4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <linux/uaccess.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr
;
87 EXPORT_SYMBOL(max_mapnr
);
88 EXPORT_SYMBOL(mem_map
);
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
100 EXPORT_SYMBOL(high_memory
);
103 * Randomize the address space (stacks, mmaps, brk, etc.).
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
108 int randomize_va_space __read_mostly
=
109 #ifdef CONFIG_COMPAT_BRK
115 static int __init
disable_randmaps(char *s
)
117 randomize_va_space
= 0;
120 __setup("norandmaps", disable_randmaps
);
122 unsigned long zero_pfn __read_mostly
;
123 unsigned long highest_memmap_pfn __read_mostly
;
125 EXPORT_SYMBOL(zero_pfn
);
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130 static int __init
init_zero_pfn(void)
132 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
135 core_initcall(init_zero_pfn
);
138 #if defined(SPLIT_RSS_COUNTING)
140 void sync_mm_rss(struct mm_struct
*mm
)
144 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
145 if (current
->rss_stat
.count
[i
]) {
146 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
147 current
->rss_stat
.count
[i
] = 0;
150 current
->rss_stat
.events
= 0;
153 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
155 struct task_struct
*task
= current
;
157 if (likely(task
->mm
== mm
))
158 task
->rss_stat
.count
[member
] += val
;
160 add_mm_counter(mm
, member
, val
);
162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165 /* sync counter once per 64 page faults */
166 #define TASK_RSS_EVENTS_THRESH (64)
167 static void check_sync_rss_stat(struct task_struct
*task
)
169 if (unlikely(task
!= current
))
171 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
172 sync_mm_rss(task
->mm
);
174 #else /* SPLIT_RSS_COUNTING */
176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179 static void check_sync_rss_stat(struct task_struct
*task
)
183 #endif /* SPLIT_RSS_COUNTING */
185 #ifdef HAVE_GENERIC_MMU_GATHER
187 static bool tlb_next_batch(struct mmu_gather
*tlb
)
189 struct mmu_gather_batch
*batch
;
193 tlb
->active
= batch
->next
;
197 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
200 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
207 batch
->max
= MAX_GATHER_BATCH
;
209 tlb
->active
->next
= batch
;
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
220 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
224 /* Is it from 0 to ~0? */
225 tlb
->fullmm
= !(start
| (end
+1));
226 tlb
->need_flush_all
= 0;
227 tlb
->local
.next
= NULL
;
229 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
230 tlb
->active
= &tlb
->local
;
231 tlb
->batch_count
= 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238 __tlb_reset_range(tlb
);
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
247 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb
);
251 __tlb_reset_range(tlb
);
254 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
256 struct mmu_gather_batch
*batch
;
258 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
259 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
262 tlb
->active
= &tlb
->local
;
265 void tlb_flush_mmu(struct mmu_gather
*tlb
)
267 tlb_flush_mmu_tlbonly(tlb
);
268 tlb_flush_mmu_free(tlb
);
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
275 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
277 struct mmu_gather_batch
*batch
, *next
;
281 /* keep the page table cache within bounds */
284 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
286 free_pages((unsigned long)batch
, 0);
288 tlb
->local
.next
= NULL
;
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
296 *returns true if the caller should flush.
298 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
300 struct mmu_gather_batch
*batch
;
302 VM_BUG_ON(!tlb
->end
);
303 VM_WARN_ON(tlb
->page_size
!= page_size
);
307 * Add the page and check if we are full. If so
310 batch
->pages
[batch
->nr
++] = page
;
311 if (batch
->nr
== batch
->max
) {
312 if (!tlb_next_batch(tlb
))
316 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
321 #endif /* HAVE_GENERIC_MMU_GATHER */
323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
326 * See the comment near struct mmu_table_batch.
329 static void tlb_remove_table_smp_sync(void *arg
)
331 /* Simply deliver the interrupt */
334 static void tlb_remove_table_one(void *table
)
337 * This isn't an RCU grace period and hence the page-tables cannot be
338 * assumed to be actually RCU-freed.
340 * It is however sufficient for software page-table walkers that rely on
341 * IRQ disabling. See the comment near struct mmu_table_batch.
343 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
344 __tlb_remove_table(table
);
347 static void tlb_remove_table_rcu(struct rcu_head
*head
)
349 struct mmu_table_batch
*batch
;
352 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
354 for (i
= 0; i
< batch
->nr
; i
++)
355 __tlb_remove_table(batch
->tables
[i
]);
357 free_page((unsigned long)batch
);
360 void tlb_table_flush(struct mmu_gather
*tlb
)
362 struct mmu_table_batch
**batch
= &tlb
->batch
;
365 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
370 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
372 struct mmu_table_batch
**batch
= &tlb
->batch
;
375 * When there's less then two users of this mm there cannot be a
376 * concurrent page-table walk.
378 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
379 __tlb_remove_table(table
);
383 if (*batch
== NULL
) {
384 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
385 if (*batch
== NULL
) {
386 tlb_remove_table_one(table
);
391 (*batch
)->tables
[(*batch
)->nr
++] = table
;
392 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
393 tlb_table_flush(tlb
);
396 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
399 * Note: this doesn't free the actual pages themselves. That
400 * has been handled earlier when unmapping all the memory regions.
402 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
405 pgtable_t token
= pmd_pgtable(*pmd
);
407 pte_free_tlb(tlb
, token
, addr
);
408 atomic_long_dec(&tlb
->mm
->nr_ptes
);
411 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
412 unsigned long addr
, unsigned long end
,
413 unsigned long floor
, unsigned long ceiling
)
420 pmd
= pmd_offset(pud
, addr
);
422 next
= pmd_addr_end(addr
, end
);
423 if (pmd_none_or_clear_bad(pmd
))
425 free_pte_range(tlb
, pmd
, addr
);
426 } while (pmd
++, addr
= next
, addr
!= end
);
436 if (end
- 1 > ceiling
- 1)
439 pmd
= pmd_offset(pud
, start
);
441 pmd_free_tlb(tlb
, pmd
, start
);
442 mm_dec_nr_pmds(tlb
->mm
);
445 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
446 unsigned long addr
, unsigned long end
,
447 unsigned long floor
, unsigned long ceiling
)
454 pud
= pud_offset(pgd
, addr
);
456 next
= pud_addr_end(addr
, end
);
457 if (pud_none_or_clear_bad(pud
))
459 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
460 } while (pud
++, addr
= next
, addr
!= end
);
466 ceiling
&= PGDIR_MASK
;
470 if (end
- 1 > ceiling
- 1)
473 pud
= pud_offset(pgd
, start
);
475 pud_free_tlb(tlb
, pud
, start
);
479 * This function frees user-level page tables of a process.
481 void free_pgd_range(struct mmu_gather
*tlb
,
482 unsigned long addr
, unsigned long end
,
483 unsigned long floor
, unsigned long ceiling
)
489 * The next few lines have given us lots of grief...
491 * Why are we testing PMD* at this top level? Because often
492 * there will be no work to do at all, and we'd prefer not to
493 * go all the way down to the bottom just to discover that.
495 * Why all these "- 1"s? Because 0 represents both the bottom
496 * of the address space and the top of it (using -1 for the
497 * top wouldn't help much: the masks would do the wrong thing).
498 * The rule is that addr 0 and floor 0 refer to the bottom of
499 * the address space, but end 0 and ceiling 0 refer to the top
500 * Comparisons need to use "end - 1" and "ceiling - 1" (though
501 * that end 0 case should be mythical).
503 * Wherever addr is brought up or ceiling brought down, we must
504 * be careful to reject "the opposite 0" before it confuses the
505 * subsequent tests. But what about where end is brought down
506 * by PMD_SIZE below? no, end can't go down to 0 there.
508 * Whereas we round start (addr) and ceiling down, by different
509 * masks at different levels, in order to test whether a table
510 * now has no other vmas using it, so can be freed, we don't
511 * bother to round floor or end up - the tests don't need that.
525 if (end
- 1 > ceiling
- 1)
530 * We add page table cache pages with PAGE_SIZE,
531 * (see pte_free_tlb()), flush the tlb if we need
533 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
534 pgd
= pgd_offset(tlb
->mm
, addr
);
536 next
= pgd_addr_end(addr
, end
);
537 if (pgd_none_or_clear_bad(pgd
))
539 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
540 } while (pgd
++, addr
= next
, addr
!= end
);
543 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
544 unsigned long floor
, unsigned long ceiling
)
547 struct vm_area_struct
*next
= vma
->vm_next
;
548 unsigned long addr
= vma
->vm_start
;
551 * Hide vma from rmap and truncate_pagecache before freeing
554 unlink_anon_vmas(vma
);
555 unlink_file_vma(vma
);
557 if (is_vm_hugetlb_page(vma
)) {
558 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
559 floor
, next
? next
->vm_start
: ceiling
);
562 * Optimization: gather nearby vmas into one call down
564 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
565 && !is_vm_hugetlb_page(next
)) {
568 unlink_anon_vmas(vma
);
569 unlink_file_vma(vma
);
571 free_pgd_range(tlb
, addr
, vma
->vm_end
,
572 floor
, next
? next
->vm_start
: ceiling
);
578 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
581 pgtable_t
new = pte_alloc_one(mm
, address
);
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600 ptl
= pmd_lock(mm
, pmd
);
601 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
602 atomic_long_inc(&mm
->nr_ptes
);
603 pmd_populate(mm
, pmd
, new);
612 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
614 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
618 smp_wmb(); /* See comment in __pte_alloc */
620 spin_lock(&init_mm
.page_table_lock
);
621 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
622 pmd_populate_kernel(&init_mm
, pmd
, new);
625 spin_unlock(&init_mm
.page_table_lock
);
627 pte_free_kernel(&init_mm
, new);
631 static inline void init_rss_vec(int *rss
)
633 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
636 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
640 if (current
->mm
== mm
)
642 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
644 add_mm_counter(mm
, i
, rss
[i
]);
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
652 * The calling function must still handle the error.
654 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
655 pte_t pte
, struct page
*page
)
657 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
658 pud_t
*pud
= pud_offset(pgd
, addr
);
659 pmd_t
*pmd
= pmd_offset(pud
, addr
);
660 struct address_space
*mapping
;
662 static unsigned long resume
;
663 static unsigned long nr_shown
;
664 static unsigned long nr_unshown
;
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
670 if (nr_shown
== 60) {
671 if (time_before(jiffies
, resume
)) {
676 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
683 resume
= jiffies
+ 60 * HZ
;
685 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
686 index
= linear_page_index(vma
, addr
);
688 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
690 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
692 dump_page(page
, "bad pte");
693 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
694 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
696 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
698 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
700 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
701 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
702 mapping
? mapping
->a_ops
->readpage
: NULL
);
704 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
708 * vm_normal_page -- This function gets the "struct page" associated with a pte.
710 * "Special" mappings do not wish to be associated with a "struct page" (either
711 * it doesn't exist, or it exists but they don't want to touch it). In this
712 * case, NULL is returned here. "Normal" mappings do have a struct page.
714 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
715 * pte bit, in which case this function is trivial. Secondly, an architecture
716 * may not have a spare pte bit, which requires a more complicated scheme,
719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
720 * special mapping (even if there are underlying and valid "struct pages").
721 * COWed pages of a VM_PFNMAP are always normal.
723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
726 * mapping will always honor the rule
728 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
730 * And for normal mappings this is false.
732 * This restricts such mappings to be a linear translation from virtual address
733 * to pfn. To get around this restriction, we allow arbitrary mappings so long
734 * as the vma is not a COW mapping; in that case, we know that all ptes are
735 * special (because none can have been COWed).
738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
741 * page" backing, however the difference is that _all_ pages with a struct
742 * page (that is, those where pfn_valid is true) are refcounted and considered
743 * normal pages by the VM. The disadvantage is that pages are refcounted
744 * (which can be slower and simply not an option for some PFNMAP users). The
745 * advantage is that we don't have to follow the strict linearity rule of
746 * PFNMAP mappings in order to support COWable mappings.
749 #ifdef __HAVE_ARCH_PTE_SPECIAL
750 # define HAVE_PTE_SPECIAL 1
752 # define HAVE_PTE_SPECIAL 0
754 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
757 unsigned long pfn
= pte_pfn(pte
);
759 if (HAVE_PTE_SPECIAL
) {
760 if (likely(!pte_special(pte
)))
762 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
763 return vma
->vm_ops
->find_special_page(vma
, addr
);
764 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
766 if (!is_zero_pfn(pfn
))
767 print_bad_pte(vma
, addr
, pte
, NULL
);
771 /* !HAVE_PTE_SPECIAL case follows: */
773 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
774 if (vma
->vm_flags
& VM_MIXEDMAP
) {
780 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
781 if (pfn
== vma
->vm_pgoff
+ off
)
783 if (!is_cow_mapping(vma
->vm_flags
))
788 if (is_zero_pfn(pfn
))
791 if (unlikely(pfn
> highest_memmap_pfn
)) {
792 print_bad_pte(vma
, addr
, pte
, NULL
);
797 * NOTE! We still have PageReserved() pages in the page tables.
798 * eg. VDSO mappings can cause them to exist.
801 return pfn_to_page(pfn
);
804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
805 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
808 unsigned long pfn
= pmd_pfn(pmd
);
811 * There is no pmd_special() but there may be special pmds, e.g.
812 * in a direct-access (dax) mapping, so let's just replicate the
813 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
815 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
816 if (vma
->vm_flags
& VM_MIXEDMAP
) {
822 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
823 if (pfn
== vma
->vm_pgoff
+ off
)
825 if (!is_cow_mapping(vma
->vm_flags
))
830 if (is_zero_pfn(pfn
))
832 if (unlikely(pfn
> highest_memmap_pfn
))
836 * NOTE! We still have PageReserved() pages in the page tables.
837 * eg. VDSO mappings can cause them to exist.
840 return pfn_to_page(pfn
);
845 * copy one vm_area from one task to the other. Assumes the page tables
846 * already present in the new task to be cleared in the whole range
847 * covered by this vma.
850 static inline unsigned long
851 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
852 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
853 unsigned long addr
, int *rss
)
855 unsigned long vm_flags
= vma
->vm_flags
;
856 pte_t pte
= *src_pte
;
859 /* pte contains position in swap or file, so copy. */
860 if (unlikely(!pte_present(pte
))) {
861 swp_entry_t entry
= pte_to_swp_entry(pte
);
863 if (likely(!non_swap_entry(entry
))) {
864 if (swap_duplicate(entry
) < 0)
867 /* make sure dst_mm is on swapoff's mmlist. */
868 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
869 spin_lock(&mmlist_lock
);
870 if (list_empty(&dst_mm
->mmlist
))
871 list_add(&dst_mm
->mmlist
,
873 spin_unlock(&mmlist_lock
);
876 } else if (is_migration_entry(entry
)) {
877 page
= migration_entry_to_page(entry
);
879 rss
[mm_counter(page
)]++;
881 if (is_write_migration_entry(entry
) &&
882 is_cow_mapping(vm_flags
)) {
884 * COW mappings require pages in both
885 * parent and child to be set to read.
887 make_migration_entry_read(&entry
);
888 pte
= swp_entry_to_pte(entry
);
889 if (pte_swp_soft_dirty(*src_pte
))
890 pte
= pte_swp_mksoft_dirty(pte
);
891 set_pte_at(src_mm
, addr
, src_pte
, pte
);
898 * If it's a COW mapping, write protect it both
899 * in the parent and the child
901 if (is_cow_mapping(vm_flags
)) {
902 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
903 pte
= pte_wrprotect(pte
);
907 * If it's a shared mapping, mark it clean in
910 if (vm_flags
& VM_SHARED
)
911 pte
= pte_mkclean(pte
);
912 pte
= pte_mkold(pte
);
914 page
= vm_normal_page(vma
, addr
, pte
);
917 page_dup_rmap(page
, false);
918 rss
[mm_counter(page
)]++;
922 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
926 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
927 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
928 unsigned long addr
, unsigned long end
)
930 pte_t
*orig_src_pte
, *orig_dst_pte
;
931 pte_t
*src_pte
, *dst_pte
;
932 spinlock_t
*src_ptl
, *dst_ptl
;
934 int rss
[NR_MM_COUNTERS
];
935 swp_entry_t entry
= (swp_entry_t
){0};
940 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
943 src_pte
= pte_offset_map(src_pmd
, addr
);
944 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
945 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
946 orig_src_pte
= src_pte
;
947 orig_dst_pte
= dst_pte
;
948 arch_enter_lazy_mmu_mode();
952 * We are holding two locks at this point - either of them
953 * could generate latencies in another task on another CPU.
955 if (progress
>= 32) {
957 if (need_resched() ||
958 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
961 if (pte_none(*src_pte
)) {
965 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
970 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
972 arch_leave_lazy_mmu_mode();
973 spin_unlock(src_ptl
);
974 pte_unmap(orig_src_pte
);
975 add_mm_rss_vec(dst_mm
, rss
);
976 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
980 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
989 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
990 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
991 unsigned long addr
, unsigned long end
)
993 pmd_t
*src_pmd
, *dst_pmd
;
996 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
999 src_pmd
= pmd_offset(src_pud
, addr
);
1001 next
= pmd_addr_end(addr
, end
);
1002 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
1004 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
1005 err
= copy_huge_pmd(dst_mm
, src_mm
,
1006 dst_pmd
, src_pmd
, addr
, vma
);
1013 if (pmd_none_or_clear_bad(src_pmd
))
1015 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1018 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1022 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1023 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1024 unsigned long addr
, unsigned long end
)
1026 pud_t
*src_pud
, *dst_pud
;
1029 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1032 src_pud
= pud_offset(src_pgd
, addr
);
1034 next
= pud_addr_end(addr
, end
);
1035 if (pud_none_or_clear_bad(src_pud
))
1037 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1040 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1044 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1045 struct vm_area_struct
*vma
)
1047 pgd_t
*src_pgd
, *dst_pgd
;
1049 unsigned long addr
= vma
->vm_start
;
1050 unsigned long end
= vma
->vm_end
;
1051 unsigned long mmun_start
; /* For mmu_notifiers */
1052 unsigned long mmun_end
; /* For mmu_notifiers */
1057 * Don't copy ptes where a page fault will fill them correctly.
1058 * Fork becomes much lighter when there are big shared or private
1059 * readonly mappings. The tradeoff is that copy_page_range is more
1060 * efficient than faulting.
1062 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1066 if (is_vm_hugetlb_page(vma
))
1067 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1069 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1071 * We do not free on error cases below as remove_vma
1072 * gets called on error from higher level routine
1074 ret
= track_pfn_copy(vma
);
1080 * We need to invalidate the secondary MMU mappings only when
1081 * there could be a permission downgrade on the ptes of the
1082 * parent mm. And a permission downgrade will only happen if
1083 * is_cow_mapping() returns true.
1085 is_cow
= is_cow_mapping(vma
->vm_flags
);
1089 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1093 dst_pgd
= pgd_offset(dst_mm
, addr
);
1094 src_pgd
= pgd_offset(src_mm
, addr
);
1096 next
= pgd_addr_end(addr
, end
);
1097 if (pgd_none_or_clear_bad(src_pgd
))
1099 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1100 vma
, addr
, next
))) {
1104 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1107 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1111 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1112 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1113 unsigned long addr
, unsigned long end
,
1114 struct zap_details
*details
)
1116 struct mm_struct
*mm
= tlb
->mm
;
1117 int force_flush
= 0;
1118 int rss
[NR_MM_COUNTERS
];
1124 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1127 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1129 arch_enter_lazy_mmu_mode();
1132 if (pte_none(ptent
)) {
1136 if (pte_present(ptent
)) {
1139 page
= vm_normal_page(vma
, addr
, ptent
);
1140 if (unlikely(details
) && page
) {
1142 * unmap_shared_mapping_pages() wants to
1143 * invalidate cache without truncating:
1144 * unmap shared but keep private pages.
1146 if (details
->check_mapping
&&
1147 details
->check_mapping
!= page_rmapping(page
))
1150 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1152 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1153 if (unlikely(!page
))
1156 if (!PageAnon(page
)) {
1157 if (pte_dirty(ptent
)) {
1159 set_page_dirty(page
);
1161 if (pte_young(ptent
) &&
1162 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1163 mark_page_accessed(page
);
1165 rss
[mm_counter(page
)]--;
1166 page_remove_rmap(page
, false);
1167 if (unlikely(page_mapcount(page
) < 0))
1168 print_bad_pte(vma
, addr
, ptent
, page
);
1169 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1176 /* If details->check_mapping, we leave swap entries. */
1177 if (unlikely(details
))
1180 entry
= pte_to_swp_entry(ptent
);
1181 if (!non_swap_entry(entry
))
1183 else if (is_migration_entry(entry
)) {
1186 page
= migration_entry_to_page(entry
);
1187 rss
[mm_counter(page
)]--;
1189 if (unlikely(!free_swap_and_cache(entry
)))
1190 print_bad_pte(vma
, addr
, ptent
, NULL
);
1191 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1192 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1194 add_mm_rss_vec(mm
, rss
);
1195 arch_leave_lazy_mmu_mode();
1197 /* Do the actual TLB flush before dropping ptl */
1199 tlb_flush_mmu_tlbonly(tlb
);
1200 pte_unmap_unlock(start_pte
, ptl
);
1203 * If we forced a TLB flush (either due to running out of
1204 * batch buffers or because we needed to flush dirty TLB
1205 * entries before releasing the ptl), free the batched
1206 * memory too. Restart if we didn't do everything.
1210 tlb_flush_mmu_free(tlb
);
1218 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1219 struct vm_area_struct
*vma
, pud_t
*pud
,
1220 unsigned long addr
, unsigned long end
,
1221 struct zap_details
*details
)
1226 pmd
= pmd_offset(pud
, addr
);
1228 next
= pmd_addr_end(addr
, end
);
1229 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1230 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1231 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1232 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1233 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1234 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1239 * Here there can be other concurrent MADV_DONTNEED or
1240 * trans huge page faults running, and if the pmd is
1241 * none or trans huge it can change under us. This is
1242 * because MADV_DONTNEED holds the mmap_sem in read
1245 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1247 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1250 } while (pmd
++, addr
= next
, addr
!= end
);
1255 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1256 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1257 unsigned long addr
, unsigned long end
,
1258 struct zap_details
*details
)
1263 pud
= pud_offset(pgd
, addr
);
1265 next
= pud_addr_end(addr
, end
);
1266 if (pud_none_or_clear_bad(pud
))
1268 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1269 } while (pud
++, addr
= next
, addr
!= end
);
1274 void unmap_page_range(struct mmu_gather
*tlb
,
1275 struct vm_area_struct
*vma
,
1276 unsigned long addr
, unsigned long end
,
1277 struct zap_details
*details
)
1282 BUG_ON(addr
>= end
);
1283 tlb_start_vma(tlb
, vma
);
1284 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1286 next
= pgd_addr_end(addr
, end
);
1287 if (pgd_none_or_clear_bad(pgd
))
1289 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1290 } while (pgd
++, addr
= next
, addr
!= end
);
1291 tlb_end_vma(tlb
, vma
);
1295 static void unmap_single_vma(struct mmu_gather
*tlb
,
1296 struct vm_area_struct
*vma
, unsigned long start_addr
,
1297 unsigned long end_addr
,
1298 struct zap_details
*details
)
1300 unsigned long start
= max(vma
->vm_start
, start_addr
);
1303 if (start
>= vma
->vm_end
)
1305 end
= min(vma
->vm_end
, end_addr
);
1306 if (end
<= vma
->vm_start
)
1310 uprobe_munmap(vma
, start
, end
);
1312 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1313 untrack_pfn(vma
, 0, 0);
1316 if (unlikely(is_vm_hugetlb_page(vma
))) {
1318 * It is undesirable to test vma->vm_file as it
1319 * should be non-null for valid hugetlb area.
1320 * However, vm_file will be NULL in the error
1321 * cleanup path of mmap_region. When
1322 * hugetlbfs ->mmap method fails,
1323 * mmap_region() nullifies vma->vm_file
1324 * before calling this function to clean up.
1325 * Since no pte has actually been setup, it is
1326 * safe to do nothing in this case.
1329 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1330 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1331 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1334 unmap_page_range(tlb
, vma
, start
, end
, details
);
1339 * unmap_vmas - unmap a range of memory covered by a list of vma's
1340 * @tlb: address of the caller's struct mmu_gather
1341 * @vma: the starting vma
1342 * @start_addr: virtual address at which to start unmapping
1343 * @end_addr: virtual address at which to end unmapping
1345 * Unmap all pages in the vma list.
1347 * Only addresses between `start' and `end' will be unmapped.
1349 * The VMA list must be sorted in ascending virtual address order.
1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352 * range after unmap_vmas() returns. So the only responsibility here is to
1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354 * drops the lock and schedules.
1356 void unmap_vmas(struct mmu_gather
*tlb
,
1357 struct vm_area_struct
*vma
, unsigned long start_addr
,
1358 unsigned long end_addr
)
1360 struct mm_struct
*mm
= vma
->vm_mm
;
1362 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1363 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1364 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1365 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1369 * zap_page_range - remove user pages in a given range
1370 * @vma: vm_area_struct holding the applicable pages
1371 * @start: starting address of pages to zap
1372 * @size: number of bytes to zap
1374 * Caller must protect the VMA list
1376 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1379 struct mm_struct
*mm
= vma
->vm_mm
;
1380 struct mmu_gather tlb
;
1381 unsigned long end
= start
+ size
;
1384 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1385 update_hiwater_rss(mm
);
1386 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1387 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1388 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1389 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1390 tlb_finish_mmu(&tlb
, start
, end
);
1394 * zap_page_range_single - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 * @details: details of shared cache invalidation
1400 * The range must fit into one VMA.
1402 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1403 unsigned long size
, struct zap_details
*details
)
1405 struct mm_struct
*mm
= vma
->vm_mm
;
1406 struct mmu_gather tlb
;
1407 unsigned long end
= address
+ size
;
1410 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1411 update_hiwater_rss(mm
);
1412 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1413 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1414 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1415 tlb_finish_mmu(&tlb
, address
, end
);
1419 * zap_vma_ptes - remove ptes mapping the vma
1420 * @vma: vm_area_struct holding ptes to be zapped
1421 * @address: starting address of pages to zap
1422 * @size: number of bytes to zap
1424 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426 * The entire address range must be fully contained within the vma.
1428 * Returns 0 if successful.
1430 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1433 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1434 !(vma
->vm_flags
& VM_PFNMAP
))
1436 zap_page_range_single(vma
, address
, size
, NULL
);
1439 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1441 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1444 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1445 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1447 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1449 VM_BUG_ON(pmd_trans_huge(*pmd
));
1450 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1457 * This is the old fallback for page remapping.
1459 * For historical reasons, it only allows reserved pages. Only
1460 * old drivers should use this, and they needed to mark their
1461 * pages reserved for the old functions anyway.
1463 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1464 struct page
*page
, pgprot_t prot
)
1466 struct mm_struct
*mm
= vma
->vm_mm
;
1475 flush_dcache_page(page
);
1476 pte
= get_locked_pte(mm
, addr
, &ptl
);
1480 if (!pte_none(*pte
))
1483 /* Ok, finally just insert the thing.. */
1485 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1486 page_add_file_rmap(page
, false);
1487 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1490 pte_unmap_unlock(pte
, ptl
);
1493 pte_unmap_unlock(pte
, ptl
);
1499 * vm_insert_page - insert single page into user vma
1500 * @vma: user vma to map to
1501 * @addr: target user address of this page
1502 * @page: source kernel page
1504 * This allows drivers to insert individual pages they've allocated
1507 * The page has to be a nice clean _individual_ kernel allocation.
1508 * If you allocate a compound page, you need to have marked it as
1509 * such (__GFP_COMP), or manually just split the page up yourself
1510 * (see split_page()).
1512 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1513 * took an arbitrary page protection parameter. This doesn't allow
1514 * that. Your vma protection will have to be set up correctly, which
1515 * means that if you want a shared writable mapping, you'd better
1516 * ask for a shared writable mapping!
1518 * The page does not need to be reserved.
1520 * Usually this function is called from f_op->mmap() handler
1521 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1522 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1523 * function from other places, for example from page-fault handler.
1525 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1528 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1530 if (!page_count(page
))
1532 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1533 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1534 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1535 vma
->vm_flags
|= VM_MIXEDMAP
;
1537 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1539 EXPORT_SYMBOL(vm_insert_page
);
1541 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1542 pfn_t pfn
, pgprot_t prot
)
1544 struct mm_struct
*mm
= vma
->vm_mm
;
1550 pte
= get_locked_pte(mm
, addr
, &ptl
);
1554 if (!pte_none(*pte
))
1557 /* Ok, finally just insert the thing.. */
1558 if (pfn_t_devmap(pfn
))
1559 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1561 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1562 set_pte_at(mm
, addr
, pte
, entry
);
1563 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1567 pte_unmap_unlock(pte
, ptl
);
1573 * vm_insert_pfn - insert single pfn into user vma
1574 * @vma: user vma to map to
1575 * @addr: target user address of this page
1576 * @pfn: source kernel pfn
1578 * Similar to vm_insert_page, this allows drivers to insert individual pages
1579 * they've allocated into a user vma. Same comments apply.
1581 * This function should only be called from a vm_ops->fault handler, and
1582 * in that case the handler should return NULL.
1584 * vma cannot be a COW mapping.
1586 * As this is called only for pages that do not currently exist, we
1587 * do not need to flush old virtual caches or the TLB.
1589 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1592 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1594 EXPORT_SYMBOL(vm_insert_pfn
);
1597 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1598 * @vma: user vma to map to
1599 * @addr: target user address of this page
1600 * @pfn: source kernel pfn
1601 * @pgprot: pgprot flags for the inserted page
1603 * This is exactly like vm_insert_pfn, except that it allows drivers to
1604 * to override pgprot on a per-page basis.
1606 * This only makes sense for IO mappings, and it makes no sense for
1607 * cow mappings. In general, using multiple vmas is preferable;
1608 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1611 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1612 unsigned long pfn
, pgprot_t pgprot
)
1616 * Technically, architectures with pte_special can avoid all these
1617 * restrictions (same for remap_pfn_range). However we would like
1618 * consistency in testing and feature parity among all, so we should
1619 * try to keep these invariants in place for everybody.
1621 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1622 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1623 (VM_PFNMAP
|VM_MIXEDMAP
));
1624 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1625 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1627 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1630 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1632 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1636 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1638 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1641 pgprot_t pgprot
= vma
->vm_page_prot
;
1643 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1645 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1648 track_pfn_insert(vma
, &pgprot
, pfn
);
1651 * If we don't have pte special, then we have to use the pfn_valid()
1652 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1653 * refcount the page if pfn_valid is true (hence insert_page rather
1654 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1655 * without pte special, it would there be refcounted as a normal page.
1657 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1661 * At this point we are committed to insert_page()
1662 * regardless of whether the caller specified flags that
1663 * result in pfn_t_has_page() == false.
1665 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1666 return insert_page(vma
, addr
, page
, pgprot
);
1668 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1670 EXPORT_SYMBOL(vm_insert_mixed
);
1673 * maps a range of physical memory into the requested pages. the old
1674 * mappings are removed. any references to nonexistent pages results
1675 * in null mappings (currently treated as "copy-on-access")
1677 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1678 unsigned long addr
, unsigned long end
,
1679 unsigned long pfn
, pgprot_t prot
)
1684 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1687 arch_enter_lazy_mmu_mode();
1689 BUG_ON(!pte_none(*pte
));
1690 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1692 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1693 arch_leave_lazy_mmu_mode();
1694 pte_unmap_unlock(pte
- 1, ptl
);
1698 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1699 unsigned long addr
, unsigned long end
,
1700 unsigned long pfn
, pgprot_t prot
)
1705 pfn
-= addr
>> PAGE_SHIFT
;
1706 pmd
= pmd_alloc(mm
, pud
, addr
);
1709 VM_BUG_ON(pmd_trans_huge(*pmd
));
1711 next
= pmd_addr_end(addr
, end
);
1712 if (remap_pte_range(mm
, pmd
, addr
, next
,
1713 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1715 } while (pmd
++, addr
= next
, addr
!= end
);
1719 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1720 unsigned long addr
, unsigned long end
,
1721 unsigned long pfn
, pgprot_t prot
)
1726 pfn
-= addr
>> PAGE_SHIFT
;
1727 pud
= pud_alloc(mm
, pgd
, addr
);
1731 next
= pud_addr_end(addr
, end
);
1732 if (remap_pmd_range(mm
, pud
, addr
, next
,
1733 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1735 } while (pud
++, addr
= next
, addr
!= end
);
1740 * remap_pfn_range - remap kernel memory to userspace
1741 * @vma: user vma to map to
1742 * @addr: target user address to start at
1743 * @pfn: physical address of kernel memory
1744 * @size: size of map area
1745 * @prot: page protection flags for this mapping
1747 * Note: this is only safe if the mm semaphore is held when called.
1749 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1750 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1754 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1755 struct mm_struct
*mm
= vma
->vm_mm
;
1756 unsigned long remap_pfn
= pfn
;
1760 * Physically remapped pages are special. Tell the
1761 * rest of the world about it:
1762 * VM_IO tells people not to look at these pages
1763 * (accesses can have side effects).
1764 * VM_PFNMAP tells the core MM that the base pages are just
1765 * raw PFN mappings, and do not have a "struct page" associated
1768 * Disable vma merging and expanding with mremap().
1770 * Omit vma from core dump, even when VM_IO turned off.
1772 * There's a horrible special case to handle copy-on-write
1773 * behaviour that some programs depend on. We mark the "original"
1774 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1775 * See vm_normal_page() for details.
1777 if (is_cow_mapping(vma
->vm_flags
)) {
1778 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1780 vma
->vm_pgoff
= pfn
;
1783 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1787 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1789 BUG_ON(addr
>= end
);
1790 pfn
-= addr
>> PAGE_SHIFT
;
1791 pgd
= pgd_offset(mm
, addr
);
1792 flush_cache_range(vma
, addr
, end
);
1794 next
= pgd_addr_end(addr
, end
);
1795 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1796 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1799 } while (pgd
++, addr
= next
, addr
!= end
);
1802 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1806 EXPORT_SYMBOL(remap_pfn_range
);
1809 * vm_iomap_memory - remap memory to userspace
1810 * @vma: user vma to map to
1811 * @start: start of area
1812 * @len: size of area
1814 * This is a simplified io_remap_pfn_range() for common driver use. The
1815 * driver just needs to give us the physical memory range to be mapped,
1816 * we'll figure out the rest from the vma information.
1818 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1819 * whatever write-combining details or similar.
1821 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1823 unsigned long vm_len
, pfn
, pages
;
1825 /* Check that the physical memory area passed in looks valid */
1826 if (start
+ len
< start
)
1829 * You *really* shouldn't map things that aren't page-aligned,
1830 * but we've historically allowed it because IO memory might
1831 * just have smaller alignment.
1833 len
+= start
& ~PAGE_MASK
;
1834 pfn
= start
>> PAGE_SHIFT
;
1835 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1836 if (pfn
+ pages
< pfn
)
1839 /* We start the mapping 'vm_pgoff' pages into the area */
1840 if (vma
->vm_pgoff
> pages
)
1842 pfn
+= vma
->vm_pgoff
;
1843 pages
-= vma
->vm_pgoff
;
1845 /* Can we fit all of the mapping? */
1846 vm_len
= vma
->vm_end
- vma
->vm_start
;
1847 if (vm_len
>> PAGE_SHIFT
> pages
)
1850 /* Ok, let it rip */
1851 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1853 EXPORT_SYMBOL(vm_iomap_memory
);
1855 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1856 unsigned long addr
, unsigned long end
,
1857 pte_fn_t fn
, void *data
)
1862 spinlock_t
*uninitialized_var(ptl
);
1864 pte
= (mm
== &init_mm
) ?
1865 pte_alloc_kernel(pmd
, addr
) :
1866 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1870 BUG_ON(pmd_huge(*pmd
));
1872 arch_enter_lazy_mmu_mode();
1874 token
= pmd_pgtable(*pmd
);
1877 err
= fn(pte
++, token
, addr
, data
);
1880 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1882 arch_leave_lazy_mmu_mode();
1885 pte_unmap_unlock(pte
-1, ptl
);
1889 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1890 unsigned long addr
, unsigned long end
,
1891 pte_fn_t fn
, void *data
)
1897 BUG_ON(pud_huge(*pud
));
1899 pmd
= pmd_alloc(mm
, pud
, addr
);
1903 next
= pmd_addr_end(addr
, end
);
1904 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1907 } while (pmd
++, addr
= next
, addr
!= end
);
1911 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1912 unsigned long addr
, unsigned long end
,
1913 pte_fn_t fn
, void *data
)
1919 pud
= pud_alloc(mm
, pgd
, addr
);
1923 next
= pud_addr_end(addr
, end
);
1924 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1927 } while (pud
++, addr
= next
, addr
!= end
);
1932 * Scan a region of virtual memory, filling in page tables as necessary
1933 * and calling a provided function on each leaf page table.
1935 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1936 unsigned long size
, pte_fn_t fn
, void *data
)
1940 unsigned long end
= addr
+ size
;
1943 if (WARN_ON(addr
>= end
))
1946 pgd
= pgd_offset(mm
, addr
);
1948 next
= pgd_addr_end(addr
, end
);
1949 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1952 } while (pgd
++, addr
= next
, addr
!= end
);
1956 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1959 * handle_pte_fault chooses page fault handler according to an entry which was
1960 * read non-atomically. Before making any commitment, on those architectures
1961 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1962 * parts, do_swap_page must check under lock before unmapping the pte and
1963 * proceeding (but do_wp_page is only called after already making such a check;
1964 * and do_anonymous_page can safely check later on).
1966 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1967 pte_t
*page_table
, pte_t orig_pte
)
1970 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1971 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1972 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1974 same
= pte_same(*page_table
, orig_pte
);
1978 pte_unmap(page_table
);
1982 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
1984 debug_dma_assert_idle(src
);
1987 * If the source page was a PFN mapping, we don't have
1988 * a "struct page" for it. We do a best-effort copy by
1989 * just copying from the original user address. If that
1990 * fails, we just zero-fill it. Live with it.
1992 if (unlikely(!src
)) {
1993 void *kaddr
= kmap_atomic(dst
);
1994 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
1997 * This really shouldn't fail, because the page is there
1998 * in the page tables. But it might just be unreadable,
1999 * in which case we just give up and fill the result with
2002 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2004 kunmap_atomic(kaddr
);
2005 flush_dcache_page(dst
);
2007 copy_user_highpage(dst
, src
, va
, vma
);
2010 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2012 struct file
*vm_file
= vma
->vm_file
;
2015 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2018 * Special mappings (e.g. VDSO) do not have any file so fake
2019 * a default GFP_KERNEL for them.
2025 * Notify the address space that the page is about to become writable so that
2026 * it can prohibit this or wait for the page to get into an appropriate state.
2028 * We do this without the lock held, so that it can sleep if it needs to.
2030 static int do_page_mkwrite(struct vm_fault
*vmf
)
2033 struct page
*page
= vmf
->page
;
2034 unsigned int old_flags
= vmf
->flags
;
2036 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2038 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
->vma
, vmf
);
2039 /* Restore original flags so that caller is not surprised */
2040 vmf
->flags
= old_flags
;
2041 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2043 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2045 if (!page
->mapping
) {
2047 return 0; /* retry */
2049 ret
|= VM_FAULT_LOCKED
;
2051 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2056 * Handle dirtying of a page in shared file mapping on a write fault.
2058 * The function expects the page to be locked and unlocks it.
2060 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2063 struct address_space
*mapping
;
2065 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2067 dirtied
= set_page_dirty(page
);
2068 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2070 * Take a local copy of the address_space - page.mapping may be zeroed
2071 * by truncate after unlock_page(). The address_space itself remains
2072 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2073 * release semantics to prevent the compiler from undoing this copying.
2075 mapping
= page_rmapping(page
);
2078 if ((dirtied
|| page_mkwrite
) && mapping
) {
2080 * Some device drivers do not set page.mapping
2081 * but still dirty their pages
2083 balance_dirty_pages_ratelimited(mapping
);
2087 file_update_time(vma
->vm_file
);
2091 * Handle write page faults for pages that can be reused in the current vma
2093 * This can happen either due to the mapping being with the VM_SHARED flag,
2094 * or due to us being the last reference standing to the page. In either
2095 * case, all we need to do here is to mark the page as writable and update
2096 * any related book-keeping.
2098 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2099 __releases(vmf
->ptl
)
2101 struct vm_area_struct
*vma
= vmf
->vma
;
2102 struct page
*page
= vmf
->page
;
2105 * Clear the pages cpupid information as the existing
2106 * information potentially belongs to a now completely
2107 * unrelated process.
2110 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2112 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2113 entry
= pte_mkyoung(vmf
->orig_pte
);
2114 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2115 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2116 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2117 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2121 * Handle the case of a page which we actually need to copy to a new page.
2123 * Called with mmap_sem locked and the old page referenced, but
2124 * without the ptl held.
2126 * High level logic flow:
2128 * - Allocate a page, copy the content of the old page to the new one.
2129 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2130 * - Take the PTL. If the pte changed, bail out and release the allocated page
2131 * - If the pte is still the way we remember it, update the page table and all
2132 * relevant references. This includes dropping the reference the page-table
2133 * held to the old page, as well as updating the rmap.
2134 * - In any case, unlock the PTL and drop the reference we took to the old page.
2136 static int wp_page_copy(struct vm_fault
*vmf
)
2138 struct vm_area_struct
*vma
= vmf
->vma
;
2139 struct mm_struct
*mm
= vma
->vm_mm
;
2140 struct page
*old_page
= vmf
->page
;
2141 struct page
*new_page
= NULL
;
2143 int page_copied
= 0;
2144 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2145 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2146 struct mem_cgroup
*memcg
;
2148 if (unlikely(anon_vma_prepare(vma
)))
2151 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2152 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2157 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2161 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2164 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2167 __SetPageUptodate(new_page
);
2169 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2172 * Re-check the pte - we dropped the lock
2174 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2175 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2177 if (!PageAnon(old_page
)) {
2178 dec_mm_counter_fast(mm
,
2179 mm_counter_file(old_page
));
2180 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2183 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2185 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2186 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2187 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2189 * Clear the pte entry and flush it first, before updating the
2190 * pte with the new entry. This will avoid a race condition
2191 * seen in the presence of one thread doing SMC and another
2194 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2195 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2196 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2197 lru_cache_add_active_or_unevictable(new_page
, vma
);
2199 * We call the notify macro here because, when using secondary
2200 * mmu page tables (such as kvm shadow page tables), we want the
2201 * new page to be mapped directly into the secondary page table.
2203 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2204 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2207 * Only after switching the pte to the new page may
2208 * we remove the mapcount here. Otherwise another
2209 * process may come and find the rmap count decremented
2210 * before the pte is switched to the new page, and
2211 * "reuse" the old page writing into it while our pte
2212 * here still points into it and can be read by other
2215 * The critical issue is to order this
2216 * page_remove_rmap with the ptp_clear_flush above.
2217 * Those stores are ordered by (if nothing else,)
2218 * the barrier present in the atomic_add_negative
2219 * in page_remove_rmap.
2221 * Then the TLB flush in ptep_clear_flush ensures that
2222 * no process can access the old page before the
2223 * decremented mapcount is visible. And the old page
2224 * cannot be reused until after the decremented
2225 * mapcount is visible. So transitively, TLBs to
2226 * old page will be flushed before it can be reused.
2228 page_remove_rmap(old_page
, false);
2231 /* Free the old page.. */
2232 new_page
= old_page
;
2235 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2241 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2242 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2245 * Don't let another task, with possibly unlocked vma,
2246 * keep the mlocked page.
2248 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2249 lock_page(old_page
); /* LRU manipulation */
2250 if (PageMlocked(old_page
))
2251 munlock_vma_page(old_page
);
2252 unlock_page(old_page
);
2256 return page_copied
? VM_FAULT_WRITE
: 0;
2262 return VM_FAULT_OOM
;
2266 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2267 * writeable once the page is prepared
2269 * @vmf: structure describing the fault
2271 * This function handles all that is needed to finish a write page fault in a
2272 * shared mapping due to PTE being read-only once the mapped page is prepared.
2273 * It handles locking of PTE and modifying it. The function returns
2274 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2277 * The function expects the page to be locked or other protection against
2278 * concurrent faults / writeback (such as DAX radix tree locks).
2280 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2282 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2283 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2286 * We might have raced with another page fault while we released the
2287 * pte_offset_map_lock.
2289 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2290 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2291 return VM_FAULT_NOPAGE
;
2298 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2301 static int wp_pfn_shared(struct vm_fault
*vmf
)
2303 struct vm_area_struct
*vma
= vmf
->vma
;
2305 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2308 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2309 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2310 ret
= vma
->vm_ops
->pfn_mkwrite(vma
, vmf
);
2311 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2313 return finish_mkwrite_fault(vmf
);
2316 return VM_FAULT_WRITE
;
2319 static int wp_page_shared(struct vm_fault
*vmf
)
2320 __releases(vmf
->ptl
)
2322 struct vm_area_struct
*vma
= vmf
->vma
;
2324 get_page(vmf
->page
);
2326 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2329 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2330 tmp
= do_page_mkwrite(vmf
);
2331 if (unlikely(!tmp
|| (tmp
&
2332 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2333 put_page(vmf
->page
);
2336 tmp
= finish_mkwrite_fault(vmf
);
2337 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2338 unlock_page(vmf
->page
);
2339 put_page(vmf
->page
);
2344 lock_page(vmf
->page
);
2346 fault_dirty_shared_page(vma
, vmf
->page
);
2347 put_page(vmf
->page
);
2349 return VM_FAULT_WRITE
;
2353 * This routine handles present pages, when users try to write
2354 * to a shared page. It is done by copying the page to a new address
2355 * and decrementing the shared-page counter for the old page.
2357 * Note that this routine assumes that the protection checks have been
2358 * done by the caller (the low-level page fault routine in most cases).
2359 * Thus we can safely just mark it writable once we've done any necessary
2362 * We also mark the page dirty at this point even though the page will
2363 * change only once the write actually happens. This avoids a few races,
2364 * and potentially makes it more efficient.
2366 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367 * but allow concurrent faults), with pte both mapped and locked.
2368 * We return with mmap_sem still held, but pte unmapped and unlocked.
2370 static int do_wp_page(struct vm_fault
*vmf
)
2371 __releases(vmf
->ptl
)
2373 struct vm_area_struct
*vma
= vmf
->vma
;
2375 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2378 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2381 * We should not cow pages in a shared writeable mapping.
2382 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2384 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2385 (VM_WRITE
|VM_SHARED
))
2386 return wp_pfn_shared(vmf
);
2388 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2389 return wp_page_copy(vmf
);
2393 * Take out anonymous pages first, anonymous shared vmas are
2394 * not dirty accountable.
2396 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2398 if (!trylock_page(vmf
->page
)) {
2399 get_page(vmf
->page
);
2400 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2401 lock_page(vmf
->page
);
2402 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2403 vmf
->address
, &vmf
->ptl
);
2404 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2405 unlock_page(vmf
->page
);
2406 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2407 put_page(vmf
->page
);
2410 put_page(vmf
->page
);
2412 if (reuse_swap_page(vmf
->page
, &total_mapcount
)) {
2413 if (total_mapcount
== 1) {
2415 * The page is all ours. Move it to
2416 * our anon_vma so the rmap code will
2417 * not search our parent or siblings.
2418 * Protected against the rmap code by
2421 page_move_anon_rmap(vmf
->page
, vma
);
2423 unlock_page(vmf
->page
);
2425 return VM_FAULT_WRITE
;
2427 unlock_page(vmf
->page
);
2428 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2429 (VM_WRITE
|VM_SHARED
))) {
2430 return wp_page_shared(vmf
);
2434 * Ok, we need to copy. Oh, well..
2436 get_page(vmf
->page
);
2438 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2439 return wp_page_copy(vmf
);
2442 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2443 unsigned long start_addr
, unsigned long end_addr
,
2444 struct zap_details
*details
)
2446 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2449 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2450 struct zap_details
*details
)
2452 struct vm_area_struct
*vma
;
2453 pgoff_t vba
, vea
, zba
, zea
;
2455 vma_interval_tree_foreach(vma
, root
,
2456 details
->first_index
, details
->last_index
) {
2458 vba
= vma
->vm_pgoff
;
2459 vea
= vba
+ vma_pages(vma
) - 1;
2460 zba
= details
->first_index
;
2463 zea
= details
->last_index
;
2467 unmap_mapping_range_vma(vma
,
2468 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2469 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2475 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2476 * address_space corresponding to the specified page range in the underlying
2479 * @mapping: the address space containing mmaps to be unmapped.
2480 * @holebegin: byte in first page to unmap, relative to the start of
2481 * the underlying file. This will be rounded down to a PAGE_SIZE
2482 * boundary. Note that this is different from truncate_pagecache(), which
2483 * must keep the partial page. In contrast, we must get rid of
2485 * @holelen: size of prospective hole in bytes. This will be rounded
2486 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2488 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2489 * but 0 when invalidating pagecache, don't throw away private data.
2491 void unmap_mapping_range(struct address_space
*mapping
,
2492 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2494 struct zap_details details
= { };
2495 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2496 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2498 /* Check for overflow. */
2499 if (sizeof(holelen
) > sizeof(hlen
)) {
2501 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2502 if (holeend
& ~(long long)ULONG_MAX
)
2503 hlen
= ULONG_MAX
- hba
+ 1;
2506 details
.check_mapping
= even_cows
? NULL
: mapping
;
2507 details
.first_index
= hba
;
2508 details
.last_index
= hba
+ hlen
- 1;
2509 if (details
.last_index
< details
.first_index
)
2510 details
.last_index
= ULONG_MAX
;
2512 i_mmap_lock_write(mapping
);
2513 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2514 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2515 i_mmap_unlock_write(mapping
);
2517 EXPORT_SYMBOL(unmap_mapping_range
);
2520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521 * but allow concurrent faults), and pte mapped but not yet locked.
2522 * We return with pte unmapped and unlocked.
2524 * We return with the mmap_sem locked or unlocked in the same cases
2525 * as does filemap_fault().
2527 int do_swap_page(struct vm_fault
*vmf
)
2529 struct vm_area_struct
*vma
= vmf
->vma
;
2530 struct page
*page
, *swapcache
;
2531 struct mem_cgroup
*memcg
;
2538 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2541 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2542 if (unlikely(non_swap_entry(entry
))) {
2543 if (is_migration_entry(entry
)) {
2544 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2546 } else if (is_hwpoison_entry(entry
)) {
2547 ret
= VM_FAULT_HWPOISON
;
2549 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2550 ret
= VM_FAULT_SIGBUS
;
2554 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2555 page
= lookup_swap_cache(entry
);
2557 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
, vma
,
2561 * Back out if somebody else faulted in this pte
2562 * while we released the pte lock.
2564 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2565 vmf
->address
, &vmf
->ptl
);
2566 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2568 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2572 /* Had to read the page from swap area: Major fault */
2573 ret
= VM_FAULT_MAJOR
;
2574 count_vm_event(PGMAJFAULT
);
2575 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2576 } else if (PageHWPoison(page
)) {
2578 * hwpoisoned dirty swapcache pages are kept for killing
2579 * owner processes (which may be unknown at hwpoison time)
2581 ret
= VM_FAULT_HWPOISON
;
2582 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2588 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2592 ret
|= VM_FAULT_RETRY
;
2597 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2598 * release the swapcache from under us. The page pin, and pte_same
2599 * test below, are not enough to exclude that. Even if it is still
2600 * swapcache, we need to check that the page's swap has not changed.
2602 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2605 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2606 if (unlikely(!page
)) {
2612 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2619 * Back out if somebody else already faulted in this pte.
2621 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2623 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2626 if (unlikely(!PageUptodate(page
))) {
2627 ret
= VM_FAULT_SIGBUS
;
2632 * The page isn't present yet, go ahead with the fault.
2634 * Be careful about the sequence of operations here.
2635 * To get its accounting right, reuse_swap_page() must be called
2636 * while the page is counted on swap but not yet in mapcount i.e.
2637 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2638 * must be called after the swap_free(), or it will never succeed.
2641 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2642 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2643 pte
= mk_pte(page
, vma
->vm_page_prot
);
2644 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2645 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2646 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2647 ret
|= VM_FAULT_WRITE
;
2648 exclusive
= RMAP_EXCLUSIVE
;
2650 flush_icache_page(vma
, page
);
2651 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2652 pte
= pte_mksoft_dirty(pte
);
2653 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2654 vmf
->orig_pte
= pte
;
2655 if (page
== swapcache
) {
2656 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2657 mem_cgroup_commit_charge(page
, memcg
, true, false);
2658 activate_page(page
);
2659 } else { /* ksm created a completely new copy */
2660 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2661 mem_cgroup_commit_charge(page
, memcg
, false, false);
2662 lru_cache_add_active_or_unevictable(page
, vma
);
2666 if (mem_cgroup_swap_full(page
) ||
2667 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2668 try_to_free_swap(page
);
2670 if (page
!= swapcache
) {
2672 * Hold the lock to avoid the swap entry to be reused
2673 * until we take the PT lock for the pte_same() check
2674 * (to avoid false positives from pte_same). For
2675 * further safety release the lock after the swap_free
2676 * so that the swap count won't change under a
2677 * parallel locked swapcache.
2679 unlock_page(swapcache
);
2680 put_page(swapcache
);
2683 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2684 ret
|= do_wp_page(vmf
);
2685 if (ret
& VM_FAULT_ERROR
)
2686 ret
&= VM_FAULT_ERROR
;
2690 /* No need to invalidate - it was non-present before */
2691 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2693 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2697 mem_cgroup_cancel_charge(page
, memcg
, false);
2698 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2703 if (page
!= swapcache
) {
2704 unlock_page(swapcache
);
2705 put_page(swapcache
);
2711 * This is like a special single-page "expand_{down|up}wards()",
2712 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2713 * doesn't hit another vma.
2715 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2717 address
&= PAGE_MASK
;
2718 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2719 struct vm_area_struct
*prev
= vma
->vm_prev
;
2722 * Is there a mapping abutting this one below?
2724 * That's only ok if it's the same stack mapping
2725 * that has gotten split..
2727 if (prev
&& prev
->vm_end
== address
)
2728 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2730 return expand_downwards(vma
, address
- PAGE_SIZE
);
2732 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2733 struct vm_area_struct
*next
= vma
->vm_next
;
2735 /* As VM_GROWSDOWN but s/below/above/ */
2736 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2737 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2739 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2745 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746 * but allow concurrent faults), and pte mapped but not yet locked.
2747 * We return with mmap_sem still held, but pte unmapped and unlocked.
2749 static int do_anonymous_page(struct vm_fault
*vmf
)
2751 struct vm_area_struct
*vma
= vmf
->vma
;
2752 struct mem_cgroup
*memcg
;
2756 /* File mapping without ->vm_ops ? */
2757 if (vma
->vm_flags
& VM_SHARED
)
2758 return VM_FAULT_SIGBUS
;
2760 /* Check if we need to add a guard page to the stack */
2761 if (check_stack_guard_page(vma
, vmf
->address
) < 0)
2762 return VM_FAULT_SIGSEGV
;
2765 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2766 * pte_offset_map() on pmds where a huge pmd might be created
2767 * from a different thread.
2769 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2770 * parallel threads are excluded by other means.
2772 * Here we only have down_read(mmap_sem).
2774 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
2775 return VM_FAULT_OOM
;
2777 /* See the comment in pte_alloc_one_map() */
2778 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2781 /* Use the zero-page for reads */
2782 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2783 !mm_forbids_zeropage(vma
->vm_mm
)) {
2784 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2785 vma
->vm_page_prot
));
2786 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2787 vmf
->address
, &vmf
->ptl
);
2788 if (!pte_none(*vmf
->pte
))
2790 /* Deliver the page fault to userland, check inside PT lock */
2791 if (userfaultfd_missing(vma
)) {
2792 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2793 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2798 /* Allocate our own private page. */
2799 if (unlikely(anon_vma_prepare(vma
)))
2801 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2805 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2809 * The memory barrier inside __SetPageUptodate makes sure that
2810 * preceeding stores to the page contents become visible before
2811 * the set_pte_at() write.
2813 __SetPageUptodate(page
);
2815 entry
= mk_pte(page
, vma
->vm_page_prot
);
2816 if (vma
->vm_flags
& VM_WRITE
)
2817 entry
= pte_mkwrite(pte_mkdirty(entry
));
2819 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2821 if (!pte_none(*vmf
->pte
))
2824 /* Deliver the page fault to userland, check inside PT lock */
2825 if (userfaultfd_missing(vma
)) {
2826 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2827 mem_cgroup_cancel_charge(page
, memcg
, false);
2829 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2832 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2833 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2834 mem_cgroup_commit_charge(page
, memcg
, false, false);
2835 lru_cache_add_active_or_unevictable(page
, vma
);
2837 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2839 /* No need to invalidate - it was non-present before */
2840 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2842 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2845 mem_cgroup_cancel_charge(page
, memcg
, false);
2851 return VM_FAULT_OOM
;
2855 * The mmap_sem must have been held on entry, and may have been
2856 * released depending on flags and vma->vm_ops->fault() return value.
2857 * See filemap_fault() and __lock_page_retry().
2859 static int __do_fault(struct vm_fault
*vmf
)
2861 struct vm_area_struct
*vma
= vmf
->vma
;
2864 ret
= vma
->vm_ops
->fault(vma
, vmf
);
2865 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
2866 VM_FAULT_DONE_COW
)))
2869 if (unlikely(PageHWPoison(vmf
->page
))) {
2870 if (ret
& VM_FAULT_LOCKED
)
2871 unlock_page(vmf
->page
);
2872 put_page(vmf
->page
);
2874 return VM_FAULT_HWPOISON
;
2877 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2878 lock_page(vmf
->page
);
2880 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
2885 static int pte_alloc_one_map(struct vm_fault
*vmf
)
2887 struct vm_area_struct
*vma
= vmf
->vma
;
2889 if (!pmd_none(*vmf
->pmd
))
2891 if (vmf
->prealloc_pte
) {
2892 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
2893 if (unlikely(!pmd_none(*vmf
->pmd
))) {
2894 spin_unlock(vmf
->ptl
);
2898 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2899 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2900 spin_unlock(vmf
->ptl
);
2901 vmf
->prealloc_pte
= 0;
2902 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
2903 return VM_FAULT_OOM
;
2907 * If a huge pmd materialized under us just retry later. Use
2908 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2909 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2910 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2911 * in a different thread of this mm, in turn leading to a misleading
2912 * pmd_trans_huge() retval. All we have to ensure is that it is a
2913 * regular pmd that we can walk with pte_offset_map() and we can do that
2914 * through an atomic read in C, which is what pmd_trans_unstable()
2917 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
2918 return VM_FAULT_NOPAGE
;
2920 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2925 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2927 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2928 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
2929 unsigned long haddr
)
2931 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
2932 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
2934 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
2939 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
2941 struct vm_area_struct
*vma
= vmf
->vma
;
2943 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2945 * We are going to consume the prealloc table,
2946 * count that as nr_ptes.
2948 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2949 vmf
->prealloc_pte
= 0;
2952 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
2954 struct vm_area_struct
*vma
= vmf
->vma
;
2955 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
2956 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
2960 if (!transhuge_vma_suitable(vma
, haddr
))
2961 return VM_FAULT_FALLBACK
;
2963 ret
= VM_FAULT_FALLBACK
;
2964 page
= compound_head(page
);
2967 * Archs like ppc64 need additonal space to store information
2968 * related to pte entry. Use the preallocated table for that.
2970 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
2971 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
2972 if (!vmf
->prealloc_pte
)
2973 return VM_FAULT_OOM
;
2974 smp_wmb(); /* See comment in __pte_alloc() */
2977 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
2978 if (unlikely(!pmd_none(*vmf
->pmd
)))
2981 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
2982 flush_icache_page(vma
, page
+ i
);
2984 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
2986 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
2988 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
2989 page_add_file_rmap(page
, true);
2991 * deposit and withdraw with pmd lock held
2993 if (arch_needs_pgtable_deposit())
2994 deposit_prealloc_pte(vmf
);
2996 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
2998 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3000 /* fault is handled */
3002 count_vm_event(THP_FILE_MAPPED
);
3004 spin_unlock(vmf
->ptl
);
3008 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3016 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3017 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3019 * @vmf: fault environment
3020 * @memcg: memcg to charge page (only for private mappings)
3021 * @page: page to map
3023 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3026 * Target users are page handler itself and implementations of
3027 * vm_ops->map_pages.
3029 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3032 struct vm_area_struct
*vma
= vmf
->vma
;
3033 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3037 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3038 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3040 VM_BUG_ON_PAGE(memcg
, page
);
3042 ret
= do_set_pmd(vmf
, page
);
3043 if (ret
!= VM_FAULT_FALLBACK
)
3048 ret
= pte_alloc_one_map(vmf
);
3053 /* Re-check under ptl */
3054 if (unlikely(!pte_none(*vmf
->pte
)))
3055 return VM_FAULT_NOPAGE
;
3057 flush_icache_page(vma
, page
);
3058 entry
= mk_pte(page
, vma
->vm_page_prot
);
3060 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3061 /* copy-on-write page */
3062 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3063 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3064 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3065 mem_cgroup_commit_charge(page
, memcg
, false, false);
3066 lru_cache_add_active_or_unevictable(page
, vma
);
3068 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3069 page_add_file_rmap(page
, false);
3071 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3073 /* no need to invalidate: a not-present page won't be cached */
3074 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3081 * finish_fault - finish page fault once we have prepared the page to fault
3083 * @vmf: structure describing the fault
3085 * This function handles all that is needed to finish a page fault once the
3086 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3087 * given page, adds reverse page mapping, handles memcg charges and LRU
3088 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3091 * The function expects the page to be locked and on success it consumes a
3092 * reference of a page being mapped (for the PTE which maps it).
3094 int finish_fault(struct vm_fault
*vmf
)
3099 /* Did we COW the page? */
3100 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3101 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3102 page
= vmf
->cow_page
;
3105 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3107 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3111 static unsigned long fault_around_bytes __read_mostly
=
3112 rounddown_pow_of_two(65536);
3114 #ifdef CONFIG_DEBUG_FS
3115 static int fault_around_bytes_get(void *data
, u64
*val
)
3117 *val
= fault_around_bytes
;
3122 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3123 * rounded down to nearest page order. It's what do_fault_around() expects to
3126 static int fault_around_bytes_set(void *data
, u64 val
)
3128 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3130 if (val
> PAGE_SIZE
)
3131 fault_around_bytes
= rounddown_pow_of_two(val
);
3133 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3136 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
3137 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3139 static int __init
fault_around_debugfs(void)
3143 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
3144 &fault_around_bytes_fops
);
3146 pr_warn("Failed to create fault_around_bytes in debugfs");
3149 late_initcall(fault_around_debugfs
);
3153 * do_fault_around() tries to map few pages around the fault address. The hope
3154 * is that the pages will be needed soon and this will lower the number of
3157 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3158 * not ready to be mapped: not up-to-date, locked, etc.
3160 * This function is called with the page table lock taken. In the split ptlock
3161 * case the page table lock only protects only those entries which belong to
3162 * the page table corresponding to the fault address.
3164 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3167 * fault_around_pages() defines how many pages we'll try to map.
3168 * do_fault_around() expects it to return a power of two less than or equal to
3171 * The virtual address of the area that we map is naturally aligned to the
3172 * fault_around_pages() value (and therefore to page order). This way it's
3173 * easier to guarantee that we don't cross page table boundaries.
3175 static int do_fault_around(struct vm_fault
*vmf
)
3177 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3178 pgoff_t start_pgoff
= vmf
->pgoff
;
3182 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3183 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3185 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3186 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3190 * end_pgoff is either end of page table or end of vma
3191 * or fault_around_pages() from start_pgoff, depending what is nearest.
3193 end_pgoff
= start_pgoff
-
3194 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3196 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3197 start_pgoff
+ nr_pages
- 1);
3199 if (pmd_none(*vmf
->pmd
)) {
3200 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3202 if (!vmf
->prealloc_pte
)
3204 smp_wmb(); /* See comment in __pte_alloc() */
3207 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3209 /* Huge page is mapped? Page fault is solved */
3210 if (pmd_trans_huge(*vmf
->pmd
)) {
3211 ret
= VM_FAULT_NOPAGE
;
3215 /* ->map_pages() haven't done anything useful. Cold page cache? */
3219 /* check if the page fault is solved */
3220 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3221 if (!pte_none(*vmf
->pte
))
3222 ret
= VM_FAULT_NOPAGE
;
3223 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3225 vmf
->address
= address
;
3230 static int do_read_fault(struct vm_fault
*vmf
)
3232 struct vm_area_struct
*vma
= vmf
->vma
;
3236 * Let's call ->map_pages() first and use ->fault() as fallback
3237 * if page by the offset is not ready to be mapped (cold cache or
3240 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3241 ret
= do_fault_around(vmf
);
3246 ret
= __do_fault(vmf
);
3247 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3250 ret
|= finish_fault(vmf
);
3251 unlock_page(vmf
->page
);
3252 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3253 put_page(vmf
->page
);
3257 static int do_cow_fault(struct vm_fault
*vmf
)
3259 struct vm_area_struct
*vma
= vmf
->vma
;
3262 if (unlikely(anon_vma_prepare(vma
)))
3263 return VM_FAULT_OOM
;
3265 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3267 return VM_FAULT_OOM
;
3269 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3270 &vmf
->memcg
, false)) {
3271 put_page(vmf
->cow_page
);
3272 return VM_FAULT_OOM
;
3275 ret
= __do_fault(vmf
);
3276 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3278 if (ret
& VM_FAULT_DONE_COW
)
3281 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3282 __SetPageUptodate(vmf
->cow_page
);
3284 ret
|= finish_fault(vmf
);
3285 unlock_page(vmf
->page
);
3286 put_page(vmf
->page
);
3287 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3291 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3292 put_page(vmf
->cow_page
);
3296 static int do_shared_fault(struct vm_fault
*vmf
)
3298 struct vm_area_struct
*vma
= vmf
->vma
;
3301 ret
= __do_fault(vmf
);
3302 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3306 * Check if the backing address space wants to know that the page is
3307 * about to become writable
3309 if (vma
->vm_ops
->page_mkwrite
) {
3310 unlock_page(vmf
->page
);
3311 tmp
= do_page_mkwrite(vmf
);
3312 if (unlikely(!tmp
||
3313 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3314 put_page(vmf
->page
);
3319 ret
|= finish_fault(vmf
);
3320 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3322 unlock_page(vmf
->page
);
3323 put_page(vmf
->page
);
3327 fault_dirty_shared_page(vma
, vmf
->page
);
3332 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3333 * but allow concurrent faults).
3334 * The mmap_sem may have been released depending on flags and our
3335 * return value. See filemap_fault() and __lock_page_or_retry().
3337 static int do_fault(struct vm_fault
*vmf
)
3339 struct vm_area_struct
*vma
= vmf
->vma
;
3342 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3343 if (!vma
->vm_ops
->fault
)
3344 ret
= VM_FAULT_SIGBUS
;
3345 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3346 ret
= do_read_fault(vmf
);
3347 else if (!(vma
->vm_flags
& VM_SHARED
))
3348 ret
= do_cow_fault(vmf
);
3350 ret
= do_shared_fault(vmf
);
3352 /* preallocated pagetable is unused: free it */
3353 if (vmf
->prealloc_pte
) {
3354 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3355 vmf
->prealloc_pte
= 0;
3360 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3361 unsigned long addr
, int page_nid
,
3366 count_vm_numa_event(NUMA_HINT_FAULTS
);
3367 if (page_nid
== numa_node_id()) {
3368 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3369 *flags
|= TNF_FAULT_LOCAL
;
3372 return mpol_misplaced(page
, vma
, addr
);
3375 static int do_numa_page(struct vm_fault
*vmf
)
3377 struct vm_area_struct
*vma
= vmf
->vma
;
3378 struct page
*page
= NULL
;
3382 bool migrated
= false;
3383 pte_t pte
= vmf
->orig_pte
;
3384 bool was_writable
= pte_write(pte
);
3388 * The "pte" at this point cannot be used safely without
3389 * validation through pte_unmap_same(). It's of NUMA type but
3390 * the pfn may be screwed if the read is non atomic.
3392 * We can safely just do a "set_pte_at()", because the old
3393 * page table entry is not accessible, so there would be no
3394 * concurrent hardware modifications to the PTE.
3396 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3397 spin_lock(vmf
->ptl
);
3398 if (unlikely(!pte_same(*vmf
->pte
, pte
))) {
3399 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3403 /* Make it present again */
3404 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3405 pte
= pte_mkyoung(pte
);
3407 pte
= pte_mkwrite(pte
);
3408 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3409 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3411 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3413 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3417 /* TODO: handle PTE-mapped THP */
3418 if (PageCompound(page
)) {
3419 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3424 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3425 * much anyway since they can be in shared cache state. This misses
3426 * the case where a mapping is writable but the process never writes
3427 * to it but pte_write gets cleared during protection updates and
3428 * pte_dirty has unpredictable behaviour between PTE scan updates,
3429 * background writeback, dirty balancing and application behaviour.
3431 if (!pte_write(pte
))
3432 flags
|= TNF_NO_GROUP
;
3435 * Flag if the page is shared between multiple address spaces. This
3436 * is later used when determining whether to group tasks together
3438 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3439 flags
|= TNF_SHARED
;
3441 last_cpupid
= page_cpupid_last(page
);
3442 page_nid
= page_to_nid(page
);
3443 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3445 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3446 if (target_nid
== -1) {
3451 /* Migrate to the requested node */
3452 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3454 page_nid
= target_nid
;
3455 flags
|= TNF_MIGRATED
;
3457 flags
|= TNF_MIGRATE_FAIL
;
3461 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3465 static int create_huge_pmd(struct vm_fault
*vmf
)
3467 if (vma_is_anonymous(vmf
->vma
))
3468 return do_huge_pmd_anonymous_page(vmf
);
3469 if (vmf
->vma
->vm_ops
->pmd_fault
)
3470 return vmf
->vma
->vm_ops
->pmd_fault(vmf
);
3471 return VM_FAULT_FALLBACK
;
3474 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3476 if (vma_is_anonymous(vmf
->vma
))
3477 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3478 if (vmf
->vma
->vm_ops
->pmd_fault
)
3479 return vmf
->vma
->vm_ops
->pmd_fault(vmf
);
3481 /* COW handled on pte level: split pmd */
3482 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3483 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3485 return VM_FAULT_FALLBACK
;
3488 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3490 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3494 * These routines also need to handle stuff like marking pages dirty
3495 * and/or accessed for architectures that don't do it in hardware (most
3496 * RISC architectures). The early dirtying is also good on the i386.
3498 * There is also a hook called "update_mmu_cache()" that architectures
3499 * with external mmu caches can use to update those (ie the Sparc or
3500 * PowerPC hashed page tables that act as extended TLBs).
3502 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3503 * concurrent faults).
3505 * The mmap_sem may have been released depending on flags and our return value.
3506 * See filemap_fault() and __lock_page_or_retry().
3508 static int handle_pte_fault(struct vm_fault
*vmf
)
3512 if (unlikely(pmd_none(*vmf
->pmd
))) {
3514 * Leave __pte_alloc() until later: because vm_ops->fault may
3515 * want to allocate huge page, and if we expose page table
3516 * for an instant, it will be difficult to retract from
3517 * concurrent faults and from rmap lookups.
3521 /* See comment in pte_alloc_one_map() */
3522 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
3525 * A regular pmd is established and it can't morph into a huge
3526 * pmd from under us anymore at this point because we hold the
3527 * mmap_sem read mode and khugepaged takes it in write mode.
3528 * So now it's safe to run pte_offset_map().
3530 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3531 vmf
->orig_pte
= *vmf
->pte
;
3534 * some architectures can have larger ptes than wordsize,
3535 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3536 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3537 * atomic accesses. The code below just needs a consistent
3538 * view for the ifs and we later double check anyway with the
3539 * ptl lock held. So here a barrier will do.
3542 if (pte_none(vmf
->orig_pte
)) {
3543 pte_unmap(vmf
->pte
);
3549 if (vma_is_anonymous(vmf
->vma
))
3550 return do_anonymous_page(vmf
);
3552 return do_fault(vmf
);
3555 if (!pte_present(vmf
->orig_pte
))
3556 return do_swap_page(vmf
);
3558 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3559 return do_numa_page(vmf
);
3561 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3562 spin_lock(vmf
->ptl
);
3563 entry
= vmf
->orig_pte
;
3564 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3566 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3567 if (!pte_write(entry
))
3568 return do_wp_page(vmf
);
3569 entry
= pte_mkdirty(entry
);
3571 entry
= pte_mkyoung(entry
);
3572 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3573 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3574 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3577 * This is needed only for protection faults but the arch code
3578 * is not yet telling us if this is a protection fault or not.
3579 * This still avoids useless tlb flushes for .text page faults
3582 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3583 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3586 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3591 * By the time we get here, we already hold the mm semaphore
3593 * The mmap_sem may have been released depending on flags and our
3594 * return value. See filemap_fault() and __lock_page_or_retry().
3596 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3599 struct vm_fault vmf
= {
3601 .address
= address
& PAGE_MASK
,
3603 .pgoff
= linear_page_index(vma
, address
),
3604 .gfp_mask
= __get_fault_gfp_mask(vma
),
3606 struct mm_struct
*mm
= vma
->vm_mm
;
3610 pgd
= pgd_offset(mm
, address
);
3611 pud
= pud_alloc(mm
, pgd
, address
);
3613 return VM_FAULT_OOM
;
3614 vmf
.pmd
= pmd_alloc(mm
, pud
, address
);
3616 return VM_FAULT_OOM
;
3617 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
3618 int ret
= create_huge_pmd(&vmf
);
3619 if (!(ret
& VM_FAULT_FALLBACK
))
3622 pmd_t orig_pmd
= *vmf
.pmd
;
3626 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3627 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3628 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3630 if ((vmf
.flags
& FAULT_FLAG_WRITE
) &&
3631 !pmd_write(orig_pmd
)) {
3632 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3633 if (!(ret
& VM_FAULT_FALLBACK
))
3636 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3642 return handle_pte_fault(&vmf
);
3646 * By the time we get here, we already hold the mm semaphore
3648 * The mmap_sem may have been released depending on flags and our
3649 * return value. See filemap_fault() and __lock_page_or_retry().
3651 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3656 __set_current_state(TASK_RUNNING
);
3658 count_vm_event(PGFAULT
);
3659 mem_cgroup_count_vm_event(vma
->vm_mm
, PGFAULT
);
3661 /* do counter updates before entering really critical section. */
3662 check_sync_rss_stat(current
);
3665 * Enable the memcg OOM handling for faults triggered in user
3666 * space. Kernel faults are handled more gracefully.
3668 if (flags
& FAULT_FLAG_USER
)
3669 mem_cgroup_oom_enable();
3671 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3672 flags
& FAULT_FLAG_INSTRUCTION
,
3673 flags
& FAULT_FLAG_REMOTE
))
3674 return VM_FAULT_SIGSEGV
;
3676 if (unlikely(is_vm_hugetlb_page(vma
)))
3677 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3679 ret
= __handle_mm_fault(vma
, address
, flags
);
3681 if (flags
& FAULT_FLAG_USER
) {
3682 mem_cgroup_oom_disable();
3684 * The task may have entered a memcg OOM situation but
3685 * if the allocation error was handled gracefully (no
3686 * VM_FAULT_OOM), there is no need to kill anything.
3687 * Just clean up the OOM state peacefully.
3689 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3690 mem_cgroup_oom_synchronize(false);
3694 * This mm has been already reaped by the oom reaper and so the
3695 * refault cannot be trusted in general. Anonymous refaults would
3696 * lose data and give a zero page instead e.g. This is especially
3697 * problem for use_mm() because regular tasks will just die and
3698 * the corrupted data will not be visible anywhere while kthread
3699 * will outlive the oom victim and potentially propagate the date
3702 if (unlikely((current
->flags
& PF_KTHREAD
) && !(ret
& VM_FAULT_ERROR
)
3703 && test_bit(MMF_UNSTABLE
, &vma
->vm_mm
->flags
)))
3704 ret
= VM_FAULT_SIGBUS
;
3708 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3710 #ifndef __PAGETABLE_PUD_FOLDED
3712 * Allocate page upper directory.
3713 * We've already handled the fast-path in-line.
3715 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3717 pud_t
*new = pud_alloc_one(mm
, address
);
3721 smp_wmb(); /* See comment in __pte_alloc */
3723 spin_lock(&mm
->page_table_lock
);
3724 if (pgd_present(*pgd
)) /* Another has populated it */
3727 pgd_populate(mm
, pgd
, new);
3728 spin_unlock(&mm
->page_table_lock
);
3731 #endif /* __PAGETABLE_PUD_FOLDED */
3733 #ifndef __PAGETABLE_PMD_FOLDED
3735 * Allocate page middle directory.
3736 * We've already handled the fast-path in-line.
3738 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3740 pmd_t
*new = pmd_alloc_one(mm
, address
);
3744 smp_wmb(); /* See comment in __pte_alloc */
3746 spin_lock(&mm
->page_table_lock
);
3747 #ifndef __ARCH_HAS_4LEVEL_HACK
3748 if (!pud_present(*pud
)) {
3750 pud_populate(mm
, pud
, new);
3751 } else /* Another has populated it */
3754 if (!pgd_present(*pud
)) {
3756 pgd_populate(mm
, pud
, new);
3757 } else /* Another has populated it */
3759 #endif /* __ARCH_HAS_4LEVEL_HACK */
3760 spin_unlock(&mm
->page_table_lock
);
3763 #endif /* __PAGETABLE_PMD_FOLDED */
3765 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3766 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3773 pgd
= pgd_offset(mm
, address
);
3774 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3777 pud
= pud_offset(pgd
, address
);
3778 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3781 pmd
= pmd_offset(pud
, address
);
3782 VM_BUG_ON(pmd_trans_huge(*pmd
));
3784 if (pmd_huge(*pmd
)) {
3788 *ptlp
= pmd_lock(mm
, pmd
);
3789 if (pmd_huge(*pmd
)) {
3796 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3799 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3802 if (!pte_present(*ptep
))
3807 pte_unmap_unlock(ptep
, *ptlp
);
3812 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3813 pte_t
**ptepp
, spinlock_t
**ptlp
)
3817 /* (void) is needed to make gcc happy */
3818 (void) __cond_lock(*ptlp
,
3819 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, NULL
,
3824 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3825 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3829 /* (void) is needed to make gcc happy */
3830 (void) __cond_lock(*ptlp
,
3831 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, pmdpp
,
3835 EXPORT_SYMBOL(follow_pte_pmd
);
3838 * follow_pfn - look up PFN at a user virtual address
3839 * @vma: memory mapping
3840 * @address: user virtual address
3841 * @pfn: location to store found PFN
3843 * Only IO mappings and raw PFN mappings are allowed.
3845 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3847 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3854 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3857 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3860 *pfn
= pte_pfn(*ptep
);
3861 pte_unmap_unlock(ptep
, ptl
);
3864 EXPORT_SYMBOL(follow_pfn
);
3866 #ifdef CONFIG_HAVE_IOREMAP_PROT
3867 int follow_phys(struct vm_area_struct
*vma
,
3868 unsigned long address
, unsigned int flags
,
3869 unsigned long *prot
, resource_size_t
*phys
)
3875 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3878 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3882 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3885 *prot
= pgprot_val(pte_pgprot(pte
));
3886 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3890 pte_unmap_unlock(ptep
, ptl
);
3895 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3896 void *buf
, int len
, int write
)
3898 resource_size_t phys_addr
;
3899 unsigned long prot
= 0;
3900 void __iomem
*maddr
;
3901 int offset
= addr
& (PAGE_SIZE
-1);
3903 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3906 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3908 memcpy_toio(maddr
+ offset
, buf
, len
);
3910 memcpy_fromio(buf
, maddr
+ offset
, len
);
3915 EXPORT_SYMBOL_GPL(generic_access_phys
);
3919 * Access another process' address space as given in mm. If non-NULL, use the
3920 * given task for page fault accounting.
3922 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3923 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
3925 struct vm_area_struct
*vma
;
3926 void *old_buf
= buf
;
3927 int write
= gup_flags
& FOLL_WRITE
;
3929 down_read(&mm
->mmap_sem
);
3930 /* ignore errors, just check how much was successfully transferred */
3932 int bytes
, ret
, offset
;
3934 struct page
*page
= NULL
;
3936 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
3937 gup_flags
, &page
, &vma
, NULL
);
3939 #ifndef CONFIG_HAVE_IOREMAP_PROT
3943 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3944 * we can access using slightly different code.
3946 vma
= find_vma(mm
, addr
);
3947 if (!vma
|| vma
->vm_start
> addr
)
3949 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3950 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3958 offset
= addr
& (PAGE_SIZE
-1);
3959 if (bytes
> PAGE_SIZE
-offset
)
3960 bytes
= PAGE_SIZE
-offset
;
3964 copy_to_user_page(vma
, page
, addr
,
3965 maddr
+ offset
, buf
, bytes
);
3966 set_page_dirty_lock(page
);
3968 copy_from_user_page(vma
, page
, addr
,
3969 buf
, maddr
+ offset
, bytes
);
3978 up_read(&mm
->mmap_sem
);
3980 return buf
- old_buf
;
3984 * access_remote_vm - access another process' address space
3985 * @mm: the mm_struct of the target address space
3986 * @addr: start address to access
3987 * @buf: source or destination buffer
3988 * @len: number of bytes to transfer
3989 * @gup_flags: flags modifying lookup behaviour
3991 * The caller must hold a reference on @mm.
3993 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3994 void *buf
, int len
, unsigned int gup_flags
)
3996 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4000 * Access another process' address space.
4001 * Source/target buffer must be kernel space,
4002 * Do not walk the page table directly, use get_user_pages
4004 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4005 void *buf
, int len
, unsigned int gup_flags
)
4007 struct mm_struct
*mm
;
4010 mm
= get_task_mm(tsk
);
4014 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4020 EXPORT_SYMBOL_GPL(access_process_vm
);
4023 * Print the name of a VMA.
4025 void print_vma_addr(char *prefix
, unsigned long ip
)
4027 struct mm_struct
*mm
= current
->mm
;
4028 struct vm_area_struct
*vma
;
4031 * Do not print if we are in atomic
4032 * contexts (in exception stacks, etc.):
4034 if (preempt_count())
4037 down_read(&mm
->mmap_sem
);
4038 vma
= find_vma(mm
, ip
);
4039 if (vma
&& vma
->vm_file
) {
4040 struct file
*f
= vma
->vm_file
;
4041 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4045 p
= file_path(f
, buf
, PAGE_SIZE
);
4048 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4050 vma
->vm_end
- vma
->vm_start
);
4051 free_page((unsigned long)buf
);
4054 up_read(&mm
->mmap_sem
);
4057 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4058 void __might_fault(const char *file
, int line
)
4061 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4062 * holding the mmap_sem, this is safe because kernel memory doesn't
4063 * get paged out, therefore we'll never actually fault, and the
4064 * below annotations will generate false positives.
4066 if (segment_eq(get_fs(), KERNEL_DS
))
4068 if (pagefault_disabled())
4070 __might_sleep(file
, line
, 0);
4071 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4073 might_lock_read(¤t
->mm
->mmap_sem
);
4076 EXPORT_SYMBOL(__might_fault
);
4079 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4080 static void clear_gigantic_page(struct page
*page
,
4082 unsigned int pages_per_huge_page
)
4085 struct page
*p
= page
;
4088 for (i
= 0; i
< pages_per_huge_page
;
4089 i
++, p
= mem_map_next(p
, page
, i
)) {
4091 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4094 void clear_huge_page(struct page
*page
,
4095 unsigned long addr
, unsigned int pages_per_huge_page
)
4099 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4100 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4105 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4107 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4111 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4113 struct vm_area_struct
*vma
,
4114 unsigned int pages_per_huge_page
)
4117 struct page
*dst_base
= dst
;
4118 struct page
*src_base
= src
;
4120 for (i
= 0; i
< pages_per_huge_page
; ) {
4122 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4125 dst
= mem_map_next(dst
, dst_base
, i
);
4126 src
= mem_map_next(src
, src_base
, i
);
4130 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4131 unsigned long addr
, struct vm_area_struct
*vma
,
4132 unsigned int pages_per_huge_page
)
4136 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4137 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4138 pages_per_huge_page
);
4143 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4145 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4149 long copy_huge_page_from_user(struct page
*dst_page
,
4150 const void __user
*usr_src
,
4151 unsigned int pages_per_huge_page
,
4152 bool allow_pagefault
)
4154 void *src
= (void *)usr_src
;
4156 unsigned long i
, rc
= 0;
4157 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4159 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4160 if (allow_pagefault
)
4161 page_kaddr
= kmap(dst_page
+ i
);
4163 page_kaddr
= kmap_atomic(dst_page
+ i
);
4164 rc
= copy_from_user(page_kaddr
,
4165 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4167 if (allow_pagefault
)
4168 kunmap(dst_page
+ i
);
4170 kunmap_atomic(page_kaddr
);
4172 ret_val
-= (PAGE_SIZE
- rc
);
4180 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4182 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4184 static struct kmem_cache
*page_ptl_cachep
;
4186 void __init
ptlock_cache_init(void)
4188 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4192 bool ptlock_alloc(struct page
*page
)
4196 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4203 void ptlock_free(struct page
*page
)
4205 kmem_cache_free(page_ptl_cachep
, page
->ptl
);