]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory.c
thp: use mm_file_counter to determine update which rss counter
[mirror_ubuntu-jammy-kernel.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114 1;
115 #else
116 2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121 randomize_va_space = 0;
122 return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134 static int __init init_zero_pfn(void)
135 {
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
152 }
153 }
154 current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
198 return true;
199 }
200
201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202 return false;
203
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
206 return false;
207
208 tlb->batch_count++;
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
216 return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
221 {
222 tlb->mm = mm;
223
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
226 tlb->need_flush_all = 0;
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
231 tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235 #endif
236 tlb->page_size = 0;
237
238 __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243 if (!tlb->end)
244 return;
245
246 tlb_flush(tlb);
247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
250 #endif
251 __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256 struct mmu_gather_batch *batch;
257
258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276 unsigned long start, unsigned long end, bool force)
277 {
278 struct mmu_gather_batch *batch, *next;
279
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
300 *returns true if the caller should flush.
301 */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304 struct mmu_gather_batch *batch;
305
306 VM_BUG_ON(!tlb->end);
307 VM_WARN_ON(tlb->page_size != page_size);
308
309 batch = tlb->active;
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
317 return true;
318 batch = tlb->active;
319 }
320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322 return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 static void tlb_remove_table_smp_sync(void *arg)
330 {
331 struct mm_struct __maybe_unused *mm = arg;
332 /*
333 * On most architectures this does nothing. Simply delivering the
334 * interrupt is enough to prevent races with software page table
335 * walking like that done in get_user_pages_fast.
336 *
337 * See the comment near struct mmu_table_batch.
338 */
339 tlb_flush_remove_tables_local(mm);
340 }
341
342 static void tlb_remove_table_one(void *table, struct mmu_gather *tlb)
343 {
344 /*
345 * This isn't an RCU grace period and hence the page-tables cannot be
346 * assumed to be actually RCU-freed.
347 *
348 * It is however sufficient for software page-table walkers that rely on
349 * IRQ disabling. See the comment near struct mmu_table_batch.
350 */
351 smp_call_function(tlb_remove_table_smp_sync, tlb->mm, 1);
352 __tlb_remove_table(table);
353 }
354
355 static void tlb_remove_table_rcu(struct rcu_head *head)
356 {
357 struct mmu_table_batch *batch;
358 int i;
359
360 batch = container_of(head, struct mmu_table_batch, rcu);
361
362 for (i = 0; i < batch->nr; i++)
363 __tlb_remove_table(batch->tables[i]);
364
365 free_page((unsigned long)batch);
366 }
367
368 void tlb_table_flush(struct mmu_gather *tlb)
369 {
370 struct mmu_table_batch **batch = &tlb->batch;
371
372 tlb_flush_remove_tables(tlb->mm);
373
374 if (*batch) {
375 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
376 *batch = NULL;
377 }
378 }
379
380 void tlb_remove_table(struct mmu_gather *tlb, void *table)
381 {
382 struct mmu_table_batch **batch = &tlb->batch;
383
384 /*
385 * When there's less then two users of this mm there cannot be a
386 * concurrent page-table walk.
387 */
388 if (atomic_read(&tlb->mm->mm_users) < 2) {
389 __tlb_remove_table(table);
390 return;
391 }
392
393 if (*batch == NULL) {
394 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
395 if (*batch == NULL) {
396 tlb_remove_table_one(table, tlb);
397 return;
398 }
399 (*batch)->nr = 0;
400 }
401 (*batch)->tables[(*batch)->nr++] = table;
402 if ((*batch)->nr == MAX_TABLE_BATCH)
403 tlb_table_flush(tlb);
404 }
405
406 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
407
408 /**
409 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
410 * @tlb: the mmu_gather structure to initialize
411 * @mm: the mm_struct of the target address space
412 * @start: start of the region that will be removed from the page-table
413 * @end: end of the region that will be removed from the page-table
414 *
415 * Called to initialize an (on-stack) mmu_gather structure for page-table
416 * tear-down from @mm. The @start and @end are set to 0 and -1
417 * respectively when @mm is without users and we're going to destroy
418 * the full address space (exit/execve).
419 */
420 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
421 unsigned long start, unsigned long end)
422 {
423 arch_tlb_gather_mmu(tlb, mm, start, end);
424 inc_tlb_flush_pending(tlb->mm);
425 }
426
427 void tlb_finish_mmu(struct mmu_gather *tlb,
428 unsigned long start, unsigned long end)
429 {
430 /*
431 * If there are parallel threads are doing PTE changes on same range
432 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
433 * flush by batching, a thread has stable TLB entry can fail to flush
434 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
435 * forcefully if we detect parallel PTE batching threads.
436 */
437 bool force = mm_tlb_flush_nested(tlb->mm);
438
439 arch_tlb_finish_mmu(tlb, start, end, force);
440 dec_tlb_flush_pending(tlb->mm);
441 }
442
443 /*
444 * Note: this doesn't free the actual pages themselves. That
445 * has been handled earlier when unmapping all the memory regions.
446 */
447 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
448 unsigned long addr)
449 {
450 pgtable_t token = pmd_pgtable(*pmd);
451 pmd_clear(pmd);
452 pte_free_tlb(tlb, token, addr);
453 mm_dec_nr_ptes(tlb->mm);
454 }
455
456 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
457 unsigned long addr, unsigned long end,
458 unsigned long floor, unsigned long ceiling)
459 {
460 pmd_t *pmd;
461 unsigned long next;
462 unsigned long start;
463
464 start = addr;
465 pmd = pmd_offset(pud, addr);
466 do {
467 next = pmd_addr_end(addr, end);
468 if (pmd_none_or_clear_bad(pmd))
469 continue;
470 free_pte_range(tlb, pmd, addr);
471 } while (pmd++, addr = next, addr != end);
472
473 start &= PUD_MASK;
474 if (start < floor)
475 return;
476 if (ceiling) {
477 ceiling &= PUD_MASK;
478 if (!ceiling)
479 return;
480 }
481 if (end - 1 > ceiling - 1)
482 return;
483
484 pmd = pmd_offset(pud, start);
485 pud_clear(pud);
486 pmd_free_tlb(tlb, pmd, start);
487 mm_dec_nr_pmds(tlb->mm);
488 }
489
490 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
491 unsigned long addr, unsigned long end,
492 unsigned long floor, unsigned long ceiling)
493 {
494 pud_t *pud;
495 unsigned long next;
496 unsigned long start;
497
498 start = addr;
499 pud = pud_offset(p4d, addr);
500 do {
501 next = pud_addr_end(addr, end);
502 if (pud_none_or_clear_bad(pud))
503 continue;
504 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
505 } while (pud++, addr = next, addr != end);
506
507 start &= P4D_MASK;
508 if (start < floor)
509 return;
510 if (ceiling) {
511 ceiling &= P4D_MASK;
512 if (!ceiling)
513 return;
514 }
515 if (end - 1 > ceiling - 1)
516 return;
517
518 pud = pud_offset(p4d, start);
519 p4d_clear(p4d);
520 pud_free_tlb(tlb, pud, start);
521 mm_dec_nr_puds(tlb->mm);
522 }
523
524 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 unsigned long floor, unsigned long ceiling)
527 {
528 p4d_t *p4d;
529 unsigned long next;
530 unsigned long start;
531
532 start = addr;
533 p4d = p4d_offset(pgd, addr);
534 do {
535 next = p4d_addr_end(addr, end);
536 if (p4d_none_or_clear_bad(p4d))
537 continue;
538 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
539 } while (p4d++, addr = next, addr != end);
540
541 start &= PGDIR_MASK;
542 if (start < floor)
543 return;
544 if (ceiling) {
545 ceiling &= PGDIR_MASK;
546 if (!ceiling)
547 return;
548 }
549 if (end - 1 > ceiling - 1)
550 return;
551
552 p4d = p4d_offset(pgd, start);
553 pgd_clear(pgd);
554 p4d_free_tlb(tlb, p4d, start);
555 }
556
557 /*
558 * This function frees user-level page tables of a process.
559 */
560 void free_pgd_range(struct mmu_gather *tlb,
561 unsigned long addr, unsigned long end,
562 unsigned long floor, unsigned long ceiling)
563 {
564 pgd_t *pgd;
565 unsigned long next;
566
567 /*
568 * The next few lines have given us lots of grief...
569 *
570 * Why are we testing PMD* at this top level? Because often
571 * there will be no work to do at all, and we'd prefer not to
572 * go all the way down to the bottom just to discover that.
573 *
574 * Why all these "- 1"s? Because 0 represents both the bottom
575 * of the address space and the top of it (using -1 for the
576 * top wouldn't help much: the masks would do the wrong thing).
577 * The rule is that addr 0 and floor 0 refer to the bottom of
578 * the address space, but end 0 and ceiling 0 refer to the top
579 * Comparisons need to use "end - 1" and "ceiling - 1" (though
580 * that end 0 case should be mythical).
581 *
582 * Wherever addr is brought up or ceiling brought down, we must
583 * be careful to reject "the opposite 0" before it confuses the
584 * subsequent tests. But what about where end is brought down
585 * by PMD_SIZE below? no, end can't go down to 0 there.
586 *
587 * Whereas we round start (addr) and ceiling down, by different
588 * masks at different levels, in order to test whether a table
589 * now has no other vmas using it, so can be freed, we don't
590 * bother to round floor or end up - the tests don't need that.
591 */
592
593 addr &= PMD_MASK;
594 if (addr < floor) {
595 addr += PMD_SIZE;
596 if (!addr)
597 return;
598 }
599 if (ceiling) {
600 ceiling &= PMD_MASK;
601 if (!ceiling)
602 return;
603 }
604 if (end - 1 > ceiling - 1)
605 end -= PMD_SIZE;
606 if (addr > end - 1)
607 return;
608 /*
609 * We add page table cache pages with PAGE_SIZE,
610 * (see pte_free_tlb()), flush the tlb if we need
611 */
612 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
613 pgd = pgd_offset(tlb->mm, addr);
614 do {
615 next = pgd_addr_end(addr, end);
616 if (pgd_none_or_clear_bad(pgd))
617 continue;
618 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
619 } while (pgd++, addr = next, addr != end);
620 }
621
622 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
623 unsigned long floor, unsigned long ceiling)
624 {
625 while (vma) {
626 struct vm_area_struct *next = vma->vm_next;
627 unsigned long addr = vma->vm_start;
628
629 /*
630 * Hide vma from rmap and truncate_pagecache before freeing
631 * pgtables
632 */
633 unlink_anon_vmas(vma);
634 unlink_file_vma(vma);
635
636 if (is_vm_hugetlb_page(vma)) {
637 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
638 floor, next ? next->vm_start : ceiling);
639 } else {
640 /*
641 * Optimization: gather nearby vmas into one call down
642 */
643 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
644 && !is_vm_hugetlb_page(next)) {
645 vma = next;
646 next = vma->vm_next;
647 unlink_anon_vmas(vma);
648 unlink_file_vma(vma);
649 }
650 free_pgd_range(tlb, addr, vma->vm_end,
651 floor, next ? next->vm_start : ceiling);
652 }
653 vma = next;
654 }
655 }
656
657 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
658 {
659 spinlock_t *ptl;
660 pgtable_t new = pte_alloc_one(mm, address);
661 if (!new)
662 return -ENOMEM;
663
664 /*
665 * Ensure all pte setup (eg. pte page lock and page clearing) are
666 * visible before the pte is made visible to other CPUs by being
667 * put into page tables.
668 *
669 * The other side of the story is the pointer chasing in the page
670 * table walking code (when walking the page table without locking;
671 * ie. most of the time). Fortunately, these data accesses consist
672 * of a chain of data-dependent loads, meaning most CPUs (alpha
673 * being the notable exception) will already guarantee loads are
674 * seen in-order. See the alpha page table accessors for the
675 * smp_read_barrier_depends() barriers in page table walking code.
676 */
677 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
678
679 ptl = pmd_lock(mm, pmd);
680 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
681 mm_inc_nr_ptes(mm);
682 pmd_populate(mm, pmd, new);
683 new = NULL;
684 }
685 spin_unlock(ptl);
686 if (new)
687 pte_free(mm, new);
688 return 0;
689 }
690
691 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
692 {
693 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
694 if (!new)
695 return -ENOMEM;
696
697 smp_wmb(); /* See comment in __pte_alloc */
698
699 spin_lock(&init_mm.page_table_lock);
700 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
701 pmd_populate_kernel(&init_mm, pmd, new);
702 new = NULL;
703 }
704 spin_unlock(&init_mm.page_table_lock);
705 if (new)
706 pte_free_kernel(&init_mm, new);
707 return 0;
708 }
709
710 static inline void init_rss_vec(int *rss)
711 {
712 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
713 }
714
715 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
716 {
717 int i;
718
719 if (current->mm == mm)
720 sync_mm_rss(mm);
721 for (i = 0; i < NR_MM_COUNTERS; i++)
722 if (rss[i])
723 add_mm_counter(mm, i, rss[i]);
724 }
725
726 /*
727 * This function is called to print an error when a bad pte
728 * is found. For example, we might have a PFN-mapped pte in
729 * a region that doesn't allow it.
730 *
731 * The calling function must still handle the error.
732 */
733 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
734 pte_t pte, struct page *page)
735 {
736 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
737 p4d_t *p4d = p4d_offset(pgd, addr);
738 pud_t *pud = pud_offset(p4d, addr);
739 pmd_t *pmd = pmd_offset(pud, addr);
740 struct address_space *mapping;
741 pgoff_t index;
742 static unsigned long resume;
743 static unsigned long nr_shown;
744 static unsigned long nr_unshown;
745
746 /*
747 * Allow a burst of 60 reports, then keep quiet for that minute;
748 * or allow a steady drip of one report per second.
749 */
750 if (nr_shown == 60) {
751 if (time_before(jiffies, resume)) {
752 nr_unshown++;
753 return;
754 }
755 if (nr_unshown) {
756 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
757 nr_unshown);
758 nr_unshown = 0;
759 }
760 nr_shown = 0;
761 }
762 if (nr_shown++ == 0)
763 resume = jiffies + 60 * HZ;
764
765 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
766 index = linear_page_index(vma, addr);
767
768 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
769 current->comm,
770 (long long)pte_val(pte), (long long)pmd_val(*pmd));
771 if (page)
772 dump_page(page, "bad pte");
773 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
774 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
775 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
776 vma->vm_file,
777 vma->vm_ops ? vma->vm_ops->fault : NULL,
778 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
779 mapping ? mapping->a_ops->readpage : NULL);
780 dump_stack();
781 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
782 }
783
784 /*
785 * vm_normal_page -- This function gets the "struct page" associated with a pte.
786 *
787 * "Special" mappings do not wish to be associated with a "struct page" (either
788 * it doesn't exist, or it exists but they don't want to touch it). In this
789 * case, NULL is returned here. "Normal" mappings do have a struct page.
790 *
791 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
792 * pte bit, in which case this function is trivial. Secondly, an architecture
793 * may not have a spare pte bit, which requires a more complicated scheme,
794 * described below.
795 *
796 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
797 * special mapping (even if there are underlying and valid "struct pages").
798 * COWed pages of a VM_PFNMAP are always normal.
799 *
800 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
801 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
802 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
803 * mapping will always honor the rule
804 *
805 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
806 *
807 * And for normal mappings this is false.
808 *
809 * This restricts such mappings to be a linear translation from virtual address
810 * to pfn. To get around this restriction, we allow arbitrary mappings so long
811 * as the vma is not a COW mapping; in that case, we know that all ptes are
812 * special (because none can have been COWed).
813 *
814 *
815 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
816 *
817 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
818 * page" backing, however the difference is that _all_ pages with a struct
819 * page (that is, those where pfn_valid is true) are refcounted and considered
820 * normal pages by the VM. The disadvantage is that pages are refcounted
821 * (which can be slower and simply not an option for some PFNMAP users). The
822 * advantage is that we don't have to follow the strict linearity rule of
823 * PFNMAP mappings in order to support COWable mappings.
824 *
825 */
826 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
827 pte_t pte, bool with_public_device)
828 {
829 unsigned long pfn = pte_pfn(pte);
830
831 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
832 if (likely(!pte_special(pte)))
833 goto check_pfn;
834 if (vma->vm_ops && vma->vm_ops->find_special_page)
835 return vma->vm_ops->find_special_page(vma, addr);
836 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
837 return NULL;
838 if (is_zero_pfn(pfn))
839 return NULL;
840
841 /*
842 * Device public pages are special pages (they are ZONE_DEVICE
843 * pages but different from persistent memory). They behave
844 * allmost like normal pages. The difference is that they are
845 * not on the lru and thus should never be involve with any-
846 * thing that involve lru manipulation (mlock, numa balancing,
847 * ...).
848 *
849 * This is why we still want to return NULL for such page from
850 * vm_normal_page() so that we do not have to special case all
851 * call site of vm_normal_page().
852 */
853 if (likely(pfn <= highest_memmap_pfn)) {
854 struct page *page = pfn_to_page(pfn);
855
856 if (is_device_public_page(page)) {
857 if (with_public_device)
858 return page;
859 return NULL;
860 }
861 }
862
863 if (pte_devmap(pte))
864 return NULL;
865
866 print_bad_pte(vma, addr, pte, NULL);
867 return NULL;
868 }
869
870 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
871
872 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
873 if (vma->vm_flags & VM_MIXEDMAP) {
874 if (!pfn_valid(pfn))
875 return NULL;
876 goto out;
877 } else {
878 unsigned long off;
879 off = (addr - vma->vm_start) >> PAGE_SHIFT;
880 if (pfn == vma->vm_pgoff + off)
881 return NULL;
882 if (!is_cow_mapping(vma->vm_flags))
883 return NULL;
884 }
885 }
886
887 if (is_zero_pfn(pfn))
888 return NULL;
889
890 check_pfn:
891 if (unlikely(pfn > highest_memmap_pfn)) {
892 print_bad_pte(vma, addr, pte, NULL);
893 return NULL;
894 }
895
896 /*
897 * NOTE! We still have PageReserved() pages in the page tables.
898 * eg. VDSO mappings can cause them to exist.
899 */
900 out:
901 return pfn_to_page(pfn);
902 }
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
906 pmd_t pmd)
907 {
908 unsigned long pfn = pmd_pfn(pmd);
909
910 /*
911 * There is no pmd_special() but there may be special pmds, e.g.
912 * in a direct-access (dax) mapping, so let's just replicate the
913 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
914 */
915 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
916 if (vma->vm_flags & VM_MIXEDMAP) {
917 if (!pfn_valid(pfn))
918 return NULL;
919 goto out;
920 } else {
921 unsigned long off;
922 off = (addr - vma->vm_start) >> PAGE_SHIFT;
923 if (pfn == vma->vm_pgoff + off)
924 return NULL;
925 if (!is_cow_mapping(vma->vm_flags))
926 return NULL;
927 }
928 }
929
930 if (pmd_devmap(pmd))
931 return NULL;
932 if (is_zero_pfn(pfn))
933 return NULL;
934 if (unlikely(pfn > highest_memmap_pfn))
935 return NULL;
936
937 /*
938 * NOTE! We still have PageReserved() pages in the page tables.
939 * eg. VDSO mappings can cause them to exist.
940 */
941 out:
942 return pfn_to_page(pfn);
943 }
944 #endif
945
946 /*
947 * copy one vm_area from one task to the other. Assumes the page tables
948 * already present in the new task to be cleared in the whole range
949 * covered by this vma.
950 */
951
952 static inline unsigned long
953 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
954 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
955 unsigned long addr, int *rss)
956 {
957 unsigned long vm_flags = vma->vm_flags;
958 pte_t pte = *src_pte;
959 struct page *page;
960
961 /* pte contains position in swap or file, so copy. */
962 if (unlikely(!pte_present(pte))) {
963 swp_entry_t entry = pte_to_swp_entry(pte);
964
965 if (likely(!non_swap_entry(entry))) {
966 if (swap_duplicate(entry) < 0)
967 return entry.val;
968
969 /* make sure dst_mm is on swapoff's mmlist. */
970 if (unlikely(list_empty(&dst_mm->mmlist))) {
971 spin_lock(&mmlist_lock);
972 if (list_empty(&dst_mm->mmlist))
973 list_add(&dst_mm->mmlist,
974 &src_mm->mmlist);
975 spin_unlock(&mmlist_lock);
976 }
977 rss[MM_SWAPENTS]++;
978 } else if (is_migration_entry(entry)) {
979 page = migration_entry_to_page(entry);
980
981 rss[mm_counter(page)]++;
982
983 if (is_write_migration_entry(entry) &&
984 is_cow_mapping(vm_flags)) {
985 /*
986 * COW mappings require pages in both
987 * parent and child to be set to read.
988 */
989 make_migration_entry_read(&entry);
990 pte = swp_entry_to_pte(entry);
991 if (pte_swp_soft_dirty(*src_pte))
992 pte = pte_swp_mksoft_dirty(pte);
993 set_pte_at(src_mm, addr, src_pte, pte);
994 }
995 } else if (is_device_private_entry(entry)) {
996 page = device_private_entry_to_page(entry);
997
998 /*
999 * Update rss count even for unaddressable pages, as
1000 * they should treated just like normal pages in this
1001 * respect.
1002 *
1003 * We will likely want to have some new rss counters
1004 * for unaddressable pages, at some point. But for now
1005 * keep things as they are.
1006 */
1007 get_page(page);
1008 rss[mm_counter(page)]++;
1009 page_dup_rmap(page, false);
1010
1011 /*
1012 * We do not preserve soft-dirty information, because so
1013 * far, checkpoint/restore is the only feature that
1014 * requires that. And checkpoint/restore does not work
1015 * when a device driver is involved (you cannot easily
1016 * save and restore device driver state).
1017 */
1018 if (is_write_device_private_entry(entry) &&
1019 is_cow_mapping(vm_flags)) {
1020 make_device_private_entry_read(&entry);
1021 pte = swp_entry_to_pte(entry);
1022 set_pte_at(src_mm, addr, src_pte, pte);
1023 }
1024 }
1025 goto out_set_pte;
1026 }
1027
1028 /*
1029 * If it's a COW mapping, write protect it both
1030 * in the parent and the child
1031 */
1032 if (is_cow_mapping(vm_flags)) {
1033 ptep_set_wrprotect(src_mm, addr, src_pte);
1034 pte = pte_wrprotect(pte);
1035 }
1036
1037 /*
1038 * If it's a shared mapping, mark it clean in
1039 * the child
1040 */
1041 if (vm_flags & VM_SHARED)
1042 pte = pte_mkclean(pte);
1043 pte = pte_mkold(pte);
1044
1045 page = vm_normal_page(vma, addr, pte);
1046 if (page) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1050 } else if (pte_devmap(pte)) {
1051 page = pte_page(pte);
1052
1053 /*
1054 * Cache coherent device memory behave like regular page and
1055 * not like persistent memory page. For more informations see
1056 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1057 */
1058 if (is_device_public_page(page)) {
1059 get_page(page);
1060 page_dup_rmap(page, false);
1061 rss[mm_counter(page)]++;
1062 }
1063 }
1064
1065 out_set_pte:
1066 set_pte_at(dst_mm, addr, dst_pte, pte);
1067 return 0;
1068 }
1069
1070 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1071 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1072 unsigned long addr, unsigned long end)
1073 {
1074 pte_t *orig_src_pte, *orig_dst_pte;
1075 pte_t *src_pte, *dst_pte;
1076 spinlock_t *src_ptl, *dst_ptl;
1077 int progress = 0;
1078 int rss[NR_MM_COUNTERS];
1079 swp_entry_t entry = (swp_entry_t){0};
1080
1081 again:
1082 init_rss_vec(rss);
1083
1084 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1085 if (!dst_pte)
1086 return -ENOMEM;
1087 src_pte = pte_offset_map(src_pmd, addr);
1088 src_ptl = pte_lockptr(src_mm, src_pmd);
1089 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1090 orig_src_pte = src_pte;
1091 orig_dst_pte = dst_pte;
1092 arch_enter_lazy_mmu_mode();
1093
1094 do {
1095 /*
1096 * We are holding two locks at this point - either of them
1097 * could generate latencies in another task on another CPU.
1098 */
1099 if (progress >= 32) {
1100 progress = 0;
1101 if (need_resched() ||
1102 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1103 break;
1104 }
1105 if (pte_none(*src_pte)) {
1106 progress++;
1107 continue;
1108 }
1109 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1110 vma, addr, rss);
1111 if (entry.val)
1112 break;
1113 progress += 8;
1114 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1115
1116 arch_leave_lazy_mmu_mode();
1117 spin_unlock(src_ptl);
1118 pte_unmap(orig_src_pte);
1119 add_mm_rss_vec(dst_mm, rss);
1120 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1121 cond_resched();
1122
1123 if (entry.val) {
1124 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1125 return -ENOMEM;
1126 progress = 0;
1127 }
1128 if (addr != end)
1129 goto again;
1130 return 0;
1131 }
1132
1133 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1134 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1135 unsigned long addr, unsigned long end)
1136 {
1137 pmd_t *src_pmd, *dst_pmd;
1138 unsigned long next;
1139
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 if (!dst_pmd)
1142 return -ENOMEM;
1143 src_pmd = pmd_offset(src_pud, addr);
1144 do {
1145 next = pmd_addr_end(addr, end);
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
1148 int err;
1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1150 err = copy_huge_pmd(dst_mm, src_mm,
1151 dst_pmd, src_pmd, addr, vma);
1152 if (err == -ENOMEM)
1153 return -ENOMEM;
1154 if (!err)
1155 continue;
1156 /* fall through */
1157 }
1158 if (pmd_none_or_clear_bad(src_pmd))
1159 continue;
1160 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1161 vma, addr, next))
1162 return -ENOMEM;
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 return 0;
1165 }
1166
1167 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1168 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1169 unsigned long addr, unsigned long end)
1170 {
1171 pud_t *src_pud, *dst_pud;
1172 unsigned long next;
1173
1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1175 if (!dst_pud)
1176 return -ENOMEM;
1177 src_pud = pud_offset(src_p4d, addr);
1178 do {
1179 next = pud_addr_end(addr, end);
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 int err;
1182
1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1184 err = copy_huge_pud(dst_mm, src_mm,
1185 dst_pud, src_pud, addr, vma);
1186 if (err == -ENOMEM)
1187 return -ENOMEM;
1188 if (!err)
1189 continue;
1190 /* fall through */
1191 }
1192 if (pud_none_or_clear_bad(src_pud))
1193 continue;
1194 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1195 vma, addr, next))
1196 return -ENOMEM;
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1198 return 0;
1199 }
1200
1201 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1202 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1203 unsigned long addr, unsigned long end)
1204 {
1205 p4d_t *src_p4d, *dst_p4d;
1206 unsigned long next;
1207
1208 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1209 if (!dst_p4d)
1210 return -ENOMEM;
1211 src_p4d = p4d_offset(src_pgd, addr);
1212 do {
1213 next = p4d_addr_end(addr, end);
1214 if (p4d_none_or_clear_bad(src_p4d))
1215 continue;
1216 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1217 vma, addr, next))
1218 return -ENOMEM;
1219 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1220 return 0;
1221 }
1222
1223 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1224 struct vm_area_struct *vma)
1225 {
1226 pgd_t *src_pgd, *dst_pgd;
1227 unsigned long next;
1228 unsigned long addr = vma->vm_start;
1229 unsigned long end = vma->vm_end;
1230 unsigned long mmun_start; /* For mmu_notifiers */
1231 unsigned long mmun_end; /* For mmu_notifiers */
1232 bool is_cow;
1233 int ret;
1234
1235 /*
1236 * Don't copy ptes where a page fault will fill them correctly.
1237 * Fork becomes much lighter when there are big shared or private
1238 * readonly mappings. The tradeoff is that copy_page_range is more
1239 * efficient than faulting.
1240 */
1241 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1242 !vma->anon_vma)
1243 return 0;
1244
1245 if (is_vm_hugetlb_page(vma))
1246 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1247
1248 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1249 /*
1250 * We do not free on error cases below as remove_vma
1251 * gets called on error from higher level routine
1252 */
1253 ret = track_pfn_copy(vma);
1254 if (ret)
1255 return ret;
1256 }
1257
1258 /*
1259 * We need to invalidate the secondary MMU mappings only when
1260 * there could be a permission downgrade on the ptes of the
1261 * parent mm. And a permission downgrade will only happen if
1262 * is_cow_mapping() returns true.
1263 */
1264 is_cow = is_cow_mapping(vma->vm_flags);
1265 mmun_start = addr;
1266 mmun_end = end;
1267 if (is_cow)
1268 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1269 mmun_end);
1270
1271 ret = 0;
1272 dst_pgd = pgd_offset(dst_mm, addr);
1273 src_pgd = pgd_offset(src_mm, addr);
1274 do {
1275 next = pgd_addr_end(addr, end);
1276 if (pgd_none_or_clear_bad(src_pgd))
1277 continue;
1278 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1279 vma, addr, next))) {
1280 ret = -ENOMEM;
1281 break;
1282 }
1283 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1284
1285 if (is_cow)
1286 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1287 return ret;
1288 }
1289
1290 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1291 struct vm_area_struct *vma, pmd_t *pmd,
1292 unsigned long addr, unsigned long end,
1293 struct zap_details *details)
1294 {
1295 struct mm_struct *mm = tlb->mm;
1296 int force_flush = 0;
1297 int rss[NR_MM_COUNTERS];
1298 spinlock_t *ptl;
1299 pte_t *start_pte;
1300 pte_t *pte;
1301 swp_entry_t entry;
1302
1303 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1304 again:
1305 init_rss_vec(rss);
1306 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1307 pte = start_pte;
1308 flush_tlb_batched_pending(mm);
1309 arch_enter_lazy_mmu_mode();
1310 do {
1311 pte_t ptent = *pte;
1312 if (pte_none(ptent))
1313 continue;
1314
1315 if (pte_present(ptent)) {
1316 struct page *page;
1317
1318 page = _vm_normal_page(vma, addr, ptent, true);
1319 if (unlikely(details) && page) {
1320 /*
1321 * unmap_shared_mapping_pages() wants to
1322 * invalidate cache without truncating:
1323 * unmap shared but keep private pages.
1324 */
1325 if (details->check_mapping &&
1326 details->check_mapping != page_rmapping(page))
1327 continue;
1328 }
1329 ptent = ptep_get_and_clear_full(mm, addr, pte,
1330 tlb->fullmm);
1331 tlb_remove_tlb_entry(tlb, pte, addr);
1332 if (unlikely(!page))
1333 continue;
1334
1335 if (!PageAnon(page)) {
1336 if (pte_dirty(ptent)) {
1337 force_flush = 1;
1338 set_page_dirty(page);
1339 }
1340 if (pte_young(ptent) &&
1341 likely(!(vma->vm_flags & VM_SEQ_READ)))
1342 mark_page_accessed(page);
1343 }
1344 rss[mm_counter(page)]--;
1345 page_remove_rmap(page, false);
1346 if (unlikely(page_mapcount(page) < 0))
1347 print_bad_pte(vma, addr, ptent, page);
1348 if (unlikely(__tlb_remove_page(tlb, page))) {
1349 force_flush = 1;
1350 addr += PAGE_SIZE;
1351 break;
1352 }
1353 continue;
1354 }
1355
1356 entry = pte_to_swp_entry(ptent);
1357 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1358 struct page *page = device_private_entry_to_page(entry);
1359
1360 if (unlikely(details && details->check_mapping)) {
1361 /*
1362 * unmap_shared_mapping_pages() wants to
1363 * invalidate cache without truncating:
1364 * unmap shared but keep private pages.
1365 */
1366 if (details->check_mapping !=
1367 page_rmapping(page))
1368 continue;
1369 }
1370
1371 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1372 rss[mm_counter(page)]--;
1373 page_remove_rmap(page, false);
1374 put_page(page);
1375 continue;
1376 }
1377
1378 /* If details->check_mapping, we leave swap entries. */
1379 if (unlikely(details))
1380 continue;
1381
1382 entry = pte_to_swp_entry(ptent);
1383 if (!non_swap_entry(entry))
1384 rss[MM_SWAPENTS]--;
1385 else if (is_migration_entry(entry)) {
1386 struct page *page;
1387
1388 page = migration_entry_to_page(entry);
1389 rss[mm_counter(page)]--;
1390 }
1391 if (unlikely(!free_swap_and_cache(entry)))
1392 print_bad_pte(vma, addr, ptent, NULL);
1393 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1394 } while (pte++, addr += PAGE_SIZE, addr != end);
1395
1396 add_mm_rss_vec(mm, rss);
1397 arch_leave_lazy_mmu_mode();
1398
1399 /* Do the actual TLB flush before dropping ptl */
1400 if (force_flush)
1401 tlb_flush_mmu_tlbonly(tlb);
1402 pte_unmap_unlock(start_pte, ptl);
1403
1404 /*
1405 * If we forced a TLB flush (either due to running out of
1406 * batch buffers or because we needed to flush dirty TLB
1407 * entries before releasing the ptl), free the batched
1408 * memory too. Restart if we didn't do everything.
1409 */
1410 if (force_flush) {
1411 force_flush = 0;
1412 tlb_flush_mmu_free(tlb);
1413 if (addr != end)
1414 goto again;
1415 }
1416
1417 return addr;
1418 }
1419
1420 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1421 struct vm_area_struct *vma, pud_t *pud,
1422 unsigned long addr, unsigned long end,
1423 struct zap_details *details)
1424 {
1425 pmd_t *pmd;
1426 unsigned long next;
1427
1428 pmd = pmd_offset(pud, addr);
1429 do {
1430 next = pmd_addr_end(addr, end);
1431 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1432 if (next - addr != HPAGE_PMD_SIZE)
1433 __split_huge_pmd(vma, pmd, addr, false, NULL);
1434 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1435 goto next;
1436 /* fall through */
1437 }
1438 /*
1439 * Here there can be other concurrent MADV_DONTNEED or
1440 * trans huge page faults running, and if the pmd is
1441 * none or trans huge it can change under us. This is
1442 * because MADV_DONTNEED holds the mmap_sem in read
1443 * mode.
1444 */
1445 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1446 goto next;
1447 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1448 next:
1449 cond_resched();
1450 } while (pmd++, addr = next, addr != end);
1451
1452 return addr;
1453 }
1454
1455 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1456 struct vm_area_struct *vma, p4d_t *p4d,
1457 unsigned long addr, unsigned long end,
1458 struct zap_details *details)
1459 {
1460 pud_t *pud;
1461 unsigned long next;
1462
1463 pud = pud_offset(p4d, addr);
1464 do {
1465 next = pud_addr_end(addr, end);
1466 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1467 if (next - addr != HPAGE_PUD_SIZE) {
1468 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1469 split_huge_pud(vma, pud, addr);
1470 } else if (zap_huge_pud(tlb, vma, pud, addr))
1471 goto next;
1472 /* fall through */
1473 }
1474 if (pud_none_or_clear_bad(pud))
1475 continue;
1476 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1477 next:
1478 cond_resched();
1479 } while (pud++, addr = next, addr != end);
1480
1481 return addr;
1482 }
1483
1484 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1485 struct vm_area_struct *vma, pgd_t *pgd,
1486 unsigned long addr, unsigned long end,
1487 struct zap_details *details)
1488 {
1489 p4d_t *p4d;
1490 unsigned long next;
1491
1492 p4d = p4d_offset(pgd, addr);
1493 do {
1494 next = p4d_addr_end(addr, end);
1495 if (p4d_none_or_clear_bad(p4d))
1496 continue;
1497 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1498 } while (p4d++, addr = next, addr != end);
1499
1500 return addr;
1501 }
1502
1503 void unmap_page_range(struct mmu_gather *tlb,
1504 struct vm_area_struct *vma,
1505 unsigned long addr, unsigned long end,
1506 struct zap_details *details)
1507 {
1508 pgd_t *pgd;
1509 unsigned long next;
1510
1511 BUG_ON(addr >= end);
1512 tlb_start_vma(tlb, vma);
1513 pgd = pgd_offset(vma->vm_mm, addr);
1514 do {
1515 next = pgd_addr_end(addr, end);
1516 if (pgd_none_or_clear_bad(pgd))
1517 continue;
1518 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1519 } while (pgd++, addr = next, addr != end);
1520 tlb_end_vma(tlb, vma);
1521 }
1522
1523
1524 static void unmap_single_vma(struct mmu_gather *tlb,
1525 struct vm_area_struct *vma, unsigned long start_addr,
1526 unsigned long end_addr,
1527 struct zap_details *details)
1528 {
1529 unsigned long start = max(vma->vm_start, start_addr);
1530 unsigned long end;
1531
1532 if (start >= vma->vm_end)
1533 return;
1534 end = min(vma->vm_end, end_addr);
1535 if (end <= vma->vm_start)
1536 return;
1537
1538 if (vma->vm_file)
1539 uprobe_munmap(vma, start, end);
1540
1541 if (unlikely(vma->vm_flags & VM_PFNMAP))
1542 untrack_pfn(vma, 0, 0);
1543
1544 if (start != end) {
1545 if (unlikely(is_vm_hugetlb_page(vma))) {
1546 /*
1547 * It is undesirable to test vma->vm_file as it
1548 * should be non-null for valid hugetlb area.
1549 * However, vm_file will be NULL in the error
1550 * cleanup path of mmap_region. When
1551 * hugetlbfs ->mmap method fails,
1552 * mmap_region() nullifies vma->vm_file
1553 * before calling this function to clean up.
1554 * Since no pte has actually been setup, it is
1555 * safe to do nothing in this case.
1556 */
1557 if (vma->vm_file) {
1558 i_mmap_lock_write(vma->vm_file->f_mapping);
1559 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1560 i_mmap_unlock_write(vma->vm_file->f_mapping);
1561 }
1562 } else
1563 unmap_page_range(tlb, vma, start, end, details);
1564 }
1565 }
1566
1567 /**
1568 * unmap_vmas - unmap a range of memory covered by a list of vma's
1569 * @tlb: address of the caller's struct mmu_gather
1570 * @vma: the starting vma
1571 * @start_addr: virtual address at which to start unmapping
1572 * @end_addr: virtual address at which to end unmapping
1573 *
1574 * Unmap all pages in the vma list.
1575 *
1576 * Only addresses between `start' and `end' will be unmapped.
1577 *
1578 * The VMA list must be sorted in ascending virtual address order.
1579 *
1580 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1581 * range after unmap_vmas() returns. So the only responsibility here is to
1582 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1583 * drops the lock and schedules.
1584 */
1585 void unmap_vmas(struct mmu_gather *tlb,
1586 struct vm_area_struct *vma, unsigned long start_addr,
1587 unsigned long end_addr)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590
1591 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1592 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1593 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1594 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1595 }
1596
1597 /**
1598 * zap_page_range - remove user pages in a given range
1599 * @vma: vm_area_struct holding the applicable pages
1600 * @start: starting address of pages to zap
1601 * @size: number of bytes to zap
1602 *
1603 * Caller must protect the VMA list
1604 */
1605 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1606 unsigned long size)
1607 {
1608 struct mm_struct *mm = vma->vm_mm;
1609 struct mmu_gather tlb;
1610 unsigned long end = start + size;
1611
1612 lru_add_drain();
1613 tlb_gather_mmu(&tlb, mm, start, end);
1614 update_hiwater_rss(mm);
1615 mmu_notifier_invalidate_range_start(mm, start, end);
1616 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1617 unmap_single_vma(&tlb, vma, start, end, NULL);
1618
1619 /*
1620 * zap_page_range does not specify whether mmap_sem should be
1621 * held for read or write. That allows parallel zap_page_range
1622 * operations to unmap a PTE and defer a flush meaning that
1623 * this call observes pte_none and fails to flush the TLB.
1624 * Rather than adding a complex API, ensure that no stale
1625 * TLB entries exist when this call returns.
1626 */
1627 flush_tlb_range(vma, start, end);
1628 }
1629
1630 mmu_notifier_invalidate_range_end(mm, start, end);
1631 tlb_finish_mmu(&tlb, start, end);
1632 }
1633
1634 /**
1635 * zap_page_range_single - remove user pages in a given range
1636 * @vma: vm_area_struct holding the applicable pages
1637 * @address: starting address of pages to zap
1638 * @size: number of bytes to zap
1639 * @details: details of shared cache invalidation
1640 *
1641 * The range must fit into one VMA.
1642 */
1643 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1644 unsigned long size, struct zap_details *details)
1645 {
1646 struct mm_struct *mm = vma->vm_mm;
1647 struct mmu_gather tlb;
1648 unsigned long end = address + size;
1649
1650 lru_add_drain();
1651 tlb_gather_mmu(&tlb, mm, address, end);
1652 update_hiwater_rss(mm);
1653 mmu_notifier_invalidate_range_start(mm, address, end);
1654 unmap_single_vma(&tlb, vma, address, end, details);
1655 mmu_notifier_invalidate_range_end(mm, address, end);
1656 tlb_finish_mmu(&tlb, address, end);
1657 }
1658
1659 /**
1660 * zap_vma_ptes - remove ptes mapping the vma
1661 * @vma: vm_area_struct holding ptes to be zapped
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
1664 *
1665 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1666 *
1667 * The entire address range must be fully contained within the vma.
1668 *
1669 */
1670 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1671 unsigned long size)
1672 {
1673 if (address < vma->vm_start || address + size > vma->vm_end ||
1674 !(vma->vm_flags & VM_PFNMAP))
1675 return;
1676
1677 zap_page_range_single(vma, address, size, NULL);
1678 }
1679 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1680
1681 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1682 spinlock_t **ptl)
1683 {
1684 pgd_t *pgd;
1685 p4d_t *p4d;
1686 pud_t *pud;
1687 pmd_t *pmd;
1688
1689 pgd = pgd_offset(mm, addr);
1690 p4d = p4d_alloc(mm, pgd, addr);
1691 if (!p4d)
1692 return NULL;
1693 pud = pud_alloc(mm, p4d, addr);
1694 if (!pud)
1695 return NULL;
1696 pmd = pmd_alloc(mm, pud, addr);
1697 if (!pmd)
1698 return NULL;
1699
1700 VM_BUG_ON(pmd_trans_huge(*pmd));
1701 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1702 }
1703
1704 /*
1705 * This is the old fallback for page remapping.
1706 *
1707 * For historical reasons, it only allows reserved pages. Only
1708 * old drivers should use this, and they needed to mark their
1709 * pages reserved for the old functions anyway.
1710 */
1711 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1712 struct page *page, pgprot_t prot)
1713 {
1714 struct mm_struct *mm = vma->vm_mm;
1715 int retval;
1716 pte_t *pte;
1717 spinlock_t *ptl;
1718
1719 retval = -EINVAL;
1720 if (PageAnon(page))
1721 goto out;
1722 retval = -ENOMEM;
1723 flush_dcache_page(page);
1724 pte = get_locked_pte(mm, addr, &ptl);
1725 if (!pte)
1726 goto out;
1727 retval = -EBUSY;
1728 if (!pte_none(*pte))
1729 goto out_unlock;
1730
1731 /* Ok, finally just insert the thing.. */
1732 get_page(page);
1733 inc_mm_counter_fast(mm, mm_counter_file(page));
1734 page_add_file_rmap(page, false);
1735 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1736
1737 retval = 0;
1738 pte_unmap_unlock(pte, ptl);
1739 return retval;
1740 out_unlock:
1741 pte_unmap_unlock(pte, ptl);
1742 out:
1743 return retval;
1744 }
1745
1746 /**
1747 * vm_insert_page - insert single page into user vma
1748 * @vma: user vma to map to
1749 * @addr: target user address of this page
1750 * @page: source kernel page
1751 *
1752 * This allows drivers to insert individual pages they've allocated
1753 * into a user vma.
1754 *
1755 * The page has to be a nice clean _individual_ kernel allocation.
1756 * If you allocate a compound page, you need to have marked it as
1757 * such (__GFP_COMP), or manually just split the page up yourself
1758 * (see split_page()).
1759 *
1760 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1761 * took an arbitrary page protection parameter. This doesn't allow
1762 * that. Your vma protection will have to be set up correctly, which
1763 * means that if you want a shared writable mapping, you'd better
1764 * ask for a shared writable mapping!
1765 *
1766 * The page does not need to be reserved.
1767 *
1768 * Usually this function is called from f_op->mmap() handler
1769 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1770 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1771 * function from other places, for example from page-fault handler.
1772 */
1773 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1774 struct page *page)
1775 {
1776 if (addr < vma->vm_start || addr >= vma->vm_end)
1777 return -EFAULT;
1778 if (!page_count(page))
1779 return -EINVAL;
1780 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1781 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1782 BUG_ON(vma->vm_flags & VM_PFNMAP);
1783 vma->vm_flags |= VM_MIXEDMAP;
1784 }
1785 return insert_page(vma, addr, page, vma->vm_page_prot);
1786 }
1787 EXPORT_SYMBOL(vm_insert_page);
1788
1789 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1790 pfn_t pfn, pgprot_t prot, bool mkwrite)
1791 {
1792 struct mm_struct *mm = vma->vm_mm;
1793 int retval;
1794 pte_t *pte, entry;
1795 spinlock_t *ptl;
1796
1797 retval = -ENOMEM;
1798 pte = get_locked_pte(mm, addr, &ptl);
1799 if (!pte)
1800 goto out;
1801 retval = -EBUSY;
1802 if (!pte_none(*pte)) {
1803 if (mkwrite) {
1804 /*
1805 * For read faults on private mappings the PFN passed
1806 * in may not match the PFN we have mapped if the
1807 * mapped PFN is a writeable COW page. In the mkwrite
1808 * case we are creating a writable PTE for a shared
1809 * mapping and we expect the PFNs to match.
1810 */
1811 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1812 goto out_unlock;
1813 entry = *pte;
1814 goto out_mkwrite;
1815 } else
1816 goto out_unlock;
1817 }
1818
1819 /* Ok, finally just insert the thing.. */
1820 if (pfn_t_devmap(pfn))
1821 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1822 else
1823 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1824
1825 out_mkwrite:
1826 if (mkwrite) {
1827 entry = pte_mkyoung(entry);
1828 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1829 }
1830
1831 set_pte_at(mm, addr, pte, entry);
1832 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1833
1834 retval = 0;
1835 out_unlock:
1836 pte_unmap_unlock(pte, ptl);
1837 out:
1838 return retval;
1839 }
1840
1841 /**
1842 * vm_insert_pfn - insert single pfn into user vma
1843 * @vma: user vma to map to
1844 * @addr: target user address of this page
1845 * @pfn: source kernel pfn
1846 *
1847 * Similar to vm_insert_page, this allows drivers to insert individual pages
1848 * they've allocated into a user vma. Same comments apply.
1849 *
1850 * This function should only be called from a vm_ops->fault handler, and
1851 * in that case the handler should return NULL.
1852 *
1853 * vma cannot be a COW mapping.
1854 *
1855 * As this is called only for pages that do not currently exist, we
1856 * do not need to flush old virtual caches or the TLB.
1857 */
1858 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1859 unsigned long pfn)
1860 {
1861 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1862 }
1863 EXPORT_SYMBOL(vm_insert_pfn);
1864
1865 /**
1866 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1867 * @vma: user vma to map to
1868 * @addr: target user address of this page
1869 * @pfn: source kernel pfn
1870 * @pgprot: pgprot flags for the inserted page
1871 *
1872 * This is exactly like vm_insert_pfn, except that it allows drivers to
1873 * to override pgprot on a per-page basis.
1874 *
1875 * This only makes sense for IO mappings, and it makes no sense for
1876 * cow mappings. In general, using multiple vmas is preferable;
1877 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1878 * impractical.
1879 */
1880 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1881 unsigned long pfn, pgprot_t pgprot)
1882 {
1883 int ret;
1884 /*
1885 * Technically, architectures with pte_special can avoid all these
1886 * restrictions (same for remap_pfn_range). However we would like
1887 * consistency in testing and feature parity among all, so we should
1888 * try to keep these invariants in place for everybody.
1889 */
1890 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1891 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1892 (VM_PFNMAP|VM_MIXEDMAP));
1893 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1894 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1895
1896 if (addr < vma->vm_start || addr >= vma->vm_end)
1897 return -EFAULT;
1898
1899 if (!pfn_modify_allowed(pfn, pgprot))
1900 return -EACCES;
1901
1902 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1903
1904 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1905 false);
1906
1907 return ret;
1908 }
1909 EXPORT_SYMBOL(vm_insert_pfn_prot);
1910
1911 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1912 {
1913 /* these checks mirror the abort conditions in vm_normal_page */
1914 if (vma->vm_flags & VM_MIXEDMAP)
1915 return true;
1916 if (pfn_t_devmap(pfn))
1917 return true;
1918 if (pfn_t_special(pfn))
1919 return true;
1920 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1921 return true;
1922 return false;
1923 }
1924
1925 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1926 pfn_t pfn, bool mkwrite)
1927 {
1928 pgprot_t pgprot = vma->vm_page_prot;
1929
1930 BUG_ON(!vm_mixed_ok(vma, pfn));
1931
1932 if (addr < vma->vm_start || addr >= vma->vm_end)
1933 return -EFAULT;
1934
1935 track_pfn_insert(vma, &pgprot, pfn);
1936
1937 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1938 return -EACCES;
1939
1940 /*
1941 * If we don't have pte special, then we have to use the pfn_valid()
1942 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1943 * refcount the page if pfn_valid is true (hence insert_page rather
1944 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1945 * without pte special, it would there be refcounted as a normal page.
1946 */
1947 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1948 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1949 struct page *page;
1950
1951 /*
1952 * At this point we are committed to insert_page()
1953 * regardless of whether the caller specified flags that
1954 * result in pfn_t_has_page() == false.
1955 */
1956 page = pfn_to_page(pfn_t_to_pfn(pfn));
1957 return insert_page(vma, addr, page, pgprot);
1958 }
1959 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1960 }
1961
1962 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1963 pfn_t pfn)
1964 {
1965 return __vm_insert_mixed(vma, addr, pfn, false);
1966
1967 }
1968 EXPORT_SYMBOL(vm_insert_mixed);
1969
1970 /*
1971 * If the insertion of PTE failed because someone else already added a
1972 * different entry in the mean time, we treat that as success as we assume
1973 * the same entry was actually inserted.
1974 */
1975
1976 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977 unsigned long addr, pfn_t pfn)
1978 {
1979 int err;
1980
1981 err = __vm_insert_mixed(vma, addr, pfn, true);
1982 if (err == -ENOMEM)
1983 return VM_FAULT_OOM;
1984 if (err < 0 && err != -EBUSY)
1985 return VM_FAULT_SIGBUS;
1986 return VM_FAULT_NOPAGE;
1987 }
1988 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1989
1990 /*
1991 * maps a range of physical memory into the requested pages. the old
1992 * mappings are removed. any references to nonexistent pages results
1993 * in null mappings (currently treated as "copy-on-access")
1994 */
1995 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1996 unsigned long addr, unsigned long end,
1997 unsigned long pfn, pgprot_t prot)
1998 {
1999 pte_t *pte;
2000 spinlock_t *ptl;
2001 int err = 0;
2002
2003 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2004 if (!pte)
2005 return -ENOMEM;
2006 arch_enter_lazy_mmu_mode();
2007 do {
2008 BUG_ON(!pte_none(*pte));
2009 if (!pfn_modify_allowed(pfn, prot)) {
2010 err = -EACCES;
2011 break;
2012 }
2013 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2014 pfn++;
2015 } while (pte++, addr += PAGE_SIZE, addr != end);
2016 arch_leave_lazy_mmu_mode();
2017 pte_unmap_unlock(pte - 1, ptl);
2018 return err;
2019 }
2020
2021 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2022 unsigned long addr, unsigned long end,
2023 unsigned long pfn, pgprot_t prot)
2024 {
2025 pmd_t *pmd;
2026 unsigned long next;
2027 int err;
2028
2029 pfn -= addr >> PAGE_SHIFT;
2030 pmd = pmd_alloc(mm, pud, addr);
2031 if (!pmd)
2032 return -ENOMEM;
2033 VM_BUG_ON(pmd_trans_huge(*pmd));
2034 do {
2035 next = pmd_addr_end(addr, end);
2036 err = remap_pte_range(mm, pmd, addr, next,
2037 pfn + (addr >> PAGE_SHIFT), prot);
2038 if (err)
2039 return err;
2040 } while (pmd++, addr = next, addr != end);
2041 return 0;
2042 }
2043
2044 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2045 unsigned long addr, unsigned long end,
2046 unsigned long pfn, pgprot_t prot)
2047 {
2048 pud_t *pud;
2049 unsigned long next;
2050 int err;
2051
2052 pfn -= addr >> PAGE_SHIFT;
2053 pud = pud_alloc(mm, p4d, addr);
2054 if (!pud)
2055 return -ENOMEM;
2056 do {
2057 next = pud_addr_end(addr, end);
2058 err = remap_pmd_range(mm, pud, addr, next,
2059 pfn + (addr >> PAGE_SHIFT), prot);
2060 if (err)
2061 return err;
2062 } while (pud++, addr = next, addr != end);
2063 return 0;
2064 }
2065
2066 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2067 unsigned long addr, unsigned long end,
2068 unsigned long pfn, pgprot_t prot)
2069 {
2070 p4d_t *p4d;
2071 unsigned long next;
2072 int err;
2073
2074 pfn -= addr >> PAGE_SHIFT;
2075 p4d = p4d_alloc(mm, pgd, addr);
2076 if (!p4d)
2077 return -ENOMEM;
2078 do {
2079 next = p4d_addr_end(addr, end);
2080 err = remap_pud_range(mm, p4d, addr, next,
2081 pfn + (addr >> PAGE_SHIFT), prot);
2082 if (err)
2083 return err;
2084 } while (p4d++, addr = next, addr != end);
2085 return 0;
2086 }
2087
2088 /**
2089 * remap_pfn_range - remap kernel memory to userspace
2090 * @vma: user vma to map to
2091 * @addr: target user address to start at
2092 * @pfn: physical address of kernel memory
2093 * @size: size of map area
2094 * @prot: page protection flags for this mapping
2095 *
2096 * Note: this is only safe if the mm semaphore is held when called.
2097 */
2098 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2099 unsigned long pfn, unsigned long size, pgprot_t prot)
2100 {
2101 pgd_t *pgd;
2102 unsigned long next;
2103 unsigned long end = addr + PAGE_ALIGN(size);
2104 struct mm_struct *mm = vma->vm_mm;
2105 unsigned long remap_pfn = pfn;
2106 int err;
2107
2108 /*
2109 * Physically remapped pages are special. Tell the
2110 * rest of the world about it:
2111 * VM_IO tells people not to look at these pages
2112 * (accesses can have side effects).
2113 * VM_PFNMAP tells the core MM that the base pages are just
2114 * raw PFN mappings, and do not have a "struct page" associated
2115 * with them.
2116 * VM_DONTEXPAND
2117 * Disable vma merging and expanding with mremap().
2118 * VM_DONTDUMP
2119 * Omit vma from core dump, even when VM_IO turned off.
2120 *
2121 * There's a horrible special case to handle copy-on-write
2122 * behaviour that some programs depend on. We mark the "original"
2123 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2124 * See vm_normal_page() for details.
2125 */
2126 if (is_cow_mapping(vma->vm_flags)) {
2127 if (addr != vma->vm_start || end != vma->vm_end)
2128 return -EINVAL;
2129 vma->vm_pgoff = pfn;
2130 }
2131
2132 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2133 if (err)
2134 return -EINVAL;
2135
2136 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2137
2138 BUG_ON(addr >= end);
2139 pfn -= addr >> PAGE_SHIFT;
2140 pgd = pgd_offset(mm, addr);
2141 flush_cache_range(vma, addr, end);
2142 do {
2143 next = pgd_addr_end(addr, end);
2144 err = remap_p4d_range(mm, pgd, addr, next,
2145 pfn + (addr >> PAGE_SHIFT), prot);
2146 if (err)
2147 break;
2148 } while (pgd++, addr = next, addr != end);
2149
2150 if (err)
2151 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2152
2153 return err;
2154 }
2155 EXPORT_SYMBOL(remap_pfn_range);
2156
2157 /**
2158 * vm_iomap_memory - remap memory to userspace
2159 * @vma: user vma to map to
2160 * @start: start of area
2161 * @len: size of area
2162 *
2163 * This is a simplified io_remap_pfn_range() for common driver use. The
2164 * driver just needs to give us the physical memory range to be mapped,
2165 * we'll figure out the rest from the vma information.
2166 *
2167 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2168 * whatever write-combining details or similar.
2169 */
2170 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2171 {
2172 unsigned long vm_len, pfn, pages;
2173
2174 /* Check that the physical memory area passed in looks valid */
2175 if (start + len < start)
2176 return -EINVAL;
2177 /*
2178 * You *really* shouldn't map things that aren't page-aligned,
2179 * but we've historically allowed it because IO memory might
2180 * just have smaller alignment.
2181 */
2182 len += start & ~PAGE_MASK;
2183 pfn = start >> PAGE_SHIFT;
2184 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2185 if (pfn + pages < pfn)
2186 return -EINVAL;
2187
2188 /* We start the mapping 'vm_pgoff' pages into the area */
2189 if (vma->vm_pgoff > pages)
2190 return -EINVAL;
2191 pfn += vma->vm_pgoff;
2192 pages -= vma->vm_pgoff;
2193
2194 /* Can we fit all of the mapping? */
2195 vm_len = vma->vm_end - vma->vm_start;
2196 if (vm_len >> PAGE_SHIFT > pages)
2197 return -EINVAL;
2198
2199 /* Ok, let it rip */
2200 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2201 }
2202 EXPORT_SYMBOL(vm_iomap_memory);
2203
2204 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2205 unsigned long addr, unsigned long end,
2206 pte_fn_t fn, void *data)
2207 {
2208 pte_t *pte;
2209 int err;
2210 pgtable_t token;
2211 spinlock_t *uninitialized_var(ptl);
2212
2213 pte = (mm == &init_mm) ?
2214 pte_alloc_kernel(pmd, addr) :
2215 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2216 if (!pte)
2217 return -ENOMEM;
2218
2219 BUG_ON(pmd_huge(*pmd));
2220
2221 arch_enter_lazy_mmu_mode();
2222
2223 token = pmd_pgtable(*pmd);
2224
2225 do {
2226 err = fn(pte++, token, addr, data);
2227 if (err)
2228 break;
2229 } while (addr += PAGE_SIZE, addr != end);
2230
2231 arch_leave_lazy_mmu_mode();
2232
2233 if (mm != &init_mm)
2234 pte_unmap_unlock(pte-1, ptl);
2235 return err;
2236 }
2237
2238 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2239 unsigned long addr, unsigned long end,
2240 pte_fn_t fn, void *data)
2241 {
2242 pmd_t *pmd;
2243 unsigned long next;
2244 int err;
2245
2246 BUG_ON(pud_huge(*pud));
2247
2248 pmd = pmd_alloc(mm, pud, addr);
2249 if (!pmd)
2250 return -ENOMEM;
2251 do {
2252 next = pmd_addr_end(addr, end);
2253 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2254 if (err)
2255 break;
2256 } while (pmd++, addr = next, addr != end);
2257 return err;
2258 }
2259
2260 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2261 unsigned long addr, unsigned long end,
2262 pte_fn_t fn, void *data)
2263 {
2264 pud_t *pud;
2265 unsigned long next;
2266 int err;
2267
2268 pud = pud_alloc(mm, p4d, addr);
2269 if (!pud)
2270 return -ENOMEM;
2271 do {
2272 next = pud_addr_end(addr, end);
2273 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2274 if (err)
2275 break;
2276 } while (pud++, addr = next, addr != end);
2277 return err;
2278 }
2279
2280 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2281 unsigned long addr, unsigned long end,
2282 pte_fn_t fn, void *data)
2283 {
2284 p4d_t *p4d;
2285 unsigned long next;
2286 int err;
2287
2288 p4d = p4d_alloc(mm, pgd, addr);
2289 if (!p4d)
2290 return -ENOMEM;
2291 do {
2292 next = p4d_addr_end(addr, end);
2293 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2294 if (err)
2295 break;
2296 } while (p4d++, addr = next, addr != end);
2297 return err;
2298 }
2299
2300 /*
2301 * Scan a region of virtual memory, filling in page tables as necessary
2302 * and calling a provided function on each leaf page table.
2303 */
2304 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2305 unsigned long size, pte_fn_t fn, void *data)
2306 {
2307 pgd_t *pgd;
2308 unsigned long next;
2309 unsigned long end = addr + size;
2310 int err;
2311
2312 if (WARN_ON(addr >= end))
2313 return -EINVAL;
2314
2315 pgd = pgd_offset(mm, addr);
2316 do {
2317 next = pgd_addr_end(addr, end);
2318 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2319 if (err)
2320 break;
2321 } while (pgd++, addr = next, addr != end);
2322
2323 return err;
2324 }
2325 EXPORT_SYMBOL_GPL(apply_to_page_range);
2326
2327 /*
2328 * handle_pte_fault chooses page fault handler according to an entry which was
2329 * read non-atomically. Before making any commitment, on those architectures
2330 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2331 * parts, do_swap_page must check under lock before unmapping the pte and
2332 * proceeding (but do_wp_page is only called after already making such a check;
2333 * and do_anonymous_page can safely check later on).
2334 */
2335 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2336 pte_t *page_table, pte_t orig_pte)
2337 {
2338 int same = 1;
2339 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2340 if (sizeof(pte_t) > sizeof(unsigned long)) {
2341 spinlock_t *ptl = pte_lockptr(mm, pmd);
2342 spin_lock(ptl);
2343 same = pte_same(*page_table, orig_pte);
2344 spin_unlock(ptl);
2345 }
2346 #endif
2347 pte_unmap(page_table);
2348 return same;
2349 }
2350
2351 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2352 {
2353 debug_dma_assert_idle(src);
2354
2355 /*
2356 * If the source page was a PFN mapping, we don't have
2357 * a "struct page" for it. We do a best-effort copy by
2358 * just copying from the original user address. If that
2359 * fails, we just zero-fill it. Live with it.
2360 */
2361 if (unlikely(!src)) {
2362 void *kaddr = kmap_atomic(dst);
2363 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2364
2365 /*
2366 * This really shouldn't fail, because the page is there
2367 * in the page tables. But it might just be unreadable,
2368 * in which case we just give up and fill the result with
2369 * zeroes.
2370 */
2371 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2372 clear_page(kaddr);
2373 kunmap_atomic(kaddr);
2374 flush_dcache_page(dst);
2375 } else
2376 copy_user_highpage(dst, src, va, vma);
2377 }
2378
2379 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2380 {
2381 struct file *vm_file = vma->vm_file;
2382
2383 if (vm_file)
2384 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2385
2386 /*
2387 * Special mappings (e.g. VDSO) do not have any file so fake
2388 * a default GFP_KERNEL for them.
2389 */
2390 return GFP_KERNEL;
2391 }
2392
2393 /*
2394 * Notify the address space that the page is about to become writable so that
2395 * it can prohibit this or wait for the page to get into an appropriate state.
2396 *
2397 * We do this without the lock held, so that it can sleep if it needs to.
2398 */
2399 static int do_page_mkwrite(struct vm_fault *vmf)
2400 {
2401 int ret;
2402 struct page *page = vmf->page;
2403 unsigned int old_flags = vmf->flags;
2404
2405 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2406
2407 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2408 /* Restore original flags so that caller is not surprised */
2409 vmf->flags = old_flags;
2410 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2411 return ret;
2412 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2413 lock_page(page);
2414 if (!page->mapping) {
2415 unlock_page(page);
2416 return 0; /* retry */
2417 }
2418 ret |= VM_FAULT_LOCKED;
2419 } else
2420 VM_BUG_ON_PAGE(!PageLocked(page), page);
2421 return ret;
2422 }
2423
2424 /*
2425 * Handle dirtying of a page in shared file mapping on a write fault.
2426 *
2427 * The function expects the page to be locked and unlocks it.
2428 */
2429 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2430 struct page *page)
2431 {
2432 struct address_space *mapping;
2433 bool dirtied;
2434 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2435
2436 dirtied = set_page_dirty(page);
2437 VM_BUG_ON_PAGE(PageAnon(page), page);
2438 /*
2439 * Take a local copy of the address_space - page.mapping may be zeroed
2440 * by truncate after unlock_page(). The address_space itself remains
2441 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2442 * release semantics to prevent the compiler from undoing this copying.
2443 */
2444 mapping = page_rmapping(page);
2445 unlock_page(page);
2446
2447 if ((dirtied || page_mkwrite) && mapping) {
2448 /*
2449 * Some device drivers do not set page.mapping
2450 * but still dirty their pages
2451 */
2452 balance_dirty_pages_ratelimited(mapping);
2453 }
2454
2455 if (!page_mkwrite)
2456 file_update_time(vma->vm_file);
2457 }
2458
2459 /*
2460 * Handle write page faults for pages that can be reused in the current vma
2461 *
2462 * This can happen either due to the mapping being with the VM_SHARED flag,
2463 * or due to us being the last reference standing to the page. In either
2464 * case, all we need to do here is to mark the page as writable and update
2465 * any related book-keeping.
2466 */
2467 static inline void wp_page_reuse(struct vm_fault *vmf)
2468 __releases(vmf->ptl)
2469 {
2470 struct vm_area_struct *vma = vmf->vma;
2471 struct page *page = vmf->page;
2472 pte_t entry;
2473 /*
2474 * Clear the pages cpupid information as the existing
2475 * information potentially belongs to a now completely
2476 * unrelated process.
2477 */
2478 if (page)
2479 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2480
2481 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2482 entry = pte_mkyoung(vmf->orig_pte);
2483 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2484 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2485 update_mmu_cache(vma, vmf->address, vmf->pte);
2486 pte_unmap_unlock(vmf->pte, vmf->ptl);
2487 }
2488
2489 /*
2490 * Handle the case of a page which we actually need to copy to a new page.
2491 *
2492 * Called with mmap_sem locked and the old page referenced, but
2493 * without the ptl held.
2494 *
2495 * High level logic flow:
2496 *
2497 * - Allocate a page, copy the content of the old page to the new one.
2498 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2499 * - Take the PTL. If the pte changed, bail out and release the allocated page
2500 * - If the pte is still the way we remember it, update the page table and all
2501 * relevant references. This includes dropping the reference the page-table
2502 * held to the old page, as well as updating the rmap.
2503 * - In any case, unlock the PTL and drop the reference we took to the old page.
2504 */
2505 static int wp_page_copy(struct vm_fault *vmf)
2506 {
2507 struct vm_area_struct *vma = vmf->vma;
2508 struct mm_struct *mm = vma->vm_mm;
2509 struct page *old_page = vmf->page;
2510 struct page *new_page = NULL;
2511 pte_t entry;
2512 int page_copied = 0;
2513 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2514 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2515 struct mem_cgroup *memcg;
2516
2517 if (unlikely(anon_vma_prepare(vma)))
2518 goto oom;
2519
2520 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2521 new_page = alloc_zeroed_user_highpage_movable(vma,
2522 vmf->address);
2523 if (!new_page)
2524 goto oom;
2525 } else {
2526 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2527 vmf->address);
2528 if (!new_page)
2529 goto oom;
2530 cow_user_page(new_page, old_page, vmf->address, vma);
2531 }
2532
2533 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2534 goto oom_free_new;
2535
2536 __SetPageUptodate(new_page);
2537
2538 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2539
2540 /*
2541 * Re-check the pte - we dropped the lock
2542 */
2543 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2544 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2545 if (old_page) {
2546 if (!PageAnon(old_page)) {
2547 dec_mm_counter_fast(mm,
2548 mm_counter_file(old_page));
2549 inc_mm_counter_fast(mm, MM_ANONPAGES);
2550 }
2551 } else {
2552 inc_mm_counter_fast(mm, MM_ANONPAGES);
2553 }
2554 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2555 entry = mk_pte(new_page, vma->vm_page_prot);
2556 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2557 /*
2558 * Clear the pte entry and flush it first, before updating the
2559 * pte with the new entry. This will avoid a race condition
2560 * seen in the presence of one thread doing SMC and another
2561 * thread doing COW.
2562 */
2563 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2564 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2565 mem_cgroup_commit_charge(new_page, memcg, false, false);
2566 lru_cache_add_active_or_unevictable(new_page, vma);
2567 /*
2568 * We call the notify macro here because, when using secondary
2569 * mmu page tables (such as kvm shadow page tables), we want the
2570 * new page to be mapped directly into the secondary page table.
2571 */
2572 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2573 update_mmu_cache(vma, vmf->address, vmf->pte);
2574 if (old_page) {
2575 /*
2576 * Only after switching the pte to the new page may
2577 * we remove the mapcount here. Otherwise another
2578 * process may come and find the rmap count decremented
2579 * before the pte is switched to the new page, and
2580 * "reuse" the old page writing into it while our pte
2581 * here still points into it and can be read by other
2582 * threads.
2583 *
2584 * The critical issue is to order this
2585 * page_remove_rmap with the ptp_clear_flush above.
2586 * Those stores are ordered by (if nothing else,)
2587 * the barrier present in the atomic_add_negative
2588 * in page_remove_rmap.
2589 *
2590 * Then the TLB flush in ptep_clear_flush ensures that
2591 * no process can access the old page before the
2592 * decremented mapcount is visible. And the old page
2593 * cannot be reused until after the decremented
2594 * mapcount is visible. So transitively, TLBs to
2595 * old page will be flushed before it can be reused.
2596 */
2597 page_remove_rmap(old_page, false);
2598 }
2599
2600 /* Free the old page.. */
2601 new_page = old_page;
2602 page_copied = 1;
2603 } else {
2604 mem_cgroup_cancel_charge(new_page, memcg, false);
2605 }
2606
2607 if (new_page)
2608 put_page(new_page);
2609
2610 pte_unmap_unlock(vmf->pte, vmf->ptl);
2611 /*
2612 * No need to double call mmu_notifier->invalidate_range() callback as
2613 * the above ptep_clear_flush_notify() did already call it.
2614 */
2615 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2616 if (old_page) {
2617 /*
2618 * Don't let another task, with possibly unlocked vma,
2619 * keep the mlocked page.
2620 */
2621 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2622 lock_page(old_page); /* LRU manipulation */
2623 if (PageMlocked(old_page))
2624 munlock_vma_page(old_page);
2625 unlock_page(old_page);
2626 }
2627 put_page(old_page);
2628 }
2629 return page_copied ? VM_FAULT_WRITE : 0;
2630 oom_free_new:
2631 put_page(new_page);
2632 oom:
2633 if (old_page)
2634 put_page(old_page);
2635 return VM_FAULT_OOM;
2636 }
2637
2638 /**
2639 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2640 * writeable once the page is prepared
2641 *
2642 * @vmf: structure describing the fault
2643 *
2644 * This function handles all that is needed to finish a write page fault in a
2645 * shared mapping due to PTE being read-only once the mapped page is prepared.
2646 * It handles locking of PTE and modifying it. The function returns
2647 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2648 * lock.
2649 *
2650 * The function expects the page to be locked or other protection against
2651 * concurrent faults / writeback (such as DAX radix tree locks).
2652 */
2653 int finish_mkwrite_fault(struct vm_fault *vmf)
2654 {
2655 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2656 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2657 &vmf->ptl);
2658 /*
2659 * We might have raced with another page fault while we released the
2660 * pte_offset_map_lock.
2661 */
2662 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2663 pte_unmap_unlock(vmf->pte, vmf->ptl);
2664 return VM_FAULT_NOPAGE;
2665 }
2666 wp_page_reuse(vmf);
2667 return 0;
2668 }
2669
2670 /*
2671 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2672 * mapping
2673 */
2674 static int wp_pfn_shared(struct vm_fault *vmf)
2675 {
2676 struct vm_area_struct *vma = vmf->vma;
2677
2678 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2679 int ret;
2680
2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 vmf->flags |= FAULT_FLAG_MKWRITE;
2683 ret = vma->vm_ops->pfn_mkwrite(vmf);
2684 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2685 return ret;
2686 return finish_mkwrite_fault(vmf);
2687 }
2688 wp_page_reuse(vmf);
2689 return VM_FAULT_WRITE;
2690 }
2691
2692 static int wp_page_shared(struct vm_fault *vmf)
2693 __releases(vmf->ptl)
2694 {
2695 struct vm_area_struct *vma = vmf->vma;
2696
2697 get_page(vmf->page);
2698
2699 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2700 int tmp;
2701
2702 pte_unmap_unlock(vmf->pte, vmf->ptl);
2703 tmp = do_page_mkwrite(vmf);
2704 if (unlikely(!tmp || (tmp &
2705 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2706 put_page(vmf->page);
2707 return tmp;
2708 }
2709 tmp = finish_mkwrite_fault(vmf);
2710 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2711 unlock_page(vmf->page);
2712 put_page(vmf->page);
2713 return tmp;
2714 }
2715 } else {
2716 wp_page_reuse(vmf);
2717 lock_page(vmf->page);
2718 }
2719 fault_dirty_shared_page(vma, vmf->page);
2720 put_page(vmf->page);
2721
2722 return VM_FAULT_WRITE;
2723 }
2724
2725 /*
2726 * This routine handles present pages, when users try to write
2727 * to a shared page. It is done by copying the page to a new address
2728 * and decrementing the shared-page counter for the old page.
2729 *
2730 * Note that this routine assumes that the protection checks have been
2731 * done by the caller (the low-level page fault routine in most cases).
2732 * Thus we can safely just mark it writable once we've done any necessary
2733 * COW.
2734 *
2735 * We also mark the page dirty at this point even though the page will
2736 * change only once the write actually happens. This avoids a few races,
2737 * and potentially makes it more efficient.
2738 *
2739 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2740 * but allow concurrent faults), with pte both mapped and locked.
2741 * We return with mmap_sem still held, but pte unmapped and unlocked.
2742 */
2743 static int do_wp_page(struct vm_fault *vmf)
2744 __releases(vmf->ptl)
2745 {
2746 struct vm_area_struct *vma = vmf->vma;
2747
2748 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2749 if (!vmf->page) {
2750 /*
2751 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2752 * VM_PFNMAP VMA.
2753 *
2754 * We should not cow pages in a shared writeable mapping.
2755 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2756 */
2757 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2758 (VM_WRITE|VM_SHARED))
2759 return wp_pfn_shared(vmf);
2760
2761 pte_unmap_unlock(vmf->pte, vmf->ptl);
2762 return wp_page_copy(vmf);
2763 }
2764
2765 /*
2766 * Take out anonymous pages first, anonymous shared vmas are
2767 * not dirty accountable.
2768 */
2769 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2770 int total_map_swapcount;
2771 if (!trylock_page(vmf->page)) {
2772 get_page(vmf->page);
2773 pte_unmap_unlock(vmf->pte, vmf->ptl);
2774 lock_page(vmf->page);
2775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2776 vmf->address, &vmf->ptl);
2777 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2778 unlock_page(vmf->page);
2779 pte_unmap_unlock(vmf->pte, vmf->ptl);
2780 put_page(vmf->page);
2781 return 0;
2782 }
2783 put_page(vmf->page);
2784 }
2785 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2786 if (total_map_swapcount == 1) {
2787 /*
2788 * The page is all ours. Move it to
2789 * our anon_vma so the rmap code will
2790 * not search our parent or siblings.
2791 * Protected against the rmap code by
2792 * the page lock.
2793 */
2794 page_move_anon_rmap(vmf->page, vma);
2795 }
2796 unlock_page(vmf->page);
2797 wp_page_reuse(vmf);
2798 return VM_FAULT_WRITE;
2799 }
2800 unlock_page(vmf->page);
2801 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2802 (VM_WRITE|VM_SHARED))) {
2803 return wp_page_shared(vmf);
2804 }
2805
2806 /*
2807 * Ok, we need to copy. Oh, well..
2808 */
2809 get_page(vmf->page);
2810
2811 pte_unmap_unlock(vmf->pte, vmf->ptl);
2812 return wp_page_copy(vmf);
2813 }
2814
2815 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2816 unsigned long start_addr, unsigned long end_addr,
2817 struct zap_details *details)
2818 {
2819 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2820 }
2821
2822 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2823 struct zap_details *details)
2824 {
2825 struct vm_area_struct *vma;
2826 pgoff_t vba, vea, zba, zea;
2827
2828 vma_interval_tree_foreach(vma, root,
2829 details->first_index, details->last_index) {
2830
2831 vba = vma->vm_pgoff;
2832 vea = vba + vma_pages(vma) - 1;
2833 zba = details->first_index;
2834 if (zba < vba)
2835 zba = vba;
2836 zea = details->last_index;
2837 if (zea > vea)
2838 zea = vea;
2839
2840 unmap_mapping_range_vma(vma,
2841 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2842 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2843 details);
2844 }
2845 }
2846
2847 /**
2848 * unmap_mapping_pages() - Unmap pages from processes.
2849 * @mapping: The address space containing pages to be unmapped.
2850 * @start: Index of first page to be unmapped.
2851 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2852 * @even_cows: Whether to unmap even private COWed pages.
2853 *
2854 * Unmap the pages in this address space from any userspace process which
2855 * has them mmaped. Generally, you want to remove COWed pages as well when
2856 * a file is being truncated, but not when invalidating pages from the page
2857 * cache.
2858 */
2859 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2860 pgoff_t nr, bool even_cows)
2861 {
2862 struct zap_details details = { };
2863
2864 details.check_mapping = even_cows ? NULL : mapping;
2865 details.first_index = start;
2866 details.last_index = start + nr - 1;
2867 if (details.last_index < details.first_index)
2868 details.last_index = ULONG_MAX;
2869
2870 i_mmap_lock_write(mapping);
2871 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2872 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2873 i_mmap_unlock_write(mapping);
2874 }
2875
2876 /**
2877 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2878 * address_space corresponding to the specified byte range in the underlying
2879 * file.
2880 *
2881 * @mapping: the address space containing mmaps to be unmapped.
2882 * @holebegin: byte in first page to unmap, relative to the start of
2883 * the underlying file. This will be rounded down to a PAGE_SIZE
2884 * boundary. Note that this is different from truncate_pagecache(), which
2885 * must keep the partial page. In contrast, we must get rid of
2886 * partial pages.
2887 * @holelen: size of prospective hole in bytes. This will be rounded
2888 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2889 * end of the file.
2890 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2891 * but 0 when invalidating pagecache, don't throw away private data.
2892 */
2893 void unmap_mapping_range(struct address_space *mapping,
2894 loff_t const holebegin, loff_t const holelen, int even_cows)
2895 {
2896 pgoff_t hba = holebegin >> PAGE_SHIFT;
2897 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2898
2899 /* Check for overflow. */
2900 if (sizeof(holelen) > sizeof(hlen)) {
2901 long long holeend =
2902 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2903 if (holeend & ~(long long)ULONG_MAX)
2904 hlen = ULONG_MAX - hba + 1;
2905 }
2906
2907 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2908 }
2909 EXPORT_SYMBOL(unmap_mapping_range);
2910
2911 /*
2912 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2913 * but allow concurrent faults), and pte mapped but not yet locked.
2914 * We return with pte unmapped and unlocked.
2915 *
2916 * We return with the mmap_sem locked or unlocked in the same cases
2917 * as does filemap_fault().
2918 */
2919 int do_swap_page(struct vm_fault *vmf)
2920 {
2921 struct vm_area_struct *vma = vmf->vma;
2922 struct page *page = NULL, *swapcache;
2923 struct mem_cgroup *memcg;
2924 swp_entry_t entry;
2925 pte_t pte;
2926 int locked;
2927 int exclusive = 0;
2928 int ret = 0;
2929
2930 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2931 goto out;
2932
2933 entry = pte_to_swp_entry(vmf->orig_pte);
2934 if (unlikely(non_swap_entry(entry))) {
2935 if (is_migration_entry(entry)) {
2936 migration_entry_wait(vma->vm_mm, vmf->pmd,
2937 vmf->address);
2938 } else if (is_device_private_entry(entry)) {
2939 /*
2940 * For un-addressable device memory we call the pgmap
2941 * fault handler callback. The callback must migrate
2942 * the page back to some CPU accessible page.
2943 */
2944 ret = device_private_entry_fault(vma, vmf->address, entry,
2945 vmf->flags, vmf->pmd);
2946 } else if (is_hwpoison_entry(entry)) {
2947 ret = VM_FAULT_HWPOISON;
2948 } else {
2949 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2950 ret = VM_FAULT_SIGBUS;
2951 }
2952 goto out;
2953 }
2954
2955
2956 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2957 page = lookup_swap_cache(entry, vma, vmf->address);
2958 swapcache = page;
2959
2960 if (!page) {
2961 struct swap_info_struct *si = swp_swap_info(entry);
2962
2963 if (si->flags & SWP_SYNCHRONOUS_IO &&
2964 __swap_count(si, entry) == 1) {
2965 /* skip swapcache */
2966 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2967 vmf->address);
2968 if (page) {
2969 __SetPageLocked(page);
2970 __SetPageSwapBacked(page);
2971 set_page_private(page, entry.val);
2972 lru_cache_add_anon(page);
2973 swap_readpage(page, true);
2974 }
2975 } else {
2976 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2977 vmf);
2978 swapcache = page;
2979 }
2980
2981 if (!page) {
2982 /*
2983 * Back out if somebody else faulted in this pte
2984 * while we released the pte lock.
2985 */
2986 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2987 vmf->address, &vmf->ptl);
2988 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2989 ret = VM_FAULT_OOM;
2990 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2991 goto unlock;
2992 }
2993
2994 /* Had to read the page from swap area: Major fault */
2995 ret = VM_FAULT_MAJOR;
2996 count_vm_event(PGMAJFAULT);
2997 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2998 } else if (PageHWPoison(page)) {
2999 /*
3000 * hwpoisoned dirty swapcache pages are kept for killing
3001 * owner processes (which may be unknown at hwpoison time)
3002 */
3003 ret = VM_FAULT_HWPOISON;
3004 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005 goto out_release;
3006 }
3007
3008 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3009
3010 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3011 if (!locked) {
3012 ret |= VM_FAULT_RETRY;
3013 goto out_release;
3014 }
3015
3016 /*
3017 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3018 * release the swapcache from under us. The page pin, and pte_same
3019 * test below, are not enough to exclude that. Even if it is still
3020 * swapcache, we need to check that the page's swap has not changed.
3021 */
3022 if (unlikely((!PageSwapCache(page) ||
3023 page_private(page) != entry.val)) && swapcache)
3024 goto out_page;
3025
3026 page = ksm_might_need_to_copy(page, vma, vmf->address);
3027 if (unlikely(!page)) {
3028 ret = VM_FAULT_OOM;
3029 page = swapcache;
3030 goto out_page;
3031 }
3032
3033 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3034 &memcg, false)) {
3035 ret = VM_FAULT_OOM;
3036 goto out_page;
3037 }
3038
3039 /*
3040 * Back out if somebody else already faulted in this pte.
3041 */
3042 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3043 &vmf->ptl);
3044 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3045 goto out_nomap;
3046
3047 if (unlikely(!PageUptodate(page))) {
3048 ret = VM_FAULT_SIGBUS;
3049 goto out_nomap;
3050 }
3051
3052 /*
3053 * The page isn't present yet, go ahead with the fault.
3054 *
3055 * Be careful about the sequence of operations here.
3056 * To get its accounting right, reuse_swap_page() must be called
3057 * while the page is counted on swap but not yet in mapcount i.e.
3058 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3059 * must be called after the swap_free(), or it will never succeed.
3060 */
3061
3062 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3063 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3064 pte = mk_pte(page, vma->vm_page_prot);
3065 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3066 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3067 vmf->flags &= ~FAULT_FLAG_WRITE;
3068 ret |= VM_FAULT_WRITE;
3069 exclusive = RMAP_EXCLUSIVE;
3070 }
3071 flush_icache_page(vma, page);
3072 if (pte_swp_soft_dirty(vmf->orig_pte))
3073 pte = pte_mksoft_dirty(pte);
3074 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3075 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3076 vmf->orig_pte = pte;
3077
3078 /* ksm created a completely new copy */
3079 if (unlikely(page != swapcache && swapcache)) {
3080 page_add_new_anon_rmap(page, vma, vmf->address, false);
3081 mem_cgroup_commit_charge(page, memcg, false, false);
3082 lru_cache_add_active_or_unevictable(page, vma);
3083 } else {
3084 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3085 mem_cgroup_commit_charge(page, memcg, true, false);
3086 activate_page(page);
3087 }
3088
3089 swap_free(entry);
3090 if (mem_cgroup_swap_full(page) ||
3091 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3092 try_to_free_swap(page);
3093 unlock_page(page);
3094 if (page != swapcache && swapcache) {
3095 /*
3096 * Hold the lock to avoid the swap entry to be reused
3097 * until we take the PT lock for the pte_same() check
3098 * (to avoid false positives from pte_same). For
3099 * further safety release the lock after the swap_free
3100 * so that the swap count won't change under a
3101 * parallel locked swapcache.
3102 */
3103 unlock_page(swapcache);
3104 put_page(swapcache);
3105 }
3106
3107 if (vmf->flags & FAULT_FLAG_WRITE) {
3108 ret |= do_wp_page(vmf);
3109 if (ret & VM_FAULT_ERROR)
3110 ret &= VM_FAULT_ERROR;
3111 goto out;
3112 }
3113
3114 /* No need to invalidate - it was non-present before */
3115 update_mmu_cache(vma, vmf->address, vmf->pte);
3116 unlock:
3117 pte_unmap_unlock(vmf->pte, vmf->ptl);
3118 out:
3119 return ret;
3120 out_nomap:
3121 mem_cgroup_cancel_charge(page, memcg, false);
3122 pte_unmap_unlock(vmf->pte, vmf->ptl);
3123 out_page:
3124 unlock_page(page);
3125 out_release:
3126 put_page(page);
3127 if (page != swapcache && swapcache) {
3128 unlock_page(swapcache);
3129 put_page(swapcache);
3130 }
3131 return ret;
3132 }
3133
3134 /*
3135 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3136 * but allow concurrent faults), and pte mapped but not yet locked.
3137 * We return with mmap_sem still held, but pte unmapped and unlocked.
3138 */
3139 static int do_anonymous_page(struct vm_fault *vmf)
3140 {
3141 struct vm_area_struct *vma = vmf->vma;
3142 struct mem_cgroup *memcg;
3143 struct page *page;
3144 int ret = 0;
3145 pte_t entry;
3146
3147 /* File mapping without ->vm_ops ? */
3148 if (vma->vm_flags & VM_SHARED)
3149 return VM_FAULT_SIGBUS;
3150
3151 /*
3152 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3153 * pte_offset_map() on pmds where a huge pmd might be created
3154 * from a different thread.
3155 *
3156 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3157 * parallel threads are excluded by other means.
3158 *
3159 * Here we only have down_read(mmap_sem).
3160 */
3161 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3162 return VM_FAULT_OOM;
3163
3164 /* See the comment in pte_alloc_one_map() */
3165 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3166 return 0;
3167
3168 /* Use the zero-page for reads */
3169 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3170 !mm_forbids_zeropage(vma->vm_mm)) {
3171 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3172 vma->vm_page_prot));
3173 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3174 vmf->address, &vmf->ptl);
3175 if (!pte_none(*vmf->pte))
3176 goto unlock;
3177 ret = check_stable_address_space(vma->vm_mm);
3178 if (ret)
3179 goto unlock;
3180 /* Deliver the page fault to userland, check inside PT lock */
3181 if (userfaultfd_missing(vma)) {
3182 pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 return handle_userfault(vmf, VM_UFFD_MISSING);
3184 }
3185 goto setpte;
3186 }
3187
3188 /* Allocate our own private page. */
3189 if (unlikely(anon_vma_prepare(vma)))
3190 goto oom;
3191 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3192 if (!page)
3193 goto oom;
3194
3195 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3196 false))
3197 goto oom_free_page;
3198
3199 /*
3200 * The memory barrier inside __SetPageUptodate makes sure that
3201 * preceeding stores to the page contents become visible before
3202 * the set_pte_at() write.
3203 */
3204 __SetPageUptodate(page);
3205
3206 entry = mk_pte(page, vma->vm_page_prot);
3207 if (vma->vm_flags & VM_WRITE)
3208 entry = pte_mkwrite(pte_mkdirty(entry));
3209
3210 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3211 &vmf->ptl);
3212 if (!pte_none(*vmf->pte))
3213 goto release;
3214
3215 ret = check_stable_address_space(vma->vm_mm);
3216 if (ret)
3217 goto release;
3218
3219 /* Deliver the page fault to userland, check inside PT lock */
3220 if (userfaultfd_missing(vma)) {
3221 pte_unmap_unlock(vmf->pte, vmf->ptl);
3222 mem_cgroup_cancel_charge(page, memcg, false);
3223 put_page(page);
3224 return handle_userfault(vmf, VM_UFFD_MISSING);
3225 }
3226
3227 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3228 page_add_new_anon_rmap(page, vma, vmf->address, false);
3229 mem_cgroup_commit_charge(page, memcg, false, false);
3230 lru_cache_add_active_or_unevictable(page, vma);
3231 setpte:
3232 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3233
3234 /* No need to invalidate - it was non-present before */
3235 update_mmu_cache(vma, vmf->address, vmf->pte);
3236 unlock:
3237 pte_unmap_unlock(vmf->pte, vmf->ptl);
3238 return ret;
3239 release:
3240 mem_cgroup_cancel_charge(page, memcg, false);
3241 put_page(page);
3242 goto unlock;
3243 oom_free_page:
3244 put_page(page);
3245 oom:
3246 return VM_FAULT_OOM;
3247 }
3248
3249 /*
3250 * The mmap_sem must have been held on entry, and may have been
3251 * released depending on flags and vma->vm_ops->fault() return value.
3252 * See filemap_fault() and __lock_page_retry().
3253 */
3254 static int __do_fault(struct vm_fault *vmf)
3255 {
3256 struct vm_area_struct *vma = vmf->vma;
3257 int ret;
3258
3259 ret = vma->vm_ops->fault(vmf);
3260 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3261 VM_FAULT_DONE_COW)))
3262 return ret;
3263
3264 if (unlikely(PageHWPoison(vmf->page))) {
3265 if (ret & VM_FAULT_LOCKED)
3266 unlock_page(vmf->page);
3267 put_page(vmf->page);
3268 vmf->page = NULL;
3269 return VM_FAULT_HWPOISON;
3270 }
3271
3272 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3273 lock_page(vmf->page);
3274 else
3275 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3276
3277 return ret;
3278 }
3279
3280 /*
3281 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3282 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3283 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3284 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3285 */
3286 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3287 {
3288 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3289 }
3290
3291 static int pte_alloc_one_map(struct vm_fault *vmf)
3292 {
3293 struct vm_area_struct *vma = vmf->vma;
3294
3295 if (!pmd_none(*vmf->pmd))
3296 goto map_pte;
3297 if (vmf->prealloc_pte) {
3298 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3299 if (unlikely(!pmd_none(*vmf->pmd))) {
3300 spin_unlock(vmf->ptl);
3301 goto map_pte;
3302 }
3303
3304 mm_inc_nr_ptes(vma->vm_mm);
3305 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3306 spin_unlock(vmf->ptl);
3307 vmf->prealloc_pte = NULL;
3308 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3309 return VM_FAULT_OOM;
3310 }
3311 map_pte:
3312 /*
3313 * If a huge pmd materialized under us just retry later. Use
3314 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3315 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3316 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3317 * running immediately after a huge pmd fault in a different thread of
3318 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3319 * All we have to ensure is that it is a regular pmd that we can walk
3320 * with pte_offset_map() and we can do that through an atomic read in
3321 * C, which is what pmd_trans_unstable() provides.
3322 */
3323 if (pmd_devmap_trans_unstable(vmf->pmd))
3324 return VM_FAULT_NOPAGE;
3325
3326 /*
3327 * At this point we know that our vmf->pmd points to a page of ptes
3328 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3329 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3330 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3331 * be valid and we will re-check to make sure the vmf->pte isn't
3332 * pte_none() under vmf->ptl protection when we return to
3333 * alloc_set_pte().
3334 */
3335 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3336 &vmf->ptl);
3337 return 0;
3338 }
3339
3340 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3341
3342 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3343 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3344 unsigned long haddr)
3345 {
3346 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3347 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3348 return false;
3349 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3350 return false;
3351 return true;
3352 }
3353
3354 static void deposit_prealloc_pte(struct vm_fault *vmf)
3355 {
3356 struct vm_area_struct *vma = vmf->vma;
3357
3358 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3359 /*
3360 * We are going to consume the prealloc table,
3361 * count that as nr_ptes.
3362 */
3363 mm_inc_nr_ptes(vma->vm_mm);
3364 vmf->prealloc_pte = NULL;
3365 }
3366
3367 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3368 {
3369 struct vm_area_struct *vma = vmf->vma;
3370 bool write = vmf->flags & FAULT_FLAG_WRITE;
3371 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3372 pmd_t entry;
3373 int i, ret;
3374
3375 if (!transhuge_vma_suitable(vma, haddr))
3376 return VM_FAULT_FALLBACK;
3377
3378 ret = VM_FAULT_FALLBACK;
3379 page = compound_head(page);
3380
3381 /*
3382 * Archs like ppc64 need additonal space to store information
3383 * related to pte entry. Use the preallocated table for that.
3384 */
3385 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3386 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3387 if (!vmf->prealloc_pte)
3388 return VM_FAULT_OOM;
3389 smp_wmb(); /* See comment in __pte_alloc() */
3390 }
3391
3392 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3393 if (unlikely(!pmd_none(*vmf->pmd)))
3394 goto out;
3395
3396 for (i = 0; i < HPAGE_PMD_NR; i++)
3397 flush_icache_page(vma, page + i);
3398
3399 entry = mk_huge_pmd(page, vma->vm_page_prot);
3400 if (write)
3401 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3402
3403 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3404 page_add_file_rmap(page, true);
3405 /*
3406 * deposit and withdraw with pmd lock held
3407 */
3408 if (arch_needs_pgtable_deposit())
3409 deposit_prealloc_pte(vmf);
3410
3411 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3412
3413 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3414
3415 /* fault is handled */
3416 ret = 0;
3417 count_vm_event(THP_FILE_MAPPED);
3418 out:
3419 spin_unlock(vmf->ptl);
3420 return ret;
3421 }
3422 #else
3423 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3424 {
3425 BUILD_BUG();
3426 return 0;
3427 }
3428 #endif
3429
3430 /**
3431 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3432 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3433 *
3434 * @vmf: fault environment
3435 * @memcg: memcg to charge page (only for private mappings)
3436 * @page: page to map
3437 *
3438 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3439 * return.
3440 *
3441 * Target users are page handler itself and implementations of
3442 * vm_ops->map_pages.
3443 */
3444 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3445 struct page *page)
3446 {
3447 struct vm_area_struct *vma = vmf->vma;
3448 bool write = vmf->flags & FAULT_FLAG_WRITE;
3449 pte_t entry;
3450 int ret;
3451
3452 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3453 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3454 /* THP on COW? */
3455 VM_BUG_ON_PAGE(memcg, page);
3456
3457 ret = do_set_pmd(vmf, page);
3458 if (ret != VM_FAULT_FALLBACK)
3459 return ret;
3460 }
3461
3462 if (!vmf->pte) {
3463 ret = pte_alloc_one_map(vmf);
3464 if (ret)
3465 return ret;
3466 }
3467
3468 /* Re-check under ptl */
3469 if (unlikely(!pte_none(*vmf->pte)))
3470 return VM_FAULT_NOPAGE;
3471
3472 flush_icache_page(vma, page);
3473 entry = mk_pte(page, vma->vm_page_prot);
3474 if (write)
3475 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3476 /* copy-on-write page */
3477 if (write && !(vma->vm_flags & VM_SHARED)) {
3478 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3479 page_add_new_anon_rmap(page, vma, vmf->address, false);
3480 mem_cgroup_commit_charge(page, memcg, false, false);
3481 lru_cache_add_active_or_unevictable(page, vma);
3482 } else {
3483 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3484 page_add_file_rmap(page, false);
3485 }
3486 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3487
3488 /* no need to invalidate: a not-present page won't be cached */
3489 update_mmu_cache(vma, vmf->address, vmf->pte);
3490
3491 return 0;
3492 }
3493
3494
3495 /**
3496 * finish_fault - finish page fault once we have prepared the page to fault
3497 *
3498 * @vmf: structure describing the fault
3499 *
3500 * This function handles all that is needed to finish a page fault once the
3501 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3502 * given page, adds reverse page mapping, handles memcg charges and LRU
3503 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3504 * error.
3505 *
3506 * The function expects the page to be locked and on success it consumes a
3507 * reference of a page being mapped (for the PTE which maps it).
3508 */
3509 int finish_fault(struct vm_fault *vmf)
3510 {
3511 struct page *page;
3512 int ret = 0;
3513
3514 /* Did we COW the page? */
3515 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3516 !(vmf->vma->vm_flags & VM_SHARED))
3517 page = vmf->cow_page;
3518 else
3519 page = vmf->page;
3520
3521 /*
3522 * check even for read faults because we might have lost our CoWed
3523 * page
3524 */
3525 if (!(vmf->vma->vm_flags & VM_SHARED))
3526 ret = check_stable_address_space(vmf->vma->vm_mm);
3527 if (!ret)
3528 ret = alloc_set_pte(vmf, vmf->memcg, page);
3529 if (vmf->pte)
3530 pte_unmap_unlock(vmf->pte, vmf->ptl);
3531 return ret;
3532 }
3533
3534 static unsigned long fault_around_bytes __read_mostly =
3535 rounddown_pow_of_two(65536);
3536
3537 #ifdef CONFIG_DEBUG_FS
3538 static int fault_around_bytes_get(void *data, u64 *val)
3539 {
3540 *val = fault_around_bytes;
3541 return 0;
3542 }
3543
3544 /*
3545 * fault_around_bytes must be rounded down to the nearest page order as it's
3546 * what do_fault_around() expects to see.
3547 */
3548 static int fault_around_bytes_set(void *data, u64 val)
3549 {
3550 if (val / PAGE_SIZE > PTRS_PER_PTE)
3551 return -EINVAL;
3552 if (val > PAGE_SIZE)
3553 fault_around_bytes = rounddown_pow_of_two(val);
3554 else
3555 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3556 return 0;
3557 }
3558 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3559 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3560
3561 static int __init fault_around_debugfs(void)
3562 {
3563 void *ret;
3564
3565 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3566 &fault_around_bytes_fops);
3567 if (!ret)
3568 pr_warn("Failed to create fault_around_bytes in debugfs");
3569 return 0;
3570 }
3571 late_initcall(fault_around_debugfs);
3572 #endif
3573
3574 /*
3575 * do_fault_around() tries to map few pages around the fault address. The hope
3576 * is that the pages will be needed soon and this will lower the number of
3577 * faults to handle.
3578 *
3579 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3580 * not ready to be mapped: not up-to-date, locked, etc.
3581 *
3582 * This function is called with the page table lock taken. In the split ptlock
3583 * case the page table lock only protects only those entries which belong to
3584 * the page table corresponding to the fault address.
3585 *
3586 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3587 * only once.
3588 *
3589 * fault_around_bytes defines how many bytes we'll try to map.
3590 * do_fault_around() expects it to be set to a power of two less than or equal
3591 * to PTRS_PER_PTE.
3592 *
3593 * The virtual address of the area that we map is naturally aligned to
3594 * fault_around_bytes rounded down to the machine page size
3595 * (and therefore to page order). This way it's easier to guarantee
3596 * that we don't cross page table boundaries.
3597 */
3598 static int do_fault_around(struct vm_fault *vmf)
3599 {
3600 unsigned long address = vmf->address, nr_pages, mask;
3601 pgoff_t start_pgoff = vmf->pgoff;
3602 pgoff_t end_pgoff;
3603 int off, ret = 0;
3604
3605 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3606 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3607
3608 vmf->address = max(address & mask, vmf->vma->vm_start);
3609 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3610 start_pgoff -= off;
3611
3612 /*
3613 * end_pgoff is either the end of the page table, the end of
3614 * the vma or nr_pages from start_pgoff, depending what is nearest.
3615 */
3616 end_pgoff = start_pgoff -
3617 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3618 PTRS_PER_PTE - 1;
3619 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3620 start_pgoff + nr_pages - 1);
3621
3622 if (pmd_none(*vmf->pmd)) {
3623 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3624 vmf->address);
3625 if (!vmf->prealloc_pte)
3626 goto out;
3627 smp_wmb(); /* See comment in __pte_alloc() */
3628 }
3629
3630 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3631
3632 /* Huge page is mapped? Page fault is solved */
3633 if (pmd_trans_huge(*vmf->pmd)) {
3634 ret = VM_FAULT_NOPAGE;
3635 goto out;
3636 }
3637
3638 /* ->map_pages() haven't done anything useful. Cold page cache? */
3639 if (!vmf->pte)
3640 goto out;
3641
3642 /* check if the page fault is solved */
3643 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3644 if (!pte_none(*vmf->pte))
3645 ret = VM_FAULT_NOPAGE;
3646 pte_unmap_unlock(vmf->pte, vmf->ptl);
3647 out:
3648 vmf->address = address;
3649 vmf->pte = NULL;
3650 return ret;
3651 }
3652
3653 static int do_read_fault(struct vm_fault *vmf)
3654 {
3655 struct vm_area_struct *vma = vmf->vma;
3656 int ret = 0;
3657
3658 /*
3659 * Let's call ->map_pages() first and use ->fault() as fallback
3660 * if page by the offset is not ready to be mapped (cold cache or
3661 * something).
3662 */
3663 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3664 ret = do_fault_around(vmf);
3665 if (ret)
3666 return ret;
3667 }
3668
3669 ret = __do_fault(vmf);
3670 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3671 return ret;
3672
3673 ret |= finish_fault(vmf);
3674 unlock_page(vmf->page);
3675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3676 put_page(vmf->page);
3677 return ret;
3678 }
3679
3680 static int do_cow_fault(struct vm_fault *vmf)
3681 {
3682 struct vm_area_struct *vma = vmf->vma;
3683 int ret;
3684
3685 if (unlikely(anon_vma_prepare(vma)))
3686 return VM_FAULT_OOM;
3687
3688 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3689 if (!vmf->cow_page)
3690 return VM_FAULT_OOM;
3691
3692 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3693 &vmf->memcg, false)) {
3694 put_page(vmf->cow_page);
3695 return VM_FAULT_OOM;
3696 }
3697
3698 ret = __do_fault(vmf);
3699 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3700 goto uncharge_out;
3701 if (ret & VM_FAULT_DONE_COW)
3702 return ret;
3703
3704 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3705 __SetPageUptodate(vmf->cow_page);
3706
3707 ret |= finish_fault(vmf);
3708 unlock_page(vmf->page);
3709 put_page(vmf->page);
3710 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3711 goto uncharge_out;
3712 return ret;
3713 uncharge_out:
3714 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3715 put_page(vmf->cow_page);
3716 return ret;
3717 }
3718
3719 static int do_shared_fault(struct vm_fault *vmf)
3720 {
3721 struct vm_area_struct *vma = vmf->vma;
3722 int ret, tmp;
3723
3724 ret = __do_fault(vmf);
3725 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3726 return ret;
3727
3728 /*
3729 * Check if the backing address space wants to know that the page is
3730 * about to become writable
3731 */
3732 if (vma->vm_ops->page_mkwrite) {
3733 unlock_page(vmf->page);
3734 tmp = do_page_mkwrite(vmf);
3735 if (unlikely(!tmp ||
3736 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3737 put_page(vmf->page);
3738 return tmp;
3739 }
3740 }
3741
3742 ret |= finish_fault(vmf);
3743 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3744 VM_FAULT_RETRY))) {
3745 unlock_page(vmf->page);
3746 put_page(vmf->page);
3747 return ret;
3748 }
3749
3750 fault_dirty_shared_page(vma, vmf->page);
3751 return ret;
3752 }
3753
3754 /*
3755 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3756 * but allow concurrent faults).
3757 * The mmap_sem may have been released depending on flags and our
3758 * return value. See filemap_fault() and __lock_page_or_retry().
3759 */
3760 static int do_fault(struct vm_fault *vmf)
3761 {
3762 struct vm_area_struct *vma = vmf->vma;
3763 int ret;
3764
3765 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3766 if (!vma->vm_ops->fault)
3767 ret = VM_FAULT_SIGBUS;
3768 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3769 ret = do_read_fault(vmf);
3770 else if (!(vma->vm_flags & VM_SHARED))
3771 ret = do_cow_fault(vmf);
3772 else
3773 ret = do_shared_fault(vmf);
3774
3775 /* preallocated pagetable is unused: free it */
3776 if (vmf->prealloc_pte) {
3777 pte_free(vma->vm_mm, vmf->prealloc_pte);
3778 vmf->prealloc_pte = NULL;
3779 }
3780 return ret;
3781 }
3782
3783 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3784 unsigned long addr, int page_nid,
3785 int *flags)
3786 {
3787 get_page(page);
3788
3789 count_vm_numa_event(NUMA_HINT_FAULTS);
3790 if (page_nid == numa_node_id()) {
3791 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3792 *flags |= TNF_FAULT_LOCAL;
3793 }
3794
3795 return mpol_misplaced(page, vma, addr);
3796 }
3797
3798 static int do_numa_page(struct vm_fault *vmf)
3799 {
3800 struct vm_area_struct *vma = vmf->vma;
3801 struct page *page = NULL;
3802 int page_nid = -1;
3803 int last_cpupid;
3804 int target_nid;
3805 bool migrated = false;
3806 pte_t pte;
3807 bool was_writable = pte_savedwrite(vmf->orig_pte);
3808 int flags = 0;
3809
3810 /*
3811 * The "pte" at this point cannot be used safely without
3812 * validation through pte_unmap_same(). It's of NUMA type but
3813 * the pfn may be screwed if the read is non atomic.
3814 */
3815 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3816 spin_lock(vmf->ptl);
3817 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3818 pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 goto out;
3820 }
3821
3822 /*
3823 * Make it present again, Depending on how arch implementes non
3824 * accessible ptes, some can allow access by kernel mode.
3825 */
3826 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3827 pte = pte_modify(pte, vma->vm_page_prot);
3828 pte = pte_mkyoung(pte);
3829 if (was_writable)
3830 pte = pte_mkwrite(pte);
3831 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3832 update_mmu_cache(vma, vmf->address, vmf->pte);
3833
3834 page = vm_normal_page(vma, vmf->address, pte);
3835 if (!page) {
3836 pte_unmap_unlock(vmf->pte, vmf->ptl);
3837 return 0;
3838 }
3839
3840 /* TODO: handle PTE-mapped THP */
3841 if (PageCompound(page)) {
3842 pte_unmap_unlock(vmf->pte, vmf->ptl);
3843 return 0;
3844 }
3845
3846 /*
3847 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3848 * much anyway since they can be in shared cache state. This misses
3849 * the case where a mapping is writable but the process never writes
3850 * to it but pte_write gets cleared during protection updates and
3851 * pte_dirty has unpredictable behaviour between PTE scan updates,
3852 * background writeback, dirty balancing and application behaviour.
3853 */
3854 if (!pte_write(pte))
3855 flags |= TNF_NO_GROUP;
3856
3857 /*
3858 * Flag if the page is shared between multiple address spaces. This
3859 * is later used when determining whether to group tasks together
3860 */
3861 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3862 flags |= TNF_SHARED;
3863
3864 last_cpupid = page_cpupid_last(page);
3865 page_nid = page_to_nid(page);
3866 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3867 &flags);
3868 pte_unmap_unlock(vmf->pte, vmf->ptl);
3869 if (target_nid == -1) {
3870 put_page(page);
3871 goto out;
3872 }
3873
3874 /* Migrate to the requested node */
3875 migrated = migrate_misplaced_page(page, vma, target_nid);
3876 if (migrated) {
3877 page_nid = target_nid;
3878 flags |= TNF_MIGRATED;
3879 } else
3880 flags |= TNF_MIGRATE_FAIL;
3881
3882 out:
3883 if (page_nid != -1)
3884 task_numa_fault(last_cpupid, page_nid, 1, flags);
3885 return 0;
3886 }
3887
3888 static inline int create_huge_pmd(struct vm_fault *vmf)
3889 {
3890 if (vma_is_anonymous(vmf->vma))
3891 return do_huge_pmd_anonymous_page(vmf);
3892 if (vmf->vma->vm_ops->huge_fault)
3893 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3894 return VM_FAULT_FALLBACK;
3895 }
3896
3897 /* `inline' is required to avoid gcc 4.1.2 build error */
3898 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3899 {
3900 if (vma_is_anonymous(vmf->vma))
3901 return do_huge_pmd_wp_page(vmf, orig_pmd);
3902 if (vmf->vma->vm_ops->huge_fault)
3903 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3904
3905 /* COW handled on pte level: split pmd */
3906 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3907 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3908
3909 return VM_FAULT_FALLBACK;
3910 }
3911
3912 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3913 {
3914 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3915 }
3916
3917 static int create_huge_pud(struct vm_fault *vmf)
3918 {
3919 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3920 /* No support for anonymous transparent PUD pages yet */
3921 if (vma_is_anonymous(vmf->vma))
3922 return VM_FAULT_FALLBACK;
3923 if (vmf->vma->vm_ops->huge_fault)
3924 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3926 return VM_FAULT_FALLBACK;
3927 }
3928
3929 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3930 {
3931 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3932 /* No support for anonymous transparent PUD pages yet */
3933 if (vma_is_anonymous(vmf->vma))
3934 return VM_FAULT_FALLBACK;
3935 if (vmf->vma->vm_ops->huge_fault)
3936 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3937 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3938 return VM_FAULT_FALLBACK;
3939 }
3940
3941 /*
3942 * These routines also need to handle stuff like marking pages dirty
3943 * and/or accessed for architectures that don't do it in hardware (most
3944 * RISC architectures). The early dirtying is also good on the i386.
3945 *
3946 * There is also a hook called "update_mmu_cache()" that architectures
3947 * with external mmu caches can use to update those (ie the Sparc or
3948 * PowerPC hashed page tables that act as extended TLBs).
3949 *
3950 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3951 * concurrent faults).
3952 *
3953 * The mmap_sem may have been released depending on flags and our return value.
3954 * See filemap_fault() and __lock_page_or_retry().
3955 */
3956 static int handle_pte_fault(struct vm_fault *vmf)
3957 {
3958 pte_t entry;
3959
3960 if (unlikely(pmd_none(*vmf->pmd))) {
3961 /*
3962 * Leave __pte_alloc() until later: because vm_ops->fault may
3963 * want to allocate huge page, and if we expose page table
3964 * for an instant, it will be difficult to retract from
3965 * concurrent faults and from rmap lookups.
3966 */
3967 vmf->pte = NULL;
3968 } else {
3969 /* See comment in pte_alloc_one_map() */
3970 if (pmd_devmap_trans_unstable(vmf->pmd))
3971 return 0;
3972 /*
3973 * A regular pmd is established and it can't morph into a huge
3974 * pmd from under us anymore at this point because we hold the
3975 * mmap_sem read mode and khugepaged takes it in write mode.
3976 * So now it's safe to run pte_offset_map().
3977 */
3978 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3979 vmf->orig_pte = *vmf->pte;
3980
3981 /*
3982 * some architectures can have larger ptes than wordsize,
3983 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3984 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3985 * accesses. The code below just needs a consistent view
3986 * for the ifs and we later double check anyway with the
3987 * ptl lock held. So here a barrier will do.
3988 */
3989 barrier();
3990 if (pte_none(vmf->orig_pte)) {
3991 pte_unmap(vmf->pte);
3992 vmf->pte = NULL;
3993 }
3994 }
3995
3996 if (!vmf->pte) {
3997 if (vma_is_anonymous(vmf->vma))
3998 return do_anonymous_page(vmf);
3999 else
4000 return do_fault(vmf);
4001 }
4002
4003 if (!pte_present(vmf->orig_pte))
4004 return do_swap_page(vmf);
4005
4006 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4007 return do_numa_page(vmf);
4008
4009 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4010 spin_lock(vmf->ptl);
4011 entry = vmf->orig_pte;
4012 if (unlikely(!pte_same(*vmf->pte, entry)))
4013 goto unlock;
4014 if (vmf->flags & FAULT_FLAG_WRITE) {
4015 if (!pte_write(entry))
4016 return do_wp_page(vmf);
4017 entry = pte_mkdirty(entry);
4018 }
4019 entry = pte_mkyoung(entry);
4020 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4021 vmf->flags & FAULT_FLAG_WRITE)) {
4022 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4023 } else {
4024 /*
4025 * This is needed only for protection faults but the arch code
4026 * is not yet telling us if this is a protection fault or not.
4027 * This still avoids useless tlb flushes for .text page faults
4028 * with threads.
4029 */
4030 if (vmf->flags & FAULT_FLAG_WRITE)
4031 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4032 }
4033 unlock:
4034 pte_unmap_unlock(vmf->pte, vmf->ptl);
4035 return 0;
4036 }
4037
4038 /*
4039 * By the time we get here, we already hold the mm semaphore
4040 *
4041 * The mmap_sem may have been released depending on flags and our
4042 * return value. See filemap_fault() and __lock_page_or_retry().
4043 */
4044 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4045 unsigned int flags)
4046 {
4047 struct vm_fault vmf = {
4048 .vma = vma,
4049 .address = address & PAGE_MASK,
4050 .flags = flags,
4051 .pgoff = linear_page_index(vma, address),
4052 .gfp_mask = __get_fault_gfp_mask(vma),
4053 };
4054 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4055 struct mm_struct *mm = vma->vm_mm;
4056 pgd_t *pgd;
4057 p4d_t *p4d;
4058 int ret;
4059
4060 pgd = pgd_offset(mm, address);
4061 p4d = p4d_alloc(mm, pgd, address);
4062 if (!p4d)
4063 return VM_FAULT_OOM;
4064
4065 vmf.pud = pud_alloc(mm, p4d, address);
4066 if (!vmf.pud)
4067 return VM_FAULT_OOM;
4068 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4069 ret = create_huge_pud(&vmf);
4070 if (!(ret & VM_FAULT_FALLBACK))
4071 return ret;
4072 } else {
4073 pud_t orig_pud = *vmf.pud;
4074
4075 barrier();
4076 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4077
4078 /* NUMA case for anonymous PUDs would go here */
4079
4080 if (dirty && !pud_write(orig_pud)) {
4081 ret = wp_huge_pud(&vmf, orig_pud);
4082 if (!(ret & VM_FAULT_FALLBACK))
4083 return ret;
4084 } else {
4085 huge_pud_set_accessed(&vmf, orig_pud);
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4092 if (!vmf.pmd)
4093 return VM_FAULT_OOM;
4094 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4095 ret = create_huge_pmd(&vmf);
4096 if (!(ret & VM_FAULT_FALLBACK))
4097 return ret;
4098 } else {
4099 pmd_t orig_pmd = *vmf.pmd;
4100
4101 barrier();
4102 if (unlikely(is_swap_pmd(orig_pmd))) {
4103 VM_BUG_ON(thp_migration_supported() &&
4104 !is_pmd_migration_entry(orig_pmd));
4105 if (is_pmd_migration_entry(orig_pmd))
4106 pmd_migration_entry_wait(mm, vmf.pmd);
4107 return 0;
4108 }
4109 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4110 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4111 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4112
4113 if (dirty && !pmd_write(orig_pmd)) {
4114 ret = wp_huge_pmd(&vmf, orig_pmd);
4115 if (!(ret & VM_FAULT_FALLBACK))
4116 return ret;
4117 } else {
4118 huge_pmd_set_accessed(&vmf, orig_pmd);
4119 return 0;
4120 }
4121 }
4122 }
4123
4124 return handle_pte_fault(&vmf);
4125 }
4126
4127 /*
4128 * By the time we get here, we already hold the mm semaphore
4129 *
4130 * The mmap_sem may have been released depending on flags and our
4131 * return value. See filemap_fault() and __lock_page_or_retry().
4132 */
4133 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4134 unsigned int flags)
4135 {
4136 int ret;
4137
4138 __set_current_state(TASK_RUNNING);
4139
4140 count_vm_event(PGFAULT);
4141 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4142
4143 /* do counter updates before entering really critical section. */
4144 check_sync_rss_stat(current);
4145
4146 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4147 flags & FAULT_FLAG_INSTRUCTION,
4148 flags & FAULT_FLAG_REMOTE))
4149 return VM_FAULT_SIGSEGV;
4150
4151 /*
4152 * Enable the memcg OOM handling for faults triggered in user
4153 * space. Kernel faults are handled more gracefully.
4154 */
4155 if (flags & FAULT_FLAG_USER)
4156 mem_cgroup_oom_enable();
4157
4158 if (unlikely(is_vm_hugetlb_page(vma)))
4159 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4160 else
4161 ret = __handle_mm_fault(vma, address, flags);
4162
4163 if (flags & FAULT_FLAG_USER) {
4164 mem_cgroup_oom_disable();
4165 /*
4166 * The task may have entered a memcg OOM situation but
4167 * if the allocation error was handled gracefully (no
4168 * VM_FAULT_OOM), there is no need to kill anything.
4169 * Just clean up the OOM state peacefully.
4170 */
4171 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4172 mem_cgroup_oom_synchronize(false);
4173 }
4174
4175 return ret;
4176 }
4177 EXPORT_SYMBOL_GPL(handle_mm_fault);
4178
4179 #ifndef __PAGETABLE_P4D_FOLDED
4180 /*
4181 * Allocate p4d page table.
4182 * We've already handled the fast-path in-line.
4183 */
4184 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4185 {
4186 p4d_t *new = p4d_alloc_one(mm, address);
4187 if (!new)
4188 return -ENOMEM;
4189
4190 smp_wmb(); /* See comment in __pte_alloc */
4191
4192 spin_lock(&mm->page_table_lock);
4193 if (pgd_present(*pgd)) /* Another has populated it */
4194 p4d_free(mm, new);
4195 else
4196 pgd_populate(mm, pgd, new);
4197 spin_unlock(&mm->page_table_lock);
4198 return 0;
4199 }
4200 #endif /* __PAGETABLE_P4D_FOLDED */
4201
4202 #ifndef __PAGETABLE_PUD_FOLDED
4203 /*
4204 * Allocate page upper directory.
4205 * We've already handled the fast-path in-line.
4206 */
4207 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4208 {
4209 pud_t *new = pud_alloc_one(mm, address);
4210 if (!new)
4211 return -ENOMEM;
4212
4213 smp_wmb(); /* See comment in __pte_alloc */
4214
4215 spin_lock(&mm->page_table_lock);
4216 #ifndef __ARCH_HAS_5LEVEL_HACK
4217 if (!p4d_present(*p4d)) {
4218 mm_inc_nr_puds(mm);
4219 p4d_populate(mm, p4d, new);
4220 } else /* Another has populated it */
4221 pud_free(mm, new);
4222 #else
4223 if (!pgd_present(*p4d)) {
4224 mm_inc_nr_puds(mm);
4225 pgd_populate(mm, p4d, new);
4226 } else /* Another has populated it */
4227 pud_free(mm, new);
4228 #endif /* __ARCH_HAS_5LEVEL_HACK */
4229 spin_unlock(&mm->page_table_lock);
4230 return 0;
4231 }
4232 #endif /* __PAGETABLE_PUD_FOLDED */
4233
4234 #ifndef __PAGETABLE_PMD_FOLDED
4235 /*
4236 * Allocate page middle directory.
4237 * We've already handled the fast-path in-line.
4238 */
4239 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4240 {
4241 spinlock_t *ptl;
4242 pmd_t *new = pmd_alloc_one(mm, address);
4243 if (!new)
4244 return -ENOMEM;
4245
4246 smp_wmb(); /* See comment in __pte_alloc */
4247
4248 ptl = pud_lock(mm, pud);
4249 #ifndef __ARCH_HAS_4LEVEL_HACK
4250 if (!pud_present(*pud)) {
4251 mm_inc_nr_pmds(mm);
4252 pud_populate(mm, pud, new);
4253 } else /* Another has populated it */
4254 pmd_free(mm, new);
4255 #else
4256 if (!pgd_present(*pud)) {
4257 mm_inc_nr_pmds(mm);
4258 pgd_populate(mm, pud, new);
4259 } else /* Another has populated it */
4260 pmd_free(mm, new);
4261 #endif /* __ARCH_HAS_4LEVEL_HACK */
4262 spin_unlock(ptl);
4263 return 0;
4264 }
4265 #endif /* __PAGETABLE_PMD_FOLDED */
4266
4267 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4268 unsigned long *start, unsigned long *end,
4269 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4270 {
4271 pgd_t *pgd;
4272 p4d_t *p4d;
4273 pud_t *pud;
4274 pmd_t *pmd;
4275 pte_t *ptep;
4276
4277 pgd = pgd_offset(mm, address);
4278 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4279 goto out;
4280
4281 p4d = p4d_offset(pgd, address);
4282 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4283 goto out;
4284
4285 pud = pud_offset(p4d, address);
4286 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4287 goto out;
4288
4289 pmd = pmd_offset(pud, address);
4290 VM_BUG_ON(pmd_trans_huge(*pmd));
4291
4292 if (pmd_huge(*pmd)) {
4293 if (!pmdpp)
4294 goto out;
4295
4296 if (start && end) {
4297 *start = address & PMD_MASK;
4298 *end = *start + PMD_SIZE;
4299 mmu_notifier_invalidate_range_start(mm, *start, *end);
4300 }
4301 *ptlp = pmd_lock(mm, pmd);
4302 if (pmd_huge(*pmd)) {
4303 *pmdpp = pmd;
4304 return 0;
4305 }
4306 spin_unlock(*ptlp);
4307 if (start && end)
4308 mmu_notifier_invalidate_range_end(mm, *start, *end);
4309 }
4310
4311 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4312 goto out;
4313
4314 if (start && end) {
4315 *start = address & PAGE_MASK;
4316 *end = *start + PAGE_SIZE;
4317 mmu_notifier_invalidate_range_start(mm, *start, *end);
4318 }
4319 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4320 if (!pte_present(*ptep))
4321 goto unlock;
4322 *ptepp = ptep;
4323 return 0;
4324 unlock:
4325 pte_unmap_unlock(ptep, *ptlp);
4326 if (start && end)
4327 mmu_notifier_invalidate_range_end(mm, *start, *end);
4328 out:
4329 return -EINVAL;
4330 }
4331
4332 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4333 pte_t **ptepp, spinlock_t **ptlp)
4334 {
4335 int res;
4336
4337 /* (void) is needed to make gcc happy */
4338 (void) __cond_lock(*ptlp,
4339 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4340 ptepp, NULL, ptlp)));
4341 return res;
4342 }
4343
4344 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4345 unsigned long *start, unsigned long *end,
4346 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4347 {
4348 int res;
4349
4350 /* (void) is needed to make gcc happy */
4351 (void) __cond_lock(*ptlp,
4352 !(res = __follow_pte_pmd(mm, address, start, end,
4353 ptepp, pmdpp, ptlp)));
4354 return res;
4355 }
4356 EXPORT_SYMBOL(follow_pte_pmd);
4357
4358 /**
4359 * follow_pfn - look up PFN at a user virtual address
4360 * @vma: memory mapping
4361 * @address: user virtual address
4362 * @pfn: location to store found PFN
4363 *
4364 * Only IO mappings and raw PFN mappings are allowed.
4365 *
4366 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4367 */
4368 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4369 unsigned long *pfn)
4370 {
4371 int ret = -EINVAL;
4372 spinlock_t *ptl;
4373 pte_t *ptep;
4374
4375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4376 return ret;
4377
4378 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4379 if (ret)
4380 return ret;
4381 *pfn = pte_pfn(*ptep);
4382 pte_unmap_unlock(ptep, ptl);
4383 return 0;
4384 }
4385 EXPORT_SYMBOL(follow_pfn);
4386
4387 #ifdef CONFIG_HAVE_IOREMAP_PROT
4388 int follow_phys(struct vm_area_struct *vma,
4389 unsigned long address, unsigned int flags,
4390 unsigned long *prot, resource_size_t *phys)
4391 {
4392 int ret = -EINVAL;
4393 pte_t *ptep, pte;
4394 spinlock_t *ptl;
4395
4396 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4397 goto out;
4398
4399 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4400 goto out;
4401 pte = *ptep;
4402
4403 if ((flags & FOLL_WRITE) && !pte_write(pte))
4404 goto unlock;
4405
4406 *prot = pgprot_val(pte_pgprot(pte));
4407 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4408
4409 ret = 0;
4410 unlock:
4411 pte_unmap_unlock(ptep, ptl);
4412 out:
4413 return ret;
4414 }
4415
4416 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4417 void *buf, int len, int write)
4418 {
4419 resource_size_t phys_addr;
4420 unsigned long prot = 0;
4421 void __iomem *maddr;
4422 int offset = addr & (PAGE_SIZE-1);
4423
4424 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4425 return -EINVAL;
4426
4427 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4428 if (!maddr)
4429 return -ENOMEM;
4430
4431 if (write)
4432 memcpy_toio(maddr + offset, buf, len);
4433 else
4434 memcpy_fromio(buf, maddr + offset, len);
4435 iounmap(maddr);
4436
4437 return len;
4438 }
4439 EXPORT_SYMBOL_GPL(generic_access_phys);
4440 #endif
4441
4442 /*
4443 * Access another process' address space as given in mm. If non-NULL, use the
4444 * given task for page fault accounting.
4445 */
4446 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4447 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4448 {
4449 struct vm_area_struct *vma;
4450 void *old_buf = buf;
4451 int write = gup_flags & FOLL_WRITE;
4452
4453 down_read(&mm->mmap_sem);
4454 /* ignore errors, just check how much was successfully transferred */
4455 while (len) {
4456 int bytes, ret, offset;
4457 void *maddr;
4458 struct page *page = NULL;
4459
4460 ret = get_user_pages_remote(tsk, mm, addr, 1,
4461 gup_flags, &page, &vma, NULL);
4462 if (ret <= 0) {
4463 #ifndef CONFIG_HAVE_IOREMAP_PROT
4464 break;
4465 #else
4466 /*
4467 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4468 * we can access using slightly different code.
4469 */
4470 vma = find_vma(mm, addr);
4471 if (!vma || vma->vm_start > addr)
4472 break;
4473 if (vma->vm_ops && vma->vm_ops->access)
4474 ret = vma->vm_ops->access(vma, addr, buf,
4475 len, write);
4476 if (ret <= 0)
4477 break;
4478 bytes = ret;
4479 #endif
4480 } else {
4481 bytes = len;
4482 offset = addr & (PAGE_SIZE-1);
4483 if (bytes > PAGE_SIZE-offset)
4484 bytes = PAGE_SIZE-offset;
4485
4486 maddr = kmap(page);
4487 if (write) {
4488 copy_to_user_page(vma, page, addr,
4489 maddr + offset, buf, bytes);
4490 set_page_dirty_lock(page);
4491 } else {
4492 copy_from_user_page(vma, page, addr,
4493 buf, maddr + offset, bytes);
4494 }
4495 kunmap(page);
4496 put_page(page);
4497 }
4498 len -= bytes;
4499 buf += bytes;
4500 addr += bytes;
4501 }
4502 up_read(&mm->mmap_sem);
4503
4504 return buf - old_buf;
4505 }
4506
4507 /**
4508 * access_remote_vm - access another process' address space
4509 * @mm: the mm_struct of the target address space
4510 * @addr: start address to access
4511 * @buf: source or destination buffer
4512 * @len: number of bytes to transfer
4513 * @gup_flags: flags modifying lookup behaviour
4514 *
4515 * The caller must hold a reference on @mm.
4516 */
4517 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4518 void *buf, int len, unsigned int gup_flags)
4519 {
4520 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4521 }
4522
4523 /*
4524 * Access another process' address space.
4525 * Source/target buffer must be kernel space,
4526 * Do not walk the page table directly, use get_user_pages
4527 */
4528 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4529 void *buf, int len, unsigned int gup_flags)
4530 {
4531 struct mm_struct *mm;
4532 int ret;
4533
4534 mm = get_task_mm(tsk);
4535 if (!mm)
4536 return 0;
4537
4538 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4539
4540 mmput(mm);
4541
4542 return ret;
4543 }
4544 EXPORT_SYMBOL_GPL(access_process_vm);
4545
4546 /*
4547 * Print the name of a VMA.
4548 */
4549 void print_vma_addr(char *prefix, unsigned long ip)
4550 {
4551 struct mm_struct *mm = current->mm;
4552 struct vm_area_struct *vma;
4553
4554 /*
4555 * we might be running from an atomic context so we cannot sleep
4556 */
4557 if (!down_read_trylock(&mm->mmap_sem))
4558 return;
4559
4560 vma = find_vma(mm, ip);
4561 if (vma && vma->vm_file) {
4562 struct file *f = vma->vm_file;
4563 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4564 if (buf) {
4565 char *p;
4566
4567 p = file_path(f, buf, PAGE_SIZE);
4568 if (IS_ERR(p))
4569 p = "?";
4570 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4571 vma->vm_start,
4572 vma->vm_end - vma->vm_start);
4573 free_page((unsigned long)buf);
4574 }
4575 }
4576 up_read(&mm->mmap_sem);
4577 }
4578
4579 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4580 void __might_fault(const char *file, int line)
4581 {
4582 /*
4583 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4584 * holding the mmap_sem, this is safe because kernel memory doesn't
4585 * get paged out, therefore we'll never actually fault, and the
4586 * below annotations will generate false positives.
4587 */
4588 if (uaccess_kernel())
4589 return;
4590 if (pagefault_disabled())
4591 return;
4592 __might_sleep(file, line, 0);
4593 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4594 if (current->mm)
4595 might_lock_read(&current->mm->mmap_sem);
4596 #endif
4597 }
4598 EXPORT_SYMBOL(__might_fault);
4599 #endif
4600
4601 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4602 static void clear_gigantic_page(struct page *page,
4603 unsigned long addr,
4604 unsigned int pages_per_huge_page)
4605 {
4606 int i;
4607 struct page *p = page;
4608
4609 might_sleep();
4610 for (i = 0; i < pages_per_huge_page;
4611 i++, p = mem_map_next(p, page, i)) {
4612 cond_resched();
4613 clear_user_highpage(p, addr + i * PAGE_SIZE);
4614 }
4615 }
4616 void clear_huge_page(struct page *page,
4617 unsigned long addr_hint, unsigned int pages_per_huge_page)
4618 {
4619 int i, n, base, l;
4620 unsigned long addr = addr_hint &
4621 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4622
4623 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4624 clear_gigantic_page(page, addr, pages_per_huge_page);
4625 return;
4626 }
4627
4628 /* Clear sub-page to access last to keep its cache lines hot */
4629 might_sleep();
4630 n = (addr_hint - addr) / PAGE_SIZE;
4631 if (2 * n <= pages_per_huge_page) {
4632 /* If sub-page to access in first half of huge page */
4633 base = 0;
4634 l = n;
4635 /* Clear sub-pages at the end of huge page */
4636 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4637 cond_resched();
4638 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4639 }
4640 } else {
4641 /* If sub-page to access in second half of huge page */
4642 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4643 l = pages_per_huge_page - n;
4644 /* Clear sub-pages at the begin of huge page */
4645 for (i = 0; i < base; i++) {
4646 cond_resched();
4647 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4648 }
4649 }
4650 /*
4651 * Clear remaining sub-pages in left-right-left-right pattern
4652 * towards the sub-page to access
4653 */
4654 for (i = 0; i < l; i++) {
4655 int left_idx = base + i;
4656 int right_idx = base + 2 * l - 1 - i;
4657
4658 cond_resched();
4659 clear_user_highpage(page + left_idx,
4660 addr + left_idx * PAGE_SIZE);
4661 cond_resched();
4662 clear_user_highpage(page + right_idx,
4663 addr + right_idx * PAGE_SIZE);
4664 }
4665 }
4666
4667 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4668 unsigned long addr,
4669 struct vm_area_struct *vma,
4670 unsigned int pages_per_huge_page)
4671 {
4672 int i;
4673 struct page *dst_base = dst;
4674 struct page *src_base = src;
4675
4676 for (i = 0; i < pages_per_huge_page; ) {
4677 cond_resched();
4678 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4679
4680 i++;
4681 dst = mem_map_next(dst, dst_base, i);
4682 src = mem_map_next(src, src_base, i);
4683 }
4684 }
4685
4686 void copy_user_huge_page(struct page *dst, struct page *src,
4687 unsigned long addr, struct vm_area_struct *vma,
4688 unsigned int pages_per_huge_page)
4689 {
4690 int i;
4691
4692 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4693 copy_user_gigantic_page(dst, src, addr, vma,
4694 pages_per_huge_page);
4695 return;
4696 }
4697
4698 might_sleep();
4699 for (i = 0; i < pages_per_huge_page; i++) {
4700 cond_resched();
4701 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4702 }
4703 }
4704
4705 long copy_huge_page_from_user(struct page *dst_page,
4706 const void __user *usr_src,
4707 unsigned int pages_per_huge_page,
4708 bool allow_pagefault)
4709 {
4710 void *src = (void *)usr_src;
4711 void *page_kaddr;
4712 unsigned long i, rc = 0;
4713 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4714
4715 for (i = 0; i < pages_per_huge_page; i++) {
4716 if (allow_pagefault)
4717 page_kaddr = kmap(dst_page + i);
4718 else
4719 page_kaddr = kmap_atomic(dst_page + i);
4720 rc = copy_from_user(page_kaddr,
4721 (const void __user *)(src + i * PAGE_SIZE),
4722 PAGE_SIZE);
4723 if (allow_pagefault)
4724 kunmap(dst_page + i);
4725 else
4726 kunmap_atomic(page_kaddr);
4727
4728 ret_val -= (PAGE_SIZE - rc);
4729 if (rc)
4730 break;
4731
4732 cond_resched();
4733 }
4734 return ret_val;
4735 }
4736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4737
4738 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4739
4740 static struct kmem_cache *page_ptl_cachep;
4741
4742 void __init ptlock_cache_init(void)
4743 {
4744 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4745 SLAB_PANIC, NULL);
4746 }
4747
4748 bool ptlock_alloc(struct page *page)
4749 {
4750 spinlock_t *ptl;
4751
4752 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4753 if (!ptl)
4754 return false;
4755 page->ptl = ptl;
4756 return true;
4757 }
4758
4759 void ptlock_free(struct page *page)
4760 {
4761 kmem_cache_free(page_ptl_cachep, page->ptl);
4762 }
4763 #endif