]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
netfilter: nft_exthdr: check for IPv6 packet before further processing
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45
46 /*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54
55 /*
56 * online_page_callback contains pointer to current page onlining function.
57 * Initially it is generic_online_page(). If it is required it could be
58 * changed by calling set_online_page_callback() for callback registration
59 * and restore_online_page_callback() for generic callback restore.
60 */
61
62 static online_page_callback_t online_page_callback = generic_online_page;
63 static DEFINE_MUTEX(online_page_callback_lock);
64
65 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
66
67 void get_online_mems(void)
68 {
69 percpu_down_read(&mem_hotplug_lock);
70 }
71
72 void put_online_mems(void)
73 {
74 percpu_up_read(&mem_hotplug_lock);
75 }
76
77 bool movable_node_enabled = false;
78
79 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
80 int mhp_default_online_type = MMOP_OFFLINE;
81 #else
82 int mhp_default_online_type = MMOP_ONLINE;
83 #endif
84
85 static int __init setup_memhp_default_state(char *str)
86 {
87 const int online_type = mhp_online_type_from_str(str);
88
89 if (online_type >= 0)
90 mhp_default_online_type = online_type;
91
92 return 1;
93 }
94 __setup("memhp_default_state=", setup_memhp_default_state);
95
96 void mem_hotplug_begin(void)
97 {
98 cpus_read_lock();
99 percpu_down_write(&mem_hotplug_lock);
100 }
101
102 void mem_hotplug_done(void)
103 {
104 percpu_up_write(&mem_hotplug_lock);
105 cpus_read_unlock();
106 }
107
108 u64 max_mem_size = U64_MAX;
109
110 /* add this memory to iomem resource */
111 static struct resource *register_memory_resource(u64 start, u64 size,
112 const char *resource_name)
113 {
114 struct resource *res;
115 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
116
117 if (strcmp(resource_name, "System RAM"))
118 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
119
120 if (!mhp_range_allowed(start, size, true))
121 return ERR_PTR(-E2BIG);
122
123 /*
124 * Make sure value parsed from 'mem=' only restricts memory adding
125 * while booting, so that memory hotplug won't be impacted. Please
126 * refer to document of 'mem=' in kernel-parameters.txt for more
127 * details.
128 */
129 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
130 return ERR_PTR(-E2BIG);
131
132 /*
133 * Request ownership of the new memory range. This might be
134 * a child of an existing resource that was present but
135 * not marked as busy.
136 */
137 res = __request_region(&iomem_resource, start, size,
138 resource_name, flags);
139
140 if (!res) {
141 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
142 start, start + size);
143 return ERR_PTR(-EEXIST);
144 }
145 return res;
146 }
147
148 static void release_memory_resource(struct resource *res)
149 {
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154 }
155
156 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
157 void get_page_bootmem(unsigned long info, struct page *page,
158 unsigned long type)
159 {
160 page->freelist = (void *)type;
161 SetPagePrivate(page);
162 set_page_private(page, info);
163 page_ref_inc(page);
164 }
165
166 void put_page_bootmem(struct page *page)
167 {
168 unsigned long type;
169
170 type = (unsigned long) page->freelist;
171 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
172 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
173
174 if (page_ref_dec_return(page) == 1) {
175 page->freelist = NULL;
176 ClearPagePrivate(page);
177 set_page_private(page, 0);
178 INIT_LIST_HEAD(&page->lru);
179 free_reserved_page(page);
180 }
181 }
182
183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
184 #ifndef CONFIG_SPARSEMEM_VMEMMAP
185 static void register_page_bootmem_info_section(unsigned long start_pfn)
186 {
187 unsigned long mapsize, section_nr, i;
188 struct mem_section *ms;
189 struct page *page, *memmap;
190 struct mem_section_usage *usage;
191
192 section_nr = pfn_to_section_nr(start_pfn);
193 ms = __nr_to_section(section_nr);
194
195 /* Get section's memmap address */
196 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
197
198 /*
199 * Get page for the memmap's phys address
200 * XXX: need more consideration for sparse_vmemmap...
201 */
202 page = virt_to_page(memmap);
203 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
204 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
205
206 /* remember memmap's page */
207 for (i = 0; i < mapsize; i++, page++)
208 get_page_bootmem(section_nr, page, SECTION_INFO);
209
210 usage = ms->usage;
211 page = virt_to_page(usage);
212
213 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
214
215 for (i = 0; i < mapsize; i++, page++)
216 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
217
218 }
219 #else /* CONFIG_SPARSEMEM_VMEMMAP */
220 static void register_page_bootmem_info_section(unsigned long start_pfn)
221 {
222 unsigned long mapsize, section_nr, i;
223 struct mem_section *ms;
224 struct page *page, *memmap;
225 struct mem_section_usage *usage;
226
227 section_nr = pfn_to_section_nr(start_pfn);
228 ms = __nr_to_section(section_nr);
229
230 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
231
232 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
233
234 usage = ms->usage;
235 page = virt_to_page(usage);
236
237 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
238
239 for (i = 0; i < mapsize; i++, page++)
240 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
241 }
242 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
243
244 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
245 {
246 unsigned long i, pfn, end_pfn, nr_pages;
247 int node = pgdat->node_id;
248 struct page *page;
249
250 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
251 page = virt_to_page(pgdat);
252
253 for (i = 0; i < nr_pages; i++, page++)
254 get_page_bootmem(node, page, NODE_INFO);
255
256 pfn = pgdat->node_start_pfn;
257 end_pfn = pgdat_end_pfn(pgdat);
258
259 /* register section info */
260 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
261 /*
262 * Some platforms can assign the same pfn to multiple nodes - on
263 * node0 as well as nodeN. To avoid registering a pfn against
264 * multiple nodes we check that this pfn does not already
265 * reside in some other nodes.
266 */
267 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
268 register_page_bootmem_info_section(pfn);
269 }
270 }
271 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
272
273 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
274 const char *reason)
275 {
276 /*
277 * Disallow all operations smaller than a sub-section and only
278 * allow operations smaller than a section for
279 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
280 * enforces a larger memory_block_size_bytes() granularity for
281 * memory that will be marked online, so this check should only
282 * fire for direct arch_{add,remove}_memory() users outside of
283 * add_memory_resource().
284 */
285 unsigned long min_align;
286
287 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
288 min_align = PAGES_PER_SUBSECTION;
289 else
290 min_align = PAGES_PER_SECTION;
291 if (!IS_ALIGNED(pfn, min_align)
292 || !IS_ALIGNED(nr_pages, min_align)) {
293 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
294 reason, pfn, pfn + nr_pages - 1);
295 return -EINVAL;
296 }
297 return 0;
298 }
299
300 /*
301 * Return page for the valid pfn only if the page is online. All pfn
302 * walkers which rely on the fully initialized page->flags and others
303 * should use this rather than pfn_valid && pfn_to_page
304 */
305 struct page *pfn_to_online_page(unsigned long pfn)
306 {
307 unsigned long nr = pfn_to_section_nr(pfn);
308 struct dev_pagemap *pgmap;
309 struct mem_section *ms;
310
311 if (nr >= NR_MEM_SECTIONS)
312 return NULL;
313
314 ms = __nr_to_section(nr);
315 if (!online_section(ms))
316 return NULL;
317
318 /*
319 * Save some code text when online_section() +
320 * pfn_section_valid() are sufficient.
321 */
322 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
323 return NULL;
324
325 if (!pfn_section_valid(ms, pfn))
326 return NULL;
327
328 if (!online_device_section(ms))
329 return pfn_to_page(pfn);
330
331 /*
332 * Slowpath: when ZONE_DEVICE collides with
333 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
334 * the section may be 'offline' but 'valid'. Only
335 * get_dev_pagemap() can determine sub-section online status.
336 */
337 pgmap = get_dev_pagemap(pfn, NULL);
338 put_dev_pagemap(pgmap);
339
340 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
341 if (pgmap)
342 return NULL;
343
344 return pfn_to_page(pfn);
345 }
346 EXPORT_SYMBOL_GPL(pfn_to_online_page);
347
348 /*
349 * Reasonably generic function for adding memory. It is
350 * expected that archs that support memory hotplug will
351 * call this function after deciding the zone to which to
352 * add the new pages.
353 */
354 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
355 struct mhp_params *params)
356 {
357 const unsigned long end_pfn = pfn + nr_pages;
358 unsigned long cur_nr_pages;
359 int err;
360 struct vmem_altmap *altmap = params->altmap;
361
362 if (WARN_ON_ONCE(!params->pgprot.pgprot))
363 return -EINVAL;
364
365 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
366
367 if (altmap) {
368 /*
369 * Validate altmap is within bounds of the total request
370 */
371 if (altmap->base_pfn != pfn
372 || vmem_altmap_offset(altmap) > nr_pages) {
373 pr_warn_once("memory add fail, invalid altmap\n");
374 return -EINVAL;
375 }
376 altmap->alloc = 0;
377 }
378
379 err = check_pfn_span(pfn, nr_pages, "add");
380 if (err)
381 return err;
382
383 for (; pfn < end_pfn; pfn += cur_nr_pages) {
384 /* Select all remaining pages up to the next section boundary */
385 cur_nr_pages = min(end_pfn - pfn,
386 SECTION_ALIGN_UP(pfn + 1) - pfn);
387 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
388 if (err)
389 break;
390 cond_resched();
391 }
392 vmemmap_populate_print_last();
393 return err;
394 }
395
396 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
397 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
398 unsigned long start_pfn,
399 unsigned long end_pfn)
400 {
401 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
402 if (unlikely(!pfn_to_online_page(start_pfn)))
403 continue;
404
405 if (unlikely(pfn_to_nid(start_pfn) != nid))
406 continue;
407
408 if (zone != page_zone(pfn_to_page(start_pfn)))
409 continue;
410
411 return start_pfn;
412 }
413
414 return 0;
415 }
416
417 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
418 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
419 unsigned long start_pfn,
420 unsigned long end_pfn)
421 {
422 unsigned long pfn;
423
424 /* pfn is the end pfn of a memory section. */
425 pfn = end_pfn - 1;
426 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
427 if (unlikely(!pfn_to_online_page(pfn)))
428 continue;
429
430 if (unlikely(pfn_to_nid(pfn) != nid))
431 continue;
432
433 if (zone != page_zone(pfn_to_page(pfn)))
434 continue;
435
436 return pfn;
437 }
438
439 return 0;
440 }
441
442 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
443 unsigned long end_pfn)
444 {
445 unsigned long pfn;
446 int nid = zone_to_nid(zone);
447
448 zone_span_writelock(zone);
449 if (zone->zone_start_pfn == start_pfn) {
450 /*
451 * If the section is smallest section in the zone, it need
452 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
453 * In this case, we find second smallest valid mem_section
454 * for shrinking zone.
455 */
456 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
457 zone_end_pfn(zone));
458 if (pfn) {
459 zone->spanned_pages = zone_end_pfn(zone) - pfn;
460 zone->zone_start_pfn = pfn;
461 } else {
462 zone->zone_start_pfn = 0;
463 zone->spanned_pages = 0;
464 }
465 } else if (zone_end_pfn(zone) == end_pfn) {
466 /*
467 * If the section is biggest section in the zone, it need
468 * shrink zone->spanned_pages.
469 * In this case, we find second biggest valid mem_section for
470 * shrinking zone.
471 */
472 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
473 start_pfn);
474 if (pfn)
475 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
476 else {
477 zone->zone_start_pfn = 0;
478 zone->spanned_pages = 0;
479 }
480 }
481 zone_span_writeunlock(zone);
482 }
483
484 static void update_pgdat_span(struct pglist_data *pgdat)
485 {
486 unsigned long node_start_pfn = 0, node_end_pfn = 0;
487 struct zone *zone;
488
489 for (zone = pgdat->node_zones;
490 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
491 unsigned long end_pfn = zone_end_pfn(zone);
492
493 /* No need to lock the zones, they can't change. */
494 if (!zone->spanned_pages)
495 continue;
496 if (!node_end_pfn) {
497 node_start_pfn = zone->zone_start_pfn;
498 node_end_pfn = end_pfn;
499 continue;
500 }
501
502 if (end_pfn > node_end_pfn)
503 node_end_pfn = end_pfn;
504 if (zone->zone_start_pfn < node_start_pfn)
505 node_start_pfn = zone->zone_start_pfn;
506 }
507
508 pgdat->node_start_pfn = node_start_pfn;
509 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
510 }
511
512 void __ref remove_pfn_range_from_zone(struct zone *zone,
513 unsigned long start_pfn,
514 unsigned long nr_pages)
515 {
516 const unsigned long end_pfn = start_pfn + nr_pages;
517 struct pglist_data *pgdat = zone->zone_pgdat;
518 unsigned long pfn, cur_nr_pages, flags;
519
520 /* Poison struct pages because they are now uninitialized again. */
521 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
522 cond_resched();
523
524 /* Select all remaining pages up to the next section boundary */
525 cur_nr_pages =
526 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
527 page_init_poison(pfn_to_page(pfn),
528 sizeof(struct page) * cur_nr_pages);
529 }
530
531 #ifdef CONFIG_ZONE_DEVICE
532 /*
533 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
534 * we will not try to shrink the zones - which is okay as
535 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
536 */
537 if (zone_idx(zone) == ZONE_DEVICE)
538 return;
539 #endif
540
541 clear_zone_contiguous(zone);
542
543 pgdat_resize_lock(zone->zone_pgdat, &flags);
544 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
545 update_pgdat_span(pgdat);
546 pgdat_resize_unlock(zone->zone_pgdat, &flags);
547
548 set_zone_contiguous(zone);
549 }
550
551 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
552 unsigned long map_offset,
553 struct vmem_altmap *altmap)
554 {
555 struct mem_section *ms = __pfn_to_section(pfn);
556
557 if (WARN_ON_ONCE(!valid_section(ms)))
558 return;
559
560 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
561 }
562
563 /**
564 * __remove_pages() - remove sections of pages
565 * @pfn: starting pageframe (must be aligned to start of a section)
566 * @nr_pages: number of pages to remove (must be multiple of section size)
567 * @altmap: alternative device page map or %NULL if default memmap is used
568 *
569 * Generic helper function to remove section mappings and sysfs entries
570 * for the section of the memory we are removing. Caller needs to make
571 * sure that pages are marked reserved and zones are adjust properly by
572 * calling offline_pages().
573 */
574 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
575 struct vmem_altmap *altmap)
576 {
577 const unsigned long end_pfn = pfn + nr_pages;
578 unsigned long cur_nr_pages;
579 unsigned long map_offset = 0;
580
581 map_offset = vmem_altmap_offset(altmap);
582
583 if (check_pfn_span(pfn, nr_pages, "remove"))
584 return;
585
586 for (; pfn < end_pfn; pfn += cur_nr_pages) {
587 cond_resched();
588 /* Select all remaining pages up to the next section boundary */
589 cur_nr_pages = min(end_pfn - pfn,
590 SECTION_ALIGN_UP(pfn + 1) - pfn);
591 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
592 map_offset = 0;
593 }
594 }
595
596 int set_online_page_callback(online_page_callback_t callback)
597 {
598 int rc = -EINVAL;
599
600 get_online_mems();
601 mutex_lock(&online_page_callback_lock);
602
603 if (online_page_callback == generic_online_page) {
604 online_page_callback = callback;
605 rc = 0;
606 }
607
608 mutex_unlock(&online_page_callback_lock);
609 put_online_mems();
610
611 return rc;
612 }
613 EXPORT_SYMBOL_GPL(set_online_page_callback);
614
615 int restore_online_page_callback(online_page_callback_t callback)
616 {
617 int rc = -EINVAL;
618
619 get_online_mems();
620 mutex_lock(&online_page_callback_lock);
621
622 if (online_page_callback == callback) {
623 online_page_callback = generic_online_page;
624 rc = 0;
625 }
626
627 mutex_unlock(&online_page_callback_lock);
628 put_online_mems();
629
630 return rc;
631 }
632 EXPORT_SYMBOL_GPL(restore_online_page_callback);
633
634 void generic_online_page(struct page *page, unsigned int order)
635 {
636 /*
637 * Freeing the page with debug_pagealloc enabled will try to unmap it,
638 * so we should map it first. This is better than introducing a special
639 * case in page freeing fast path.
640 */
641 debug_pagealloc_map_pages(page, 1 << order);
642 __free_pages_core(page, order);
643 totalram_pages_add(1UL << order);
644 #ifdef CONFIG_HIGHMEM
645 if (PageHighMem(page))
646 totalhigh_pages_add(1UL << order);
647 #endif
648 }
649 EXPORT_SYMBOL_GPL(generic_online_page);
650
651 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
652 {
653 const unsigned long end_pfn = start_pfn + nr_pages;
654 unsigned long pfn;
655
656 /*
657 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
658 * decide to not expose all pages to the buddy (e.g., expose them
659 * later). We account all pages as being online and belonging to this
660 * zone ("present").
661 * When using memmap_on_memory, the range might not be aligned to
662 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
663 * this and the first chunk to online will be pageblock_nr_pages.
664 */
665 for (pfn = start_pfn; pfn < end_pfn;) {
666 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
667
668 (*online_page_callback)(pfn_to_page(pfn), order);
669 pfn += (1UL << order);
670 }
671
672 /* mark all involved sections as online */
673 online_mem_sections(start_pfn, end_pfn);
674 }
675
676 /* check which state of node_states will be changed when online memory */
677 static void node_states_check_changes_online(unsigned long nr_pages,
678 struct zone *zone, struct memory_notify *arg)
679 {
680 int nid = zone_to_nid(zone);
681
682 arg->status_change_nid = NUMA_NO_NODE;
683 arg->status_change_nid_normal = NUMA_NO_NODE;
684 arg->status_change_nid_high = NUMA_NO_NODE;
685
686 if (!node_state(nid, N_MEMORY))
687 arg->status_change_nid = nid;
688 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
689 arg->status_change_nid_normal = nid;
690 #ifdef CONFIG_HIGHMEM
691 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
692 arg->status_change_nid_high = nid;
693 #endif
694 }
695
696 static void node_states_set_node(int node, struct memory_notify *arg)
697 {
698 if (arg->status_change_nid_normal >= 0)
699 node_set_state(node, N_NORMAL_MEMORY);
700
701 if (arg->status_change_nid_high >= 0)
702 node_set_state(node, N_HIGH_MEMORY);
703
704 if (arg->status_change_nid >= 0)
705 node_set_state(node, N_MEMORY);
706 }
707
708 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
709 unsigned long nr_pages)
710 {
711 unsigned long old_end_pfn = zone_end_pfn(zone);
712
713 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
714 zone->zone_start_pfn = start_pfn;
715
716 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
717 }
718
719 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
720 unsigned long nr_pages)
721 {
722 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
723
724 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
725 pgdat->node_start_pfn = start_pfn;
726
727 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
728
729 }
730
731 static void section_taint_zone_device(unsigned long pfn)
732 {
733 struct mem_section *ms = __pfn_to_section(pfn);
734
735 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
736 }
737
738 /*
739 * Associate the pfn range with the given zone, initializing the memmaps
740 * and resizing the pgdat/zone data to span the added pages. After this
741 * call, all affected pages are PG_reserved.
742 *
743 * All aligned pageblocks are initialized to the specified migratetype
744 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
745 * zone stats (e.g., nr_isolate_pageblock) are touched.
746 */
747 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
748 unsigned long nr_pages,
749 struct vmem_altmap *altmap, int migratetype)
750 {
751 struct pglist_data *pgdat = zone->zone_pgdat;
752 int nid = pgdat->node_id;
753 unsigned long flags;
754
755 clear_zone_contiguous(zone);
756
757 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
758 pgdat_resize_lock(pgdat, &flags);
759 zone_span_writelock(zone);
760 if (zone_is_empty(zone))
761 init_currently_empty_zone(zone, start_pfn, nr_pages);
762 resize_zone_range(zone, start_pfn, nr_pages);
763 zone_span_writeunlock(zone);
764 resize_pgdat_range(pgdat, start_pfn, nr_pages);
765 pgdat_resize_unlock(pgdat, &flags);
766
767 /*
768 * Subsection population requires care in pfn_to_online_page().
769 * Set the taint to enable the slow path detection of
770 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
771 * section.
772 */
773 if (zone_is_zone_device(zone)) {
774 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
775 section_taint_zone_device(start_pfn);
776 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
777 section_taint_zone_device(start_pfn + nr_pages);
778 }
779
780 /*
781 * TODO now we have a visible range of pages which are not associated
782 * with their zone properly. Not nice but set_pfnblock_flags_mask
783 * expects the zone spans the pfn range. All the pages in the range
784 * are reserved so nobody should be touching them so we should be safe
785 */
786 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
787 MEMINIT_HOTPLUG, altmap, migratetype);
788
789 set_zone_contiguous(zone);
790 }
791
792 /*
793 * Returns a default kernel memory zone for the given pfn range.
794 * If no kernel zone covers this pfn range it will automatically go
795 * to the ZONE_NORMAL.
796 */
797 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
798 unsigned long nr_pages)
799 {
800 struct pglist_data *pgdat = NODE_DATA(nid);
801 int zid;
802
803 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
804 struct zone *zone = &pgdat->node_zones[zid];
805
806 if (zone_intersects(zone, start_pfn, nr_pages))
807 return zone;
808 }
809
810 return &pgdat->node_zones[ZONE_NORMAL];
811 }
812
813 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
814 unsigned long nr_pages)
815 {
816 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
817 nr_pages);
818 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
819 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
820 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
821
822 /*
823 * We inherit the existing zone in a simple case where zones do not
824 * overlap in the given range
825 */
826 if (in_kernel ^ in_movable)
827 return (in_kernel) ? kernel_zone : movable_zone;
828
829 /*
830 * If the range doesn't belong to any zone or two zones overlap in the
831 * given range then we use movable zone only if movable_node is
832 * enabled because we always online to a kernel zone by default.
833 */
834 return movable_node_enabled ? movable_zone : kernel_zone;
835 }
836
837 struct zone *zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
838 unsigned long nr_pages)
839 {
840 if (online_type == MMOP_ONLINE_KERNEL)
841 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
842
843 if (online_type == MMOP_ONLINE_MOVABLE)
844 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
845
846 return default_zone_for_pfn(nid, start_pfn, nr_pages);
847 }
848
849 /*
850 * This function should only be called by memory_block_{online,offline},
851 * and {online,offline}_pages.
852 */
853 void adjust_present_page_count(struct zone *zone, long nr_pages)
854 {
855 unsigned long flags;
856
857 zone->present_pages += nr_pages;
858 pgdat_resize_lock(zone->zone_pgdat, &flags);
859 zone->zone_pgdat->node_present_pages += nr_pages;
860 pgdat_resize_unlock(zone->zone_pgdat, &flags);
861 }
862
863 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
864 struct zone *zone)
865 {
866 unsigned long end_pfn = pfn + nr_pages;
867 int ret;
868
869 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
870 if (ret)
871 return ret;
872
873 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
874
875 /*
876 * It might be that the vmemmap_pages fully span sections. If that is
877 * the case, mark those sections online here as otherwise they will be
878 * left offline.
879 */
880 if (nr_pages >= PAGES_PER_SECTION)
881 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
882
883 return ret;
884 }
885
886 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
887 {
888 unsigned long end_pfn = pfn + nr_pages;
889
890 /*
891 * It might be that the vmemmap_pages fully span sections. If that is
892 * the case, mark those sections offline here as otherwise they will be
893 * left online.
894 */
895 if (nr_pages >= PAGES_PER_SECTION)
896 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
897
898 /*
899 * The pages associated with this vmemmap have been offlined, so
900 * we can reset its state here.
901 */
902 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
903 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
904 }
905
906 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, struct zone *zone)
907 {
908 unsigned long flags;
909 int need_zonelists_rebuild = 0;
910 const int nid = zone_to_nid(zone);
911 int ret;
912 struct memory_notify arg;
913
914 /*
915 * {on,off}lining is constrained to full memory sections (or more
916 * precisly to memory blocks from the user space POV).
917 * memmap_on_memory is an exception because it reserves initial part
918 * of the physical memory space for vmemmaps. That space is pageblock
919 * aligned.
920 */
921 if (WARN_ON_ONCE(!nr_pages ||
922 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
923 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
924 return -EINVAL;
925
926 mem_hotplug_begin();
927
928 /* associate pfn range with the zone */
929 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
930
931 arg.start_pfn = pfn;
932 arg.nr_pages = nr_pages;
933 node_states_check_changes_online(nr_pages, zone, &arg);
934
935 ret = memory_notify(MEM_GOING_ONLINE, &arg);
936 ret = notifier_to_errno(ret);
937 if (ret)
938 goto failed_addition;
939
940 /*
941 * Fixup the number of isolated pageblocks before marking the sections
942 * onlining, such that undo_isolate_page_range() works correctly.
943 */
944 spin_lock_irqsave(&zone->lock, flags);
945 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
946 spin_unlock_irqrestore(&zone->lock, flags);
947
948 /*
949 * If this zone is not populated, then it is not in zonelist.
950 * This means the page allocator ignores this zone.
951 * So, zonelist must be updated after online.
952 */
953 if (!populated_zone(zone)) {
954 need_zonelists_rebuild = 1;
955 setup_zone_pageset(zone);
956 }
957
958 online_pages_range(pfn, nr_pages);
959 adjust_present_page_count(zone, nr_pages);
960
961 node_states_set_node(nid, &arg);
962 if (need_zonelists_rebuild)
963 build_all_zonelists(NULL);
964 zone_pcp_update(zone);
965
966 /* Basic onlining is complete, allow allocation of onlined pages. */
967 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
968
969 /*
970 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
971 * the tail of the freelist when undoing isolation). Shuffle the whole
972 * zone to make sure the just onlined pages are properly distributed
973 * across the whole freelist - to create an initial shuffle.
974 */
975 shuffle_zone(zone);
976
977 init_per_zone_wmark_min();
978
979 kswapd_run(nid);
980 kcompactd_run(nid);
981
982 writeback_set_ratelimit();
983
984 memory_notify(MEM_ONLINE, &arg);
985 mem_hotplug_done();
986 return 0;
987
988 failed_addition:
989 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
990 (unsigned long long) pfn << PAGE_SHIFT,
991 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
992 memory_notify(MEM_CANCEL_ONLINE, &arg);
993 remove_pfn_range_from_zone(zone, pfn, nr_pages);
994 mem_hotplug_done();
995 return ret;
996 }
997 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
998
999 static void reset_node_present_pages(pg_data_t *pgdat)
1000 {
1001 struct zone *z;
1002
1003 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1004 z->present_pages = 0;
1005
1006 pgdat->node_present_pages = 0;
1007 }
1008
1009 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1010 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1011 {
1012 struct pglist_data *pgdat;
1013
1014 pgdat = NODE_DATA(nid);
1015 if (!pgdat) {
1016 pgdat = arch_alloc_nodedata(nid);
1017 if (!pgdat)
1018 return NULL;
1019
1020 pgdat->per_cpu_nodestats =
1021 alloc_percpu(struct per_cpu_nodestat);
1022 arch_refresh_nodedata(nid, pgdat);
1023 } else {
1024 int cpu;
1025 /*
1026 * Reset the nr_zones, order and highest_zoneidx before reuse.
1027 * Note that kswapd will init kswapd_highest_zoneidx properly
1028 * when it starts in the near future.
1029 */
1030 pgdat->nr_zones = 0;
1031 pgdat->kswapd_order = 0;
1032 pgdat->kswapd_highest_zoneidx = 0;
1033 for_each_online_cpu(cpu) {
1034 struct per_cpu_nodestat *p;
1035
1036 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1037 memset(p, 0, sizeof(*p));
1038 }
1039 }
1040
1041 /* we can use NODE_DATA(nid) from here */
1042 pgdat->node_id = nid;
1043 pgdat->node_start_pfn = 0;
1044
1045 /* init node's zones as empty zones, we don't have any present pages.*/
1046 free_area_init_core_hotplug(nid);
1047
1048 /*
1049 * The node we allocated has no zone fallback lists. For avoiding
1050 * to access not-initialized zonelist, build here.
1051 */
1052 build_all_zonelists(pgdat);
1053
1054 /*
1055 * When memory is hot-added, all the memory is in offline state. So
1056 * clear all zones' present_pages because they will be updated in
1057 * online_pages() and offline_pages().
1058 */
1059 reset_node_managed_pages(pgdat);
1060 reset_node_present_pages(pgdat);
1061
1062 return pgdat;
1063 }
1064
1065 static void rollback_node_hotadd(int nid)
1066 {
1067 pg_data_t *pgdat = NODE_DATA(nid);
1068
1069 arch_refresh_nodedata(nid, NULL);
1070 free_percpu(pgdat->per_cpu_nodestats);
1071 arch_free_nodedata(pgdat);
1072 }
1073
1074
1075 /**
1076 * try_online_node - online a node if offlined
1077 * @nid: the node ID
1078 * @set_node_online: Whether we want to online the node
1079 * called by cpu_up() to online a node without onlined memory.
1080 *
1081 * Returns:
1082 * 1 -> a new node has been allocated
1083 * 0 -> the node is already online
1084 * -ENOMEM -> the node could not be allocated
1085 */
1086 static int __try_online_node(int nid, bool set_node_online)
1087 {
1088 pg_data_t *pgdat;
1089 int ret = 1;
1090
1091 if (node_online(nid))
1092 return 0;
1093
1094 pgdat = hotadd_new_pgdat(nid);
1095 if (!pgdat) {
1096 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1097 ret = -ENOMEM;
1098 goto out;
1099 }
1100
1101 if (set_node_online) {
1102 node_set_online(nid);
1103 ret = register_one_node(nid);
1104 BUG_ON(ret);
1105 }
1106 out:
1107 return ret;
1108 }
1109
1110 /*
1111 * Users of this function always want to online/register the node
1112 */
1113 int try_online_node(int nid)
1114 {
1115 int ret;
1116
1117 mem_hotplug_begin();
1118 ret = __try_online_node(nid, true);
1119 mem_hotplug_done();
1120 return ret;
1121 }
1122
1123 static int check_hotplug_memory_range(u64 start, u64 size)
1124 {
1125 /* memory range must be block size aligned */
1126 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1127 !IS_ALIGNED(size, memory_block_size_bytes())) {
1128 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1129 memory_block_size_bytes(), start, size);
1130 return -EINVAL;
1131 }
1132
1133 return 0;
1134 }
1135
1136 static int online_memory_block(struct memory_block *mem, void *arg)
1137 {
1138 mem->online_type = mhp_default_online_type;
1139 return device_online(&mem->dev);
1140 }
1141
1142 bool mhp_supports_memmap_on_memory(unsigned long size)
1143 {
1144 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1145 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1146 unsigned long remaining_size = size - vmemmap_size;
1147
1148 /*
1149 * Besides having arch support and the feature enabled at runtime, we
1150 * need a few more assumptions to hold true:
1151 *
1152 * a) We span a single memory block: memory onlining/offlinin;g happens
1153 * in memory block granularity. We don't want the vmemmap of online
1154 * memory blocks to reside on offline memory blocks. In the future,
1155 * we might want to support variable-sized memory blocks to make the
1156 * feature more versatile.
1157 *
1158 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1159 * to populate memory from the altmap for unrelated parts (i.e.,
1160 * other memory blocks)
1161 *
1162 * c) The vmemmap pages (and thereby the pages that will be exposed to
1163 * the buddy) have to cover full pageblocks: memory onlining/offlining
1164 * code requires applicable ranges to be page-aligned, for example, to
1165 * set the migratetypes properly.
1166 *
1167 * TODO: Although we have a check here to make sure that vmemmap pages
1168 * fully populate a PMD, it is not the right place to check for
1169 * this. A much better solution involves improving vmemmap code
1170 * to fallback to base pages when trying to populate vmemmap using
1171 * altmap as an alternative source of memory, and we do not exactly
1172 * populate a single PMD.
1173 */
1174 return memmap_on_memory &&
1175 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1176 size == memory_block_size_bytes() &&
1177 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1178 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1179 }
1180
1181 /*
1182 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1183 * and online/offline operations (triggered e.g. by sysfs).
1184 *
1185 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1186 */
1187 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1188 {
1189 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1190 struct vmem_altmap mhp_altmap = {};
1191 u64 start, size;
1192 bool new_node = false;
1193 int ret;
1194
1195 start = res->start;
1196 size = resource_size(res);
1197
1198 ret = check_hotplug_memory_range(start, size);
1199 if (ret)
1200 return ret;
1201
1202 if (!node_possible(nid)) {
1203 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1204 return -EINVAL;
1205 }
1206
1207 mem_hotplug_begin();
1208
1209 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1210 memblock_add_node(start, size, nid);
1211
1212 ret = __try_online_node(nid, false);
1213 if (ret < 0)
1214 goto error;
1215 new_node = ret;
1216
1217 /*
1218 * Self hosted memmap array
1219 */
1220 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1221 if (!mhp_supports_memmap_on_memory(size)) {
1222 ret = -EINVAL;
1223 goto error;
1224 }
1225 mhp_altmap.free = PHYS_PFN(size);
1226 mhp_altmap.base_pfn = PHYS_PFN(start);
1227 params.altmap = &mhp_altmap;
1228 }
1229
1230 /* call arch's memory hotadd */
1231 ret = arch_add_memory(nid, start, size, &params);
1232 if (ret < 0)
1233 goto error;
1234
1235 /* create memory block devices after memory was added */
1236 ret = create_memory_block_devices(start, size, mhp_altmap.alloc);
1237 if (ret) {
1238 arch_remove_memory(nid, start, size, NULL);
1239 goto error;
1240 }
1241
1242 if (new_node) {
1243 /* If sysfs file of new node can't be created, cpu on the node
1244 * can't be hot-added. There is no rollback way now.
1245 * So, check by BUG_ON() to catch it reluctantly..
1246 * We online node here. We can't roll back from here.
1247 */
1248 node_set_online(nid);
1249 ret = __register_one_node(nid);
1250 BUG_ON(ret);
1251 }
1252
1253 /* link memory sections under this node.*/
1254 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1255 MEMINIT_HOTPLUG);
1256
1257 /* create new memmap entry */
1258 if (!strcmp(res->name, "System RAM"))
1259 firmware_map_add_hotplug(start, start + size, "System RAM");
1260
1261 /* device_online() will take the lock when calling online_pages() */
1262 mem_hotplug_done();
1263
1264 /*
1265 * In case we're allowed to merge the resource, flag it and trigger
1266 * merging now that adding succeeded.
1267 */
1268 if (mhp_flags & MHP_MERGE_RESOURCE)
1269 merge_system_ram_resource(res);
1270
1271 /* online pages if requested */
1272 if (mhp_default_online_type != MMOP_OFFLINE)
1273 walk_memory_blocks(start, size, NULL, online_memory_block);
1274
1275 return ret;
1276 error:
1277 /* rollback pgdat allocation and others */
1278 if (new_node)
1279 rollback_node_hotadd(nid);
1280 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1281 memblock_remove(start, size);
1282 mem_hotplug_done();
1283 return ret;
1284 }
1285
1286 /* requires device_hotplug_lock, see add_memory_resource() */
1287 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1288 {
1289 struct resource *res;
1290 int ret;
1291
1292 res = register_memory_resource(start, size, "System RAM");
1293 if (IS_ERR(res))
1294 return PTR_ERR(res);
1295
1296 ret = add_memory_resource(nid, res, mhp_flags);
1297 if (ret < 0)
1298 release_memory_resource(res);
1299 return ret;
1300 }
1301
1302 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1303 {
1304 int rc;
1305
1306 lock_device_hotplug();
1307 rc = __add_memory(nid, start, size, mhp_flags);
1308 unlock_device_hotplug();
1309
1310 return rc;
1311 }
1312 EXPORT_SYMBOL_GPL(add_memory);
1313
1314 /*
1315 * Add special, driver-managed memory to the system as system RAM. Such
1316 * memory is not exposed via the raw firmware-provided memmap as system
1317 * RAM, instead, it is detected and added by a driver - during cold boot,
1318 * after a reboot, and after kexec.
1319 *
1320 * Reasons why this memory should not be used for the initial memmap of a
1321 * kexec kernel or for placing kexec images:
1322 * - The booting kernel is in charge of determining how this memory will be
1323 * used (e.g., use persistent memory as system RAM)
1324 * - Coordination with a hypervisor is required before this memory
1325 * can be used (e.g., inaccessible parts).
1326 *
1327 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1328 * memory map") are created. Also, the created memory resource is flagged
1329 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1330 * this memory as well (esp., not place kexec images onto it).
1331 *
1332 * The resource_name (visible via /proc/iomem) has to have the format
1333 * "System RAM ($DRIVER)".
1334 */
1335 int add_memory_driver_managed(int nid, u64 start, u64 size,
1336 const char *resource_name, mhp_t mhp_flags)
1337 {
1338 struct resource *res;
1339 int rc;
1340
1341 if (!resource_name ||
1342 strstr(resource_name, "System RAM (") != resource_name ||
1343 resource_name[strlen(resource_name) - 1] != ')')
1344 return -EINVAL;
1345
1346 lock_device_hotplug();
1347
1348 res = register_memory_resource(start, size, resource_name);
1349 if (IS_ERR(res)) {
1350 rc = PTR_ERR(res);
1351 goto out_unlock;
1352 }
1353
1354 rc = add_memory_resource(nid, res, mhp_flags);
1355 if (rc < 0)
1356 release_memory_resource(res);
1357
1358 out_unlock:
1359 unlock_device_hotplug();
1360 return rc;
1361 }
1362 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1363
1364 /*
1365 * Platforms should define arch_get_mappable_range() that provides
1366 * maximum possible addressable physical memory range for which the
1367 * linear mapping could be created. The platform returned address
1368 * range must adhere to these following semantics.
1369 *
1370 * - range.start <= range.end
1371 * - Range includes both end points [range.start..range.end]
1372 *
1373 * There is also a fallback definition provided here, allowing the
1374 * entire possible physical address range in case any platform does
1375 * not define arch_get_mappable_range().
1376 */
1377 struct range __weak arch_get_mappable_range(void)
1378 {
1379 struct range mhp_range = {
1380 .start = 0UL,
1381 .end = -1ULL,
1382 };
1383 return mhp_range;
1384 }
1385
1386 struct range mhp_get_pluggable_range(bool need_mapping)
1387 {
1388 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1389 struct range mhp_range;
1390
1391 if (need_mapping) {
1392 mhp_range = arch_get_mappable_range();
1393 if (mhp_range.start > max_phys) {
1394 mhp_range.start = 0;
1395 mhp_range.end = 0;
1396 }
1397 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1398 } else {
1399 mhp_range.start = 0;
1400 mhp_range.end = max_phys;
1401 }
1402 return mhp_range;
1403 }
1404 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1405
1406 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1407 {
1408 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1409 u64 end = start + size;
1410
1411 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1412 return true;
1413
1414 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1415 start, end, mhp_range.start, mhp_range.end);
1416 return false;
1417 }
1418
1419 #ifdef CONFIG_MEMORY_HOTREMOVE
1420 /*
1421 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1422 * memory holes). When true, return the zone.
1423 */
1424 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1425 unsigned long end_pfn)
1426 {
1427 unsigned long pfn, sec_end_pfn;
1428 struct zone *zone = NULL;
1429 struct page *page;
1430 int i;
1431 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1432 pfn < end_pfn;
1433 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1434 /* Make sure the memory section is present first */
1435 if (!present_section_nr(pfn_to_section_nr(pfn)))
1436 continue;
1437 for (; pfn < sec_end_pfn && pfn < end_pfn;
1438 pfn += MAX_ORDER_NR_PAGES) {
1439 i = 0;
1440 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1441 while ((i < MAX_ORDER_NR_PAGES) &&
1442 !pfn_valid_within(pfn + i))
1443 i++;
1444 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1445 continue;
1446 /* Check if we got outside of the zone */
1447 if (zone && !zone_spans_pfn(zone, pfn + i))
1448 return NULL;
1449 page = pfn_to_page(pfn + i);
1450 if (zone && page_zone(page) != zone)
1451 return NULL;
1452 zone = page_zone(page);
1453 }
1454 }
1455
1456 return zone;
1457 }
1458
1459 /*
1460 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1461 * non-lru movable pages and hugepages). Will skip over most unmovable
1462 * pages (esp., pages that can be skipped when offlining), but bail out on
1463 * definitely unmovable pages.
1464 *
1465 * Returns:
1466 * 0 in case a movable page is found and movable_pfn was updated.
1467 * -ENOENT in case no movable page was found.
1468 * -EBUSY in case a definitely unmovable page was found.
1469 */
1470 static int scan_movable_pages(unsigned long start, unsigned long end,
1471 unsigned long *movable_pfn)
1472 {
1473 unsigned long pfn;
1474
1475 for (pfn = start; pfn < end; pfn++) {
1476 struct page *page, *head;
1477 unsigned long skip;
1478
1479 if (!pfn_valid(pfn))
1480 continue;
1481 page = pfn_to_page(pfn);
1482 if (PageLRU(page))
1483 goto found;
1484 if (__PageMovable(page))
1485 goto found;
1486
1487 /*
1488 * PageOffline() pages that are not marked __PageMovable() and
1489 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1490 * definitely unmovable. If their reference count would be 0,
1491 * they could at least be skipped when offlining memory.
1492 */
1493 if (PageOffline(page) && page_count(page))
1494 return -EBUSY;
1495
1496 if (!PageHuge(page))
1497 continue;
1498 head = compound_head(page);
1499 /*
1500 * This test is racy as we hold no reference or lock. The
1501 * hugetlb page could have been free'ed and head is no longer
1502 * a hugetlb page before the following check. In such unlikely
1503 * cases false positives and negatives are possible. Calling
1504 * code must deal with these scenarios.
1505 */
1506 if (HPageMigratable(head))
1507 goto found;
1508 skip = compound_nr(head) - (page - head);
1509 pfn += skip - 1;
1510 }
1511 return -ENOENT;
1512 found:
1513 *movable_pfn = pfn;
1514 return 0;
1515 }
1516
1517 static int
1518 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1519 {
1520 unsigned long pfn;
1521 struct page *page, *head;
1522 int ret = 0;
1523 LIST_HEAD(source);
1524
1525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1526 if (!pfn_valid(pfn))
1527 continue;
1528 page = pfn_to_page(pfn);
1529 head = compound_head(page);
1530
1531 if (PageHuge(page)) {
1532 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1533 isolate_huge_page(head, &source);
1534 continue;
1535 } else if (PageTransHuge(page))
1536 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1537
1538 /*
1539 * HWPoison pages have elevated reference counts so the migration would
1540 * fail on them. It also doesn't make any sense to migrate them in the
1541 * first place. Still try to unmap such a page in case it is still mapped
1542 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1543 * the unmap as the catch all safety net).
1544 */
1545 if (PageHWPoison(page)) {
1546 if (WARN_ON(PageLRU(page)))
1547 isolate_lru_page(page);
1548 if (page_mapped(page))
1549 try_to_unmap(page, TTU_IGNORE_MLOCK);
1550 continue;
1551 }
1552
1553 if (!get_page_unless_zero(page))
1554 continue;
1555 /*
1556 * We can skip free pages. And we can deal with pages on
1557 * LRU and non-lru movable pages.
1558 */
1559 if (PageLRU(page))
1560 ret = isolate_lru_page(page);
1561 else
1562 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1563 if (!ret) { /* Success */
1564 list_add_tail(&page->lru, &source);
1565 if (!__PageMovable(page))
1566 inc_node_page_state(page, NR_ISOLATED_ANON +
1567 page_is_file_lru(page));
1568
1569 } else {
1570 pr_warn("failed to isolate pfn %lx\n", pfn);
1571 dump_page(page, "isolation failed");
1572 }
1573 put_page(page);
1574 }
1575 if (!list_empty(&source)) {
1576 nodemask_t nmask = node_states[N_MEMORY];
1577 struct migration_target_control mtc = {
1578 .nmask = &nmask,
1579 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1580 };
1581
1582 /*
1583 * We have checked that migration range is on a single zone so
1584 * we can use the nid of the first page to all the others.
1585 */
1586 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1587
1588 /*
1589 * try to allocate from a different node but reuse this node
1590 * if there are no other online nodes to be used (e.g. we are
1591 * offlining a part of the only existing node)
1592 */
1593 node_clear(mtc.nid, nmask);
1594 if (nodes_empty(nmask))
1595 node_set(mtc.nid, nmask);
1596 ret = migrate_pages(&source, alloc_migration_target, NULL,
1597 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1598 if (ret) {
1599 list_for_each_entry(page, &source, lru) {
1600 pr_warn("migrating pfn %lx failed ret:%d ",
1601 page_to_pfn(page), ret);
1602 dump_page(page, "migration failure");
1603 }
1604 putback_movable_pages(&source);
1605 }
1606 }
1607
1608 return ret;
1609 }
1610
1611 static int __init cmdline_parse_movable_node(char *p)
1612 {
1613 movable_node_enabled = true;
1614 return 0;
1615 }
1616 early_param("movable_node", cmdline_parse_movable_node);
1617
1618 /* check which state of node_states will be changed when offline memory */
1619 static void node_states_check_changes_offline(unsigned long nr_pages,
1620 struct zone *zone, struct memory_notify *arg)
1621 {
1622 struct pglist_data *pgdat = zone->zone_pgdat;
1623 unsigned long present_pages = 0;
1624 enum zone_type zt;
1625
1626 arg->status_change_nid = NUMA_NO_NODE;
1627 arg->status_change_nid_normal = NUMA_NO_NODE;
1628 arg->status_change_nid_high = NUMA_NO_NODE;
1629
1630 /*
1631 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1632 * If the memory to be offline is within the range
1633 * [0..ZONE_NORMAL], and it is the last present memory there,
1634 * the zones in that range will become empty after the offlining,
1635 * thus we can determine that we need to clear the node from
1636 * node_states[N_NORMAL_MEMORY].
1637 */
1638 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1639 present_pages += pgdat->node_zones[zt].present_pages;
1640 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1641 arg->status_change_nid_normal = zone_to_nid(zone);
1642
1643 #ifdef CONFIG_HIGHMEM
1644 /*
1645 * node_states[N_HIGH_MEMORY] contains nodes which
1646 * have normal memory or high memory.
1647 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1648 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1649 * we determine that the zones in that range become empty,
1650 * we need to clear the node for N_HIGH_MEMORY.
1651 */
1652 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1653 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1654 arg->status_change_nid_high = zone_to_nid(zone);
1655 #endif
1656
1657 /*
1658 * We have accounted the pages from [0..ZONE_NORMAL), and
1659 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1660 * as well.
1661 * Here we count the possible pages from ZONE_MOVABLE.
1662 * If after having accounted all the pages, we see that the nr_pages
1663 * to be offlined is over or equal to the accounted pages,
1664 * we know that the node will become empty, and so, we can clear
1665 * it for N_MEMORY as well.
1666 */
1667 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1668
1669 if (nr_pages >= present_pages)
1670 arg->status_change_nid = zone_to_nid(zone);
1671 }
1672
1673 static void node_states_clear_node(int node, struct memory_notify *arg)
1674 {
1675 if (arg->status_change_nid_normal >= 0)
1676 node_clear_state(node, N_NORMAL_MEMORY);
1677
1678 if (arg->status_change_nid_high >= 0)
1679 node_clear_state(node, N_HIGH_MEMORY);
1680
1681 if (arg->status_change_nid >= 0)
1682 node_clear_state(node, N_MEMORY);
1683 }
1684
1685 static int count_system_ram_pages_cb(unsigned long start_pfn,
1686 unsigned long nr_pages, void *data)
1687 {
1688 unsigned long *nr_system_ram_pages = data;
1689
1690 *nr_system_ram_pages += nr_pages;
1691 return 0;
1692 }
1693
1694 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1695 {
1696 const unsigned long end_pfn = start_pfn + nr_pages;
1697 unsigned long pfn, system_ram_pages = 0;
1698 unsigned long flags;
1699 struct zone *zone;
1700 struct memory_notify arg;
1701 int ret, node;
1702 char *reason;
1703
1704 /*
1705 * {on,off}lining is constrained to full memory sections (or more
1706 * precisly to memory blocks from the user space POV).
1707 * memmap_on_memory is an exception because it reserves initial part
1708 * of the physical memory space for vmemmaps. That space is pageblock
1709 * aligned.
1710 */
1711 if (WARN_ON_ONCE(!nr_pages ||
1712 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1713 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1714 return -EINVAL;
1715
1716 mem_hotplug_begin();
1717
1718 /*
1719 * Don't allow to offline memory blocks that contain holes.
1720 * Consequently, memory blocks with holes can never get onlined
1721 * via the hotplug path - online_pages() - as hotplugged memory has
1722 * no holes. This way, we e.g., don't have to worry about marking
1723 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1724 * avoid using walk_system_ram_range() later.
1725 */
1726 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1727 count_system_ram_pages_cb);
1728 if (system_ram_pages != nr_pages) {
1729 ret = -EINVAL;
1730 reason = "memory holes";
1731 goto failed_removal;
1732 }
1733
1734 /* This makes hotplug much easier...and readable.
1735 we assume this for now. .*/
1736 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1737 if (!zone) {
1738 ret = -EINVAL;
1739 reason = "multizone range";
1740 goto failed_removal;
1741 }
1742 node = zone_to_nid(zone);
1743
1744 /*
1745 * Disable pcplists so that page isolation cannot race with freeing
1746 * in a way that pages from isolated pageblock are left on pcplists.
1747 */
1748 zone_pcp_disable(zone);
1749 lru_cache_disable();
1750
1751 /* set above range as isolated */
1752 ret = start_isolate_page_range(start_pfn, end_pfn,
1753 MIGRATE_MOVABLE,
1754 MEMORY_OFFLINE | REPORT_FAILURE);
1755 if (ret) {
1756 reason = "failure to isolate range";
1757 goto failed_removal_pcplists_disabled;
1758 }
1759
1760 arg.start_pfn = start_pfn;
1761 arg.nr_pages = nr_pages;
1762 node_states_check_changes_offline(nr_pages, zone, &arg);
1763
1764 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1765 ret = notifier_to_errno(ret);
1766 if (ret) {
1767 reason = "notifier failure";
1768 goto failed_removal_isolated;
1769 }
1770
1771 do {
1772 pfn = start_pfn;
1773 do {
1774 if (signal_pending(current)) {
1775 ret = -EINTR;
1776 reason = "signal backoff";
1777 goto failed_removal_isolated;
1778 }
1779
1780 cond_resched();
1781
1782 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1783 if (!ret) {
1784 /*
1785 * TODO: fatal migration failures should bail
1786 * out
1787 */
1788 do_migrate_range(pfn, end_pfn);
1789 }
1790 } while (!ret);
1791
1792 if (ret != -ENOENT) {
1793 reason = "unmovable page";
1794 goto failed_removal_isolated;
1795 }
1796
1797 /*
1798 * Dissolve free hugepages in the memory block before doing
1799 * offlining actually in order to make hugetlbfs's object
1800 * counting consistent.
1801 */
1802 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1803 if (ret) {
1804 reason = "failure to dissolve huge pages";
1805 goto failed_removal_isolated;
1806 }
1807
1808 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1809
1810 } while (ret);
1811
1812 /* Mark all sections offline and remove free pages from the buddy. */
1813 __offline_isolated_pages(start_pfn, end_pfn);
1814 pr_debug("Offlined Pages %ld\n", nr_pages);
1815
1816 /*
1817 * The memory sections are marked offline, and the pageblock flags
1818 * effectively stale; nobody should be touching them. Fixup the number
1819 * of isolated pageblocks, memory onlining will properly revert this.
1820 */
1821 spin_lock_irqsave(&zone->lock, flags);
1822 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1823 spin_unlock_irqrestore(&zone->lock, flags);
1824
1825 lru_cache_enable();
1826 zone_pcp_enable(zone);
1827
1828 /* removal success */
1829 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1830 adjust_present_page_count(zone, -nr_pages);
1831
1832 init_per_zone_wmark_min();
1833
1834 if (!populated_zone(zone)) {
1835 zone_pcp_reset(zone);
1836 build_all_zonelists(NULL);
1837 } else
1838 zone_pcp_update(zone);
1839
1840 node_states_clear_node(node, &arg);
1841 if (arg.status_change_nid >= 0) {
1842 kswapd_stop(node);
1843 kcompactd_stop(node);
1844 }
1845
1846 writeback_set_ratelimit();
1847
1848 memory_notify(MEM_OFFLINE, &arg);
1849 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1850 mem_hotplug_done();
1851 return 0;
1852
1853 failed_removal_isolated:
1854 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1855 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1856 failed_removal_pcplists_disabled:
1857 zone_pcp_enable(zone);
1858 failed_removal:
1859 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1860 (unsigned long long) start_pfn << PAGE_SHIFT,
1861 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1862 reason);
1863 /* pushback to free area */
1864 mem_hotplug_done();
1865 return ret;
1866 }
1867
1868 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1869 {
1870 int ret = !is_memblock_offlined(mem);
1871
1872 if (unlikely(ret)) {
1873 phys_addr_t beginpa, endpa;
1874
1875 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1876 endpa = beginpa + memory_block_size_bytes() - 1;
1877 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1878 &beginpa, &endpa);
1879
1880 return -EBUSY;
1881 }
1882 return 0;
1883 }
1884
1885 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1886 {
1887 /*
1888 * If not set, continue with the next block.
1889 */
1890 return mem->nr_vmemmap_pages;
1891 }
1892
1893 static int check_cpu_on_node(pg_data_t *pgdat)
1894 {
1895 int cpu;
1896
1897 for_each_present_cpu(cpu) {
1898 if (cpu_to_node(cpu) == pgdat->node_id)
1899 /*
1900 * the cpu on this node isn't removed, and we can't
1901 * offline this node.
1902 */
1903 return -EBUSY;
1904 }
1905
1906 return 0;
1907 }
1908
1909 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1910 {
1911 int nid = *(int *)arg;
1912
1913 /*
1914 * If a memory block belongs to multiple nodes, the stored nid is not
1915 * reliable. However, such blocks are always online (e.g., cannot get
1916 * offlined) and, therefore, are still spanned by the node.
1917 */
1918 return mem->nid == nid ? -EEXIST : 0;
1919 }
1920
1921 /**
1922 * try_offline_node
1923 * @nid: the node ID
1924 *
1925 * Offline a node if all memory sections and cpus of the node are removed.
1926 *
1927 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1928 * and online/offline operations before this call.
1929 */
1930 void try_offline_node(int nid)
1931 {
1932 pg_data_t *pgdat = NODE_DATA(nid);
1933 int rc;
1934
1935 /*
1936 * If the node still spans pages (especially ZONE_DEVICE), don't
1937 * offline it. A node spans memory after move_pfn_range_to_zone(),
1938 * e.g., after the memory block was onlined.
1939 */
1940 if (pgdat->node_spanned_pages)
1941 return;
1942
1943 /*
1944 * Especially offline memory blocks might not be spanned by the
1945 * node. They will get spanned by the node once they get onlined.
1946 * However, they link to the node in sysfs and can get onlined later.
1947 */
1948 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1949 if (rc)
1950 return;
1951
1952 if (check_cpu_on_node(pgdat))
1953 return;
1954
1955 /*
1956 * all memory/cpu of this node are removed, we can offline this
1957 * node now.
1958 */
1959 node_set_offline(nid);
1960 unregister_one_node(nid);
1961 }
1962 EXPORT_SYMBOL(try_offline_node);
1963
1964 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1965 {
1966 int rc = 0;
1967 struct vmem_altmap mhp_altmap = {};
1968 struct vmem_altmap *altmap = NULL;
1969 unsigned long nr_vmemmap_pages;
1970
1971 BUG_ON(check_hotplug_memory_range(start, size));
1972
1973 /*
1974 * All memory blocks must be offlined before removing memory. Check
1975 * whether all memory blocks in question are offline and return error
1976 * if this is not the case.
1977 */
1978 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1979 if (rc)
1980 return rc;
1981
1982 /*
1983 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
1984 * the same granularity it was added - a single memory block.
1985 */
1986 if (memmap_on_memory) {
1987 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
1988 get_nr_vmemmap_pages_cb);
1989 if (nr_vmemmap_pages) {
1990 if (size != memory_block_size_bytes()) {
1991 pr_warn("Refuse to remove %#llx - %#llx,"
1992 "wrong granularity\n",
1993 start, start + size);
1994 return -EINVAL;
1995 }
1996
1997 /*
1998 * Let remove_pmd_table->free_hugepage_table do the
1999 * right thing if we used vmem_altmap when hot-adding
2000 * the range.
2001 */
2002 mhp_altmap.alloc = nr_vmemmap_pages;
2003 altmap = &mhp_altmap;
2004 }
2005 }
2006
2007 /* remove memmap entry */
2008 firmware_map_remove(start, start + size, "System RAM");
2009
2010 /*
2011 * Memory block device removal under the device_hotplug_lock is
2012 * a barrier against racing online attempts.
2013 */
2014 remove_memory_block_devices(start, size);
2015
2016 mem_hotplug_begin();
2017
2018 arch_remove_memory(nid, start, size, altmap);
2019
2020 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2021 memblock_free(start, size);
2022 memblock_remove(start, size);
2023 }
2024
2025 release_mem_region_adjustable(start, size);
2026
2027 try_offline_node(nid);
2028
2029 mem_hotplug_done();
2030 return 0;
2031 }
2032
2033 /**
2034 * remove_memory
2035 * @nid: the node ID
2036 * @start: physical address of the region to remove
2037 * @size: size of the region to remove
2038 *
2039 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2040 * and online/offline operations before this call, as required by
2041 * try_offline_node().
2042 */
2043 void __remove_memory(int nid, u64 start, u64 size)
2044 {
2045
2046 /*
2047 * trigger BUG() if some memory is not offlined prior to calling this
2048 * function
2049 */
2050 if (try_remove_memory(nid, start, size))
2051 BUG();
2052 }
2053
2054 /*
2055 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2056 * some memory is not offline
2057 */
2058 int remove_memory(int nid, u64 start, u64 size)
2059 {
2060 int rc;
2061
2062 lock_device_hotplug();
2063 rc = try_remove_memory(nid, start, size);
2064 unlock_device_hotplug();
2065
2066 return rc;
2067 }
2068 EXPORT_SYMBOL_GPL(remove_memory);
2069
2070 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2071 {
2072 uint8_t online_type = MMOP_ONLINE_KERNEL;
2073 uint8_t **online_types = arg;
2074 struct page *page;
2075 int rc;
2076
2077 /*
2078 * Sense the online_type via the zone of the memory block. Offlining
2079 * with multiple zones within one memory block will be rejected
2080 * by offlining code ... so we don't care about that.
2081 */
2082 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2083 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2084 online_type = MMOP_ONLINE_MOVABLE;
2085
2086 rc = device_offline(&mem->dev);
2087 /*
2088 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2089 * so try_reonline_memory_block() can do the right thing.
2090 */
2091 if (!rc)
2092 **online_types = online_type;
2093
2094 (*online_types)++;
2095 /* Ignore if already offline. */
2096 return rc < 0 ? rc : 0;
2097 }
2098
2099 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2100 {
2101 uint8_t **online_types = arg;
2102 int rc;
2103
2104 if (**online_types != MMOP_OFFLINE) {
2105 mem->online_type = **online_types;
2106 rc = device_online(&mem->dev);
2107 if (rc < 0)
2108 pr_warn("%s: Failed to re-online memory: %d",
2109 __func__, rc);
2110 }
2111
2112 /* Continue processing all remaining memory blocks. */
2113 (*online_types)++;
2114 return 0;
2115 }
2116
2117 /*
2118 * Try to offline and remove memory. Might take a long time to finish in case
2119 * memory is still in use. Primarily useful for memory devices that logically
2120 * unplugged all memory (so it's no longer in use) and want to offline + remove
2121 * that memory.
2122 */
2123 int offline_and_remove_memory(int nid, u64 start, u64 size)
2124 {
2125 const unsigned long mb_count = size / memory_block_size_bytes();
2126 uint8_t *online_types, *tmp;
2127 int rc;
2128
2129 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2130 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2131 return -EINVAL;
2132
2133 /*
2134 * We'll remember the old online type of each memory block, so we can
2135 * try to revert whatever we did when offlining one memory block fails
2136 * after offlining some others succeeded.
2137 */
2138 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2139 GFP_KERNEL);
2140 if (!online_types)
2141 return -ENOMEM;
2142 /*
2143 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2144 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2145 * try_reonline_memory_block().
2146 */
2147 memset(online_types, MMOP_OFFLINE, mb_count);
2148
2149 lock_device_hotplug();
2150
2151 tmp = online_types;
2152 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2153
2154 /*
2155 * In case we succeeded to offline all memory, remove it.
2156 * This cannot fail as it cannot get onlined in the meantime.
2157 */
2158 if (!rc) {
2159 rc = try_remove_memory(nid, start, size);
2160 if (rc)
2161 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2162 }
2163
2164 /*
2165 * Rollback what we did. While memory onlining might theoretically fail
2166 * (nacked by a notifier), it barely ever happens.
2167 */
2168 if (rc) {
2169 tmp = online_types;
2170 walk_memory_blocks(start, size, &tmp,
2171 try_reonline_memory_block);
2172 }
2173 unlock_device_hotplug();
2174
2175 kfree(online_types);
2176 return rc;
2177 }
2178 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2179 #endif /* CONFIG_MEMORY_HOTREMOVE */