]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memory.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-bionic-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/hugetlb.h>
46 #include <linux/mman.h>
47 #include <linux/swap.h>
48 #include <linux/highmem.h>
49 #include <linux/pagemap.h>
50 #include <linux/ksm.h>
51 #include <linux/rmap.h>
52 #include <linux/export.h>
53 #include <linux/delayacct.h>
54 #include <linux/init.h>
55 #include <linux/pfn_t.h>
56 #include <linux/writeback.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/kallsyms.h>
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 #include <linux/gfp.h>
63 #include <linux/migrate.h>
64 #include <linux/string.h>
65 #include <linux/dma-debug.h>
66 #include <linux/debugfs.h>
67 #include <linux/userfaultfd_k.h>
68 #include <linux/dax.h>
69
70 #include <asm/io.h>
71 #include <asm/mmu_context.h>
72 #include <asm/pgalloc.h>
73 #include <linux/uaccess.h>
74 #include <asm/tlb.h>
75 #include <asm/tlbflush.h>
76 #include <asm/pgtable.h>
77
78 #include "internal.h"
79
80 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
81 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
82 #endif
83
84 #ifndef CONFIG_NEED_MULTIPLE_NODES
85 /* use the per-pgdat data instead for discontigmem - mbligh */
86 unsigned long max_mapnr;
87 EXPORT_SYMBOL(max_mapnr);
88
89 struct page *mem_map;
90 EXPORT_SYMBOL(mem_map);
91 #endif
92
93 /*
94 * A number of key systems in x86 including ioremap() rely on the assumption
95 * that high_memory defines the upper bound on direct map memory, then end
96 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
97 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
98 * and ZONE_HIGHMEM.
99 */
100 void *high_memory;
101 EXPORT_SYMBOL(high_memory);
102
103 /*
104 * Randomize the address space (stacks, mmaps, brk, etc.).
105 *
106 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
107 * as ancient (libc5 based) binaries can segfault. )
108 */
109 int randomize_va_space __read_mostly =
110 #ifdef CONFIG_COMPAT_BRK
111 1;
112 #else
113 2;
114 #endif
115
116 static int __init disable_randmaps(char *s)
117 {
118 randomize_va_space = 0;
119 return 1;
120 }
121 __setup("norandmaps", disable_randmaps);
122
123 unsigned long zero_pfn __read_mostly;
124 EXPORT_SYMBOL(zero_pfn);
125
126 unsigned long highest_memmap_pfn __read_mostly;
127
128 /*
129 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
130 */
131 static int __init init_zero_pfn(void)
132 {
133 zero_pfn = page_to_pfn(ZERO_PAGE(0));
134 return 0;
135 }
136 core_initcall(init_zero_pfn);
137
138
139 #if defined(SPLIT_RSS_COUNTING)
140
141 void sync_mm_rss(struct mm_struct *mm)
142 {
143 int i;
144
145 for (i = 0; i < NR_MM_COUNTERS; i++) {
146 if (current->rss_stat.count[i]) {
147 add_mm_counter(mm, i, current->rss_stat.count[i]);
148 current->rss_stat.count[i] = 0;
149 }
150 }
151 current->rss_stat.events = 0;
152 }
153
154 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
155 {
156 struct task_struct *task = current;
157
158 if (likely(task->mm == mm))
159 task->rss_stat.count[member] += val;
160 else
161 add_mm_counter(mm, member, val);
162 }
163 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
164 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
165
166 /* sync counter once per 64 page faults */
167 #define TASK_RSS_EVENTS_THRESH (64)
168 static void check_sync_rss_stat(struct task_struct *task)
169 {
170 if (unlikely(task != current))
171 return;
172 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
173 sync_mm_rss(task->mm);
174 }
175 #else /* SPLIT_RSS_COUNTING */
176
177 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
178 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
179
180 static void check_sync_rss_stat(struct task_struct *task)
181 {
182 }
183
184 #endif /* SPLIT_RSS_COUNTING */
185
186 #ifdef HAVE_GENERIC_MMU_GATHER
187
188 static bool tlb_next_batch(struct mmu_gather *tlb)
189 {
190 struct mmu_gather_batch *batch;
191
192 batch = tlb->active;
193 if (batch->next) {
194 tlb->active = batch->next;
195 return true;
196 }
197
198 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
199 return false;
200
201 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
202 if (!batch)
203 return false;
204
205 tlb->batch_count++;
206 batch->next = NULL;
207 batch->nr = 0;
208 batch->max = MAX_GATHER_BATCH;
209
210 tlb->active->next = batch;
211 tlb->active = batch;
212
213 return true;
214 }
215
216 /* tlb_gather_mmu
217 * Called to initialize an (on-stack) mmu_gather structure for page-table
218 * tear-down from @mm. The @fullmm argument is used when @mm is without
219 * users and we're going to destroy the full address space (exit/execve).
220 */
221 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
222 {
223 tlb->mm = mm;
224
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
233
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
238
239 __tlb_reset_range(tlb);
240 }
241
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 if (!tlb->end)
245 return;
246
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb);
251 #endif
252 __tlb_reset_range(tlb);
253 }
254
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 struct mmu_gather_batch *batch;
258
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
262 }
263 tlb->active = &tlb->local;
264 }
265
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
270 }
271
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
275 */
276 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 tlb_flush_mmu(tlb);
281
282 /* keep the page table cache within bounds */
283 check_pgt_cache();
284
285 for (batch = tlb->local.next; batch; batch = next) {
286 next = batch->next;
287 free_pages((unsigned long)batch, 0);
288 }
289 tlb->local.next = NULL;
290 }
291
292 /* __tlb_remove_page
293 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
294 * handling the additional races in SMP caused by other CPUs caching valid
295 * mappings in their TLBs. Returns the number of free page slots left.
296 * When out of page slots we must call tlb_flush_mmu().
297 *returns true if the caller should flush.
298 */
299 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
300 {
301 struct mmu_gather_batch *batch;
302
303 VM_BUG_ON(!tlb->end);
304 VM_WARN_ON(tlb->page_size != page_size);
305
306 batch = tlb->active;
307 /*
308 * Add the page and check if we are full. If so
309 * force a flush.
310 */
311 batch->pages[batch->nr++] = page;
312 if (batch->nr == batch->max) {
313 if (!tlb_next_batch(tlb))
314 return true;
315 batch = tlb->active;
316 }
317 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
318
319 return false;
320 }
321
322 #endif /* HAVE_GENERIC_MMU_GATHER */
323
324 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
325
326 /*
327 * See the comment near struct mmu_table_batch.
328 */
329
330 static void tlb_remove_table_smp_sync(void *arg)
331 {
332 /* Simply deliver the interrupt */
333 }
334
335 static void tlb_remove_table_one(void *table)
336 {
337 /*
338 * This isn't an RCU grace period and hence the page-tables cannot be
339 * assumed to be actually RCU-freed.
340 *
341 * It is however sufficient for software page-table walkers that rely on
342 * IRQ disabling. See the comment near struct mmu_table_batch.
343 */
344 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
345 __tlb_remove_table(table);
346 }
347
348 static void tlb_remove_table_rcu(struct rcu_head *head)
349 {
350 struct mmu_table_batch *batch;
351 int i;
352
353 batch = container_of(head, struct mmu_table_batch, rcu);
354
355 for (i = 0; i < batch->nr; i++)
356 __tlb_remove_table(batch->tables[i]);
357
358 free_page((unsigned long)batch);
359 }
360
361 void tlb_table_flush(struct mmu_gather *tlb)
362 {
363 struct mmu_table_batch **batch = &tlb->batch;
364
365 if (*batch) {
366 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
367 *batch = NULL;
368 }
369 }
370
371 void tlb_remove_table(struct mmu_gather *tlb, void *table)
372 {
373 struct mmu_table_batch **batch = &tlb->batch;
374
375 /*
376 * When there's less then two users of this mm there cannot be a
377 * concurrent page-table walk.
378 */
379 if (atomic_read(&tlb->mm->mm_users) < 2) {
380 __tlb_remove_table(table);
381 return;
382 }
383
384 if (*batch == NULL) {
385 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
386 if (*batch == NULL) {
387 tlb_remove_table_one(table);
388 return;
389 }
390 (*batch)->nr = 0;
391 }
392 (*batch)->tables[(*batch)->nr++] = table;
393 if ((*batch)->nr == MAX_TABLE_BATCH)
394 tlb_table_flush(tlb);
395 }
396
397 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
398
399 /*
400 * Note: this doesn't free the actual pages themselves. That
401 * has been handled earlier when unmapping all the memory regions.
402 */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 unsigned long addr)
405 {
406 pgtable_t token = pmd_pgtable(*pmd);
407 pmd_clear(pmd);
408 pte_free_tlb(tlb, token, addr);
409 atomic_long_dec(&tlb->mm->nr_ptes);
410 }
411
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 unsigned long addr, unsigned long end,
414 unsigned long floor, unsigned long ceiling)
415 {
416 pmd_t *pmd;
417 unsigned long next;
418 unsigned long start;
419
420 start = addr;
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 free_pte_range(tlb, pmd, addr);
427 } while (pmd++, addr = next, addr != end);
428
429 start &= PUD_MASK;
430 if (start < floor)
431 return;
432 if (ceiling) {
433 ceiling &= PUD_MASK;
434 if (!ceiling)
435 return;
436 }
437 if (end - 1 > ceiling - 1)
438 return;
439
440 pmd = pmd_offset(pud, start);
441 pud_clear(pud);
442 pmd_free_tlb(tlb, pmd, start);
443 mm_dec_nr_pmds(tlb->mm);
444 }
445
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
449 {
450 pud_t *pud;
451 unsigned long next;
452 unsigned long start;
453
454 start = addr;
455 pud = pud_offset(pgd, addr);
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
462
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
470 }
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
476 pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480 * This function frees user-level page tables of a process.
481 */
482 void free_pgd_range(struct mmu_gather *tlb,
483 unsigned long addr, unsigned long end,
484 unsigned long floor, unsigned long ceiling)
485 {
486 pgd_t *pgd;
487 unsigned long next;
488
489 /*
490 * The next few lines have given us lots of grief...
491 *
492 * Why are we testing PMD* at this top level? Because often
493 * there will be no work to do at all, and we'd prefer not to
494 * go all the way down to the bottom just to discover that.
495 *
496 * Why all these "- 1"s? Because 0 represents both the bottom
497 * of the address space and the top of it (using -1 for the
498 * top wouldn't help much: the masks would do the wrong thing).
499 * The rule is that addr 0 and floor 0 refer to the bottom of
500 * the address space, but end 0 and ceiling 0 refer to the top
501 * Comparisons need to use "end - 1" and "ceiling - 1" (though
502 * that end 0 case should be mythical).
503 *
504 * Wherever addr is brought up or ceiling brought down, we must
505 * be careful to reject "the opposite 0" before it confuses the
506 * subsequent tests. But what about where end is brought down
507 * by PMD_SIZE below? no, end can't go down to 0 there.
508 *
509 * Whereas we round start (addr) and ceiling down, by different
510 * masks at different levels, in order to test whether a table
511 * now has no other vmas using it, so can be freed, we don't
512 * bother to round floor or end up - the tests don't need that.
513 */
514
515 addr &= PMD_MASK;
516 if (addr < floor) {
517 addr += PMD_SIZE;
518 if (!addr)
519 return;
520 }
521 if (ceiling) {
522 ceiling &= PMD_MASK;
523 if (!ceiling)
524 return;
525 }
526 if (end - 1 > ceiling - 1)
527 end -= PMD_SIZE;
528 if (addr > end - 1)
529 return;
530 /*
531 * We add page table cache pages with PAGE_SIZE,
532 * (see pte_free_tlb()), flush the tlb if we need
533 */
534 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
535 pgd = pgd_offset(tlb->mm, addr);
536 do {
537 next = pgd_addr_end(addr, end);
538 if (pgd_none_or_clear_bad(pgd))
539 continue;
540 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
541 } while (pgd++, addr = next, addr != end);
542 }
543
544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
545 unsigned long floor, unsigned long ceiling)
546 {
547 while (vma) {
548 struct vm_area_struct *next = vma->vm_next;
549 unsigned long addr = vma->vm_start;
550
551 /*
552 * Hide vma from rmap and truncate_pagecache before freeing
553 * pgtables
554 */
555 unlink_anon_vmas(vma);
556 unlink_file_vma(vma);
557
558 if (is_vm_hugetlb_page(vma)) {
559 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next ? next->vm_start : ceiling);
561 } else {
562 /*
563 * Optimization: gather nearby vmas into one call down
564 */
565 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
566 && !is_vm_hugetlb_page(next)) {
567 vma = next;
568 next = vma->vm_next;
569 unlink_anon_vmas(vma);
570 unlink_file_vma(vma);
571 }
572 free_pgd_range(tlb, addr, vma->vm_end,
573 floor, next ? next->vm_start : ceiling);
574 }
575 vma = next;
576 }
577 }
578
579 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
580 {
581 spinlock_t *ptl;
582 pgtable_t new = pte_alloc_one(mm, address);
583 if (!new)
584 return -ENOMEM;
585
586 /*
587 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 * visible before the pte is made visible to other CPUs by being
589 * put into page tables.
590 *
591 * The other side of the story is the pointer chasing in the page
592 * table walking code (when walking the page table without locking;
593 * ie. most of the time). Fortunately, these data accesses consist
594 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 * being the notable exception) will already guarantee loads are
596 * seen in-order. See the alpha page table accessors for the
597 * smp_read_barrier_depends() barriers in page table walking code.
598 */
599 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600
601 ptl = pmd_lock(mm, pmd);
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 atomic_long_inc(&mm->nr_ptes);
604 pmd_populate(mm, pmd, new);
605 new = NULL;
606 }
607 spin_unlock(ptl);
608 if (new)
609 pte_free(mm, new);
610 return 0;
611 }
612
613 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
614 {
615 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
616 if (!new)
617 return -ENOMEM;
618
619 smp_wmb(); /* See comment in __pte_alloc */
620
621 spin_lock(&init_mm.page_table_lock);
622 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
623 pmd_populate_kernel(&init_mm, pmd, new);
624 new = NULL;
625 }
626 spin_unlock(&init_mm.page_table_lock);
627 if (new)
628 pte_free_kernel(&init_mm, new);
629 return 0;
630 }
631
632 static inline void init_rss_vec(int *rss)
633 {
634 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
635 }
636
637 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
638 {
639 int i;
640
641 if (current->mm == mm)
642 sync_mm_rss(mm);
643 for (i = 0; i < NR_MM_COUNTERS; i++)
644 if (rss[i])
645 add_mm_counter(mm, i, rss[i]);
646 }
647
648 /*
649 * This function is called to print an error when a bad pte
650 * is found. For example, we might have a PFN-mapped pte in
651 * a region that doesn't allow it.
652 *
653 * The calling function must still handle the error.
654 */
655 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
656 pte_t pte, struct page *page)
657 {
658 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
659 pud_t *pud = pud_offset(pgd, addr);
660 pmd_t *pmd = pmd_offset(pud, addr);
661 struct address_space *mapping;
662 pgoff_t index;
663 static unsigned long resume;
664 static unsigned long nr_shown;
665 static unsigned long nr_unshown;
666
667 /*
668 * Allow a burst of 60 reports, then keep quiet for that minute;
669 * or allow a steady drip of one report per second.
670 */
671 if (nr_shown == 60) {
672 if (time_before(jiffies, resume)) {
673 nr_unshown++;
674 return;
675 }
676 if (nr_unshown) {
677 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
678 nr_unshown);
679 nr_unshown = 0;
680 }
681 nr_shown = 0;
682 }
683 if (nr_shown++ == 0)
684 resume = jiffies + 60 * HZ;
685
686 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
687 index = linear_page_index(vma, addr);
688
689 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
690 current->comm,
691 (long long)pte_val(pte), (long long)pmd_val(*pmd));
692 if (page)
693 dump_page(page, "bad pte");
694 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
695 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
696 /*
697 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
698 */
699 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
700 vma->vm_file,
701 vma->vm_ops ? vma->vm_ops->fault : NULL,
702 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
703 mapping ? mapping->a_ops->readpage : NULL);
704 dump_stack();
705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
706 }
707
708 /*
709 * vm_normal_page -- This function gets the "struct page" associated with a pte.
710 *
711 * "Special" mappings do not wish to be associated with a "struct page" (either
712 * it doesn't exist, or it exists but they don't want to touch it). In this
713 * case, NULL is returned here. "Normal" mappings do have a struct page.
714 *
715 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
716 * pte bit, in which case this function is trivial. Secondly, an architecture
717 * may not have a spare pte bit, which requires a more complicated scheme,
718 * described below.
719 *
720 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
721 * special mapping (even if there are underlying and valid "struct pages").
722 * COWed pages of a VM_PFNMAP are always normal.
723 *
724 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
725 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
726 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
727 * mapping will always honor the rule
728 *
729 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
730 *
731 * And for normal mappings this is false.
732 *
733 * This restricts such mappings to be a linear translation from virtual address
734 * to pfn. To get around this restriction, we allow arbitrary mappings so long
735 * as the vma is not a COW mapping; in that case, we know that all ptes are
736 * special (because none can have been COWed).
737 *
738 *
739 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
740 *
741 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
742 * page" backing, however the difference is that _all_ pages with a struct
743 * page (that is, those where pfn_valid is true) are refcounted and considered
744 * normal pages by the VM. The disadvantage is that pages are refcounted
745 * (which can be slower and simply not an option for some PFNMAP users). The
746 * advantage is that we don't have to follow the strict linearity rule of
747 * PFNMAP mappings in order to support COWable mappings.
748 *
749 */
750 #ifdef __HAVE_ARCH_PTE_SPECIAL
751 # define HAVE_PTE_SPECIAL 1
752 #else
753 # define HAVE_PTE_SPECIAL 0
754 #endif
755 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
756 pte_t pte)
757 {
758 unsigned long pfn = pte_pfn(pte);
759
760 if (HAVE_PTE_SPECIAL) {
761 if (likely(!pte_special(pte)))
762 goto check_pfn;
763 if (vma->vm_ops && vma->vm_ops->find_special_page)
764 return vma->vm_ops->find_special_page(vma, addr);
765 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
766 return NULL;
767 if (!is_zero_pfn(pfn))
768 print_bad_pte(vma, addr, pte, NULL);
769 return NULL;
770 }
771
772 /* !HAVE_PTE_SPECIAL case follows: */
773
774 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
775 if (vma->vm_flags & VM_MIXEDMAP) {
776 if (!pfn_valid(pfn))
777 return NULL;
778 goto out;
779 } else {
780 unsigned long off;
781 off = (addr - vma->vm_start) >> PAGE_SHIFT;
782 if (pfn == vma->vm_pgoff + off)
783 return NULL;
784 if (!is_cow_mapping(vma->vm_flags))
785 return NULL;
786 }
787 }
788
789 if (is_zero_pfn(pfn))
790 return NULL;
791 check_pfn:
792 if (unlikely(pfn > highest_memmap_pfn)) {
793 print_bad_pte(vma, addr, pte, NULL);
794 return NULL;
795 }
796
797 /*
798 * NOTE! We still have PageReserved() pages in the page tables.
799 * eg. VDSO mappings can cause them to exist.
800 */
801 out:
802 return pfn_to_page(pfn);
803 }
804
805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
806 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
807 pmd_t pmd)
808 {
809 unsigned long pfn = pmd_pfn(pmd);
810
811 /*
812 * There is no pmd_special() but there may be special pmds, e.g.
813 * in a direct-access (dax) mapping, so let's just replicate the
814 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
815 */
816 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
817 if (vma->vm_flags & VM_MIXEDMAP) {
818 if (!pfn_valid(pfn))
819 return NULL;
820 goto out;
821 } else {
822 unsigned long off;
823 off = (addr - vma->vm_start) >> PAGE_SHIFT;
824 if (pfn == vma->vm_pgoff + off)
825 return NULL;
826 if (!is_cow_mapping(vma->vm_flags))
827 return NULL;
828 }
829 }
830
831 if (is_zero_pfn(pfn))
832 return NULL;
833 if (unlikely(pfn > highest_memmap_pfn))
834 return NULL;
835
836 /*
837 * NOTE! We still have PageReserved() pages in the page tables.
838 * eg. VDSO mappings can cause them to exist.
839 */
840 out:
841 return pfn_to_page(pfn);
842 }
843 #endif
844
845 /*
846 * copy one vm_area from one task to the other. Assumes the page tables
847 * already present in the new task to be cleared in the whole range
848 * covered by this vma.
849 */
850
851 static inline unsigned long
852 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
853 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
854 unsigned long addr, int *rss)
855 {
856 unsigned long vm_flags = vma->vm_flags;
857 pte_t pte = *src_pte;
858 struct page *page;
859
860 /* pte contains position in swap or file, so copy. */
861 if (unlikely(!pte_present(pte))) {
862 swp_entry_t entry = pte_to_swp_entry(pte);
863
864 if (likely(!non_swap_entry(entry))) {
865 if (swap_duplicate(entry) < 0)
866 return entry.val;
867
868 /* make sure dst_mm is on swapoff's mmlist. */
869 if (unlikely(list_empty(&dst_mm->mmlist))) {
870 spin_lock(&mmlist_lock);
871 if (list_empty(&dst_mm->mmlist))
872 list_add(&dst_mm->mmlist,
873 &src_mm->mmlist);
874 spin_unlock(&mmlist_lock);
875 }
876 rss[MM_SWAPENTS]++;
877 } else if (is_migration_entry(entry)) {
878 page = migration_entry_to_page(entry);
879
880 rss[mm_counter(page)]++;
881
882 if (is_write_migration_entry(entry) &&
883 is_cow_mapping(vm_flags)) {
884 /*
885 * COW mappings require pages in both
886 * parent and child to be set to read.
887 */
888 make_migration_entry_read(&entry);
889 pte = swp_entry_to_pte(entry);
890 if (pte_swp_soft_dirty(*src_pte))
891 pte = pte_swp_mksoft_dirty(pte);
892 set_pte_at(src_mm, addr, src_pte, pte);
893 }
894 }
895 goto out_set_pte;
896 }
897
898 /*
899 * If it's a COW mapping, write protect it both
900 * in the parent and the child
901 */
902 if (is_cow_mapping(vm_flags)) {
903 ptep_set_wrprotect(src_mm, addr, src_pte);
904 pte = pte_wrprotect(pte);
905 }
906
907 /*
908 * If it's a shared mapping, mark it clean in
909 * the child
910 */
911 if (vm_flags & VM_SHARED)
912 pte = pte_mkclean(pte);
913 pte = pte_mkold(pte);
914
915 page = vm_normal_page(vma, addr, pte);
916 if (page) {
917 get_page(page);
918 page_dup_rmap(page, false);
919 rss[mm_counter(page)]++;
920 }
921
922 out_set_pte:
923 set_pte_at(dst_mm, addr, dst_pte, pte);
924 return 0;
925 }
926
927 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930 {
931 pte_t *orig_src_pte, *orig_dst_pte;
932 pte_t *src_pte, *dst_pte;
933 spinlock_t *src_ptl, *dst_ptl;
934 int progress = 0;
935 int rss[NR_MM_COUNTERS];
936 swp_entry_t entry = (swp_entry_t){0};
937
938 again:
939 init_rss_vec(rss);
940
941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 if (!dst_pte)
943 return -ENOMEM;
944 src_pte = pte_offset_map(src_pmd, addr);
945 src_ptl = pte_lockptr(src_mm, src_pmd);
946 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
947 orig_src_pte = src_pte;
948 orig_dst_pte = dst_pte;
949 arch_enter_lazy_mmu_mode();
950
951 do {
952 /*
953 * We are holding two locks at this point - either of them
954 * could generate latencies in another task on another CPU.
955 */
956 if (progress >= 32) {
957 progress = 0;
958 if (need_resched() ||
959 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
960 break;
961 }
962 if (pte_none(*src_pte)) {
963 progress++;
964 continue;
965 }
966 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
967 vma, addr, rss);
968 if (entry.val)
969 break;
970 progress += 8;
971 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
972
973 arch_leave_lazy_mmu_mode();
974 spin_unlock(src_ptl);
975 pte_unmap(orig_src_pte);
976 add_mm_rss_vec(dst_mm, rss);
977 pte_unmap_unlock(orig_dst_pte, dst_ptl);
978 cond_resched();
979
980 if (entry.val) {
981 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
982 return -ENOMEM;
983 progress = 0;
984 }
985 if (addr != end)
986 goto again;
987 return 0;
988 }
989
990 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
991 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
992 unsigned long addr, unsigned long end)
993 {
994 pmd_t *src_pmd, *dst_pmd;
995 unsigned long next;
996
997 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
998 if (!dst_pmd)
999 return -ENOMEM;
1000 src_pmd = pmd_offset(src_pud, addr);
1001 do {
1002 next = pmd_addr_end(addr, end);
1003 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1004 int err;
1005 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1006 err = copy_huge_pmd(dst_mm, src_mm,
1007 dst_pmd, src_pmd, addr, vma);
1008 if (err == -ENOMEM)
1009 return -ENOMEM;
1010 if (!err)
1011 continue;
1012 /* fall through */
1013 }
1014 if (pmd_none_or_clear_bad(src_pmd))
1015 continue;
1016 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1017 vma, addr, next))
1018 return -ENOMEM;
1019 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1020 return 0;
1021 }
1022
1023 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1025 unsigned long addr, unsigned long end)
1026 {
1027 pud_t *src_pud, *dst_pud;
1028 unsigned long next;
1029
1030 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1031 if (!dst_pud)
1032 return -ENOMEM;
1033 src_pud = pud_offset(src_pgd, addr);
1034 do {
1035 next = pud_addr_end(addr, end);
1036 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1037 int err;
1038
1039 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1040 err = copy_huge_pud(dst_mm, src_mm,
1041 dst_pud, src_pud, addr, vma);
1042 if (err == -ENOMEM)
1043 return -ENOMEM;
1044 if (!err)
1045 continue;
1046 /* fall through */
1047 }
1048 if (pud_none_or_clear_bad(src_pud))
1049 continue;
1050 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1051 vma, addr, next))
1052 return -ENOMEM;
1053 } while (dst_pud++, src_pud++, addr = next, addr != end);
1054 return 0;
1055 }
1056
1057 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1058 struct vm_area_struct *vma)
1059 {
1060 pgd_t *src_pgd, *dst_pgd;
1061 unsigned long next;
1062 unsigned long addr = vma->vm_start;
1063 unsigned long end = vma->vm_end;
1064 unsigned long mmun_start; /* For mmu_notifiers */
1065 unsigned long mmun_end; /* For mmu_notifiers */
1066 bool is_cow;
1067 int ret;
1068
1069 /*
1070 * Don't copy ptes where a page fault will fill them correctly.
1071 * Fork becomes much lighter when there are big shared or private
1072 * readonly mappings. The tradeoff is that copy_page_range is more
1073 * efficient than faulting.
1074 */
1075 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1076 !vma->anon_vma)
1077 return 0;
1078
1079 if (is_vm_hugetlb_page(vma))
1080 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1081
1082 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1083 /*
1084 * We do not free on error cases below as remove_vma
1085 * gets called on error from higher level routine
1086 */
1087 ret = track_pfn_copy(vma);
1088 if (ret)
1089 return ret;
1090 }
1091
1092 /*
1093 * We need to invalidate the secondary MMU mappings only when
1094 * there could be a permission downgrade on the ptes of the
1095 * parent mm. And a permission downgrade will only happen if
1096 * is_cow_mapping() returns true.
1097 */
1098 is_cow = is_cow_mapping(vma->vm_flags);
1099 mmun_start = addr;
1100 mmun_end = end;
1101 if (is_cow)
1102 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1103 mmun_end);
1104
1105 ret = 0;
1106 dst_pgd = pgd_offset(dst_mm, addr);
1107 src_pgd = pgd_offset(src_mm, addr);
1108 do {
1109 next = pgd_addr_end(addr, end);
1110 if (pgd_none_or_clear_bad(src_pgd))
1111 continue;
1112 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1113 vma, addr, next))) {
1114 ret = -ENOMEM;
1115 break;
1116 }
1117 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1118
1119 if (is_cow)
1120 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1121 return ret;
1122 }
1123
1124 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1125 struct vm_area_struct *vma, pmd_t *pmd,
1126 unsigned long addr, unsigned long end,
1127 struct zap_details *details)
1128 {
1129 struct mm_struct *mm = tlb->mm;
1130 int force_flush = 0;
1131 int rss[NR_MM_COUNTERS];
1132 spinlock_t *ptl;
1133 pte_t *start_pte;
1134 pte_t *pte;
1135 swp_entry_t entry;
1136
1137 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1138 again:
1139 init_rss_vec(rss);
1140 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1141 pte = start_pte;
1142 arch_enter_lazy_mmu_mode();
1143 do {
1144 pte_t ptent = *pte;
1145 if (pte_none(ptent))
1146 continue;
1147
1148 if (pte_present(ptent)) {
1149 struct page *page;
1150
1151 page = vm_normal_page(vma, addr, ptent);
1152 if (unlikely(details) && page) {
1153 /*
1154 * unmap_shared_mapping_pages() wants to
1155 * invalidate cache without truncating:
1156 * unmap shared but keep private pages.
1157 */
1158 if (details->check_mapping &&
1159 details->check_mapping != page_rmapping(page))
1160 continue;
1161 }
1162 ptent = ptep_get_and_clear_full(mm, addr, pte,
1163 tlb->fullmm);
1164 tlb_remove_tlb_entry(tlb, pte, addr);
1165 if (unlikely(!page))
1166 continue;
1167
1168 if (!PageAnon(page)) {
1169 if (pte_dirty(ptent)) {
1170 force_flush = 1;
1171 set_page_dirty(page);
1172 }
1173 if (pte_young(ptent) &&
1174 likely(!(vma->vm_flags & VM_SEQ_READ)))
1175 mark_page_accessed(page);
1176 }
1177 rss[mm_counter(page)]--;
1178 page_remove_rmap(page, false);
1179 if (unlikely(page_mapcount(page) < 0))
1180 print_bad_pte(vma, addr, ptent, page);
1181 if (unlikely(__tlb_remove_page(tlb, page))) {
1182 force_flush = 1;
1183 addr += PAGE_SIZE;
1184 break;
1185 }
1186 continue;
1187 }
1188 /* If details->check_mapping, we leave swap entries. */
1189 if (unlikely(details))
1190 continue;
1191
1192 entry = pte_to_swp_entry(ptent);
1193 if (!non_swap_entry(entry))
1194 rss[MM_SWAPENTS]--;
1195 else if (is_migration_entry(entry)) {
1196 struct page *page;
1197
1198 page = migration_entry_to_page(entry);
1199 rss[mm_counter(page)]--;
1200 }
1201 if (unlikely(!free_swap_and_cache(entry)))
1202 print_bad_pte(vma, addr, ptent, NULL);
1203 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1204 } while (pte++, addr += PAGE_SIZE, addr != end);
1205
1206 add_mm_rss_vec(mm, rss);
1207 arch_leave_lazy_mmu_mode();
1208
1209 /* Do the actual TLB flush before dropping ptl */
1210 if (force_flush)
1211 tlb_flush_mmu_tlbonly(tlb);
1212 pte_unmap_unlock(start_pte, ptl);
1213
1214 /*
1215 * If we forced a TLB flush (either due to running out of
1216 * batch buffers or because we needed to flush dirty TLB
1217 * entries before releasing the ptl), free the batched
1218 * memory too. Restart if we didn't do everything.
1219 */
1220 if (force_flush) {
1221 force_flush = 0;
1222 tlb_flush_mmu_free(tlb);
1223 if (addr != end)
1224 goto again;
1225 }
1226
1227 return addr;
1228 }
1229
1230 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pud_t *pud,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234 {
1235 pmd_t *pmd;
1236 unsigned long next;
1237
1238 pmd = pmd_offset(pud, addr);
1239 do {
1240 next = pmd_addr_end(addr, end);
1241 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1242 if (next - addr != HPAGE_PMD_SIZE) {
1243 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1244 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1245 __split_huge_pmd(vma, pmd, addr, false, NULL);
1246 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1247 goto next;
1248 /* fall through */
1249 }
1250 /*
1251 * Here there can be other concurrent MADV_DONTNEED or
1252 * trans huge page faults running, and if the pmd is
1253 * none or trans huge it can change under us. This is
1254 * because MADV_DONTNEED holds the mmap_sem in read
1255 * mode.
1256 */
1257 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1258 goto next;
1259 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1260 next:
1261 cond_resched();
1262 } while (pmd++, addr = next, addr != end);
1263
1264 return addr;
1265 }
1266
1267 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1268 struct vm_area_struct *vma, pgd_t *pgd,
1269 unsigned long addr, unsigned long end,
1270 struct zap_details *details)
1271 {
1272 pud_t *pud;
1273 unsigned long next;
1274
1275 pud = pud_offset(pgd, addr);
1276 do {
1277 next = pud_addr_end(addr, end);
1278 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1279 if (next - addr != HPAGE_PUD_SIZE) {
1280 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1281 split_huge_pud(vma, pud, addr);
1282 } else if (zap_huge_pud(tlb, vma, pud, addr))
1283 goto next;
1284 /* fall through */
1285 }
1286 if (pud_none_or_clear_bad(pud))
1287 continue;
1288 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 next:
1290 cond_resched();
1291 } while (pud++, addr = next, addr != end);
1292
1293 return addr;
1294 }
1295
1296 void unmap_page_range(struct mmu_gather *tlb,
1297 struct vm_area_struct *vma,
1298 unsigned long addr, unsigned long end,
1299 struct zap_details *details)
1300 {
1301 pgd_t *pgd;
1302 unsigned long next;
1303
1304 BUG_ON(addr >= end);
1305 tlb_start_vma(tlb, vma);
1306 pgd = pgd_offset(vma->vm_mm, addr);
1307 do {
1308 next = pgd_addr_end(addr, end);
1309 if (pgd_none_or_clear_bad(pgd))
1310 continue;
1311 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1312 } while (pgd++, addr = next, addr != end);
1313 tlb_end_vma(tlb, vma);
1314 }
1315
1316
1317 static void unmap_single_vma(struct mmu_gather *tlb,
1318 struct vm_area_struct *vma, unsigned long start_addr,
1319 unsigned long end_addr,
1320 struct zap_details *details)
1321 {
1322 unsigned long start = max(vma->vm_start, start_addr);
1323 unsigned long end;
1324
1325 if (start >= vma->vm_end)
1326 return;
1327 end = min(vma->vm_end, end_addr);
1328 if (end <= vma->vm_start)
1329 return;
1330
1331 if (vma->vm_file)
1332 uprobe_munmap(vma, start, end);
1333
1334 if (unlikely(vma->vm_flags & VM_PFNMAP))
1335 untrack_pfn(vma, 0, 0);
1336
1337 if (start != end) {
1338 if (unlikely(is_vm_hugetlb_page(vma))) {
1339 /*
1340 * It is undesirable to test vma->vm_file as it
1341 * should be non-null for valid hugetlb area.
1342 * However, vm_file will be NULL in the error
1343 * cleanup path of mmap_region. When
1344 * hugetlbfs ->mmap method fails,
1345 * mmap_region() nullifies vma->vm_file
1346 * before calling this function to clean up.
1347 * Since no pte has actually been setup, it is
1348 * safe to do nothing in this case.
1349 */
1350 if (vma->vm_file) {
1351 i_mmap_lock_write(vma->vm_file->f_mapping);
1352 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1353 i_mmap_unlock_write(vma->vm_file->f_mapping);
1354 }
1355 } else
1356 unmap_page_range(tlb, vma, start, end, details);
1357 }
1358 }
1359
1360 /**
1361 * unmap_vmas - unmap a range of memory covered by a list of vma's
1362 * @tlb: address of the caller's struct mmu_gather
1363 * @vma: the starting vma
1364 * @start_addr: virtual address at which to start unmapping
1365 * @end_addr: virtual address at which to end unmapping
1366 *
1367 * Unmap all pages in the vma list.
1368 *
1369 * Only addresses between `start' and `end' will be unmapped.
1370 *
1371 * The VMA list must be sorted in ascending virtual address order.
1372 *
1373 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374 * range after unmap_vmas() returns. So the only responsibility here is to
1375 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376 * drops the lock and schedules.
1377 */
1378 void unmap_vmas(struct mmu_gather *tlb,
1379 struct vm_area_struct *vma, unsigned long start_addr,
1380 unsigned long end_addr)
1381 {
1382 struct mm_struct *mm = vma->vm_mm;
1383
1384 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1385 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1386 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1387 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1388 }
1389
1390 /**
1391 * zap_page_range - remove user pages in a given range
1392 * @vma: vm_area_struct holding the applicable pages
1393 * @start: starting address of pages to zap
1394 * @size: number of bytes to zap
1395 *
1396 * Caller must protect the VMA list
1397 */
1398 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1399 unsigned long size)
1400 {
1401 struct mm_struct *mm = vma->vm_mm;
1402 struct mmu_gather tlb;
1403 unsigned long end = start + size;
1404
1405 lru_add_drain();
1406 tlb_gather_mmu(&tlb, mm, start, end);
1407 update_hiwater_rss(mm);
1408 mmu_notifier_invalidate_range_start(mm, start, end);
1409 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1410 unmap_single_vma(&tlb, vma, start, end, NULL);
1411 mmu_notifier_invalidate_range_end(mm, start, end);
1412 tlb_finish_mmu(&tlb, start, end);
1413 }
1414
1415 /**
1416 * zap_page_range_single - remove user pages in a given range
1417 * @vma: vm_area_struct holding the applicable pages
1418 * @address: starting address of pages to zap
1419 * @size: number of bytes to zap
1420 * @details: details of shared cache invalidation
1421 *
1422 * The range must fit into one VMA.
1423 */
1424 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1425 unsigned long size, struct zap_details *details)
1426 {
1427 struct mm_struct *mm = vma->vm_mm;
1428 struct mmu_gather tlb;
1429 unsigned long end = address + size;
1430
1431 lru_add_drain();
1432 tlb_gather_mmu(&tlb, mm, address, end);
1433 update_hiwater_rss(mm);
1434 mmu_notifier_invalidate_range_start(mm, address, end);
1435 unmap_single_vma(&tlb, vma, address, end, details);
1436 mmu_notifier_invalidate_range_end(mm, address, end);
1437 tlb_finish_mmu(&tlb, address, end);
1438 }
1439
1440 /**
1441 * zap_vma_ptes - remove ptes mapping the vma
1442 * @vma: vm_area_struct holding ptes to be zapped
1443 * @address: starting address of pages to zap
1444 * @size: number of bytes to zap
1445 *
1446 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1447 *
1448 * The entire address range must be fully contained within the vma.
1449 *
1450 * Returns 0 if successful.
1451 */
1452 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1453 unsigned long size)
1454 {
1455 if (address < vma->vm_start || address + size > vma->vm_end ||
1456 !(vma->vm_flags & VM_PFNMAP))
1457 return -1;
1458 zap_page_range_single(vma, address, size, NULL);
1459 return 0;
1460 }
1461 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1462
1463 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1464 spinlock_t **ptl)
1465 {
1466 pgd_t *pgd = pgd_offset(mm, addr);
1467 pud_t *pud = pud_alloc(mm, pgd, addr);
1468 if (pud) {
1469 pmd_t *pmd = pmd_alloc(mm, pud, addr);
1470 if (pmd) {
1471 VM_BUG_ON(pmd_trans_huge(*pmd));
1472 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1473 }
1474 }
1475 return NULL;
1476 }
1477
1478 /*
1479 * This is the old fallback for page remapping.
1480 *
1481 * For historical reasons, it only allows reserved pages. Only
1482 * old drivers should use this, and they needed to mark their
1483 * pages reserved for the old functions anyway.
1484 */
1485 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1486 struct page *page, pgprot_t prot)
1487 {
1488 struct mm_struct *mm = vma->vm_mm;
1489 int retval;
1490 pte_t *pte;
1491 spinlock_t *ptl;
1492
1493 retval = -EINVAL;
1494 if (PageAnon(page))
1495 goto out;
1496 retval = -ENOMEM;
1497 flush_dcache_page(page);
1498 pte = get_locked_pte(mm, addr, &ptl);
1499 if (!pte)
1500 goto out;
1501 retval = -EBUSY;
1502 if (!pte_none(*pte))
1503 goto out_unlock;
1504
1505 /* Ok, finally just insert the thing.. */
1506 get_page(page);
1507 inc_mm_counter_fast(mm, mm_counter_file(page));
1508 page_add_file_rmap(page, false);
1509 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1510
1511 retval = 0;
1512 pte_unmap_unlock(pte, ptl);
1513 return retval;
1514 out_unlock:
1515 pte_unmap_unlock(pte, ptl);
1516 out:
1517 return retval;
1518 }
1519
1520 /**
1521 * vm_insert_page - insert single page into user vma
1522 * @vma: user vma to map to
1523 * @addr: target user address of this page
1524 * @page: source kernel page
1525 *
1526 * This allows drivers to insert individual pages they've allocated
1527 * into a user vma.
1528 *
1529 * The page has to be a nice clean _individual_ kernel allocation.
1530 * If you allocate a compound page, you need to have marked it as
1531 * such (__GFP_COMP), or manually just split the page up yourself
1532 * (see split_page()).
1533 *
1534 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1535 * took an arbitrary page protection parameter. This doesn't allow
1536 * that. Your vma protection will have to be set up correctly, which
1537 * means that if you want a shared writable mapping, you'd better
1538 * ask for a shared writable mapping!
1539 *
1540 * The page does not need to be reserved.
1541 *
1542 * Usually this function is called from f_op->mmap() handler
1543 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1544 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1545 * function from other places, for example from page-fault handler.
1546 */
1547 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1548 struct page *page)
1549 {
1550 if (addr < vma->vm_start || addr >= vma->vm_end)
1551 return -EFAULT;
1552 if (!page_count(page))
1553 return -EINVAL;
1554 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1555 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1556 BUG_ON(vma->vm_flags & VM_PFNMAP);
1557 vma->vm_flags |= VM_MIXEDMAP;
1558 }
1559 return insert_page(vma, addr, page, vma->vm_page_prot);
1560 }
1561 EXPORT_SYMBOL(vm_insert_page);
1562
1563 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1564 pfn_t pfn, pgprot_t prot)
1565 {
1566 struct mm_struct *mm = vma->vm_mm;
1567 int retval;
1568 pte_t *pte, entry;
1569 spinlock_t *ptl;
1570
1571 retval = -ENOMEM;
1572 pte = get_locked_pte(mm, addr, &ptl);
1573 if (!pte)
1574 goto out;
1575 retval = -EBUSY;
1576 if (!pte_none(*pte))
1577 goto out_unlock;
1578
1579 /* Ok, finally just insert the thing.. */
1580 if (pfn_t_devmap(pfn))
1581 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1582 else
1583 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1584 set_pte_at(mm, addr, pte, entry);
1585 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1586
1587 retval = 0;
1588 out_unlock:
1589 pte_unmap_unlock(pte, ptl);
1590 out:
1591 return retval;
1592 }
1593
1594 /**
1595 * vm_insert_pfn - insert single pfn into user vma
1596 * @vma: user vma to map to
1597 * @addr: target user address of this page
1598 * @pfn: source kernel pfn
1599 *
1600 * Similar to vm_insert_page, this allows drivers to insert individual pages
1601 * they've allocated into a user vma. Same comments apply.
1602 *
1603 * This function should only be called from a vm_ops->fault handler, and
1604 * in that case the handler should return NULL.
1605 *
1606 * vma cannot be a COW mapping.
1607 *
1608 * As this is called only for pages that do not currently exist, we
1609 * do not need to flush old virtual caches or the TLB.
1610 */
1611 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 unsigned long pfn)
1613 {
1614 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1615 }
1616 EXPORT_SYMBOL(vm_insert_pfn);
1617
1618 /**
1619 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1620 * @vma: user vma to map to
1621 * @addr: target user address of this page
1622 * @pfn: source kernel pfn
1623 * @pgprot: pgprot flags for the inserted page
1624 *
1625 * This is exactly like vm_insert_pfn, except that it allows drivers to
1626 * to override pgprot on a per-page basis.
1627 *
1628 * This only makes sense for IO mappings, and it makes no sense for
1629 * cow mappings. In general, using multiple vmas is preferable;
1630 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1631 * impractical.
1632 */
1633 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn, pgprot_t pgprot)
1635 {
1636 int ret;
1637 /*
1638 * Technically, architectures with pte_special can avoid all these
1639 * restrictions (same for remap_pfn_range). However we would like
1640 * consistency in testing and feature parity among all, so we should
1641 * try to keep these invariants in place for everybody.
1642 */
1643 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1644 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1645 (VM_PFNMAP|VM_MIXEDMAP));
1646 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1647 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1648
1649 if (addr < vma->vm_start || addr >= vma->vm_end)
1650 return -EFAULT;
1651
1652 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1653
1654 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1655
1656 return ret;
1657 }
1658 EXPORT_SYMBOL(vm_insert_pfn_prot);
1659
1660 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1661 pfn_t pfn)
1662 {
1663 pgprot_t pgprot = vma->vm_page_prot;
1664
1665 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1666
1667 if (addr < vma->vm_start || addr >= vma->vm_end)
1668 return -EFAULT;
1669
1670 track_pfn_insert(vma, &pgprot, pfn);
1671
1672 /*
1673 * If we don't have pte special, then we have to use the pfn_valid()
1674 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1675 * refcount the page if pfn_valid is true (hence insert_page rather
1676 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1677 * without pte special, it would there be refcounted as a normal page.
1678 */
1679 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1680 struct page *page;
1681
1682 /*
1683 * At this point we are committed to insert_page()
1684 * regardless of whether the caller specified flags that
1685 * result in pfn_t_has_page() == false.
1686 */
1687 page = pfn_to_page(pfn_t_to_pfn(pfn));
1688 return insert_page(vma, addr, page, pgprot);
1689 }
1690 return insert_pfn(vma, addr, pfn, pgprot);
1691 }
1692 EXPORT_SYMBOL(vm_insert_mixed);
1693
1694 /*
1695 * maps a range of physical memory into the requested pages. the old
1696 * mappings are removed. any references to nonexistent pages results
1697 * in null mappings (currently treated as "copy-on-access")
1698 */
1699 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1700 unsigned long addr, unsigned long end,
1701 unsigned long pfn, pgprot_t prot)
1702 {
1703 pte_t *pte;
1704 spinlock_t *ptl;
1705
1706 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1707 if (!pte)
1708 return -ENOMEM;
1709 arch_enter_lazy_mmu_mode();
1710 do {
1711 BUG_ON(!pte_none(*pte));
1712 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1713 pfn++;
1714 } while (pte++, addr += PAGE_SIZE, addr != end);
1715 arch_leave_lazy_mmu_mode();
1716 pte_unmap_unlock(pte - 1, ptl);
1717 return 0;
1718 }
1719
1720 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1721 unsigned long addr, unsigned long end,
1722 unsigned long pfn, pgprot_t prot)
1723 {
1724 pmd_t *pmd;
1725 unsigned long next;
1726
1727 pfn -= addr >> PAGE_SHIFT;
1728 pmd = pmd_alloc(mm, pud, addr);
1729 if (!pmd)
1730 return -ENOMEM;
1731 VM_BUG_ON(pmd_trans_huge(*pmd));
1732 do {
1733 next = pmd_addr_end(addr, end);
1734 if (remap_pte_range(mm, pmd, addr, next,
1735 pfn + (addr >> PAGE_SHIFT), prot))
1736 return -ENOMEM;
1737 } while (pmd++, addr = next, addr != end);
1738 return 0;
1739 }
1740
1741 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1742 unsigned long addr, unsigned long end,
1743 unsigned long pfn, pgprot_t prot)
1744 {
1745 pud_t *pud;
1746 unsigned long next;
1747
1748 pfn -= addr >> PAGE_SHIFT;
1749 pud = pud_alloc(mm, pgd, addr);
1750 if (!pud)
1751 return -ENOMEM;
1752 do {
1753 next = pud_addr_end(addr, end);
1754 if (remap_pmd_range(mm, pud, addr, next,
1755 pfn + (addr >> PAGE_SHIFT), prot))
1756 return -ENOMEM;
1757 } while (pud++, addr = next, addr != end);
1758 return 0;
1759 }
1760
1761 /**
1762 * remap_pfn_range - remap kernel memory to userspace
1763 * @vma: user vma to map to
1764 * @addr: target user address to start at
1765 * @pfn: physical address of kernel memory
1766 * @size: size of map area
1767 * @prot: page protection flags for this mapping
1768 *
1769 * Note: this is only safe if the mm semaphore is held when called.
1770 */
1771 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1772 unsigned long pfn, unsigned long size, pgprot_t prot)
1773 {
1774 pgd_t *pgd;
1775 unsigned long next;
1776 unsigned long end = addr + PAGE_ALIGN(size);
1777 struct mm_struct *mm = vma->vm_mm;
1778 unsigned long remap_pfn = pfn;
1779 int err;
1780
1781 /*
1782 * Physically remapped pages are special. Tell the
1783 * rest of the world about it:
1784 * VM_IO tells people not to look at these pages
1785 * (accesses can have side effects).
1786 * VM_PFNMAP tells the core MM that the base pages are just
1787 * raw PFN mappings, and do not have a "struct page" associated
1788 * with them.
1789 * VM_DONTEXPAND
1790 * Disable vma merging and expanding with mremap().
1791 * VM_DONTDUMP
1792 * Omit vma from core dump, even when VM_IO turned off.
1793 *
1794 * There's a horrible special case to handle copy-on-write
1795 * behaviour that some programs depend on. We mark the "original"
1796 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1797 * See vm_normal_page() for details.
1798 */
1799 if (is_cow_mapping(vma->vm_flags)) {
1800 if (addr != vma->vm_start || end != vma->vm_end)
1801 return -EINVAL;
1802 vma->vm_pgoff = pfn;
1803 }
1804
1805 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1806 if (err)
1807 return -EINVAL;
1808
1809 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1810
1811 BUG_ON(addr >= end);
1812 pfn -= addr >> PAGE_SHIFT;
1813 pgd = pgd_offset(mm, addr);
1814 flush_cache_range(vma, addr, end);
1815 do {
1816 next = pgd_addr_end(addr, end);
1817 err = remap_pud_range(mm, pgd, addr, next,
1818 pfn + (addr >> PAGE_SHIFT), prot);
1819 if (err)
1820 break;
1821 } while (pgd++, addr = next, addr != end);
1822
1823 if (err)
1824 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1825
1826 return err;
1827 }
1828 EXPORT_SYMBOL(remap_pfn_range);
1829
1830 /**
1831 * vm_iomap_memory - remap memory to userspace
1832 * @vma: user vma to map to
1833 * @start: start of area
1834 * @len: size of area
1835 *
1836 * This is a simplified io_remap_pfn_range() for common driver use. The
1837 * driver just needs to give us the physical memory range to be mapped,
1838 * we'll figure out the rest from the vma information.
1839 *
1840 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1841 * whatever write-combining details or similar.
1842 */
1843 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1844 {
1845 unsigned long vm_len, pfn, pages;
1846
1847 /* Check that the physical memory area passed in looks valid */
1848 if (start + len < start)
1849 return -EINVAL;
1850 /*
1851 * You *really* shouldn't map things that aren't page-aligned,
1852 * but we've historically allowed it because IO memory might
1853 * just have smaller alignment.
1854 */
1855 len += start & ~PAGE_MASK;
1856 pfn = start >> PAGE_SHIFT;
1857 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1858 if (pfn + pages < pfn)
1859 return -EINVAL;
1860
1861 /* We start the mapping 'vm_pgoff' pages into the area */
1862 if (vma->vm_pgoff > pages)
1863 return -EINVAL;
1864 pfn += vma->vm_pgoff;
1865 pages -= vma->vm_pgoff;
1866
1867 /* Can we fit all of the mapping? */
1868 vm_len = vma->vm_end - vma->vm_start;
1869 if (vm_len >> PAGE_SHIFT > pages)
1870 return -EINVAL;
1871
1872 /* Ok, let it rip */
1873 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1874 }
1875 EXPORT_SYMBOL(vm_iomap_memory);
1876
1877 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1878 unsigned long addr, unsigned long end,
1879 pte_fn_t fn, void *data)
1880 {
1881 pte_t *pte;
1882 int err;
1883 pgtable_t token;
1884 spinlock_t *uninitialized_var(ptl);
1885
1886 pte = (mm == &init_mm) ?
1887 pte_alloc_kernel(pmd, addr) :
1888 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1889 if (!pte)
1890 return -ENOMEM;
1891
1892 BUG_ON(pmd_huge(*pmd));
1893
1894 arch_enter_lazy_mmu_mode();
1895
1896 token = pmd_pgtable(*pmd);
1897
1898 do {
1899 err = fn(pte++, token, addr, data);
1900 if (err)
1901 break;
1902 } while (addr += PAGE_SIZE, addr != end);
1903
1904 arch_leave_lazy_mmu_mode();
1905
1906 if (mm != &init_mm)
1907 pte_unmap_unlock(pte-1, ptl);
1908 return err;
1909 }
1910
1911 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1912 unsigned long addr, unsigned long end,
1913 pte_fn_t fn, void *data)
1914 {
1915 pmd_t *pmd;
1916 unsigned long next;
1917 int err;
1918
1919 BUG_ON(pud_huge(*pud));
1920
1921 pmd = pmd_alloc(mm, pud, addr);
1922 if (!pmd)
1923 return -ENOMEM;
1924 do {
1925 next = pmd_addr_end(addr, end);
1926 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1927 if (err)
1928 break;
1929 } while (pmd++, addr = next, addr != end);
1930 return err;
1931 }
1932
1933 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1934 unsigned long addr, unsigned long end,
1935 pte_fn_t fn, void *data)
1936 {
1937 pud_t *pud;
1938 unsigned long next;
1939 int err;
1940
1941 pud = pud_alloc(mm, pgd, addr);
1942 if (!pud)
1943 return -ENOMEM;
1944 do {
1945 next = pud_addr_end(addr, end);
1946 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1947 if (err)
1948 break;
1949 } while (pud++, addr = next, addr != end);
1950 return err;
1951 }
1952
1953 /*
1954 * Scan a region of virtual memory, filling in page tables as necessary
1955 * and calling a provided function on each leaf page table.
1956 */
1957 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1958 unsigned long size, pte_fn_t fn, void *data)
1959 {
1960 pgd_t *pgd;
1961 unsigned long next;
1962 unsigned long end = addr + size;
1963 int err;
1964
1965 if (WARN_ON(addr >= end))
1966 return -EINVAL;
1967
1968 pgd = pgd_offset(mm, addr);
1969 do {
1970 next = pgd_addr_end(addr, end);
1971 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1972 if (err)
1973 break;
1974 } while (pgd++, addr = next, addr != end);
1975
1976 return err;
1977 }
1978 EXPORT_SYMBOL_GPL(apply_to_page_range);
1979
1980 /*
1981 * handle_pte_fault chooses page fault handler according to an entry which was
1982 * read non-atomically. Before making any commitment, on those architectures
1983 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1984 * parts, do_swap_page must check under lock before unmapping the pte and
1985 * proceeding (but do_wp_page is only called after already making such a check;
1986 * and do_anonymous_page can safely check later on).
1987 */
1988 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1989 pte_t *page_table, pte_t orig_pte)
1990 {
1991 int same = 1;
1992 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1993 if (sizeof(pte_t) > sizeof(unsigned long)) {
1994 spinlock_t *ptl = pte_lockptr(mm, pmd);
1995 spin_lock(ptl);
1996 same = pte_same(*page_table, orig_pte);
1997 spin_unlock(ptl);
1998 }
1999 #endif
2000 pte_unmap(page_table);
2001 return same;
2002 }
2003
2004 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2005 {
2006 debug_dma_assert_idle(src);
2007
2008 /*
2009 * If the source page was a PFN mapping, we don't have
2010 * a "struct page" for it. We do a best-effort copy by
2011 * just copying from the original user address. If that
2012 * fails, we just zero-fill it. Live with it.
2013 */
2014 if (unlikely(!src)) {
2015 void *kaddr = kmap_atomic(dst);
2016 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2017
2018 /*
2019 * This really shouldn't fail, because the page is there
2020 * in the page tables. But it might just be unreadable,
2021 * in which case we just give up and fill the result with
2022 * zeroes.
2023 */
2024 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2025 clear_page(kaddr);
2026 kunmap_atomic(kaddr);
2027 flush_dcache_page(dst);
2028 } else
2029 copy_user_highpage(dst, src, va, vma);
2030 }
2031
2032 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2033 {
2034 struct file *vm_file = vma->vm_file;
2035
2036 if (vm_file)
2037 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2038
2039 /*
2040 * Special mappings (e.g. VDSO) do not have any file so fake
2041 * a default GFP_KERNEL for them.
2042 */
2043 return GFP_KERNEL;
2044 }
2045
2046 /*
2047 * Notify the address space that the page is about to become writable so that
2048 * it can prohibit this or wait for the page to get into an appropriate state.
2049 *
2050 * We do this without the lock held, so that it can sleep if it needs to.
2051 */
2052 static int do_page_mkwrite(struct vm_fault *vmf)
2053 {
2054 int ret;
2055 struct page *page = vmf->page;
2056 unsigned int old_flags = vmf->flags;
2057
2058 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2059
2060 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2061 /* Restore original flags so that caller is not surprised */
2062 vmf->flags = old_flags;
2063 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2064 return ret;
2065 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2066 lock_page(page);
2067 if (!page->mapping) {
2068 unlock_page(page);
2069 return 0; /* retry */
2070 }
2071 ret |= VM_FAULT_LOCKED;
2072 } else
2073 VM_BUG_ON_PAGE(!PageLocked(page), page);
2074 return ret;
2075 }
2076
2077 /*
2078 * Handle dirtying of a page in shared file mapping on a write fault.
2079 *
2080 * The function expects the page to be locked and unlocks it.
2081 */
2082 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2083 struct page *page)
2084 {
2085 struct address_space *mapping;
2086 bool dirtied;
2087 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2088
2089 dirtied = set_page_dirty(page);
2090 VM_BUG_ON_PAGE(PageAnon(page), page);
2091 /*
2092 * Take a local copy of the address_space - page.mapping may be zeroed
2093 * by truncate after unlock_page(). The address_space itself remains
2094 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2095 * release semantics to prevent the compiler from undoing this copying.
2096 */
2097 mapping = page_rmapping(page);
2098 unlock_page(page);
2099
2100 if ((dirtied || page_mkwrite) && mapping) {
2101 /*
2102 * Some device drivers do not set page.mapping
2103 * but still dirty their pages
2104 */
2105 balance_dirty_pages_ratelimited(mapping);
2106 }
2107
2108 if (!page_mkwrite)
2109 file_update_time(vma->vm_file);
2110 }
2111
2112 /*
2113 * Handle write page faults for pages that can be reused in the current vma
2114 *
2115 * This can happen either due to the mapping being with the VM_SHARED flag,
2116 * or due to us being the last reference standing to the page. In either
2117 * case, all we need to do here is to mark the page as writable and update
2118 * any related book-keeping.
2119 */
2120 static inline void wp_page_reuse(struct vm_fault *vmf)
2121 __releases(vmf->ptl)
2122 {
2123 struct vm_area_struct *vma = vmf->vma;
2124 struct page *page = vmf->page;
2125 pte_t entry;
2126 /*
2127 * Clear the pages cpupid information as the existing
2128 * information potentially belongs to a now completely
2129 * unrelated process.
2130 */
2131 if (page)
2132 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2133
2134 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2135 entry = pte_mkyoung(vmf->orig_pte);
2136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2137 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2138 update_mmu_cache(vma, vmf->address, vmf->pte);
2139 pte_unmap_unlock(vmf->pte, vmf->ptl);
2140 }
2141
2142 /*
2143 * Handle the case of a page which we actually need to copy to a new page.
2144 *
2145 * Called with mmap_sem locked and the old page referenced, but
2146 * without the ptl held.
2147 *
2148 * High level logic flow:
2149 *
2150 * - Allocate a page, copy the content of the old page to the new one.
2151 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2152 * - Take the PTL. If the pte changed, bail out and release the allocated page
2153 * - If the pte is still the way we remember it, update the page table and all
2154 * relevant references. This includes dropping the reference the page-table
2155 * held to the old page, as well as updating the rmap.
2156 * - In any case, unlock the PTL and drop the reference we took to the old page.
2157 */
2158 static int wp_page_copy(struct vm_fault *vmf)
2159 {
2160 struct vm_area_struct *vma = vmf->vma;
2161 struct mm_struct *mm = vma->vm_mm;
2162 struct page *old_page = vmf->page;
2163 struct page *new_page = NULL;
2164 pte_t entry;
2165 int page_copied = 0;
2166 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2167 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2168 struct mem_cgroup *memcg;
2169
2170 if (unlikely(anon_vma_prepare(vma)))
2171 goto oom;
2172
2173 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2174 new_page = alloc_zeroed_user_highpage_movable(vma,
2175 vmf->address);
2176 if (!new_page)
2177 goto oom;
2178 } else {
2179 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2180 vmf->address);
2181 if (!new_page)
2182 goto oom;
2183 cow_user_page(new_page, old_page, vmf->address, vma);
2184 }
2185
2186 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2187 goto oom_free_new;
2188
2189 __SetPageUptodate(new_page);
2190
2191 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2192
2193 /*
2194 * Re-check the pte - we dropped the lock
2195 */
2196 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2197 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2198 if (old_page) {
2199 if (!PageAnon(old_page)) {
2200 dec_mm_counter_fast(mm,
2201 mm_counter_file(old_page));
2202 inc_mm_counter_fast(mm, MM_ANONPAGES);
2203 }
2204 } else {
2205 inc_mm_counter_fast(mm, MM_ANONPAGES);
2206 }
2207 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2208 entry = mk_pte(new_page, vma->vm_page_prot);
2209 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2210 /*
2211 * Clear the pte entry and flush it first, before updating the
2212 * pte with the new entry. This will avoid a race condition
2213 * seen in the presence of one thread doing SMC and another
2214 * thread doing COW.
2215 */
2216 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2217 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2218 mem_cgroup_commit_charge(new_page, memcg, false, false);
2219 lru_cache_add_active_or_unevictable(new_page, vma);
2220 /*
2221 * We call the notify macro here because, when using secondary
2222 * mmu page tables (such as kvm shadow page tables), we want the
2223 * new page to be mapped directly into the secondary page table.
2224 */
2225 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2226 update_mmu_cache(vma, vmf->address, vmf->pte);
2227 if (old_page) {
2228 /*
2229 * Only after switching the pte to the new page may
2230 * we remove the mapcount here. Otherwise another
2231 * process may come and find the rmap count decremented
2232 * before the pte is switched to the new page, and
2233 * "reuse" the old page writing into it while our pte
2234 * here still points into it and can be read by other
2235 * threads.
2236 *
2237 * The critical issue is to order this
2238 * page_remove_rmap with the ptp_clear_flush above.
2239 * Those stores are ordered by (if nothing else,)
2240 * the barrier present in the atomic_add_negative
2241 * in page_remove_rmap.
2242 *
2243 * Then the TLB flush in ptep_clear_flush ensures that
2244 * no process can access the old page before the
2245 * decremented mapcount is visible. And the old page
2246 * cannot be reused until after the decremented
2247 * mapcount is visible. So transitively, TLBs to
2248 * old page will be flushed before it can be reused.
2249 */
2250 page_remove_rmap(old_page, false);
2251 }
2252
2253 /* Free the old page.. */
2254 new_page = old_page;
2255 page_copied = 1;
2256 } else {
2257 mem_cgroup_cancel_charge(new_page, memcg, false);
2258 }
2259
2260 if (new_page)
2261 put_page(new_page);
2262
2263 pte_unmap_unlock(vmf->pte, vmf->ptl);
2264 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2265 if (old_page) {
2266 /*
2267 * Don't let another task, with possibly unlocked vma,
2268 * keep the mlocked page.
2269 */
2270 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2271 lock_page(old_page); /* LRU manipulation */
2272 if (PageMlocked(old_page))
2273 munlock_vma_page(old_page);
2274 unlock_page(old_page);
2275 }
2276 put_page(old_page);
2277 }
2278 return page_copied ? VM_FAULT_WRITE : 0;
2279 oom_free_new:
2280 put_page(new_page);
2281 oom:
2282 if (old_page)
2283 put_page(old_page);
2284 return VM_FAULT_OOM;
2285 }
2286
2287 /**
2288 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2289 * writeable once the page is prepared
2290 *
2291 * @vmf: structure describing the fault
2292 *
2293 * This function handles all that is needed to finish a write page fault in a
2294 * shared mapping due to PTE being read-only once the mapped page is prepared.
2295 * It handles locking of PTE and modifying it. The function returns
2296 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2297 * lock.
2298 *
2299 * The function expects the page to be locked or other protection against
2300 * concurrent faults / writeback (such as DAX radix tree locks).
2301 */
2302 int finish_mkwrite_fault(struct vm_fault *vmf)
2303 {
2304 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2305 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2306 &vmf->ptl);
2307 /*
2308 * We might have raced with another page fault while we released the
2309 * pte_offset_map_lock.
2310 */
2311 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2312 pte_unmap_unlock(vmf->pte, vmf->ptl);
2313 return VM_FAULT_NOPAGE;
2314 }
2315 wp_page_reuse(vmf);
2316 return 0;
2317 }
2318
2319 /*
2320 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2321 * mapping
2322 */
2323 static int wp_pfn_shared(struct vm_fault *vmf)
2324 {
2325 struct vm_area_struct *vma = vmf->vma;
2326
2327 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2328 int ret;
2329
2330 pte_unmap_unlock(vmf->pte, vmf->ptl);
2331 vmf->flags |= FAULT_FLAG_MKWRITE;
2332 ret = vma->vm_ops->pfn_mkwrite(vmf);
2333 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2334 return ret;
2335 return finish_mkwrite_fault(vmf);
2336 }
2337 wp_page_reuse(vmf);
2338 return VM_FAULT_WRITE;
2339 }
2340
2341 static int wp_page_shared(struct vm_fault *vmf)
2342 __releases(vmf->ptl)
2343 {
2344 struct vm_area_struct *vma = vmf->vma;
2345
2346 get_page(vmf->page);
2347
2348 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2349 int tmp;
2350
2351 pte_unmap_unlock(vmf->pte, vmf->ptl);
2352 tmp = do_page_mkwrite(vmf);
2353 if (unlikely(!tmp || (tmp &
2354 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2355 put_page(vmf->page);
2356 return tmp;
2357 }
2358 tmp = finish_mkwrite_fault(vmf);
2359 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2360 unlock_page(vmf->page);
2361 put_page(vmf->page);
2362 return tmp;
2363 }
2364 } else {
2365 wp_page_reuse(vmf);
2366 lock_page(vmf->page);
2367 }
2368 fault_dirty_shared_page(vma, vmf->page);
2369 put_page(vmf->page);
2370
2371 return VM_FAULT_WRITE;
2372 }
2373
2374 /*
2375 * This routine handles present pages, when users try to write
2376 * to a shared page. It is done by copying the page to a new address
2377 * and decrementing the shared-page counter for the old page.
2378 *
2379 * Note that this routine assumes that the protection checks have been
2380 * done by the caller (the low-level page fault routine in most cases).
2381 * Thus we can safely just mark it writable once we've done any necessary
2382 * COW.
2383 *
2384 * We also mark the page dirty at this point even though the page will
2385 * change only once the write actually happens. This avoids a few races,
2386 * and potentially makes it more efficient.
2387 *
2388 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2389 * but allow concurrent faults), with pte both mapped and locked.
2390 * We return with mmap_sem still held, but pte unmapped and unlocked.
2391 */
2392 static int do_wp_page(struct vm_fault *vmf)
2393 __releases(vmf->ptl)
2394 {
2395 struct vm_area_struct *vma = vmf->vma;
2396
2397 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2398 if (!vmf->page) {
2399 /*
2400 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2401 * VM_PFNMAP VMA.
2402 *
2403 * We should not cow pages in a shared writeable mapping.
2404 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2405 */
2406 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2407 (VM_WRITE|VM_SHARED))
2408 return wp_pfn_shared(vmf);
2409
2410 pte_unmap_unlock(vmf->pte, vmf->ptl);
2411 return wp_page_copy(vmf);
2412 }
2413
2414 /*
2415 * Take out anonymous pages first, anonymous shared vmas are
2416 * not dirty accountable.
2417 */
2418 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2419 int total_mapcount;
2420 if (!trylock_page(vmf->page)) {
2421 get_page(vmf->page);
2422 pte_unmap_unlock(vmf->pte, vmf->ptl);
2423 lock_page(vmf->page);
2424 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2425 vmf->address, &vmf->ptl);
2426 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2427 unlock_page(vmf->page);
2428 pte_unmap_unlock(vmf->pte, vmf->ptl);
2429 put_page(vmf->page);
2430 return 0;
2431 }
2432 put_page(vmf->page);
2433 }
2434 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2435 if (total_mapcount == 1) {
2436 /*
2437 * The page is all ours. Move it to
2438 * our anon_vma so the rmap code will
2439 * not search our parent or siblings.
2440 * Protected against the rmap code by
2441 * the page lock.
2442 */
2443 page_move_anon_rmap(vmf->page, vma);
2444 }
2445 unlock_page(vmf->page);
2446 wp_page_reuse(vmf);
2447 return VM_FAULT_WRITE;
2448 }
2449 unlock_page(vmf->page);
2450 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2451 (VM_WRITE|VM_SHARED))) {
2452 return wp_page_shared(vmf);
2453 }
2454
2455 /*
2456 * Ok, we need to copy. Oh, well..
2457 */
2458 get_page(vmf->page);
2459
2460 pte_unmap_unlock(vmf->pte, vmf->ptl);
2461 return wp_page_copy(vmf);
2462 }
2463
2464 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2465 unsigned long start_addr, unsigned long end_addr,
2466 struct zap_details *details)
2467 {
2468 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2469 }
2470
2471 static inline void unmap_mapping_range_tree(struct rb_root *root,
2472 struct zap_details *details)
2473 {
2474 struct vm_area_struct *vma;
2475 pgoff_t vba, vea, zba, zea;
2476
2477 vma_interval_tree_foreach(vma, root,
2478 details->first_index, details->last_index) {
2479
2480 vba = vma->vm_pgoff;
2481 vea = vba + vma_pages(vma) - 1;
2482 zba = details->first_index;
2483 if (zba < vba)
2484 zba = vba;
2485 zea = details->last_index;
2486 if (zea > vea)
2487 zea = vea;
2488
2489 unmap_mapping_range_vma(vma,
2490 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2491 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2492 details);
2493 }
2494 }
2495
2496 /**
2497 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2498 * address_space corresponding to the specified page range in the underlying
2499 * file.
2500 *
2501 * @mapping: the address space containing mmaps to be unmapped.
2502 * @holebegin: byte in first page to unmap, relative to the start of
2503 * the underlying file. This will be rounded down to a PAGE_SIZE
2504 * boundary. Note that this is different from truncate_pagecache(), which
2505 * must keep the partial page. In contrast, we must get rid of
2506 * partial pages.
2507 * @holelen: size of prospective hole in bytes. This will be rounded
2508 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2509 * end of the file.
2510 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2511 * but 0 when invalidating pagecache, don't throw away private data.
2512 */
2513 void unmap_mapping_range(struct address_space *mapping,
2514 loff_t const holebegin, loff_t const holelen, int even_cows)
2515 {
2516 struct zap_details details = { };
2517 pgoff_t hba = holebegin >> PAGE_SHIFT;
2518 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2519
2520 /* Check for overflow. */
2521 if (sizeof(holelen) > sizeof(hlen)) {
2522 long long holeend =
2523 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2524 if (holeend & ~(long long)ULONG_MAX)
2525 hlen = ULONG_MAX - hba + 1;
2526 }
2527
2528 details.check_mapping = even_cows ? NULL : mapping;
2529 details.first_index = hba;
2530 details.last_index = hba + hlen - 1;
2531 if (details.last_index < details.first_index)
2532 details.last_index = ULONG_MAX;
2533
2534 i_mmap_lock_write(mapping);
2535 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2536 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2537 i_mmap_unlock_write(mapping);
2538 }
2539 EXPORT_SYMBOL(unmap_mapping_range);
2540
2541 /*
2542 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2543 * but allow concurrent faults), and pte mapped but not yet locked.
2544 * We return with pte unmapped and unlocked.
2545 *
2546 * We return with the mmap_sem locked or unlocked in the same cases
2547 * as does filemap_fault().
2548 */
2549 int do_swap_page(struct vm_fault *vmf)
2550 {
2551 struct vm_area_struct *vma = vmf->vma;
2552 struct page *page, *swapcache;
2553 struct mem_cgroup *memcg;
2554 swp_entry_t entry;
2555 pte_t pte;
2556 int locked;
2557 int exclusive = 0;
2558 int ret = 0;
2559
2560 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2561 goto out;
2562
2563 entry = pte_to_swp_entry(vmf->orig_pte);
2564 if (unlikely(non_swap_entry(entry))) {
2565 if (is_migration_entry(entry)) {
2566 migration_entry_wait(vma->vm_mm, vmf->pmd,
2567 vmf->address);
2568 } else if (is_hwpoison_entry(entry)) {
2569 ret = VM_FAULT_HWPOISON;
2570 } else {
2571 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2572 ret = VM_FAULT_SIGBUS;
2573 }
2574 goto out;
2575 }
2576 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2577 page = lookup_swap_cache(entry);
2578 if (!page) {
2579 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2580 vmf->address);
2581 if (!page) {
2582 /*
2583 * Back out if somebody else faulted in this pte
2584 * while we released the pte lock.
2585 */
2586 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2587 vmf->address, &vmf->ptl);
2588 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2589 ret = VM_FAULT_OOM;
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591 goto unlock;
2592 }
2593
2594 /* Had to read the page from swap area: Major fault */
2595 ret = VM_FAULT_MAJOR;
2596 count_vm_event(PGMAJFAULT);
2597 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2598 } else if (PageHWPoison(page)) {
2599 /*
2600 * hwpoisoned dirty swapcache pages are kept for killing
2601 * owner processes (which may be unknown at hwpoison time)
2602 */
2603 ret = VM_FAULT_HWPOISON;
2604 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2605 swapcache = page;
2606 goto out_release;
2607 }
2608
2609 swapcache = page;
2610 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2611
2612 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2613 if (!locked) {
2614 ret |= VM_FAULT_RETRY;
2615 goto out_release;
2616 }
2617
2618 /*
2619 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2620 * release the swapcache from under us. The page pin, and pte_same
2621 * test below, are not enough to exclude that. Even if it is still
2622 * swapcache, we need to check that the page's swap has not changed.
2623 */
2624 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2625 goto out_page;
2626
2627 page = ksm_might_need_to_copy(page, vma, vmf->address);
2628 if (unlikely(!page)) {
2629 ret = VM_FAULT_OOM;
2630 page = swapcache;
2631 goto out_page;
2632 }
2633
2634 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2635 &memcg, false)) {
2636 ret = VM_FAULT_OOM;
2637 goto out_page;
2638 }
2639
2640 /*
2641 * Back out if somebody else already faulted in this pte.
2642 */
2643 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2644 &vmf->ptl);
2645 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2646 goto out_nomap;
2647
2648 if (unlikely(!PageUptodate(page))) {
2649 ret = VM_FAULT_SIGBUS;
2650 goto out_nomap;
2651 }
2652
2653 /*
2654 * The page isn't present yet, go ahead with the fault.
2655 *
2656 * Be careful about the sequence of operations here.
2657 * To get its accounting right, reuse_swap_page() must be called
2658 * while the page is counted on swap but not yet in mapcount i.e.
2659 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2660 * must be called after the swap_free(), or it will never succeed.
2661 */
2662
2663 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2664 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2665 pte = mk_pte(page, vma->vm_page_prot);
2666 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2667 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2668 vmf->flags &= ~FAULT_FLAG_WRITE;
2669 ret |= VM_FAULT_WRITE;
2670 exclusive = RMAP_EXCLUSIVE;
2671 }
2672 flush_icache_page(vma, page);
2673 if (pte_swp_soft_dirty(vmf->orig_pte))
2674 pte = pte_mksoft_dirty(pte);
2675 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2676 vmf->orig_pte = pte;
2677 if (page == swapcache) {
2678 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2679 mem_cgroup_commit_charge(page, memcg, true, false);
2680 activate_page(page);
2681 } else { /* ksm created a completely new copy */
2682 page_add_new_anon_rmap(page, vma, vmf->address, false);
2683 mem_cgroup_commit_charge(page, memcg, false, false);
2684 lru_cache_add_active_or_unevictable(page, vma);
2685 }
2686
2687 swap_free(entry);
2688 if (mem_cgroup_swap_full(page) ||
2689 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2690 try_to_free_swap(page);
2691 unlock_page(page);
2692 if (page != swapcache) {
2693 /*
2694 * Hold the lock to avoid the swap entry to be reused
2695 * until we take the PT lock for the pte_same() check
2696 * (to avoid false positives from pte_same). For
2697 * further safety release the lock after the swap_free
2698 * so that the swap count won't change under a
2699 * parallel locked swapcache.
2700 */
2701 unlock_page(swapcache);
2702 put_page(swapcache);
2703 }
2704
2705 if (vmf->flags & FAULT_FLAG_WRITE) {
2706 ret |= do_wp_page(vmf);
2707 if (ret & VM_FAULT_ERROR)
2708 ret &= VM_FAULT_ERROR;
2709 goto out;
2710 }
2711
2712 /* No need to invalidate - it was non-present before */
2713 update_mmu_cache(vma, vmf->address, vmf->pte);
2714 unlock:
2715 pte_unmap_unlock(vmf->pte, vmf->ptl);
2716 out:
2717 return ret;
2718 out_nomap:
2719 mem_cgroup_cancel_charge(page, memcg, false);
2720 pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 out_page:
2722 unlock_page(page);
2723 out_release:
2724 put_page(page);
2725 if (page != swapcache) {
2726 unlock_page(swapcache);
2727 put_page(swapcache);
2728 }
2729 return ret;
2730 }
2731
2732 /*
2733 * This is like a special single-page "expand_{down|up}wards()",
2734 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2735 * doesn't hit another vma.
2736 */
2737 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2738 {
2739 address &= PAGE_MASK;
2740 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2741 struct vm_area_struct *prev = vma->vm_prev;
2742
2743 /*
2744 * Is there a mapping abutting this one below?
2745 *
2746 * That's only ok if it's the same stack mapping
2747 * that has gotten split..
2748 */
2749 if (prev && prev->vm_end == address)
2750 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2751
2752 return expand_downwards(vma, address - PAGE_SIZE);
2753 }
2754 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2755 struct vm_area_struct *next = vma->vm_next;
2756
2757 /* As VM_GROWSDOWN but s/below/above/ */
2758 if (next && next->vm_start == address + PAGE_SIZE)
2759 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2760
2761 return expand_upwards(vma, address + PAGE_SIZE);
2762 }
2763 return 0;
2764 }
2765
2766 /*
2767 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2768 * but allow concurrent faults), and pte mapped but not yet locked.
2769 * We return with mmap_sem still held, but pte unmapped and unlocked.
2770 */
2771 static int do_anonymous_page(struct vm_fault *vmf)
2772 {
2773 struct vm_area_struct *vma = vmf->vma;
2774 struct mem_cgroup *memcg;
2775 struct page *page;
2776 pte_t entry;
2777
2778 /* File mapping without ->vm_ops ? */
2779 if (vma->vm_flags & VM_SHARED)
2780 return VM_FAULT_SIGBUS;
2781
2782 /* Check if we need to add a guard page to the stack */
2783 if (check_stack_guard_page(vma, vmf->address) < 0)
2784 return VM_FAULT_SIGSEGV;
2785
2786 /*
2787 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2788 * pte_offset_map() on pmds where a huge pmd might be created
2789 * from a different thread.
2790 *
2791 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2792 * parallel threads are excluded by other means.
2793 *
2794 * Here we only have down_read(mmap_sem).
2795 */
2796 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2797 return VM_FAULT_OOM;
2798
2799 /* See the comment in pte_alloc_one_map() */
2800 if (unlikely(pmd_trans_unstable(vmf->pmd)))
2801 return 0;
2802
2803 /* Use the zero-page for reads */
2804 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2805 !mm_forbids_zeropage(vma->vm_mm)) {
2806 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2807 vma->vm_page_prot));
2808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2809 vmf->address, &vmf->ptl);
2810 if (!pte_none(*vmf->pte))
2811 goto unlock;
2812 /* Deliver the page fault to userland, check inside PT lock */
2813 if (userfaultfd_missing(vma)) {
2814 pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 return handle_userfault(vmf, VM_UFFD_MISSING);
2816 }
2817 goto setpte;
2818 }
2819
2820 /* Allocate our own private page. */
2821 if (unlikely(anon_vma_prepare(vma)))
2822 goto oom;
2823 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2824 if (!page)
2825 goto oom;
2826
2827 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2828 goto oom_free_page;
2829
2830 /*
2831 * The memory barrier inside __SetPageUptodate makes sure that
2832 * preceeding stores to the page contents become visible before
2833 * the set_pte_at() write.
2834 */
2835 __SetPageUptodate(page);
2836
2837 entry = mk_pte(page, vma->vm_page_prot);
2838 if (vma->vm_flags & VM_WRITE)
2839 entry = pte_mkwrite(pte_mkdirty(entry));
2840
2841 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2842 &vmf->ptl);
2843 if (!pte_none(*vmf->pte))
2844 goto release;
2845
2846 /* Deliver the page fault to userland, check inside PT lock */
2847 if (userfaultfd_missing(vma)) {
2848 pte_unmap_unlock(vmf->pte, vmf->ptl);
2849 mem_cgroup_cancel_charge(page, memcg, false);
2850 put_page(page);
2851 return handle_userfault(vmf, VM_UFFD_MISSING);
2852 }
2853
2854 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2855 page_add_new_anon_rmap(page, vma, vmf->address, false);
2856 mem_cgroup_commit_charge(page, memcg, false, false);
2857 lru_cache_add_active_or_unevictable(page, vma);
2858 setpte:
2859 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2860
2861 /* No need to invalidate - it was non-present before */
2862 update_mmu_cache(vma, vmf->address, vmf->pte);
2863 unlock:
2864 pte_unmap_unlock(vmf->pte, vmf->ptl);
2865 return 0;
2866 release:
2867 mem_cgroup_cancel_charge(page, memcg, false);
2868 put_page(page);
2869 goto unlock;
2870 oom_free_page:
2871 put_page(page);
2872 oom:
2873 return VM_FAULT_OOM;
2874 }
2875
2876 /*
2877 * The mmap_sem must have been held on entry, and may have been
2878 * released depending on flags and vma->vm_ops->fault() return value.
2879 * See filemap_fault() and __lock_page_retry().
2880 */
2881 static int __do_fault(struct vm_fault *vmf)
2882 {
2883 struct vm_area_struct *vma = vmf->vma;
2884 int ret;
2885
2886 ret = vma->vm_ops->fault(vmf);
2887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2888 VM_FAULT_DONE_COW)))
2889 return ret;
2890
2891 if (unlikely(PageHWPoison(vmf->page))) {
2892 if (ret & VM_FAULT_LOCKED)
2893 unlock_page(vmf->page);
2894 put_page(vmf->page);
2895 vmf->page = NULL;
2896 return VM_FAULT_HWPOISON;
2897 }
2898
2899 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2900 lock_page(vmf->page);
2901 else
2902 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2903
2904 return ret;
2905 }
2906
2907 static int pte_alloc_one_map(struct vm_fault *vmf)
2908 {
2909 struct vm_area_struct *vma = vmf->vma;
2910
2911 if (!pmd_none(*vmf->pmd))
2912 goto map_pte;
2913 if (vmf->prealloc_pte) {
2914 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2915 if (unlikely(!pmd_none(*vmf->pmd))) {
2916 spin_unlock(vmf->ptl);
2917 goto map_pte;
2918 }
2919
2920 atomic_long_inc(&vma->vm_mm->nr_ptes);
2921 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2922 spin_unlock(vmf->ptl);
2923 vmf->prealloc_pte = NULL;
2924 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2925 return VM_FAULT_OOM;
2926 }
2927 map_pte:
2928 /*
2929 * If a huge pmd materialized under us just retry later. Use
2930 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2931 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2932 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2933 * in a different thread of this mm, in turn leading to a misleading
2934 * pmd_trans_huge() retval. All we have to ensure is that it is a
2935 * regular pmd that we can walk with pte_offset_map() and we can do that
2936 * through an atomic read in C, which is what pmd_trans_unstable()
2937 * provides.
2938 */
2939 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2940 return VM_FAULT_NOPAGE;
2941
2942 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2943 &vmf->ptl);
2944 return 0;
2945 }
2946
2947 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2948
2949 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2950 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2951 unsigned long haddr)
2952 {
2953 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2954 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2955 return false;
2956 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2957 return false;
2958 return true;
2959 }
2960
2961 static void deposit_prealloc_pte(struct vm_fault *vmf)
2962 {
2963 struct vm_area_struct *vma = vmf->vma;
2964
2965 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2966 /*
2967 * We are going to consume the prealloc table,
2968 * count that as nr_ptes.
2969 */
2970 atomic_long_inc(&vma->vm_mm->nr_ptes);
2971 vmf->prealloc_pte = NULL;
2972 }
2973
2974 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2975 {
2976 struct vm_area_struct *vma = vmf->vma;
2977 bool write = vmf->flags & FAULT_FLAG_WRITE;
2978 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2979 pmd_t entry;
2980 int i, ret;
2981
2982 if (!transhuge_vma_suitable(vma, haddr))
2983 return VM_FAULT_FALLBACK;
2984
2985 ret = VM_FAULT_FALLBACK;
2986 page = compound_head(page);
2987
2988 /*
2989 * Archs like ppc64 need additonal space to store information
2990 * related to pte entry. Use the preallocated table for that.
2991 */
2992 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2993 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2994 if (!vmf->prealloc_pte)
2995 return VM_FAULT_OOM;
2996 smp_wmb(); /* See comment in __pte_alloc() */
2997 }
2998
2999 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3000 if (unlikely(!pmd_none(*vmf->pmd)))
3001 goto out;
3002
3003 for (i = 0; i < HPAGE_PMD_NR; i++)
3004 flush_icache_page(vma, page + i);
3005
3006 entry = mk_huge_pmd(page, vma->vm_page_prot);
3007 if (write)
3008 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3009
3010 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3011 page_add_file_rmap(page, true);
3012 /*
3013 * deposit and withdraw with pmd lock held
3014 */
3015 if (arch_needs_pgtable_deposit())
3016 deposit_prealloc_pte(vmf);
3017
3018 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3019
3020 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3021
3022 /* fault is handled */
3023 ret = 0;
3024 count_vm_event(THP_FILE_MAPPED);
3025 out:
3026 spin_unlock(vmf->ptl);
3027 return ret;
3028 }
3029 #else
3030 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3031 {
3032 BUILD_BUG();
3033 return 0;
3034 }
3035 #endif
3036
3037 /**
3038 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3039 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3040 *
3041 * @vmf: fault environment
3042 * @memcg: memcg to charge page (only for private mappings)
3043 * @page: page to map
3044 *
3045 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3046 * return.
3047 *
3048 * Target users are page handler itself and implementations of
3049 * vm_ops->map_pages.
3050 */
3051 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3052 struct page *page)
3053 {
3054 struct vm_area_struct *vma = vmf->vma;
3055 bool write = vmf->flags & FAULT_FLAG_WRITE;
3056 pte_t entry;
3057 int ret;
3058
3059 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3060 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3061 /* THP on COW? */
3062 VM_BUG_ON_PAGE(memcg, page);
3063
3064 ret = do_set_pmd(vmf, page);
3065 if (ret != VM_FAULT_FALLBACK)
3066 return ret;
3067 }
3068
3069 if (!vmf->pte) {
3070 ret = pte_alloc_one_map(vmf);
3071 if (ret)
3072 return ret;
3073 }
3074
3075 /* Re-check under ptl */
3076 if (unlikely(!pte_none(*vmf->pte)))
3077 return VM_FAULT_NOPAGE;
3078
3079 flush_icache_page(vma, page);
3080 entry = mk_pte(page, vma->vm_page_prot);
3081 if (write)
3082 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3083 /* copy-on-write page */
3084 if (write && !(vma->vm_flags & VM_SHARED)) {
3085 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3086 page_add_new_anon_rmap(page, vma, vmf->address, false);
3087 mem_cgroup_commit_charge(page, memcg, false, false);
3088 lru_cache_add_active_or_unevictable(page, vma);
3089 } else {
3090 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3091 page_add_file_rmap(page, false);
3092 }
3093 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3094
3095 /* no need to invalidate: a not-present page won't be cached */
3096 update_mmu_cache(vma, vmf->address, vmf->pte);
3097
3098 return 0;
3099 }
3100
3101
3102 /**
3103 * finish_fault - finish page fault once we have prepared the page to fault
3104 *
3105 * @vmf: structure describing the fault
3106 *
3107 * This function handles all that is needed to finish a page fault once the
3108 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3109 * given page, adds reverse page mapping, handles memcg charges and LRU
3110 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3111 * error.
3112 *
3113 * The function expects the page to be locked and on success it consumes a
3114 * reference of a page being mapped (for the PTE which maps it).
3115 */
3116 int finish_fault(struct vm_fault *vmf)
3117 {
3118 struct page *page;
3119 int ret;
3120
3121 /* Did we COW the page? */
3122 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3123 !(vmf->vma->vm_flags & VM_SHARED))
3124 page = vmf->cow_page;
3125 else
3126 page = vmf->page;
3127 ret = alloc_set_pte(vmf, vmf->memcg, page);
3128 if (vmf->pte)
3129 pte_unmap_unlock(vmf->pte, vmf->ptl);
3130 return ret;
3131 }
3132
3133 static unsigned long fault_around_bytes __read_mostly =
3134 rounddown_pow_of_two(65536);
3135
3136 #ifdef CONFIG_DEBUG_FS
3137 static int fault_around_bytes_get(void *data, u64 *val)
3138 {
3139 *val = fault_around_bytes;
3140 return 0;
3141 }
3142
3143 /*
3144 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3145 * rounded down to nearest page order. It's what do_fault_around() expects to
3146 * see.
3147 */
3148 static int fault_around_bytes_set(void *data, u64 val)
3149 {
3150 if (val / PAGE_SIZE > PTRS_PER_PTE)
3151 return -EINVAL;
3152 if (val > PAGE_SIZE)
3153 fault_around_bytes = rounddown_pow_of_two(val);
3154 else
3155 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3156 return 0;
3157 }
3158 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3159 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3160
3161 static int __init fault_around_debugfs(void)
3162 {
3163 void *ret;
3164
3165 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3166 &fault_around_bytes_fops);
3167 if (!ret)
3168 pr_warn("Failed to create fault_around_bytes in debugfs");
3169 return 0;
3170 }
3171 late_initcall(fault_around_debugfs);
3172 #endif
3173
3174 /*
3175 * do_fault_around() tries to map few pages around the fault address. The hope
3176 * is that the pages will be needed soon and this will lower the number of
3177 * faults to handle.
3178 *
3179 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3180 * not ready to be mapped: not up-to-date, locked, etc.
3181 *
3182 * This function is called with the page table lock taken. In the split ptlock
3183 * case the page table lock only protects only those entries which belong to
3184 * the page table corresponding to the fault address.
3185 *
3186 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3187 * only once.
3188 *
3189 * fault_around_pages() defines how many pages we'll try to map.
3190 * do_fault_around() expects it to return a power of two less than or equal to
3191 * PTRS_PER_PTE.
3192 *
3193 * The virtual address of the area that we map is naturally aligned to the
3194 * fault_around_pages() value (and therefore to page order). This way it's
3195 * easier to guarantee that we don't cross page table boundaries.
3196 */
3197 static int do_fault_around(struct vm_fault *vmf)
3198 {
3199 unsigned long address = vmf->address, nr_pages, mask;
3200 pgoff_t start_pgoff = vmf->pgoff;
3201 pgoff_t end_pgoff;
3202 int off, ret = 0;
3203
3204 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3205 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3206
3207 vmf->address = max(address & mask, vmf->vma->vm_start);
3208 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3209 start_pgoff -= off;
3210
3211 /*
3212 * end_pgoff is either end of page table or end of vma
3213 * or fault_around_pages() from start_pgoff, depending what is nearest.
3214 */
3215 end_pgoff = start_pgoff -
3216 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3217 PTRS_PER_PTE - 1;
3218 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3219 start_pgoff + nr_pages - 1);
3220
3221 if (pmd_none(*vmf->pmd)) {
3222 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3223 vmf->address);
3224 if (!vmf->prealloc_pte)
3225 goto out;
3226 smp_wmb(); /* See comment in __pte_alloc() */
3227 }
3228
3229 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3230
3231 /* Huge page is mapped? Page fault is solved */
3232 if (pmd_trans_huge(*vmf->pmd)) {
3233 ret = VM_FAULT_NOPAGE;
3234 goto out;
3235 }
3236
3237 /* ->map_pages() haven't done anything useful. Cold page cache? */
3238 if (!vmf->pte)
3239 goto out;
3240
3241 /* check if the page fault is solved */
3242 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3243 if (!pte_none(*vmf->pte))
3244 ret = VM_FAULT_NOPAGE;
3245 pte_unmap_unlock(vmf->pte, vmf->ptl);
3246 out:
3247 vmf->address = address;
3248 vmf->pte = NULL;
3249 return ret;
3250 }
3251
3252 static int do_read_fault(struct vm_fault *vmf)
3253 {
3254 struct vm_area_struct *vma = vmf->vma;
3255 int ret = 0;
3256
3257 /*
3258 * Let's call ->map_pages() first and use ->fault() as fallback
3259 * if page by the offset is not ready to be mapped (cold cache or
3260 * something).
3261 */
3262 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3263 ret = do_fault_around(vmf);
3264 if (ret)
3265 return ret;
3266 }
3267
3268 ret = __do_fault(vmf);
3269 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3270 return ret;
3271
3272 ret |= finish_fault(vmf);
3273 unlock_page(vmf->page);
3274 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3275 put_page(vmf->page);
3276 return ret;
3277 }
3278
3279 static int do_cow_fault(struct vm_fault *vmf)
3280 {
3281 struct vm_area_struct *vma = vmf->vma;
3282 int ret;
3283
3284 if (unlikely(anon_vma_prepare(vma)))
3285 return VM_FAULT_OOM;
3286
3287 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3288 if (!vmf->cow_page)
3289 return VM_FAULT_OOM;
3290
3291 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3292 &vmf->memcg, false)) {
3293 put_page(vmf->cow_page);
3294 return VM_FAULT_OOM;
3295 }
3296
3297 ret = __do_fault(vmf);
3298 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3299 goto uncharge_out;
3300 if (ret & VM_FAULT_DONE_COW)
3301 return ret;
3302
3303 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3304 __SetPageUptodate(vmf->cow_page);
3305
3306 ret |= finish_fault(vmf);
3307 unlock_page(vmf->page);
3308 put_page(vmf->page);
3309 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3310 goto uncharge_out;
3311 return ret;
3312 uncharge_out:
3313 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3314 put_page(vmf->cow_page);
3315 return ret;
3316 }
3317
3318 static int do_shared_fault(struct vm_fault *vmf)
3319 {
3320 struct vm_area_struct *vma = vmf->vma;
3321 int ret, tmp;
3322
3323 ret = __do_fault(vmf);
3324 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3325 return ret;
3326
3327 /*
3328 * Check if the backing address space wants to know that the page is
3329 * about to become writable
3330 */
3331 if (vma->vm_ops->page_mkwrite) {
3332 unlock_page(vmf->page);
3333 tmp = do_page_mkwrite(vmf);
3334 if (unlikely(!tmp ||
3335 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3336 put_page(vmf->page);
3337 return tmp;
3338 }
3339 }
3340
3341 ret |= finish_fault(vmf);
3342 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3343 VM_FAULT_RETRY))) {
3344 unlock_page(vmf->page);
3345 put_page(vmf->page);
3346 return ret;
3347 }
3348
3349 fault_dirty_shared_page(vma, vmf->page);
3350 return ret;
3351 }
3352
3353 /*
3354 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3355 * but allow concurrent faults).
3356 * The mmap_sem may have been released depending on flags and our
3357 * return value. See filemap_fault() and __lock_page_or_retry().
3358 */
3359 static int do_fault(struct vm_fault *vmf)
3360 {
3361 struct vm_area_struct *vma = vmf->vma;
3362 int ret;
3363
3364 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3365 if (!vma->vm_ops->fault)
3366 ret = VM_FAULT_SIGBUS;
3367 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3368 ret = do_read_fault(vmf);
3369 else if (!(vma->vm_flags & VM_SHARED))
3370 ret = do_cow_fault(vmf);
3371 else
3372 ret = do_shared_fault(vmf);
3373
3374 /* preallocated pagetable is unused: free it */
3375 if (vmf->prealloc_pte) {
3376 pte_free(vma->vm_mm, vmf->prealloc_pte);
3377 vmf->prealloc_pte = NULL;
3378 }
3379 return ret;
3380 }
3381
3382 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3383 unsigned long addr, int page_nid,
3384 int *flags)
3385 {
3386 get_page(page);
3387
3388 count_vm_numa_event(NUMA_HINT_FAULTS);
3389 if (page_nid == numa_node_id()) {
3390 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3391 *flags |= TNF_FAULT_LOCAL;
3392 }
3393
3394 return mpol_misplaced(page, vma, addr);
3395 }
3396
3397 static int do_numa_page(struct vm_fault *vmf)
3398 {
3399 struct vm_area_struct *vma = vmf->vma;
3400 struct page *page = NULL;
3401 int page_nid = -1;
3402 int last_cpupid;
3403 int target_nid;
3404 bool migrated = false;
3405 pte_t pte;
3406 bool was_writable = pte_savedwrite(vmf->orig_pte);
3407 int flags = 0;
3408
3409 /*
3410 * The "pte" at this point cannot be used safely without
3411 * validation through pte_unmap_same(). It's of NUMA type but
3412 * the pfn may be screwed if the read is non atomic.
3413 */
3414 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3415 spin_lock(vmf->ptl);
3416 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3417 pte_unmap_unlock(vmf->pte, vmf->ptl);
3418 goto out;
3419 }
3420
3421 /*
3422 * Make it present again, Depending on how arch implementes non
3423 * accessible ptes, some can allow access by kernel mode.
3424 */
3425 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3426 pte = pte_modify(pte, vma->vm_page_prot);
3427 pte = pte_mkyoung(pte);
3428 if (was_writable)
3429 pte = pte_mkwrite(pte);
3430 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3431 update_mmu_cache(vma, vmf->address, vmf->pte);
3432
3433 page = vm_normal_page(vma, vmf->address, pte);
3434 if (!page) {
3435 pte_unmap_unlock(vmf->pte, vmf->ptl);
3436 return 0;
3437 }
3438
3439 /* TODO: handle PTE-mapped THP */
3440 if (PageCompound(page)) {
3441 pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 return 0;
3443 }
3444
3445 /*
3446 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3447 * much anyway since they can be in shared cache state. This misses
3448 * the case where a mapping is writable but the process never writes
3449 * to it but pte_write gets cleared during protection updates and
3450 * pte_dirty has unpredictable behaviour between PTE scan updates,
3451 * background writeback, dirty balancing and application behaviour.
3452 */
3453 if (!pte_write(pte))
3454 flags |= TNF_NO_GROUP;
3455
3456 /*
3457 * Flag if the page is shared between multiple address spaces. This
3458 * is later used when determining whether to group tasks together
3459 */
3460 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3461 flags |= TNF_SHARED;
3462
3463 last_cpupid = page_cpupid_last(page);
3464 page_nid = page_to_nid(page);
3465 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3466 &flags);
3467 pte_unmap_unlock(vmf->pte, vmf->ptl);
3468 if (target_nid == -1) {
3469 put_page(page);
3470 goto out;
3471 }
3472
3473 /* Migrate to the requested node */
3474 migrated = migrate_misplaced_page(page, vma, target_nid);
3475 if (migrated) {
3476 page_nid = target_nid;
3477 flags |= TNF_MIGRATED;
3478 } else
3479 flags |= TNF_MIGRATE_FAIL;
3480
3481 out:
3482 if (page_nid != -1)
3483 task_numa_fault(last_cpupid, page_nid, 1, flags);
3484 return 0;
3485 }
3486
3487 static int create_huge_pmd(struct vm_fault *vmf)
3488 {
3489 if (vma_is_anonymous(vmf->vma))
3490 return do_huge_pmd_anonymous_page(vmf);
3491 if (vmf->vma->vm_ops->huge_fault)
3492 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3493 return VM_FAULT_FALLBACK;
3494 }
3495
3496 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3497 {
3498 if (vma_is_anonymous(vmf->vma))
3499 return do_huge_pmd_wp_page(vmf, orig_pmd);
3500 if (vmf->vma->vm_ops->huge_fault)
3501 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3502
3503 /* COW handled on pte level: split pmd */
3504 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3505 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3506
3507 return VM_FAULT_FALLBACK;
3508 }
3509
3510 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3511 {
3512 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3513 }
3514
3515 static int create_huge_pud(struct vm_fault *vmf)
3516 {
3517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3518 /* No support for anonymous transparent PUD pages yet */
3519 if (vma_is_anonymous(vmf->vma))
3520 return VM_FAULT_FALLBACK;
3521 if (vmf->vma->vm_ops->huge_fault)
3522 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3524 return VM_FAULT_FALLBACK;
3525 }
3526
3527 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3528 {
3529 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3530 /* No support for anonymous transparent PUD pages yet */
3531 if (vma_is_anonymous(vmf->vma))
3532 return VM_FAULT_FALLBACK;
3533 if (vmf->vma->vm_ops->huge_fault)
3534 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3535 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3536 return VM_FAULT_FALLBACK;
3537 }
3538
3539 /*
3540 * These routines also need to handle stuff like marking pages dirty
3541 * and/or accessed for architectures that don't do it in hardware (most
3542 * RISC architectures). The early dirtying is also good on the i386.
3543 *
3544 * There is also a hook called "update_mmu_cache()" that architectures
3545 * with external mmu caches can use to update those (ie the Sparc or
3546 * PowerPC hashed page tables that act as extended TLBs).
3547 *
3548 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3549 * concurrent faults).
3550 *
3551 * The mmap_sem may have been released depending on flags and our return value.
3552 * See filemap_fault() and __lock_page_or_retry().
3553 */
3554 static int handle_pte_fault(struct vm_fault *vmf)
3555 {
3556 pte_t entry;
3557
3558 if (unlikely(pmd_none(*vmf->pmd))) {
3559 /*
3560 * Leave __pte_alloc() until later: because vm_ops->fault may
3561 * want to allocate huge page, and if we expose page table
3562 * for an instant, it will be difficult to retract from
3563 * concurrent faults and from rmap lookups.
3564 */
3565 vmf->pte = NULL;
3566 } else {
3567 /* See comment in pte_alloc_one_map() */
3568 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3569 return 0;
3570 /*
3571 * A regular pmd is established and it can't morph into a huge
3572 * pmd from under us anymore at this point because we hold the
3573 * mmap_sem read mode and khugepaged takes it in write mode.
3574 * So now it's safe to run pte_offset_map().
3575 */
3576 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3577 vmf->orig_pte = *vmf->pte;
3578
3579 /*
3580 * some architectures can have larger ptes than wordsize,
3581 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3582 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3583 * atomic accesses. The code below just needs a consistent
3584 * view for the ifs and we later double check anyway with the
3585 * ptl lock held. So here a barrier will do.
3586 */
3587 barrier();
3588 if (pte_none(vmf->orig_pte)) {
3589 pte_unmap(vmf->pte);
3590 vmf->pte = NULL;
3591 }
3592 }
3593
3594 if (!vmf->pte) {
3595 if (vma_is_anonymous(vmf->vma))
3596 return do_anonymous_page(vmf);
3597 else
3598 return do_fault(vmf);
3599 }
3600
3601 if (!pte_present(vmf->orig_pte))
3602 return do_swap_page(vmf);
3603
3604 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3605 return do_numa_page(vmf);
3606
3607 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3608 spin_lock(vmf->ptl);
3609 entry = vmf->orig_pte;
3610 if (unlikely(!pte_same(*vmf->pte, entry)))
3611 goto unlock;
3612 if (vmf->flags & FAULT_FLAG_WRITE) {
3613 if (!pte_write(entry))
3614 return do_wp_page(vmf);
3615 entry = pte_mkdirty(entry);
3616 }
3617 entry = pte_mkyoung(entry);
3618 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3619 vmf->flags & FAULT_FLAG_WRITE)) {
3620 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3621 } else {
3622 /*
3623 * This is needed only for protection faults but the arch code
3624 * is not yet telling us if this is a protection fault or not.
3625 * This still avoids useless tlb flushes for .text page faults
3626 * with threads.
3627 */
3628 if (vmf->flags & FAULT_FLAG_WRITE)
3629 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3630 }
3631 unlock:
3632 pte_unmap_unlock(vmf->pte, vmf->ptl);
3633 return 0;
3634 }
3635
3636 /*
3637 * By the time we get here, we already hold the mm semaphore
3638 *
3639 * The mmap_sem may have been released depending on flags and our
3640 * return value. See filemap_fault() and __lock_page_or_retry().
3641 */
3642 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3643 unsigned int flags)
3644 {
3645 struct vm_fault vmf = {
3646 .vma = vma,
3647 .address = address & PAGE_MASK,
3648 .flags = flags,
3649 .pgoff = linear_page_index(vma, address),
3650 .gfp_mask = __get_fault_gfp_mask(vma),
3651 };
3652 struct mm_struct *mm = vma->vm_mm;
3653 pgd_t *pgd;
3654 int ret;
3655
3656 pgd = pgd_offset(mm, address);
3657
3658 vmf.pud = pud_alloc(mm, pgd, address);
3659 if (!vmf.pud)
3660 return VM_FAULT_OOM;
3661 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3662 ret = create_huge_pud(&vmf);
3663 if (!(ret & VM_FAULT_FALLBACK))
3664 return ret;
3665 } else {
3666 pud_t orig_pud = *vmf.pud;
3667
3668 barrier();
3669 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3670 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3671
3672 /* NUMA case for anonymous PUDs would go here */
3673
3674 if (dirty && !pud_write(orig_pud)) {
3675 ret = wp_huge_pud(&vmf, orig_pud);
3676 if (!(ret & VM_FAULT_FALLBACK))
3677 return ret;
3678 } else {
3679 huge_pud_set_accessed(&vmf, orig_pud);
3680 return 0;
3681 }
3682 }
3683 }
3684
3685 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3686 if (!vmf.pmd)
3687 return VM_FAULT_OOM;
3688 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3689 ret = create_huge_pmd(&vmf);
3690 if (!(ret & VM_FAULT_FALLBACK))
3691 return ret;
3692 } else {
3693 pmd_t orig_pmd = *vmf.pmd;
3694
3695 barrier();
3696 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3697 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3698 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3699
3700 if ((vmf.flags & FAULT_FLAG_WRITE) &&
3701 !pmd_write(orig_pmd)) {
3702 ret = wp_huge_pmd(&vmf, orig_pmd);
3703 if (!(ret & VM_FAULT_FALLBACK))
3704 return ret;
3705 } else {
3706 huge_pmd_set_accessed(&vmf, orig_pmd);
3707 return 0;
3708 }
3709 }
3710 }
3711
3712 return handle_pte_fault(&vmf);
3713 }
3714
3715 /*
3716 * By the time we get here, we already hold the mm semaphore
3717 *
3718 * The mmap_sem may have been released depending on flags and our
3719 * return value. See filemap_fault() and __lock_page_or_retry().
3720 */
3721 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3722 unsigned int flags)
3723 {
3724 int ret;
3725
3726 __set_current_state(TASK_RUNNING);
3727
3728 count_vm_event(PGFAULT);
3729 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3730
3731 /* do counter updates before entering really critical section. */
3732 check_sync_rss_stat(current);
3733
3734 /*
3735 * Enable the memcg OOM handling for faults triggered in user
3736 * space. Kernel faults are handled more gracefully.
3737 */
3738 if (flags & FAULT_FLAG_USER)
3739 mem_cgroup_oom_enable();
3740
3741 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3742 flags & FAULT_FLAG_INSTRUCTION,
3743 flags & FAULT_FLAG_REMOTE))
3744 return VM_FAULT_SIGSEGV;
3745
3746 if (unlikely(is_vm_hugetlb_page(vma)))
3747 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3748 else
3749 ret = __handle_mm_fault(vma, address, flags);
3750
3751 if (flags & FAULT_FLAG_USER) {
3752 mem_cgroup_oom_disable();
3753 /*
3754 * The task may have entered a memcg OOM situation but
3755 * if the allocation error was handled gracefully (no
3756 * VM_FAULT_OOM), there is no need to kill anything.
3757 * Just clean up the OOM state peacefully.
3758 */
3759 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3760 mem_cgroup_oom_synchronize(false);
3761 }
3762
3763 /*
3764 * This mm has been already reaped by the oom reaper and so the
3765 * refault cannot be trusted in general. Anonymous refaults would
3766 * lose data and give a zero page instead e.g. This is especially
3767 * problem for use_mm() because regular tasks will just die and
3768 * the corrupted data will not be visible anywhere while kthread
3769 * will outlive the oom victim and potentially propagate the date
3770 * further.
3771 */
3772 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3773 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3774 ret = VM_FAULT_SIGBUS;
3775
3776 return ret;
3777 }
3778 EXPORT_SYMBOL_GPL(handle_mm_fault);
3779
3780 #ifndef __PAGETABLE_PUD_FOLDED
3781 /*
3782 * Allocate page upper directory.
3783 * We've already handled the fast-path in-line.
3784 */
3785 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3786 {
3787 pud_t *new = pud_alloc_one(mm, address);
3788 if (!new)
3789 return -ENOMEM;
3790
3791 smp_wmb(); /* See comment in __pte_alloc */
3792
3793 spin_lock(&mm->page_table_lock);
3794 if (pgd_present(*pgd)) /* Another has populated it */
3795 pud_free(mm, new);
3796 else
3797 pgd_populate(mm, pgd, new);
3798 spin_unlock(&mm->page_table_lock);
3799 return 0;
3800 }
3801 #endif /* __PAGETABLE_PUD_FOLDED */
3802
3803 #ifndef __PAGETABLE_PMD_FOLDED
3804 /*
3805 * Allocate page middle directory.
3806 * We've already handled the fast-path in-line.
3807 */
3808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3809 {
3810 spinlock_t *ptl;
3811 pmd_t *new = pmd_alloc_one(mm, address);
3812 if (!new)
3813 return -ENOMEM;
3814
3815 smp_wmb(); /* See comment in __pte_alloc */
3816
3817 ptl = pud_lock(mm, pud);
3818 #ifndef __ARCH_HAS_4LEVEL_HACK
3819 if (!pud_present(*pud)) {
3820 mm_inc_nr_pmds(mm);
3821 pud_populate(mm, pud, new);
3822 } else /* Another has populated it */
3823 pmd_free(mm, new);
3824 #else
3825 if (!pgd_present(*pud)) {
3826 mm_inc_nr_pmds(mm);
3827 pgd_populate(mm, pud, new);
3828 } else /* Another has populated it */
3829 pmd_free(mm, new);
3830 #endif /* __ARCH_HAS_4LEVEL_HACK */
3831 spin_unlock(ptl);
3832 return 0;
3833 }
3834 #endif /* __PAGETABLE_PMD_FOLDED */
3835
3836 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3837 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3838 {
3839 pgd_t *pgd;
3840 pud_t *pud;
3841 pmd_t *pmd;
3842 pte_t *ptep;
3843
3844 pgd = pgd_offset(mm, address);
3845 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3846 goto out;
3847
3848 pud = pud_offset(pgd, address);
3849 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3850 goto out;
3851
3852 pmd = pmd_offset(pud, address);
3853 VM_BUG_ON(pmd_trans_huge(*pmd));
3854
3855 if (pmd_huge(*pmd)) {
3856 if (!pmdpp)
3857 goto out;
3858
3859 *ptlp = pmd_lock(mm, pmd);
3860 if (pmd_huge(*pmd)) {
3861 *pmdpp = pmd;
3862 return 0;
3863 }
3864 spin_unlock(*ptlp);
3865 }
3866
3867 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3868 goto out;
3869
3870 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3871 if (!ptep)
3872 goto out;
3873 if (!pte_present(*ptep))
3874 goto unlock;
3875 *ptepp = ptep;
3876 return 0;
3877 unlock:
3878 pte_unmap_unlock(ptep, *ptlp);
3879 out:
3880 return -EINVAL;
3881 }
3882
3883 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3884 pte_t **ptepp, spinlock_t **ptlp)
3885 {
3886 int res;
3887
3888 /* (void) is needed to make gcc happy */
3889 (void) __cond_lock(*ptlp,
3890 !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3891 ptlp)));
3892 return res;
3893 }
3894
3895 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3896 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3897 {
3898 int res;
3899
3900 /* (void) is needed to make gcc happy */
3901 (void) __cond_lock(*ptlp,
3902 !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3903 ptlp)));
3904 return res;
3905 }
3906 EXPORT_SYMBOL(follow_pte_pmd);
3907
3908 /**
3909 * follow_pfn - look up PFN at a user virtual address
3910 * @vma: memory mapping
3911 * @address: user virtual address
3912 * @pfn: location to store found PFN
3913 *
3914 * Only IO mappings and raw PFN mappings are allowed.
3915 *
3916 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3917 */
3918 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3919 unsigned long *pfn)
3920 {
3921 int ret = -EINVAL;
3922 spinlock_t *ptl;
3923 pte_t *ptep;
3924
3925 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3926 return ret;
3927
3928 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3929 if (ret)
3930 return ret;
3931 *pfn = pte_pfn(*ptep);
3932 pte_unmap_unlock(ptep, ptl);
3933 return 0;
3934 }
3935 EXPORT_SYMBOL(follow_pfn);
3936
3937 #ifdef CONFIG_HAVE_IOREMAP_PROT
3938 int follow_phys(struct vm_area_struct *vma,
3939 unsigned long address, unsigned int flags,
3940 unsigned long *prot, resource_size_t *phys)
3941 {
3942 int ret = -EINVAL;
3943 pte_t *ptep, pte;
3944 spinlock_t *ptl;
3945
3946 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3947 goto out;
3948
3949 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3950 goto out;
3951 pte = *ptep;
3952
3953 if ((flags & FOLL_WRITE) && !pte_write(pte))
3954 goto unlock;
3955
3956 *prot = pgprot_val(pte_pgprot(pte));
3957 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3958
3959 ret = 0;
3960 unlock:
3961 pte_unmap_unlock(ptep, ptl);
3962 out:
3963 return ret;
3964 }
3965
3966 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3967 void *buf, int len, int write)
3968 {
3969 resource_size_t phys_addr;
3970 unsigned long prot = 0;
3971 void __iomem *maddr;
3972 int offset = addr & (PAGE_SIZE-1);
3973
3974 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3975 return -EINVAL;
3976
3977 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3978 if (write)
3979 memcpy_toio(maddr + offset, buf, len);
3980 else
3981 memcpy_fromio(buf, maddr + offset, len);
3982 iounmap(maddr);
3983
3984 return len;
3985 }
3986 EXPORT_SYMBOL_GPL(generic_access_phys);
3987 #endif
3988
3989 /*
3990 * Access another process' address space as given in mm. If non-NULL, use the
3991 * given task for page fault accounting.
3992 */
3993 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3994 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3995 {
3996 struct vm_area_struct *vma;
3997 void *old_buf = buf;
3998 int write = gup_flags & FOLL_WRITE;
3999
4000 down_read(&mm->mmap_sem);
4001 /* ignore errors, just check how much was successfully transferred */
4002 while (len) {
4003 int bytes, ret, offset;
4004 void *maddr;
4005 struct page *page = NULL;
4006
4007 ret = get_user_pages_remote(tsk, mm, addr, 1,
4008 gup_flags, &page, &vma, NULL);
4009 if (ret <= 0) {
4010 #ifndef CONFIG_HAVE_IOREMAP_PROT
4011 break;
4012 #else
4013 /*
4014 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4015 * we can access using slightly different code.
4016 */
4017 vma = find_vma(mm, addr);
4018 if (!vma || vma->vm_start > addr)
4019 break;
4020 if (vma->vm_ops && vma->vm_ops->access)
4021 ret = vma->vm_ops->access(vma, addr, buf,
4022 len, write);
4023 if (ret <= 0)
4024 break;
4025 bytes = ret;
4026 #endif
4027 } else {
4028 bytes = len;
4029 offset = addr & (PAGE_SIZE-1);
4030 if (bytes > PAGE_SIZE-offset)
4031 bytes = PAGE_SIZE-offset;
4032
4033 maddr = kmap(page);
4034 if (write) {
4035 copy_to_user_page(vma, page, addr,
4036 maddr + offset, buf, bytes);
4037 set_page_dirty_lock(page);
4038 } else {
4039 copy_from_user_page(vma, page, addr,
4040 buf, maddr + offset, bytes);
4041 }
4042 kunmap(page);
4043 put_page(page);
4044 }
4045 len -= bytes;
4046 buf += bytes;
4047 addr += bytes;
4048 }
4049 up_read(&mm->mmap_sem);
4050
4051 return buf - old_buf;
4052 }
4053
4054 /**
4055 * access_remote_vm - access another process' address space
4056 * @mm: the mm_struct of the target address space
4057 * @addr: start address to access
4058 * @buf: source or destination buffer
4059 * @len: number of bytes to transfer
4060 * @gup_flags: flags modifying lookup behaviour
4061 *
4062 * The caller must hold a reference on @mm.
4063 */
4064 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4065 void *buf, int len, unsigned int gup_flags)
4066 {
4067 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4068 }
4069
4070 /*
4071 * Access another process' address space.
4072 * Source/target buffer must be kernel space,
4073 * Do not walk the page table directly, use get_user_pages
4074 */
4075 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4076 void *buf, int len, unsigned int gup_flags)
4077 {
4078 struct mm_struct *mm;
4079 int ret;
4080
4081 mm = get_task_mm(tsk);
4082 if (!mm)
4083 return 0;
4084
4085 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4086
4087 mmput(mm);
4088
4089 return ret;
4090 }
4091 EXPORT_SYMBOL_GPL(access_process_vm);
4092
4093 /*
4094 * Print the name of a VMA.
4095 */
4096 void print_vma_addr(char *prefix, unsigned long ip)
4097 {
4098 struct mm_struct *mm = current->mm;
4099 struct vm_area_struct *vma;
4100
4101 /*
4102 * Do not print if we are in atomic
4103 * contexts (in exception stacks, etc.):
4104 */
4105 if (preempt_count())
4106 return;
4107
4108 down_read(&mm->mmap_sem);
4109 vma = find_vma(mm, ip);
4110 if (vma && vma->vm_file) {
4111 struct file *f = vma->vm_file;
4112 char *buf = (char *)__get_free_page(GFP_KERNEL);
4113 if (buf) {
4114 char *p;
4115
4116 p = file_path(f, buf, PAGE_SIZE);
4117 if (IS_ERR(p))
4118 p = "?";
4119 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4120 vma->vm_start,
4121 vma->vm_end - vma->vm_start);
4122 free_page((unsigned long)buf);
4123 }
4124 }
4125 up_read(&mm->mmap_sem);
4126 }
4127
4128 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4129 void __might_fault(const char *file, int line)
4130 {
4131 /*
4132 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4133 * holding the mmap_sem, this is safe because kernel memory doesn't
4134 * get paged out, therefore we'll never actually fault, and the
4135 * below annotations will generate false positives.
4136 */
4137 if (segment_eq(get_fs(), KERNEL_DS))
4138 return;
4139 if (pagefault_disabled())
4140 return;
4141 __might_sleep(file, line, 0);
4142 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4143 if (current->mm)
4144 might_lock_read(&current->mm->mmap_sem);
4145 #endif
4146 }
4147 EXPORT_SYMBOL(__might_fault);
4148 #endif
4149
4150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4151 static void clear_gigantic_page(struct page *page,
4152 unsigned long addr,
4153 unsigned int pages_per_huge_page)
4154 {
4155 int i;
4156 struct page *p = page;
4157
4158 might_sleep();
4159 for (i = 0; i < pages_per_huge_page;
4160 i++, p = mem_map_next(p, page, i)) {
4161 cond_resched();
4162 clear_user_highpage(p, addr + i * PAGE_SIZE);
4163 }
4164 }
4165 void clear_huge_page(struct page *page,
4166 unsigned long addr, unsigned int pages_per_huge_page)
4167 {
4168 int i;
4169
4170 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4171 clear_gigantic_page(page, addr, pages_per_huge_page);
4172 return;
4173 }
4174
4175 might_sleep();
4176 for (i = 0; i < pages_per_huge_page; i++) {
4177 cond_resched();
4178 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4179 }
4180 }
4181
4182 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4183 unsigned long addr,
4184 struct vm_area_struct *vma,
4185 unsigned int pages_per_huge_page)
4186 {
4187 int i;
4188 struct page *dst_base = dst;
4189 struct page *src_base = src;
4190
4191 for (i = 0; i < pages_per_huge_page; ) {
4192 cond_resched();
4193 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4194
4195 i++;
4196 dst = mem_map_next(dst, dst_base, i);
4197 src = mem_map_next(src, src_base, i);
4198 }
4199 }
4200
4201 void copy_user_huge_page(struct page *dst, struct page *src,
4202 unsigned long addr, struct vm_area_struct *vma,
4203 unsigned int pages_per_huge_page)
4204 {
4205 int i;
4206
4207 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4208 copy_user_gigantic_page(dst, src, addr, vma,
4209 pages_per_huge_page);
4210 return;
4211 }
4212
4213 might_sleep();
4214 for (i = 0; i < pages_per_huge_page; i++) {
4215 cond_resched();
4216 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4217 }
4218 }
4219
4220 long copy_huge_page_from_user(struct page *dst_page,
4221 const void __user *usr_src,
4222 unsigned int pages_per_huge_page,
4223 bool allow_pagefault)
4224 {
4225 void *src = (void *)usr_src;
4226 void *page_kaddr;
4227 unsigned long i, rc = 0;
4228 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4229
4230 for (i = 0; i < pages_per_huge_page; i++) {
4231 if (allow_pagefault)
4232 page_kaddr = kmap(dst_page + i);
4233 else
4234 page_kaddr = kmap_atomic(dst_page + i);
4235 rc = copy_from_user(page_kaddr,
4236 (const void __user *)(src + i * PAGE_SIZE),
4237 PAGE_SIZE);
4238 if (allow_pagefault)
4239 kunmap(dst_page + i);
4240 else
4241 kunmap_atomic(page_kaddr);
4242
4243 ret_val -= (PAGE_SIZE - rc);
4244 if (rc)
4245 break;
4246
4247 cond_resched();
4248 }
4249 return ret_val;
4250 }
4251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4252
4253 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4254
4255 static struct kmem_cache *page_ptl_cachep;
4256
4257 void __init ptlock_cache_init(void)
4258 {
4259 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4260 SLAB_PANIC, NULL);
4261 }
4262
4263 bool ptlock_alloc(struct page *page)
4264 {
4265 spinlock_t *ptl;
4266
4267 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4268 if (!ptl)
4269 return false;
4270 page->ptl = ptl;
4271 return true;
4272 }
4273
4274 void ptlock_free(struct page *page)
4275 {
4276 kmem_cache_free(page_ptl_cachep, page->ptl);
4277 }
4278 #endif