]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
Merge tag 'mmc-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/swap.h>
11 #include <linux/interrupt.h>
12 #include <linux/pagemap.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/highmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37
38 #include <asm/tlbflush.h>
39
40 #include "internal.h"
41
42 /*
43 * online_page_callback contains pointer to current page onlining function.
44 * Initially it is generic_online_page(). If it is required it could be
45 * changed by calling set_online_page_callback() for callback registration
46 * and restore_online_page_callback() for generic callback restore.
47 */
48
49 static void generic_online_page(struct page *page);
50
51 static online_page_callback_t online_page_callback = generic_online_page;
52 static DEFINE_MUTEX(online_page_callback_lock);
53
54 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
55
56 void get_online_mems(void)
57 {
58 percpu_down_read(&mem_hotplug_lock);
59 }
60
61 void put_online_mems(void)
62 {
63 percpu_up_read(&mem_hotplug_lock);
64 }
65
66 bool movable_node_enabled = false;
67
68 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
69 bool memhp_auto_online;
70 #else
71 bool memhp_auto_online = true;
72 #endif
73 EXPORT_SYMBOL_GPL(memhp_auto_online);
74
75 static int __init setup_memhp_default_state(char *str)
76 {
77 if (!strcmp(str, "online"))
78 memhp_auto_online = true;
79 else if (!strcmp(str, "offline"))
80 memhp_auto_online = false;
81
82 return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85
86 void mem_hotplug_begin(void)
87 {
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90 }
91
92 void mem_hotplug_done(void)
93 {
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96 }
97
98 /* add this memory to iomem resource */
99 static struct resource *register_memory_resource(u64 start, u64 size)
100 {
101 struct resource *res, *conflict;
102 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
103 if (!res)
104 return ERR_PTR(-ENOMEM);
105
106 res->name = "System RAM";
107 res->start = start;
108 res->end = start + size - 1;
109 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
110 conflict = request_resource_conflict(&iomem_resource, res);
111 if (conflict) {
112 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
113 pr_debug("Device unaddressable memory block "
114 "memory hotplug at %#010llx !\n",
115 (unsigned long long)start);
116 }
117 pr_debug("System RAM resource %pR cannot be added\n", res);
118 kfree(res);
119 return ERR_PTR(-EEXIST);
120 }
121 return res;
122 }
123
124 static void release_memory_resource(struct resource *res)
125 {
126 if (!res)
127 return;
128 release_resource(res);
129 kfree(res);
130 return;
131 }
132
133 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
134 void get_page_bootmem(unsigned long info, struct page *page,
135 unsigned long type)
136 {
137 page->freelist = (void *)type;
138 SetPagePrivate(page);
139 set_page_private(page, info);
140 page_ref_inc(page);
141 }
142
143 void put_page_bootmem(struct page *page)
144 {
145 unsigned long type;
146
147 type = (unsigned long) page->freelist;
148 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
149 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
150
151 if (page_ref_dec_return(page) == 1) {
152 page->freelist = NULL;
153 ClearPagePrivate(page);
154 set_page_private(page, 0);
155 INIT_LIST_HEAD(&page->lru);
156 free_reserved_page(page);
157 }
158 }
159
160 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
161 #ifndef CONFIG_SPARSEMEM_VMEMMAP
162 static void register_page_bootmem_info_section(unsigned long start_pfn)
163 {
164 unsigned long *usemap, mapsize, section_nr, i;
165 struct mem_section *ms;
166 struct page *page, *memmap;
167
168 section_nr = pfn_to_section_nr(start_pfn);
169 ms = __nr_to_section(section_nr);
170
171 /* Get section's memmap address */
172 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
173
174 /*
175 * Get page for the memmap's phys address
176 * XXX: need more consideration for sparse_vmemmap...
177 */
178 page = virt_to_page(memmap);
179 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
180 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
181
182 /* remember memmap's page */
183 for (i = 0; i < mapsize; i++, page++)
184 get_page_bootmem(section_nr, page, SECTION_INFO);
185
186 usemap = ms->pageblock_flags;
187 page = virt_to_page(usemap);
188
189 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
190
191 for (i = 0; i < mapsize; i++, page++)
192 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
193
194 }
195 #else /* CONFIG_SPARSEMEM_VMEMMAP */
196 static void register_page_bootmem_info_section(unsigned long start_pfn)
197 {
198 unsigned long *usemap, mapsize, section_nr, i;
199 struct mem_section *ms;
200 struct page *page, *memmap;
201
202 section_nr = pfn_to_section_nr(start_pfn);
203 ms = __nr_to_section(section_nr);
204
205 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
206
207 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
208
209 usemap = ms->pageblock_flags;
210 page = virt_to_page(usemap);
211
212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
213
214 for (i = 0; i < mapsize; i++, page++)
215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
216 }
217 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
218
219 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
220 {
221 unsigned long i, pfn, end_pfn, nr_pages;
222 int node = pgdat->node_id;
223 struct page *page;
224
225 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
226 page = virt_to_page(pgdat);
227
228 for (i = 0; i < nr_pages; i++, page++)
229 get_page_bootmem(node, page, NODE_INFO);
230
231 pfn = pgdat->node_start_pfn;
232 end_pfn = pgdat_end_pfn(pgdat);
233
234 /* register section info */
235 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
236 /*
237 * Some platforms can assign the same pfn to multiple nodes - on
238 * node0 as well as nodeN. To avoid registering a pfn against
239 * multiple nodes we check that this pfn does not already
240 * reside in some other nodes.
241 */
242 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
243 register_page_bootmem_info_section(pfn);
244 }
245 }
246 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
247
248 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
249 struct vmem_altmap *altmap, bool want_memblock)
250 {
251 int ret;
252
253 if (pfn_valid(phys_start_pfn))
254 return -EEXIST;
255
256 ret = sparse_add_one_section(NODE_DATA(nid), phys_start_pfn, altmap);
257 if (ret < 0)
258 return ret;
259
260 if (!want_memblock)
261 return 0;
262
263 return hotplug_memory_register(nid, __pfn_to_section(phys_start_pfn));
264 }
265
266 /*
267 * Reasonably generic function for adding memory. It is
268 * expected that archs that support memory hotplug will
269 * call this function after deciding the zone to which to
270 * add the new pages.
271 */
272 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
273 unsigned long nr_pages, struct vmem_altmap *altmap,
274 bool want_memblock)
275 {
276 unsigned long i;
277 int err = 0;
278 int start_sec, end_sec;
279
280 /* during initialize mem_map, align hot-added range to section */
281 start_sec = pfn_to_section_nr(phys_start_pfn);
282 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
283
284 if (altmap) {
285 /*
286 * Validate altmap is within bounds of the total request
287 */
288 if (altmap->base_pfn != phys_start_pfn
289 || vmem_altmap_offset(altmap) > nr_pages) {
290 pr_warn_once("memory add fail, invalid altmap\n");
291 err = -EINVAL;
292 goto out;
293 }
294 altmap->alloc = 0;
295 }
296
297 for (i = start_sec; i <= end_sec; i++) {
298 err = __add_section(nid, section_nr_to_pfn(i), altmap,
299 want_memblock);
300
301 /*
302 * EEXIST is finally dealt with by ioresource collision
303 * check. see add_memory() => register_memory_resource()
304 * Warning will be printed if there is collision.
305 */
306 if (err && (err != -EEXIST))
307 break;
308 err = 0;
309 cond_resched();
310 }
311 vmemmap_populate_print_last();
312 out:
313 return err;
314 }
315
316 #ifdef CONFIG_MEMORY_HOTREMOVE
317 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
318 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
319 unsigned long start_pfn,
320 unsigned long end_pfn)
321 {
322 struct mem_section *ms;
323
324 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
325 ms = __pfn_to_section(start_pfn);
326
327 if (unlikely(!valid_section(ms)))
328 continue;
329
330 if (unlikely(pfn_to_nid(start_pfn) != nid))
331 continue;
332
333 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
334 continue;
335
336 return start_pfn;
337 }
338
339 return 0;
340 }
341
342 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
343 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
344 unsigned long start_pfn,
345 unsigned long end_pfn)
346 {
347 struct mem_section *ms;
348 unsigned long pfn;
349
350 /* pfn is the end pfn of a memory section. */
351 pfn = end_pfn - 1;
352 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
353 ms = __pfn_to_section(pfn);
354
355 if (unlikely(!valid_section(ms)))
356 continue;
357
358 if (unlikely(pfn_to_nid(pfn) != nid))
359 continue;
360
361 if (zone && zone != page_zone(pfn_to_page(pfn)))
362 continue;
363
364 return pfn;
365 }
366
367 return 0;
368 }
369
370 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
371 unsigned long end_pfn)
372 {
373 unsigned long zone_start_pfn = zone->zone_start_pfn;
374 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
375 unsigned long zone_end_pfn = z;
376 unsigned long pfn;
377 struct mem_section *ms;
378 int nid = zone_to_nid(zone);
379
380 zone_span_writelock(zone);
381 if (zone_start_pfn == start_pfn) {
382 /*
383 * If the section is smallest section in the zone, it need
384 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
385 * In this case, we find second smallest valid mem_section
386 * for shrinking zone.
387 */
388 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
389 zone_end_pfn);
390 if (pfn) {
391 zone->zone_start_pfn = pfn;
392 zone->spanned_pages = zone_end_pfn - pfn;
393 }
394 } else if (zone_end_pfn == end_pfn) {
395 /*
396 * If the section is biggest section in the zone, it need
397 * shrink zone->spanned_pages.
398 * In this case, we find second biggest valid mem_section for
399 * shrinking zone.
400 */
401 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
402 start_pfn);
403 if (pfn)
404 zone->spanned_pages = pfn - zone_start_pfn + 1;
405 }
406
407 /*
408 * The section is not biggest or smallest mem_section in the zone, it
409 * only creates a hole in the zone. So in this case, we need not
410 * change the zone. But perhaps, the zone has only hole data. Thus
411 * it check the zone has only hole or not.
412 */
413 pfn = zone_start_pfn;
414 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
415 ms = __pfn_to_section(pfn);
416
417 if (unlikely(!valid_section(ms)))
418 continue;
419
420 if (page_zone(pfn_to_page(pfn)) != zone)
421 continue;
422
423 /* If the section is current section, it continues the loop */
424 if (start_pfn == pfn)
425 continue;
426
427 /* If we find valid section, we have nothing to do */
428 zone_span_writeunlock(zone);
429 return;
430 }
431
432 /* The zone has no valid section */
433 zone->zone_start_pfn = 0;
434 zone->spanned_pages = 0;
435 zone_span_writeunlock(zone);
436 }
437
438 static void shrink_pgdat_span(struct pglist_data *pgdat,
439 unsigned long start_pfn, unsigned long end_pfn)
440 {
441 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
442 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
443 unsigned long pgdat_end_pfn = p;
444 unsigned long pfn;
445 struct mem_section *ms;
446 int nid = pgdat->node_id;
447
448 if (pgdat_start_pfn == start_pfn) {
449 /*
450 * If the section is smallest section in the pgdat, it need
451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 * In this case, we find second smallest valid mem_section
453 * for shrinking zone.
454 */
455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 pgdat_end_pfn);
457 if (pfn) {
458 pgdat->node_start_pfn = pfn;
459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 }
461 } else if (pgdat_end_pfn == end_pfn) {
462 /*
463 * If the section is biggest section in the pgdat, it need
464 * shrink pgdat->node_spanned_pages.
465 * In this case, we find second biggest valid mem_section for
466 * shrinking zone.
467 */
468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 start_pfn);
470 if (pfn)
471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 }
473
474 /*
475 * If the section is not biggest or smallest mem_section in the pgdat,
476 * it only creates a hole in the pgdat. So in this case, we need not
477 * change the pgdat.
478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 * has only hole or not.
480 */
481 pfn = pgdat_start_pfn;
482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
483 ms = __pfn_to_section(pfn);
484
485 if (unlikely(!valid_section(ms)))
486 continue;
487
488 if (pfn_to_nid(pfn) != nid)
489 continue;
490
491 /* If the section is current section, it continues the loop */
492 if (start_pfn == pfn)
493 continue;
494
495 /* If we find valid section, we have nothing to do */
496 return;
497 }
498
499 /* The pgdat has no valid section */
500 pgdat->node_start_pfn = 0;
501 pgdat->node_spanned_pages = 0;
502 }
503
504 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
505 {
506 struct pglist_data *pgdat = zone->zone_pgdat;
507 int nr_pages = PAGES_PER_SECTION;
508 unsigned long flags;
509
510 pgdat_resize_lock(zone->zone_pgdat, &flags);
511 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
512 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
513 pgdat_resize_unlock(zone->zone_pgdat, &flags);
514 }
515
516 static int __remove_section(struct zone *zone, struct mem_section *ms,
517 unsigned long map_offset, struct vmem_altmap *altmap)
518 {
519 unsigned long start_pfn;
520 int scn_nr;
521 int ret = -EINVAL;
522
523 if (!valid_section(ms))
524 return ret;
525
526 ret = unregister_memory_section(ms);
527 if (ret)
528 return ret;
529
530 scn_nr = __section_nr(ms);
531 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
532 __remove_zone(zone, start_pfn);
533
534 sparse_remove_one_section(zone, ms, map_offset, altmap);
535 return 0;
536 }
537
538 /**
539 * __remove_pages() - remove sections of pages from a zone
540 * @zone: zone from which pages need to be removed
541 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
542 * @nr_pages: number of pages to remove (must be multiple of section size)
543 * @altmap: alternative device page map or %NULL if default memmap is used
544 *
545 * Generic helper function to remove section mappings and sysfs entries
546 * for the section of the memory we are removing. Caller needs to make
547 * sure that pages are marked reserved and zones are adjust properly by
548 * calling offline_pages().
549 */
550 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
551 unsigned long nr_pages, struct vmem_altmap *altmap)
552 {
553 unsigned long i;
554 unsigned long map_offset = 0;
555 int sections_to_remove, ret = 0;
556
557 /* In the ZONE_DEVICE case device driver owns the memory region */
558 if (is_dev_zone(zone)) {
559 if (altmap)
560 map_offset = vmem_altmap_offset(altmap);
561 } else {
562 resource_size_t start, size;
563
564 start = phys_start_pfn << PAGE_SHIFT;
565 size = nr_pages * PAGE_SIZE;
566
567 ret = release_mem_region_adjustable(&iomem_resource, start,
568 size);
569 if (ret) {
570 resource_size_t endres = start + size - 1;
571
572 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
573 &start, &endres, ret);
574 }
575 }
576
577 clear_zone_contiguous(zone);
578
579 /*
580 * We can only remove entire sections
581 */
582 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
583 BUG_ON(nr_pages % PAGES_PER_SECTION);
584
585 sections_to_remove = nr_pages / PAGES_PER_SECTION;
586 for (i = 0; i < sections_to_remove; i++) {
587 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
588
589 cond_resched();
590 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset,
591 altmap);
592 map_offset = 0;
593 if (ret)
594 break;
595 }
596
597 set_zone_contiguous(zone);
598
599 return ret;
600 }
601 #endif /* CONFIG_MEMORY_HOTREMOVE */
602
603 int set_online_page_callback(online_page_callback_t callback)
604 {
605 int rc = -EINVAL;
606
607 get_online_mems();
608 mutex_lock(&online_page_callback_lock);
609
610 if (online_page_callback == generic_online_page) {
611 online_page_callback = callback;
612 rc = 0;
613 }
614
615 mutex_unlock(&online_page_callback_lock);
616 put_online_mems();
617
618 return rc;
619 }
620 EXPORT_SYMBOL_GPL(set_online_page_callback);
621
622 int restore_online_page_callback(online_page_callback_t callback)
623 {
624 int rc = -EINVAL;
625
626 get_online_mems();
627 mutex_lock(&online_page_callback_lock);
628
629 if (online_page_callback == callback) {
630 online_page_callback = generic_online_page;
631 rc = 0;
632 }
633
634 mutex_unlock(&online_page_callback_lock);
635 put_online_mems();
636
637 return rc;
638 }
639 EXPORT_SYMBOL_GPL(restore_online_page_callback);
640
641 void __online_page_set_limits(struct page *page)
642 {
643 }
644 EXPORT_SYMBOL_GPL(__online_page_set_limits);
645
646 void __online_page_increment_counters(struct page *page)
647 {
648 adjust_managed_page_count(page, 1);
649 }
650 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
651
652 void __online_page_free(struct page *page)
653 {
654 __free_reserved_page(page);
655 }
656 EXPORT_SYMBOL_GPL(__online_page_free);
657
658 static void generic_online_page(struct page *page)
659 {
660 __online_page_set_limits(page);
661 __online_page_increment_counters(page);
662 __online_page_free(page);
663 }
664
665 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
666 void *arg)
667 {
668 unsigned long i;
669 unsigned long onlined_pages = *(unsigned long *)arg;
670 struct page *page;
671
672 if (PageReserved(pfn_to_page(start_pfn)))
673 for (i = 0; i < nr_pages; i++) {
674 page = pfn_to_page(start_pfn + i);
675 (*online_page_callback)(page);
676 onlined_pages++;
677 }
678
679 online_mem_sections(start_pfn, start_pfn + nr_pages);
680
681 *(unsigned long *)arg = onlined_pages;
682 return 0;
683 }
684
685 /* check which state of node_states will be changed when online memory */
686 static void node_states_check_changes_online(unsigned long nr_pages,
687 struct zone *zone, struct memory_notify *arg)
688 {
689 int nid = zone_to_nid(zone);
690
691 arg->status_change_nid = -1;
692 arg->status_change_nid_normal = -1;
693 arg->status_change_nid_high = -1;
694
695 if (!node_state(nid, N_MEMORY))
696 arg->status_change_nid = nid;
697 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
698 arg->status_change_nid_normal = nid;
699 #ifdef CONFIG_HIGHMEM
700 if (zone_idx(zone) <= N_HIGH_MEMORY && !node_state(nid, N_HIGH_MEMORY))
701 arg->status_change_nid_high = nid;
702 #endif
703 }
704
705 static void node_states_set_node(int node, struct memory_notify *arg)
706 {
707 if (arg->status_change_nid_normal >= 0)
708 node_set_state(node, N_NORMAL_MEMORY);
709
710 if (arg->status_change_nid_high >= 0)
711 node_set_state(node, N_HIGH_MEMORY);
712
713 if (arg->status_change_nid >= 0)
714 node_set_state(node, N_MEMORY);
715 }
716
717 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
718 unsigned long nr_pages)
719 {
720 unsigned long old_end_pfn = zone_end_pfn(zone);
721
722 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
723 zone->zone_start_pfn = start_pfn;
724
725 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
726 }
727
728 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
729 unsigned long nr_pages)
730 {
731 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
732
733 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
734 pgdat->node_start_pfn = start_pfn;
735
736 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
737 }
738
739 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
740 unsigned long nr_pages, struct vmem_altmap *altmap)
741 {
742 struct pglist_data *pgdat = zone->zone_pgdat;
743 int nid = pgdat->node_id;
744 unsigned long flags;
745
746 if (zone_is_empty(zone))
747 init_currently_empty_zone(zone, start_pfn, nr_pages);
748
749 clear_zone_contiguous(zone);
750
751 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
752 pgdat_resize_lock(pgdat, &flags);
753 zone_span_writelock(zone);
754 resize_zone_range(zone, start_pfn, nr_pages);
755 zone_span_writeunlock(zone);
756 resize_pgdat_range(pgdat, start_pfn, nr_pages);
757 pgdat_resize_unlock(pgdat, &flags);
758
759 /*
760 * TODO now we have a visible range of pages which are not associated
761 * with their zone properly. Not nice but set_pfnblock_flags_mask
762 * expects the zone spans the pfn range. All the pages in the range
763 * are reserved so nobody should be touching them so we should be safe
764 */
765 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
766 MEMMAP_HOTPLUG, altmap);
767
768 set_zone_contiguous(zone);
769 }
770
771 /*
772 * Returns a default kernel memory zone for the given pfn range.
773 * If no kernel zone covers this pfn range it will automatically go
774 * to the ZONE_NORMAL.
775 */
776 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
777 unsigned long nr_pages)
778 {
779 struct pglist_data *pgdat = NODE_DATA(nid);
780 int zid;
781
782 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
783 struct zone *zone = &pgdat->node_zones[zid];
784
785 if (zone_intersects(zone, start_pfn, nr_pages))
786 return zone;
787 }
788
789 return &pgdat->node_zones[ZONE_NORMAL];
790 }
791
792 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
793 unsigned long nr_pages)
794 {
795 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
796 nr_pages);
797 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
798 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
799 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
800
801 /*
802 * We inherit the existing zone in a simple case where zones do not
803 * overlap in the given range
804 */
805 if (in_kernel ^ in_movable)
806 return (in_kernel) ? kernel_zone : movable_zone;
807
808 /*
809 * If the range doesn't belong to any zone or two zones overlap in the
810 * given range then we use movable zone only if movable_node is
811 * enabled because we always online to a kernel zone by default.
812 */
813 return movable_node_enabled ? movable_zone : kernel_zone;
814 }
815
816 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
817 unsigned long nr_pages)
818 {
819 if (online_type == MMOP_ONLINE_KERNEL)
820 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
821
822 if (online_type == MMOP_ONLINE_MOVABLE)
823 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
824
825 return default_zone_for_pfn(nid, start_pfn, nr_pages);
826 }
827
828 /*
829 * Associates the given pfn range with the given node and the zone appropriate
830 * for the given online type.
831 */
832 static struct zone * __meminit move_pfn_range(int online_type, int nid,
833 unsigned long start_pfn, unsigned long nr_pages)
834 {
835 struct zone *zone;
836
837 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
838 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
839 return zone;
840 }
841
842 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
843 {
844 unsigned long flags;
845 unsigned long onlined_pages = 0;
846 struct zone *zone;
847 int need_zonelists_rebuild = 0;
848 int nid;
849 int ret;
850 struct memory_notify arg;
851 struct memory_block *mem;
852
853 mem_hotplug_begin();
854
855 /*
856 * We can't use pfn_to_nid() because nid might be stored in struct page
857 * which is not yet initialized. Instead, we find nid from memory block.
858 */
859 mem = find_memory_block(__pfn_to_section(pfn));
860 nid = mem->nid;
861
862 /* associate pfn range with the zone */
863 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
864
865 arg.start_pfn = pfn;
866 arg.nr_pages = nr_pages;
867 node_states_check_changes_online(nr_pages, zone, &arg);
868
869 ret = memory_notify(MEM_GOING_ONLINE, &arg);
870 ret = notifier_to_errno(ret);
871 if (ret)
872 goto failed_addition;
873
874 /*
875 * If this zone is not populated, then it is not in zonelist.
876 * This means the page allocator ignores this zone.
877 * So, zonelist must be updated after online.
878 */
879 if (!populated_zone(zone)) {
880 need_zonelists_rebuild = 1;
881 setup_zone_pageset(zone);
882 }
883
884 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
885 online_pages_range);
886 if (ret) {
887 if (need_zonelists_rebuild)
888 zone_pcp_reset(zone);
889 goto failed_addition;
890 }
891
892 zone->present_pages += onlined_pages;
893
894 pgdat_resize_lock(zone->zone_pgdat, &flags);
895 zone->zone_pgdat->node_present_pages += onlined_pages;
896 pgdat_resize_unlock(zone->zone_pgdat, &flags);
897
898 if (onlined_pages) {
899 node_states_set_node(nid, &arg);
900 if (need_zonelists_rebuild)
901 build_all_zonelists(NULL);
902 else
903 zone_pcp_update(zone);
904 }
905
906 init_per_zone_wmark_min();
907
908 if (onlined_pages) {
909 kswapd_run(nid);
910 kcompactd_run(nid);
911 }
912
913 vm_total_pages = nr_free_pagecache_pages();
914
915 writeback_set_ratelimit();
916
917 if (onlined_pages)
918 memory_notify(MEM_ONLINE, &arg);
919 mem_hotplug_done();
920 return 0;
921
922 failed_addition:
923 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
924 (unsigned long long) pfn << PAGE_SHIFT,
925 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
926 memory_notify(MEM_CANCEL_ONLINE, &arg);
927 mem_hotplug_done();
928 return ret;
929 }
930 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
931
932 static void reset_node_present_pages(pg_data_t *pgdat)
933 {
934 struct zone *z;
935
936 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
937 z->present_pages = 0;
938
939 pgdat->node_present_pages = 0;
940 }
941
942 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
943 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
944 {
945 struct pglist_data *pgdat;
946 unsigned long start_pfn = PFN_DOWN(start);
947
948 pgdat = NODE_DATA(nid);
949 if (!pgdat) {
950 pgdat = arch_alloc_nodedata(nid);
951 if (!pgdat)
952 return NULL;
953
954 arch_refresh_nodedata(nid, pgdat);
955 } else {
956 /*
957 * Reset the nr_zones, order and classzone_idx before reuse.
958 * Note that kswapd will init kswapd_classzone_idx properly
959 * when it starts in the near future.
960 */
961 pgdat->nr_zones = 0;
962 pgdat->kswapd_order = 0;
963 pgdat->kswapd_classzone_idx = 0;
964 }
965
966 /* we can use NODE_DATA(nid) from here */
967
968 pgdat->node_id = nid;
969 pgdat->node_start_pfn = start_pfn;
970
971 /* init node's zones as empty zones, we don't have any present pages.*/
972 free_area_init_core_hotplug(nid);
973 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
974
975 /*
976 * The node we allocated has no zone fallback lists. For avoiding
977 * to access not-initialized zonelist, build here.
978 */
979 build_all_zonelists(pgdat);
980
981 /*
982 * When memory is hot-added, all the memory is in offline state. So
983 * clear all zones' present_pages because they will be updated in
984 * online_pages() and offline_pages().
985 */
986 reset_node_managed_pages(pgdat);
987 reset_node_present_pages(pgdat);
988
989 return pgdat;
990 }
991
992 static void rollback_node_hotadd(int nid)
993 {
994 pg_data_t *pgdat = NODE_DATA(nid);
995
996 arch_refresh_nodedata(nid, NULL);
997 free_percpu(pgdat->per_cpu_nodestats);
998 arch_free_nodedata(pgdat);
999 return;
1000 }
1001
1002
1003 /**
1004 * try_online_node - online a node if offlined
1005 * @nid: the node ID
1006 * @start: start addr of the node
1007 * @set_node_online: Whether we want to online the node
1008 * called by cpu_up() to online a node without onlined memory.
1009 *
1010 * Returns:
1011 * 1 -> a new node has been allocated
1012 * 0 -> the node is already online
1013 * -ENOMEM -> the node could not be allocated
1014 */
1015 static int __try_online_node(int nid, u64 start, bool set_node_online)
1016 {
1017 pg_data_t *pgdat;
1018 int ret = 1;
1019
1020 if (node_online(nid))
1021 return 0;
1022
1023 pgdat = hotadd_new_pgdat(nid, start);
1024 if (!pgdat) {
1025 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1026 ret = -ENOMEM;
1027 goto out;
1028 }
1029
1030 if (set_node_online) {
1031 node_set_online(nid);
1032 ret = register_one_node(nid);
1033 BUG_ON(ret);
1034 }
1035 out:
1036 return ret;
1037 }
1038
1039 /*
1040 * Users of this function always want to online/register the node
1041 */
1042 int try_online_node(int nid)
1043 {
1044 int ret;
1045
1046 mem_hotplug_begin();
1047 ret = __try_online_node(nid, 0, true);
1048 mem_hotplug_done();
1049 return ret;
1050 }
1051
1052 static int check_hotplug_memory_range(u64 start, u64 size)
1053 {
1054 unsigned long block_sz = memory_block_size_bytes();
1055 u64 block_nr_pages = block_sz >> PAGE_SHIFT;
1056 u64 nr_pages = size >> PAGE_SHIFT;
1057 u64 start_pfn = PFN_DOWN(start);
1058
1059 /* memory range must be block size aligned */
1060 if (!nr_pages || !IS_ALIGNED(start_pfn, block_nr_pages) ||
1061 !IS_ALIGNED(nr_pages, block_nr_pages)) {
1062 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1063 block_sz, start, size);
1064 return -EINVAL;
1065 }
1066
1067 return 0;
1068 }
1069
1070 static int online_memory_block(struct memory_block *mem, void *arg)
1071 {
1072 return device_online(&mem->dev);
1073 }
1074
1075 /*
1076 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1077 * and online/offline operations (triggered e.g. by sysfs).
1078 *
1079 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1080 */
1081 int __ref add_memory_resource(int nid, struct resource *res, bool online)
1082 {
1083 u64 start, size;
1084 bool new_node = false;
1085 int ret;
1086
1087 start = res->start;
1088 size = resource_size(res);
1089
1090 ret = check_hotplug_memory_range(start, size);
1091 if (ret)
1092 return ret;
1093
1094 mem_hotplug_begin();
1095
1096 /*
1097 * Add new range to memblock so that when hotadd_new_pgdat() is called
1098 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1099 * this new range and calculate total pages correctly. The range will
1100 * be removed at hot-remove time.
1101 */
1102 memblock_add_node(start, size, nid);
1103
1104 ret = __try_online_node(nid, start, false);
1105 if (ret < 0)
1106 goto error;
1107 new_node = ret;
1108
1109 /* call arch's memory hotadd */
1110 ret = arch_add_memory(nid, start, size, NULL, true);
1111 if (ret < 0)
1112 goto error;
1113
1114 if (new_node) {
1115 /* If sysfs file of new node can't be created, cpu on the node
1116 * can't be hot-added. There is no rollback way now.
1117 * So, check by BUG_ON() to catch it reluctantly..
1118 * We online node here. We can't roll back from here.
1119 */
1120 node_set_online(nid);
1121 ret = __register_one_node(nid);
1122 BUG_ON(ret);
1123 }
1124
1125 /* link memory sections under this node.*/
1126 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1127 BUG_ON(ret);
1128
1129 /* create new memmap entry */
1130 firmware_map_add_hotplug(start, start + size, "System RAM");
1131
1132 /* device_online() will take the lock when calling online_pages() */
1133 mem_hotplug_done();
1134
1135 /* online pages if requested */
1136 if (online)
1137 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1138 NULL, online_memory_block);
1139
1140 return ret;
1141 error:
1142 /* rollback pgdat allocation and others */
1143 if (new_node)
1144 rollback_node_hotadd(nid);
1145 memblock_remove(start, size);
1146 mem_hotplug_done();
1147 return ret;
1148 }
1149
1150 /* requires device_hotplug_lock, see add_memory_resource() */
1151 int __ref __add_memory(int nid, u64 start, u64 size)
1152 {
1153 struct resource *res;
1154 int ret;
1155
1156 res = register_memory_resource(start, size);
1157 if (IS_ERR(res))
1158 return PTR_ERR(res);
1159
1160 ret = add_memory_resource(nid, res, memhp_auto_online);
1161 if (ret < 0)
1162 release_memory_resource(res);
1163 return ret;
1164 }
1165
1166 int add_memory(int nid, u64 start, u64 size)
1167 {
1168 int rc;
1169
1170 lock_device_hotplug();
1171 rc = __add_memory(nid, start, size);
1172 unlock_device_hotplug();
1173
1174 return rc;
1175 }
1176 EXPORT_SYMBOL_GPL(add_memory);
1177
1178 #ifdef CONFIG_MEMORY_HOTREMOVE
1179 /*
1180 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1181 * set and the size of the free page is given by page_order(). Using this,
1182 * the function determines if the pageblock contains only free pages.
1183 * Due to buddy contraints, a free page at least the size of a pageblock will
1184 * be located at the start of the pageblock
1185 */
1186 static inline int pageblock_free(struct page *page)
1187 {
1188 return PageBuddy(page) && page_order(page) >= pageblock_order;
1189 }
1190
1191 /* Return the start of the next active pageblock after a given page */
1192 static struct page *next_active_pageblock(struct page *page)
1193 {
1194 /* Ensure the starting page is pageblock-aligned */
1195 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1196
1197 /* If the entire pageblock is free, move to the end of free page */
1198 if (pageblock_free(page)) {
1199 int order;
1200 /* be careful. we don't have locks, page_order can be changed.*/
1201 order = page_order(page);
1202 if ((order < MAX_ORDER) && (order >= pageblock_order))
1203 return page + (1 << order);
1204 }
1205
1206 return page + pageblock_nr_pages;
1207 }
1208
1209 static bool is_pageblock_removable_nolock(struct page *page)
1210 {
1211 struct zone *zone;
1212 unsigned long pfn;
1213
1214 /*
1215 * We have to be careful here because we are iterating over memory
1216 * sections which are not zone aware so we might end up outside of
1217 * the zone but still within the section.
1218 * We have to take care about the node as well. If the node is offline
1219 * its NODE_DATA will be NULL - see page_zone.
1220 */
1221 if (!node_online(page_to_nid(page)))
1222 return false;
1223
1224 zone = page_zone(page);
1225 pfn = page_to_pfn(page);
1226 if (!zone_spans_pfn(zone, pfn))
1227 return false;
1228
1229 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
1230 }
1231
1232 /* Checks if this range of memory is likely to be hot-removable. */
1233 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1234 {
1235 struct page *page = pfn_to_page(start_pfn);
1236 struct page *end_page = page + nr_pages;
1237
1238 /* Check the starting page of each pageblock within the range */
1239 for (; page < end_page; page = next_active_pageblock(page)) {
1240 if (!is_pageblock_removable_nolock(page))
1241 return false;
1242 cond_resched();
1243 }
1244
1245 /* All pageblocks in the memory block are likely to be hot-removable */
1246 return true;
1247 }
1248
1249 /*
1250 * Confirm all pages in a range [start, end) belong to the same zone.
1251 * When true, return its valid [start, end).
1252 */
1253 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1254 unsigned long *valid_start, unsigned long *valid_end)
1255 {
1256 unsigned long pfn, sec_end_pfn;
1257 unsigned long start, end;
1258 struct zone *zone = NULL;
1259 struct page *page;
1260 int i;
1261 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1262 pfn < end_pfn;
1263 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1264 /* Make sure the memory section is present first */
1265 if (!present_section_nr(pfn_to_section_nr(pfn)))
1266 continue;
1267 for (; pfn < sec_end_pfn && pfn < end_pfn;
1268 pfn += MAX_ORDER_NR_PAGES) {
1269 i = 0;
1270 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1271 while ((i < MAX_ORDER_NR_PAGES) &&
1272 !pfn_valid_within(pfn + i))
1273 i++;
1274 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1275 continue;
1276 page = pfn_to_page(pfn + i);
1277 if (zone && page_zone(page) != zone)
1278 return 0;
1279 if (!zone)
1280 start = pfn + i;
1281 zone = page_zone(page);
1282 end = pfn + MAX_ORDER_NR_PAGES;
1283 }
1284 }
1285
1286 if (zone) {
1287 *valid_start = start;
1288 *valid_end = min(end, end_pfn);
1289 return 1;
1290 } else {
1291 return 0;
1292 }
1293 }
1294
1295 /*
1296 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1297 * non-lru movable pages and hugepages). We scan pfn because it's much
1298 * easier than scanning over linked list. This function returns the pfn
1299 * of the first found movable page if it's found, otherwise 0.
1300 */
1301 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1302 {
1303 unsigned long pfn;
1304 struct page *page;
1305 for (pfn = start; pfn < end; pfn++) {
1306 if (pfn_valid(pfn)) {
1307 page = pfn_to_page(pfn);
1308 if (PageLRU(page))
1309 return pfn;
1310 if (__PageMovable(page))
1311 return pfn;
1312 if (PageHuge(page)) {
1313 if (hugepage_migration_supported(page_hstate(page)) &&
1314 page_huge_active(page))
1315 return pfn;
1316 else
1317 pfn = round_up(pfn + 1,
1318 1 << compound_order(page)) - 1;
1319 }
1320 }
1321 }
1322 return 0;
1323 }
1324
1325 static struct page *new_node_page(struct page *page, unsigned long private)
1326 {
1327 int nid = page_to_nid(page);
1328 nodemask_t nmask = node_states[N_MEMORY];
1329
1330 /*
1331 * try to allocate from a different node but reuse this node if there
1332 * are no other online nodes to be used (e.g. we are offlining a part
1333 * of the only existing node)
1334 */
1335 node_clear(nid, nmask);
1336 if (nodes_empty(nmask))
1337 node_set(nid, nmask);
1338
1339 return new_page_nodemask(page, nid, &nmask);
1340 }
1341
1342 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1343 static int
1344 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1345 {
1346 unsigned long pfn;
1347 struct page *page;
1348 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1349 int not_managed = 0;
1350 int ret = 0;
1351 LIST_HEAD(source);
1352
1353 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1354 if (!pfn_valid(pfn))
1355 continue;
1356 page = pfn_to_page(pfn);
1357
1358 if (PageHuge(page)) {
1359 struct page *head = compound_head(page);
1360 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1361 if (compound_order(head) > PFN_SECTION_SHIFT) {
1362 ret = -EBUSY;
1363 break;
1364 }
1365 if (isolate_huge_page(page, &source))
1366 move_pages -= 1 << compound_order(head);
1367 continue;
1368 } else if (PageTransHuge(page))
1369 pfn = page_to_pfn(compound_head(page))
1370 + hpage_nr_pages(page) - 1;
1371
1372 if (!get_page_unless_zero(page))
1373 continue;
1374 /*
1375 * We can skip free pages. And we can deal with pages on
1376 * LRU and non-lru movable pages.
1377 */
1378 if (PageLRU(page))
1379 ret = isolate_lru_page(page);
1380 else
1381 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382 if (!ret) { /* Success */
1383 put_page(page);
1384 list_add_tail(&page->lru, &source);
1385 move_pages--;
1386 if (!__PageMovable(page))
1387 inc_node_page_state(page, NR_ISOLATED_ANON +
1388 page_is_file_cache(page));
1389
1390 } else {
1391 #ifdef CONFIG_DEBUG_VM
1392 pr_alert("failed to isolate pfn %lx\n", pfn);
1393 dump_page(page, "isolation failed");
1394 #endif
1395 put_page(page);
1396 /* Because we don't have big zone->lock. we should
1397 check this again here. */
1398 if (page_count(page)) {
1399 not_managed++;
1400 ret = -EBUSY;
1401 break;
1402 }
1403 }
1404 }
1405 if (!list_empty(&source)) {
1406 if (not_managed) {
1407 putback_movable_pages(&source);
1408 goto out;
1409 }
1410
1411 /* Allocate a new page from the nearest neighbor node */
1412 ret = migrate_pages(&source, new_node_page, NULL, 0,
1413 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1414 if (ret)
1415 putback_movable_pages(&source);
1416 }
1417 out:
1418 return ret;
1419 }
1420
1421 /*
1422 * remove from free_area[] and mark all as Reserved.
1423 */
1424 static int
1425 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1426 void *data)
1427 {
1428 __offline_isolated_pages(start, start + nr_pages);
1429 return 0;
1430 }
1431
1432 static void
1433 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1434 {
1435 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1436 offline_isolated_pages_cb);
1437 }
1438
1439 /*
1440 * Check all pages in range, recoreded as memory resource, are isolated.
1441 */
1442 static int
1443 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1444 void *data)
1445 {
1446 int ret;
1447 long offlined = *(long *)data;
1448 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1449 offlined = nr_pages;
1450 if (!ret)
1451 *(long *)data += offlined;
1452 return ret;
1453 }
1454
1455 static long
1456 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1457 {
1458 long offlined = 0;
1459 int ret;
1460
1461 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1462 check_pages_isolated_cb);
1463 if (ret < 0)
1464 offlined = (long)ret;
1465 return offlined;
1466 }
1467
1468 static int __init cmdline_parse_movable_node(char *p)
1469 {
1470 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1471 movable_node_enabled = true;
1472 #else
1473 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1474 #endif
1475 return 0;
1476 }
1477 early_param("movable_node", cmdline_parse_movable_node);
1478
1479 /* check which state of node_states will be changed when offline memory */
1480 static void node_states_check_changes_offline(unsigned long nr_pages,
1481 struct zone *zone, struct memory_notify *arg)
1482 {
1483 struct pglist_data *pgdat = zone->zone_pgdat;
1484 unsigned long present_pages = 0;
1485 enum zone_type zt;
1486
1487 arg->status_change_nid = -1;
1488 arg->status_change_nid_normal = -1;
1489 arg->status_change_nid_high = -1;
1490
1491 /*
1492 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1493 * If the memory to be offline is within the range
1494 * [0..ZONE_NORMAL], and it is the last present memory there,
1495 * the zones in that range will become empty after the offlining,
1496 * thus we can determine that we need to clear the node from
1497 * node_states[N_NORMAL_MEMORY].
1498 */
1499 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1500 present_pages += pgdat->node_zones[zt].present_pages;
1501 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1502 arg->status_change_nid_normal = zone_to_nid(zone);
1503
1504 #ifdef CONFIG_HIGHMEM
1505 /*
1506 * node_states[N_HIGH_MEMORY] contains nodes which
1507 * have normal memory or high memory.
1508 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1509 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1510 * we determine that the zones in that range become empty,
1511 * we need to clear the node for N_HIGH_MEMORY.
1512 */
1513 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1514 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1515 arg->status_change_nid_high = zone_to_nid(zone);
1516 #endif
1517
1518 /*
1519 * We have accounted the pages from [0..ZONE_NORMAL), and
1520 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1521 * as well.
1522 * Here we count the possible pages from ZONE_MOVABLE.
1523 * If after having accounted all the pages, we see that the nr_pages
1524 * to be offlined is over or equal to the accounted pages,
1525 * we know that the node will become empty, and so, we can clear
1526 * it for N_MEMORY as well.
1527 */
1528 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1529
1530 if (nr_pages >= present_pages)
1531 arg->status_change_nid = zone_to_nid(zone);
1532 }
1533
1534 static void node_states_clear_node(int node, struct memory_notify *arg)
1535 {
1536 if (arg->status_change_nid_normal >= 0)
1537 node_clear_state(node, N_NORMAL_MEMORY);
1538
1539 if (arg->status_change_nid_high >= 0)
1540 node_clear_state(node, N_HIGH_MEMORY);
1541
1542 if (arg->status_change_nid >= 0)
1543 node_clear_state(node, N_MEMORY);
1544 }
1545
1546 static int __ref __offline_pages(unsigned long start_pfn,
1547 unsigned long end_pfn)
1548 {
1549 unsigned long pfn, nr_pages;
1550 long offlined_pages;
1551 int ret, node;
1552 unsigned long flags;
1553 unsigned long valid_start, valid_end;
1554 struct zone *zone;
1555 struct memory_notify arg;
1556
1557 /* at least, alignment against pageblock is necessary */
1558 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1559 return -EINVAL;
1560 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1561 return -EINVAL;
1562
1563 mem_hotplug_begin();
1564
1565 /* This makes hotplug much easier...and readable.
1566 we assume this for now. .*/
1567 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1568 &valid_end)) {
1569 mem_hotplug_done();
1570 return -EINVAL;
1571 }
1572
1573 zone = page_zone(pfn_to_page(valid_start));
1574 node = zone_to_nid(zone);
1575 nr_pages = end_pfn - start_pfn;
1576
1577 /* set above range as isolated */
1578 ret = start_isolate_page_range(start_pfn, end_pfn,
1579 MIGRATE_MOVABLE, true);
1580 if (ret) {
1581 mem_hotplug_done();
1582 return ret;
1583 }
1584
1585 arg.start_pfn = start_pfn;
1586 arg.nr_pages = nr_pages;
1587 node_states_check_changes_offline(nr_pages, zone, &arg);
1588
1589 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1590 ret = notifier_to_errno(ret);
1591 if (ret)
1592 goto failed_removal;
1593
1594 pfn = start_pfn;
1595 repeat:
1596 /* start memory hot removal */
1597 ret = -EINTR;
1598 if (signal_pending(current))
1599 goto failed_removal;
1600
1601 cond_resched();
1602 lru_add_drain_all();
1603 drain_all_pages(zone);
1604
1605 pfn = scan_movable_pages(start_pfn, end_pfn);
1606 if (pfn) { /* We have movable pages */
1607 ret = do_migrate_range(pfn, end_pfn);
1608 goto repeat;
1609 }
1610
1611 /*
1612 * dissolve free hugepages in the memory block before doing offlining
1613 * actually in order to make hugetlbfs's object counting consistent.
1614 */
1615 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1616 if (ret)
1617 goto failed_removal;
1618 /* check again */
1619 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1620 if (offlined_pages < 0)
1621 goto repeat;
1622 pr_info("Offlined Pages %ld\n", offlined_pages);
1623 /* Ok, all of our target is isolated.
1624 We cannot do rollback at this point. */
1625 offline_isolated_pages(start_pfn, end_pfn);
1626 /* reset pagetype flags and makes migrate type to be MOVABLE */
1627 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1628 /* removal success */
1629 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1630 zone->present_pages -= offlined_pages;
1631
1632 pgdat_resize_lock(zone->zone_pgdat, &flags);
1633 zone->zone_pgdat->node_present_pages -= offlined_pages;
1634 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1635
1636 init_per_zone_wmark_min();
1637
1638 if (!populated_zone(zone)) {
1639 zone_pcp_reset(zone);
1640 build_all_zonelists(NULL);
1641 } else
1642 zone_pcp_update(zone);
1643
1644 node_states_clear_node(node, &arg);
1645 if (arg.status_change_nid >= 0) {
1646 kswapd_stop(node);
1647 kcompactd_stop(node);
1648 }
1649
1650 vm_total_pages = nr_free_pagecache_pages();
1651 writeback_set_ratelimit();
1652
1653 memory_notify(MEM_OFFLINE, &arg);
1654 mem_hotplug_done();
1655 return 0;
1656
1657 failed_removal:
1658 pr_debug("memory offlining [mem %#010llx-%#010llx] failed\n",
1659 (unsigned long long) start_pfn << PAGE_SHIFT,
1660 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1661 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1662 /* pushback to free area */
1663 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1664 mem_hotplug_done();
1665 return ret;
1666 }
1667
1668 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1669 {
1670 return __offline_pages(start_pfn, start_pfn + nr_pages);
1671 }
1672 #endif /* CONFIG_MEMORY_HOTREMOVE */
1673
1674 /**
1675 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1676 * @start_pfn: start pfn of the memory range
1677 * @end_pfn: end pfn of the memory range
1678 * @arg: argument passed to func
1679 * @func: callback for each memory section walked
1680 *
1681 * This function walks through all present mem sections in range
1682 * [start_pfn, end_pfn) and call func on each mem section.
1683 *
1684 * Returns the return value of func.
1685 */
1686 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1687 void *arg, int (*func)(struct memory_block *, void *))
1688 {
1689 struct memory_block *mem = NULL;
1690 struct mem_section *section;
1691 unsigned long pfn, section_nr;
1692 int ret;
1693
1694 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1695 section_nr = pfn_to_section_nr(pfn);
1696 if (!present_section_nr(section_nr))
1697 continue;
1698
1699 section = __nr_to_section(section_nr);
1700 /* same memblock? */
1701 if (mem)
1702 if ((section_nr >= mem->start_section_nr) &&
1703 (section_nr <= mem->end_section_nr))
1704 continue;
1705
1706 mem = find_memory_block_hinted(section, mem);
1707 if (!mem)
1708 continue;
1709
1710 ret = func(mem, arg);
1711 if (ret) {
1712 kobject_put(&mem->dev.kobj);
1713 return ret;
1714 }
1715 }
1716
1717 if (mem)
1718 kobject_put(&mem->dev.kobj);
1719
1720 return 0;
1721 }
1722
1723 #ifdef CONFIG_MEMORY_HOTREMOVE
1724 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1725 {
1726 int ret = !is_memblock_offlined(mem);
1727
1728 if (unlikely(ret)) {
1729 phys_addr_t beginpa, endpa;
1730
1731 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1732 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1733 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1734 &beginpa, &endpa);
1735 }
1736
1737 return ret;
1738 }
1739
1740 static int check_cpu_on_node(pg_data_t *pgdat)
1741 {
1742 int cpu;
1743
1744 for_each_present_cpu(cpu) {
1745 if (cpu_to_node(cpu) == pgdat->node_id)
1746 /*
1747 * the cpu on this node isn't removed, and we can't
1748 * offline this node.
1749 */
1750 return -EBUSY;
1751 }
1752
1753 return 0;
1754 }
1755
1756 static void unmap_cpu_on_node(pg_data_t *pgdat)
1757 {
1758 #ifdef CONFIG_ACPI_NUMA
1759 int cpu;
1760
1761 for_each_possible_cpu(cpu)
1762 if (cpu_to_node(cpu) == pgdat->node_id)
1763 numa_clear_node(cpu);
1764 #endif
1765 }
1766
1767 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1768 {
1769 int ret;
1770
1771 ret = check_cpu_on_node(pgdat);
1772 if (ret)
1773 return ret;
1774
1775 /*
1776 * the node will be offlined when we come here, so we can clear
1777 * the cpu_to_node() now.
1778 */
1779
1780 unmap_cpu_on_node(pgdat);
1781 return 0;
1782 }
1783
1784 /**
1785 * try_offline_node
1786 * @nid: the node ID
1787 *
1788 * Offline a node if all memory sections and cpus of the node are removed.
1789 *
1790 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1791 * and online/offline operations before this call.
1792 */
1793 void try_offline_node(int nid)
1794 {
1795 pg_data_t *pgdat = NODE_DATA(nid);
1796 unsigned long start_pfn = pgdat->node_start_pfn;
1797 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1798 unsigned long pfn;
1799
1800 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1801 unsigned long section_nr = pfn_to_section_nr(pfn);
1802
1803 if (!present_section_nr(section_nr))
1804 continue;
1805
1806 if (pfn_to_nid(pfn) != nid)
1807 continue;
1808
1809 /*
1810 * some memory sections of this node are not removed, and we
1811 * can't offline node now.
1812 */
1813 return;
1814 }
1815
1816 if (check_and_unmap_cpu_on_node(pgdat))
1817 return;
1818
1819 /*
1820 * all memory/cpu of this node are removed, we can offline this
1821 * node now.
1822 */
1823 node_set_offline(nid);
1824 unregister_one_node(nid);
1825 }
1826 EXPORT_SYMBOL(try_offline_node);
1827
1828 /**
1829 * remove_memory
1830 * @nid: the node ID
1831 * @start: physical address of the region to remove
1832 * @size: size of the region to remove
1833 *
1834 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1835 * and online/offline operations before this call, as required by
1836 * try_offline_node().
1837 */
1838 void __ref __remove_memory(int nid, u64 start, u64 size)
1839 {
1840 int ret;
1841
1842 BUG_ON(check_hotplug_memory_range(start, size));
1843
1844 mem_hotplug_begin();
1845
1846 /*
1847 * All memory blocks must be offlined before removing memory. Check
1848 * whether all memory blocks in question are offline and trigger a BUG()
1849 * if this is not the case.
1850 */
1851 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1852 check_memblock_offlined_cb);
1853 if (ret)
1854 BUG();
1855
1856 /* remove memmap entry */
1857 firmware_map_remove(start, start + size, "System RAM");
1858 memblock_free(start, size);
1859 memblock_remove(start, size);
1860
1861 arch_remove_memory(start, size, NULL);
1862
1863 try_offline_node(nid);
1864
1865 mem_hotplug_done();
1866 }
1867
1868 void remove_memory(int nid, u64 start, u64 size)
1869 {
1870 lock_device_hotplug();
1871 __remove_memory(nid, start, size);
1872 unlock_device_hotplug();
1873 }
1874 EXPORT_SYMBOL_GPL(remove_memory);
1875 #endif /* CONFIG_MEMORY_HOTREMOVE */