte in first page to unmap, relative to the start of
2464 * the underlying file. This will be rounded down to a PAGE_SIZE
2465 * boundary. Note that this is different from truncate_pagecache(), which
2466 * must keep the partial page. In contrast, we must get rid of
2467 * partial pages.
2468 * @holelen: size of prospective hole in bytes. This will be rounded
2469 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2470 * end of the file.
2471 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2472 * but 0 when invalidating pagecache, don't throw away private data.
2473 */
2474 void unmap_mapping_range(struct address_space *mapping,
2475 loff_t const holebegin, loff_t const holelen, int even_cows)
2476 {
2477 struct zap_details details = { };
2478 pgoff_t hba = holebegin >> PAGE_SHIFT;
2479 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2480
2481 /* Check for overflow. */
2482 if (sizeof(holelen) > sizeof(hlen)) {
2483 long long holeend =
2484 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2485 if (holeend & ~(long long)ULONG_MAX)
2486 hlen = ULONG_MAX - hba + 1;
2487 }
2488
2489 details.check_mapping = even_cows? NULL: mapping;
2490 details.first_index = hba;
2491 details.last_index = hba + hlen - 1;
2492 if (details.last_index < details.first_index)
2493 details.last_index = ULONG_MAX;
2494
2495 i_mmap_lock_write(mapping);
2496 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2497 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2498 i_mmap_unlock_write(mapping);
2499 }
2500 EXPORT_SYMBOL(unmap_mapping_range);
2501
2502 /*
2503 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2504 * but allow concurrent faults), and pte mapped but not yet locked.
2505 * We return with pte unmapped and unlocked.
2506 *
2507 * We return with the mmap_sem locked or unlocked in the same cases
2508 * as does filemap_fault().
2509 */
2510 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2511 unsigned long address, pte_t *page_table, pmd_t *pmd,
2512 unsigned int flags, pte_t orig_pte)
2513 {
2514 spinlock_t *ptl;
2515 struct page *page, *swapcache;
2516 struct mem_cgroup *memcg;
2517 swp_entry_t entry;
2518 pte_t pte;
2519 int locked;
2520 int exclusive = 0;
2521 int ret = 0;
2522
2523 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2524 goto out;
2525
2526 entry = pte_to_swp_entry(orig_pte);
2527 if (unlikely(non_swap_entry(entry))) {
2528 if (is_migration_entry(entry)) {
2529 migration_entry_wait(mm, pmd, address);
2530 } else if (is_hwpoison_entry(entry)) {
2531 ret = VM_FAULT_HWPOISON;
2532 } else {
2533 print_bad_pte(vma, address, orig_pte, NULL);
2534 ret = VM_FAULT_SIGBUS;
2535 }
2536 goto out;
2537 }
2538 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2539 page = lookup_swap_cache(entry);
2540 if (!page) {
2541 page = swapin_readahead(entry,
2542 GFP_HIGHUSER_MOVABLE, vma, address);
2543 if (!page) {
2544 /*
2545 * Back out if somebody else faulted in this pte
2546 * while we released the pte lock.
2547 */
2548 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2549 if (likely(pte_same(*page_table, orig_pte)))
2550 ret = VM_FAULT_OOM;
2551 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2552 goto unlock;
2553 }
2554
2555 /* Had to read the page from swap area: Major fault */
2556 ret = VM_FAULT_MAJOR;
2557 count_vm_event(PGMAJFAULT);
2558 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2559 } else if (PageHWPoison(page)) {
2560 /*
2561 * hwpoisoned dirty swapcache pages are kept for killing
2562 * owner processes (which may be unknown at hwpoison time)
2563 */
2564 ret = VM_FAULT_HWPOISON;
2565 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2566 swapcache = page;
2567 goto out_release;
2568 }
2569
2570 swapcache = page;
2571 locked = lock_page_or_retry(page, mm, flags);
2572
2573 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2574 if (!locked) {
2575 ret |= VM_FAULT_RETRY;
2576 goto out_release;
2577 }
2578
2579 /*
2580 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2581 * release the swapcache from under us. The page pin, and pte_same
2582 * test below, are not enough to exclude that. Even if it is still
2583 * swapcache, we need to check that the page's swap has not changed.
2584 */
2585 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2586 goto out_page;
2587
2588 page = ksm_might_need_to_copy(page, vma, address);
2589 if (unlikely(!page)) {
2590 ret = VM_FAULT_OOM;
2591 page = swapcache;
2592 goto out_page;
2593 }
2594
2595 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2596 ret = VM_FAULT_OOM;
2597 goto out_page;
2598 }
2599
2600 /*
2601 * Back out if somebody else already faulted in this pte.
2602 */
2603 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2604 if (unlikely(!pte_same(*page_table, orig_pte)))
2605 goto out_nomap;
2606
2607 if (unlikely(!PageUptodate(page))) {
2608 ret = VM_FAULT_SIGBUS;
2609 goto out_nomap;
2610 }
2611
2612 /*
2613 * The page isn't present yet, go ahead with the fault.
2614 *
2615 * Be careful about the sequence of operations here.
2616 * To get its accounting right, reuse_swap_page() must be called
2617 * while the page is counted on swap but not yet in mapcount i.e.
2618 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2619 * must be called after the swap_free(), or it will never succeed.
2620 */
2621
2622 inc_mm_counter_fast(mm, MM_ANONPAGES);
2623 dec_mm_counter_fast(mm, MM_SWAPENTS);
2624 pte = mk_pte(page, vma->vm_page_prot);
2625 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2626 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2627 flags &= ~FAULT_FLAG_WRITE;
2628 ret |= VM_FAULT_WRITE;
2629 exclusive = RMAP_EXCLUSIVE;
2630 }
2631 flush_icache_page(vma, page);
2632 if (pte_swp_soft_dirty(orig_pte))
2633 pte = pte_mksoft_dirty(pte);
2634 set_pte_at(mm, address, page_table, pte);
2635 if (page == swapcache) {
2636 do_page_add_anon_rmap(page, vma, address, exclusive);
2637 mem_cgroup_commit_charge(page, memcg, true, false);
2638 } else { /* ksm created a completely new copy */
2639 page_add_new_anon_rmap(page, vma, address, false);
2640 mem_cgroup_commit_charge(page, memcg, false, false);
2641 lru_cache_add_active_or_unevictable(page, vma);
2642 }
2643
2644 swap_free(entry);
2645 if (mem_cgroup_swap_full(page) ||
2646 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2647 try_to_free_swap(page);
2648 unlock_page(page);
2649 if (page != swapcache) {
2650 /*
2651 * Hold the lock to avoid the swap entry to be reused
2652 * until we take the PT lock for the pte_same() check
2653 * (to avoid false positives from pte_same). For
2654 * further safety release the lock after the swap_free
2655 * so that the swap count won't change under a
2656 * parallel locked swapcache.
2657 */
2658 unlock_page(swapcache);
2659 put_page(swapcache);
2660 }
2661
2662 if (flags & FAULT_FLAG_WRITE) {
2663 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2664 if (ret & VM_FAULT_ERROR)
2665 ret &= VM_FAULT_ERROR;
2666 goto out;
2667 }
2668
2669 /* No need to invalidate - it was non-present before */
2670 update_mmu_cache(vma, address, page_table);
2671 unlock:
2672 pte_unmap_unlock(page_table, ptl);
2673 out:
2674 return ret;
2675 out_nomap:
2676 mem_cgroup_cancel_charge(page, memcg, false);
2677 pte_unmap_unlock(page_table, ptl);
2678 out_page:
2679 unlock_page(page);
2680 out_release:
2681 put_page(page);
2682 if (page != swapcache) {
2683 unlock_page(swapcache);
2684 put_page(swapcache);
2685 }
2686 return ret;
2687 }
2688
2689 /*
2690 * This is like a special single-page "expand_{down|up}wards()",
2691 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2692 * doesn't hit another vma.
2693 */
2694 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2695 {
2696 address &= PAGE_MASK;
2697 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2698 struct vm_area_struct *prev = vma->vm_prev;
2699
2700 /*
2701 * Is there a mapping abutting this one below?
2702 *
2703 * That's only ok if it's the same stack mapping
2704 * that has gotten split..
2705 */
2706 if (prev && prev->vm_end == address)
2707 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2708
2709 return expand_downwards(vma, address - PAGE_SIZE);
2710 }
2711 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2712 struct vm_area_struct *next = vma->vm_next;
2713
2714 /* As VM_GROWSDOWN but s/below/above/ */
2715 if (next && next->vm_start == address + PAGE_SIZE)
2716 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2717
2718 return expand_upwards(vma, address + PAGE_SIZE);
2719 }
2720 return 0;
2721 }
2722
2723 /*
2724 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2725 * but allow concurrent faults), and pte mapped but not yet locked.
2726 * We return with mmap_sem still held, but pte unmapped and unlocked.
2727 */
2728 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2729 unsigned long address, pte_t *page_table, pmd_t *pmd,
2730 unsigned int flags)
2731 {
2732 struct mem_cgroup *memcg;
2733 struct page *page;
2734 spinlock_t *ptl;
2735 pte_t entry;
2736
2737 pte_unmap(page_table);
2738
2739 /* File mapping without ->vm_ops ? */
2740 if (vma->vm_flags & VM_SHARED)
2741 return VM_FAULT_SIGBUS;
2742
2743 /* Check if we need to add a guard page to the stack */
2744 if (check_stack_guard_page(vma, address) < 0)
2745 return VM_FAULT_SIGSEGV;
2746
2747 /* Use the zero-page for reads */
2748 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2749 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2750 vma->vm_page_prot));
2751 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2752 if (!pte_none(*page_table))
2753 goto unlock;
2754 /* Deliver the page fault to userland, check inside PT lock */
2755 if (userfaultfd_missing(vma)) {
2756 pte_unmap_unlock(page_table, ptl);
2757 return handle_userfault(vma, address, flags,
2758 VM_UFFD_MISSING);
2759 }
2760 goto setpte;
2761 }
2762
2763 /* Allocate our own private page. */
2764 if (unlikely(anon_vma_prepare(vma)))
2765 goto oom;
2766 page = alloc_zeroed_user_highpage_movable(vma, address);
2767 if (!page)
2768 goto oom;
2769
2770 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2771 goto oom_free_page;
2772
2773 /*
2774 * The memory barrier inside __SetPageUptodate makes sure that
2775 * preceeding stores to the page contents become visible before
2776 * the set_pte_at() write.
2777 */
2778 __SetPageUptodate(page);
2779
2780 entry = mk_pte(page, vma->vm_page_prot);
2781 if (vma->vm_flags & VM_WRITE)
2782 entry = pte_mkwrite(pte_mkdirty(entry));
2783
2784 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2785 if (!pte_none(*page_table))
2786 goto release;
2787
2788 /* Deliver the page fault to userland, check inside PT lock */
2789 if (userfaultfd_missing(vma)) {
2790 pte_unmap_unlock(page_table, ptl);
2791 mem_cgroup_cancel_charge(page, memcg, false);
2792 put_page(page);
2793 return handle_userfault(vma, address, flags,
2794 VM_UFFD_MISSING);
2795 }
2796
2797 inc_mm_counter_fast(mm, MM_ANONPAGES);
2798 page_add_new_anon_rmap(page, vma, address, false);
2799 mem_cgroup_commit_charge(page, memcg, false, false);
2800 lru_cache_add_active_or_unevictable(page, vma);
2801 setpte:
2802 set_pte_at(mm, address, page_table, entry);
2803
2804 /* No need to invalidate - it was non-present before */
2805 update_mmu_cache(vma, address, page_table);
2806 unlock:
2807 pte_unmap_unlock(page_table, ptl);
2808 return 0;
2809 release:
2810 mem_cgroup_cancel_charge(page, memcg, false);
2811 put_page(page);
2812 goto unlock;
2813 oom_free_page:
2814 put_page(page);
2815 oom:
2816 return VM_FAULT_OOM;
2817 }
2818
2819 /*
2820 * The mmap_sem must have been held on entry, and may have been
2821 * released depending on flags and vma->vm_ops->fault() return value.
2822 * See filemap_fault() and __lock_page_retry().
2823 */
2824 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2825 pgoff_t pgoff, unsigned int flags,
2826 struct page *cow_page, struct page **page,
2827 void **entry)
2828 {
2829 struct vm_fault vmf;
2830 int ret;
2831
2832 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833 vmf.pgoff = pgoff;
2834 vmf.flags = flags;
2835 vmf.page = NULL;
2836 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837 vmf.cow_page = cow_page;
2838
2839 ret = vma->vm_ops->fault(vma, &vmf);
2840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841 return ret;
2842 if (ret & VM_FAULT_DAX_LOCKED) {
2843 *entry = vmf.entry;
2844 return ret;
2845 }
2846
2847 if (unlikely(PageHWPoison(vmf.page))) {
2848 if (ret & VM_FAULT_LOCKED)
2849 unlock_page(vmf.page);
2850 put_page(vmf.page);
2851 return VM_FAULT_HWPOISON;
2852 }
2853
2854 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2855 lock_page(vmf.page);
2856 else
2857 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2858
2859 *page = vmf.page;
2860 return ret;
2861 }
2862
2863 /**
2864 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2865 *
2866 * @vma: virtual memory area
2867 * @address: user virtual address
2868 * @page: page to map
2869 * @pte: pointer to target page table entry
2870 * @write: true, if new entry is writable
2871 * @anon: true, if it's anonymous page
2872 *
2873 * Caller must hold page table lock relevant for @pte.
2874 *
2875 * Target users are page handler itself and implementations of
2876 * vm_ops->map_pages.
2877 */
2878 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2879 struct page *page, pte_t *pte, bool write, bool anon)
2880 {
2881 pte_t entry;
2882
2883 flush_icache_page(vma, page);
2884 entry = mk_pte(page, vma->vm_page_prot);
2885 if (write)
2886 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2887 if (anon) {
2888 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2889 page_add_new_anon_rmap(page, vma, address, false);
2890 } else {
2891 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2892 page_add_file_rmap(page);
2893 }
2894 set_pte_at(vma->vm_mm, address, pte, entry);
2895
2896 /* no need to invalidate: a not-present page won't be cached */
2897 update_mmu_cache(vma, address, pte);
2898 }
2899
2900 static unsigned long fault_around_bytes __read_mostly =
2901 rounddown_pow_of_two(65536);
2902
2903 #ifdef CONFIG_DEBUG_FS
2904 static int fault_around_bytes_get(void *data, u64 *val)
2905 {
2906 *val = fault_around_bytes;
2907 return 0;
2908 }
2909
2910 /*
2911 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2912 * rounded down to nearest page order. It's what do_fault_around() expects to
2913 * see.
2914 */
2915 static int fault_around_bytes_set(void *data, u64 val)
2916 {
2917 if (val / PAGE_SIZE > PTRS_PER_PTE)
2918 return -EINVAL;
2919 if (val > PAGE_SIZE)
2920 fault_around_bytes = rounddown_pow_of_two(val);
2921 else
2922 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2923 return 0;
2924 }
2925 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2926 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2927
2928 static int __init fault_around_debugfs(void)
2929 {
2930 void *ret;
2931
2932 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2933 &fault_around_bytes_fops);
2934 if (!ret)
2935 pr_warn("Failed to create fault_around_bytes in debugfs");
2936 return 0;
2937 }
2938 late_initcall(fault_around_debugfs);
2939 #endif
2940
2941 /*
2942 * do_fault_around() tries to map few pages around the fault address. The hope
2943 * is that the pages will be needed soon and this will lower the number of
2944 * faults to handle.
2945 *
2946 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2947 * not ready to be mapped: not up-to-date, locked, etc.
2948 *
2949 * This function is called with the page table lock taken. In the split ptlock
2950 * case the page table lock only protects only those entries which belong to
2951 * the page table corresponding to the fault address.
2952 *
2953 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2954 * only once.
2955 *
2956 * fault_around_pages() defines how many pages we'll try to map.
2957 * do_fault_around() expects it to return a power of two less than or equal to
2958 * PTRS_PER_PTE.
2959 *
2960 * The virtual address of the area that we map is naturally aligned to the
2961 * fault_around_pages() value (and therefore to page order). This way it's
2962 * easier to guarantee that we don't cross page table boundaries.
2963 */
2964 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2965 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2966 {
2967 unsigned long start_addr, nr_pages, mask;
2968 pgoff_t max_pgoff;
2969 struct vm_fault vmf;
2970 int off;
2971
2972 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2973 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2974
2975 start_addr = max(address & mask, vma->vm_start);
2976 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2977 pte -= off;
2978 pgoff -= off;
2979
2980 /*
2981 * max_pgoff is either end of page table or end of vma
2982 * or fault_around_pages() from pgoff, depending what is nearest.
2983 */
2984 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2985 PTRS_PER_PTE - 1;
2986 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2987 pgoff + nr_pages - 1);
2988
2989 /* Check if it makes any sense to call ->map_pages */
2990 while (!pte_none(*pte)) {
2991 if (++pgoff > max_pgoff)
2992 return;
2993 start_addr += PAGE_SIZE;
2994 if (start_addr >= vma->vm_end)
2995 return;
2996 pte++;
2997 }
2998
2999 vmf.virtual_address = (void __user *) start_addr;
3000 vmf.pte = pte;
3001 vmf.pgoff = pgoff;
3002 vmf.max_pgoff = max_pgoff;
3003 vmf.flags = flags;
3004 vmf.gfp_mask = __get_fault_gfp_mask(vma);
3005 vma->vm_ops->map_pages(vma, &vmf);
3006 }
3007
3008 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 unsigned long address, pmd_t *pmd,
3010 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012 struct page *fault_page;
3013 spinlock_t *ptl;
3014 pte_t *pte;
3015 int ret = 0;
3016
3017 /*
3018 * Let's call ->map_pages() first and use ->fault() as fallback
3019 * if page by the offset is not ready to be mapped (cold cache or
3020 * something).
3021 */
3022 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3023 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3024 do_fault_around(vma, address, pte, pgoff, flags);
3025 if (!pte_same(*pte, orig_pte))
3026 goto unlock_out;
3027 pte_unmap_unlock(pte, ptl);
3028 }
3029
3030 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
3031 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 return ret;
3033
3034 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3035 if (unlikely(!pte_same(*pte, orig_pte))) {
3036 pte_unmap_unlock(pte, ptl);
3037 unlock_page(fault_page);
3038 put_page(fault_page);
3039 return ret;
3040 }
3041 do_set_pte(vma, address, fault_page, pte, false, false);
3042 unlock_page(fault_page);
3043 unlock_out:
3044 pte_unmap_unlock(pte, ptl);
3045 return ret;
3046 }
3047
3048 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3049 unsigned long address, pmd_t *pmd,
3050 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3051 {
3052 struct page *fault_page, *new_page;
3053 void *fault_entry;
3054 struct mem_cgroup *memcg;
3055 spinlock_t *ptl;
3056 pte_t *pte;
3057 int ret;
3058
3059 if (unlikely(anon_vma_prepare(vma)))
3060 return VM_FAULT_OOM;
3061
3062 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3063 if (!new_page)
3064 return VM_FAULT_OOM;
3065
3066 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3067 put_page(new_page);
3068 return VM_FAULT_OOM;
3069 }
3070
3071 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page,
3072 &fault_entry);
3073 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3074 goto uncharge_out;
3075
3076 if (!(ret & VM_FAULT_DAX_LOCKED))
3077 copy_user_highpage(new_page, fault_page, address, vma);
3078 __SetPageUptodate(new_page);
3079
3080 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3081 if (unlikely(!pte_same(*pte, orig_pte))) {
3082 pte_unmap_unlock(pte, ptl);
3083 if (!(ret & VM_FAULT_DAX_LOCKED)) {
3084 unlock_page(fault_page);
3085 put_page(fault_page);
3086 } else {
3087 dax_unlock_mapping_entry(vma->vm_file->f_mapping,
3088 pgoff);
3089 }
3090 goto uncharge_out;
3091 }
3092 do_set_pte(vma, address, new_page, pte, true, true);
3093 mem_cgroup_commit_charge(new_page, memcg, false, false);
3094 lru_cache_add_active_or_unevictable(new_page, vma);
3095 pte_unmap_unlock(pte, ptl);
3096 if (!(ret & VM_FAULT_DAX_LOCKED)) {
3097 unlock_page(fault_page);
3098 put_page(fault_page);
3099 } else {
3100 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
3101 }
3102 return ret;
3103 uncharge_out:
3104 mem_cgroup_cancel_charge(new_page, memcg, false);
3105 put_page(new_page);
3106 return ret;
3107 }
3108
3109 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3110 unsigned long address, pmd_t *pmd,
3111 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3112 {
3113 struct page *fault_page;
3114 struct address_space *mapping;
3115 spinlock_t *ptl;
3116 pte_t *pte;
3117 int dirtied = 0;
3118 int ret, tmp;
3119
3120 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page, NULL);
3121 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3122 return ret;
3123
3124 /*
3125 * Check if the backing address space wants to know that the page is
3126 * about to become writable
3127 */
3128 if (vma->vm_ops->page_mkwrite) {
3129 unlock_page(fault_page);
3130 tmp = do_page_mkwrite(vma, fault_page, address);
3131 if (unlikely(!tmp ||
3132 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3133 put_page(fault_page);
3134 return tmp;
3135 }
3136 }
3137
3138 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3139 if (unlikely(!pte_same(*pte, orig_pte))) {
3140 pte_unmap_unlock(pte, ptl);
3141 unlock_page(fault_page);
3142 put_page(fault_page);
3143 return ret;
3144 }
3145 do_set_pte(vma, address, fault_page, pte, true, false);
3146 pte_unmap_unlock(pte, ptl);
3147
3148 if (set_page_dirty(fault_page))
3149 dirtied = 1;
3150 /*
3151 * Take a local copy of the address_space - page.mapping may be zeroed
3152 * by truncate after unlock_page(). The address_space itself remains
3153 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3154 * release semantics to prevent the compiler from undoing this copying.
3155 */
3156 mapping = page_rmapping(fault_page);
3157 unlock_page(fault_page);
3158 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3159 /*
3160 * Some device drivers do not set page.mapping but still
3161 * dirty their pages
3162 */
3163 balance_dirty_pages_ratelimited(mapping);
3164 }
3165
3166 if (!vma->vm_ops->page_mkwrite)
3167 file_update_time(vma->vm_file);
3168
3169 return ret;
3170 }
3171
3172 /*
3173 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3174 * but allow concurrent faults).
3175 * The mmap_sem may have been released depending on flags and our
3176 * return value. See filemap_fault() and __lock_page_or_retry().
3177 */
3178 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3179 unsigned long address, pte_t *page_table, pmd_t *pmd,
3180 unsigned int flags, pte_t orig_pte)
3181 {
3182 pgoff_t pgoff = linear_page_index(vma, address);
3183
3184 pte_unmap(page_table);
3185 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3186 if (!vma->vm_ops->fault)
3187 return VM_FAULT_SIGBUS;
3188 if (!(flags & FAULT_FLAG_WRITE))
3189 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3190 orig_pte);
3191 if (!(vma->vm_flags & VM_SHARED))
3192 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3193 orig_pte);
3194 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3195 }
3196
3197 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3198 unsigned long addr, int page_nid,
3199 int *flags)
3200 {
3201 get_page(page);
3202
3203 count_vm_numa_event(NUMA_HINT_FAULTS);
3204 if (page_nid == numa_node_id()) {
3205 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3206 *flags |= TNF_FAULT_LOCAL;
3207 }
3208
3209 return mpol_misplaced(page, vma, addr);
3210 }
3211
3212 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3213 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3214 {
3215 struct page *page = NULL;
3216 spinlock_t *ptl;
3217 int page_nid = -1;
3218 int last_cpupid;
3219 int target_nid;
3220 bool migrated = false;
3221 bool was_writable = pte_write(pte);
3222 int flags = 0;
3223
3224 /* A PROT_NONE fault should not end up here */
3225 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3226
3227 /*
3228 * The "pte" at this point cannot be used safely without
3229 * validation through pte_unmap_same(). It's of NUMA type but
3230 * the pfn may be screwed if the read is non atomic.
3231 *
3232 * We can safely just do a "set_pte_at()", because the old
3233 * page table entry is not accessible, so there would be no
3234 * concurrent hardware modifications to the PTE.
3235 */
3236 ptl = pte_lockptr(mm, pmd);
3237 spin_lock(ptl);
3238 if (unlikely(!pte_same(*ptep, pte))) {
3239 pte_unmap_unlock(ptep, ptl);
3240 goto out;
3241 }
3242
3243 /* Make it present again */
3244 pte = pte_modify(pte, vma->vm_page_prot);
3245 pte = pte_mkyoung(pte);
3246 if (was_writable)
3247 pte = pte_mkwrite(pte);
3248 set_pte_at(mm, addr, ptep, pte);
3249 update_mmu_cache(vma, addr, ptep);
3250
3251 page = vm_normal_page(vma, addr, pte);
3252 if (!page) {
3253 pte_unmap_unlock(ptep, ptl);
3254 return 0;
3255 }
3256
3257 /* TODO: handle PTE-mapped THP */
3258 if (PageCompound(page)) {
3259 pte_unmap_unlock(ptep, ptl);
3260 return 0;
3261 }
3262
3263 /*
3264 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3265 * much anyway since they can be in shared cache state. This misses
3266 * the case where a mapping is writable but the process never writes
3267 * to it but pte_write gets cleared during protection updates and
3268 * pte_dirty has unpredictable behaviour between PTE scan updates,
3269 * background writeback, dirty balancing and application behaviour.
3270 */
3271 if (!(vma->vm_flags & VM_WRITE))
3272 flags |= TNF_NO_GROUP;
3273
3274 /*
3275 * Flag if the page is shared between multiple address spaces. This
3276 * is later used when determining whether to group tasks together
3277 */
3278 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3279 flags |= TNF_SHARED;
3280
3281 last_cpupid = page_cpupid_last(page);
3282 page_nid = page_to_nid(page);
3283 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3284 pte_unmap_unlock(ptep, ptl);
3285 if (target_nid == -1) {
3286 put_page(page);
3287 goto out;
3288 }
3289
3290 /* Migrate to the requested node */
3291 migrated = migrate_misplaced_page(page, vma, target_nid);
3292 if (migrated) {
3293 page_nid = target_nid;
3294 flags |= TNF_MIGRATED;
3295 } else
3296 flags |= TNF_MIGRATE_FAIL;
3297
3298 out:
3299 if (page_nid != -1)
3300 task_numa_fault(last_cpupid, page_nid, 1, flags);
3301 return 0;
3302 }
3303
3304 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3305 unsigned long address, pmd_t *pmd, unsigned int flags)
3306 {
3307 if (vma_is_anonymous(vma))
3308 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3309 if (vma->vm_ops->pmd_fault)
3310 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3311 return VM_FAULT_FALLBACK;
3312 }
3313
3314 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3315 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3316 unsigned int flags)
3317 {
3318 if (vma_is_anonymous(vma))
3319 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3320 if (vma->vm_ops->pmd_fault)
3321 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3322 return VM_FAULT_FALLBACK;
3323 }
3324
3325 /*
3326 * These routines also need to handle stuff like marking pages dirty
3327 * and/or accessed for architectures that don't do it in hardware (most
3328 * RISC architectures). The early dirtying is also good on the i386.
3329 *
3330 * There is also a hook called "update_mmu_cache()" that architectures
3331 * with external mmu caches can use to update those (ie the Sparc or
3332 * PowerPC hashed page tables that act as extended TLBs).
3333 *
3334 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3335 * but allow concurrent faults), and pte mapped but not yet locked.
3336 * We return with pte unmapped and unlocked.
3337 *
3338 * The mmap_sem may have been released depending on flags and our
3339 * return value. See filemap_fault() and __lock_page_or_retry().
3340 */
3341 static int handle_pte_fault(struct mm_struct *mm,
3342 struct vm_area_struct *vma, unsigned long address,
3343 pte_t *pte, pmd_t *pmd, unsigned int flags)
3344 {
3345 pte_t entry;
3346 spinlock_t *ptl;
3347
3348 /*
3349 * some architectures can have larger ptes than wordsize,
3350 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3351 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3352 * The code below just needs a consistent view for the ifs and
3353 * we later double check anyway with the ptl lock held. So here
3354 * a barrier will do.
3355 */
3356 entry = *pte;
3357 barrier();
3358 if (!pte_present(entry)) {
3359 if (pte_none(entry)) {
3360 if (vma_is_anonymous(vma))
3361 return do_anonymous_page(mm, vma, address,
3362 pte, pmd, flags);
3363 else
3364 return do_fault(mm, vma, address, pte, pmd,
3365 flags, entry);
3366 }
3367 return do_swap_page(mm, vma, address,
3368 pte, pmd, flags, entry);
3369 }
3370
3371 if (pte_protnone(entry))
3372 return do_numa_page(mm, vma, address, entry, pte, pmd);
3373
3374 ptl = pte_lockptr(mm, pmd);
3375 spin_lock(ptl);
3376 if (unlikely(!pte_same(*pte, entry)))
3377 goto unlock;
3378 if (flags & FAULT_FLAG_WRITE) {
3379 if (!pte_write(entry))
3380 return do_wp_page(mm, vma, address,
3381 pte, pmd, ptl, entry);
3382 entry = pte_mkdirty(entry);
3383 }
3384 entry = pte_mkyoung(entry);
3385 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3386 update_mmu_cache(vma, address, pte);
3387 } else {
3388 /*
3389 * This is needed only for protection faults but the arch code
3390 * is not yet telling us if this is a protection fault or not.
3391 * This still avoids useless tlb flushes for .text page faults
3392 * with threads.
3393 */
3394 if (flags & FAULT_FLAG_WRITE)
3395 flush_tlb_fix_spurious_fault(vma, address);
3396 }
3397 unlock:
3398 pte_unmap_unlock(pte, ptl);
3399 return 0;
3400 }
3401
3402 /*
3403 * By the time we get here, we already hold the mm semaphore
3404 *
3405 * The mmap_sem may have been released depending on flags and our
3406 * return value. See filemap_fault() and __lock_page_or_retry().
3407 */
3408 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3409 unsigned long address, unsigned int flags)
3410 {
3411 pgd_t *pgd;
3412 pud_t *pud;
3413 pmd_t *pmd;
3414 pte_t *pte;
3415
3416 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3417 flags & FAULT_FLAG_INSTRUCTION,
3418 flags & FAULT_FLAG_REMOTE))
3419 return VM_FAULT_SIGSEGV;
3420
3421 if (unlikely(is_vm_hugetlb_page(vma)))
3422 return hugetlb_fault(mm, vma, address, flags);
3423
3424 pgd = pgd_offset(mm, address);
3425 pud = pud_alloc(mm, pgd, address);
3426 if (!pud)
3427 return VM_FAULT_OOM;
3428 pmd = pmd_alloc(mm, pud, address);
3429 if (!pmd)
3430 return VM_FAULT_OOM;
3431 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3432 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3433 if (!(ret & VM_FAULT_FALLBACK))
3434 return ret;
3435 } else {
3436 pmd_t orig_pmd = *pmd;
3437 int ret;
3438
3439 barrier();
3440 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3441 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3442
3443 if (pmd_protnone(orig_pmd))
3444 return do_huge_pmd_numa_page(mm, vma, address,
3445 orig_pmd, pmd);
3446
3447 if (dirty && !pmd_write(orig_pmd)) {
3448 ret = wp_huge_pmd(mm, vma, address, pmd,
3449 orig_pmd, flags);
3450 if (!(ret & VM_FAULT_FALLBACK))
3451 return ret;
3452 } else {
3453 huge_pmd_set_accessed(mm, vma, address, pmd,
3454 orig_pmd, dirty);
3455 return 0;
3456 }
3457 }
3458 }
3459
3460 /*
3461 * Use pte_alloc() instead of pte_alloc_map, because we can't
3462 * run pte_offset_map on the pmd, if an huge pmd could
3463 * materialize from under us from a different thread.
3464 */
3465 if (unlikely(pte_alloc(mm, pmd, address)))
3466 return VM_FAULT_OOM;
3467 /*
3468 * If a huge pmd materialized under us just retry later. Use
3469 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3470 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3471 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3472 * in a different thread of this mm, in turn leading to a misleading
3473 * pmd_trans_huge() retval. All we have to ensure is that it is a
3474 * regular pmd that we can walk with pte_offset_map() and we can do that
3475 * through an atomic read in C, which is what pmd_trans_unstable()
3476 * provides.
3477 */
3478 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3479 return 0;
3480 /*
3481 * A regular pmd is established and it can't morph into a huge pmd
3482 * from under us anymore at this point because we hold the mmap_sem
3483 * read mode and khugepaged takes it in write mode. So now it's
3484 * safe to run pte_offset_map().
3485 */
3486 pte = pte_offset_map(pmd, address);
3487
3488 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3489 }
3490
3491 /*
3492 * By the time we get here, we already hold the mm semaphore
3493 *
3494 * The mmap_sem may have been released depending on flags and our
3495 * return value. See filemap_fault() and __lock_page_or_retry().
3496 */
3497 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3498 unsigned long address, unsigned int flags)
3499 {
3500 int ret;
3501
3502 __set_current_state(TASK_RUNNING);
3503
3504 count_vm_event(PGFAULT);
3505 mem_cgroup_count_vm_event(mm, PGFAULT);
3506
3507 /* do counter updates before entering really critical section. */
3508 check_sync_rss_stat(current);
3509
3510 /*
3511 * Enable the memcg OOM handling for faults triggered in user
3512 * space. Kernel faults are handled more gracefully.
3513 */
3514 if (flags & FAULT_FLAG_USER)
3515 mem_cgroup_oom_enable();
3516
3517 ret = __handle_mm_fault(mm, vma, address, flags);
3518
3519 if (flags & FAULT_FLAG_USER) {
3520 mem_cgroup_oom_disable();
3521 /*
3522 * The task may have entered a memcg OOM situation but
3523 * if the allocation error was handled gracefully (no
3524 * VM_FAULT_OOM), there is no need to kill anything.
3525 * Just clean up the OOM state peacefully.
3526 */
3527 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3528 mem_cgroup_oom_synchronize(false);
3529 }
3530
3531 return ret;
3532 }
3533 EXPORT_SYMBOL_GPL(handle_mm_fault);
3534
3535 #ifndef __PAGETABLE_PUD_FOLDED
3536 /*
3537 * Allocate page upper directory.
3538 * We've already handled the fast-path in-line.
3539 */
3540 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3541 {
3542 pud_t *new = pud_alloc_one(mm, address);
3543 if (!new)
3544 return -ENOMEM;
3545
3546 smp_wmb(); /* See comment in __pte_alloc */
3547
3548 spin_lock(&mm->page_table_lock);
3549 if (pgd_present(*pgd)) /* Another has populated it */
3550 pud_free(mm, new);
3551 else
3552 pgd_populate(mm, pgd, new);
3553 spin_unlock(&mm->page_table_lock);
3554 return 0;
3555 }
3556 #endif /* __PAGETABLE_PUD_FOLDED */
3557
3558 #ifndef __PAGETABLE_PMD_FOLDED
3559 /*
3560 * Allocate page middle directory.
3561 * We've already handled the fast-path in-line.
3562 */
3563 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3564 {
3565 pmd_t *new = pmd_alloc_one(mm, address);
3566 if (!new)
3567 return -ENOMEM;
3568
3569 smp_wmb(); /* See comment in __pte_alloc */
3570
3571 spin_lock(&mm->page_table_lock);
3572 #ifndef __ARCH_HAS_4LEVEL_HACK
3573 if (!pud_present(*pud)) {
3574 mm_inc_nr_pmds(mm);
3575 pud_populate(mm, pud, new);
3576 } else /* Another has populated it */
3577 pmd_free(mm, new);
3578 #else
3579 if (!pgd_present(*pud)) {
3580 mm_inc_nr_pmds(mm);
3581 pgd_populate(mm, pud, new);
3582 } else /* Another has populated it */
3583 pmd_free(mm, new);
3584 #endif /* __ARCH_HAS_4LEVEL_HACK */
3585 spin_unlock(&mm->page_table_lock);
3586 return 0;
3587 }
3588 #endif /* __PAGETABLE_PMD_FOLDED */
3589
3590 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3591 pte_t **ptepp, spinlock_t **ptlp)
3592 {
3593 pgd_t *pgd;
3594 pud_t *pud;
3595 pmd_t *pmd;
3596 pte_t *ptep;
3597
3598 pgd = pgd_offset(mm, address);
3599 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3600 goto out;
3601
3602 pud = pud_offset(pgd, address);
3603 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3604 goto out;
3605
3606 pmd = pmd_offset(pud, address);
3607 VM_BUG_ON(pmd_trans_huge(*pmd));
3608 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3609 goto out;
3610
3611 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3612 if (pmd_huge(*pmd))
3613 goto out;
3614
3615 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3616 if (!ptep)
3617 goto out;
3618 if (!pte_present(*ptep))
3619 goto unlock;
3620 *ptepp = ptep;
3621 return 0;
3622 unlock:
3623 pte_unmap_unlock(ptep, *ptlp);
3624 out:
3625 return -EINVAL;
3626 }
3627
3628 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3629 pte_t **ptepp, spinlock_t **ptlp)
3630 {
3631 int res;
3632
3633 /* (void) is needed to make gcc happy */
3634 (void) __cond_lock(*ptlp,
3635 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3636 return res;
3637 }
3638
3639 /**
3640 * follow_pfn - look up PFN at a user virtual address
3641 * @vma: memory mapping
3642 * @address: user virtual address
3643 * @pfn: location to store found PFN
3644 *
3645 * Only IO mappings and raw PFN mappings are allowed.
3646 *
3647 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3648 */
3649 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3650 unsigned long *pfn)
3651 {
3652 int ret = -EINVAL;
3653 spinlock_t *ptl;
3654 pte_t *ptep;
3655
3656 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3657 return ret;
3658
3659 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3660 if (ret)
3661 return ret;
3662 *pfn = pte_pfn(*ptep);
3663 pte_unmap_unlock(ptep, ptl);
3664 return 0;
3665 }
3666 EXPORT_SYMBOL(follow_pfn);
3667
3668 #ifdef CONFIG_HAVE_IOREMAP_PROT
3669 int follow_phys(struct vm_area_struct *vma,
3670 unsigned long address, unsigned int flags,
3671 unsigned long *prot, resource_size_t *phys)
3672 {
3673 int ret = -EINVAL;
3674 pte_t *ptep, pte;
3675 spinlock_t *ptl;
3676
3677 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3678 goto out;
3679
3680 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3681 goto out;
3682 pte = *ptep;
3683
3684 if ((flags & FOLL_WRITE) && !pte_write(pte))
3685 goto unlock;
3686
3687 *prot = pgprot_val(pte_pgprot(pte));
3688 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3689
3690 ret = 0;
3691 unlock:
3692 pte_unmap_unlock(ptep, ptl);
3693 out:
3694 return ret;
3695 }
3696
3697 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3698 void *buf, int len, int write)
3699 {
3700 resource_size_t phys_addr;
3701 unsigned long prot = 0;
3702 void __iomem *maddr;
3703 int offset = addr & (PAGE_SIZE-1);
3704
3705 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3706 return -EINVAL;
3707
3708 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3709 if (write)
3710 memcpy_toio(maddr + offset, buf, len);
3711 else
3712 memcpy_fromio(buf, maddr + offset, len);
3713 iounmap(maddr);
3714
3715 return len;
3716 }
3717 EXPORT_SYMBOL_GPL(generic_access_phys);
3718 #endif
3719
3720 /*
3721 * Access another process' address space as given in mm. If non-NULL, use the
3722 * given task for page fault accounting.
3723 */
3724 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3725 unsigned long addr, void *buf, int len, int write)
3726 {
3727 struct vm_area_struct *vma;
3728 void *old_buf = buf;
3729
3730 down_read(&mm->mmap_sem);
3731 /* ignore errors, just check how much was successfully transferred */
3732 while (len) {
3733 int bytes, ret, offset;
3734 void *maddr;
3735 struct page *page = NULL;
3736
3737 ret = get_user_pages_remote(tsk, mm, addr, 1,
3738 write, 1, &page, &vma);
3739 if (ret <= 0) {
3740 #ifndef CONFIG_HAVE_IOREMAP_PROT
3741 break;
3742 #else
3743 /*
3744 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3745 * we can access using slightly different code.
3746 */
3747 vma = find_vma(mm, addr);
3748 if (!vma || vma->vm_start > addr)
3749 break;
3750 if (vma->vm_ops && vma->vm_ops->access)
3751 ret = vma->vm_ops->access(vma, addr, buf,
3752 len, write);
3753 if (ret <= 0)
3754 break;
3755 bytes = ret;
3756 #endif
3757 } else {
3758 bytes = len;
3759 offset = addr & (PAGE_SIZE-1);
3760 if (bytes > PAGE_SIZE-offset)
3761 bytes = PAGE_SIZE-offset;
3762
3763 maddr = kmap(page);
3764 if (write) {
3765 copy_to_user_page(vma, page, addr,
3766 maddr + offset, buf, bytes);
3767 set_page_dirty_lock(page);
3768 } else {
3769 copy_from_user_page(vma, page, addr,
3770 buf, maddr + offset, bytes);
3771 }
3772 kunmap(page);
3773 put_page(page);
3774 }
3775 len -= bytes;
3776 buf += bytes;
3777 addr += bytes;
3778 }
3779 up_read(&mm->mmap_sem);
3780
3781 return buf - old_buf;
3782 }
3783
3784 /**
3785 * access_remote_vm - access another process' address space
3786 * @mm: the mm_struct of the target address space
3787 * @addr: start address to access
3788 * @buf: source or destination buffer
3789 * @len: number of bytes to transfer
3790 * @write: whether the access is a write
3791 *
3792 * The caller must hold a reference on @mm.
3793 */
3794 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3795 void *buf, int len, int write)
3796 {
3797 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3798 }
3799
3800 /*
3801 * Access another process' address space.
3802 * Source/target buffer must be kernel space,
3803 * Do not walk the page table directly, use get_user_pages
3804 */
3805 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3806 void *buf, int len, int write)
3807 {
3808 struct mm_struct *mm;
3809 int ret;
3810
3811 mm = get_task_mm(tsk);
3812 if (!mm)
3813 return 0;
3814
3815 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3816 mmput(mm);
3817
3818 return ret;
3819 }
3820
3821 /*
3822 * Print the name of a VMA.
3823 */
3824 void print_vma_addr(char *prefix, unsigned long ip)
3825 {
3826 struct mm_struct *mm = current->mm;
3827 struct vm_area_struct *vma;
3828
3829 /*
3830 * Do not print if we are in atomic
3831 * contexts (in exception stacks, etc.):
3832 */
3833 if (preempt_count())
3834 return;
3835
3836 down_read(&mm->mmap_sem);
3837 vma = find_vma(mm, ip);
3838 if (vma && vma->vm_file) {
3839 struct file *f = vma->vm_file;
3840 char *buf = (char *)__get_free_page(GFP_KERNEL);
3841 if (buf) {
3842 char *p;
3843
3844 p = file_path(f, buf, PAGE_SIZE);
3845 if (IS_ERR(p))
3846 p = "?";
3847 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3848 vma->vm_start,
3849 vma->vm_end - vma->vm_start);
3850 free_page((unsigned long)buf);
3851 }
3852 }
3853 up_read(&mm->mmap_sem);
3854 }
3855
3856 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3857 void __might_fault(const char *file, int line)
3858 {
3859 /*
3860 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3861 * holding the mmap_sem, this is safe because kernel memory doesn't
3862 * get paged out, therefore we'll never actually fault, and the
3863 * below annotations will generate false positives.
3864 */
3865 if (segment_eq(get_fs(), KERNEL_DS))
3866 return;
3867 if (pagefault_disabled())
3868 return;
3869 __might_sleep(file, line, 0);
3870 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3871 if (current->mm)
3872 might_lock_read(&current->mm->mmap_sem);
3873 #endif
3874 }
3875 EXPORT_SYMBOL(__might_fault);
3876 #endif
3877
3878 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3879 static void clear_gigantic_page(struct page *page,
3880 unsigned long addr,
3881 unsigned int pages_per_huge_page)
3882 {
3883 int i;
3884 struct page *p = page;
3885
3886 might_sleep();
3887 for (i = 0; i < pages_per_huge_page;
3888 i++, p = mem_map_next(p, page, i)) {
3889 cond_resched();
3890 clear_user_highpage(p, addr + i * PAGE_SIZE);
3891 }
3892 }
3893 void clear_huge_page(struct page *page,
3894 unsigned long addr, unsigned int pages_per_huge_page)
3895 {
3896 int i;
3897
3898 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3899 clear_gigantic_page(page, addr, pages_per_huge_page);
3900 return;
3901 }
3902
3903 might_sleep();
3904 for (i = 0; i < pages_per_huge_page; i++) {
3905 cond_resched();
3906 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3907 }
3908 }
3909
3910 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3911 unsigned long addr,
3912 struct vm_area_struct *vma,
3913 unsigned int pages_per_huge_page)
3914 {
3915 int i;
3916 struct page *dst_base = dst;
3917 struct page *src_base = src;
3918
3919 for (i = 0; i < pages_per_huge_page; ) {
3920 cond_resched();
3921 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3922
3923 i++;
3924 dst = mem_map_next(dst, dst_base, i);
3925 src = mem_map_next(src, src_base, i);
3926 }
3927 }
3928
3929 void copy_user_huge_page(struct page *dst, struct page *src,
3930 unsigned long addr, struct vm_area_struct *vma,
3931 unsigned int pages_per_huge_page)
3932 {
3933 int i;
3934
3935 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3936 copy_user_gigantic_page(dst, src, addr, vma,
3937 pages_per_huge_page);
3938 return;
3939 }
3940
3941 might_sleep();
3942 for (i = 0; i < pages_per_huge_page; i++) {
3943 cond_resched();
3944 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3945 }
3946 }
3947 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3948
3949 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3950
3951 static struct kmem_cache *page_ptl_cachep;
3952
3953 void __init ptlock_cache_init(void)
3954 {
3955 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3956 SLAB_PANIC, NULL);
3957 }
3958
3959 bool ptlock_alloc(struct page *page)
3960 {
3961 spinlock_t *ptl;
3962
3963 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3964 if (!ptl)
3965 return false;
3966 page->ptl = ptl;
3967 return true;
3968 }
3969
3970 void ptlock_free(struct page *page)
3971 {
3972 kmem_cache_free(page_ptl_cachep, page->ptl);
3973 }
3974 #endif