]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/memory.c
Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-zesty-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (current->rss_stat.count[i]) {
134 add_mm_counter(mm, i, current->rss_stat.count[i]);
135 current->rss_stat.count[i] = 0;
136 }
137 }
138 current->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170
171 #endif /* SPLIT_RSS_COUNTING */
172
173 #ifdef HAVE_GENERIC_MMU_GATHER
174
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 struct mmu_gather_batch *batch;
178
179 batch = tlb->active;
180 if (batch->next) {
181 tlb->active = batch->next;
182 return 1;
183 }
184
185 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 if (!batch)
187 return 0;
188
189 batch->next = NULL;
190 batch->nr = 0;
191 batch->max = MAX_GATHER_BATCH;
192
193 tlb->active->next = batch;
194 tlb->active = batch;
195
196 return 1;
197 }
198
199 /* tlb_gather_mmu
200 * Called to initialize an (on-stack) mmu_gather structure for page-table
201 * tear-down from @mm. The @fullmm argument is used when @mm is without
202 * users and we're going to destroy the full address space (exit/execve).
203 */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 tlb->mm = mm;
207
208 tlb->fullmm = fullmm;
209 tlb->need_flush = 0;
210 tlb->fast_mode = (num_possible_cpus() == 1);
211 tlb->local.next = NULL;
212 tlb->local.nr = 0;
213 tlb->local.max = ARRAY_SIZE(tlb->__pages);
214 tlb->active = &tlb->local;
215
216 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
217 tlb->batch = NULL;
218 #endif
219 }
220
221 void tlb_flush_mmu(struct mmu_gather *tlb)
222 {
223 struct mmu_gather_batch *batch;
224
225 if (!tlb->need_flush)
226 return;
227 tlb->need_flush = 0;
228 tlb_flush(tlb);
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb_table_flush(tlb);
231 #endif
232
233 if (tlb_fast_mode(tlb))
234 return;
235
236 for (batch = &tlb->local; batch; batch = batch->next) {
237 free_pages_and_swap_cache(batch->pages, batch->nr);
238 batch->nr = 0;
239 }
240 tlb->active = &tlb->local;
241 }
242
243 /* tlb_finish_mmu
244 * Called at the end of the shootdown operation to free up any resources
245 * that were required.
246 */
247 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
248 {
249 struct mmu_gather_batch *batch, *next;
250
251 tlb_flush_mmu(tlb);
252
253 /* keep the page table cache within bounds */
254 check_pgt_cache();
255
256 for (batch = tlb->local.next; batch; batch = next) {
257 next = batch->next;
258 free_pages((unsigned long)batch, 0);
259 }
260 tlb->local.next = NULL;
261 }
262
263 /* __tlb_remove_page
264 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
265 * handling the additional races in SMP caused by other CPUs caching valid
266 * mappings in their TLBs. Returns the number of free page slots left.
267 * When out of page slots we must call tlb_flush_mmu().
268 */
269 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
270 {
271 struct mmu_gather_batch *batch;
272
273 VM_BUG_ON(!tlb->need_flush);
274
275 if (tlb_fast_mode(tlb)) {
276 free_page_and_swap_cache(page);
277 return 1; /* avoid calling tlb_flush_mmu() */
278 }
279
280 batch = tlb->active;
281 batch->pages[batch->nr++] = page;
282 if (batch->nr == batch->max) {
283 if (!tlb_next_batch(tlb))
284 return 0;
285 batch = tlb->active;
286 }
287 VM_BUG_ON(batch->nr > batch->max);
288
289 return batch->max - batch->nr;
290 }
291
292 #endif /* HAVE_GENERIC_MMU_GATHER */
293
294 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
295
296 /*
297 * See the comment near struct mmu_table_batch.
298 */
299
300 static void tlb_remove_table_smp_sync(void *arg)
301 {
302 /* Simply deliver the interrupt */
303 }
304
305 static void tlb_remove_table_one(void *table)
306 {
307 /*
308 * This isn't an RCU grace period and hence the page-tables cannot be
309 * assumed to be actually RCU-freed.
310 *
311 * It is however sufficient for software page-table walkers that rely on
312 * IRQ disabling. See the comment near struct mmu_table_batch.
313 */
314 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
315 __tlb_remove_table(table);
316 }
317
318 static void tlb_remove_table_rcu(struct rcu_head *head)
319 {
320 struct mmu_table_batch *batch;
321 int i;
322
323 batch = container_of(head, struct mmu_table_batch, rcu);
324
325 for (i = 0; i < batch->nr; i++)
326 __tlb_remove_table(batch->tables[i]);
327
328 free_page((unsigned long)batch);
329 }
330
331 void tlb_table_flush(struct mmu_gather *tlb)
332 {
333 struct mmu_table_batch **batch = &tlb->batch;
334
335 if (*batch) {
336 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
337 *batch = NULL;
338 }
339 }
340
341 void tlb_remove_table(struct mmu_gather *tlb, void *table)
342 {
343 struct mmu_table_batch **batch = &tlb->batch;
344
345 tlb->need_flush = 1;
346
347 /*
348 * When there's less then two users of this mm there cannot be a
349 * concurrent page-table walk.
350 */
351 if (atomic_read(&tlb->mm->mm_users) < 2) {
352 __tlb_remove_table(table);
353 return;
354 }
355
356 if (*batch == NULL) {
357 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
358 if (*batch == NULL) {
359 tlb_remove_table_one(table);
360 return;
361 }
362 (*batch)->nr = 0;
363 }
364 (*batch)->tables[(*batch)->nr++] = table;
365 if ((*batch)->nr == MAX_TABLE_BATCH)
366 tlb_table_flush(tlb);
367 }
368
369 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
370
371 /*
372 * If a p?d_bad entry is found while walking page tables, report
373 * the error, before resetting entry to p?d_none. Usually (but
374 * very seldom) called out from the p?d_none_or_clear_bad macros.
375 */
376
377 void pgd_clear_bad(pgd_t *pgd)
378 {
379 pgd_ERROR(*pgd);
380 pgd_clear(pgd);
381 }
382
383 void pud_clear_bad(pud_t *pud)
384 {
385 pud_ERROR(*pud);
386 pud_clear(pud);
387 }
388
389 void pmd_clear_bad(pmd_t *pmd)
390 {
391 pmd_ERROR(*pmd);
392 pmd_clear(pmd);
393 }
394
395 /*
396 * Note: this doesn't free the actual pages themselves. That
397 * has been handled earlier when unmapping all the memory regions.
398 */
399 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
400 unsigned long addr)
401 {
402 pgtable_t token = pmd_pgtable(*pmd);
403 pmd_clear(pmd);
404 pte_free_tlb(tlb, token, addr);
405 tlb->mm->nr_ptes--;
406 }
407
408 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
409 unsigned long addr, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
411 {
412 pmd_t *pmd;
413 unsigned long next;
414 unsigned long start;
415
416 start = addr;
417 pmd = pmd_offset(pud, addr);
418 do {
419 next = pmd_addr_end(addr, end);
420 if (pmd_none_or_clear_bad(pmd))
421 continue;
422 free_pte_range(tlb, pmd, addr);
423 } while (pmd++, addr = next, addr != end);
424
425 start &= PUD_MASK;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= PUD_MASK;
430 if (!ceiling)
431 return;
432 }
433 if (end - 1 > ceiling - 1)
434 return;
435
436 pmd = pmd_offset(pud, start);
437 pud_clear(pud);
438 pmd_free_tlb(tlb, pmd, start);
439 }
440
441 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
442 unsigned long addr, unsigned long end,
443 unsigned long floor, unsigned long ceiling)
444 {
445 pud_t *pud;
446 unsigned long next;
447 unsigned long start;
448
449 start = addr;
450 pud = pud_offset(pgd, addr);
451 do {
452 next = pud_addr_end(addr, end);
453 if (pud_none_or_clear_bad(pud))
454 continue;
455 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
456 } while (pud++, addr = next, addr != end);
457
458 start &= PGDIR_MASK;
459 if (start < floor)
460 return;
461 if (ceiling) {
462 ceiling &= PGDIR_MASK;
463 if (!ceiling)
464 return;
465 }
466 if (end - 1 > ceiling - 1)
467 return;
468
469 pud = pud_offset(pgd, start);
470 pgd_clear(pgd);
471 pud_free_tlb(tlb, pud, start);
472 }
473
474 /*
475 * This function frees user-level page tables of a process.
476 *
477 * Must be called with pagetable lock held.
478 */
479 void free_pgd_range(struct mmu_gather *tlb,
480 unsigned long addr, unsigned long end,
481 unsigned long floor, unsigned long ceiling)
482 {
483 pgd_t *pgd;
484 unsigned long next;
485
486 /*
487 * The next few lines have given us lots of grief...
488 *
489 * Why are we testing PMD* at this top level? Because often
490 * there will be no work to do at all, and we'd prefer not to
491 * go all the way down to the bottom just to discover that.
492 *
493 * Why all these "- 1"s? Because 0 represents both the bottom
494 * of the address space and the top of it (using -1 for the
495 * top wouldn't help much: the masks would do the wrong thing).
496 * The rule is that addr 0 and floor 0 refer to the bottom of
497 * the address space, but end 0 and ceiling 0 refer to the top
498 * Comparisons need to use "end - 1" and "ceiling - 1" (though
499 * that end 0 case should be mythical).
500 *
501 * Wherever addr is brought up or ceiling brought down, we must
502 * be careful to reject "the opposite 0" before it confuses the
503 * subsequent tests. But what about where end is brought down
504 * by PMD_SIZE below? no, end can't go down to 0 there.
505 *
506 * Whereas we round start (addr) and ceiling down, by different
507 * masks at different levels, in order to test whether a table
508 * now has no other vmas using it, so can be freed, we don't
509 * bother to round floor or end up - the tests don't need that.
510 */
511
512 addr &= PMD_MASK;
513 if (addr < floor) {
514 addr += PMD_SIZE;
515 if (!addr)
516 return;
517 }
518 if (ceiling) {
519 ceiling &= PMD_MASK;
520 if (!ceiling)
521 return;
522 }
523 if (end - 1 > ceiling - 1)
524 end -= PMD_SIZE;
525 if (addr > end - 1)
526 return;
527
528 pgd = pgd_offset(tlb->mm, addr);
529 do {
530 next = pgd_addr_end(addr, end);
531 if (pgd_none_or_clear_bad(pgd))
532 continue;
533 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
534 } while (pgd++, addr = next, addr != end);
535 }
536
537 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
538 unsigned long floor, unsigned long ceiling)
539 {
540 while (vma) {
541 struct vm_area_struct *next = vma->vm_next;
542 unsigned long addr = vma->vm_start;
543
544 /*
545 * Hide vma from rmap and truncate_pagecache before freeing
546 * pgtables
547 */
548 unlink_anon_vmas(vma);
549 unlink_file_vma(vma);
550
551 if (is_vm_hugetlb_page(vma)) {
552 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
553 floor, next? next->vm_start: ceiling);
554 } else {
555 /*
556 * Optimization: gather nearby vmas into one call down
557 */
558 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
559 && !is_vm_hugetlb_page(next)) {
560 vma = next;
561 next = vma->vm_next;
562 unlink_anon_vmas(vma);
563 unlink_file_vma(vma);
564 }
565 free_pgd_range(tlb, addr, vma->vm_end,
566 floor, next? next->vm_start: ceiling);
567 }
568 vma = next;
569 }
570 }
571
572 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
573 pmd_t *pmd, unsigned long address)
574 {
575 pgtable_t new = pte_alloc_one(mm, address);
576 int wait_split_huge_page;
577 if (!new)
578 return -ENOMEM;
579
580 /*
581 * Ensure all pte setup (eg. pte page lock and page clearing) are
582 * visible before the pte is made visible to other CPUs by being
583 * put into page tables.
584 *
585 * The other side of the story is the pointer chasing in the page
586 * table walking code (when walking the page table without locking;
587 * ie. most of the time). Fortunately, these data accesses consist
588 * of a chain of data-dependent loads, meaning most CPUs (alpha
589 * being the notable exception) will already guarantee loads are
590 * seen in-order. See the alpha page table accessors for the
591 * smp_read_barrier_depends() barriers in page table walking code.
592 */
593 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
594
595 spin_lock(&mm->page_table_lock);
596 wait_split_huge_page = 0;
597 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
598 mm->nr_ptes++;
599 pmd_populate(mm, pmd, new);
600 new = NULL;
601 } else if (unlikely(pmd_trans_splitting(*pmd)))
602 wait_split_huge_page = 1;
603 spin_unlock(&mm->page_table_lock);
604 if (new)
605 pte_free(mm, new);
606 if (wait_split_huge_page)
607 wait_split_huge_page(vma->anon_vma, pmd);
608 return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614 if (!new)
615 return -ENOMEM;
616
617 smp_wmb(); /* See comment in __pte_alloc */
618
619 spin_lock(&init_mm.page_table_lock);
620 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
621 pmd_populate_kernel(&init_mm, pmd, new);
622 new = NULL;
623 } else
624 VM_BUG_ON(pmd_trans_splitting(*pmd));
625 spin_unlock(&init_mm.page_table_lock);
626 if (new)
627 pte_free_kernel(&init_mm, new);
628 return 0;
629 }
630
631 static inline void init_rss_vec(int *rss)
632 {
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634 }
635
636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
637 {
638 int i;
639
640 if (current->mm == mm)
641 sync_mm_rss(mm);
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
645 }
646
647 /*
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
651 *
652 * The calling function must still handle the error.
653 */
654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
656 {
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
665
666 /*
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
669 */
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
674 }
675 if (nr_unshown) {
676 printk(KERN_ALERT
677 "BUG: Bad page map: %lu messages suppressed\n",
678 nr_unshown);
679 nr_unshown = 0;
680 }
681 nr_shown = 0;
682 }
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
685
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
688
689 printk(KERN_ALERT
690 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 current->comm,
692 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693 if (page)
694 dump_page(page);
695 printk(KERN_ALERT
696 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
697 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
698 /*
699 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
700 */
701 if (vma->vm_ops)
702 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
703 (unsigned long)vma->vm_ops->fault);
704 if (vma->vm_file && vma->vm_file->f_op)
705 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
706 (unsigned long)vma->vm_file->f_op->mmap);
707 dump_stack();
708 add_taint(TAINT_BAD_PAGE);
709 }
710
711 static inline int is_cow_mapping(vm_flags_t flags)
712 {
713 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
714 }
715
716 #ifndef is_zero_pfn
717 static inline int is_zero_pfn(unsigned long pfn)
718 {
719 return pfn == zero_pfn;
720 }
721 #endif
722
723 #ifndef my_zero_pfn
724 static inline unsigned long my_zero_pfn(unsigned long addr)
725 {
726 return zero_pfn;
727 }
728 #endif
729
730 /*
731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
732 *
733 * "Special" mappings do not wish to be associated with a "struct page" (either
734 * it doesn't exist, or it exists but they don't want to touch it). In this
735 * case, NULL is returned here. "Normal" mappings do have a struct page.
736 *
737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
738 * pte bit, in which case this function is trivial. Secondly, an architecture
739 * may not have a spare pte bit, which requires a more complicated scheme,
740 * described below.
741 *
742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
743 * special mapping (even if there are underlying and valid "struct pages").
744 * COWed pages of a VM_PFNMAP are always normal.
745 *
746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
749 * mapping will always honor the rule
750 *
751 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
752 *
753 * And for normal mappings this is false.
754 *
755 * This restricts such mappings to be a linear translation from virtual address
756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
757 * as the vma is not a COW mapping; in that case, we know that all ptes are
758 * special (because none can have been COWed).
759 *
760 *
761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
762 *
763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
764 * page" backing, however the difference is that _all_ pages with a struct
765 * page (that is, those where pfn_valid is true) are refcounted and considered
766 * normal pages by the VM. The disadvantage is that pages are refcounted
767 * (which can be slower and simply not an option for some PFNMAP users). The
768 * advantage is that we don't have to follow the strict linearity rule of
769 * PFNMAP mappings in order to support COWable mappings.
770 *
771 */
772 #ifdef __HAVE_ARCH_PTE_SPECIAL
773 # define HAVE_PTE_SPECIAL 1
774 #else
775 # define HAVE_PTE_SPECIAL 0
776 #endif
777 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
778 pte_t pte)
779 {
780 unsigned long pfn = pte_pfn(pte);
781
782 if (HAVE_PTE_SPECIAL) {
783 if (likely(!pte_special(pte)))
784 goto check_pfn;
785 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
786 return NULL;
787 if (!is_zero_pfn(pfn))
788 print_bad_pte(vma, addr, pte, NULL);
789 return NULL;
790 }
791
792 /* !HAVE_PTE_SPECIAL case follows: */
793
794 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
795 if (vma->vm_flags & VM_MIXEDMAP) {
796 if (!pfn_valid(pfn))
797 return NULL;
798 goto out;
799 } else {
800 unsigned long off;
801 off = (addr - vma->vm_start) >> PAGE_SHIFT;
802 if (pfn == vma->vm_pgoff + off)
803 return NULL;
804 if (!is_cow_mapping(vma->vm_flags))
805 return NULL;
806 }
807 }
808
809 if (is_zero_pfn(pfn))
810 return NULL;
811 check_pfn:
812 if (unlikely(pfn > highest_memmap_pfn)) {
813 print_bad_pte(vma, addr, pte, NULL);
814 return NULL;
815 }
816
817 /*
818 * NOTE! We still have PageReserved() pages in the page tables.
819 * eg. VDSO mappings can cause them to exist.
820 */
821 out:
822 return pfn_to_page(pfn);
823 }
824
825 /*
826 * copy one vm_area from one task to the other. Assumes the page tables
827 * already present in the new task to be cleared in the whole range
828 * covered by this vma.
829 */
830
831 static inline unsigned long
832 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
833 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
834 unsigned long addr, int *rss)
835 {
836 unsigned long vm_flags = vma->vm_flags;
837 pte_t pte = *src_pte;
838 struct page *page;
839
840 /* pte contains position in swap or file, so copy. */
841 if (unlikely(!pte_present(pte))) {
842 if (!pte_file(pte)) {
843 swp_entry_t entry = pte_to_swp_entry(pte);
844
845 if (swap_duplicate(entry) < 0)
846 return entry.val;
847
848 /* make sure dst_mm is on swapoff's mmlist. */
849 if (unlikely(list_empty(&dst_mm->mmlist))) {
850 spin_lock(&mmlist_lock);
851 if (list_empty(&dst_mm->mmlist))
852 list_add(&dst_mm->mmlist,
853 &src_mm->mmlist);
854 spin_unlock(&mmlist_lock);
855 }
856 if (likely(!non_swap_entry(entry)))
857 rss[MM_SWAPENTS]++;
858 else if (is_migration_entry(entry)) {
859 page = migration_entry_to_page(entry);
860
861 if (PageAnon(page))
862 rss[MM_ANONPAGES]++;
863 else
864 rss[MM_FILEPAGES]++;
865
866 if (is_write_migration_entry(entry) &&
867 is_cow_mapping(vm_flags)) {
868 /*
869 * COW mappings require pages in both
870 * parent and child to be set to read.
871 */
872 make_migration_entry_read(&entry);
873 pte = swp_entry_to_pte(entry);
874 set_pte_at(src_mm, addr, src_pte, pte);
875 }
876 }
877 }
878 goto out_set_pte;
879 }
880
881 /*
882 * If it's a COW mapping, write protect it both
883 * in the parent and the child
884 */
885 if (is_cow_mapping(vm_flags)) {
886 ptep_set_wrprotect(src_mm, addr, src_pte);
887 pte = pte_wrprotect(pte);
888 }
889
890 /*
891 * If it's a shared mapping, mark it clean in
892 * the child
893 */
894 if (vm_flags & VM_SHARED)
895 pte = pte_mkclean(pte);
896 pte = pte_mkold(pte);
897
898 page = vm_normal_page(vma, addr, pte);
899 if (page) {
900 get_page(page);
901 page_dup_rmap(page);
902 if (PageAnon(page))
903 rss[MM_ANONPAGES]++;
904 else
905 rss[MM_FILEPAGES]++;
906 }
907
908 out_set_pte:
909 set_pte_at(dst_mm, addr, dst_pte, pte);
910 return 0;
911 }
912
913 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
915 unsigned long addr, unsigned long end)
916 {
917 pte_t *orig_src_pte, *orig_dst_pte;
918 pte_t *src_pte, *dst_pte;
919 spinlock_t *src_ptl, *dst_ptl;
920 int progress = 0;
921 int rss[NR_MM_COUNTERS];
922 swp_entry_t entry = (swp_entry_t){0};
923
924 again:
925 init_rss_vec(rss);
926
927 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
928 if (!dst_pte)
929 return -ENOMEM;
930 src_pte = pte_offset_map(src_pmd, addr);
931 src_ptl = pte_lockptr(src_mm, src_pmd);
932 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
933 orig_src_pte = src_pte;
934 orig_dst_pte = dst_pte;
935 arch_enter_lazy_mmu_mode();
936
937 do {
938 /*
939 * We are holding two locks at this point - either of them
940 * could generate latencies in another task on another CPU.
941 */
942 if (progress >= 32) {
943 progress = 0;
944 if (need_resched() ||
945 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
946 break;
947 }
948 if (pte_none(*src_pte)) {
949 progress++;
950 continue;
951 }
952 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
953 vma, addr, rss);
954 if (entry.val)
955 break;
956 progress += 8;
957 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
958
959 arch_leave_lazy_mmu_mode();
960 spin_unlock(src_ptl);
961 pte_unmap(orig_src_pte);
962 add_mm_rss_vec(dst_mm, rss);
963 pte_unmap_unlock(orig_dst_pte, dst_ptl);
964 cond_resched();
965
966 if (entry.val) {
967 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
968 return -ENOMEM;
969 progress = 0;
970 }
971 if (addr != end)
972 goto again;
973 return 0;
974 }
975
976 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
978 unsigned long addr, unsigned long end)
979 {
980 pmd_t *src_pmd, *dst_pmd;
981 unsigned long next;
982
983 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
984 if (!dst_pmd)
985 return -ENOMEM;
986 src_pmd = pmd_offset(src_pud, addr);
987 do {
988 next = pmd_addr_end(addr, end);
989 if (pmd_trans_huge(*src_pmd)) {
990 int err;
991 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
992 err = copy_huge_pmd(dst_mm, src_mm,
993 dst_pmd, src_pmd, addr, vma);
994 if (err == -ENOMEM)
995 return -ENOMEM;
996 if (!err)
997 continue;
998 /* fall through */
999 }
1000 if (pmd_none_or_clear_bad(src_pmd))
1001 continue;
1002 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003 vma, addr, next))
1004 return -ENOMEM;
1005 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006 return 0;
1007 }
1008
1009 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011 unsigned long addr, unsigned long end)
1012 {
1013 pud_t *src_pud, *dst_pud;
1014 unsigned long next;
1015
1016 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017 if (!dst_pud)
1018 return -ENOMEM;
1019 src_pud = pud_offset(src_pgd, addr);
1020 do {
1021 next = pud_addr_end(addr, end);
1022 if (pud_none_or_clear_bad(src_pud))
1023 continue;
1024 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025 vma, addr, next))
1026 return -ENOMEM;
1027 } while (dst_pud++, src_pud++, addr = next, addr != end);
1028 return 0;
1029 }
1030
1031 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032 struct vm_area_struct *vma)
1033 {
1034 pgd_t *src_pgd, *dst_pgd;
1035 unsigned long next;
1036 unsigned long addr = vma->vm_start;
1037 unsigned long end = vma->vm_end;
1038 int ret;
1039
1040 /*
1041 * Don't copy ptes where a page fault will fill them correctly.
1042 * Fork becomes much lighter when there are big shared or private
1043 * readonly mappings. The tradeoff is that copy_page_range is more
1044 * efficient than faulting.
1045 */
1046 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047 if (!vma->anon_vma)
1048 return 0;
1049 }
1050
1051 if (is_vm_hugetlb_page(vma))
1052 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054 if (unlikely(is_pfn_mapping(vma))) {
1055 /*
1056 * We do not free on error cases below as remove_vma
1057 * gets called on error from higher level routine
1058 */
1059 ret = track_pfn_vma_copy(vma);
1060 if (ret)
1061 return ret;
1062 }
1063
1064 /*
1065 * We need to invalidate the secondary MMU mappings only when
1066 * there could be a permission downgrade on the ptes of the
1067 * parent mm. And a permission downgrade will only happen if
1068 * is_cow_mapping() returns true.
1069 */
1070 if (is_cow_mapping(vma->vm_flags))
1071 mmu_notifier_invalidate_range_start(src_mm, addr, end);
1072
1073 ret = 0;
1074 dst_pgd = pgd_offset(dst_mm, addr);
1075 src_pgd = pgd_offset(src_mm, addr);
1076 do {
1077 next = pgd_addr_end(addr, end);
1078 if (pgd_none_or_clear_bad(src_pgd))
1079 continue;
1080 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 vma, addr, next))) {
1082 ret = -ENOMEM;
1083 break;
1084 }
1085 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087 if (is_cow_mapping(vma->vm_flags))
1088 mmu_notifier_invalidate_range_end(src_mm,
1089 vma->vm_start, end);
1090 return ret;
1091 }
1092
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 struct vm_area_struct *vma, pmd_t *pmd,
1095 unsigned long addr, unsigned long end,
1096 struct zap_details *details)
1097 {
1098 struct mm_struct *mm = tlb->mm;
1099 int force_flush = 0;
1100 int rss[NR_MM_COUNTERS];
1101 spinlock_t *ptl;
1102 pte_t *start_pte;
1103 pte_t *pte;
1104
1105 again:
1106 init_rss_vec(rss);
1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 pte = start_pte;
1109 arch_enter_lazy_mmu_mode();
1110 do {
1111 pte_t ptent = *pte;
1112 if (pte_none(ptent)) {
1113 continue;
1114 }
1115
1116 if (pte_present(ptent)) {
1117 struct page *page;
1118
1119 page = vm_normal_page(vma, addr, ptent);
1120 if (unlikely(details) && page) {
1121 /*
1122 * unmap_shared_mapping_pages() wants to
1123 * invalidate cache without truncating:
1124 * unmap shared but keep private pages.
1125 */
1126 if (details->check_mapping &&
1127 details->check_mapping != page->mapping)
1128 continue;
1129 /*
1130 * Each page->index must be checked when
1131 * invalidating or truncating nonlinear.
1132 */
1133 if (details->nonlinear_vma &&
1134 (page->index < details->first_index ||
1135 page->index > details->last_index))
1136 continue;
1137 }
1138 ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 tlb->fullmm);
1140 tlb_remove_tlb_entry(tlb, pte, addr);
1141 if (unlikely(!page))
1142 continue;
1143 if (unlikely(details) && details->nonlinear_vma
1144 && linear_page_index(details->nonlinear_vma,
1145 addr) != page->index)
1146 set_pte_at(mm, addr, pte,
1147 pgoff_to_pte(page->index));
1148 if (PageAnon(page))
1149 rss[MM_ANONPAGES]--;
1150 else {
1151 if (pte_dirty(ptent))
1152 set_page_dirty(page);
1153 if (pte_young(ptent) &&
1154 likely(!VM_SequentialReadHint(vma)))
1155 mark_page_accessed(page);
1156 rss[MM_FILEPAGES]--;
1157 }
1158 page_remove_rmap(page);
1159 if (unlikely(page_mapcount(page) < 0))
1160 print_bad_pte(vma, addr, ptent, page);
1161 force_flush = !__tlb_remove_page(tlb, page);
1162 if (force_flush)
1163 break;
1164 continue;
1165 }
1166 /*
1167 * If details->check_mapping, we leave swap entries;
1168 * if details->nonlinear_vma, we leave file entries.
1169 */
1170 if (unlikely(details))
1171 continue;
1172 if (pte_file(ptent)) {
1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 print_bad_pte(vma, addr, ptent, NULL);
1175 } else {
1176 swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178 if (!non_swap_entry(entry))
1179 rss[MM_SWAPENTS]--;
1180 else if (is_migration_entry(entry)) {
1181 struct page *page;
1182
1183 page = migration_entry_to_page(entry);
1184
1185 if (PageAnon(page))
1186 rss[MM_ANONPAGES]--;
1187 else
1188 rss[MM_FILEPAGES]--;
1189 }
1190 if (unlikely(!free_swap_and_cache(entry)))
1191 print_bad_pte(vma, addr, ptent, NULL);
1192 }
1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 } while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196 add_mm_rss_vec(mm, rss);
1197 arch_leave_lazy_mmu_mode();
1198 pte_unmap_unlock(start_pte, ptl);
1199
1200 /*
1201 * mmu_gather ran out of room to batch pages, we break out of
1202 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 * and page-free while holding it.
1204 */
1205 if (force_flush) {
1206 force_flush = 0;
1207 tlb_flush_mmu(tlb);
1208 if (addr != end)
1209 goto again;
1210 }
1211
1212 return addr;
1213 }
1214
1215 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216 struct vm_area_struct *vma, pud_t *pud,
1217 unsigned long addr, unsigned long end,
1218 struct zap_details *details)
1219 {
1220 pmd_t *pmd;
1221 unsigned long next;
1222
1223 pmd = pmd_offset(pud, addr);
1224 do {
1225 next = pmd_addr_end(addr, end);
1226 if (pmd_trans_huge(*pmd)) {
1227 if (next - addr != HPAGE_PMD_SIZE) {
1228 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1229 split_huge_page_pmd(vma->vm_mm, pmd);
1230 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231 goto next;
1232 /* fall through */
1233 }
1234 /*
1235 * Here there can be other concurrent MADV_DONTNEED or
1236 * trans huge page faults running, and if the pmd is
1237 * none or trans huge it can change under us. This is
1238 * because MADV_DONTNEED holds the mmap_sem in read
1239 * mode.
1240 */
1241 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 goto next;
1243 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245 cond_resched();
1246 } while (pmd++, addr = next, addr != end);
1247
1248 return addr;
1249 }
1250
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252 struct vm_area_struct *vma, pgd_t *pgd,
1253 unsigned long addr, unsigned long end,
1254 struct zap_details *details)
1255 {
1256 pud_t *pud;
1257 unsigned long next;
1258
1259 pud = pud_offset(pgd, addr);
1260 do {
1261 next = pud_addr_end(addr, end);
1262 if (pud_none_or_clear_bad(pud))
1263 continue;
1264 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 } while (pud++, addr = next, addr != end);
1266
1267 return addr;
1268 }
1269
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma,
1272 unsigned long addr, unsigned long end,
1273 struct zap_details *details)
1274 {
1275 pgd_t *pgd;
1276 unsigned long next;
1277
1278 if (details && !details->check_mapping && !details->nonlinear_vma)
1279 details = NULL;
1280
1281 BUG_ON(addr >= end);
1282 mem_cgroup_uncharge_start();
1283 tlb_start_vma(tlb, vma);
1284 pgd = pgd_offset(vma->vm_mm, addr);
1285 do {
1286 next = pgd_addr_end(addr, end);
1287 if (pgd_none_or_clear_bad(pgd))
1288 continue;
1289 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 } while (pgd++, addr = next, addr != end);
1291 tlb_end_vma(tlb, vma);
1292 mem_cgroup_uncharge_end();
1293 }
1294
1295
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma, unsigned long start_addr,
1298 unsigned long end_addr,
1299 struct zap_details *details)
1300 {
1301 unsigned long start = max(vma->vm_start, start_addr);
1302 unsigned long end;
1303
1304 if (start >= vma->vm_end)
1305 return;
1306 end = min(vma->vm_end, end_addr);
1307 if (end <= vma->vm_start)
1308 return;
1309
1310 if (vma->vm_file)
1311 uprobe_munmap(vma, start, end);
1312
1313 if (unlikely(is_pfn_mapping(vma)))
1314 untrack_pfn_vma(vma, 0, 0);
1315
1316 if (start != end) {
1317 if (unlikely(is_vm_hugetlb_page(vma))) {
1318 /*
1319 * It is undesirable to test vma->vm_file as it
1320 * should be non-null for valid hugetlb area.
1321 * However, vm_file will be NULL in the error
1322 * cleanup path of do_mmap_pgoff. When
1323 * hugetlbfs ->mmap method fails,
1324 * do_mmap_pgoff() nullifies vma->vm_file
1325 * before calling this function to clean up.
1326 * Since no pte has actually been setup, it is
1327 * safe to do nothing in this case.
1328 */
1329 if (vma->vm_file)
1330 unmap_hugepage_range(vma, start, end, NULL);
1331 } else
1332 unmap_page_range(tlb, vma, start, end, details);
1333 }
1334 }
1335
1336 /**
1337 * unmap_vmas - unmap a range of memory covered by a list of vma's
1338 * @tlb: address of the caller's struct mmu_gather
1339 * @vma: the starting vma
1340 * @start_addr: virtual address at which to start unmapping
1341 * @end_addr: virtual address at which to end unmapping
1342 *
1343 * Unmap all pages in the vma list.
1344 *
1345 * Only addresses between `start' and `end' will be unmapped.
1346 *
1347 * The VMA list must be sorted in ascending virtual address order.
1348 *
1349 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1350 * range after unmap_vmas() returns. So the only responsibility here is to
1351 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1352 * drops the lock and schedules.
1353 */
1354 void unmap_vmas(struct mmu_gather *tlb,
1355 struct vm_area_struct *vma, unsigned long start_addr,
1356 unsigned long end_addr)
1357 {
1358 struct mm_struct *mm = vma->vm_mm;
1359
1360 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1361 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1362 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1363 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1364 }
1365
1366 /**
1367 * zap_page_range - remove user pages in a given range
1368 * @vma: vm_area_struct holding the applicable pages
1369 * @address: starting address of pages to zap
1370 * @size: number of bytes to zap
1371 * @details: details of nonlinear truncation or shared cache invalidation
1372 *
1373 * Caller must protect the VMA list
1374 */
1375 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1376 unsigned long size, struct zap_details *details)
1377 {
1378 struct mm_struct *mm = vma->vm_mm;
1379 struct mmu_gather tlb;
1380 unsigned long end = start + size;
1381
1382 lru_add_drain();
1383 tlb_gather_mmu(&tlb, mm, 0);
1384 update_hiwater_rss(mm);
1385 mmu_notifier_invalidate_range_start(mm, start, end);
1386 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1387 unmap_single_vma(&tlb, vma, start, end, details);
1388 mmu_notifier_invalidate_range_end(mm, start, end);
1389 tlb_finish_mmu(&tlb, start, end);
1390 }
1391
1392 /**
1393 * zap_page_range_single - remove user pages in a given range
1394 * @vma: vm_area_struct holding the applicable pages
1395 * @address: starting address of pages to zap
1396 * @size: number of bytes to zap
1397 * @details: details of nonlinear truncation or shared cache invalidation
1398 *
1399 * The range must fit into one VMA.
1400 */
1401 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1402 unsigned long size, struct zap_details *details)
1403 {
1404 struct mm_struct *mm = vma->vm_mm;
1405 struct mmu_gather tlb;
1406 unsigned long end = address + size;
1407
1408 lru_add_drain();
1409 tlb_gather_mmu(&tlb, mm, 0);
1410 update_hiwater_rss(mm);
1411 mmu_notifier_invalidate_range_start(mm, address, end);
1412 unmap_single_vma(&tlb, vma, address, end, details);
1413 mmu_notifier_invalidate_range_end(mm, address, end);
1414 tlb_finish_mmu(&tlb, address, end);
1415 }
1416
1417 /**
1418 * zap_vma_ptes - remove ptes mapping the vma
1419 * @vma: vm_area_struct holding ptes to be zapped
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 *
1423 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1424 *
1425 * The entire address range must be fully contained within the vma.
1426 *
1427 * Returns 0 if successful.
1428 */
1429 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1430 unsigned long size)
1431 {
1432 if (address < vma->vm_start || address + size > vma->vm_end ||
1433 !(vma->vm_flags & VM_PFNMAP))
1434 return -1;
1435 zap_page_range_single(vma, address, size, NULL);
1436 return 0;
1437 }
1438 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1439
1440 /**
1441 * follow_page - look up a page descriptor from a user-virtual address
1442 * @vma: vm_area_struct mapping @address
1443 * @address: virtual address to look up
1444 * @flags: flags modifying lookup behaviour
1445 *
1446 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1447 *
1448 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1449 * an error pointer if there is a mapping to something not represented
1450 * by a page descriptor (see also vm_normal_page()).
1451 */
1452 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1453 unsigned int flags)
1454 {
1455 pgd_t *pgd;
1456 pud_t *pud;
1457 pmd_t *pmd;
1458 pte_t *ptep, pte;
1459 spinlock_t *ptl;
1460 struct page *page;
1461 struct mm_struct *mm = vma->vm_mm;
1462
1463 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1464 if (!IS_ERR(page)) {
1465 BUG_ON(flags & FOLL_GET);
1466 goto out;
1467 }
1468
1469 page = NULL;
1470 pgd = pgd_offset(mm, address);
1471 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1472 goto no_page_table;
1473
1474 pud = pud_offset(pgd, address);
1475 if (pud_none(*pud))
1476 goto no_page_table;
1477 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1478 BUG_ON(flags & FOLL_GET);
1479 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1480 goto out;
1481 }
1482 if (unlikely(pud_bad(*pud)))
1483 goto no_page_table;
1484
1485 pmd = pmd_offset(pud, address);
1486 if (pmd_none(*pmd))
1487 goto no_page_table;
1488 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1489 BUG_ON(flags & FOLL_GET);
1490 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1491 goto out;
1492 }
1493 if (pmd_trans_huge(*pmd)) {
1494 if (flags & FOLL_SPLIT) {
1495 split_huge_page_pmd(mm, pmd);
1496 goto split_fallthrough;
1497 }
1498 spin_lock(&mm->page_table_lock);
1499 if (likely(pmd_trans_huge(*pmd))) {
1500 if (unlikely(pmd_trans_splitting(*pmd))) {
1501 spin_unlock(&mm->page_table_lock);
1502 wait_split_huge_page(vma->anon_vma, pmd);
1503 } else {
1504 page = follow_trans_huge_pmd(mm, address,
1505 pmd, flags);
1506 spin_unlock(&mm->page_table_lock);
1507 goto out;
1508 }
1509 } else
1510 spin_unlock(&mm->page_table_lock);
1511 /* fall through */
1512 }
1513 split_fallthrough:
1514 if (unlikely(pmd_bad(*pmd)))
1515 goto no_page_table;
1516
1517 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1518
1519 pte = *ptep;
1520 if (!pte_present(pte))
1521 goto no_page;
1522 if ((flags & FOLL_WRITE) && !pte_write(pte))
1523 goto unlock;
1524
1525 page = vm_normal_page(vma, address, pte);
1526 if (unlikely(!page)) {
1527 if ((flags & FOLL_DUMP) ||
1528 !is_zero_pfn(pte_pfn(pte)))
1529 goto bad_page;
1530 page = pte_page(pte);
1531 }
1532
1533 if (flags & FOLL_GET)
1534 get_page_foll(page);
1535 if (flags & FOLL_TOUCH) {
1536 if ((flags & FOLL_WRITE) &&
1537 !pte_dirty(pte) && !PageDirty(page))
1538 set_page_dirty(page);
1539 /*
1540 * pte_mkyoung() would be more correct here, but atomic care
1541 * is needed to avoid losing the dirty bit: it is easier to use
1542 * mark_page_accessed().
1543 */
1544 mark_page_accessed(page);
1545 }
1546 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1547 /*
1548 * The preliminary mapping check is mainly to avoid the
1549 * pointless overhead of lock_page on the ZERO_PAGE
1550 * which might bounce very badly if there is contention.
1551 *
1552 * If the page is already locked, we don't need to
1553 * handle it now - vmscan will handle it later if and
1554 * when it attempts to reclaim the page.
1555 */
1556 if (page->mapping && trylock_page(page)) {
1557 lru_add_drain(); /* push cached pages to LRU */
1558 /*
1559 * Because we lock page here and migration is
1560 * blocked by the pte's page reference, we need
1561 * only check for file-cache page truncation.
1562 */
1563 if (page->mapping)
1564 mlock_vma_page(page);
1565 unlock_page(page);
1566 }
1567 }
1568 unlock:
1569 pte_unmap_unlock(ptep, ptl);
1570 out:
1571 return page;
1572
1573 bad_page:
1574 pte_unmap_unlock(ptep, ptl);
1575 return ERR_PTR(-EFAULT);
1576
1577 no_page:
1578 pte_unmap_unlock(ptep, ptl);
1579 if (!pte_none(pte))
1580 return page;
1581
1582 no_page_table:
1583 /*
1584 * When core dumping an enormous anonymous area that nobody
1585 * has touched so far, we don't want to allocate unnecessary pages or
1586 * page tables. Return error instead of NULL to skip handle_mm_fault,
1587 * then get_dump_page() will return NULL to leave a hole in the dump.
1588 * But we can only make this optimization where a hole would surely
1589 * be zero-filled if handle_mm_fault() actually did handle it.
1590 */
1591 if ((flags & FOLL_DUMP) &&
1592 (!vma->vm_ops || !vma->vm_ops->fault))
1593 return ERR_PTR(-EFAULT);
1594 return page;
1595 }
1596
1597 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1598 {
1599 return stack_guard_page_start(vma, addr) ||
1600 stack_guard_page_end(vma, addr+PAGE_SIZE);
1601 }
1602
1603 /**
1604 * __get_user_pages() - pin user pages in memory
1605 * @tsk: task_struct of target task
1606 * @mm: mm_struct of target mm
1607 * @start: starting user address
1608 * @nr_pages: number of pages from start to pin
1609 * @gup_flags: flags modifying pin behaviour
1610 * @pages: array that receives pointers to the pages pinned.
1611 * Should be at least nr_pages long. Or NULL, if caller
1612 * only intends to ensure the pages are faulted in.
1613 * @vmas: array of pointers to vmas corresponding to each page.
1614 * Or NULL if the caller does not require them.
1615 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1616 *
1617 * Returns number of pages pinned. This may be fewer than the number
1618 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1619 * were pinned, returns -errno. Each page returned must be released
1620 * with a put_page() call when it is finished with. vmas will only
1621 * remain valid while mmap_sem is held.
1622 *
1623 * Must be called with mmap_sem held for read or write.
1624 *
1625 * __get_user_pages walks a process's page tables and takes a reference to
1626 * each struct page that each user address corresponds to at a given
1627 * instant. That is, it takes the page that would be accessed if a user
1628 * thread accesses the given user virtual address at that instant.
1629 *
1630 * This does not guarantee that the page exists in the user mappings when
1631 * __get_user_pages returns, and there may even be a completely different
1632 * page there in some cases (eg. if mmapped pagecache has been invalidated
1633 * and subsequently re faulted). However it does guarantee that the page
1634 * won't be freed completely. And mostly callers simply care that the page
1635 * contains data that was valid *at some point in time*. Typically, an IO
1636 * or similar operation cannot guarantee anything stronger anyway because
1637 * locks can't be held over the syscall boundary.
1638 *
1639 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1640 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1641 * appropriate) must be called after the page is finished with, and
1642 * before put_page is called.
1643 *
1644 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1645 * or mmap_sem contention, and if waiting is needed to pin all pages,
1646 * *@nonblocking will be set to 0.
1647 *
1648 * In most cases, get_user_pages or get_user_pages_fast should be used
1649 * instead of __get_user_pages. __get_user_pages should be used only if
1650 * you need some special @gup_flags.
1651 */
1652 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1653 unsigned long start, int nr_pages, unsigned int gup_flags,
1654 struct page **pages, struct vm_area_struct **vmas,
1655 int *nonblocking)
1656 {
1657 int i;
1658 unsigned long vm_flags;
1659
1660 if (nr_pages <= 0)
1661 return 0;
1662
1663 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1664
1665 /*
1666 * Require read or write permissions.
1667 * If FOLL_FORCE is set, we only require the "MAY" flags.
1668 */
1669 vm_flags = (gup_flags & FOLL_WRITE) ?
1670 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1671 vm_flags &= (gup_flags & FOLL_FORCE) ?
1672 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1673 i = 0;
1674
1675 do {
1676 struct vm_area_struct *vma;
1677
1678 vma = find_extend_vma(mm, start);
1679 if (!vma && in_gate_area(mm, start)) {
1680 unsigned long pg = start & PAGE_MASK;
1681 pgd_t *pgd;
1682 pud_t *pud;
1683 pmd_t *pmd;
1684 pte_t *pte;
1685
1686 /* user gate pages are read-only */
1687 if (gup_flags & FOLL_WRITE)
1688 return i ? : -EFAULT;
1689 if (pg > TASK_SIZE)
1690 pgd = pgd_offset_k(pg);
1691 else
1692 pgd = pgd_offset_gate(mm, pg);
1693 BUG_ON(pgd_none(*pgd));
1694 pud = pud_offset(pgd, pg);
1695 BUG_ON(pud_none(*pud));
1696 pmd = pmd_offset(pud, pg);
1697 if (pmd_none(*pmd))
1698 return i ? : -EFAULT;
1699 VM_BUG_ON(pmd_trans_huge(*pmd));
1700 pte = pte_offset_map(pmd, pg);
1701 if (pte_none(*pte)) {
1702 pte_unmap(pte);
1703 return i ? : -EFAULT;
1704 }
1705 vma = get_gate_vma(mm);
1706 if (pages) {
1707 struct page *page;
1708
1709 page = vm_normal_page(vma, start, *pte);
1710 if (!page) {
1711 if (!(gup_flags & FOLL_DUMP) &&
1712 is_zero_pfn(pte_pfn(*pte)))
1713 page = pte_page(*pte);
1714 else {
1715 pte_unmap(pte);
1716 return i ? : -EFAULT;
1717 }
1718 }
1719 pages[i] = page;
1720 get_page(page);
1721 }
1722 pte_unmap(pte);
1723 goto next_page;
1724 }
1725
1726 if (!vma ||
1727 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1728 !(vm_flags & vma->vm_flags))
1729 return i ? : -EFAULT;
1730
1731 if (is_vm_hugetlb_page(vma)) {
1732 i = follow_hugetlb_page(mm, vma, pages, vmas,
1733 &start, &nr_pages, i, gup_flags);
1734 continue;
1735 }
1736
1737 do {
1738 struct page *page;
1739 unsigned int foll_flags = gup_flags;
1740
1741 /*
1742 * If we have a pending SIGKILL, don't keep faulting
1743 * pages and potentially allocating memory.
1744 */
1745 if (unlikely(fatal_signal_pending(current)))
1746 return i ? i : -ERESTARTSYS;
1747
1748 cond_resched();
1749 while (!(page = follow_page(vma, start, foll_flags))) {
1750 int ret;
1751 unsigned int fault_flags = 0;
1752
1753 /* For mlock, just skip the stack guard page. */
1754 if (foll_flags & FOLL_MLOCK) {
1755 if (stack_guard_page(vma, start))
1756 goto next_page;
1757 }
1758 if (foll_flags & FOLL_WRITE)
1759 fault_flags |= FAULT_FLAG_WRITE;
1760 if (nonblocking)
1761 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1762 if (foll_flags & FOLL_NOWAIT)
1763 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1764
1765 ret = handle_mm_fault(mm, vma, start,
1766 fault_flags);
1767
1768 if (ret & VM_FAULT_ERROR) {
1769 if (ret & VM_FAULT_OOM)
1770 return i ? i : -ENOMEM;
1771 if (ret & (VM_FAULT_HWPOISON |
1772 VM_FAULT_HWPOISON_LARGE)) {
1773 if (i)
1774 return i;
1775 else if (gup_flags & FOLL_HWPOISON)
1776 return -EHWPOISON;
1777 else
1778 return -EFAULT;
1779 }
1780 if (ret & VM_FAULT_SIGBUS)
1781 return i ? i : -EFAULT;
1782 BUG();
1783 }
1784
1785 if (tsk) {
1786 if (ret & VM_FAULT_MAJOR)
1787 tsk->maj_flt++;
1788 else
1789 tsk->min_flt++;
1790 }
1791
1792 if (ret & VM_FAULT_RETRY) {
1793 if (nonblocking)
1794 *nonblocking = 0;
1795 return i;
1796 }
1797
1798 /*
1799 * The VM_FAULT_WRITE bit tells us that
1800 * do_wp_page has broken COW when necessary,
1801 * even if maybe_mkwrite decided not to set
1802 * pte_write. We can thus safely do subsequent
1803 * page lookups as if they were reads. But only
1804 * do so when looping for pte_write is futile:
1805 * in some cases userspace may also be wanting
1806 * to write to the gotten user page, which a
1807 * read fault here might prevent (a readonly
1808 * page might get reCOWed by userspace write).
1809 */
1810 if ((ret & VM_FAULT_WRITE) &&
1811 !(vma->vm_flags & VM_WRITE))
1812 foll_flags &= ~FOLL_WRITE;
1813
1814 cond_resched();
1815 }
1816 if (IS_ERR(page))
1817 return i ? i : PTR_ERR(page);
1818 if (pages) {
1819 pages[i] = page;
1820
1821 flush_anon_page(vma, page, start);
1822 flush_dcache_page(page);
1823 }
1824 next_page:
1825 if (vmas)
1826 vmas[i] = vma;
1827 i++;
1828 start += PAGE_SIZE;
1829 nr_pages--;
1830 } while (nr_pages && start < vma->vm_end);
1831 } while (nr_pages);
1832 return i;
1833 }
1834 EXPORT_SYMBOL(__get_user_pages);
1835
1836 /*
1837 * fixup_user_fault() - manually resolve a user page fault
1838 * @tsk: the task_struct to use for page fault accounting, or
1839 * NULL if faults are not to be recorded.
1840 * @mm: mm_struct of target mm
1841 * @address: user address
1842 * @fault_flags:flags to pass down to handle_mm_fault()
1843 *
1844 * This is meant to be called in the specific scenario where for locking reasons
1845 * we try to access user memory in atomic context (within a pagefault_disable()
1846 * section), this returns -EFAULT, and we want to resolve the user fault before
1847 * trying again.
1848 *
1849 * Typically this is meant to be used by the futex code.
1850 *
1851 * The main difference with get_user_pages() is that this function will
1852 * unconditionally call handle_mm_fault() which will in turn perform all the
1853 * necessary SW fixup of the dirty and young bits in the PTE, while
1854 * handle_mm_fault() only guarantees to update these in the struct page.
1855 *
1856 * This is important for some architectures where those bits also gate the
1857 * access permission to the page because they are maintained in software. On
1858 * such architectures, gup() will not be enough to make a subsequent access
1859 * succeed.
1860 *
1861 * This should be called with the mm_sem held for read.
1862 */
1863 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1864 unsigned long address, unsigned int fault_flags)
1865 {
1866 struct vm_area_struct *vma;
1867 int ret;
1868
1869 vma = find_extend_vma(mm, address);
1870 if (!vma || address < vma->vm_start)
1871 return -EFAULT;
1872
1873 ret = handle_mm_fault(mm, vma, address, fault_flags);
1874 if (ret & VM_FAULT_ERROR) {
1875 if (ret & VM_FAULT_OOM)
1876 return -ENOMEM;
1877 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1878 return -EHWPOISON;
1879 if (ret & VM_FAULT_SIGBUS)
1880 return -EFAULT;
1881 BUG();
1882 }
1883 if (tsk) {
1884 if (ret & VM_FAULT_MAJOR)
1885 tsk->maj_flt++;
1886 else
1887 tsk->min_flt++;
1888 }
1889 return 0;
1890 }
1891
1892 /*
1893 * get_user_pages() - pin user pages in memory
1894 * @tsk: the task_struct to use for page fault accounting, or
1895 * NULL if faults are not to be recorded.
1896 * @mm: mm_struct of target mm
1897 * @start: starting user address
1898 * @nr_pages: number of pages from start to pin
1899 * @write: whether pages will be written to by the caller
1900 * @force: whether to force write access even if user mapping is
1901 * readonly. This will result in the page being COWed even
1902 * in MAP_SHARED mappings. You do not want this.
1903 * @pages: array that receives pointers to the pages pinned.
1904 * Should be at least nr_pages long. Or NULL, if caller
1905 * only intends to ensure the pages are faulted in.
1906 * @vmas: array of pointers to vmas corresponding to each page.
1907 * Or NULL if the caller does not require them.
1908 *
1909 * Returns number of pages pinned. This may be fewer than the number
1910 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1911 * were pinned, returns -errno. Each page returned must be released
1912 * with a put_page() call when it is finished with. vmas will only
1913 * remain valid while mmap_sem is held.
1914 *
1915 * Must be called with mmap_sem held for read or write.
1916 *
1917 * get_user_pages walks a process's page tables and takes a reference to
1918 * each struct page that each user address corresponds to at a given
1919 * instant. That is, it takes the page that would be accessed if a user
1920 * thread accesses the given user virtual address at that instant.
1921 *
1922 * This does not guarantee that the page exists in the user mappings when
1923 * get_user_pages returns, and there may even be a completely different
1924 * page there in some cases (eg. if mmapped pagecache has been invalidated
1925 * and subsequently re faulted). However it does guarantee that the page
1926 * won't be freed completely. And mostly callers simply care that the page
1927 * contains data that was valid *at some point in time*. Typically, an IO
1928 * or similar operation cannot guarantee anything stronger anyway because
1929 * locks can't be held over the syscall boundary.
1930 *
1931 * If write=0, the page must not be written to. If the page is written to,
1932 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1933 * after the page is finished with, and before put_page is called.
1934 *
1935 * get_user_pages is typically used for fewer-copy IO operations, to get a
1936 * handle on the memory by some means other than accesses via the user virtual
1937 * addresses. The pages may be submitted for DMA to devices or accessed via
1938 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1939 * use the correct cache flushing APIs.
1940 *
1941 * See also get_user_pages_fast, for performance critical applications.
1942 */
1943 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1944 unsigned long start, int nr_pages, int write, int force,
1945 struct page **pages, struct vm_area_struct **vmas)
1946 {
1947 int flags = FOLL_TOUCH;
1948
1949 if (pages)
1950 flags |= FOLL_GET;
1951 if (write)
1952 flags |= FOLL_WRITE;
1953 if (force)
1954 flags |= FOLL_FORCE;
1955
1956 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1957 NULL);
1958 }
1959 EXPORT_SYMBOL(get_user_pages);
1960
1961 /**
1962 * get_dump_page() - pin user page in memory while writing it to core dump
1963 * @addr: user address
1964 *
1965 * Returns struct page pointer of user page pinned for dump,
1966 * to be freed afterwards by page_cache_release() or put_page().
1967 *
1968 * Returns NULL on any kind of failure - a hole must then be inserted into
1969 * the corefile, to preserve alignment with its headers; and also returns
1970 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1971 * allowing a hole to be left in the corefile to save diskspace.
1972 *
1973 * Called without mmap_sem, but after all other threads have been killed.
1974 */
1975 #ifdef CONFIG_ELF_CORE
1976 struct page *get_dump_page(unsigned long addr)
1977 {
1978 struct vm_area_struct *vma;
1979 struct page *page;
1980
1981 if (__get_user_pages(current, current->mm, addr, 1,
1982 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1983 NULL) < 1)
1984 return NULL;
1985 flush_cache_page(vma, addr, page_to_pfn(page));
1986 return page;
1987 }
1988 #endif /* CONFIG_ELF_CORE */
1989
1990 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1991 spinlock_t **ptl)
1992 {
1993 pgd_t * pgd = pgd_offset(mm, addr);
1994 pud_t * pud = pud_alloc(mm, pgd, addr);
1995 if (pud) {
1996 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1997 if (pmd) {
1998 VM_BUG_ON(pmd_trans_huge(*pmd));
1999 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2000 }
2001 }
2002 return NULL;
2003 }
2004
2005 /*
2006 * This is the old fallback for page remapping.
2007 *
2008 * For historical reasons, it only allows reserved pages. Only
2009 * old drivers should use this, and they needed to mark their
2010 * pages reserved for the old functions anyway.
2011 */
2012 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2013 struct page *page, pgprot_t prot)
2014 {
2015 struct mm_struct *mm = vma->vm_mm;
2016 int retval;
2017 pte_t *pte;
2018 spinlock_t *ptl;
2019
2020 retval = -EINVAL;
2021 if (PageAnon(page))
2022 goto out;
2023 retval = -ENOMEM;
2024 flush_dcache_page(page);
2025 pte = get_locked_pte(mm, addr, &ptl);
2026 if (!pte)
2027 goto out;
2028 retval = -EBUSY;
2029 if (!pte_none(*pte))
2030 goto out_unlock;
2031
2032 /* Ok, finally just insert the thing.. */
2033 get_page(page);
2034 inc_mm_counter_fast(mm, MM_FILEPAGES);
2035 page_add_file_rmap(page);
2036 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2037
2038 retval = 0;
2039 pte_unmap_unlock(pte, ptl);
2040 return retval;
2041 out_unlock:
2042 pte_unmap_unlock(pte, ptl);
2043 out:
2044 return retval;
2045 }
2046
2047 /**
2048 * vm_insert_page - insert single page into user vma
2049 * @vma: user vma to map to
2050 * @addr: target user address of this page
2051 * @page: source kernel page
2052 *
2053 * This allows drivers to insert individual pages they've allocated
2054 * into a user vma.
2055 *
2056 * The page has to be a nice clean _individual_ kernel allocation.
2057 * If you allocate a compound page, you need to have marked it as
2058 * such (__GFP_COMP), or manually just split the page up yourself
2059 * (see split_page()).
2060 *
2061 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2062 * took an arbitrary page protection parameter. This doesn't allow
2063 * that. Your vma protection will have to be set up correctly, which
2064 * means that if you want a shared writable mapping, you'd better
2065 * ask for a shared writable mapping!
2066 *
2067 * The page does not need to be reserved.
2068 */
2069 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2070 struct page *page)
2071 {
2072 if (addr < vma->vm_start || addr >= vma->vm_end)
2073 return -EFAULT;
2074 if (!page_count(page))
2075 return -EINVAL;
2076 vma->vm_flags |= VM_INSERTPAGE;
2077 return insert_page(vma, addr, page, vma->vm_page_prot);
2078 }
2079 EXPORT_SYMBOL(vm_insert_page);
2080
2081 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2082 unsigned long pfn, pgprot_t prot)
2083 {
2084 struct mm_struct *mm = vma->vm_mm;
2085 int retval;
2086 pte_t *pte, entry;
2087 spinlock_t *ptl;
2088
2089 retval = -ENOMEM;
2090 pte = get_locked_pte(mm, addr, &ptl);
2091 if (!pte)
2092 goto out;
2093 retval = -EBUSY;
2094 if (!pte_none(*pte))
2095 goto out_unlock;
2096
2097 /* Ok, finally just insert the thing.. */
2098 entry = pte_mkspecial(pfn_pte(pfn, prot));
2099 set_pte_at(mm, addr, pte, entry);
2100 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2101
2102 retval = 0;
2103 out_unlock:
2104 pte_unmap_unlock(pte, ptl);
2105 out:
2106 return retval;
2107 }
2108
2109 /**
2110 * vm_insert_pfn - insert single pfn into user vma
2111 * @vma: user vma to map to
2112 * @addr: target user address of this page
2113 * @pfn: source kernel pfn
2114 *
2115 * Similar to vm_inert_page, this allows drivers to insert individual pages
2116 * they've allocated into a user vma. Same comments apply.
2117 *
2118 * This function should only be called from a vm_ops->fault handler, and
2119 * in that case the handler should return NULL.
2120 *
2121 * vma cannot be a COW mapping.
2122 *
2123 * As this is called only for pages that do not currently exist, we
2124 * do not need to flush old virtual caches or the TLB.
2125 */
2126 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2127 unsigned long pfn)
2128 {
2129 int ret;
2130 pgprot_t pgprot = vma->vm_page_prot;
2131 /*
2132 * Technically, architectures with pte_special can avoid all these
2133 * restrictions (same for remap_pfn_range). However we would like
2134 * consistency in testing and feature parity among all, so we should
2135 * try to keep these invariants in place for everybody.
2136 */
2137 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2138 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2139 (VM_PFNMAP|VM_MIXEDMAP));
2140 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2141 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2142
2143 if (addr < vma->vm_start || addr >= vma->vm_end)
2144 return -EFAULT;
2145 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2146 return -EINVAL;
2147
2148 ret = insert_pfn(vma, addr, pfn, pgprot);
2149
2150 if (ret)
2151 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2152
2153 return ret;
2154 }
2155 EXPORT_SYMBOL(vm_insert_pfn);
2156
2157 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158 unsigned long pfn)
2159 {
2160 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2161
2162 if (addr < vma->vm_start || addr >= vma->vm_end)
2163 return -EFAULT;
2164
2165 /*
2166 * If we don't have pte special, then we have to use the pfn_valid()
2167 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2168 * refcount the page if pfn_valid is true (hence insert_page rather
2169 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2170 * without pte special, it would there be refcounted as a normal page.
2171 */
2172 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2173 struct page *page;
2174
2175 page = pfn_to_page(pfn);
2176 return insert_page(vma, addr, page, vma->vm_page_prot);
2177 }
2178 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2179 }
2180 EXPORT_SYMBOL(vm_insert_mixed);
2181
2182 /*
2183 * maps a range of physical memory into the requested pages. the old
2184 * mappings are removed. any references to nonexistent pages results
2185 * in null mappings (currently treated as "copy-on-access")
2186 */
2187 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2188 unsigned long addr, unsigned long end,
2189 unsigned long pfn, pgprot_t prot)
2190 {
2191 pte_t *pte;
2192 spinlock_t *ptl;
2193
2194 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2195 if (!pte)
2196 return -ENOMEM;
2197 arch_enter_lazy_mmu_mode();
2198 do {
2199 BUG_ON(!pte_none(*pte));
2200 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2201 pfn++;
2202 } while (pte++, addr += PAGE_SIZE, addr != end);
2203 arch_leave_lazy_mmu_mode();
2204 pte_unmap_unlock(pte - 1, ptl);
2205 return 0;
2206 }
2207
2208 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2209 unsigned long addr, unsigned long end,
2210 unsigned long pfn, pgprot_t prot)
2211 {
2212 pmd_t *pmd;
2213 unsigned long next;
2214
2215 pfn -= addr >> PAGE_SHIFT;
2216 pmd = pmd_alloc(mm, pud, addr);
2217 if (!pmd)
2218 return -ENOMEM;
2219 VM_BUG_ON(pmd_trans_huge(*pmd));
2220 do {
2221 next = pmd_addr_end(addr, end);
2222 if (remap_pte_range(mm, pmd, addr, next,
2223 pfn + (addr >> PAGE_SHIFT), prot))
2224 return -ENOMEM;
2225 } while (pmd++, addr = next, addr != end);
2226 return 0;
2227 }
2228
2229 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2230 unsigned long addr, unsigned long end,
2231 unsigned long pfn, pgprot_t prot)
2232 {
2233 pud_t *pud;
2234 unsigned long next;
2235
2236 pfn -= addr >> PAGE_SHIFT;
2237 pud = pud_alloc(mm, pgd, addr);
2238 if (!pud)
2239 return -ENOMEM;
2240 do {
2241 next = pud_addr_end(addr, end);
2242 if (remap_pmd_range(mm, pud, addr, next,
2243 pfn + (addr >> PAGE_SHIFT), prot))
2244 return -ENOMEM;
2245 } while (pud++, addr = next, addr != end);
2246 return 0;
2247 }
2248
2249 /**
2250 * remap_pfn_range - remap kernel memory to userspace
2251 * @vma: user vma to map to
2252 * @addr: target user address to start at
2253 * @pfn: physical address of kernel memory
2254 * @size: size of map area
2255 * @prot: page protection flags for this mapping
2256 *
2257 * Note: this is only safe if the mm semaphore is held when called.
2258 */
2259 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2260 unsigned long pfn, unsigned long size, pgprot_t prot)
2261 {
2262 pgd_t *pgd;
2263 unsigned long next;
2264 unsigned long end = addr + PAGE_ALIGN(size);
2265 struct mm_struct *mm = vma->vm_mm;
2266 int err;
2267
2268 /*
2269 * Physically remapped pages are special. Tell the
2270 * rest of the world about it:
2271 * VM_IO tells people not to look at these pages
2272 * (accesses can have side effects).
2273 * VM_RESERVED is specified all over the place, because
2274 * in 2.4 it kept swapout's vma scan off this vma; but
2275 * in 2.6 the LRU scan won't even find its pages, so this
2276 * flag means no more than count its pages in reserved_vm,
2277 * and omit it from core dump, even when VM_IO turned off.
2278 * VM_PFNMAP tells the core MM that the base pages are just
2279 * raw PFN mappings, and do not have a "struct page" associated
2280 * with them.
2281 *
2282 * There's a horrible special case to handle copy-on-write
2283 * behaviour that some programs depend on. We mark the "original"
2284 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2285 */
2286 if (addr == vma->vm_start && end == vma->vm_end) {
2287 vma->vm_pgoff = pfn;
2288 vma->vm_flags |= VM_PFN_AT_MMAP;
2289 } else if (is_cow_mapping(vma->vm_flags))
2290 return -EINVAL;
2291
2292 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2293
2294 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2295 if (err) {
2296 /*
2297 * To indicate that track_pfn related cleanup is not
2298 * needed from higher level routine calling unmap_vmas
2299 */
2300 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2301 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2302 return -EINVAL;
2303 }
2304
2305 BUG_ON(addr >= end);
2306 pfn -= addr >> PAGE_SHIFT;
2307 pgd = pgd_offset(mm, addr);
2308 flush_cache_range(vma, addr, end);
2309 do {
2310 next = pgd_addr_end(addr, end);
2311 err = remap_pud_range(mm, pgd, addr, next,
2312 pfn + (addr >> PAGE_SHIFT), prot);
2313 if (err)
2314 break;
2315 } while (pgd++, addr = next, addr != end);
2316
2317 if (err)
2318 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2319
2320 return err;
2321 }
2322 EXPORT_SYMBOL(remap_pfn_range);
2323
2324 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2325 unsigned long addr, unsigned long end,
2326 pte_fn_t fn, void *data)
2327 {
2328 pte_t *pte;
2329 int err;
2330 pgtable_t token;
2331 spinlock_t *uninitialized_var(ptl);
2332
2333 pte = (mm == &init_mm) ?
2334 pte_alloc_kernel(pmd, addr) :
2335 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2336 if (!pte)
2337 return -ENOMEM;
2338
2339 BUG_ON(pmd_huge(*pmd));
2340
2341 arch_enter_lazy_mmu_mode();
2342
2343 token = pmd_pgtable(*pmd);
2344
2345 do {
2346 err = fn(pte++, token, addr, data);
2347 if (err)
2348 break;
2349 } while (addr += PAGE_SIZE, addr != end);
2350
2351 arch_leave_lazy_mmu_mode();
2352
2353 if (mm != &init_mm)
2354 pte_unmap_unlock(pte-1, ptl);
2355 return err;
2356 }
2357
2358 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2359 unsigned long addr, unsigned long end,
2360 pte_fn_t fn, void *data)
2361 {
2362 pmd_t *pmd;
2363 unsigned long next;
2364 int err;
2365
2366 BUG_ON(pud_huge(*pud));
2367
2368 pmd = pmd_alloc(mm, pud, addr);
2369 if (!pmd)
2370 return -ENOMEM;
2371 do {
2372 next = pmd_addr_end(addr, end);
2373 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2374 if (err)
2375 break;
2376 } while (pmd++, addr = next, addr != end);
2377 return err;
2378 }
2379
2380 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2381 unsigned long addr, unsigned long end,
2382 pte_fn_t fn, void *data)
2383 {
2384 pud_t *pud;
2385 unsigned long next;
2386 int err;
2387
2388 pud = pud_alloc(mm, pgd, addr);
2389 if (!pud)
2390 return -ENOMEM;
2391 do {
2392 next = pud_addr_end(addr, end);
2393 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2394 if (err)
2395 break;
2396 } while (pud++, addr = next, addr != end);
2397 return err;
2398 }
2399
2400 /*
2401 * Scan a region of virtual memory, filling in page tables as necessary
2402 * and calling a provided function on each leaf page table.
2403 */
2404 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2405 unsigned long size, pte_fn_t fn, void *data)
2406 {
2407 pgd_t *pgd;
2408 unsigned long next;
2409 unsigned long end = addr + size;
2410 int err;
2411
2412 BUG_ON(addr >= end);
2413 pgd = pgd_offset(mm, addr);
2414 do {
2415 next = pgd_addr_end(addr, end);
2416 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2417 if (err)
2418 break;
2419 } while (pgd++, addr = next, addr != end);
2420
2421 return err;
2422 }
2423 EXPORT_SYMBOL_GPL(apply_to_page_range);
2424
2425 /*
2426 * handle_pte_fault chooses page fault handler according to an entry
2427 * which was read non-atomically. Before making any commitment, on
2428 * those architectures or configurations (e.g. i386 with PAE) which
2429 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2430 * must check under lock before unmapping the pte and proceeding
2431 * (but do_wp_page is only called after already making such a check;
2432 * and do_anonymous_page can safely check later on).
2433 */
2434 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2435 pte_t *page_table, pte_t orig_pte)
2436 {
2437 int same = 1;
2438 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2439 if (sizeof(pte_t) > sizeof(unsigned long)) {
2440 spinlock_t *ptl = pte_lockptr(mm, pmd);
2441 spin_lock(ptl);
2442 same = pte_same(*page_table, orig_pte);
2443 spin_unlock(ptl);
2444 }
2445 #endif
2446 pte_unmap(page_table);
2447 return same;
2448 }
2449
2450 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2451 {
2452 /*
2453 * If the source page was a PFN mapping, we don't have
2454 * a "struct page" for it. We do a best-effort copy by
2455 * just copying from the original user address. If that
2456 * fails, we just zero-fill it. Live with it.
2457 */
2458 if (unlikely(!src)) {
2459 void *kaddr = kmap_atomic(dst);
2460 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2461
2462 /*
2463 * This really shouldn't fail, because the page is there
2464 * in the page tables. But it might just be unreadable,
2465 * in which case we just give up and fill the result with
2466 * zeroes.
2467 */
2468 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2469 clear_page(kaddr);
2470 kunmap_atomic(kaddr);
2471 flush_dcache_page(dst);
2472 } else
2473 copy_user_highpage(dst, src, va, vma);
2474 }
2475
2476 /*
2477 * This routine handles present pages, when users try to write
2478 * to a shared page. It is done by copying the page to a new address
2479 * and decrementing the shared-page counter for the old page.
2480 *
2481 * Note that this routine assumes that the protection checks have been
2482 * done by the caller (the low-level page fault routine in most cases).
2483 * Thus we can safely just mark it writable once we've done any necessary
2484 * COW.
2485 *
2486 * We also mark the page dirty at this point even though the page will
2487 * change only once the write actually happens. This avoids a few races,
2488 * and potentially makes it more efficient.
2489 *
2490 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2491 * but allow concurrent faults), with pte both mapped and locked.
2492 * We return with mmap_sem still held, but pte unmapped and unlocked.
2493 */
2494 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2495 unsigned long address, pte_t *page_table, pmd_t *pmd,
2496 spinlock_t *ptl, pte_t orig_pte)
2497 __releases(ptl)
2498 {
2499 struct page *old_page, *new_page;
2500 pte_t entry;
2501 int ret = 0;
2502 int page_mkwrite = 0;
2503 struct page *dirty_page = NULL;
2504
2505 old_page = vm_normal_page(vma, address, orig_pte);
2506 if (!old_page) {
2507 /*
2508 * VM_MIXEDMAP !pfn_valid() case
2509 *
2510 * We should not cow pages in a shared writeable mapping.
2511 * Just mark the pages writable as we can't do any dirty
2512 * accounting on raw pfn maps.
2513 */
2514 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2515 (VM_WRITE|VM_SHARED))
2516 goto reuse;
2517 goto gotten;
2518 }
2519
2520 /*
2521 * Take out anonymous pages first, anonymous shared vmas are
2522 * not dirty accountable.
2523 */
2524 if (PageAnon(old_page) && !PageKsm(old_page)) {
2525 if (!trylock_page(old_page)) {
2526 page_cache_get(old_page);
2527 pte_unmap_unlock(page_table, ptl);
2528 lock_page(old_page);
2529 page_table = pte_offset_map_lock(mm, pmd, address,
2530 &ptl);
2531 if (!pte_same(*page_table, orig_pte)) {
2532 unlock_page(old_page);
2533 goto unlock;
2534 }
2535 page_cache_release(old_page);
2536 }
2537 if (reuse_swap_page(old_page)) {
2538 /*
2539 * The page is all ours. Move it to our anon_vma so
2540 * the rmap code will not search our parent or siblings.
2541 * Protected against the rmap code by the page lock.
2542 */
2543 page_move_anon_rmap(old_page, vma, address);
2544 unlock_page(old_page);
2545 goto reuse;
2546 }
2547 unlock_page(old_page);
2548 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2549 (VM_WRITE|VM_SHARED))) {
2550 /*
2551 * Only catch write-faults on shared writable pages,
2552 * read-only shared pages can get COWed by
2553 * get_user_pages(.write=1, .force=1).
2554 */
2555 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2556 struct vm_fault vmf;
2557 int tmp;
2558
2559 vmf.virtual_address = (void __user *)(address &
2560 PAGE_MASK);
2561 vmf.pgoff = old_page->index;
2562 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2563 vmf.page = old_page;
2564
2565 /*
2566 * Notify the address space that the page is about to
2567 * become writable so that it can prohibit this or wait
2568 * for the page to get into an appropriate state.
2569 *
2570 * We do this without the lock held, so that it can
2571 * sleep if it needs to.
2572 */
2573 page_cache_get(old_page);
2574 pte_unmap_unlock(page_table, ptl);
2575
2576 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2577 if (unlikely(tmp &
2578 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2579 ret = tmp;
2580 goto unwritable_page;
2581 }
2582 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2583 lock_page(old_page);
2584 if (!old_page->mapping) {
2585 ret = 0; /* retry the fault */
2586 unlock_page(old_page);
2587 goto unwritable_page;
2588 }
2589 } else
2590 VM_BUG_ON(!PageLocked(old_page));
2591
2592 /*
2593 * Since we dropped the lock we need to revalidate
2594 * the PTE as someone else may have changed it. If
2595 * they did, we just return, as we can count on the
2596 * MMU to tell us if they didn't also make it writable.
2597 */
2598 page_table = pte_offset_map_lock(mm, pmd, address,
2599 &ptl);
2600 if (!pte_same(*page_table, orig_pte)) {
2601 unlock_page(old_page);
2602 goto unlock;
2603 }
2604
2605 page_mkwrite = 1;
2606 }
2607 dirty_page = old_page;
2608 get_page(dirty_page);
2609
2610 reuse:
2611 flush_cache_page(vma, address, pte_pfn(orig_pte));
2612 entry = pte_mkyoung(orig_pte);
2613 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2614 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2615 update_mmu_cache(vma, address, page_table);
2616 pte_unmap_unlock(page_table, ptl);
2617 ret |= VM_FAULT_WRITE;
2618
2619 if (!dirty_page)
2620 return ret;
2621
2622 /*
2623 * Yes, Virginia, this is actually required to prevent a race
2624 * with clear_page_dirty_for_io() from clearing the page dirty
2625 * bit after it clear all dirty ptes, but before a racing
2626 * do_wp_page installs a dirty pte.
2627 *
2628 * __do_fault is protected similarly.
2629 */
2630 if (!page_mkwrite) {
2631 wait_on_page_locked(dirty_page);
2632 set_page_dirty_balance(dirty_page, page_mkwrite);
2633 }
2634 put_page(dirty_page);
2635 if (page_mkwrite) {
2636 struct address_space *mapping = dirty_page->mapping;
2637
2638 set_page_dirty(dirty_page);
2639 unlock_page(dirty_page);
2640 page_cache_release(dirty_page);
2641 if (mapping) {
2642 /*
2643 * Some device drivers do not set page.mapping
2644 * but still dirty their pages
2645 */
2646 balance_dirty_pages_ratelimited(mapping);
2647 }
2648 }
2649
2650 /* file_update_time outside page_lock */
2651 if (vma->vm_file)
2652 file_update_time(vma->vm_file);
2653
2654 return ret;
2655 }
2656
2657 /*
2658 * Ok, we need to copy. Oh, well..
2659 */
2660 page_cache_get(old_page);
2661 gotten:
2662 pte_unmap_unlock(page_table, ptl);
2663
2664 if (unlikely(anon_vma_prepare(vma)))
2665 goto oom;
2666
2667 if (is_zero_pfn(pte_pfn(orig_pte))) {
2668 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2669 if (!new_page)
2670 goto oom;
2671 } else {
2672 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2673 if (!new_page)
2674 goto oom;
2675 cow_user_page(new_page, old_page, address, vma);
2676 }
2677 __SetPageUptodate(new_page);
2678
2679 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2680 goto oom_free_new;
2681
2682 /*
2683 * Re-check the pte - we dropped the lock
2684 */
2685 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2686 if (likely(pte_same(*page_table, orig_pte))) {
2687 if (old_page) {
2688 if (!PageAnon(old_page)) {
2689 dec_mm_counter_fast(mm, MM_FILEPAGES);
2690 inc_mm_counter_fast(mm, MM_ANONPAGES);
2691 }
2692 } else
2693 inc_mm_counter_fast(mm, MM_ANONPAGES);
2694 flush_cache_page(vma, address, pte_pfn(orig_pte));
2695 entry = mk_pte(new_page, vma->vm_page_prot);
2696 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2697 /*
2698 * Clear the pte entry and flush it first, before updating the
2699 * pte with the new entry. This will avoid a race condition
2700 * seen in the presence of one thread doing SMC and another
2701 * thread doing COW.
2702 */
2703 ptep_clear_flush(vma, address, page_table);
2704 page_add_new_anon_rmap(new_page, vma, address);
2705 /*
2706 * We call the notify macro here because, when using secondary
2707 * mmu page tables (such as kvm shadow page tables), we want the
2708 * new page to be mapped directly into the secondary page table.
2709 */
2710 set_pte_at_notify(mm, address, page_table, entry);
2711 update_mmu_cache(vma, address, page_table);
2712 if (old_page) {
2713 /*
2714 * Only after switching the pte to the new page may
2715 * we remove the mapcount here. Otherwise another
2716 * process may come and find the rmap count decremented
2717 * before the pte is switched to the new page, and
2718 * "reuse" the old page writing into it while our pte
2719 * here still points into it and can be read by other
2720 * threads.
2721 *
2722 * The critical issue is to order this
2723 * page_remove_rmap with the ptp_clear_flush above.
2724 * Those stores are ordered by (if nothing else,)
2725 * the barrier present in the atomic_add_negative
2726 * in page_remove_rmap.
2727 *
2728 * Then the TLB flush in ptep_clear_flush ensures that
2729 * no process can access the old page before the
2730 * decremented mapcount is visible. And the old page
2731 * cannot be reused until after the decremented
2732 * mapcount is visible. So transitively, TLBs to
2733 * old page will be flushed before it can be reused.
2734 */
2735 page_remove_rmap(old_page);
2736 }
2737
2738 /* Free the old page.. */
2739 new_page = old_page;
2740 ret |= VM_FAULT_WRITE;
2741 } else
2742 mem_cgroup_uncharge_page(new_page);
2743
2744 if (new_page)
2745 page_cache_release(new_page);
2746 unlock:
2747 pte_unmap_unlock(page_table, ptl);
2748 if (old_page) {
2749 /*
2750 * Don't let another task, with possibly unlocked vma,
2751 * keep the mlocked page.
2752 */
2753 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2754 lock_page(old_page); /* LRU manipulation */
2755 munlock_vma_page(old_page);
2756 unlock_page(old_page);
2757 }
2758 page_cache_release(old_page);
2759 }
2760 return ret;
2761 oom_free_new:
2762 page_cache_release(new_page);
2763 oom:
2764 if (old_page) {
2765 if (page_mkwrite) {
2766 unlock_page(old_page);
2767 page_cache_release(old_page);
2768 }
2769 page_cache_release(old_page);
2770 }
2771 return VM_FAULT_OOM;
2772
2773 unwritable_page:
2774 page_cache_release(old_page);
2775 return ret;
2776 }
2777
2778 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2779 unsigned long start_addr, unsigned long end_addr,
2780 struct zap_details *details)
2781 {
2782 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2783 }
2784
2785 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2786 struct zap_details *details)
2787 {
2788 struct vm_area_struct *vma;
2789 struct prio_tree_iter iter;
2790 pgoff_t vba, vea, zba, zea;
2791
2792 vma_prio_tree_foreach(vma, &iter, root,
2793 details->first_index, details->last_index) {
2794
2795 vba = vma->vm_pgoff;
2796 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2797 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2798 zba = details->first_index;
2799 if (zba < vba)
2800 zba = vba;
2801 zea = details->last_index;
2802 if (zea > vea)
2803 zea = vea;
2804
2805 unmap_mapping_range_vma(vma,
2806 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2807 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2808 details);
2809 }
2810 }
2811
2812 static inline void unmap_mapping_range_list(struct list_head *head,
2813 struct zap_details *details)
2814 {
2815 struct vm_area_struct *vma;
2816
2817 /*
2818 * In nonlinear VMAs there is no correspondence between virtual address
2819 * offset and file offset. So we must perform an exhaustive search
2820 * across *all* the pages in each nonlinear VMA, not just the pages
2821 * whose virtual address lies outside the file truncation point.
2822 */
2823 list_for_each_entry(vma, head, shared.vm_set.list) {
2824 details->nonlinear_vma = vma;
2825 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2826 }
2827 }
2828
2829 /**
2830 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2831 * @mapping: the address space containing mmaps to be unmapped.
2832 * @holebegin: byte in first page to unmap, relative to the start of
2833 * the underlying file. This will be rounded down to a PAGE_SIZE
2834 * boundary. Note that this is different from truncate_pagecache(), which
2835 * must keep the partial page. In contrast, we must get rid of
2836 * partial pages.
2837 * @holelen: size of prospective hole in bytes. This will be rounded
2838 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2839 * end of the file.
2840 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2841 * but 0 when invalidating pagecache, don't throw away private data.
2842 */
2843 void unmap_mapping_range(struct address_space *mapping,
2844 loff_t const holebegin, loff_t const holelen, int even_cows)
2845 {
2846 struct zap_details details;
2847 pgoff_t hba = holebegin >> PAGE_SHIFT;
2848 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2849
2850 /* Check for overflow. */
2851 if (sizeof(holelen) > sizeof(hlen)) {
2852 long long holeend =
2853 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2854 if (holeend & ~(long long)ULONG_MAX)
2855 hlen = ULONG_MAX - hba + 1;
2856 }
2857
2858 details.check_mapping = even_cows? NULL: mapping;
2859 details.nonlinear_vma = NULL;
2860 details.first_index = hba;
2861 details.last_index = hba + hlen - 1;
2862 if (details.last_index < details.first_index)
2863 details.last_index = ULONG_MAX;
2864
2865
2866 mutex_lock(&mapping->i_mmap_mutex);
2867 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2868 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2869 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2870 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2871 mutex_unlock(&mapping->i_mmap_mutex);
2872 }
2873 EXPORT_SYMBOL(unmap_mapping_range);
2874
2875 /*
2876 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2877 * but allow concurrent faults), and pte mapped but not yet locked.
2878 * We return with mmap_sem still held, but pte unmapped and unlocked.
2879 */
2880 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2881 unsigned long address, pte_t *page_table, pmd_t *pmd,
2882 unsigned int flags, pte_t orig_pte)
2883 {
2884 spinlock_t *ptl;
2885 struct page *page, *swapcache = NULL;
2886 swp_entry_t entry;
2887 pte_t pte;
2888 int locked;
2889 struct mem_cgroup *ptr;
2890 int exclusive = 0;
2891 int ret = 0;
2892
2893 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2894 goto out;
2895
2896 entry = pte_to_swp_entry(orig_pte);
2897 if (unlikely(non_swap_entry(entry))) {
2898 if (is_migration_entry(entry)) {
2899 migration_entry_wait(mm, pmd, address);
2900 } else if (is_hwpoison_entry(entry)) {
2901 ret = VM_FAULT_HWPOISON;
2902 } else {
2903 print_bad_pte(vma, address, orig_pte, NULL);
2904 ret = VM_FAULT_SIGBUS;
2905 }
2906 goto out;
2907 }
2908 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2909 page = lookup_swap_cache(entry);
2910 if (!page) {
2911 grab_swap_token(mm); /* Contend for token _before_ read-in */
2912 page = swapin_readahead(entry,
2913 GFP_HIGHUSER_MOVABLE, vma, address);
2914 if (!page) {
2915 /*
2916 * Back out if somebody else faulted in this pte
2917 * while we released the pte lock.
2918 */
2919 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2920 if (likely(pte_same(*page_table, orig_pte)))
2921 ret = VM_FAULT_OOM;
2922 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2923 goto unlock;
2924 }
2925
2926 /* Had to read the page from swap area: Major fault */
2927 ret = VM_FAULT_MAJOR;
2928 count_vm_event(PGMAJFAULT);
2929 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2930 } else if (PageHWPoison(page)) {
2931 /*
2932 * hwpoisoned dirty swapcache pages are kept for killing
2933 * owner processes (which may be unknown at hwpoison time)
2934 */
2935 ret = VM_FAULT_HWPOISON;
2936 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2937 goto out_release;
2938 }
2939
2940 locked = lock_page_or_retry(page, mm, flags);
2941 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2942 if (!locked) {
2943 ret |= VM_FAULT_RETRY;
2944 goto out_release;
2945 }
2946
2947 /*
2948 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2949 * release the swapcache from under us. The page pin, and pte_same
2950 * test below, are not enough to exclude that. Even if it is still
2951 * swapcache, we need to check that the page's swap has not changed.
2952 */
2953 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2954 goto out_page;
2955
2956 if (ksm_might_need_to_copy(page, vma, address)) {
2957 swapcache = page;
2958 page = ksm_does_need_to_copy(page, vma, address);
2959
2960 if (unlikely(!page)) {
2961 ret = VM_FAULT_OOM;
2962 page = swapcache;
2963 swapcache = NULL;
2964 goto out_page;
2965 }
2966 }
2967
2968 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2969 ret = VM_FAULT_OOM;
2970 goto out_page;
2971 }
2972
2973 /*
2974 * Back out if somebody else already faulted in this pte.
2975 */
2976 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2977 if (unlikely(!pte_same(*page_table, orig_pte)))
2978 goto out_nomap;
2979
2980 if (unlikely(!PageUptodate(page))) {
2981 ret = VM_FAULT_SIGBUS;
2982 goto out_nomap;
2983 }
2984
2985 /*
2986 * The page isn't present yet, go ahead with the fault.
2987 *
2988 * Be careful about the sequence of operations here.
2989 * To get its accounting right, reuse_swap_page() must be called
2990 * while the page is counted on swap but not yet in mapcount i.e.
2991 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2992 * must be called after the swap_free(), or it will never succeed.
2993 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2994 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2995 * in page->private. In this case, a record in swap_cgroup is silently
2996 * discarded at swap_free().
2997 */
2998
2999 inc_mm_counter_fast(mm, MM_ANONPAGES);
3000 dec_mm_counter_fast(mm, MM_SWAPENTS);
3001 pte = mk_pte(page, vma->vm_page_prot);
3002 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3003 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3004 flags &= ~FAULT_FLAG_WRITE;
3005 ret |= VM_FAULT_WRITE;
3006 exclusive = 1;
3007 }
3008 flush_icache_page(vma, page);
3009 set_pte_at(mm, address, page_table, pte);
3010 do_page_add_anon_rmap(page, vma, address, exclusive);
3011 /* It's better to call commit-charge after rmap is established */
3012 mem_cgroup_commit_charge_swapin(page, ptr);
3013
3014 swap_free(entry);
3015 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3016 try_to_free_swap(page);
3017 unlock_page(page);
3018 if (swapcache) {
3019 /*
3020 * Hold the lock to avoid the swap entry to be reused
3021 * until we take the PT lock for the pte_same() check
3022 * (to avoid false positives from pte_same). For
3023 * further safety release the lock after the swap_free
3024 * so that the swap count won't change under a
3025 * parallel locked swapcache.
3026 */
3027 unlock_page(swapcache);
3028 page_cache_release(swapcache);
3029 }
3030
3031 if (flags & FAULT_FLAG_WRITE) {
3032 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3033 if (ret & VM_FAULT_ERROR)
3034 ret &= VM_FAULT_ERROR;
3035 goto out;
3036 }
3037
3038 /* No need to invalidate - it was non-present before */
3039 update_mmu_cache(vma, address, page_table);
3040 unlock:
3041 pte_unmap_unlock(page_table, ptl);
3042 out:
3043 return ret;
3044 out_nomap:
3045 mem_cgroup_cancel_charge_swapin(ptr);
3046 pte_unmap_unlock(page_table, ptl);
3047 out_page:
3048 unlock_page(page);
3049 out_release:
3050 page_cache_release(page);
3051 if (swapcache) {
3052 unlock_page(swapcache);
3053 page_cache_release(swapcache);
3054 }
3055 return ret;
3056 }
3057
3058 /*
3059 * This is like a special single-page "expand_{down|up}wards()",
3060 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3061 * doesn't hit another vma.
3062 */
3063 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3064 {
3065 address &= PAGE_MASK;
3066 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3067 struct vm_area_struct *prev = vma->vm_prev;
3068
3069 /*
3070 * Is there a mapping abutting this one below?
3071 *
3072 * That's only ok if it's the same stack mapping
3073 * that has gotten split..
3074 */
3075 if (prev && prev->vm_end == address)
3076 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3077
3078 expand_downwards(vma, address - PAGE_SIZE);
3079 }
3080 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3081 struct vm_area_struct *next = vma->vm_next;
3082
3083 /* As VM_GROWSDOWN but s/below/above/ */
3084 if (next && next->vm_start == address + PAGE_SIZE)
3085 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3086
3087 expand_upwards(vma, address + PAGE_SIZE);
3088 }
3089 return 0;
3090 }
3091
3092 /*
3093 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3094 * but allow concurrent faults), and pte mapped but not yet locked.
3095 * We return with mmap_sem still held, but pte unmapped and unlocked.
3096 */
3097 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3098 unsigned long address, pte_t *page_table, pmd_t *pmd,
3099 unsigned int flags)
3100 {
3101 struct page *page;
3102 spinlock_t *ptl;
3103 pte_t entry;
3104
3105 pte_unmap(page_table);
3106
3107 /* Check if we need to add a guard page to the stack */
3108 if (check_stack_guard_page(vma, address) < 0)
3109 return VM_FAULT_SIGBUS;
3110
3111 /* Use the zero-page for reads */
3112 if (!(flags & FAULT_FLAG_WRITE)) {
3113 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3114 vma->vm_page_prot));
3115 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3116 if (!pte_none(*page_table))
3117 goto unlock;
3118 goto setpte;
3119 }
3120
3121 /* Allocate our own private page. */
3122 if (unlikely(anon_vma_prepare(vma)))
3123 goto oom;
3124 page = alloc_zeroed_user_highpage_movable(vma, address);
3125 if (!page)
3126 goto oom;
3127 __SetPageUptodate(page);
3128
3129 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3130 goto oom_free_page;
3131
3132 entry = mk_pte(page, vma->vm_page_prot);
3133 if (vma->vm_flags & VM_WRITE)
3134 entry = pte_mkwrite(pte_mkdirty(entry));
3135
3136 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3137 if (!pte_none(*page_table))
3138 goto release;
3139
3140 inc_mm_counter_fast(mm, MM_ANONPAGES);
3141 page_add_new_anon_rmap(page, vma, address);
3142 setpte:
3143 set_pte_at(mm, address, page_table, entry);
3144
3145 /* No need to invalidate - it was non-present before */
3146 update_mmu_cache(vma, address, page_table);
3147 unlock:
3148 pte_unmap_unlock(page_table, ptl);
3149 return 0;
3150 release:
3151 mem_cgroup_uncharge_page(page);
3152 page_cache_release(page);
3153 goto unlock;
3154 oom_free_page:
3155 page_cache_release(page);
3156 oom:
3157 return VM_FAULT_OOM;
3158 }
3159
3160 /*
3161 * __do_fault() tries to create a new page mapping. It aggressively
3162 * tries to share with existing pages, but makes a separate copy if
3163 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3164 * the next page fault.
3165 *
3166 * As this is called only for pages that do not currently exist, we
3167 * do not need to flush old virtual caches or the TLB.
3168 *
3169 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3170 * but allow concurrent faults), and pte neither mapped nor locked.
3171 * We return with mmap_sem still held, but pte unmapped and unlocked.
3172 */
3173 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3174 unsigned long address, pmd_t *pmd,
3175 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3176 {
3177 pte_t *page_table;
3178 spinlock_t *ptl;
3179 struct page *page;
3180 struct page *cow_page;
3181 pte_t entry;
3182 int anon = 0;
3183 struct page *dirty_page = NULL;
3184 struct vm_fault vmf;
3185 int ret;
3186 int page_mkwrite = 0;
3187
3188 /*
3189 * If we do COW later, allocate page befor taking lock_page()
3190 * on the file cache page. This will reduce lock holding time.
3191 */
3192 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3193
3194 if (unlikely(anon_vma_prepare(vma)))
3195 return VM_FAULT_OOM;
3196
3197 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3198 if (!cow_page)
3199 return VM_FAULT_OOM;
3200
3201 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3202 page_cache_release(cow_page);
3203 return VM_FAULT_OOM;
3204 }
3205 } else
3206 cow_page = NULL;
3207
3208 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3209 vmf.pgoff = pgoff;
3210 vmf.flags = flags;
3211 vmf.page = NULL;
3212
3213 ret = vma->vm_ops->fault(vma, &vmf);
3214 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3215 VM_FAULT_RETRY)))
3216 goto uncharge_out;
3217
3218 if (unlikely(PageHWPoison(vmf.page))) {
3219 if (ret & VM_FAULT_LOCKED)
3220 unlock_page(vmf.page);
3221 ret = VM_FAULT_HWPOISON;
3222 goto uncharge_out;
3223 }
3224
3225 /*
3226 * For consistency in subsequent calls, make the faulted page always
3227 * locked.
3228 */
3229 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3230 lock_page(vmf.page);
3231 else
3232 VM_BUG_ON(!PageLocked(vmf.page));
3233
3234 /*
3235 * Should we do an early C-O-W break?
3236 */
3237 page = vmf.page;
3238 if (flags & FAULT_FLAG_WRITE) {
3239 if (!(vma->vm_flags & VM_SHARED)) {
3240 page = cow_page;
3241 anon = 1;
3242 copy_user_highpage(page, vmf.page, address, vma);
3243 __SetPageUptodate(page);
3244 } else {
3245 /*
3246 * If the page will be shareable, see if the backing
3247 * address space wants to know that the page is about
3248 * to become writable
3249 */
3250 if (vma->vm_ops->page_mkwrite) {
3251 int tmp;
3252
3253 unlock_page(page);
3254 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3255 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3256 if (unlikely(tmp &
3257 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3258 ret = tmp;
3259 goto unwritable_page;
3260 }
3261 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3262 lock_page(page);
3263 if (!page->mapping) {
3264 ret = 0; /* retry the fault */
3265 unlock_page(page);
3266 goto unwritable_page;
3267 }
3268 } else
3269 VM_BUG_ON(!PageLocked(page));
3270 page_mkwrite = 1;
3271 }
3272 }
3273
3274 }
3275
3276 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3277
3278 /*
3279 * This silly early PAGE_DIRTY setting removes a race
3280 * due to the bad i386 page protection. But it's valid
3281 * for other architectures too.
3282 *
3283 * Note that if FAULT_FLAG_WRITE is set, we either now have
3284 * an exclusive copy of the page, or this is a shared mapping,
3285 * so we can make it writable and dirty to avoid having to
3286 * handle that later.
3287 */
3288 /* Only go through if we didn't race with anybody else... */
3289 if (likely(pte_same(*page_table, orig_pte))) {
3290 flush_icache_page(vma, page);
3291 entry = mk_pte(page, vma->vm_page_prot);
3292 if (flags & FAULT_FLAG_WRITE)
3293 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3294 if (anon) {
3295 inc_mm_counter_fast(mm, MM_ANONPAGES);
3296 page_add_new_anon_rmap(page, vma, address);
3297 } else {
3298 inc_mm_counter_fast(mm, MM_FILEPAGES);
3299 page_add_file_rmap(page);
3300 if (flags & FAULT_FLAG_WRITE) {
3301 dirty_page = page;
3302 get_page(dirty_page);
3303 }
3304 }
3305 set_pte_at(mm, address, page_table, entry);
3306
3307 /* no need to invalidate: a not-present page won't be cached */
3308 update_mmu_cache(vma, address, page_table);
3309 } else {
3310 if (cow_page)
3311 mem_cgroup_uncharge_page(cow_page);
3312 if (anon)
3313 page_cache_release(page);
3314 else
3315 anon = 1; /* no anon but release faulted_page */
3316 }
3317
3318 pte_unmap_unlock(page_table, ptl);
3319
3320 if (dirty_page) {
3321 struct address_space *mapping = page->mapping;
3322
3323 if (set_page_dirty(dirty_page))
3324 page_mkwrite = 1;
3325 unlock_page(dirty_page);
3326 put_page(dirty_page);
3327 if (page_mkwrite && mapping) {
3328 /*
3329 * Some device drivers do not set page.mapping but still
3330 * dirty their pages
3331 */
3332 balance_dirty_pages_ratelimited(mapping);
3333 }
3334
3335 /* file_update_time outside page_lock */
3336 if (vma->vm_file)
3337 file_update_time(vma->vm_file);
3338 } else {
3339 unlock_page(vmf.page);
3340 if (anon)
3341 page_cache_release(vmf.page);
3342 }
3343
3344 return ret;
3345
3346 unwritable_page:
3347 page_cache_release(page);
3348 return ret;
3349 uncharge_out:
3350 /* fs's fault handler get error */
3351 if (cow_page) {
3352 mem_cgroup_uncharge_page(cow_page);
3353 page_cache_release(cow_page);
3354 }
3355 return ret;
3356 }
3357
3358 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3359 unsigned long address, pte_t *page_table, pmd_t *pmd,
3360 unsigned int flags, pte_t orig_pte)
3361 {
3362 pgoff_t pgoff = (((address & PAGE_MASK)
3363 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3364
3365 pte_unmap(page_table);
3366 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3367 }
3368
3369 /*
3370 * Fault of a previously existing named mapping. Repopulate the pte
3371 * from the encoded file_pte if possible. This enables swappable
3372 * nonlinear vmas.
3373 *
3374 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3375 * but allow concurrent faults), and pte mapped but not yet locked.
3376 * We return with mmap_sem still held, but pte unmapped and unlocked.
3377 */
3378 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3379 unsigned long address, pte_t *page_table, pmd_t *pmd,
3380 unsigned int flags, pte_t orig_pte)
3381 {
3382 pgoff_t pgoff;
3383
3384 flags |= FAULT_FLAG_NONLINEAR;
3385
3386 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3387 return 0;
3388
3389 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3390 /*
3391 * Page table corrupted: show pte and kill process.
3392 */
3393 print_bad_pte(vma, address, orig_pte, NULL);
3394 return VM_FAULT_SIGBUS;
3395 }
3396
3397 pgoff = pte_to_pgoff(orig_pte);
3398 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3399 }
3400
3401 /*
3402 * These routines also need to handle stuff like marking pages dirty
3403 * and/or accessed for architectures that don't do it in hardware (most
3404 * RISC architectures). The early dirtying is also good on the i386.
3405 *
3406 * There is also a hook called "update_mmu_cache()" that architectures
3407 * with external mmu caches can use to update those (ie the Sparc or
3408 * PowerPC hashed page tables that act as extended TLBs).
3409 *
3410 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3411 * but allow concurrent faults), and pte mapped but not yet locked.
3412 * We return with mmap_sem still held, but pte unmapped and unlocked.
3413 */
3414 int handle_pte_fault(struct mm_struct *mm,
3415 struct vm_area_struct *vma, unsigned long address,
3416 pte_t *pte, pmd_t *pmd, unsigned int flags)
3417 {
3418 pte_t entry;
3419 spinlock_t *ptl;
3420
3421 entry = *pte;
3422 if (!pte_present(entry)) {
3423 if (pte_none(entry)) {
3424 if (vma->vm_ops) {
3425 if (likely(vma->vm_ops->fault))
3426 return do_linear_fault(mm, vma, address,
3427 pte, pmd, flags, entry);
3428 }
3429 return do_anonymous_page(mm, vma, address,
3430 pte, pmd, flags);
3431 }
3432 if (pte_file(entry))
3433 return do_nonlinear_fault(mm, vma, address,
3434 pte, pmd, flags, entry);
3435 return do_swap_page(mm, vma, address,
3436 pte, pmd, flags, entry);
3437 }
3438
3439 ptl = pte_lockptr(mm, pmd);
3440 spin_lock(ptl);
3441 if (unlikely(!pte_same(*pte, entry)))
3442 goto unlock;
3443 if (flags & FAULT_FLAG_WRITE) {
3444 if (!pte_write(entry))
3445 return do_wp_page(mm, vma, address,
3446 pte, pmd, ptl, entry);
3447 entry = pte_mkdirty(entry);
3448 }
3449 entry = pte_mkyoung(entry);
3450 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3451 update_mmu_cache(vma, address, pte);
3452 } else {
3453 /*
3454 * This is needed only for protection faults but the arch code
3455 * is not yet telling us if this is a protection fault or not.
3456 * This still avoids useless tlb flushes for .text page faults
3457 * with threads.
3458 */
3459 if (flags & FAULT_FLAG_WRITE)
3460 flush_tlb_fix_spurious_fault(vma, address);
3461 }
3462 unlock:
3463 pte_unmap_unlock(pte, ptl);
3464 return 0;
3465 }
3466
3467 /*
3468 * By the time we get here, we already hold the mm semaphore
3469 */
3470 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3471 unsigned long address, unsigned int flags)
3472 {
3473 pgd_t *pgd;
3474 pud_t *pud;
3475 pmd_t *pmd;
3476 pte_t *pte;
3477
3478 __set_current_state(TASK_RUNNING);
3479
3480 count_vm_event(PGFAULT);
3481 mem_cgroup_count_vm_event(mm, PGFAULT);
3482
3483 /* do counter updates before entering really critical section. */
3484 check_sync_rss_stat(current);
3485
3486 if (unlikely(is_vm_hugetlb_page(vma)))
3487 return hugetlb_fault(mm, vma, address, flags);
3488
3489 pgd = pgd_offset(mm, address);
3490 pud = pud_alloc(mm, pgd, address);
3491 if (!pud)
3492 return VM_FAULT_OOM;
3493 pmd = pmd_alloc(mm, pud, address);
3494 if (!pmd)
3495 return VM_FAULT_OOM;
3496 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3497 if (!vma->vm_ops)
3498 return do_huge_pmd_anonymous_page(mm, vma, address,
3499 pmd, flags);
3500 } else {
3501 pmd_t orig_pmd = *pmd;
3502 barrier();
3503 if (pmd_trans_huge(orig_pmd)) {
3504 if (flags & FAULT_FLAG_WRITE &&
3505 !pmd_write(orig_pmd) &&
3506 !pmd_trans_splitting(orig_pmd))
3507 return do_huge_pmd_wp_page(mm, vma, address,
3508 pmd, orig_pmd);
3509 return 0;
3510 }
3511 }
3512
3513 /*
3514 * Use __pte_alloc instead of pte_alloc_map, because we can't
3515 * run pte_offset_map on the pmd, if an huge pmd could
3516 * materialize from under us from a different thread.
3517 */
3518 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3519 return VM_FAULT_OOM;
3520 /* if an huge pmd materialized from under us just retry later */
3521 if (unlikely(pmd_trans_huge(*pmd)))
3522 return 0;
3523 /*
3524 * A regular pmd is established and it can't morph into a huge pmd
3525 * from under us anymore at this point because we hold the mmap_sem
3526 * read mode and khugepaged takes it in write mode. So now it's
3527 * safe to run pte_offset_map().
3528 */
3529 pte = pte_offset_map(pmd, address);
3530
3531 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3532 }
3533
3534 #ifndef __PAGETABLE_PUD_FOLDED
3535 /*
3536 * Allocate page upper directory.
3537 * We've already handled the fast-path in-line.
3538 */
3539 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3540 {
3541 pud_t *new = pud_alloc_one(mm, address);
3542 if (!new)
3543 return -ENOMEM;
3544
3545 smp_wmb(); /* See comment in __pte_alloc */
3546
3547 spin_lock(&mm->page_table_lock);
3548 if (pgd_present(*pgd)) /* Another has populated it */
3549 pud_free(mm, new);
3550 else
3551 pgd_populate(mm, pgd, new);
3552 spin_unlock(&mm->page_table_lock);
3553 return 0;
3554 }
3555 #endif /* __PAGETABLE_PUD_FOLDED */
3556
3557 #ifndef __PAGETABLE_PMD_FOLDED
3558 /*
3559 * Allocate page middle directory.
3560 * We've already handled the fast-path in-line.
3561 */
3562 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3563 {
3564 pmd_t *new = pmd_alloc_one(mm, address);
3565 if (!new)
3566 return -ENOMEM;
3567
3568 smp_wmb(); /* See comment in __pte_alloc */
3569
3570 spin_lock(&mm->page_table_lock);
3571 #ifndef __ARCH_HAS_4LEVEL_HACK
3572 if (pud_present(*pud)) /* Another has populated it */
3573 pmd_free(mm, new);
3574 else
3575 pud_populate(mm, pud, new);
3576 #else
3577 if (pgd_present(*pud)) /* Another has populated it */
3578 pmd_free(mm, new);
3579 else
3580 pgd_populate(mm, pud, new);
3581 #endif /* __ARCH_HAS_4LEVEL_HACK */
3582 spin_unlock(&mm->page_table_lock);
3583 return 0;
3584 }
3585 #endif /* __PAGETABLE_PMD_FOLDED */
3586
3587 int make_pages_present(unsigned long addr, unsigned long end)
3588 {
3589 int ret, len, write;
3590 struct vm_area_struct * vma;
3591
3592 vma = find_vma(current->mm, addr);
3593 if (!vma)
3594 return -ENOMEM;
3595 /*
3596 * We want to touch writable mappings with a write fault in order
3597 * to break COW, except for shared mappings because these don't COW
3598 * and we would not want to dirty them for nothing.
3599 */
3600 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3601 BUG_ON(addr >= end);
3602 BUG_ON(end > vma->vm_end);
3603 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3604 ret = get_user_pages(current, current->mm, addr,
3605 len, write, 0, NULL, NULL);
3606 if (ret < 0)
3607 return ret;
3608 return ret == len ? 0 : -EFAULT;
3609 }
3610
3611 #if !defined(__HAVE_ARCH_GATE_AREA)
3612
3613 #if defined(AT_SYSINFO_EHDR)
3614 static struct vm_area_struct gate_vma;
3615
3616 static int __init gate_vma_init(void)
3617 {
3618 gate_vma.vm_mm = NULL;
3619 gate_vma.vm_start = FIXADDR_USER_START;
3620 gate_vma.vm_end = FIXADDR_USER_END;
3621 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3622 gate_vma.vm_page_prot = __P101;
3623
3624 return 0;
3625 }
3626 __initcall(gate_vma_init);
3627 #endif
3628
3629 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3630 {
3631 #ifdef AT_SYSINFO_EHDR
3632 return &gate_vma;
3633 #else
3634 return NULL;
3635 #endif
3636 }
3637
3638 int in_gate_area_no_mm(unsigned long addr)
3639 {
3640 #ifdef AT_SYSINFO_EHDR
3641 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3642 return 1;
3643 #endif
3644 return 0;
3645 }
3646
3647 #endif /* __HAVE_ARCH_GATE_AREA */
3648
3649 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3650 pte_t **ptepp, spinlock_t **ptlp)
3651 {
3652 pgd_t *pgd;
3653 pud_t *pud;
3654 pmd_t *pmd;
3655 pte_t *ptep;
3656
3657 pgd = pgd_offset(mm, address);
3658 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3659 goto out;
3660
3661 pud = pud_offset(pgd, address);
3662 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3663 goto out;
3664
3665 pmd = pmd_offset(pud, address);
3666 VM_BUG_ON(pmd_trans_huge(*pmd));
3667 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3668 goto out;
3669
3670 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3671 if (pmd_huge(*pmd))
3672 goto out;
3673
3674 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3675 if (!ptep)
3676 goto out;
3677 if (!pte_present(*ptep))
3678 goto unlock;
3679 *ptepp = ptep;
3680 return 0;
3681 unlock:
3682 pte_unmap_unlock(ptep, *ptlp);
3683 out:
3684 return -EINVAL;
3685 }
3686
3687 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3688 pte_t **ptepp, spinlock_t **ptlp)
3689 {
3690 int res;
3691
3692 /* (void) is needed to make gcc happy */
3693 (void) __cond_lock(*ptlp,
3694 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3695 return res;
3696 }
3697
3698 /**
3699 * follow_pfn - look up PFN at a user virtual address
3700 * @vma: memory mapping
3701 * @address: user virtual address
3702 * @pfn: location to store found PFN
3703 *
3704 * Only IO mappings and raw PFN mappings are allowed.
3705 *
3706 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3707 */
3708 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3709 unsigned long *pfn)
3710 {
3711 int ret = -EINVAL;
3712 spinlock_t *ptl;
3713 pte_t *ptep;
3714
3715 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3716 return ret;
3717
3718 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3719 if (ret)
3720 return ret;
3721 *pfn = pte_pfn(*ptep);
3722 pte_unmap_unlock(ptep, ptl);
3723 return 0;
3724 }
3725 EXPORT_SYMBOL(follow_pfn);
3726
3727 #ifdef CONFIG_HAVE_IOREMAP_PROT
3728 int follow_phys(struct vm_area_struct *vma,
3729 unsigned long address, unsigned int flags,
3730 unsigned long *prot, resource_size_t *phys)
3731 {
3732 int ret = -EINVAL;
3733 pte_t *ptep, pte;
3734 spinlock_t *ptl;
3735
3736 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3737 goto out;
3738
3739 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3740 goto out;
3741 pte = *ptep;
3742
3743 if ((flags & FOLL_WRITE) && !pte_write(pte))
3744 goto unlock;
3745
3746 *prot = pgprot_val(pte_pgprot(pte));
3747 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3748
3749 ret = 0;
3750 unlock:
3751 pte_unmap_unlock(ptep, ptl);
3752 out:
3753 return ret;
3754 }
3755
3756 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3757 void *buf, int len, int write)
3758 {
3759 resource_size_t phys_addr;
3760 unsigned long prot = 0;
3761 void __iomem *maddr;
3762 int offset = addr & (PAGE_SIZE-1);
3763
3764 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3765 return -EINVAL;
3766
3767 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3768 if (write)
3769 memcpy_toio(maddr + offset, buf, len);
3770 else
3771 memcpy_fromio(buf, maddr + offset, len);
3772 iounmap(maddr);
3773
3774 return len;
3775 }
3776 #endif
3777
3778 /*
3779 * Access another process' address space as given in mm. If non-NULL, use the
3780 * given task for page fault accounting.
3781 */
3782 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3783 unsigned long addr, void *buf, int len, int write)
3784 {
3785 struct vm_area_struct *vma;
3786 void *old_buf = buf;
3787
3788 down_read(&mm->mmap_sem);
3789 /* ignore errors, just check how much was successfully transferred */
3790 while (len) {
3791 int bytes, ret, offset;
3792 void *maddr;
3793 struct page *page = NULL;
3794
3795 ret = get_user_pages(tsk, mm, addr, 1,
3796 write, 1, &page, &vma);
3797 if (ret <= 0) {
3798 /*
3799 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3800 * we can access using slightly different code.
3801 */
3802 #ifdef CONFIG_HAVE_IOREMAP_PROT
3803 vma = find_vma(mm, addr);
3804 if (!vma || vma->vm_start > addr)
3805 break;
3806 if (vma->vm_ops && vma->vm_ops->access)
3807 ret = vma->vm_ops->access(vma, addr, buf,
3808 len, write);
3809 if (ret <= 0)
3810 #endif
3811 break;
3812 bytes = ret;
3813 } else {
3814 bytes = len;
3815 offset = addr & (PAGE_SIZE-1);
3816 if (bytes > PAGE_SIZE-offset)
3817 bytes = PAGE_SIZE-offset;
3818
3819 maddr = kmap(page);
3820 if (write) {
3821 copy_to_user_page(vma, page, addr,
3822 maddr + offset, buf, bytes);
3823 set_page_dirty_lock(page);
3824 } else {
3825 copy_from_user_page(vma, page, addr,
3826 buf, maddr + offset, bytes);
3827 }
3828 kunmap(page);
3829 page_cache_release(page);
3830 }
3831 len -= bytes;
3832 buf += bytes;
3833 addr += bytes;
3834 }
3835 up_read(&mm->mmap_sem);
3836
3837 return buf - old_buf;
3838 }
3839
3840 /**
3841 * access_remote_vm - access another process' address space
3842 * @mm: the mm_struct of the target address space
3843 * @addr: start address to access
3844 * @buf: source or destination buffer
3845 * @len: number of bytes to transfer
3846 * @write: whether the access is a write
3847 *
3848 * The caller must hold a reference on @mm.
3849 */
3850 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3851 void *buf, int len, int write)
3852 {
3853 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3854 }
3855
3856 /*
3857 * Access another process' address space.
3858 * Source/target buffer must be kernel space,
3859 * Do not walk the page table directly, use get_user_pages
3860 */
3861 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3862 void *buf, int len, int write)
3863 {
3864 struct mm_struct *mm;
3865 int ret;
3866
3867 mm = get_task_mm(tsk);
3868 if (!mm)
3869 return 0;
3870
3871 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3872 mmput(mm);
3873
3874 return ret;
3875 }
3876
3877 /*
3878 * Print the name of a VMA.
3879 */
3880 void print_vma_addr(char *prefix, unsigned long ip)
3881 {
3882 struct mm_struct *mm = current->mm;
3883 struct vm_area_struct *vma;
3884
3885 /*
3886 * Do not print if we are in atomic
3887 * contexts (in exception stacks, etc.):
3888 */
3889 if (preempt_count())
3890 return;
3891
3892 down_read(&mm->mmap_sem);
3893 vma = find_vma(mm, ip);
3894 if (vma && vma->vm_file) {
3895 struct file *f = vma->vm_file;
3896 char *buf = (char *)__get_free_page(GFP_KERNEL);
3897 if (buf) {
3898 char *p, *s;
3899
3900 p = d_path(&f->f_path, buf, PAGE_SIZE);
3901 if (IS_ERR(p))
3902 p = "?";
3903 s = strrchr(p, '/');
3904 if (s)
3905 p = s+1;
3906 printk("%s%s[%lx+%lx]", prefix, p,
3907 vma->vm_start,
3908 vma->vm_end - vma->vm_start);
3909 free_page((unsigned long)buf);
3910 }
3911 }
3912 up_read(&current->mm->mmap_sem);
3913 }
3914
3915 #ifdef CONFIG_PROVE_LOCKING
3916 void might_fault(void)
3917 {
3918 /*
3919 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3920 * holding the mmap_sem, this is safe because kernel memory doesn't
3921 * get paged out, therefore we'll never actually fault, and the
3922 * below annotations will generate false positives.
3923 */
3924 if (segment_eq(get_fs(), KERNEL_DS))
3925 return;
3926
3927 might_sleep();
3928 /*
3929 * it would be nicer only to annotate paths which are not under
3930 * pagefault_disable, however that requires a larger audit and
3931 * providing helpers like get_user_atomic.
3932 */
3933 if (!in_atomic() && current->mm)
3934 might_lock_read(&current->mm->mmap_sem);
3935 }
3936 EXPORT_SYMBOL(might_fault);
3937 #endif
3938
3939 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3940 static void clear_gigantic_page(struct page *page,
3941 unsigned long addr,
3942 unsigned int pages_per_huge_page)
3943 {
3944 int i;
3945 struct page *p = page;
3946
3947 might_sleep();
3948 for (i = 0; i < pages_per_huge_page;
3949 i++, p = mem_map_next(p, page, i)) {
3950 cond_resched();
3951 clear_user_highpage(p, addr + i * PAGE_SIZE);
3952 }
3953 }
3954 void clear_huge_page(struct page *page,
3955 unsigned long addr, unsigned int pages_per_huge_page)
3956 {
3957 int i;
3958
3959 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3960 clear_gigantic_page(page, addr, pages_per_huge_page);
3961 return;
3962 }
3963
3964 might_sleep();
3965 for (i = 0; i < pages_per_huge_page; i++) {
3966 cond_resched();
3967 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3968 }
3969 }
3970
3971 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3972 unsigned long addr,
3973 struct vm_area_struct *vma,
3974 unsigned int pages_per_huge_page)
3975 {
3976 int i;
3977 struct page *dst_base = dst;
3978 struct page *src_base = src;
3979
3980 for (i = 0; i < pages_per_huge_page; ) {
3981 cond_resched();
3982 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3983
3984 i++;
3985 dst = mem_map_next(dst, dst_base, i);
3986 src = mem_map_next(src, src_base, i);
3987 }
3988 }
3989
3990 void copy_user_huge_page(struct page *dst, struct page *src,
3991 unsigned long addr, struct vm_area_struct *vma,
3992 unsigned int pages_per_huge_page)
3993 {
3994 int i;
3995
3996 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3997 copy_user_gigantic_page(dst, src, addr, vma,
3998 pages_per_huge_page);
3999 return;
4000 }
4001
4002 might_sleep();
4003 for (i = 0; i < pages_per_huge_page; i++) {
4004 cond_resched();
4005 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4006 }
4007 }
4008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */