]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memory_hotplug.c
i2c: octeon: Cleanup i2c-octeon driver
[mirror_ubuntu-artful-kernel.git] / mm / memory_hotplug.c
1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memremap.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/bootmem.h>
36
37 #include <asm/tlbflush.h>
38
39 #include "internal.h"
40
41 /*
42 * online_page_callback contains pointer to current page onlining function.
43 * Initially it is generic_online_page(). If it is required it could be
44 * changed by calling set_online_page_callback() for callback registration
45 * and restore_online_page_callback() for generic callback restore.
46 */
47
48 static void generic_online_page(struct page *page);
49
50 static online_page_callback_t online_page_callback = generic_online_page;
51 static DEFINE_MUTEX(online_page_callback_lock);
52
53 /* The same as the cpu_hotplug lock, but for memory hotplug. */
54 static struct {
55 struct task_struct *active_writer;
56 struct mutex lock; /* Synchronizes accesses to refcount, */
57 /*
58 * Also blocks the new readers during
59 * an ongoing mem hotplug operation.
60 */
61 int refcount;
62
63 #ifdef CONFIG_DEBUG_LOCK_ALLOC
64 struct lockdep_map dep_map;
65 #endif
66 } mem_hotplug = {
67 .active_writer = NULL,
68 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
69 .refcount = 0,
70 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 .dep_map = {.name = "mem_hotplug.lock" },
72 #endif
73 };
74
75 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
76 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
77 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
78 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
79
80 void get_online_mems(void)
81 {
82 might_sleep();
83 if (mem_hotplug.active_writer == current)
84 return;
85 memhp_lock_acquire_read();
86 mutex_lock(&mem_hotplug.lock);
87 mem_hotplug.refcount++;
88 mutex_unlock(&mem_hotplug.lock);
89
90 }
91
92 void put_online_mems(void)
93 {
94 if (mem_hotplug.active_writer == current)
95 return;
96 mutex_lock(&mem_hotplug.lock);
97
98 if (WARN_ON(!mem_hotplug.refcount))
99 mem_hotplug.refcount++; /* try to fix things up */
100
101 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
102 wake_up_process(mem_hotplug.active_writer);
103 mutex_unlock(&mem_hotplug.lock);
104 memhp_lock_release();
105
106 }
107
108 void mem_hotplug_begin(void)
109 {
110 mem_hotplug.active_writer = current;
111
112 memhp_lock_acquire();
113 for (;;) {
114 mutex_lock(&mem_hotplug.lock);
115 if (likely(!mem_hotplug.refcount))
116 break;
117 __set_current_state(TASK_UNINTERRUPTIBLE);
118 mutex_unlock(&mem_hotplug.lock);
119 schedule();
120 }
121 }
122
123 void mem_hotplug_done(void)
124 {
125 mem_hotplug.active_writer = NULL;
126 mutex_unlock(&mem_hotplug.lock);
127 memhp_lock_release();
128 }
129
130 /* add this memory to iomem resource */
131 static struct resource *register_memory_resource(u64 start, u64 size)
132 {
133 struct resource *res;
134 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
135 if (!res)
136 return ERR_PTR(-ENOMEM);
137
138 res->name = "System RAM";
139 res->start = start;
140 res->end = start + size - 1;
141 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
142 if (request_resource(&iomem_resource, res) < 0) {
143 pr_debug("System RAM resource %pR cannot be added\n", res);
144 kfree(res);
145 return ERR_PTR(-EEXIST);
146 }
147 return res;
148 }
149
150 static void release_memory_resource(struct resource *res)
151 {
152 if (!res)
153 return;
154 release_resource(res);
155 kfree(res);
156 return;
157 }
158
159 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
160 void get_page_bootmem(unsigned long info, struct page *page,
161 unsigned long type)
162 {
163 page->lru.next = (struct list_head *) type;
164 SetPagePrivate(page);
165 set_page_private(page, info);
166 atomic_inc(&page->_count);
167 }
168
169 void put_page_bootmem(struct page *page)
170 {
171 unsigned long type;
172
173 type = (unsigned long) page->lru.next;
174 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
175 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
176
177 if (atomic_dec_return(&page->_count) == 1) {
178 ClearPagePrivate(page);
179 set_page_private(page, 0);
180 INIT_LIST_HEAD(&page->lru);
181 free_reserved_page(page);
182 }
183 }
184
185 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
186 #ifndef CONFIG_SPARSEMEM_VMEMMAP
187 static void register_page_bootmem_info_section(unsigned long start_pfn)
188 {
189 unsigned long *usemap, mapsize, section_nr, i;
190 struct mem_section *ms;
191 struct page *page, *memmap;
192
193 section_nr = pfn_to_section_nr(start_pfn);
194 ms = __nr_to_section(section_nr);
195
196 /* Get section's memmap address */
197 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
198
199 /*
200 * Get page for the memmap's phys address
201 * XXX: need more consideration for sparse_vmemmap...
202 */
203 page = virt_to_page(memmap);
204 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
205 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
206
207 /* remember memmap's page */
208 for (i = 0; i < mapsize; i++, page++)
209 get_page_bootmem(section_nr, page, SECTION_INFO);
210
211 usemap = __nr_to_section(section_nr)->pageblock_flags;
212 page = virt_to_page(usemap);
213
214 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
215
216 for (i = 0; i < mapsize; i++, page++)
217 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
218
219 }
220 #else /* CONFIG_SPARSEMEM_VMEMMAP */
221 static void register_page_bootmem_info_section(unsigned long start_pfn)
222 {
223 unsigned long *usemap, mapsize, section_nr, i;
224 struct mem_section *ms;
225 struct page *page, *memmap;
226
227 if (!pfn_valid(start_pfn))
228 return;
229
230 section_nr = pfn_to_section_nr(start_pfn);
231 ms = __nr_to_section(section_nr);
232
233 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
234
235 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
236
237 usemap = __nr_to_section(section_nr)->pageblock_flags;
238 page = virt_to_page(usemap);
239
240 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
241
242 for (i = 0; i < mapsize; i++, page++)
243 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
244 }
245 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
246
247 void register_page_bootmem_info_node(struct pglist_data *pgdat)
248 {
249 unsigned long i, pfn, end_pfn, nr_pages;
250 int node = pgdat->node_id;
251 struct page *page;
252 struct zone *zone;
253
254 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
255 page = virt_to_page(pgdat);
256
257 for (i = 0; i < nr_pages; i++, page++)
258 get_page_bootmem(node, page, NODE_INFO);
259
260 zone = &pgdat->node_zones[0];
261 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
262 if (zone_is_initialized(zone)) {
263 nr_pages = zone->wait_table_hash_nr_entries
264 * sizeof(wait_queue_head_t);
265 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
266 page = virt_to_page(zone->wait_table);
267
268 for (i = 0; i < nr_pages; i++, page++)
269 get_page_bootmem(node, page, NODE_INFO);
270 }
271 }
272
273 pfn = pgdat->node_start_pfn;
274 end_pfn = pgdat_end_pfn(pgdat);
275
276 /* register section info */
277 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
278 /*
279 * Some platforms can assign the same pfn to multiple nodes - on
280 * node0 as well as nodeN. To avoid registering a pfn against
281 * multiple nodes we check that this pfn does not already
282 * reside in some other nodes.
283 */
284 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
285 register_page_bootmem_info_section(pfn);
286 }
287 }
288 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
289
290 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
291 unsigned long end_pfn)
292 {
293 unsigned long old_zone_end_pfn;
294
295 zone_span_writelock(zone);
296
297 old_zone_end_pfn = zone_end_pfn(zone);
298 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
299 zone->zone_start_pfn = start_pfn;
300
301 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
302 zone->zone_start_pfn;
303
304 zone_span_writeunlock(zone);
305 }
306
307 static void resize_zone(struct zone *zone, unsigned long start_pfn,
308 unsigned long end_pfn)
309 {
310 zone_span_writelock(zone);
311
312 if (end_pfn - start_pfn) {
313 zone->zone_start_pfn = start_pfn;
314 zone->spanned_pages = end_pfn - start_pfn;
315 } else {
316 /*
317 * make it consist as free_area_init_core(),
318 * if spanned_pages = 0, then keep start_pfn = 0
319 */
320 zone->zone_start_pfn = 0;
321 zone->spanned_pages = 0;
322 }
323
324 zone_span_writeunlock(zone);
325 }
326
327 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
328 unsigned long end_pfn)
329 {
330 enum zone_type zid = zone_idx(zone);
331 int nid = zone->zone_pgdat->node_id;
332 unsigned long pfn;
333
334 for (pfn = start_pfn; pfn < end_pfn; pfn++)
335 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
336 }
337
338 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
339 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
340 static int __ref ensure_zone_is_initialized(struct zone *zone,
341 unsigned long start_pfn, unsigned long num_pages)
342 {
343 if (!zone_is_initialized(zone))
344 return init_currently_empty_zone(zone, start_pfn, num_pages);
345
346 return 0;
347 }
348
349 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
350 unsigned long start_pfn, unsigned long end_pfn)
351 {
352 int ret;
353 unsigned long flags;
354 unsigned long z1_start_pfn;
355
356 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
357 if (ret)
358 return ret;
359
360 pgdat_resize_lock(z1->zone_pgdat, &flags);
361
362 /* can't move pfns which are higher than @z2 */
363 if (end_pfn > zone_end_pfn(z2))
364 goto out_fail;
365 /* the move out part must be at the left most of @z2 */
366 if (start_pfn > z2->zone_start_pfn)
367 goto out_fail;
368 /* must included/overlap */
369 if (end_pfn <= z2->zone_start_pfn)
370 goto out_fail;
371
372 /* use start_pfn for z1's start_pfn if z1 is empty */
373 if (!zone_is_empty(z1))
374 z1_start_pfn = z1->zone_start_pfn;
375 else
376 z1_start_pfn = start_pfn;
377
378 resize_zone(z1, z1_start_pfn, end_pfn);
379 resize_zone(z2, end_pfn, zone_end_pfn(z2));
380
381 pgdat_resize_unlock(z1->zone_pgdat, &flags);
382
383 fix_zone_id(z1, start_pfn, end_pfn);
384
385 return 0;
386 out_fail:
387 pgdat_resize_unlock(z1->zone_pgdat, &flags);
388 return -1;
389 }
390
391 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
392 unsigned long start_pfn, unsigned long end_pfn)
393 {
394 int ret;
395 unsigned long flags;
396 unsigned long z2_end_pfn;
397
398 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
399 if (ret)
400 return ret;
401
402 pgdat_resize_lock(z1->zone_pgdat, &flags);
403
404 /* can't move pfns which are lower than @z1 */
405 if (z1->zone_start_pfn > start_pfn)
406 goto out_fail;
407 /* the move out part mast at the right most of @z1 */
408 if (zone_end_pfn(z1) > end_pfn)
409 goto out_fail;
410 /* must included/overlap */
411 if (start_pfn >= zone_end_pfn(z1))
412 goto out_fail;
413
414 /* use end_pfn for z2's end_pfn if z2 is empty */
415 if (!zone_is_empty(z2))
416 z2_end_pfn = zone_end_pfn(z2);
417 else
418 z2_end_pfn = end_pfn;
419
420 resize_zone(z1, z1->zone_start_pfn, start_pfn);
421 resize_zone(z2, start_pfn, z2_end_pfn);
422
423 pgdat_resize_unlock(z1->zone_pgdat, &flags);
424
425 fix_zone_id(z2, start_pfn, end_pfn);
426
427 return 0;
428 out_fail:
429 pgdat_resize_unlock(z1->zone_pgdat, &flags);
430 return -1;
431 }
432
433 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
434 unsigned long end_pfn)
435 {
436 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
437
438 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
439 pgdat->node_start_pfn = start_pfn;
440
441 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
442 pgdat->node_start_pfn;
443 }
444
445 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
446 {
447 struct pglist_data *pgdat = zone->zone_pgdat;
448 int nr_pages = PAGES_PER_SECTION;
449 int nid = pgdat->node_id;
450 int zone_type;
451 unsigned long flags, pfn;
452 int ret;
453
454 zone_type = zone - pgdat->node_zones;
455 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
456 if (ret)
457 return ret;
458
459 pgdat_resize_lock(zone->zone_pgdat, &flags);
460 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
461 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
462 phys_start_pfn + nr_pages);
463 pgdat_resize_unlock(zone->zone_pgdat, &flags);
464 memmap_init_zone(nr_pages, nid, zone_type,
465 phys_start_pfn, MEMMAP_HOTPLUG);
466
467 /* online_page_range is called later and expects pages reserved */
468 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
469 if (!pfn_valid(pfn))
470 continue;
471
472 SetPageReserved(pfn_to_page(pfn));
473 }
474 return 0;
475 }
476
477 static int __meminit __add_section(int nid, struct zone *zone,
478 unsigned long phys_start_pfn)
479 {
480 int ret;
481
482 if (pfn_valid(phys_start_pfn))
483 return -EEXIST;
484
485 ret = sparse_add_one_section(zone, phys_start_pfn);
486
487 if (ret < 0)
488 return ret;
489
490 ret = __add_zone(zone, phys_start_pfn);
491
492 if (ret < 0)
493 return ret;
494
495 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
496 }
497
498 /*
499 * Reasonably generic function for adding memory. It is
500 * expected that archs that support memory hotplug will
501 * call this function after deciding the zone to which to
502 * add the new pages.
503 */
504 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
505 unsigned long nr_pages)
506 {
507 unsigned long i;
508 int err = 0;
509 int start_sec, end_sec;
510 struct vmem_altmap *altmap;
511
512 /* during initialize mem_map, align hot-added range to section */
513 start_sec = pfn_to_section_nr(phys_start_pfn);
514 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
515
516 altmap = to_vmem_altmap((unsigned long) pfn_to_page(phys_start_pfn));
517 if (altmap) {
518 /*
519 * Validate altmap is within bounds of the total request
520 */
521 if (altmap->base_pfn != phys_start_pfn
522 || vmem_altmap_offset(altmap) > nr_pages) {
523 pr_warn_once("memory add fail, invalid altmap\n");
524 return -EINVAL;
525 }
526 altmap->alloc = 0;
527 }
528
529 for (i = start_sec; i <= end_sec; i++) {
530 err = __add_section(nid, zone, section_nr_to_pfn(i));
531
532 /*
533 * EEXIST is finally dealt with by ioresource collision
534 * check. see add_memory() => register_memory_resource()
535 * Warning will be printed if there is collision.
536 */
537 if (err && (err != -EEXIST))
538 break;
539 err = 0;
540 }
541 vmemmap_populate_print_last();
542
543 return err;
544 }
545 EXPORT_SYMBOL_GPL(__add_pages);
546
547 #ifdef CONFIG_MEMORY_HOTREMOVE
548 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
549 static int find_smallest_section_pfn(int nid, struct zone *zone,
550 unsigned long start_pfn,
551 unsigned long end_pfn)
552 {
553 struct mem_section *ms;
554
555 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
556 ms = __pfn_to_section(start_pfn);
557
558 if (unlikely(!valid_section(ms)))
559 continue;
560
561 if (unlikely(pfn_to_nid(start_pfn) != nid))
562 continue;
563
564 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
565 continue;
566
567 return start_pfn;
568 }
569
570 return 0;
571 }
572
573 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
574 static int find_biggest_section_pfn(int nid, struct zone *zone,
575 unsigned long start_pfn,
576 unsigned long end_pfn)
577 {
578 struct mem_section *ms;
579 unsigned long pfn;
580
581 /* pfn is the end pfn of a memory section. */
582 pfn = end_pfn - 1;
583 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
584 ms = __pfn_to_section(pfn);
585
586 if (unlikely(!valid_section(ms)))
587 continue;
588
589 if (unlikely(pfn_to_nid(pfn) != nid))
590 continue;
591
592 if (zone && zone != page_zone(pfn_to_page(pfn)))
593 continue;
594
595 return pfn;
596 }
597
598 return 0;
599 }
600
601 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
602 unsigned long end_pfn)
603 {
604 unsigned long zone_start_pfn = zone->zone_start_pfn;
605 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
606 unsigned long zone_end_pfn = z;
607 unsigned long pfn;
608 struct mem_section *ms;
609 int nid = zone_to_nid(zone);
610
611 zone_span_writelock(zone);
612 if (zone_start_pfn == start_pfn) {
613 /*
614 * If the section is smallest section in the zone, it need
615 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
616 * In this case, we find second smallest valid mem_section
617 * for shrinking zone.
618 */
619 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
620 zone_end_pfn);
621 if (pfn) {
622 zone->zone_start_pfn = pfn;
623 zone->spanned_pages = zone_end_pfn - pfn;
624 }
625 } else if (zone_end_pfn == end_pfn) {
626 /*
627 * If the section is biggest section in the zone, it need
628 * shrink zone->spanned_pages.
629 * In this case, we find second biggest valid mem_section for
630 * shrinking zone.
631 */
632 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
633 start_pfn);
634 if (pfn)
635 zone->spanned_pages = pfn - zone_start_pfn + 1;
636 }
637
638 /*
639 * The section is not biggest or smallest mem_section in the zone, it
640 * only creates a hole in the zone. So in this case, we need not
641 * change the zone. But perhaps, the zone has only hole data. Thus
642 * it check the zone has only hole or not.
643 */
644 pfn = zone_start_pfn;
645 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
646 ms = __pfn_to_section(pfn);
647
648 if (unlikely(!valid_section(ms)))
649 continue;
650
651 if (page_zone(pfn_to_page(pfn)) != zone)
652 continue;
653
654 /* If the section is current section, it continues the loop */
655 if (start_pfn == pfn)
656 continue;
657
658 /* If we find valid section, we have nothing to do */
659 zone_span_writeunlock(zone);
660 return;
661 }
662
663 /* The zone has no valid section */
664 zone->zone_start_pfn = 0;
665 zone->spanned_pages = 0;
666 zone_span_writeunlock(zone);
667 }
668
669 static void shrink_pgdat_span(struct pglist_data *pgdat,
670 unsigned long start_pfn, unsigned long end_pfn)
671 {
672 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
673 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
674 unsigned long pgdat_end_pfn = p;
675 unsigned long pfn;
676 struct mem_section *ms;
677 int nid = pgdat->node_id;
678
679 if (pgdat_start_pfn == start_pfn) {
680 /*
681 * If the section is smallest section in the pgdat, it need
682 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
683 * In this case, we find second smallest valid mem_section
684 * for shrinking zone.
685 */
686 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
687 pgdat_end_pfn);
688 if (pfn) {
689 pgdat->node_start_pfn = pfn;
690 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
691 }
692 } else if (pgdat_end_pfn == end_pfn) {
693 /*
694 * If the section is biggest section in the pgdat, it need
695 * shrink pgdat->node_spanned_pages.
696 * In this case, we find second biggest valid mem_section for
697 * shrinking zone.
698 */
699 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
700 start_pfn);
701 if (pfn)
702 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
703 }
704
705 /*
706 * If the section is not biggest or smallest mem_section in the pgdat,
707 * it only creates a hole in the pgdat. So in this case, we need not
708 * change the pgdat.
709 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
710 * has only hole or not.
711 */
712 pfn = pgdat_start_pfn;
713 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
714 ms = __pfn_to_section(pfn);
715
716 if (unlikely(!valid_section(ms)))
717 continue;
718
719 if (pfn_to_nid(pfn) != nid)
720 continue;
721
722 /* If the section is current section, it continues the loop */
723 if (start_pfn == pfn)
724 continue;
725
726 /* If we find valid section, we have nothing to do */
727 return;
728 }
729
730 /* The pgdat has no valid section */
731 pgdat->node_start_pfn = 0;
732 pgdat->node_spanned_pages = 0;
733 }
734
735 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
736 {
737 struct pglist_data *pgdat = zone->zone_pgdat;
738 int nr_pages = PAGES_PER_SECTION;
739 int zone_type;
740 unsigned long flags;
741
742 zone_type = zone - pgdat->node_zones;
743
744 pgdat_resize_lock(zone->zone_pgdat, &flags);
745 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
746 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
747 pgdat_resize_unlock(zone->zone_pgdat, &flags);
748 }
749
750 static int __remove_section(struct zone *zone, struct mem_section *ms,
751 unsigned long map_offset)
752 {
753 unsigned long start_pfn;
754 int scn_nr;
755 int ret = -EINVAL;
756
757 if (!valid_section(ms))
758 return ret;
759
760 ret = unregister_memory_section(ms);
761 if (ret)
762 return ret;
763
764 scn_nr = __section_nr(ms);
765 start_pfn = section_nr_to_pfn(scn_nr);
766 __remove_zone(zone, start_pfn);
767
768 sparse_remove_one_section(zone, ms, map_offset);
769 return 0;
770 }
771
772 /**
773 * __remove_pages() - remove sections of pages from a zone
774 * @zone: zone from which pages need to be removed
775 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
776 * @nr_pages: number of pages to remove (must be multiple of section size)
777 *
778 * Generic helper function to remove section mappings and sysfs entries
779 * for the section of the memory we are removing. Caller needs to make
780 * sure that pages are marked reserved and zones are adjust properly by
781 * calling offline_pages().
782 */
783 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
784 unsigned long nr_pages)
785 {
786 unsigned long i;
787 unsigned long map_offset = 0;
788 int sections_to_remove, ret = 0;
789
790 /* In the ZONE_DEVICE case device driver owns the memory region */
791 if (is_dev_zone(zone)) {
792 struct page *page = pfn_to_page(phys_start_pfn);
793 struct vmem_altmap *altmap;
794
795 altmap = to_vmem_altmap((unsigned long) page);
796 if (altmap)
797 map_offset = vmem_altmap_offset(altmap);
798 } else {
799 resource_size_t start, size;
800
801 start = phys_start_pfn << PAGE_SHIFT;
802 size = nr_pages * PAGE_SIZE;
803
804 ret = release_mem_region_adjustable(&iomem_resource, start,
805 size);
806 if (ret) {
807 resource_size_t endres = start + size - 1;
808
809 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
810 &start, &endres, ret);
811 }
812 }
813
814 /*
815 * We can only remove entire sections
816 */
817 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
818 BUG_ON(nr_pages % PAGES_PER_SECTION);
819
820 sections_to_remove = nr_pages / PAGES_PER_SECTION;
821 for (i = 0; i < sections_to_remove; i++) {
822 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
823
824 ret = __remove_section(zone, __pfn_to_section(pfn), map_offset);
825 map_offset = 0;
826 if (ret)
827 break;
828 }
829 return ret;
830 }
831 EXPORT_SYMBOL_GPL(__remove_pages);
832 #endif /* CONFIG_MEMORY_HOTREMOVE */
833
834 int set_online_page_callback(online_page_callback_t callback)
835 {
836 int rc = -EINVAL;
837
838 get_online_mems();
839 mutex_lock(&online_page_callback_lock);
840
841 if (online_page_callback == generic_online_page) {
842 online_page_callback = callback;
843 rc = 0;
844 }
845
846 mutex_unlock(&online_page_callback_lock);
847 put_online_mems();
848
849 return rc;
850 }
851 EXPORT_SYMBOL_GPL(set_online_page_callback);
852
853 int restore_online_page_callback(online_page_callback_t callback)
854 {
855 int rc = -EINVAL;
856
857 get_online_mems();
858 mutex_lock(&online_page_callback_lock);
859
860 if (online_page_callback == callback) {
861 online_page_callback = generic_online_page;
862 rc = 0;
863 }
864
865 mutex_unlock(&online_page_callback_lock);
866 put_online_mems();
867
868 return rc;
869 }
870 EXPORT_SYMBOL_GPL(restore_online_page_callback);
871
872 void __online_page_set_limits(struct page *page)
873 {
874 }
875 EXPORT_SYMBOL_GPL(__online_page_set_limits);
876
877 void __online_page_increment_counters(struct page *page)
878 {
879 adjust_managed_page_count(page, 1);
880 }
881 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
882
883 void __online_page_free(struct page *page)
884 {
885 __free_reserved_page(page);
886 }
887 EXPORT_SYMBOL_GPL(__online_page_free);
888
889 static void generic_online_page(struct page *page)
890 {
891 __online_page_set_limits(page);
892 __online_page_increment_counters(page);
893 __online_page_free(page);
894 }
895
896 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
897 void *arg)
898 {
899 unsigned long i;
900 unsigned long onlined_pages = *(unsigned long *)arg;
901 struct page *page;
902 if (PageReserved(pfn_to_page(start_pfn)))
903 for (i = 0; i < nr_pages; i++) {
904 page = pfn_to_page(start_pfn + i);
905 (*online_page_callback)(page);
906 onlined_pages++;
907 }
908 *(unsigned long *)arg = onlined_pages;
909 return 0;
910 }
911
912 #ifdef CONFIG_MOVABLE_NODE
913 /*
914 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
915 * normal memory.
916 */
917 static bool can_online_high_movable(struct zone *zone)
918 {
919 return true;
920 }
921 #else /* CONFIG_MOVABLE_NODE */
922 /* ensure every online node has NORMAL memory */
923 static bool can_online_high_movable(struct zone *zone)
924 {
925 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
926 }
927 #endif /* CONFIG_MOVABLE_NODE */
928
929 /* check which state of node_states will be changed when online memory */
930 static void node_states_check_changes_online(unsigned long nr_pages,
931 struct zone *zone, struct memory_notify *arg)
932 {
933 int nid = zone_to_nid(zone);
934 enum zone_type zone_last = ZONE_NORMAL;
935
936 /*
937 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
938 * contains nodes which have zones of 0...ZONE_NORMAL,
939 * set zone_last to ZONE_NORMAL.
940 *
941 * If we don't have HIGHMEM nor movable node,
942 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
943 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
944 */
945 if (N_MEMORY == N_NORMAL_MEMORY)
946 zone_last = ZONE_MOVABLE;
947
948 /*
949 * if the memory to be online is in a zone of 0...zone_last, and
950 * the zones of 0...zone_last don't have memory before online, we will
951 * need to set the node to node_states[N_NORMAL_MEMORY] after
952 * the memory is online.
953 */
954 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
955 arg->status_change_nid_normal = nid;
956 else
957 arg->status_change_nid_normal = -1;
958
959 #ifdef CONFIG_HIGHMEM
960 /*
961 * If we have movable node, node_states[N_HIGH_MEMORY]
962 * contains nodes which have zones of 0...ZONE_HIGHMEM,
963 * set zone_last to ZONE_HIGHMEM.
964 *
965 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
966 * contains nodes which have zones of 0...ZONE_MOVABLE,
967 * set zone_last to ZONE_MOVABLE.
968 */
969 zone_last = ZONE_HIGHMEM;
970 if (N_MEMORY == N_HIGH_MEMORY)
971 zone_last = ZONE_MOVABLE;
972
973 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
974 arg->status_change_nid_high = nid;
975 else
976 arg->status_change_nid_high = -1;
977 #else
978 arg->status_change_nid_high = arg->status_change_nid_normal;
979 #endif
980
981 /*
982 * if the node don't have memory befor online, we will need to
983 * set the node to node_states[N_MEMORY] after the memory
984 * is online.
985 */
986 if (!node_state(nid, N_MEMORY))
987 arg->status_change_nid = nid;
988 else
989 arg->status_change_nid = -1;
990 }
991
992 static void node_states_set_node(int node, struct memory_notify *arg)
993 {
994 if (arg->status_change_nid_normal >= 0)
995 node_set_state(node, N_NORMAL_MEMORY);
996
997 if (arg->status_change_nid_high >= 0)
998 node_set_state(node, N_HIGH_MEMORY);
999
1000 node_set_state(node, N_MEMORY);
1001 }
1002
1003
1004 /* Must be protected by mem_hotplug_begin() */
1005 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
1006 {
1007 unsigned long flags;
1008 unsigned long onlined_pages = 0;
1009 struct zone *zone;
1010 int need_zonelists_rebuild = 0;
1011 int nid;
1012 int ret;
1013 struct memory_notify arg;
1014
1015 /*
1016 * This doesn't need a lock to do pfn_to_page().
1017 * The section can't be removed here because of the
1018 * memory_block->state_mutex.
1019 */
1020 zone = page_zone(pfn_to_page(pfn));
1021
1022 if ((zone_idx(zone) > ZONE_NORMAL ||
1023 online_type == MMOP_ONLINE_MOVABLE) &&
1024 !can_online_high_movable(zone))
1025 return -EINVAL;
1026
1027 if (online_type == MMOP_ONLINE_KERNEL &&
1028 zone_idx(zone) == ZONE_MOVABLE) {
1029 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1030 return -EINVAL;
1031 }
1032 if (online_type == MMOP_ONLINE_MOVABLE &&
1033 zone_idx(zone) == ZONE_MOVABLE - 1) {
1034 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1035 return -EINVAL;
1036 }
1037
1038 /* Previous code may changed the zone of the pfn range */
1039 zone = page_zone(pfn_to_page(pfn));
1040
1041 arg.start_pfn = pfn;
1042 arg.nr_pages = nr_pages;
1043 node_states_check_changes_online(nr_pages, zone, &arg);
1044
1045 nid = pfn_to_nid(pfn);
1046
1047 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1048 ret = notifier_to_errno(ret);
1049 if (ret) {
1050 memory_notify(MEM_CANCEL_ONLINE, &arg);
1051 return ret;
1052 }
1053 /*
1054 * If this zone is not populated, then it is not in zonelist.
1055 * This means the page allocator ignores this zone.
1056 * So, zonelist must be updated after online.
1057 */
1058 mutex_lock(&zonelists_mutex);
1059 if (!populated_zone(zone)) {
1060 need_zonelists_rebuild = 1;
1061 build_all_zonelists(NULL, zone);
1062 }
1063
1064 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1065 online_pages_range);
1066 if (ret) {
1067 if (need_zonelists_rebuild)
1068 zone_pcp_reset(zone);
1069 mutex_unlock(&zonelists_mutex);
1070 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1071 (unsigned long long) pfn << PAGE_SHIFT,
1072 (((unsigned long long) pfn + nr_pages)
1073 << PAGE_SHIFT) - 1);
1074 memory_notify(MEM_CANCEL_ONLINE, &arg);
1075 return ret;
1076 }
1077
1078 zone->present_pages += onlined_pages;
1079
1080 pgdat_resize_lock(zone->zone_pgdat, &flags);
1081 zone->zone_pgdat->node_present_pages += onlined_pages;
1082 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1083
1084 if (onlined_pages) {
1085 node_states_set_node(zone_to_nid(zone), &arg);
1086 if (need_zonelists_rebuild)
1087 build_all_zonelists(NULL, NULL);
1088 else
1089 zone_pcp_update(zone);
1090 }
1091
1092 mutex_unlock(&zonelists_mutex);
1093
1094 init_per_zone_wmark_min();
1095
1096 if (onlined_pages)
1097 kswapd_run(zone_to_nid(zone));
1098
1099 vm_total_pages = nr_free_pagecache_pages();
1100
1101 writeback_set_ratelimit();
1102
1103 if (onlined_pages)
1104 memory_notify(MEM_ONLINE, &arg);
1105 return 0;
1106 }
1107 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1108
1109 static void reset_node_present_pages(pg_data_t *pgdat)
1110 {
1111 struct zone *z;
1112
1113 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1114 z->present_pages = 0;
1115
1116 pgdat->node_present_pages = 0;
1117 }
1118
1119 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1120 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1121 {
1122 struct pglist_data *pgdat;
1123 unsigned long zones_size[MAX_NR_ZONES] = {0};
1124 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1125 unsigned long start_pfn = PFN_DOWN(start);
1126
1127 pgdat = NODE_DATA(nid);
1128 if (!pgdat) {
1129 pgdat = arch_alloc_nodedata(nid);
1130 if (!pgdat)
1131 return NULL;
1132
1133 arch_refresh_nodedata(nid, pgdat);
1134 } else {
1135 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1136 pgdat->nr_zones = 0;
1137 pgdat->classzone_idx = 0;
1138 }
1139
1140 /* we can use NODE_DATA(nid) from here */
1141
1142 /* init node's zones as empty zones, we don't have any present pages.*/
1143 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1144
1145 /*
1146 * The node we allocated has no zone fallback lists. For avoiding
1147 * to access not-initialized zonelist, build here.
1148 */
1149 mutex_lock(&zonelists_mutex);
1150 build_all_zonelists(pgdat, NULL);
1151 mutex_unlock(&zonelists_mutex);
1152
1153 /*
1154 * zone->managed_pages is set to an approximate value in
1155 * free_area_init_core(), which will cause
1156 * /sys/device/system/node/nodeX/meminfo has wrong data.
1157 * So reset it to 0 before any memory is onlined.
1158 */
1159 reset_node_managed_pages(pgdat);
1160
1161 /*
1162 * When memory is hot-added, all the memory is in offline state. So
1163 * clear all zones' present_pages because they will be updated in
1164 * online_pages() and offline_pages().
1165 */
1166 reset_node_present_pages(pgdat);
1167
1168 return pgdat;
1169 }
1170
1171 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1172 {
1173 arch_refresh_nodedata(nid, NULL);
1174 arch_free_nodedata(pgdat);
1175 return;
1176 }
1177
1178
1179 /**
1180 * try_online_node - online a node if offlined
1181 *
1182 * called by cpu_up() to online a node without onlined memory.
1183 */
1184 int try_online_node(int nid)
1185 {
1186 pg_data_t *pgdat;
1187 int ret;
1188
1189 if (node_online(nid))
1190 return 0;
1191
1192 mem_hotplug_begin();
1193 pgdat = hotadd_new_pgdat(nid, 0);
1194 if (!pgdat) {
1195 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1196 ret = -ENOMEM;
1197 goto out;
1198 }
1199 node_set_online(nid);
1200 ret = register_one_node(nid);
1201 BUG_ON(ret);
1202
1203 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1204 mutex_lock(&zonelists_mutex);
1205 build_all_zonelists(NULL, NULL);
1206 mutex_unlock(&zonelists_mutex);
1207 }
1208
1209 out:
1210 mem_hotplug_done();
1211 return ret;
1212 }
1213
1214 static int check_hotplug_memory_range(u64 start, u64 size)
1215 {
1216 u64 start_pfn = PFN_DOWN(start);
1217 u64 nr_pages = size >> PAGE_SHIFT;
1218
1219 /* Memory range must be aligned with section */
1220 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1221 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1222 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1223 (unsigned long long)start,
1224 (unsigned long long)size);
1225 return -EINVAL;
1226 }
1227
1228 return 0;
1229 }
1230
1231 /*
1232 * If movable zone has already been setup, newly added memory should be check.
1233 * If its address is higher than movable zone, it should be added as movable.
1234 * Without this check, movable zone may overlap with other zone.
1235 */
1236 static int should_add_memory_movable(int nid, u64 start, u64 size)
1237 {
1238 unsigned long start_pfn = start >> PAGE_SHIFT;
1239 pg_data_t *pgdat = NODE_DATA(nid);
1240 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1241
1242 if (zone_is_empty(movable_zone))
1243 return 0;
1244
1245 if (movable_zone->zone_start_pfn <= start_pfn)
1246 return 1;
1247
1248 return 0;
1249 }
1250
1251 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1252 bool for_device)
1253 {
1254 #ifdef CONFIG_ZONE_DEVICE
1255 if (for_device)
1256 return ZONE_DEVICE;
1257 #endif
1258 if (should_add_memory_movable(nid, start, size))
1259 return ZONE_MOVABLE;
1260
1261 return zone_default;
1262 }
1263
1264 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1265 int __ref add_memory_resource(int nid, struct resource *res)
1266 {
1267 u64 start, size;
1268 pg_data_t *pgdat = NULL;
1269 bool new_pgdat;
1270 bool new_node;
1271 int ret;
1272
1273 start = res->start;
1274 size = resource_size(res);
1275
1276 ret = check_hotplug_memory_range(start, size);
1277 if (ret)
1278 return ret;
1279
1280 { /* Stupid hack to suppress address-never-null warning */
1281 void *p = NODE_DATA(nid);
1282 new_pgdat = !p;
1283 }
1284
1285 mem_hotplug_begin();
1286
1287 /*
1288 * Add new range to memblock so that when hotadd_new_pgdat() is called
1289 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1290 * this new range and calculate total pages correctly. The range will
1291 * be removed at hot-remove time.
1292 */
1293 memblock_add_node(start, size, nid);
1294
1295 new_node = !node_online(nid);
1296 if (new_node) {
1297 pgdat = hotadd_new_pgdat(nid, start);
1298 ret = -ENOMEM;
1299 if (!pgdat)
1300 goto error;
1301 }
1302
1303 /* call arch's memory hotadd */
1304 ret = arch_add_memory(nid, start, size, false);
1305
1306 if (ret < 0)
1307 goto error;
1308
1309 /* we online node here. we can't roll back from here. */
1310 node_set_online(nid);
1311
1312 if (new_node) {
1313 ret = register_one_node(nid);
1314 /*
1315 * If sysfs file of new node can't create, cpu on the node
1316 * can't be hot-added. There is no rollback way now.
1317 * So, check by BUG_ON() to catch it reluctantly..
1318 */
1319 BUG_ON(ret);
1320 }
1321
1322 /* create new memmap entry */
1323 firmware_map_add_hotplug(start, start + size, "System RAM");
1324
1325 goto out;
1326
1327 error:
1328 /* rollback pgdat allocation and others */
1329 if (new_pgdat)
1330 rollback_node_hotadd(nid, pgdat);
1331 memblock_remove(start, size);
1332
1333 out:
1334 mem_hotplug_done();
1335 return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(add_memory_resource);
1338
1339 int __ref add_memory(int nid, u64 start, u64 size)
1340 {
1341 struct resource *res;
1342 int ret;
1343
1344 res = register_memory_resource(start, size);
1345 if (IS_ERR(res))
1346 return PTR_ERR(res);
1347
1348 ret = add_memory_resource(nid, res);
1349 if (ret < 0)
1350 release_memory_resource(res);
1351 return ret;
1352 }
1353 EXPORT_SYMBOL_GPL(add_memory);
1354
1355 #ifdef CONFIG_MEMORY_HOTREMOVE
1356 /*
1357 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1358 * set and the size of the free page is given by page_order(). Using this,
1359 * the function determines if the pageblock contains only free pages.
1360 * Due to buddy contraints, a free page at least the size of a pageblock will
1361 * be located at the start of the pageblock
1362 */
1363 static inline int pageblock_free(struct page *page)
1364 {
1365 return PageBuddy(page) && page_order(page) >= pageblock_order;
1366 }
1367
1368 /* Return the start of the next active pageblock after a given page */
1369 static struct page *next_active_pageblock(struct page *page)
1370 {
1371 /* Ensure the starting page is pageblock-aligned */
1372 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1373
1374 /* If the entire pageblock is free, move to the end of free page */
1375 if (pageblock_free(page)) {
1376 int order;
1377 /* be careful. we don't have locks, page_order can be changed.*/
1378 order = page_order(page);
1379 if ((order < MAX_ORDER) && (order >= pageblock_order))
1380 return page + (1 << order);
1381 }
1382
1383 return page + pageblock_nr_pages;
1384 }
1385
1386 /* Checks if this range of memory is likely to be hot-removable. */
1387 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1388 {
1389 struct page *page = pfn_to_page(start_pfn);
1390 struct page *end_page = page + nr_pages;
1391
1392 /* Check the starting page of each pageblock within the range */
1393 for (; page < end_page; page = next_active_pageblock(page)) {
1394 if (!is_pageblock_removable_nolock(page))
1395 return 0;
1396 cond_resched();
1397 }
1398
1399 /* All pageblocks in the memory block are likely to be hot-removable */
1400 return 1;
1401 }
1402
1403 /*
1404 * Confirm all pages in a range [start, end) is belongs to the same zone.
1405 */
1406 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1407 {
1408 unsigned long pfn, sec_end_pfn;
1409 struct zone *zone = NULL;
1410 struct page *page;
1411 int i;
1412 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn);
1413 pfn < end_pfn;
1414 pfn = sec_end_pfn + 1, sec_end_pfn += PAGES_PER_SECTION) {
1415 /* Make sure the memory section is present first */
1416 if (!present_section_nr(pfn_to_section_nr(pfn)))
1417 continue;
1418 for (; pfn < sec_end_pfn && pfn < end_pfn;
1419 pfn += MAX_ORDER_NR_PAGES) {
1420 i = 0;
1421 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1422 while ((i < MAX_ORDER_NR_PAGES) &&
1423 !pfn_valid_within(pfn + i))
1424 i++;
1425 if (i == MAX_ORDER_NR_PAGES)
1426 continue;
1427 page = pfn_to_page(pfn + i);
1428 if (zone && page_zone(page) != zone)
1429 return 0;
1430 zone = page_zone(page);
1431 }
1432 }
1433 return 1;
1434 }
1435
1436 /*
1437 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1438 * and hugepages). We scan pfn because it's much easier than scanning over
1439 * linked list. This function returns the pfn of the first found movable
1440 * page if it's found, otherwise 0.
1441 */
1442 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1443 {
1444 unsigned long pfn;
1445 struct page *page;
1446 for (pfn = start; pfn < end; pfn++) {
1447 if (pfn_valid(pfn)) {
1448 page = pfn_to_page(pfn);
1449 if (PageLRU(page))
1450 return pfn;
1451 if (PageHuge(page)) {
1452 if (page_huge_active(page))
1453 return pfn;
1454 else
1455 pfn = round_up(pfn + 1,
1456 1 << compound_order(page)) - 1;
1457 }
1458 }
1459 }
1460 return 0;
1461 }
1462
1463 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1464 static int
1465 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1466 {
1467 unsigned long pfn;
1468 struct page *page;
1469 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1470 int not_managed = 0;
1471 int ret = 0;
1472 LIST_HEAD(source);
1473
1474 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1475 if (!pfn_valid(pfn))
1476 continue;
1477 page = pfn_to_page(pfn);
1478
1479 if (PageHuge(page)) {
1480 struct page *head = compound_head(page);
1481 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1482 if (compound_order(head) > PFN_SECTION_SHIFT) {
1483 ret = -EBUSY;
1484 break;
1485 }
1486 if (isolate_huge_page(page, &source))
1487 move_pages -= 1 << compound_order(head);
1488 continue;
1489 }
1490
1491 if (!get_page_unless_zero(page))
1492 continue;
1493 /*
1494 * We can skip free pages. And we can only deal with pages on
1495 * LRU.
1496 */
1497 ret = isolate_lru_page(page);
1498 if (!ret) { /* Success */
1499 put_page(page);
1500 list_add_tail(&page->lru, &source);
1501 move_pages--;
1502 inc_zone_page_state(page, NR_ISOLATED_ANON +
1503 page_is_file_cache(page));
1504
1505 } else {
1506 #ifdef CONFIG_DEBUG_VM
1507 printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1508 pfn);
1509 dump_page(page, "failed to remove from LRU");
1510 #endif
1511 put_page(page);
1512 /* Because we don't have big zone->lock. we should
1513 check this again here. */
1514 if (page_count(page)) {
1515 not_managed++;
1516 ret = -EBUSY;
1517 break;
1518 }
1519 }
1520 }
1521 if (!list_empty(&source)) {
1522 if (not_managed) {
1523 putback_movable_pages(&source);
1524 goto out;
1525 }
1526
1527 /*
1528 * alloc_migrate_target should be improooooved!!
1529 * migrate_pages returns # of failed pages.
1530 */
1531 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1532 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1533 if (ret)
1534 putback_movable_pages(&source);
1535 }
1536 out:
1537 return ret;
1538 }
1539
1540 /*
1541 * remove from free_area[] and mark all as Reserved.
1542 */
1543 static int
1544 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1545 void *data)
1546 {
1547 __offline_isolated_pages(start, start + nr_pages);
1548 return 0;
1549 }
1550
1551 static void
1552 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1553 {
1554 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1555 offline_isolated_pages_cb);
1556 }
1557
1558 /*
1559 * Check all pages in range, recoreded as memory resource, are isolated.
1560 */
1561 static int
1562 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1563 void *data)
1564 {
1565 int ret;
1566 long offlined = *(long *)data;
1567 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1568 offlined = nr_pages;
1569 if (!ret)
1570 *(long *)data += offlined;
1571 return ret;
1572 }
1573
1574 static long
1575 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1576 {
1577 long offlined = 0;
1578 int ret;
1579
1580 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1581 check_pages_isolated_cb);
1582 if (ret < 0)
1583 offlined = (long)ret;
1584 return offlined;
1585 }
1586
1587 #ifdef CONFIG_MOVABLE_NODE
1588 /*
1589 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1590 * normal memory.
1591 */
1592 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1593 {
1594 return true;
1595 }
1596 #else /* CONFIG_MOVABLE_NODE */
1597 /* ensure the node has NORMAL memory if it is still online */
1598 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1599 {
1600 struct pglist_data *pgdat = zone->zone_pgdat;
1601 unsigned long present_pages = 0;
1602 enum zone_type zt;
1603
1604 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1605 present_pages += pgdat->node_zones[zt].present_pages;
1606
1607 if (present_pages > nr_pages)
1608 return true;
1609
1610 present_pages = 0;
1611 for (; zt <= ZONE_MOVABLE; zt++)
1612 present_pages += pgdat->node_zones[zt].present_pages;
1613
1614 /*
1615 * we can't offline the last normal memory until all
1616 * higher memory is offlined.
1617 */
1618 return present_pages == 0;
1619 }
1620 #endif /* CONFIG_MOVABLE_NODE */
1621
1622 static int __init cmdline_parse_movable_node(char *p)
1623 {
1624 #ifdef CONFIG_MOVABLE_NODE
1625 /*
1626 * Memory used by the kernel cannot be hot-removed because Linux
1627 * cannot migrate the kernel pages. When memory hotplug is
1628 * enabled, we should prevent memblock from allocating memory
1629 * for the kernel.
1630 *
1631 * ACPI SRAT records all hotpluggable memory ranges. But before
1632 * SRAT is parsed, we don't know about it.
1633 *
1634 * The kernel image is loaded into memory at very early time. We
1635 * cannot prevent this anyway. So on NUMA system, we set any
1636 * node the kernel resides in as un-hotpluggable.
1637 *
1638 * Since on modern servers, one node could have double-digit
1639 * gigabytes memory, we can assume the memory around the kernel
1640 * image is also un-hotpluggable. So before SRAT is parsed, just
1641 * allocate memory near the kernel image to try the best to keep
1642 * the kernel away from hotpluggable memory.
1643 */
1644 memblock_set_bottom_up(true);
1645 movable_node_enabled = true;
1646 #else
1647 pr_warn("movable_node option not supported\n");
1648 #endif
1649 return 0;
1650 }
1651 early_param("movable_node", cmdline_parse_movable_node);
1652
1653 /* check which state of node_states will be changed when offline memory */
1654 static void node_states_check_changes_offline(unsigned long nr_pages,
1655 struct zone *zone, struct memory_notify *arg)
1656 {
1657 struct pglist_data *pgdat = zone->zone_pgdat;
1658 unsigned long present_pages = 0;
1659 enum zone_type zt, zone_last = ZONE_NORMAL;
1660
1661 /*
1662 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1663 * contains nodes which have zones of 0...ZONE_NORMAL,
1664 * set zone_last to ZONE_NORMAL.
1665 *
1666 * If we don't have HIGHMEM nor movable node,
1667 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1668 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1669 */
1670 if (N_MEMORY == N_NORMAL_MEMORY)
1671 zone_last = ZONE_MOVABLE;
1672
1673 /*
1674 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1675 * If the memory to be offline is in a zone of 0...zone_last,
1676 * and it is the last present memory, 0...zone_last will
1677 * become empty after offline , thus we can determind we will
1678 * need to clear the node from node_states[N_NORMAL_MEMORY].
1679 */
1680 for (zt = 0; zt <= zone_last; zt++)
1681 present_pages += pgdat->node_zones[zt].present_pages;
1682 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1683 arg->status_change_nid_normal = zone_to_nid(zone);
1684 else
1685 arg->status_change_nid_normal = -1;
1686
1687 #ifdef CONFIG_HIGHMEM
1688 /*
1689 * If we have movable node, node_states[N_HIGH_MEMORY]
1690 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1691 * set zone_last to ZONE_HIGHMEM.
1692 *
1693 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1694 * contains nodes which have zones of 0...ZONE_MOVABLE,
1695 * set zone_last to ZONE_MOVABLE.
1696 */
1697 zone_last = ZONE_HIGHMEM;
1698 if (N_MEMORY == N_HIGH_MEMORY)
1699 zone_last = ZONE_MOVABLE;
1700
1701 for (; zt <= zone_last; zt++)
1702 present_pages += pgdat->node_zones[zt].present_pages;
1703 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1704 arg->status_change_nid_high = zone_to_nid(zone);
1705 else
1706 arg->status_change_nid_high = -1;
1707 #else
1708 arg->status_change_nid_high = arg->status_change_nid_normal;
1709 #endif
1710
1711 /*
1712 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1713 */
1714 zone_last = ZONE_MOVABLE;
1715
1716 /*
1717 * check whether node_states[N_HIGH_MEMORY] will be changed
1718 * If we try to offline the last present @nr_pages from the node,
1719 * we can determind we will need to clear the node from
1720 * node_states[N_HIGH_MEMORY].
1721 */
1722 for (; zt <= zone_last; zt++)
1723 present_pages += pgdat->node_zones[zt].present_pages;
1724 if (nr_pages >= present_pages)
1725 arg->status_change_nid = zone_to_nid(zone);
1726 else
1727 arg->status_change_nid = -1;
1728 }
1729
1730 static void node_states_clear_node(int node, struct memory_notify *arg)
1731 {
1732 if (arg->status_change_nid_normal >= 0)
1733 node_clear_state(node, N_NORMAL_MEMORY);
1734
1735 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1736 (arg->status_change_nid_high >= 0))
1737 node_clear_state(node, N_HIGH_MEMORY);
1738
1739 if ((N_MEMORY != N_HIGH_MEMORY) &&
1740 (arg->status_change_nid >= 0))
1741 node_clear_state(node, N_MEMORY);
1742 }
1743
1744 static int __ref __offline_pages(unsigned long start_pfn,
1745 unsigned long end_pfn, unsigned long timeout)
1746 {
1747 unsigned long pfn, nr_pages, expire;
1748 long offlined_pages;
1749 int ret, drain, retry_max, node;
1750 unsigned long flags;
1751 struct zone *zone;
1752 struct memory_notify arg;
1753
1754 /* at least, alignment against pageblock is necessary */
1755 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1756 return -EINVAL;
1757 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1758 return -EINVAL;
1759 /* This makes hotplug much easier...and readable.
1760 we assume this for now. .*/
1761 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1762 return -EINVAL;
1763
1764 zone = page_zone(pfn_to_page(start_pfn));
1765 node = zone_to_nid(zone);
1766 nr_pages = end_pfn - start_pfn;
1767
1768 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1769 return -EINVAL;
1770
1771 /* set above range as isolated */
1772 ret = start_isolate_page_range(start_pfn, end_pfn,
1773 MIGRATE_MOVABLE, true);
1774 if (ret)
1775 return ret;
1776
1777 arg.start_pfn = start_pfn;
1778 arg.nr_pages = nr_pages;
1779 node_states_check_changes_offline(nr_pages, zone, &arg);
1780
1781 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1782 ret = notifier_to_errno(ret);
1783 if (ret)
1784 goto failed_removal;
1785
1786 pfn = start_pfn;
1787 expire = jiffies + timeout;
1788 drain = 0;
1789 retry_max = 5;
1790 repeat:
1791 /* start memory hot removal */
1792 ret = -EAGAIN;
1793 if (time_after(jiffies, expire))
1794 goto failed_removal;
1795 ret = -EINTR;
1796 if (signal_pending(current))
1797 goto failed_removal;
1798 ret = 0;
1799 if (drain) {
1800 lru_add_drain_all();
1801 cond_resched();
1802 drain_all_pages(zone);
1803 }
1804
1805 pfn = scan_movable_pages(start_pfn, end_pfn);
1806 if (pfn) { /* We have movable pages */
1807 ret = do_migrate_range(pfn, end_pfn);
1808 if (!ret) {
1809 drain = 1;
1810 goto repeat;
1811 } else {
1812 if (ret < 0)
1813 if (--retry_max == 0)
1814 goto failed_removal;
1815 yield();
1816 drain = 1;
1817 goto repeat;
1818 }
1819 }
1820 /* drain all zone's lru pagevec, this is asynchronous... */
1821 lru_add_drain_all();
1822 yield();
1823 /* drain pcp pages, this is synchronous. */
1824 drain_all_pages(zone);
1825 /*
1826 * dissolve free hugepages in the memory block before doing offlining
1827 * actually in order to make hugetlbfs's object counting consistent.
1828 */
1829 dissolve_free_huge_pages(start_pfn, end_pfn);
1830 /* check again */
1831 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1832 if (offlined_pages < 0) {
1833 ret = -EBUSY;
1834 goto failed_removal;
1835 }
1836 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1837 /* Ok, all of our target is isolated.
1838 We cannot do rollback at this point. */
1839 offline_isolated_pages(start_pfn, end_pfn);
1840 /* reset pagetype flags and makes migrate type to be MOVABLE */
1841 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1842 /* removal success */
1843 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1844 zone->present_pages -= offlined_pages;
1845
1846 pgdat_resize_lock(zone->zone_pgdat, &flags);
1847 zone->zone_pgdat->node_present_pages -= offlined_pages;
1848 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1849
1850 init_per_zone_wmark_min();
1851
1852 if (!populated_zone(zone)) {
1853 zone_pcp_reset(zone);
1854 mutex_lock(&zonelists_mutex);
1855 build_all_zonelists(NULL, NULL);
1856 mutex_unlock(&zonelists_mutex);
1857 } else
1858 zone_pcp_update(zone);
1859
1860 node_states_clear_node(node, &arg);
1861 if (arg.status_change_nid >= 0)
1862 kswapd_stop(node);
1863
1864 vm_total_pages = nr_free_pagecache_pages();
1865 writeback_set_ratelimit();
1866
1867 memory_notify(MEM_OFFLINE, &arg);
1868 return 0;
1869
1870 failed_removal:
1871 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1872 (unsigned long long) start_pfn << PAGE_SHIFT,
1873 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1874 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1875 /* pushback to free area */
1876 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1877 return ret;
1878 }
1879
1880 /* Must be protected by mem_hotplug_begin() */
1881 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1882 {
1883 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1884 }
1885 #endif /* CONFIG_MEMORY_HOTREMOVE */
1886
1887 /**
1888 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1889 * @start_pfn: start pfn of the memory range
1890 * @end_pfn: end pfn of the memory range
1891 * @arg: argument passed to func
1892 * @func: callback for each memory section walked
1893 *
1894 * This function walks through all present mem sections in range
1895 * [start_pfn, end_pfn) and call func on each mem section.
1896 *
1897 * Returns the return value of func.
1898 */
1899 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1900 void *arg, int (*func)(struct memory_block *, void *))
1901 {
1902 struct memory_block *mem = NULL;
1903 struct mem_section *section;
1904 unsigned long pfn, section_nr;
1905 int ret;
1906
1907 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1908 section_nr = pfn_to_section_nr(pfn);
1909 if (!present_section_nr(section_nr))
1910 continue;
1911
1912 section = __nr_to_section(section_nr);
1913 /* same memblock? */
1914 if (mem)
1915 if ((section_nr >= mem->start_section_nr) &&
1916 (section_nr <= mem->end_section_nr))
1917 continue;
1918
1919 mem = find_memory_block_hinted(section, mem);
1920 if (!mem)
1921 continue;
1922
1923 ret = func(mem, arg);
1924 if (ret) {
1925 kobject_put(&mem->dev.kobj);
1926 return ret;
1927 }
1928 }
1929
1930 if (mem)
1931 kobject_put(&mem->dev.kobj);
1932
1933 return 0;
1934 }
1935
1936 #ifdef CONFIG_MEMORY_HOTREMOVE
1937 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1938 {
1939 int ret = !is_memblock_offlined(mem);
1940
1941 if (unlikely(ret)) {
1942 phys_addr_t beginpa, endpa;
1943
1944 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1945 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1946 pr_warn("removing memory fails, because memory "
1947 "[%pa-%pa] is onlined\n",
1948 &beginpa, &endpa);
1949 }
1950
1951 return ret;
1952 }
1953
1954 static int check_cpu_on_node(pg_data_t *pgdat)
1955 {
1956 int cpu;
1957
1958 for_each_present_cpu(cpu) {
1959 if (cpu_to_node(cpu) == pgdat->node_id)
1960 /*
1961 * the cpu on this node isn't removed, and we can't
1962 * offline this node.
1963 */
1964 return -EBUSY;
1965 }
1966
1967 return 0;
1968 }
1969
1970 static void unmap_cpu_on_node(pg_data_t *pgdat)
1971 {
1972 #ifdef CONFIG_ACPI_NUMA
1973 int cpu;
1974
1975 for_each_possible_cpu(cpu)
1976 if (cpu_to_node(cpu) == pgdat->node_id)
1977 numa_clear_node(cpu);
1978 #endif
1979 }
1980
1981 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1982 {
1983 int ret;
1984
1985 ret = check_cpu_on_node(pgdat);
1986 if (ret)
1987 return ret;
1988
1989 /*
1990 * the node will be offlined when we come here, so we can clear
1991 * the cpu_to_node() now.
1992 */
1993
1994 unmap_cpu_on_node(pgdat);
1995 return 0;
1996 }
1997
1998 /**
1999 * try_offline_node
2000 *
2001 * Offline a node if all memory sections and cpus of the node are removed.
2002 *
2003 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2004 * and online/offline operations before this call.
2005 */
2006 void try_offline_node(int nid)
2007 {
2008 pg_data_t *pgdat = NODE_DATA(nid);
2009 unsigned long start_pfn = pgdat->node_start_pfn;
2010 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
2011 unsigned long pfn;
2012 int i;
2013
2014 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
2015 unsigned long section_nr = pfn_to_section_nr(pfn);
2016
2017 if (!present_section_nr(section_nr))
2018 continue;
2019
2020 if (pfn_to_nid(pfn) != nid)
2021 continue;
2022
2023 /*
2024 * some memory sections of this node are not removed, and we
2025 * can't offline node now.
2026 */
2027 return;
2028 }
2029
2030 if (check_and_unmap_cpu_on_node(pgdat))
2031 return;
2032
2033 /*
2034 * all memory/cpu of this node are removed, we can offline this
2035 * node now.
2036 */
2037 node_set_offline(nid);
2038 unregister_one_node(nid);
2039
2040 /* free waittable in each zone */
2041 for (i = 0; i < MAX_NR_ZONES; i++) {
2042 struct zone *zone = pgdat->node_zones + i;
2043
2044 /*
2045 * wait_table may be allocated from boot memory,
2046 * here only free if it's allocated by vmalloc.
2047 */
2048 if (is_vmalloc_addr(zone->wait_table)) {
2049 vfree(zone->wait_table);
2050 zone->wait_table = NULL;
2051 }
2052 }
2053 }
2054 EXPORT_SYMBOL(try_offline_node);
2055
2056 /**
2057 * remove_memory
2058 *
2059 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2060 * and online/offline operations before this call, as required by
2061 * try_offline_node().
2062 */
2063 void __ref remove_memory(int nid, u64 start, u64 size)
2064 {
2065 int ret;
2066
2067 BUG_ON(check_hotplug_memory_range(start, size));
2068
2069 mem_hotplug_begin();
2070
2071 /*
2072 * All memory blocks must be offlined before removing memory. Check
2073 * whether all memory blocks in question are offline and trigger a BUG()
2074 * if this is not the case.
2075 */
2076 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2077 check_memblock_offlined_cb);
2078 if (ret)
2079 BUG();
2080
2081 /* remove memmap entry */
2082 firmware_map_remove(start, start + size, "System RAM");
2083 memblock_free(start, size);
2084 memblock_remove(start, size);
2085
2086 arch_remove_memory(start, size);
2087
2088 try_offline_node(nid);
2089
2090 mem_hotplug_done();
2091 }
2092 EXPORT_SYMBOL_GPL(remove_memory);
2093 #endif /* CONFIG_MEMORY_HOTREMOVE */