4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/pfn_t.h>
56 #include <linux/writeback.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/kallsyms.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 #include <linux/gfp.h>
63 #include <linux/migrate.h>
64 #include <linux/string.h>
65 #include <linux/dma-debug.h>
66 #include <linux/debugfs.h>
67 #include <linux/userfaultfd_k.h>
68 #include <linux/dax.h>
71 #include <asm/mmu_context.h>
72 #include <asm/pgalloc.h>
73 #include <linux/uaccess.h>
75 #include <asm/tlbflush.h>
76 #include <asm/pgtable.h>
80 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
81 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 /* use the per-pgdat data instead for discontigmem - mbligh */
86 unsigned long max_mapnr
;
87 EXPORT_SYMBOL(max_mapnr
);
90 EXPORT_SYMBOL(mem_map
);
94 * A number of key systems in x86 including ioremap() rely on the assumption
95 * that high_memory defines the upper bound on direct map memory, then end
96 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
97 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 EXPORT_SYMBOL(high_memory
);
104 * Randomize the address space (stacks, mmaps, brk, etc.).
106 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
107 * as ancient (libc5 based) binaries can segfault. )
109 int randomize_va_space __read_mostly
=
110 #ifdef CONFIG_COMPAT_BRK
116 static int __init
disable_randmaps(char *s
)
118 randomize_va_space
= 0;
121 __setup("norandmaps", disable_randmaps
);
123 unsigned long zero_pfn __read_mostly
;
124 EXPORT_SYMBOL(zero_pfn
);
126 unsigned long highest_memmap_pfn __read_mostly
;
129 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
131 static int __init
init_zero_pfn(void)
133 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
136 core_initcall(init_zero_pfn
);
139 #if defined(SPLIT_RSS_COUNTING)
141 void sync_mm_rss(struct mm_struct
*mm
)
145 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
146 if (current
->rss_stat
.count
[i
]) {
147 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
148 current
->rss_stat
.count
[i
] = 0;
151 current
->rss_stat
.events
= 0;
154 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
156 struct task_struct
*task
= current
;
158 if (likely(task
->mm
== mm
))
159 task
->rss_stat
.count
[member
] += val
;
161 add_mm_counter(mm
, member
, val
);
163 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
164 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
166 /* sync counter once per 64 page faults */
167 #define TASK_RSS_EVENTS_THRESH (64)
168 static void check_sync_rss_stat(struct task_struct
*task
)
170 if (unlikely(task
!= current
))
172 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
173 sync_mm_rss(task
->mm
);
175 #else /* SPLIT_RSS_COUNTING */
177 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
178 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
180 static void check_sync_rss_stat(struct task_struct
*task
)
184 #endif /* SPLIT_RSS_COUNTING */
186 #ifdef HAVE_GENERIC_MMU_GATHER
188 static bool tlb_next_batch(struct mmu_gather
*tlb
)
190 struct mmu_gather_batch
*batch
;
194 tlb
->active
= batch
->next
;
198 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
201 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
208 batch
->max
= MAX_GATHER_BATCH
;
210 tlb
->active
->next
= batch
;
217 * Called to initialize an (on-stack) mmu_gather structure for page-table
218 * tear-down from @mm. The @fullmm argument is used when @mm is without
219 * users and we're going to destroy the full address space (exit/execve).
221 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
225 /* Is it from 0 to ~0? */
226 tlb
->fullmm
= !(start
| (end
+1));
227 tlb
->need_flush_all
= 0;
228 tlb
->local
.next
= NULL
;
230 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
231 tlb
->active
= &tlb
->local
;
232 tlb
->batch_count
= 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 __tlb_reset_range(tlb
);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
248 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb
);
252 __tlb_reset_range(tlb
);
255 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
257 struct mmu_gather_batch
*batch
;
259 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
260 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
263 tlb
->active
= &tlb
->local
;
266 void tlb_flush_mmu(struct mmu_gather
*tlb
)
268 tlb_flush_mmu_tlbonly(tlb
);
269 tlb_flush_mmu_free(tlb
);
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
278 struct mmu_gather_batch
*batch
, *next
;
282 /* keep the page table cache within bounds */
285 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
287 free_pages((unsigned long)batch
, 0);
289 tlb
->local
.next
= NULL
;
293 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
294 * handling the additional races in SMP caused by other CPUs caching valid
295 * mappings in their TLBs. Returns the number of free page slots left.
296 * When out of page slots we must call tlb_flush_mmu().
297 *returns true if the caller should flush.
299 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
301 struct mmu_gather_batch
*batch
;
303 VM_BUG_ON(!tlb
->end
);
304 VM_WARN_ON(tlb
->page_size
!= page_size
);
308 * Add the page and check if we are full. If so
311 batch
->pages
[batch
->nr
++] = page
;
312 if (batch
->nr
== batch
->max
) {
313 if (!tlb_next_batch(tlb
))
317 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
322 #endif /* HAVE_GENERIC_MMU_GATHER */
324 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
327 * See the comment near struct mmu_table_batch.
330 static void tlb_remove_table_smp_sync(void *arg
)
332 /* Simply deliver the interrupt */
335 static void tlb_remove_table_one(void *table
)
338 * This isn't an RCU grace period and hence the page-tables cannot be
339 * assumed to be actually RCU-freed.
341 * It is however sufficient for software page-table walkers that rely on
342 * IRQ disabling. See the comment near struct mmu_table_batch.
344 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
345 __tlb_remove_table(table
);
348 static void tlb_remove_table_rcu(struct rcu_head
*head
)
350 struct mmu_table_batch
*batch
;
353 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
355 for (i
= 0; i
< batch
->nr
; i
++)
356 __tlb_remove_table(batch
->tables
[i
]);
358 free_page((unsigned long)batch
);
361 void tlb_table_flush(struct mmu_gather
*tlb
)
363 struct mmu_table_batch
**batch
= &tlb
->batch
;
366 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
371 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
373 struct mmu_table_batch
**batch
= &tlb
->batch
;
376 * When there's less then two users of this mm there cannot be a
377 * concurrent page-table walk.
379 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
380 __tlb_remove_table(table
);
384 if (*batch
== NULL
) {
385 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
386 if (*batch
== NULL
) {
387 tlb_remove_table_one(table
);
392 (*batch
)->tables
[(*batch
)->nr
++] = table
;
393 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
394 tlb_table_flush(tlb
);
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
403 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
406 pgtable_t token
= pmd_pgtable(*pmd
);
408 pte_free_tlb(tlb
, token
, addr
);
409 atomic_long_dec(&tlb
->mm
->nr_ptes
);
412 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
413 unsigned long addr
, unsigned long end
,
414 unsigned long floor
, unsigned long ceiling
)
421 pmd
= pmd_offset(pud
, addr
);
423 next
= pmd_addr_end(addr
, end
);
424 if (pmd_none_or_clear_bad(pmd
))
426 free_pte_range(tlb
, pmd
, addr
);
427 } while (pmd
++, addr
= next
, addr
!= end
);
437 if (end
- 1 > ceiling
- 1)
440 pmd
= pmd_offset(pud
, start
);
442 pmd_free_tlb(tlb
, pmd
, start
);
443 mm_dec_nr_pmds(tlb
->mm
);
446 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
447 unsigned long addr
, unsigned long end
,
448 unsigned long floor
, unsigned long ceiling
)
455 pud
= pud_offset(pgd
, addr
);
457 next
= pud_addr_end(addr
, end
);
458 if (pud_none_or_clear_bad(pud
))
460 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
461 } while (pud
++, addr
= next
, addr
!= end
);
467 ceiling
&= PGDIR_MASK
;
471 if (end
- 1 > ceiling
- 1)
474 pud
= pud_offset(pgd
, start
);
476 pud_free_tlb(tlb
, pud
, start
);
480 * This function frees user-level page tables of a process.
482 void free_pgd_range(struct mmu_gather
*tlb
,
483 unsigned long addr
, unsigned long end
,
484 unsigned long floor
, unsigned long ceiling
)
490 * The next few lines have given us lots of grief...
492 * Why are we testing PMD* at this top level? Because often
493 * there will be no work to do at all, and we'd prefer not to
494 * go all the way down to the bottom just to discover that.
496 * Why all these "- 1"s? Because 0 represents both the bottom
497 * of the address space and the top of it (using -1 for the
498 * top wouldn't help much: the masks would do the wrong thing).
499 * The rule is that addr 0 and floor 0 refer to the bottom of
500 * the address space, but end 0 and ceiling 0 refer to the top
501 * Comparisons need to use "end - 1" and "ceiling - 1" (though
502 * that end 0 case should be mythical).
504 * Wherever addr is brought up or ceiling brought down, we must
505 * be careful to reject "the opposite 0" before it confuses the
506 * subsequent tests. But what about where end is brought down
507 * by PMD_SIZE below? no, end can't go down to 0 there.
509 * Whereas we round start (addr) and ceiling down, by different
510 * masks at different levels, in order to test whether a table
511 * now has no other vmas using it, so can be freed, we don't
512 * bother to round floor or end up - the tests don't need that.
526 if (end
- 1 > ceiling
- 1)
531 * We add page table cache pages with PAGE_SIZE,
532 * (see pte_free_tlb()), flush the tlb if we need
534 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
535 pgd
= pgd_offset(tlb
->mm
, addr
);
537 next
= pgd_addr_end(addr
, end
);
538 if (pgd_none_or_clear_bad(pgd
))
540 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
541 } while (pgd
++, addr
= next
, addr
!= end
);
544 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
545 unsigned long floor
, unsigned long ceiling
)
548 struct vm_area_struct
*next
= vma
->vm_next
;
549 unsigned long addr
= vma
->vm_start
;
552 * Hide vma from rmap and truncate_pagecache before freeing
555 unlink_anon_vmas(vma
);
556 unlink_file_vma(vma
);
558 if (is_vm_hugetlb_page(vma
)) {
559 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
560 floor
, next
? next
->vm_start
: ceiling
);
563 * Optimization: gather nearby vmas into one call down
565 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
566 && !is_vm_hugetlb_page(next
)) {
569 unlink_anon_vmas(vma
);
570 unlink_file_vma(vma
);
572 free_pgd_range(tlb
, addr
, vma
->vm_end
,
573 floor
, next
? next
->vm_start
: ceiling
);
579 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
582 pgtable_t
new = pte_alloc_one(mm
, address
);
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601 ptl
= pmd_lock(mm
, pmd
);
602 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
603 atomic_long_inc(&mm
->nr_ptes
);
604 pmd_populate(mm
, pmd
, new);
613 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
615 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
619 smp_wmb(); /* See comment in __pte_alloc */
621 spin_lock(&init_mm
.page_table_lock
);
622 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
623 pmd_populate_kernel(&init_mm
, pmd
, new);
626 spin_unlock(&init_mm
.page_table_lock
);
628 pte_free_kernel(&init_mm
, new);
632 static inline void init_rss_vec(int *rss
)
634 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
637 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
641 if (current
->mm
== mm
)
643 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
645 add_mm_counter(mm
, i
, rss
[i
]);
649 * This function is called to print an error when a bad pte
650 * is found. For example, we might have a PFN-mapped pte in
651 * a region that doesn't allow it.
653 * The calling function must still handle the error.
655 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
656 pte_t pte
, struct page
*page
)
658 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
659 pud_t
*pud
= pud_offset(pgd
, addr
);
660 pmd_t
*pmd
= pmd_offset(pud
, addr
);
661 struct address_space
*mapping
;
663 static unsigned long resume
;
664 static unsigned long nr_shown
;
665 static unsigned long nr_unshown
;
668 * Allow a burst of 60 reports, then keep quiet for that minute;
669 * or allow a steady drip of one report per second.
671 if (nr_shown
== 60) {
672 if (time_before(jiffies
, resume
)) {
677 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
684 resume
= jiffies
+ 60 * HZ
;
686 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
687 index
= linear_page_index(vma
, addr
);
689 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
691 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
693 dump_page(page
, "bad pte");
694 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
695 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
697 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
699 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
701 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
702 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
703 mapping
? mapping
->a_ops
->readpage
: NULL
);
705 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
709 * vm_normal_page -- This function gets the "struct page" associated with a pte.
711 * "Special" mappings do not wish to be associated with a "struct page" (either
712 * it doesn't exist, or it exists but they don't want to touch it). In this
713 * case, NULL is returned here. "Normal" mappings do have a struct page.
715 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
716 * pte bit, in which case this function is trivial. Secondly, an architecture
717 * may not have a spare pte bit, which requires a more complicated scheme,
720 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
721 * special mapping (even if there are underlying and valid "struct pages").
722 * COWed pages of a VM_PFNMAP are always normal.
724 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
725 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
726 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
727 * mapping will always honor the rule
729 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
731 * And for normal mappings this is false.
733 * This restricts such mappings to be a linear translation from virtual address
734 * to pfn. To get around this restriction, we allow arbitrary mappings so long
735 * as the vma is not a COW mapping; in that case, we know that all ptes are
736 * special (because none can have been COWed).
739 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
741 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
742 * page" backing, however the difference is that _all_ pages with a struct
743 * page (that is, those where pfn_valid is true) are refcounted and considered
744 * normal pages by the VM. The disadvantage is that pages are refcounted
745 * (which can be slower and simply not an option for some PFNMAP users). The
746 * advantage is that we don't have to follow the strict linearity rule of
747 * PFNMAP mappings in order to support COWable mappings.
750 #ifdef __HAVE_ARCH_PTE_SPECIAL
751 # define HAVE_PTE_SPECIAL 1
753 # define HAVE_PTE_SPECIAL 0
755 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
758 unsigned long pfn
= pte_pfn(pte
);
760 if (HAVE_PTE_SPECIAL
) {
761 if (likely(!pte_special(pte
)))
763 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
764 return vma
->vm_ops
->find_special_page(vma
, addr
);
765 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
767 if (!is_zero_pfn(pfn
))
768 print_bad_pte(vma
, addr
, pte
, NULL
);
772 /* !HAVE_PTE_SPECIAL case follows: */
774 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
775 if (vma
->vm_flags
& VM_MIXEDMAP
) {
781 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
782 if (pfn
== vma
->vm_pgoff
+ off
)
784 if (!is_cow_mapping(vma
->vm_flags
))
789 if (is_zero_pfn(pfn
))
792 if (unlikely(pfn
> highest_memmap_pfn
)) {
793 print_bad_pte(vma
, addr
, pte
, NULL
);
798 * NOTE! We still have PageReserved() pages in the page tables.
799 * eg. VDSO mappings can cause them to exist.
802 return pfn_to_page(pfn
);
805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
806 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
809 unsigned long pfn
= pmd_pfn(pmd
);
812 * There is no pmd_special() but there may be special pmds, e.g.
813 * in a direct-access (dax) mapping, so let's just replicate the
814 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
816 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
817 if (vma
->vm_flags
& VM_MIXEDMAP
) {
823 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
824 if (pfn
== vma
->vm_pgoff
+ off
)
826 if (!is_cow_mapping(vma
->vm_flags
))
831 if (is_zero_pfn(pfn
))
833 if (unlikely(pfn
> highest_memmap_pfn
))
837 * NOTE! We still have PageReserved() pages in the page tables.
838 * eg. VDSO mappings can cause them to exist.
841 return pfn_to_page(pfn
);
846 * copy one vm_area from one task to the other. Assumes the page tables
847 * already present in the new task to be cleared in the whole range
848 * covered by this vma.
851 static inline unsigned long
852 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
853 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
854 unsigned long addr
, int *rss
)
856 unsigned long vm_flags
= vma
->vm_flags
;
857 pte_t pte
= *src_pte
;
860 /* pte contains position in swap or file, so copy. */
861 if (unlikely(!pte_present(pte
))) {
862 swp_entry_t entry
= pte_to_swp_entry(pte
);
864 if (likely(!non_swap_entry(entry
))) {
865 if (swap_duplicate(entry
) < 0)
868 /* make sure dst_mm is on swapoff's mmlist. */
869 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
870 spin_lock(&mmlist_lock
);
871 if (list_empty(&dst_mm
->mmlist
))
872 list_add(&dst_mm
->mmlist
,
874 spin_unlock(&mmlist_lock
);
877 } else if (is_migration_entry(entry
)) {
878 page
= migration_entry_to_page(entry
);
880 rss
[mm_counter(page
)]++;
882 if (is_write_migration_entry(entry
) &&
883 is_cow_mapping(vm_flags
)) {
885 * COW mappings require pages in both
886 * parent and child to be set to read.
888 make_migration_entry_read(&entry
);
889 pte
= swp_entry_to_pte(entry
);
890 if (pte_swp_soft_dirty(*src_pte
))
891 pte
= pte_swp_mksoft_dirty(pte
);
892 set_pte_at(src_mm
, addr
, src_pte
, pte
);
899 * If it's a COW mapping, write protect it both
900 * in the parent and the child
902 if (is_cow_mapping(vm_flags
)) {
903 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
904 pte
= pte_wrprotect(pte
);
908 * If it's a shared mapping, mark it clean in
911 if (vm_flags
& VM_SHARED
)
912 pte
= pte_mkclean(pte
);
913 pte
= pte_mkold(pte
);
915 page
= vm_normal_page(vma
, addr
, pte
);
918 page_dup_rmap(page
, false);
919 rss
[mm_counter(page
)]++;
923 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
927 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
928 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
929 unsigned long addr
, unsigned long end
)
931 pte_t
*orig_src_pte
, *orig_dst_pte
;
932 pte_t
*src_pte
, *dst_pte
;
933 spinlock_t
*src_ptl
, *dst_ptl
;
935 int rss
[NR_MM_COUNTERS
];
936 swp_entry_t entry
= (swp_entry_t
){0};
941 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
944 src_pte
= pte_offset_map(src_pmd
, addr
);
945 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
946 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
947 orig_src_pte
= src_pte
;
948 orig_dst_pte
= dst_pte
;
949 arch_enter_lazy_mmu_mode();
953 * We are holding two locks at this point - either of them
954 * could generate latencies in another task on another CPU.
956 if (progress
>= 32) {
958 if (need_resched() ||
959 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
962 if (pte_none(*src_pte
)) {
966 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
971 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
973 arch_leave_lazy_mmu_mode();
974 spin_unlock(src_ptl
);
975 pte_unmap(orig_src_pte
);
976 add_mm_rss_vec(dst_mm
, rss
);
977 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
981 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
990 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
991 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
992 unsigned long addr
, unsigned long end
)
994 pmd_t
*src_pmd
, *dst_pmd
;
997 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1000 src_pmd
= pmd_offset(src_pud
, addr
);
1002 next
= pmd_addr_end(addr
, end
);
1003 if (pmd_trans_huge(*src_pmd
) || pmd_devmap(*src_pmd
)) {
1005 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1006 err
= copy_huge_pmd(dst_mm
, src_mm
,
1007 dst_pmd
, src_pmd
, addr
, vma
);
1014 if (pmd_none_or_clear_bad(src_pmd
))
1016 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1019 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1023 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1024 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1025 unsigned long addr
, unsigned long end
)
1027 pud_t
*src_pud
, *dst_pud
;
1030 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1033 src_pud
= pud_offset(src_pgd
, addr
);
1035 next
= pud_addr_end(addr
, end
);
1036 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1039 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1040 err
= copy_huge_pud(dst_mm
, src_mm
,
1041 dst_pud
, src_pud
, addr
, vma
);
1048 if (pud_none_or_clear_bad(src_pud
))
1050 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1053 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1057 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1058 struct vm_area_struct
*vma
)
1060 pgd_t
*src_pgd
, *dst_pgd
;
1062 unsigned long addr
= vma
->vm_start
;
1063 unsigned long end
= vma
->vm_end
;
1064 unsigned long mmun_start
; /* For mmu_notifiers */
1065 unsigned long mmun_end
; /* For mmu_notifiers */
1070 * Don't copy ptes where a page fault will fill them correctly.
1071 * Fork becomes much lighter when there are big shared or private
1072 * readonly mappings. The tradeoff is that copy_page_range is more
1073 * efficient than faulting.
1075 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1079 if (is_vm_hugetlb_page(vma
))
1080 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1082 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1084 * We do not free on error cases below as remove_vma
1085 * gets called on error from higher level routine
1087 ret
= track_pfn_copy(vma
);
1093 * We need to invalidate the secondary MMU mappings only when
1094 * there could be a permission downgrade on the ptes of the
1095 * parent mm. And a permission downgrade will only happen if
1096 * is_cow_mapping() returns true.
1098 is_cow
= is_cow_mapping(vma
->vm_flags
);
1102 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1106 dst_pgd
= pgd_offset(dst_mm
, addr
);
1107 src_pgd
= pgd_offset(src_mm
, addr
);
1109 next
= pgd_addr_end(addr
, end
);
1110 if (pgd_none_or_clear_bad(src_pgd
))
1112 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1113 vma
, addr
, next
))) {
1117 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1120 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1124 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1125 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1126 unsigned long addr
, unsigned long end
,
1127 struct zap_details
*details
)
1129 struct mm_struct
*mm
= tlb
->mm
;
1130 int force_flush
= 0;
1131 int rss
[NR_MM_COUNTERS
];
1137 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1140 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1142 arch_enter_lazy_mmu_mode();
1145 if (pte_none(ptent
))
1148 if (pte_present(ptent
)) {
1151 page
= vm_normal_page(vma
, addr
, ptent
);
1152 if (unlikely(details
) && page
) {
1154 * unmap_shared_mapping_pages() wants to
1155 * invalidate cache without truncating:
1156 * unmap shared but keep private pages.
1158 if (details
->check_mapping
&&
1159 details
->check_mapping
!= page_rmapping(page
))
1162 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1164 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1165 if (unlikely(!page
))
1168 if (!PageAnon(page
)) {
1169 if (pte_dirty(ptent
)) {
1171 set_page_dirty(page
);
1173 if (pte_young(ptent
) &&
1174 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1175 mark_page_accessed(page
);
1177 rss
[mm_counter(page
)]--;
1178 page_remove_rmap(page
, false);
1179 if (unlikely(page_mapcount(page
) < 0))
1180 print_bad_pte(vma
, addr
, ptent
, page
);
1181 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1188 /* If details->check_mapping, we leave swap entries. */
1189 if (unlikely(details
))
1192 entry
= pte_to_swp_entry(ptent
);
1193 if (!non_swap_entry(entry
))
1195 else if (is_migration_entry(entry
)) {
1198 page
= migration_entry_to_page(entry
);
1199 rss
[mm_counter(page
)]--;
1201 if (unlikely(!free_swap_and_cache(entry
)))
1202 print_bad_pte(vma
, addr
, ptent
, NULL
);
1203 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1204 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1206 add_mm_rss_vec(mm
, rss
);
1207 arch_leave_lazy_mmu_mode();
1209 /* Do the actual TLB flush before dropping ptl */
1211 tlb_flush_mmu_tlbonly(tlb
);
1212 pte_unmap_unlock(start_pte
, ptl
);
1215 * If we forced a TLB flush (either due to running out of
1216 * batch buffers or because we needed to flush dirty TLB
1217 * entries before releasing the ptl), free the batched
1218 * memory too. Restart if we didn't do everything.
1222 tlb_flush_mmu_free(tlb
);
1230 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1231 struct vm_area_struct
*vma
, pud_t
*pud
,
1232 unsigned long addr
, unsigned long end
,
1233 struct zap_details
*details
)
1238 pmd
= pmd_offset(pud
, addr
);
1240 next
= pmd_addr_end(addr
, end
);
1241 if (pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1242 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1243 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1244 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1245 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1246 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1251 * Here there can be other concurrent MADV_DONTNEED or
1252 * trans huge page faults running, and if the pmd is
1253 * none or trans huge it can change under us. This is
1254 * because MADV_DONTNEED holds the mmap_sem in read
1257 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1259 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1262 } while (pmd
++, addr
= next
, addr
!= end
);
1267 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1268 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1269 unsigned long addr
, unsigned long end
,
1270 struct zap_details
*details
)
1275 pud
= pud_offset(pgd
, addr
);
1277 next
= pud_addr_end(addr
, end
);
1278 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1279 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1280 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1281 split_huge_pud(vma
, pud
, addr
);
1282 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1286 if (pud_none_or_clear_bad(pud
))
1288 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1291 } while (pud
++, addr
= next
, addr
!= end
);
1296 void unmap_page_range(struct mmu_gather
*tlb
,
1297 struct vm_area_struct
*vma
,
1298 unsigned long addr
, unsigned long end
,
1299 struct zap_details
*details
)
1304 BUG_ON(addr
>= end
);
1305 tlb_start_vma(tlb
, vma
);
1306 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1308 next
= pgd_addr_end(addr
, end
);
1309 if (pgd_none_or_clear_bad(pgd
))
1311 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1312 } while (pgd
++, addr
= next
, addr
!= end
);
1313 tlb_end_vma(tlb
, vma
);
1317 static void unmap_single_vma(struct mmu_gather
*tlb
,
1318 struct vm_area_struct
*vma
, unsigned long start_addr
,
1319 unsigned long end_addr
,
1320 struct zap_details
*details
)
1322 unsigned long start
= max(vma
->vm_start
, start_addr
);
1325 if (start
>= vma
->vm_end
)
1327 end
= min(vma
->vm_end
, end_addr
);
1328 if (end
<= vma
->vm_start
)
1332 uprobe_munmap(vma
, start
, end
);
1334 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1335 untrack_pfn(vma
, 0, 0);
1338 if (unlikely(is_vm_hugetlb_page(vma
))) {
1340 * It is undesirable to test vma->vm_file as it
1341 * should be non-null for valid hugetlb area.
1342 * However, vm_file will be NULL in the error
1343 * cleanup path of mmap_region. When
1344 * hugetlbfs ->mmap method fails,
1345 * mmap_region() nullifies vma->vm_file
1346 * before calling this function to clean up.
1347 * Since no pte has actually been setup, it is
1348 * safe to do nothing in this case.
1351 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1352 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1353 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1356 unmap_page_range(tlb
, vma
, start
, end
, details
);
1361 * unmap_vmas - unmap a range of memory covered by a list of vma's
1362 * @tlb: address of the caller's struct mmu_gather
1363 * @vma: the starting vma
1364 * @start_addr: virtual address at which to start unmapping
1365 * @end_addr: virtual address at which to end unmapping
1367 * Unmap all pages in the vma list.
1369 * Only addresses between `start' and `end' will be unmapped.
1371 * The VMA list must be sorted in ascending virtual address order.
1373 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374 * range after unmap_vmas() returns. So the only responsibility here is to
1375 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376 * drops the lock and schedules.
1378 void unmap_vmas(struct mmu_gather
*tlb
,
1379 struct vm_area_struct
*vma
, unsigned long start_addr
,
1380 unsigned long end_addr
)
1382 struct mm_struct
*mm
= vma
->vm_mm
;
1384 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1385 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1386 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1387 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1391 * zap_page_range - remove user pages in a given range
1392 * @vma: vm_area_struct holding the applicable pages
1393 * @start: starting address of pages to zap
1394 * @size: number of bytes to zap
1396 * Caller must protect the VMA list
1398 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1401 struct mm_struct
*mm
= vma
->vm_mm
;
1402 struct mmu_gather tlb
;
1403 unsigned long end
= start
+ size
;
1406 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1407 update_hiwater_rss(mm
);
1408 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1409 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1410 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1411 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1412 tlb_finish_mmu(&tlb
, start
, end
);
1416 * zap_page_range_single - remove user pages in a given range
1417 * @vma: vm_area_struct holding the applicable pages
1418 * @address: starting address of pages to zap
1419 * @size: number of bytes to zap
1420 * @details: details of shared cache invalidation
1422 * The range must fit into one VMA.
1424 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1425 unsigned long size
, struct zap_details
*details
)
1427 struct mm_struct
*mm
= vma
->vm_mm
;
1428 struct mmu_gather tlb
;
1429 unsigned long end
= address
+ size
;
1432 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1433 update_hiwater_rss(mm
);
1434 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1435 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1436 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1437 tlb_finish_mmu(&tlb
, address
, end
);
1441 * zap_vma_ptes - remove ptes mapping the vma
1442 * @vma: vm_area_struct holding ptes to be zapped
1443 * @address: starting address of pages to zap
1444 * @size: number of bytes to zap
1446 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448 * The entire address range must be fully contained within the vma.
1450 * Returns 0 if successful.
1452 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1455 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1456 !(vma
->vm_flags
& VM_PFNMAP
))
1458 zap_page_range_single(vma
, address
, size
, NULL
);
1461 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1463 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1466 pgd_t
*pgd
= pgd_offset(mm
, addr
);
1467 pud_t
*pud
= pud_alloc(mm
, pgd
, addr
);
1469 pmd_t
*pmd
= pmd_alloc(mm
, pud
, addr
);
1471 VM_BUG_ON(pmd_trans_huge(*pmd
));
1472 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1479 * This is the old fallback for page remapping.
1481 * For historical reasons, it only allows reserved pages. Only
1482 * old drivers should use this, and they needed to mark their
1483 * pages reserved for the old functions anyway.
1485 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1486 struct page
*page
, pgprot_t prot
)
1488 struct mm_struct
*mm
= vma
->vm_mm
;
1497 flush_dcache_page(page
);
1498 pte
= get_locked_pte(mm
, addr
, &ptl
);
1502 if (!pte_none(*pte
))
1505 /* Ok, finally just insert the thing.. */
1507 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1508 page_add_file_rmap(page
, false);
1509 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1512 pte_unmap_unlock(pte
, ptl
);
1515 pte_unmap_unlock(pte
, ptl
);
1521 * vm_insert_page - insert single page into user vma
1522 * @vma: user vma to map to
1523 * @addr: target user address of this page
1524 * @page: source kernel page
1526 * This allows drivers to insert individual pages they've allocated
1529 * The page has to be a nice clean _individual_ kernel allocation.
1530 * If you allocate a compound page, you need to have marked it as
1531 * such (__GFP_COMP), or manually just split the page up yourself
1532 * (see split_page()).
1534 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1535 * took an arbitrary page protection parameter. This doesn't allow
1536 * that. Your vma protection will have to be set up correctly, which
1537 * means that if you want a shared writable mapping, you'd better
1538 * ask for a shared writable mapping!
1540 * The page does not need to be reserved.
1542 * Usually this function is called from f_op->mmap() handler
1543 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1544 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1545 * function from other places, for example from page-fault handler.
1547 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1550 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1552 if (!page_count(page
))
1554 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1555 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1556 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1557 vma
->vm_flags
|= VM_MIXEDMAP
;
1559 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1561 EXPORT_SYMBOL(vm_insert_page
);
1563 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1564 pfn_t pfn
, pgprot_t prot
)
1566 struct mm_struct
*mm
= vma
->vm_mm
;
1572 pte
= get_locked_pte(mm
, addr
, &ptl
);
1576 if (!pte_none(*pte
))
1579 /* Ok, finally just insert the thing.. */
1580 if (pfn_t_devmap(pfn
))
1581 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1583 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1584 set_pte_at(mm
, addr
, pte
, entry
);
1585 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1589 pte_unmap_unlock(pte
, ptl
);
1595 * vm_insert_pfn - insert single pfn into user vma
1596 * @vma: user vma to map to
1597 * @addr: target user address of this page
1598 * @pfn: source kernel pfn
1600 * Similar to vm_insert_page, this allows drivers to insert individual pages
1601 * they've allocated into a user vma. Same comments apply.
1603 * This function should only be called from a vm_ops->fault handler, and
1604 * in that case the handler should return NULL.
1606 * vma cannot be a COW mapping.
1608 * As this is called only for pages that do not currently exist, we
1609 * do not need to flush old virtual caches or the TLB.
1611 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1614 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1616 EXPORT_SYMBOL(vm_insert_pfn
);
1619 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1620 * @vma: user vma to map to
1621 * @addr: target user address of this page
1622 * @pfn: source kernel pfn
1623 * @pgprot: pgprot flags for the inserted page
1625 * This is exactly like vm_insert_pfn, except that it allows drivers to
1626 * to override pgprot on a per-page basis.
1628 * This only makes sense for IO mappings, and it makes no sense for
1629 * cow mappings. In general, using multiple vmas is preferable;
1630 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1633 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1634 unsigned long pfn
, pgprot_t pgprot
)
1638 * Technically, architectures with pte_special can avoid all these
1639 * restrictions (same for remap_pfn_range). However we would like
1640 * consistency in testing and feature parity among all, so we should
1641 * try to keep these invariants in place for everybody.
1643 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1644 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1645 (VM_PFNMAP
|VM_MIXEDMAP
));
1646 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1647 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1649 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1652 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1654 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
);
1658 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1660 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1663 pgprot_t pgprot
= vma
->vm_page_prot
;
1665 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1667 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1670 track_pfn_insert(vma
, &pgprot
, pfn
);
1673 * If we don't have pte special, then we have to use the pfn_valid()
1674 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1675 * refcount the page if pfn_valid is true (hence insert_page rather
1676 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1677 * without pte special, it would there be refcounted as a normal page.
1679 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1683 * At this point we are committed to insert_page()
1684 * regardless of whether the caller specified flags that
1685 * result in pfn_t_has_page() == false.
1687 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1688 return insert_page(vma
, addr
, page
, pgprot
);
1690 return insert_pfn(vma
, addr
, pfn
, pgprot
);
1692 EXPORT_SYMBOL(vm_insert_mixed
);
1695 * maps a range of physical memory into the requested pages. the old
1696 * mappings are removed. any references to nonexistent pages results
1697 * in null mappings (currently treated as "copy-on-access")
1699 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1700 unsigned long addr
, unsigned long end
,
1701 unsigned long pfn
, pgprot_t prot
)
1706 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1709 arch_enter_lazy_mmu_mode();
1711 BUG_ON(!pte_none(*pte
));
1712 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1714 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1715 arch_leave_lazy_mmu_mode();
1716 pte_unmap_unlock(pte
- 1, ptl
);
1720 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1721 unsigned long addr
, unsigned long end
,
1722 unsigned long pfn
, pgprot_t prot
)
1727 pfn
-= addr
>> PAGE_SHIFT
;
1728 pmd
= pmd_alloc(mm
, pud
, addr
);
1731 VM_BUG_ON(pmd_trans_huge(*pmd
));
1733 next
= pmd_addr_end(addr
, end
);
1734 if (remap_pte_range(mm
, pmd
, addr
, next
,
1735 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1737 } while (pmd
++, addr
= next
, addr
!= end
);
1741 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1742 unsigned long addr
, unsigned long end
,
1743 unsigned long pfn
, pgprot_t prot
)
1748 pfn
-= addr
>> PAGE_SHIFT
;
1749 pud
= pud_alloc(mm
, pgd
, addr
);
1753 next
= pud_addr_end(addr
, end
);
1754 if (remap_pmd_range(mm
, pud
, addr
, next
,
1755 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1757 } while (pud
++, addr
= next
, addr
!= end
);
1762 * remap_pfn_range - remap kernel memory to userspace
1763 * @vma: user vma to map to
1764 * @addr: target user address to start at
1765 * @pfn: physical address of kernel memory
1766 * @size: size of map area
1767 * @prot: page protection flags for this mapping
1769 * Note: this is only safe if the mm semaphore is held when called.
1771 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1772 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1776 unsigned long end
= addr
+ PAGE_ALIGN(size
);
1777 struct mm_struct
*mm
= vma
->vm_mm
;
1778 unsigned long remap_pfn
= pfn
;
1782 * Physically remapped pages are special. Tell the
1783 * rest of the world about it:
1784 * VM_IO tells people not to look at these pages
1785 * (accesses can have side effects).
1786 * VM_PFNMAP tells the core MM that the base pages are just
1787 * raw PFN mappings, and do not have a "struct page" associated
1790 * Disable vma merging and expanding with mremap().
1792 * Omit vma from core dump, even when VM_IO turned off.
1794 * There's a horrible special case to handle copy-on-write
1795 * behaviour that some programs depend on. We mark the "original"
1796 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1797 * See vm_normal_page() for details.
1799 if (is_cow_mapping(vma
->vm_flags
)) {
1800 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
1802 vma
->vm_pgoff
= pfn
;
1805 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
1809 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1811 BUG_ON(addr
>= end
);
1812 pfn
-= addr
>> PAGE_SHIFT
;
1813 pgd
= pgd_offset(mm
, addr
);
1814 flush_cache_range(vma
, addr
, end
);
1816 next
= pgd_addr_end(addr
, end
);
1817 err
= remap_pud_range(mm
, pgd
, addr
, next
,
1818 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
1821 } while (pgd
++, addr
= next
, addr
!= end
);
1824 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
1828 EXPORT_SYMBOL(remap_pfn_range
);
1831 * vm_iomap_memory - remap memory to userspace
1832 * @vma: user vma to map to
1833 * @start: start of area
1834 * @len: size of area
1836 * This is a simplified io_remap_pfn_range() for common driver use. The
1837 * driver just needs to give us the physical memory range to be mapped,
1838 * we'll figure out the rest from the vma information.
1840 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1841 * whatever write-combining details or similar.
1843 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1845 unsigned long vm_len
, pfn
, pages
;
1847 /* Check that the physical memory area passed in looks valid */
1848 if (start
+ len
< start
)
1851 * You *really* shouldn't map things that aren't page-aligned,
1852 * but we've historically allowed it because IO memory might
1853 * just have smaller alignment.
1855 len
+= start
& ~PAGE_MASK
;
1856 pfn
= start
>> PAGE_SHIFT
;
1857 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
1858 if (pfn
+ pages
< pfn
)
1861 /* We start the mapping 'vm_pgoff' pages into the area */
1862 if (vma
->vm_pgoff
> pages
)
1864 pfn
+= vma
->vm_pgoff
;
1865 pages
-= vma
->vm_pgoff
;
1867 /* Can we fit all of the mapping? */
1868 vm_len
= vma
->vm_end
- vma
->vm_start
;
1869 if (vm_len
>> PAGE_SHIFT
> pages
)
1872 /* Ok, let it rip */
1873 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1875 EXPORT_SYMBOL(vm_iomap_memory
);
1877 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1878 unsigned long addr
, unsigned long end
,
1879 pte_fn_t fn
, void *data
)
1884 spinlock_t
*uninitialized_var(ptl
);
1886 pte
= (mm
== &init_mm
) ?
1887 pte_alloc_kernel(pmd
, addr
) :
1888 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1892 BUG_ON(pmd_huge(*pmd
));
1894 arch_enter_lazy_mmu_mode();
1896 token
= pmd_pgtable(*pmd
);
1899 err
= fn(pte
++, token
, addr
, data
);
1902 } while (addr
+= PAGE_SIZE
, addr
!= end
);
1904 arch_leave_lazy_mmu_mode();
1907 pte_unmap_unlock(pte
-1, ptl
);
1911 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1912 unsigned long addr
, unsigned long end
,
1913 pte_fn_t fn
, void *data
)
1919 BUG_ON(pud_huge(*pud
));
1921 pmd
= pmd_alloc(mm
, pud
, addr
);
1925 next
= pmd_addr_end(addr
, end
);
1926 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
1929 } while (pmd
++, addr
= next
, addr
!= end
);
1933 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
1934 unsigned long addr
, unsigned long end
,
1935 pte_fn_t fn
, void *data
)
1941 pud
= pud_alloc(mm
, pgd
, addr
);
1945 next
= pud_addr_end(addr
, end
);
1946 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
1949 } while (pud
++, addr
= next
, addr
!= end
);
1954 * Scan a region of virtual memory, filling in page tables as necessary
1955 * and calling a provided function on each leaf page table.
1957 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
1958 unsigned long size
, pte_fn_t fn
, void *data
)
1962 unsigned long end
= addr
+ size
;
1965 if (WARN_ON(addr
>= end
))
1968 pgd
= pgd_offset(mm
, addr
);
1970 next
= pgd_addr_end(addr
, end
);
1971 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
1974 } while (pgd
++, addr
= next
, addr
!= end
);
1978 EXPORT_SYMBOL_GPL(apply_to_page_range
);
1981 * handle_pte_fault chooses page fault handler according to an entry which was
1982 * read non-atomically. Before making any commitment, on those architectures
1983 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1984 * parts, do_swap_page must check under lock before unmapping the pte and
1985 * proceeding (but do_wp_page is only called after already making such a check;
1986 * and do_anonymous_page can safely check later on).
1988 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
1989 pte_t
*page_table
, pte_t orig_pte
)
1992 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1993 if (sizeof(pte_t
) > sizeof(unsigned long)) {
1994 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
1996 same
= pte_same(*page_table
, orig_pte
);
2000 pte_unmap(page_table
);
2004 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2006 debug_dma_assert_idle(src
);
2009 * If the source page was a PFN mapping, we don't have
2010 * a "struct page" for it. We do a best-effort copy by
2011 * just copying from the original user address. If that
2012 * fails, we just zero-fill it. Live with it.
2014 if (unlikely(!src
)) {
2015 void *kaddr
= kmap_atomic(dst
);
2016 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2019 * This really shouldn't fail, because the page is there
2020 * in the page tables. But it might just be unreadable,
2021 * in which case we just give up and fill the result with
2024 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2026 kunmap_atomic(kaddr
);
2027 flush_dcache_page(dst
);
2029 copy_user_highpage(dst
, src
, va
, vma
);
2032 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2034 struct file
*vm_file
= vma
->vm_file
;
2037 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2040 * Special mappings (e.g. VDSO) do not have any file so fake
2041 * a default GFP_KERNEL for them.
2047 * Notify the address space that the page is about to become writable so that
2048 * it can prohibit this or wait for the page to get into an appropriate state.
2050 * We do this without the lock held, so that it can sleep if it needs to.
2052 static int do_page_mkwrite(struct vm_fault
*vmf
)
2055 struct page
*page
= vmf
->page
;
2056 unsigned int old_flags
= vmf
->flags
;
2058 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2060 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2061 /* Restore original flags so that caller is not surprised */
2062 vmf
->flags
= old_flags
;
2063 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2065 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2067 if (!page
->mapping
) {
2069 return 0; /* retry */
2071 ret
|= VM_FAULT_LOCKED
;
2073 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2078 * Handle dirtying of a page in shared file mapping on a write fault.
2080 * The function expects the page to be locked and unlocks it.
2082 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2085 struct address_space
*mapping
;
2087 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2089 dirtied
= set_page_dirty(page
);
2090 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2092 * Take a local copy of the address_space - page.mapping may be zeroed
2093 * by truncate after unlock_page(). The address_space itself remains
2094 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2095 * release semantics to prevent the compiler from undoing this copying.
2097 mapping
= page_rmapping(page
);
2100 if ((dirtied
|| page_mkwrite
) && mapping
) {
2102 * Some device drivers do not set page.mapping
2103 * but still dirty their pages
2105 balance_dirty_pages_ratelimited(mapping
);
2109 file_update_time(vma
->vm_file
);
2113 * Handle write page faults for pages that can be reused in the current vma
2115 * This can happen either due to the mapping being with the VM_SHARED flag,
2116 * or due to us being the last reference standing to the page. In either
2117 * case, all we need to do here is to mark the page as writable and update
2118 * any related book-keeping.
2120 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2121 __releases(vmf
->ptl
)
2123 struct vm_area_struct
*vma
= vmf
->vma
;
2124 struct page
*page
= vmf
->page
;
2127 * Clear the pages cpupid information as the existing
2128 * information potentially belongs to a now completely
2129 * unrelated process.
2132 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2134 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2135 entry
= pte_mkyoung(vmf
->orig_pte
);
2136 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2137 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2138 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2139 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2143 * Handle the case of a page which we actually need to copy to a new page.
2145 * Called with mmap_sem locked and the old page referenced, but
2146 * without the ptl held.
2148 * High level logic flow:
2150 * - Allocate a page, copy the content of the old page to the new one.
2151 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2152 * - Take the PTL. If the pte changed, bail out and release the allocated page
2153 * - If the pte is still the way we remember it, update the page table and all
2154 * relevant references. This includes dropping the reference the page-table
2155 * held to the old page, as well as updating the rmap.
2156 * - In any case, unlock the PTL and drop the reference we took to the old page.
2158 static int wp_page_copy(struct vm_fault
*vmf
)
2160 struct vm_area_struct
*vma
= vmf
->vma
;
2161 struct mm_struct
*mm
= vma
->vm_mm
;
2162 struct page
*old_page
= vmf
->page
;
2163 struct page
*new_page
= NULL
;
2165 int page_copied
= 0;
2166 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2167 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2168 struct mem_cgroup
*memcg
;
2170 if (unlikely(anon_vma_prepare(vma
)))
2173 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2174 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2179 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2183 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2186 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2189 __SetPageUptodate(new_page
);
2191 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2194 * Re-check the pte - we dropped the lock
2196 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2197 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2199 if (!PageAnon(old_page
)) {
2200 dec_mm_counter_fast(mm
,
2201 mm_counter_file(old_page
));
2202 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2205 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2207 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2208 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2209 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2211 * Clear the pte entry and flush it first, before updating the
2212 * pte with the new entry. This will avoid a race condition
2213 * seen in the presence of one thread doing SMC and another
2216 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2217 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2218 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2219 lru_cache_add_active_or_unevictable(new_page
, vma
);
2221 * We call the notify macro here because, when using secondary
2222 * mmu page tables (such as kvm shadow page tables), we want the
2223 * new page to be mapped directly into the secondary page table.
2225 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2226 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2229 * Only after switching the pte to the new page may
2230 * we remove the mapcount here. Otherwise another
2231 * process may come and find the rmap count decremented
2232 * before the pte is switched to the new page, and
2233 * "reuse" the old page writing into it while our pte
2234 * here still points into it and can be read by other
2237 * The critical issue is to order this
2238 * page_remove_rmap with the ptp_clear_flush above.
2239 * Those stores are ordered by (if nothing else,)
2240 * the barrier present in the atomic_add_negative
2241 * in page_remove_rmap.
2243 * Then the TLB flush in ptep_clear_flush ensures that
2244 * no process can access the old page before the
2245 * decremented mapcount is visible. And the old page
2246 * cannot be reused until after the decremented
2247 * mapcount is visible. So transitively, TLBs to
2248 * old page will be flushed before it can be reused.
2250 page_remove_rmap(old_page
, false);
2253 /* Free the old page.. */
2254 new_page
= old_page
;
2257 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2263 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2264 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2267 * Don't let another task, with possibly unlocked vma,
2268 * keep the mlocked page.
2270 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2271 lock_page(old_page
); /* LRU manipulation */
2272 if (PageMlocked(old_page
))
2273 munlock_vma_page(old_page
);
2274 unlock_page(old_page
);
2278 return page_copied
? VM_FAULT_WRITE
: 0;
2284 return VM_FAULT_OOM
;
2288 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2289 * writeable once the page is prepared
2291 * @vmf: structure describing the fault
2293 * This function handles all that is needed to finish a write page fault in a
2294 * shared mapping due to PTE being read-only once the mapped page is prepared.
2295 * It handles locking of PTE and modifying it. The function returns
2296 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2299 * The function expects the page to be locked or other protection against
2300 * concurrent faults / writeback (such as DAX radix tree locks).
2302 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2304 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2305 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2308 * We might have raced with another page fault while we released the
2309 * pte_offset_map_lock.
2311 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2312 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2313 return VM_FAULT_NOPAGE
;
2320 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2323 static int wp_pfn_shared(struct vm_fault
*vmf
)
2325 struct vm_area_struct
*vma
= vmf
->vma
;
2327 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2330 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2331 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2332 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2333 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2335 return finish_mkwrite_fault(vmf
);
2338 return VM_FAULT_WRITE
;
2341 static int wp_page_shared(struct vm_fault
*vmf
)
2342 __releases(vmf
->ptl
)
2344 struct vm_area_struct
*vma
= vmf
->vma
;
2346 get_page(vmf
->page
);
2348 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2351 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2352 tmp
= do_page_mkwrite(vmf
);
2353 if (unlikely(!tmp
|| (tmp
&
2354 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2355 put_page(vmf
->page
);
2358 tmp
= finish_mkwrite_fault(vmf
);
2359 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2360 unlock_page(vmf
->page
);
2361 put_page(vmf
->page
);
2366 lock_page(vmf
->page
);
2368 fault_dirty_shared_page(vma
, vmf
->page
);
2369 put_page(vmf
->page
);
2371 return VM_FAULT_WRITE
;
2375 * This routine handles present pages, when users try to write
2376 * to a shared page. It is done by copying the page to a new address
2377 * and decrementing the shared-page counter for the old page.
2379 * Note that this routine assumes that the protection checks have been
2380 * done by the caller (the low-level page fault routine in most cases).
2381 * Thus we can safely just mark it writable once we've done any necessary
2384 * We also mark the page dirty at this point even though the page will
2385 * change only once the write actually happens. This avoids a few races,
2386 * and potentially makes it more efficient.
2388 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2389 * but allow concurrent faults), with pte both mapped and locked.
2390 * We return with mmap_sem still held, but pte unmapped and unlocked.
2392 static int do_wp_page(struct vm_fault
*vmf
)
2393 __releases(vmf
->ptl
)
2395 struct vm_area_struct
*vma
= vmf
->vma
;
2397 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2400 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2403 * We should not cow pages in a shared writeable mapping.
2404 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2406 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2407 (VM_WRITE
|VM_SHARED
))
2408 return wp_pfn_shared(vmf
);
2410 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2411 return wp_page_copy(vmf
);
2415 * Take out anonymous pages first, anonymous shared vmas are
2416 * not dirty accountable.
2418 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2420 if (!trylock_page(vmf
->page
)) {
2421 get_page(vmf
->page
);
2422 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2423 lock_page(vmf
->page
);
2424 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2425 vmf
->address
, &vmf
->ptl
);
2426 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2427 unlock_page(vmf
->page
);
2428 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2429 put_page(vmf
->page
);
2432 put_page(vmf
->page
);
2434 if (reuse_swap_page(vmf
->page
, &total_mapcount
)) {
2435 if (total_mapcount
== 1) {
2437 * The page is all ours. Move it to
2438 * our anon_vma so the rmap code will
2439 * not search our parent or siblings.
2440 * Protected against the rmap code by
2443 page_move_anon_rmap(vmf
->page
, vma
);
2445 unlock_page(vmf
->page
);
2447 return VM_FAULT_WRITE
;
2449 unlock_page(vmf
->page
);
2450 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2451 (VM_WRITE
|VM_SHARED
))) {
2452 return wp_page_shared(vmf
);
2456 * Ok, we need to copy. Oh, well..
2458 get_page(vmf
->page
);
2460 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2461 return wp_page_copy(vmf
);
2464 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2465 unsigned long start_addr
, unsigned long end_addr
,
2466 struct zap_details
*details
)
2468 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2471 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2472 struct zap_details
*details
)
2474 struct vm_area_struct
*vma
;
2475 pgoff_t vba
, vea
, zba
, zea
;
2477 vma_interval_tree_foreach(vma
, root
,
2478 details
->first_index
, details
->last_index
) {
2480 vba
= vma
->vm_pgoff
;
2481 vea
= vba
+ vma_pages(vma
) - 1;
2482 zba
= details
->first_index
;
2485 zea
= details
->last_index
;
2489 unmap_mapping_range_vma(vma
,
2490 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2491 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2497 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2498 * address_space corresponding to the specified page range in the underlying
2501 * @mapping: the address space containing mmaps to be unmapped.
2502 * @holebegin: byte in first page to unmap, relative to the start of
2503 * the underlying file. This will be rounded down to a PAGE_SIZE
2504 * boundary. Note that this is different from truncate_pagecache(), which
2505 * must keep the partial page. In contrast, we must get rid of
2507 * @holelen: size of prospective hole in bytes. This will be rounded
2508 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2510 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2511 * but 0 when invalidating pagecache, don't throw away private data.
2513 void unmap_mapping_range(struct address_space
*mapping
,
2514 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2516 struct zap_details details
= { };
2517 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2518 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2520 /* Check for overflow. */
2521 if (sizeof(holelen
) > sizeof(hlen
)) {
2523 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2524 if (holeend
& ~(long long)ULONG_MAX
)
2525 hlen
= ULONG_MAX
- hba
+ 1;
2528 details
.check_mapping
= even_cows
? NULL
: mapping
;
2529 details
.first_index
= hba
;
2530 details
.last_index
= hba
+ hlen
- 1;
2531 if (details
.last_index
< details
.first_index
)
2532 details
.last_index
= ULONG_MAX
;
2534 i_mmap_lock_write(mapping
);
2535 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
2536 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2537 i_mmap_unlock_write(mapping
);
2539 EXPORT_SYMBOL(unmap_mapping_range
);
2542 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543 * but allow concurrent faults), and pte mapped but not yet locked.
2544 * We return with pte unmapped and unlocked.
2546 * We return with the mmap_sem locked or unlocked in the same cases
2547 * as does filemap_fault().
2549 int do_swap_page(struct vm_fault
*vmf
)
2551 struct vm_area_struct
*vma
= vmf
->vma
;
2552 struct page
*page
, *swapcache
;
2553 struct mem_cgroup
*memcg
;
2560 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2563 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2564 if (unlikely(non_swap_entry(entry
))) {
2565 if (is_migration_entry(entry
)) {
2566 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2568 } else if (is_hwpoison_entry(entry
)) {
2569 ret
= VM_FAULT_HWPOISON
;
2571 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2572 ret
= VM_FAULT_SIGBUS
;
2576 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2577 page
= lookup_swap_cache(entry
);
2579 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
, vma
,
2583 * Back out if somebody else faulted in this pte
2584 * while we released the pte lock.
2586 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2587 vmf
->address
, &vmf
->ptl
);
2588 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2594 /* Had to read the page from swap area: Major fault */
2595 ret
= VM_FAULT_MAJOR
;
2596 count_vm_event(PGMAJFAULT
);
2597 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
2598 } else if (PageHWPoison(page
)) {
2600 * hwpoisoned dirty swapcache pages are kept for killing
2601 * owner processes (which may be unknown at hwpoison time)
2603 ret
= VM_FAULT_HWPOISON
;
2604 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2610 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2612 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2614 ret
|= VM_FAULT_RETRY
;
2619 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2620 * release the swapcache from under us. The page pin, and pte_same
2621 * test below, are not enough to exclude that. Even if it is still
2622 * swapcache, we need to check that the page's swap has not changed.
2624 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2627 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2628 if (unlikely(!page
)) {
2634 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2641 * Back out if somebody else already faulted in this pte.
2643 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2645 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2648 if (unlikely(!PageUptodate(page
))) {
2649 ret
= VM_FAULT_SIGBUS
;
2654 * The page isn't present yet, go ahead with the fault.
2656 * Be careful about the sequence of operations here.
2657 * To get its accounting right, reuse_swap_page() must be called
2658 * while the page is counted on swap but not yet in mapcount i.e.
2659 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2660 * must be called after the swap_free(), or it will never succeed.
2663 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2664 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2665 pte
= mk_pte(page
, vma
->vm_page_prot
);
2666 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2667 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2668 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2669 ret
|= VM_FAULT_WRITE
;
2670 exclusive
= RMAP_EXCLUSIVE
;
2672 flush_icache_page(vma
, page
);
2673 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2674 pte
= pte_mksoft_dirty(pte
);
2675 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2676 vmf
->orig_pte
= pte
;
2677 if (page
== swapcache
) {
2678 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2679 mem_cgroup_commit_charge(page
, memcg
, true, false);
2680 activate_page(page
);
2681 } else { /* ksm created a completely new copy */
2682 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2683 mem_cgroup_commit_charge(page
, memcg
, false, false);
2684 lru_cache_add_active_or_unevictable(page
, vma
);
2688 if (mem_cgroup_swap_full(page
) ||
2689 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
2690 try_to_free_swap(page
);
2692 if (page
!= swapcache
) {
2694 * Hold the lock to avoid the swap entry to be reused
2695 * until we take the PT lock for the pte_same() check
2696 * (to avoid false positives from pte_same). For
2697 * further safety release the lock after the swap_free
2698 * so that the swap count won't change under a
2699 * parallel locked swapcache.
2701 unlock_page(swapcache
);
2702 put_page(swapcache
);
2705 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
2706 ret
|= do_wp_page(vmf
);
2707 if (ret
& VM_FAULT_ERROR
)
2708 ret
&= VM_FAULT_ERROR
;
2712 /* No need to invalidate - it was non-present before */
2713 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2715 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2719 mem_cgroup_cancel_charge(page
, memcg
, false);
2720 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2725 if (page
!= swapcache
) {
2726 unlock_page(swapcache
);
2727 put_page(swapcache
);
2733 * This is like a special single-page "expand_{down|up}wards()",
2734 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2735 * doesn't hit another vma.
2737 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
2739 address
&= PAGE_MASK
;
2740 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
2741 struct vm_area_struct
*prev
= vma
->vm_prev
;
2744 * Is there a mapping abutting this one below?
2746 * That's only ok if it's the same stack mapping
2747 * that has gotten split..
2749 if (prev
&& prev
->vm_end
== address
)
2750 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
2752 return expand_downwards(vma
, address
- PAGE_SIZE
);
2754 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
2755 struct vm_area_struct
*next
= vma
->vm_next
;
2757 /* As VM_GROWSDOWN but s/below/above/ */
2758 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
2759 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
2761 return expand_upwards(vma
, address
+ PAGE_SIZE
);
2767 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2768 * but allow concurrent faults), and pte mapped but not yet locked.
2769 * We return with mmap_sem still held, but pte unmapped and unlocked.
2771 static int do_anonymous_page(struct vm_fault
*vmf
)
2773 struct vm_area_struct
*vma
= vmf
->vma
;
2774 struct mem_cgroup
*memcg
;
2778 /* File mapping without ->vm_ops ? */
2779 if (vma
->vm_flags
& VM_SHARED
)
2780 return VM_FAULT_SIGBUS
;
2782 /* Check if we need to add a guard page to the stack */
2783 if (check_stack_guard_page(vma
, vmf
->address
) < 0)
2784 return VM_FAULT_SIGSEGV
;
2787 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2788 * pte_offset_map() on pmds where a huge pmd might be created
2789 * from a different thread.
2791 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2792 * parallel threads are excluded by other means.
2794 * Here we only have down_read(mmap_sem).
2796 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
2797 return VM_FAULT_OOM
;
2799 /* See the comment in pte_alloc_one_map() */
2800 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
2803 /* Use the zero-page for reads */
2804 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
2805 !mm_forbids_zeropage(vma
->vm_mm
)) {
2806 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
2807 vma
->vm_page_prot
));
2808 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2809 vmf
->address
, &vmf
->ptl
);
2810 if (!pte_none(*vmf
->pte
))
2812 /* Deliver the page fault to userland, check inside PT lock */
2813 if (userfaultfd_missing(vma
)) {
2814 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2815 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2820 /* Allocate our own private page. */
2821 if (unlikely(anon_vma_prepare(vma
)))
2823 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
2827 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
2831 * The memory barrier inside __SetPageUptodate makes sure that
2832 * preceeding stores to the page contents become visible before
2833 * the set_pte_at() write.
2835 __SetPageUptodate(page
);
2837 entry
= mk_pte(page
, vma
->vm_page_prot
);
2838 if (vma
->vm_flags
& VM_WRITE
)
2839 entry
= pte_mkwrite(pte_mkdirty(entry
));
2841 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2843 if (!pte_none(*vmf
->pte
))
2846 /* Deliver the page fault to userland, check inside PT lock */
2847 if (userfaultfd_missing(vma
)) {
2848 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2849 mem_cgroup_cancel_charge(page
, memcg
, false);
2851 return handle_userfault(vmf
, VM_UFFD_MISSING
);
2854 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2855 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2856 mem_cgroup_commit_charge(page
, memcg
, false, false);
2857 lru_cache_add_active_or_unevictable(page
, vma
);
2859 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
2861 /* No need to invalidate - it was non-present before */
2862 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2864 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2867 mem_cgroup_cancel_charge(page
, memcg
, false);
2873 return VM_FAULT_OOM
;
2877 * The mmap_sem must have been held on entry, and may have been
2878 * released depending on flags and vma->vm_ops->fault() return value.
2879 * See filemap_fault() and __lock_page_retry().
2881 static int __do_fault(struct vm_fault
*vmf
)
2883 struct vm_area_struct
*vma
= vmf
->vma
;
2886 ret
= vma
->vm_ops
->fault(vmf
);
2887 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
2888 VM_FAULT_DONE_COW
)))
2891 if (unlikely(PageHWPoison(vmf
->page
))) {
2892 if (ret
& VM_FAULT_LOCKED
)
2893 unlock_page(vmf
->page
);
2894 put_page(vmf
->page
);
2896 return VM_FAULT_HWPOISON
;
2899 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
2900 lock_page(vmf
->page
);
2902 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
2907 static int pte_alloc_one_map(struct vm_fault
*vmf
)
2909 struct vm_area_struct
*vma
= vmf
->vma
;
2911 if (!pmd_none(*vmf
->pmd
))
2913 if (vmf
->prealloc_pte
) {
2914 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
2915 if (unlikely(!pmd_none(*vmf
->pmd
))) {
2916 spin_unlock(vmf
->ptl
);
2920 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2921 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2922 spin_unlock(vmf
->ptl
);
2923 vmf
->prealloc_pte
= NULL
;
2924 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
2925 return VM_FAULT_OOM
;
2929 * If a huge pmd materialized under us just retry later. Use
2930 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2931 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2932 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2933 * in a different thread of this mm, in turn leading to a misleading
2934 * pmd_trans_huge() retval. All we have to ensure is that it is a
2935 * regular pmd that we can walk with pte_offset_map() and we can do that
2936 * through an atomic read in C, which is what pmd_trans_unstable()
2939 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
2940 return VM_FAULT_NOPAGE
;
2942 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2947 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2949 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2950 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
2951 unsigned long haddr
)
2953 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
2954 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
2956 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
2961 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
2963 struct vm_area_struct
*vma
= vmf
->vma
;
2965 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
2967 * We are going to consume the prealloc table,
2968 * count that as nr_ptes.
2970 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
2971 vmf
->prealloc_pte
= NULL
;
2974 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
2976 struct vm_area_struct
*vma
= vmf
->vma
;
2977 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
2978 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
2982 if (!transhuge_vma_suitable(vma
, haddr
))
2983 return VM_FAULT_FALLBACK
;
2985 ret
= VM_FAULT_FALLBACK
;
2986 page
= compound_head(page
);
2989 * Archs like ppc64 need additonal space to store information
2990 * related to pte entry. Use the preallocated table for that.
2992 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
2993 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
2994 if (!vmf
->prealloc_pte
)
2995 return VM_FAULT_OOM
;
2996 smp_wmb(); /* See comment in __pte_alloc() */
2999 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3000 if (unlikely(!pmd_none(*vmf
->pmd
)))
3003 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3004 flush_icache_page(vma
, page
+ i
);
3006 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3008 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3010 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3011 page_add_file_rmap(page
, true);
3013 * deposit and withdraw with pmd lock held
3015 if (arch_needs_pgtable_deposit())
3016 deposit_prealloc_pte(vmf
);
3018 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3020 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3022 /* fault is handled */
3024 count_vm_event(THP_FILE_MAPPED
);
3026 spin_unlock(vmf
->ptl
);
3030 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3038 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3039 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3041 * @vmf: fault environment
3042 * @memcg: memcg to charge page (only for private mappings)
3043 * @page: page to map
3045 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3048 * Target users are page handler itself and implementations of
3049 * vm_ops->map_pages.
3051 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3054 struct vm_area_struct
*vma
= vmf
->vma
;
3055 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3059 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3060 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3062 VM_BUG_ON_PAGE(memcg
, page
);
3064 ret
= do_set_pmd(vmf
, page
);
3065 if (ret
!= VM_FAULT_FALLBACK
)
3070 ret
= pte_alloc_one_map(vmf
);
3075 /* Re-check under ptl */
3076 if (unlikely(!pte_none(*vmf
->pte
)))
3077 return VM_FAULT_NOPAGE
;
3079 flush_icache_page(vma
, page
);
3080 entry
= mk_pte(page
, vma
->vm_page_prot
);
3082 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3083 /* copy-on-write page */
3084 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3085 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3086 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3087 mem_cgroup_commit_charge(page
, memcg
, false, false);
3088 lru_cache_add_active_or_unevictable(page
, vma
);
3090 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3091 page_add_file_rmap(page
, false);
3093 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3095 /* no need to invalidate: a not-present page won't be cached */
3096 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3103 * finish_fault - finish page fault once we have prepared the page to fault
3105 * @vmf: structure describing the fault
3107 * This function handles all that is needed to finish a page fault once the
3108 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3109 * given page, adds reverse page mapping, handles memcg charges and LRU
3110 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3113 * The function expects the page to be locked and on success it consumes a
3114 * reference of a page being mapped (for the PTE which maps it).
3116 int finish_fault(struct vm_fault
*vmf
)
3121 /* Did we COW the page? */
3122 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3123 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3124 page
= vmf
->cow_page
;
3127 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3129 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3133 static unsigned long fault_around_bytes __read_mostly
=
3134 rounddown_pow_of_two(65536);
3136 #ifdef CONFIG_DEBUG_FS
3137 static int fault_around_bytes_get(void *data
, u64
*val
)
3139 *val
= fault_around_bytes
;
3144 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3145 * rounded down to nearest page order. It's what do_fault_around() expects to
3148 static int fault_around_bytes_set(void *data
, u64 val
)
3150 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3152 if (val
> PAGE_SIZE
)
3153 fault_around_bytes
= rounddown_pow_of_two(val
);
3155 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3158 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops
,
3159 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3161 static int __init
fault_around_debugfs(void)
3165 ret
= debugfs_create_file("fault_around_bytes", 0644, NULL
, NULL
,
3166 &fault_around_bytes_fops
);
3168 pr_warn("Failed to create fault_around_bytes in debugfs");
3171 late_initcall(fault_around_debugfs
);
3175 * do_fault_around() tries to map few pages around the fault address. The hope
3176 * is that the pages will be needed soon and this will lower the number of
3179 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3180 * not ready to be mapped: not up-to-date, locked, etc.
3182 * This function is called with the page table lock taken. In the split ptlock
3183 * case the page table lock only protects only those entries which belong to
3184 * the page table corresponding to the fault address.
3186 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3189 * fault_around_pages() defines how many pages we'll try to map.
3190 * do_fault_around() expects it to return a power of two less than or equal to
3193 * The virtual address of the area that we map is naturally aligned to the
3194 * fault_around_pages() value (and therefore to page order). This way it's
3195 * easier to guarantee that we don't cross page table boundaries.
3197 static int do_fault_around(struct vm_fault
*vmf
)
3199 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3200 pgoff_t start_pgoff
= vmf
->pgoff
;
3204 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3205 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3207 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3208 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3212 * end_pgoff is either end of page table or end of vma
3213 * or fault_around_pages() from start_pgoff, depending what is nearest.
3215 end_pgoff
= start_pgoff
-
3216 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3218 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3219 start_pgoff
+ nr_pages
- 1);
3221 if (pmd_none(*vmf
->pmd
)) {
3222 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3224 if (!vmf
->prealloc_pte
)
3226 smp_wmb(); /* See comment in __pte_alloc() */
3229 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3231 /* Huge page is mapped? Page fault is solved */
3232 if (pmd_trans_huge(*vmf
->pmd
)) {
3233 ret
= VM_FAULT_NOPAGE
;
3237 /* ->map_pages() haven't done anything useful. Cold page cache? */
3241 /* check if the page fault is solved */
3242 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3243 if (!pte_none(*vmf
->pte
))
3244 ret
= VM_FAULT_NOPAGE
;
3245 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3247 vmf
->address
= address
;
3252 static int do_read_fault(struct vm_fault
*vmf
)
3254 struct vm_area_struct
*vma
= vmf
->vma
;
3258 * Let's call ->map_pages() first and use ->fault() as fallback
3259 * if page by the offset is not ready to be mapped (cold cache or
3262 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3263 ret
= do_fault_around(vmf
);
3268 ret
= __do_fault(vmf
);
3269 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3272 ret
|= finish_fault(vmf
);
3273 unlock_page(vmf
->page
);
3274 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3275 put_page(vmf
->page
);
3279 static int do_cow_fault(struct vm_fault
*vmf
)
3281 struct vm_area_struct
*vma
= vmf
->vma
;
3284 if (unlikely(anon_vma_prepare(vma
)))
3285 return VM_FAULT_OOM
;
3287 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3289 return VM_FAULT_OOM
;
3291 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3292 &vmf
->memcg
, false)) {
3293 put_page(vmf
->cow_page
);
3294 return VM_FAULT_OOM
;
3297 ret
= __do_fault(vmf
);
3298 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3300 if (ret
& VM_FAULT_DONE_COW
)
3303 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3304 __SetPageUptodate(vmf
->cow_page
);
3306 ret
|= finish_fault(vmf
);
3307 unlock_page(vmf
->page
);
3308 put_page(vmf
->page
);
3309 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3313 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3314 put_page(vmf
->cow_page
);
3318 static int do_shared_fault(struct vm_fault
*vmf
)
3320 struct vm_area_struct
*vma
= vmf
->vma
;
3323 ret
= __do_fault(vmf
);
3324 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3328 * Check if the backing address space wants to know that the page is
3329 * about to become writable
3331 if (vma
->vm_ops
->page_mkwrite
) {
3332 unlock_page(vmf
->page
);
3333 tmp
= do_page_mkwrite(vmf
);
3334 if (unlikely(!tmp
||
3335 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3336 put_page(vmf
->page
);
3341 ret
|= finish_fault(vmf
);
3342 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3344 unlock_page(vmf
->page
);
3345 put_page(vmf
->page
);
3349 fault_dirty_shared_page(vma
, vmf
->page
);
3354 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3355 * but allow concurrent faults).
3356 * The mmap_sem may have been released depending on flags and our
3357 * return value. See filemap_fault() and __lock_page_or_retry().
3359 static int do_fault(struct vm_fault
*vmf
)
3361 struct vm_area_struct
*vma
= vmf
->vma
;
3364 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3365 if (!vma
->vm_ops
->fault
)
3366 ret
= VM_FAULT_SIGBUS
;
3367 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3368 ret
= do_read_fault(vmf
);
3369 else if (!(vma
->vm_flags
& VM_SHARED
))
3370 ret
= do_cow_fault(vmf
);
3372 ret
= do_shared_fault(vmf
);
3374 /* preallocated pagetable is unused: free it */
3375 if (vmf
->prealloc_pte
) {
3376 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3377 vmf
->prealloc_pte
= NULL
;
3382 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3383 unsigned long addr
, int page_nid
,
3388 count_vm_numa_event(NUMA_HINT_FAULTS
);
3389 if (page_nid
== numa_node_id()) {
3390 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3391 *flags
|= TNF_FAULT_LOCAL
;
3394 return mpol_misplaced(page
, vma
, addr
);
3397 static int do_numa_page(struct vm_fault
*vmf
)
3399 struct vm_area_struct
*vma
= vmf
->vma
;
3400 struct page
*page
= NULL
;
3404 bool migrated
= false;
3406 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3410 * The "pte" at this point cannot be used safely without
3411 * validation through pte_unmap_same(). It's of NUMA type but
3412 * the pfn may be screwed if the read is non atomic.
3414 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3415 spin_lock(vmf
->ptl
);
3416 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3417 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3422 * Make it present again, Depending on how arch implementes non
3423 * accessible ptes, some can allow access by kernel mode.
3425 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3426 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3427 pte
= pte_mkyoung(pte
);
3429 pte
= pte_mkwrite(pte
);
3430 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3431 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3433 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3435 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3439 /* TODO: handle PTE-mapped THP */
3440 if (PageCompound(page
)) {
3441 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3446 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3447 * much anyway since they can be in shared cache state. This misses
3448 * the case where a mapping is writable but the process never writes
3449 * to it but pte_write gets cleared during protection updates and
3450 * pte_dirty has unpredictable behaviour between PTE scan updates,
3451 * background writeback, dirty balancing and application behaviour.
3453 if (!pte_write(pte
))
3454 flags
|= TNF_NO_GROUP
;
3457 * Flag if the page is shared between multiple address spaces. This
3458 * is later used when determining whether to group tasks together
3460 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3461 flags
|= TNF_SHARED
;
3463 last_cpupid
= page_cpupid_last(page
);
3464 page_nid
= page_to_nid(page
);
3465 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3467 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3468 if (target_nid
== -1) {
3473 /* Migrate to the requested node */
3474 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3476 page_nid
= target_nid
;
3477 flags
|= TNF_MIGRATED
;
3479 flags
|= TNF_MIGRATE_FAIL
;
3483 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3487 static int create_huge_pmd(struct vm_fault
*vmf
)
3489 if (vma_is_anonymous(vmf
->vma
))
3490 return do_huge_pmd_anonymous_page(vmf
);
3491 if (vmf
->vma
->vm_ops
->huge_fault
)
3492 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3493 return VM_FAULT_FALLBACK
;
3496 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3498 if (vma_is_anonymous(vmf
->vma
))
3499 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3500 if (vmf
->vma
->vm_ops
->huge_fault
)
3501 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3503 /* COW handled on pte level: split pmd */
3504 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3505 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3507 return VM_FAULT_FALLBACK
;
3510 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3512 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3515 static int create_huge_pud(struct vm_fault
*vmf
)
3517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3518 /* No support for anonymous transparent PUD pages yet */
3519 if (vma_is_anonymous(vmf
->vma
))
3520 return VM_FAULT_FALLBACK
;
3521 if (vmf
->vma
->vm_ops
->huge_fault
)
3522 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3524 return VM_FAULT_FALLBACK
;
3527 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3530 /* No support for anonymous transparent PUD pages yet */
3531 if (vma_is_anonymous(vmf
->vma
))
3532 return VM_FAULT_FALLBACK
;
3533 if (vmf
->vma
->vm_ops
->huge_fault
)
3534 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3535 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3536 return VM_FAULT_FALLBACK
;
3540 * These routines also need to handle stuff like marking pages dirty
3541 * and/or accessed for architectures that don't do it in hardware (most
3542 * RISC architectures). The early dirtying is also good on the i386.
3544 * There is also a hook called "update_mmu_cache()" that architectures
3545 * with external mmu caches can use to update those (ie the Sparc or
3546 * PowerPC hashed page tables that act as extended TLBs).
3548 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3549 * concurrent faults).
3551 * The mmap_sem may have been released depending on flags and our return value.
3552 * See filemap_fault() and __lock_page_or_retry().
3554 static int handle_pte_fault(struct vm_fault
*vmf
)
3558 if (unlikely(pmd_none(*vmf
->pmd
))) {
3560 * Leave __pte_alloc() until later: because vm_ops->fault may
3561 * want to allocate huge page, and if we expose page table
3562 * for an instant, it will be difficult to retract from
3563 * concurrent faults and from rmap lookups.
3567 /* See comment in pte_alloc_one_map() */
3568 if (pmd_trans_unstable(vmf
->pmd
) || pmd_devmap(*vmf
->pmd
))
3571 * A regular pmd is established and it can't morph into a huge
3572 * pmd from under us anymore at this point because we hold the
3573 * mmap_sem read mode and khugepaged takes it in write mode.
3574 * So now it's safe to run pte_offset_map().
3576 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3577 vmf
->orig_pte
= *vmf
->pte
;
3580 * some architectures can have larger ptes than wordsize,
3581 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3582 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3583 * atomic accesses. The code below just needs a consistent
3584 * view for the ifs and we later double check anyway with the
3585 * ptl lock held. So here a barrier will do.
3588 if (pte_none(vmf
->orig_pte
)) {
3589 pte_unmap(vmf
->pte
);
3595 if (vma_is_anonymous(vmf
->vma
))
3596 return do_anonymous_page(vmf
);
3598 return do_fault(vmf
);
3601 if (!pte_present(vmf
->orig_pte
))
3602 return do_swap_page(vmf
);
3604 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3605 return do_numa_page(vmf
);
3607 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3608 spin_lock(vmf
->ptl
);
3609 entry
= vmf
->orig_pte
;
3610 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3612 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3613 if (!pte_write(entry
))
3614 return do_wp_page(vmf
);
3615 entry
= pte_mkdirty(entry
);
3617 entry
= pte_mkyoung(entry
);
3618 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3619 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3620 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3623 * This is needed only for protection faults but the arch code
3624 * is not yet telling us if this is a protection fault or not.
3625 * This still avoids useless tlb flushes for .text page faults
3628 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3629 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3632 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3637 * By the time we get here, we already hold the mm semaphore
3639 * The mmap_sem may have been released depending on flags and our
3640 * return value. See filemap_fault() and __lock_page_or_retry().
3642 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3645 struct vm_fault vmf
= {
3647 .address
= address
& PAGE_MASK
,
3649 .pgoff
= linear_page_index(vma
, address
),
3650 .gfp_mask
= __get_fault_gfp_mask(vma
),
3652 struct mm_struct
*mm
= vma
->vm_mm
;
3656 pgd
= pgd_offset(mm
, address
);
3658 vmf
.pud
= pud_alloc(mm
, pgd
, address
);
3660 return VM_FAULT_OOM
;
3661 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
3662 ret
= create_huge_pud(&vmf
);
3663 if (!(ret
& VM_FAULT_FALLBACK
))
3666 pud_t orig_pud
= *vmf
.pud
;
3669 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3670 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3672 /* NUMA case for anonymous PUDs would go here */
3674 if (dirty
&& !pud_write(orig_pud
)) {
3675 ret
= wp_huge_pud(&vmf
, orig_pud
);
3676 if (!(ret
& VM_FAULT_FALLBACK
))
3679 huge_pud_set_accessed(&vmf
, orig_pud
);
3685 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
3687 return VM_FAULT_OOM
;
3688 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
3689 ret
= create_huge_pmd(&vmf
);
3690 if (!(ret
& VM_FAULT_FALLBACK
))
3693 pmd_t orig_pmd
= *vmf
.pmd
;
3696 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
3697 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
3698 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
3700 if ((vmf
.flags
& FAULT_FLAG_WRITE
) &&
3701 !pmd_write(orig_pmd
)) {
3702 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
3703 if (!(ret
& VM_FAULT_FALLBACK
))
3706 huge_pmd_set_accessed(&vmf
, orig_pmd
);
3712 return handle_pte_fault(&vmf
);
3716 * By the time we get here, we already hold the mm semaphore
3718 * The mmap_sem may have been released depending on flags and our
3719 * return value. See filemap_fault() and __lock_page_or_retry().
3721 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3726 __set_current_state(TASK_RUNNING
);
3728 count_vm_event(PGFAULT
);
3729 mem_cgroup_count_vm_event(vma
->vm_mm
, PGFAULT
);
3731 /* do counter updates before entering really critical section. */
3732 check_sync_rss_stat(current
);
3735 * Enable the memcg OOM handling for faults triggered in user
3736 * space. Kernel faults are handled more gracefully.
3738 if (flags
& FAULT_FLAG_USER
)
3739 mem_cgroup_oom_enable();
3741 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
3742 flags
& FAULT_FLAG_INSTRUCTION
,
3743 flags
& FAULT_FLAG_REMOTE
))
3744 return VM_FAULT_SIGSEGV
;
3746 if (unlikely(is_vm_hugetlb_page(vma
)))
3747 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
3749 ret
= __handle_mm_fault(vma
, address
, flags
);
3751 if (flags
& FAULT_FLAG_USER
) {
3752 mem_cgroup_oom_disable();
3754 * The task may have entered a memcg OOM situation but
3755 * if the allocation error was handled gracefully (no
3756 * VM_FAULT_OOM), there is no need to kill anything.
3757 * Just clean up the OOM state peacefully.
3759 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3760 mem_cgroup_oom_synchronize(false);
3764 * This mm has been already reaped by the oom reaper and so the
3765 * refault cannot be trusted in general. Anonymous refaults would
3766 * lose data and give a zero page instead e.g. This is especially
3767 * problem for use_mm() because regular tasks will just die and
3768 * the corrupted data will not be visible anywhere while kthread
3769 * will outlive the oom victim and potentially propagate the date
3772 if (unlikely((current
->flags
& PF_KTHREAD
) && !(ret
& VM_FAULT_ERROR
)
3773 && test_bit(MMF_UNSTABLE
, &vma
->vm_mm
->flags
)))
3774 ret
= VM_FAULT_SIGBUS
;
3778 EXPORT_SYMBOL_GPL(handle_mm_fault
);
3780 #ifndef __PAGETABLE_PUD_FOLDED
3782 * Allocate page upper directory.
3783 * We've already handled the fast-path in-line.
3785 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3787 pud_t
*new = pud_alloc_one(mm
, address
);
3791 smp_wmb(); /* See comment in __pte_alloc */
3793 spin_lock(&mm
->page_table_lock
);
3794 if (pgd_present(*pgd
)) /* Another has populated it */
3797 pgd_populate(mm
, pgd
, new);
3798 spin_unlock(&mm
->page_table_lock
);
3801 #endif /* __PAGETABLE_PUD_FOLDED */
3803 #ifndef __PAGETABLE_PMD_FOLDED
3805 * Allocate page middle directory.
3806 * We've already handled the fast-path in-line.
3808 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3811 pmd_t
*new = pmd_alloc_one(mm
, address
);
3815 smp_wmb(); /* See comment in __pte_alloc */
3817 ptl
= pud_lock(mm
, pud
);
3818 #ifndef __ARCH_HAS_4LEVEL_HACK
3819 if (!pud_present(*pud
)) {
3821 pud_populate(mm
, pud
, new);
3822 } else /* Another has populated it */
3825 if (!pgd_present(*pud
)) {
3827 pgd_populate(mm
, pud
, new);
3828 } else /* Another has populated it */
3830 #endif /* __ARCH_HAS_4LEVEL_HACK */
3834 #endif /* __PAGETABLE_PMD_FOLDED */
3836 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3837 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3844 pgd
= pgd_offset(mm
, address
);
3845 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3848 pud
= pud_offset(pgd
, address
);
3849 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3852 pmd
= pmd_offset(pud
, address
);
3853 VM_BUG_ON(pmd_trans_huge(*pmd
));
3855 if (pmd_huge(*pmd
)) {
3859 *ptlp
= pmd_lock(mm
, pmd
);
3860 if (pmd_huge(*pmd
)) {
3867 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3870 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3873 if (!pte_present(*ptep
))
3878 pte_unmap_unlock(ptep
, *ptlp
);
3883 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3884 pte_t
**ptepp
, spinlock_t
**ptlp
)
3888 /* (void) is needed to make gcc happy */
3889 (void) __cond_lock(*ptlp
,
3890 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, NULL
,
3895 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
3896 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
3900 /* (void) is needed to make gcc happy */
3901 (void) __cond_lock(*ptlp
,
3902 !(res
= __follow_pte_pmd(mm
, address
, ptepp
, pmdpp
,
3906 EXPORT_SYMBOL(follow_pte_pmd
);
3909 * follow_pfn - look up PFN at a user virtual address
3910 * @vma: memory mapping
3911 * @address: user virtual address
3912 * @pfn: location to store found PFN
3914 * Only IO mappings and raw PFN mappings are allowed.
3916 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3918 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3925 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3928 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3931 *pfn
= pte_pfn(*ptep
);
3932 pte_unmap_unlock(ptep
, ptl
);
3935 EXPORT_SYMBOL(follow_pfn
);
3937 #ifdef CONFIG_HAVE_IOREMAP_PROT
3938 int follow_phys(struct vm_area_struct
*vma
,
3939 unsigned long address
, unsigned int flags
,
3940 unsigned long *prot
, resource_size_t
*phys
)
3946 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3949 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3953 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3956 *prot
= pgprot_val(pte_pgprot(pte
));
3957 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3961 pte_unmap_unlock(ptep
, ptl
);
3966 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3967 void *buf
, int len
, int write
)
3969 resource_size_t phys_addr
;
3970 unsigned long prot
= 0;
3971 void __iomem
*maddr
;
3972 int offset
= addr
& (PAGE_SIZE
-1);
3974 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3977 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
3979 memcpy_toio(maddr
+ offset
, buf
, len
);
3981 memcpy_fromio(buf
, maddr
+ offset
, len
);
3986 EXPORT_SYMBOL_GPL(generic_access_phys
);
3990 * Access another process' address space as given in mm. If non-NULL, use the
3991 * given task for page fault accounting.
3993 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3994 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
3996 struct vm_area_struct
*vma
;
3997 void *old_buf
= buf
;
3998 int write
= gup_flags
& FOLL_WRITE
;
4000 down_read(&mm
->mmap_sem
);
4001 /* ignore errors, just check how much was successfully transferred */
4003 int bytes
, ret
, offset
;
4005 struct page
*page
= NULL
;
4007 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4008 gup_flags
, &page
, &vma
, NULL
);
4010 #ifndef CONFIG_HAVE_IOREMAP_PROT
4014 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4015 * we can access using slightly different code.
4017 vma
= find_vma(mm
, addr
);
4018 if (!vma
|| vma
->vm_start
> addr
)
4020 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4021 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4029 offset
= addr
& (PAGE_SIZE
-1);
4030 if (bytes
> PAGE_SIZE
-offset
)
4031 bytes
= PAGE_SIZE
-offset
;
4035 copy_to_user_page(vma
, page
, addr
,
4036 maddr
+ offset
, buf
, bytes
);
4037 set_page_dirty_lock(page
);
4039 copy_from_user_page(vma
, page
, addr
,
4040 buf
, maddr
+ offset
, bytes
);
4049 up_read(&mm
->mmap_sem
);
4051 return buf
- old_buf
;
4055 * access_remote_vm - access another process' address space
4056 * @mm: the mm_struct of the target address space
4057 * @addr: start address to access
4058 * @buf: source or destination buffer
4059 * @len: number of bytes to transfer
4060 * @gup_flags: flags modifying lookup behaviour
4062 * The caller must hold a reference on @mm.
4064 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4065 void *buf
, int len
, unsigned int gup_flags
)
4067 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4071 * Access another process' address space.
4072 * Source/target buffer must be kernel space,
4073 * Do not walk the page table directly, use get_user_pages
4075 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4076 void *buf
, int len
, unsigned int gup_flags
)
4078 struct mm_struct
*mm
;
4081 mm
= get_task_mm(tsk
);
4085 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4091 EXPORT_SYMBOL_GPL(access_process_vm
);
4094 * Print the name of a VMA.
4096 void print_vma_addr(char *prefix
, unsigned long ip
)
4098 struct mm_struct
*mm
= current
->mm
;
4099 struct vm_area_struct
*vma
;
4102 * Do not print if we are in atomic
4103 * contexts (in exception stacks, etc.):
4105 if (preempt_count())
4108 down_read(&mm
->mmap_sem
);
4109 vma
= find_vma(mm
, ip
);
4110 if (vma
&& vma
->vm_file
) {
4111 struct file
*f
= vma
->vm_file
;
4112 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4116 p
= file_path(f
, buf
, PAGE_SIZE
);
4119 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4121 vma
->vm_end
- vma
->vm_start
);
4122 free_page((unsigned long)buf
);
4125 up_read(&mm
->mmap_sem
);
4128 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4129 void __might_fault(const char *file
, int line
)
4132 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4133 * holding the mmap_sem, this is safe because kernel memory doesn't
4134 * get paged out, therefore we'll never actually fault, and the
4135 * below annotations will generate false positives.
4137 if (segment_eq(get_fs(), KERNEL_DS
))
4139 if (pagefault_disabled())
4141 __might_sleep(file
, line
, 0);
4142 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4144 might_lock_read(¤t
->mm
->mmap_sem
);
4147 EXPORT_SYMBOL(__might_fault
);
4150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4151 static void clear_gigantic_page(struct page
*page
,
4153 unsigned int pages_per_huge_page
)
4156 struct page
*p
= page
;
4159 for (i
= 0; i
< pages_per_huge_page
;
4160 i
++, p
= mem_map_next(p
, page
, i
)) {
4162 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4165 void clear_huge_page(struct page
*page
,
4166 unsigned long addr
, unsigned int pages_per_huge_page
)
4170 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4171 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4176 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4178 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4182 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4184 struct vm_area_struct
*vma
,
4185 unsigned int pages_per_huge_page
)
4188 struct page
*dst_base
= dst
;
4189 struct page
*src_base
= src
;
4191 for (i
= 0; i
< pages_per_huge_page
; ) {
4193 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4196 dst
= mem_map_next(dst
, dst_base
, i
);
4197 src
= mem_map_next(src
, src_base
, i
);
4201 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4202 unsigned long addr
, struct vm_area_struct
*vma
,
4203 unsigned int pages_per_huge_page
)
4207 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4208 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4209 pages_per_huge_page
);
4214 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4216 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4220 long copy_huge_page_from_user(struct page
*dst_page
,
4221 const void __user
*usr_src
,
4222 unsigned int pages_per_huge_page
,
4223 bool allow_pagefault
)
4225 void *src
= (void *)usr_src
;
4227 unsigned long i
, rc
= 0;
4228 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4230 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4231 if (allow_pagefault
)
4232 page_kaddr
= kmap(dst_page
+ i
);
4234 page_kaddr
= kmap_atomic(dst_page
+ i
);
4235 rc
= copy_from_user(page_kaddr
,
4236 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4238 if (allow_pagefault
)
4239 kunmap(dst_page
+ i
);
4241 kunmap_atomic(page_kaddr
);
4243 ret_val
-= (PAGE_SIZE
- rc
);
4251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4253 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4255 static struct kmem_cache
*page_ptl_cachep
;
4257 void __init
ptlock_cache_init(void)
4259 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4263 bool ptlock_alloc(struct page
*page
)
4267 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4274 void ptlock_free(struct page
*page
)
4276 kmem_cache_free(page_ptl_cachep
, page
->ptl
);