]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45
46 /*
47 * memory_hotplug.memmap_on_memory parameter
48 */
49 static bool memmap_on_memory __ro_after_init;
50 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
51 module_param(memmap_on_memory, bool, 0444);
52 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
53 #endif
54
55 enum {
56 ONLINE_POLICY_CONTIG_ZONES = 0,
57 ONLINE_POLICY_AUTO_MOVABLE,
58 };
59
60 const char *online_policy_to_str[] = {
61 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
62 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
63 };
64
65 static int set_online_policy(const char *val, const struct kernel_param *kp)
66 {
67 int ret = sysfs_match_string(online_policy_to_str, val);
68
69 if (ret < 0)
70 return ret;
71 *((int *)kp->arg) = ret;
72 return 0;
73 }
74
75 static int get_online_policy(char *buffer, const struct kernel_param *kp)
76 {
77 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
78 }
79
80 /*
81 * memory_hotplug.online_policy: configure online behavior when onlining without
82 * specifying a zone (MMOP_ONLINE)
83 *
84 * "contig-zones": keep zone contiguous
85 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
86 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
87 */
88 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
89 static const struct kernel_param_ops online_policy_ops = {
90 .set = set_online_policy,
91 .get = get_online_policy,
92 };
93 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
94 MODULE_PARM_DESC(online_policy,
95 "Set the online policy (\"contig-zones\", \"auto-movable\") "
96 "Default: \"contig-zones\"");
97
98 /*
99 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
100 *
101 * The ratio represent an upper limit and the kernel might decide to not
102 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
103 * doesn't allow for more MOVABLE memory.
104 */
105 static unsigned int auto_movable_ratio __read_mostly = 301;
106 module_param(auto_movable_ratio, uint, 0644);
107 MODULE_PARM_DESC(auto_movable_ratio,
108 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
109 "in percent for \"auto-movable\" online policy. Default: 301");
110
111 /*
112 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
113 */
114 #ifdef CONFIG_NUMA
115 static bool auto_movable_numa_aware __read_mostly = true;
116 module_param(auto_movable_numa_aware, bool, 0644);
117 MODULE_PARM_DESC(auto_movable_numa_aware,
118 "Consider numa node stats in addition to global stats in "
119 "\"auto-movable\" online policy. Default: true");
120 #endif /* CONFIG_NUMA */
121
122 /*
123 * online_page_callback contains pointer to current page onlining function.
124 * Initially it is generic_online_page(). If it is required it could be
125 * changed by calling set_online_page_callback() for callback registration
126 * and restore_online_page_callback() for generic callback restore.
127 */
128
129 static online_page_callback_t online_page_callback = generic_online_page;
130 static DEFINE_MUTEX(online_page_callback_lock);
131
132 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
133
134 void get_online_mems(void)
135 {
136 percpu_down_read(&mem_hotplug_lock);
137 }
138
139 void put_online_mems(void)
140 {
141 percpu_up_read(&mem_hotplug_lock);
142 }
143
144 bool movable_node_enabled = false;
145
146 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
147 int mhp_default_online_type = MMOP_OFFLINE;
148 #else
149 int mhp_default_online_type = MMOP_ONLINE;
150 #endif
151
152 static int __init setup_memhp_default_state(char *str)
153 {
154 const int online_type = mhp_online_type_from_str(str);
155
156 if (online_type >= 0)
157 mhp_default_online_type = online_type;
158
159 return 1;
160 }
161 __setup("memhp_default_state=", setup_memhp_default_state);
162
163 void mem_hotplug_begin(void)
164 {
165 cpus_read_lock();
166 percpu_down_write(&mem_hotplug_lock);
167 }
168
169 void mem_hotplug_done(void)
170 {
171 percpu_up_write(&mem_hotplug_lock);
172 cpus_read_unlock();
173 }
174
175 u64 max_mem_size = U64_MAX;
176
177 /* add this memory to iomem resource */
178 static struct resource *register_memory_resource(u64 start, u64 size,
179 const char *resource_name)
180 {
181 struct resource *res;
182 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
183
184 if (strcmp(resource_name, "System RAM"))
185 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
186
187 if (!mhp_range_allowed(start, size, true))
188 return ERR_PTR(-E2BIG);
189
190 /*
191 * Make sure value parsed from 'mem=' only restricts memory adding
192 * while booting, so that memory hotplug won't be impacted. Please
193 * refer to document of 'mem=' in kernel-parameters.txt for more
194 * details.
195 */
196 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
197 return ERR_PTR(-E2BIG);
198
199 /*
200 * Request ownership of the new memory range. This might be
201 * a child of an existing resource that was present but
202 * not marked as busy.
203 */
204 res = __request_region(&iomem_resource, start, size,
205 resource_name, flags);
206
207 if (!res) {
208 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
209 start, start + size);
210 return ERR_PTR(-EEXIST);
211 }
212 return res;
213 }
214
215 static void release_memory_resource(struct resource *res)
216 {
217 if (!res)
218 return;
219 release_resource(res);
220 kfree(res);
221 }
222
223 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
224 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
225 const char *reason)
226 {
227 /*
228 * Disallow all operations smaller than a sub-section and only
229 * allow operations smaller than a section for
230 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
231 * enforces a larger memory_block_size_bytes() granularity for
232 * memory that will be marked online, so this check should only
233 * fire for direct arch_{add,remove}_memory() users outside of
234 * add_memory_resource().
235 */
236 unsigned long min_align;
237
238 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
239 min_align = PAGES_PER_SUBSECTION;
240 else
241 min_align = PAGES_PER_SECTION;
242 if (!IS_ALIGNED(pfn, min_align)
243 || !IS_ALIGNED(nr_pages, min_align)) {
244 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
245 reason, pfn, pfn + nr_pages - 1);
246 return -EINVAL;
247 }
248 return 0;
249 }
250
251 /*
252 * Return page for the valid pfn only if the page is online. All pfn
253 * walkers which rely on the fully initialized page->flags and others
254 * should use this rather than pfn_valid && pfn_to_page
255 */
256 struct page *pfn_to_online_page(unsigned long pfn)
257 {
258 unsigned long nr = pfn_to_section_nr(pfn);
259 struct dev_pagemap *pgmap;
260 struct mem_section *ms;
261
262 if (nr >= NR_MEM_SECTIONS)
263 return NULL;
264
265 ms = __nr_to_section(nr);
266 if (!online_section(ms))
267 return NULL;
268
269 /*
270 * Save some code text when online_section() +
271 * pfn_section_valid() are sufficient.
272 */
273 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
274 return NULL;
275
276 if (!pfn_section_valid(ms, pfn))
277 return NULL;
278
279 if (!online_device_section(ms))
280 return pfn_to_page(pfn);
281
282 /*
283 * Slowpath: when ZONE_DEVICE collides with
284 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
285 * the section may be 'offline' but 'valid'. Only
286 * get_dev_pagemap() can determine sub-section online status.
287 */
288 pgmap = get_dev_pagemap(pfn, NULL);
289 put_dev_pagemap(pgmap);
290
291 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
292 if (pgmap)
293 return NULL;
294
295 return pfn_to_page(pfn);
296 }
297 EXPORT_SYMBOL_GPL(pfn_to_online_page);
298
299 /*
300 * Reasonably generic function for adding memory. It is
301 * expected that archs that support memory hotplug will
302 * call this function after deciding the zone to which to
303 * add the new pages.
304 */
305 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
306 struct mhp_params *params)
307 {
308 const unsigned long end_pfn = pfn + nr_pages;
309 unsigned long cur_nr_pages;
310 int err;
311 struct vmem_altmap *altmap = params->altmap;
312
313 if (WARN_ON_ONCE(!params->pgprot.pgprot))
314 return -EINVAL;
315
316 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
317
318 if (altmap) {
319 /*
320 * Validate altmap is within bounds of the total request
321 */
322 if (altmap->base_pfn != pfn
323 || vmem_altmap_offset(altmap) > nr_pages) {
324 pr_warn_once("memory add fail, invalid altmap\n");
325 return -EINVAL;
326 }
327 altmap->alloc = 0;
328 }
329
330 err = check_pfn_span(pfn, nr_pages, "add");
331 if (err)
332 return err;
333
334 for (; pfn < end_pfn; pfn += cur_nr_pages) {
335 /* Select all remaining pages up to the next section boundary */
336 cur_nr_pages = min(end_pfn - pfn,
337 SECTION_ALIGN_UP(pfn + 1) - pfn);
338 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
339 if (err)
340 break;
341 cond_resched();
342 }
343 vmemmap_populate_print_last();
344 return err;
345 }
346
347 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
348 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
349 unsigned long start_pfn,
350 unsigned long end_pfn)
351 {
352 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
353 if (unlikely(!pfn_to_online_page(start_pfn)))
354 continue;
355
356 if (unlikely(pfn_to_nid(start_pfn) != nid))
357 continue;
358
359 if (zone != page_zone(pfn_to_page(start_pfn)))
360 continue;
361
362 return start_pfn;
363 }
364
365 return 0;
366 }
367
368 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
369 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
370 unsigned long start_pfn,
371 unsigned long end_pfn)
372 {
373 unsigned long pfn;
374
375 /* pfn is the end pfn of a memory section. */
376 pfn = end_pfn - 1;
377 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
378 if (unlikely(!pfn_to_online_page(pfn)))
379 continue;
380
381 if (unlikely(pfn_to_nid(pfn) != nid))
382 continue;
383
384 if (zone != page_zone(pfn_to_page(pfn)))
385 continue;
386
387 return pfn;
388 }
389
390 return 0;
391 }
392
393 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
394 unsigned long end_pfn)
395 {
396 unsigned long pfn;
397 int nid = zone_to_nid(zone);
398
399 if (zone->zone_start_pfn == start_pfn) {
400 /*
401 * If the section is smallest section in the zone, it need
402 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
403 * In this case, we find second smallest valid mem_section
404 * for shrinking zone.
405 */
406 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
407 zone_end_pfn(zone));
408 if (pfn) {
409 zone->spanned_pages = zone_end_pfn(zone) - pfn;
410 zone->zone_start_pfn = pfn;
411 } else {
412 zone->zone_start_pfn = 0;
413 zone->spanned_pages = 0;
414 }
415 } else if (zone_end_pfn(zone) == end_pfn) {
416 /*
417 * If the section is biggest section in the zone, it need
418 * shrink zone->spanned_pages.
419 * In this case, we find second biggest valid mem_section for
420 * shrinking zone.
421 */
422 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
423 start_pfn);
424 if (pfn)
425 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
426 else {
427 zone->zone_start_pfn = 0;
428 zone->spanned_pages = 0;
429 }
430 }
431 }
432
433 static void update_pgdat_span(struct pglist_data *pgdat)
434 {
435 unsigned long node_start_pfn = 0, node_end_pfn = 0;
436 struct zone *zone;
437
438 for (zone = pgdat->node_zones;
439 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
440 unsigned long end_pfn = zone_end_pfn(zone);
441
442 /* No need to lock the zones, they can't change. */
443 if (!zone->spanned_pages)
444 continue;
445 if (!node_end_pfn) {
446 node_start_pfn = zone->zone_start_pfn;
447 node_end_pfn = end_pfn;
448 continue;
449 }
450
451 if (end_pfn > node_end_pfn)
452 node_end_pfn = end_pfn;
453 if (zone->zone_start_pfn < node_start_pfn)
454 node_start_pfn = zone->zone_start_pfn;
455 }
456
457 pgdat->node_start_pfn = node_start_pfn;
458 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
459 }
460
461 void __ref remove_pfn_range_from_zone(struct zone *zone,
462 unsigned long start_pfn,
463 unsigned long nr_pages)
464 {
465 const unsigned long end_pfn = start_pfn + nr_pages;
466 struct pglist_data *pgdat = zone->zone_pgdat;
467 unsigned long pfn, cur_nr_pages;
468
469 /* Poison struct pages because they are now uninitialized again. */
470 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
471 cond_resched();
472
473 /* Select all remaining pages up to the next section boundary */
474 cur_nr_pages =
475 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
476 page_init_poison(pfn_to_page(pfn),
477 sizeof(struct page) * cur_nr_pages);
478 }
479
480 /*
481 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
482 * we will not try to shrink the zones - which is okay as
483 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
484 */
485 if (zone_is_zone_device(zone))
486 return;
487
488 clear_zone_contiguous(zone);
489
490 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
491 update_pgdat_span(pgdat);
492
493 set_zone_contiguous(zone);
494 }
495
496 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
497 unsigned long map_offset,
498 struct vmem_altmap *altmap)
499 {
500 struct mem_section *ms = __pfn_to_section(pfn);
501
502 if (WARN_ON_ONCE(!valid_section(ms)))
503 return;
504
505 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
506 }
507
508 /**
509 * __remove_pages() - remove sections of pages
510 * @pfn: starting pageframe (must be aligned to start of a section)
511 * @nr_pages: number of pages to remove (must be multiple of section size)
512 * @altmap: alternative device page map or %NULL if default memmap is used
513 *
514 * Generic helper function to remove section mappings and sysfs entries
515 * for the section of the memory we are removing. Caller needs to make
516 * sure that pages are marked reserved and zones are adjust properly by
517 * calling offline_pages().
518 */
519 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
520 struct vmem_altmap *altmap)
521 {
522 const unsigned long end_pfn = pfn + nr_pages;
523 unsigned long cur_nr_pages;
524 unsigned long map_offset = 0;
525
526 map_offset = vmem_altmap_offset(altmap);
527
528 if (check_pfn_span(pfn, nr_pages, "remove"))
529 return;
530
531 for (; pfn < end_pfn; pfn += cur_nr_pages) {
532 cond_resched();
533 /* Select all remaining pages up to the next section boundary */
534 cur_nr_pages = min(end_pfn - pfn,
535 SECTION_ALIGN_UP(pfn + 1) - pfn);
536 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
537 map_offset = 0;
538 }
539 }
540
541 int set_online_page_callback(online_page_callback_t callback)
542 {
543 int rc = -EINVAL;
544
545 get_online_mems();
546 mutex_lock(&online_page_callback_lock);
547
548 if (online_page_callback == generic_online_page) {
549 online_page_callback = callback;
550 rc = 0;
551 }
552
553 mutex_unlock(&online_page_callback_lock);
554 put_online_mems();
555
556 return rc;
557 }
558 EXPORT_SYMBOL_GPL(set_online_page_callback);
559
560 int restore_online_page_callback(online_page_callback_t callback)
561 {
562 int rc = -EINVAL;
563
564 get_online_mems();
565 mutex_lock(&online_page_callback_lock);
566
567 if (online_page_callback == callback) {
568 online_page_callback = generic_online_page;
569 rc = 0;
570 }
571
572 mutex_unlock(&online_page_callback_lock);
573 put_online_mems();
574
575 return rc;
576 }
577 EXPORT_SYMBOL_GPL(restore_online_page_callback);
578
579 void generic_online_page(struct page *page, unsigned int order)
580 {
581 /*
582 * Freeing the page with debug_pagealloc enabled will try to unmap it,
583 * so we should map it first. This is better than introducing a special
584 * case in page freeing fast path.
585 */
586 debug_pagealloc_map_pages(page, 1 << order);
587 __free_pages_core(page, order);
588 totalram_pages_add(1UL << order);
589 #ifdef CONFIG_HIGHMEM
590 if (PageHighMem(page))
591 totalhigh_pages_add(1UL << order);
592 #endif
593 }
594 EXPORT_SYMBOL_GPL(generic_online_page);
595
596 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
597 {
598 const unsigned long end_pfn = start_pfn + nr_pages;
599 unsigned long pfn;
600
601 /*
602 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
603 * decide to not expose all pages to the buddy (e.g., expose them
604 * later). We account all pages as being online and belonging to this
605 * zone ("present").
606 * When using memmap_on_memory, the range might not be aligned to
607 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
608 * this and the first chunk to online will be pageblock_nr_pages.
609 */
610 for (pfn = start_pfn; pfn < end_pfn;) {
611 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
612
613 (*online_page_callback)(pfn_to_page(pfn), order);
614 pfn += (1UL << order);
615 }
616
617 /* mark all involved sections as online */
618 online_mem_sections(start_pfn, end_pfn);
619 }
620
621 /* check which state of node_states will be changed when online memory */
622 static void node_states_check_changes_online(unsigned long nr_pages,
623 struct zone *zone, struct memory_notify *arg)
624 {
625 int nid = zone_to_nid(zone);
626
627 arg->status_change_nid = NUMA_NO_NODE;
628 arg->status_change_nid_normal = NUMA_NO_NODE;
629 arg->status_change_nid_high = NUMA_NO_NODE;
630
631 if (!node_state(nid, N_MEMORY))
632 arg->status_change_nid = nid;
633 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
634 arg->status_change_nid_normal = nid;
635 #ifdef CONFIG_HIGHMEM
636 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
637 arg->status_change_nid_high = nid;
638 #endif
639 }
640
641 static void node_states_set_node(int node, struct memory_notify *arg)
642 {
643 if (arg->status_change_nid_normal >= 0)
644 node_set_state(node, N_NORMAL_MEMORY);
645
646 if (arg->status_change_nid_high >= 0)
647 node_set_state(node, N_HIGH_MEMORY);
648
649 if (arg->status_change_nid >= 0)
650 node_set_state(node, N_MEMORY);
651 }
652
653 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
654 unsigned long nr_pages)
655 {
656 unsigned long old_end_pfn = zone_end_pfn(zone);
657
658 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
659 zone->zone_start_pfn = start_pfn;
660
661 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
662 }
663
664 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
665 unsigned long nr_pages)
666 {
667 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
668
669 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
670 pgdat->node_start_pfn = start_pfn;
671
672 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
673
674 }
675
676 static void section_taint_zone_device(unsigned long pfn)
677 {
678 struct mem_section *ms = __pfn_to_section(pfn);
679
680 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
681 }
682
683 /*
684 * Associate the pfn range with the given zone, initializing the memmaps
685 * and resizing the pgdat/zone data to span the added pages. After this
686 * call, all affected pages are PG_reserved.
687 *
688 * All aligned pageblocks are initialized to the specified migratetype
689 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
690 * zone stats (e.g., nr_isolate_pageblock) are touched.
691 */
692 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
693 unsigned long nr_pages,
694 struct vmem_altmap *altmap, int migratetype)
695 {
696 struct pglist_data *pgdat = zone->zone_pgdat;
697 int nid = pgdat->node_id;
698
699 clear_zone_contiguous(zone);
700
701 if (zone_is_empty(zone))
702 init_currently_empty_zone(zone, start_pfn, nr_pages);
703 resize_zone_range(zone, start_pfn, nr_pages);
704 resize_pgdat_range(pgdat, start_pfn, nr_pages);
705
706 /*
707 * Subsection population requires care in pfn_to_online_page().
708 * Set the taint to enable the slow path detection of
709 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
710 * section.
711 */
712 if (zone_is_zone_device(zone)) {
713 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
714 section_taint_zone_device(start_pfn);
715 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
716 section_taint_zone_device(start_pfn + nr_pages);
717 }
718
719 /*
720 * TODO now we have a visible range of pages which are not associated
721 * with their zone properly. Not nice but set_pfnblock_flags_mask
722 * expects the zone spans the pfn range. All the pages in the range
723 * are reserved so nobody should be touching them so we should be safe
724 */
725 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
726 MEMINIT_HOTPLUG, altmap, migratetype);
727
728 set_zone_contiguous(zone);
729 }
730
731 struct auto_movable_stats {
732 unsigned long kernel_early_pages;
733 unsigned long movable_pages;
734 };
735
736 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
737 struct zone *zone)
738 {
739 if (zone_idx(zone) == ZONE_MOVABLE) {
740 stats->movable_pages += zone->present_pages;
741 } else {
742 stats->kernel_early_pages += zone->present_early_pages;
743 #ifdef CONFIG_CMA
744 /*
745 * CMA pages (never on hotplugged memory) behave like
746 * ZONE_MOVABLE.
747 */
748 stats->movable_pages += zone->cma_pages;
749 stats->kernel_early_pages -= zone->cma_pages;
750 #endif /* CONFIG_CMA */
751 }
752 }
753 struct auto_movable_group_stats {
754 unsigned long movable_pages;
755 unsigned long req_kernel_early_pages;
756 };
757
758 static int auto_movable_stats_account_group(struct memory_group *group,
759 void *arg)
760 {
761 const int ratio = READ_ONCE(auto_movable_ratio);
762 struct auto_movable_group_stats *stats = arg;
763 long pages;
764
765 /*
766 * We don't support modifying the config while the auto-movable online
767 * policy is already enabled. Just avoid the division by zero below.
768 */
769 if (!ratio)
770 return 0;
771
772 /*
773 * Calculate how many early kernel pages this group requires to
774 * satisfy the configured zone ratio.
775 */
776 pages = group->present_movable_pages * 100 / ratio;
777 pages -= group->present_kernel_pages;
778
779 if (pages > 0)
780 stats->req_kernel_early_pages += pages;
781 stats->movable_pages += group->present_movable_pages;
782 return 0;
783 }
784
785 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
786 unsigned long nr_pages)
787 {
788 unsigned long kernel_early_pages, movable_pages;
789 struct auto_movable_group_stats group_stats = {};
790 struct auto_movable_stats stats = {};
791 pg_data_t *pgdat = NODE_DATA(nid);
792 struct zone *zone;
793 int i;
794
795 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
796 if (nid == NUMA_NO_NODE) {
797 /* TODO: cache values */
798 for_each_populated_zone(zone)
799 auto_movable_stats_account_zone(&stats, zone);
800 } else {
801 for (i = 0; i < MAX_NR_ZONES; i++) {
802 zone = pgdat->node_zones + i;
803 if (populated_zone(zone))
804 auto_movable_stats_account_zone(&stats, zone);
805 }
806 }
807
808 kernel_early_pages = stats.kernel_early_pages;
809 movable_pages = stats.movable_pages;
810
811 /*
812 * Kernel memory inside dynamic memory group allows for more MOVABLE
813 * memory within the same group. Remove the effect of all but the
814 * current group from the stats.
815 */
816 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
817 group, &group_stats);
818 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
819 return false;
820 kernel_early_pages -= group_stats.req_kernel_early_pages;
821 movable_pages -= group_stats.movable_pages;
822
823 if (group && group->is_dynamic)
824 kernel_early_pages += group->present_kernel_pages;
825
826 /*
827 * Test if we could online the given number of pages to ZONE_MOVABLE
828 * and still stay in the configured ratio.
829 */
830 movable_pages += nr_pages;
831 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
832 }
833
834 /*
835 * Returns a default kernel memory zone for the given pfn range.
836 * If no kernel zone covers this pfn range it will automatically go
837 * to the ZONE_NORMAL.
838 */
839 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
840 unsigned long nr_pages)
841 {
842 struct pglist_data *pgdat = NODE_DATA(nid);
843 int zid;
844
845 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
846 struct zone *zone = &pgdat->node_zones[zid];
847
848 if (zone_intersects(zone, start_pfn, nr_pages))
849 return zone;
850 }
851
852 return &pgdat->node_zones[ZONE_NORMAL];
853 }
854
855 /*
856 * Determine to which zone to online memory dynamically based on user
857 * configuration and system stats. We care about the following ratio:
858 *
859 * MOVABLE : KERNEL
860 *
861 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
862 * one of the kernel zones. CMA pages inside one of the kernel zones really
863 * behaves like ZONE_MOVABLE, so we treat them accordingly.
864 *
865 * We don't allow for hotplugged memory in a KERNEL zone to increase the
866 * amount of MOVABLE memory we can have, so we end up with:
867 *
868 * MOVABLE : KERNEL_EARLY
869 *
870 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
871 * boot. We base our calculation on KERNEL_EARLY internally, because:
872 *
873 * a) Hotplugged memory in one of the kernel zones can sometimes still get
874 * hotunplugged, especially when hot(un)plugging individual memory blocks.
875 * There is no coordination across memory devices, therefore "automatic"
876 * hotunplugging, as implemented in hypervisors, could result in zone
877 * imbalances.
878 * b) Early/boot memory in one of the kernel zones can usually not get
879 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
880 * with unmovable allocations). While there are corner cases where it might
881 * still work, it is barely relevant in practice.
882 *
883 * Exceptions are dynamic memory groups, which allow for more MOVABLE
884 * memory within the same memory group -- because in that case, there is
885 * coordination within the single memory device managed by a single driver.
886 *
887 * We rely on "present pages" instead of "managed pages", as the latter is
888 * highly unreliable and dynamic in virtualized environments, and does not
889 * consider boot time allocations. For example, memory ballooning adjusts the
890 * managed pages when inflating/deflating the balloon, and balloon compaction
891 * can even migrate inflated pages between zones.
892 *
893 * Using "present pages" is better but some things to keep in mind are:
894 *
895 * a) Some memblock allocations, such as for the crashkernel area, are
896 * effectively unused by the kernel, yet they account to "present pages".
897 * Fortunately, these allocations are comparatively small in relevant setups
898 * (e.g., fraction of system memory).
899 * b) Some hotplugged memory blocks in virtualized environments, esecially
900 * hotplugged by virtio-mem, look like they are completely present, however,
901 * only parts of the memory block are actually currently usable.
902 * "present pages" is an upper limit that can get reached at runtime. As
903 * we base our calculations on KERNEL_EARLY, this is not an issue.
904 */
905 static struct zone *auto_movable_zone_for_pfn(int nid,
906 struct memory_group *group,
907 unsigned long pfn,
908 unsigned long nr_pages)
909 {
910 unsigned long online_pages = 0, max_pages, end_pfn;
911 struct page *page;
912
913 if (!auto_movable_ratio)
914 goto kernel_zone;
915
916 if (group && !group->is_dynamic) {
917 max_pages = group->s.max_pages;
918 online_pages = group->present_movable_pages;
919
920 /* If anything is !MOVABLE online the rest !MOVABLE. */
921 if (group->present_kernel_pages)
922 goto kernel_zone;
923 } else if (!group || group->d.unit_pages == nr_pages) {
924 max_pages = nr_pages;
925 } else {
926 max_pages = group->d.unit_pages;
927 /*
928 * Take a look at all online sections in the current unit.
929 * We can safely assume that all pages within a section belong
930 * to the same zone, because dynamic memory groups only deal
931 * with hotplugged memory.
932 */
933 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
934 end_pfn = pfn + group->d.unit_pages;
935 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
936 page = pfn_to_online_page(pfn);
937 if (!page)
938 continue;
939 /* If anything is !MOVABLE online the rest !MOVABLE. */
940 if (page_zonenum(page) != ZONE_MOVABLE)
941 goto kernel_zone;
942 online_pages += PAGES_PER_SECTION;
943 }
944 }
945
946 /*
947 * Online MOVABLE if we could *currently* online all remaining parts
948 * MOVABLE. We expect to (add+) online them immediately next, so if
949 * nobody interferes, all will be MOVABLE if possible.
950 */
951 nr_pages = max_pages - online_pages;
952 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
953 goto kernel_zone;
954
955 #ifdef CONFIG_NUMA
956 if (auto_movable_numa_aware &&
957 !auto_movable_can_online_movable(nid, group, nr_pages))
958 goto kernel_zone;
959 #endif /* CONFIG_NUMA */
960
961 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
962 kernel_zone:
963 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
964 }
965
966 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
967 unsigned long nr_pages)
968 {
969 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
970 nr_pages);
971 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
972 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
973 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
974
975 /*
976 * We inherit the existing zone in a simple case where zones do not
977 * overlap in the given range
978 */
979 if (in_kernel ^ in_movable)
980 return (in_kernel) ? kernel_zone : movable_zone;
981
982 /*
983 * If the range doesn't belong to any zone or two zones overlap in the
984 * given range then we use movable zone only if movable_node is
985 * enabled because we always online to a kernel zone by default.
986 */
987 return movable_node_enabled ? movable_zone : kernel_zone;
988 }
989
990 struct zone *zone_for_pfn_range(int online_type, int nid,
991 struct memory_group *group, unsigned long start_pfn,
992 unsigned long nr_pages)
993 {
994 if (online_type == MMOP_ONLINE_KERNEL)
995 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
996
997 if (online_type == MMOP_ONLINE_MOVABLE)
998 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
999
1000 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1001 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1002
1003 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1004 }
1005
1006 /*
1007 * This function should only be called by memory_block_{online,offline},
1008 * and {online,offline}_pages.
1009 */
1010 void adjust_present_page_count(struct page *page, struct memory_group *group,
1011 long nr_pages)
1012 {
1013 struct zone *zone = page_zone(page);
1014 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1015
1016 /*
1017 * We only support onlining/offlining/adding/removing of complete
1018 * memory blocks; therefore, either all is either early or hotplugged.
1019 */
1020 if (early_section(__pfn_to_section(page_to_pfn(page))))
1021 zone->present_early_pages += nr_pages;
1022 zone->present_pages += nr_pages;
1023 zone->zone_pgdat->node_present_pages += nr_pages;
1024
1025 if (group && movable)
1026 group->present_movable_pages += nr_pages;
1027 else if (group && !movable)
1028 group->present_kernel_pages += nr_pages;
1029 }
1030
1031 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1032 struct zone *zone)
1033 {
1034 unsigned long end_pfn = pfn + nr_pages;
1035 int ret;
1036
1037 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1038 if (ret)
1039 return ret;
1040
1041 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1042
1043 /*
1044 * It might be that the vmemmap_pages fully span sections. If that is
1045 * the case, mark those sections online here as otherwise they will be
1046 * left offline.
1047 */
1048 if (nr_pages >= PAGES_PER_SECTION)
1049 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1050
1051 return ret;
1052 }
1053
1054 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1055 {
1056 unsigned long end_pfn = pfn + nr_pages;
1057
1058 /*
1059 * It might be that the vmemmap_pages fully span sections. If that is
1060 * the case, mark those sections offline here as otherwise they will be
1061 * left online.
1062 */
1063 if (nr_pages >= PAGES_PER_SECTION)
1064 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1065
1066 /*
1067 * The pages associated with this vmemmap have been offlined, so
1068 * we can reset its state here.
1069 */
1070 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1071 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1072 }
1073
1074 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1075 struct zone *zone, struct memory_group *group)
1076 {
1077 unsigned long flags;
1078 int need_zonelists_rebuild = 0;
1079 const int nid = zone_to_nid(zone);
1080 int ret;
1081 struct memory_notify arg;
1082
1083 /*
1084 * {on,off}lining is constrained to full memory sections (or more
1085 * precisely to memory blocks from the user space POV).
1086 * memmap_on_memory is an exception because it reserves initial part
1087 * of the physical memory space for vmemmaps. That space is pageblock
1088 * aligned.
1089 */
1090 if (WARN_ON_ONCE(!nr_pages ||
1091 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1092 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1093 return -EINVAL;
1094
1095 mem_hotplug_begin();
1096
1097 /* associate pfn range with the zone */
1098 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1099
1100 arg.start_pfn = pfn;
1101 arg.nr_pages = nr_pages;
1102 node_states_check_changes_online(nr_pages, zone, &arg);
1103
1104 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1105 ret = notifier_to_errno(ret);
1106 if (ret)
1107 goto failed_addition;
1108
1109 /*
1110 * Fixup the number of isolated pageblocks before marking the sections
1111 * onlining, such that undo_isolate_page_range() works correctly.
1112 */
1113 spin_lock_irqsave(&zone->lock, flags);
1114 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1115 spin_unlock_irqrestore(&zone->lock, flags);
1116
1117 /*
1118 * If this zone is not populated, then it is not in zonelist.
1119 * This means the page allocator ignores this zone.
1120 * So, zonelist must be updated after online.
1121 */
1122 if (!populated_zone(zone)) {
1123 need_zonelists_rebuild = 1;
1124 setup_zone_pageset(zone);
1125 }
1126
1127 online_pages_range(pfn, nr_pages);
1128 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1129
1130 node_states_set_node(nid, &arg);
1131 if (need_zonelists_rebuild)
1132 build_all_zonelists(NULL);
1133
1134 /* Basic onlining is complete, allow allocation of onlined pages. */
1135 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1136
1137 /*
1138 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1139 * the tail of the freelist when undoing isolation). Shuffle the whole
1140 * zone to make sure the just onlined pages are properly distributed
1141 * across the whole freelist - to create an initial shuffle.
1142 */
1143 shuffle_zone(zone);
1144
1145 /* reinitialise watermarks and update pcp limits */
1146 init_per_zone_wmark_min();
1147
1148 kswapd_run(nid);
1149 kcompactd_run(nid);
1150
1151 writeback_set_ratelimit();
1152
1153 memory_notify(MEM_ONLINE, &arg);
1154 mem_hotplug_done();
1155 return 0;
1156
1157 failed_addition:
1158 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1159 (unsigned long long) pfn << PAGE_SHIFT,
1160 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1161 memory_notify(MEM_CANCEL_ONLINE, &arg);
1162 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1163 mem_hotplug_done();
1164 return ret;
1165 }
1166 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1167
1168 static void reset_node_present_pages(pg_data_t *pgdat)
1169 {
1170 struct zone *z;
1171
1172 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1173 z->present_pages = 0;
1174
1175 pgdat->node_present_pages = 0;
1176 }
1177
1178 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1179 static pg_data_t __ref *hotadd_new_pgdat(int nid)
1180 {
1181 struct pglist_data *pgdat;
1182
1183 pgdat = NODE_DATA(nid);
1184 if (!pgdat) {
1185 pgdat = arch_alloc_nodedata(nid);
1186 if (!pgdat)
1187 return NULL;
1188
1189 pgdat->per_cpu_nodestats =
1190 alloc_percpu(struct per_cpu_nodestat);
1191 arch_refresh_nodedata(nid, pgdat);
1192 } else {
1193 int cpu;
1194 /*
1195 * Reset the nr_zones, order and highest_zoneidx before reuse.
1196 * Note that kswapd will init kswapd_highest_zoneidx properly
1197 * when it starts in the near future.
1198 */
1199 pgdat->nr_zones = 0;
1200 pgdat->kswapd_order = 0;
1201 pgdat->kswapd_highest_zoneidx = 0;
1202 for_each_online_cpu(cpu) {
1203 struct per_cpu_nodestat *p;
1204
1205 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1206 memset(p, 0, sizeof(*p));
1207 }
1208 }
1209
1210 /* we can use NODE_DATA(nid) from here */
1211 pgdat->node_id = nid;
1212 pgdat->node_start_pfn = 0;
1213
1214 /* init node's zones as empty zones, we don't have any present pages.*/
1215 free_area_init_core_hotplug(nid);
1216
1217 /*
1218 * The node we allocated has no zone fallback lists. For avoiding
1219 * to access not-initialized zonelist, build here.
1220 */
1221 build_all_zonelists(pgdat);
1222
1223 /*
1224 * When memory is hot-added, all the memory is in offline state. So
1225 * clear all zones' present_pages because they will be updated in
1226 * online_pages() and offline_pages().
1227 */
1228 reset_node_managed_pages(pgdat);
1229 reset_node_present_pages(pgdat);
1230
1231 return pgdat;
1232 }
1233
1234 static void rollback_node_hotadd(int nid)
1235 {
1236 pg_data_t *pgdat = NODE_DATA(nid);
1237
1238 arch_refresh_nodedata(nid, NULL);
1239 free_percpu(pgdat->per_cpu_nodestats);
1240 arch_free_nodedata(pgdat);
1241 }
1242
1243
1244 /*
1245 * __try_online_node - online a node if offlined
1246 * @nid: the node ID
1247 * @set_node_online: Whether we want to online the node
1248 * called by cpu_up() to online a node without onlined memory.
1249 *
1250 * Returns:
1251 * 1 -> a new node has been allocated
1252 * 0 -> the node is already online
1253 * -ENOMEM -> the node could not be allocated
1254 */
1255 static int __try_online_node(int nid, bool set_node_online)
1256 {
1257 pg_data_t *pgdat;
1258 int ret = 1;
1259
1260 if (node_online(nid))
1261 return 0;
1262
1263 pgdat = hotadd_new_pgdat(nid);
1264 if (!pgdat) {
1265 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1266 ret = -ENOMEM;
1267 goto out;
1268 }
1269
1270 if (set_node_online) {
1271 node_set_online(nid);
1272 ret = register_one_node(nid);
1273 BUG_ON(ret);
1274 }
1275 out:
1276 return ret;
1277 }
1278
1279 /*
1280 * Users of this function always want to online/register the node
1281 */
1282 int try_online_node(int nid)
1283 {
1284 int ret;
1285
1286 mem_hotplug_begin();
1287 ret = __try_online_node(nid, true);
1288 mem_hotplug_done();
1289 return ret;
1290 }
1291
1292 static int check_hotplug_memory_range(u64 start, u64 size)
1293 {
1294 /* memory range must be block size aligned */
1295 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1296 !IS_ALIGNED(size, memory_block_size_bytes())) {
1297 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1298 memory_block_size_bytes(), start, size);
1299 return -EINVAL;
1300 }
1301
1302 return 0;
1303 }
1304
1305 static int online_memory_block(struct memory_block *mem, void *arg)
1306 {
1307 mem->online_type = mhp_default_online_type;
1308 return device_online(&mem->dev);
1309 }
1310
1311 bool mhp_supports_memmap_on_memory(unsigned long size)
1312 {
1313 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1314 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1315 unsigned long remaining_size = size - vmemmap_size;
1316
1317 /*
1318 * Besides having arch support and the feature enabled at runtime, we
1319 * need a few more assumptions to hold true:
1320 *
1321 * a) We span a single memory block: memory onlining/offlinin;g happens
1322 * in memory block granularity. We don't want the vmemmap of online
1323 * memory blocks to reside on offline memory blocks. In the future,
1324 * we might want to support variable-sized memory blocks to make the
1325 * feature more versatile.
1326 *
1327 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1328 * to populate memory from the altmap for unrelated parts (i.e.,
1329 * other memory blocks)
1330 *
1331 * c) The vmemmap pages (and thereby the pages that will be exposed to
1332 * the buddy) have to cover full pageblocks: memory onlining/offlining
1333 * code requires applicable ranges to be page-aligned, for example, to
1334 * set the migratetypes properly.
1335 *
1336 * TODO: Although we have a check here to make sure that vmemmap pages
1337 * fully populate a PMD, it is not the right place to check for
1338 * this. A much better solution involves improving vmemmap code
1339 * to fallback to base pages when trying to populate vmemmap using
1340 * altmap as an alternative source of memory, and we do not exactly
1341 * populate a single PMD.
1342 */
1343 return memmap_on_memory &&
1344 !hugetlb_free_vmemmap_enabled &&
1345 IS_ENABLED(CONFIG_MHP_MEMMAP_ON_MEMORY) &&
1346 size == memory_block_size_bytes() &&
1347 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1348 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1349 }
1350
1351 /*
1352 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1353 * and online/offline operations (triggered e.g. by sysfs).
1354 *
1355 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1356 */
1357 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1358 {
1359 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1360 struct vmem_altmap mhp_altmap = {};
1361 struct memory_group *group = NULL;
1362 u64 start, size;
1363 bool new_node = false;
1364 int ret;
1365
1366 start = res->start;
1367 size = resource_size(res);
1368
1369 ret = check_hotplug_memory_range(start, size);
1370 if (ret)
1371 return ret;
1372
1373 if (mhp_flags & MHP_NID_IS_MGID) {
1374 group = memory_group_find_by_id(nid);
1375 if (!group)
1376 return -EINVAL;
1377 nid = group->nid;
1378 }
1379
1380 if (!node_possible(nid)) {
1381 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1382 return -EINVAL;
1383 }
1384
1385 mem_hotplug_begin();
1386
1387 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1388 memblock_add_node(start, size, nid);
1389
1390 ret = __try_online_node(nid, false);
1391 if (ret < 0)
1392 goto error;
1393 new_node = ret;
1394
1395 /*
1396 * Self hosted memmap array
1397 */
1398 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1399 if (!mhp_supports_memmap_on_memory(size)) {
1400 ret = -EINVAL;
1401 goto error;
1402 }
1403 mhp_altmap.free = PHYS_PFN(size);
1404 mhp_altmap.base_pfn = PHYS_PFN(start);
1405 params.altmap = &mhp_altmap;
1406 }
1407
1408 /* call arch's memory hotadd */
1409 ret = arch_add_memory(nid, start, size, &params);
1410 if (ret < 0)
1411 goto error;
1412
1413 /* create memory block devices after memory was added */
1414 ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1415 group);
1416 if (ret) {
1417 arch_remove_memory(start, size, NULL);
1418 goto error;
1419 }
1420
1421 if (new_node) {
1422 /* If sysfs file of new node can't be created, cpu on the node
1423 * can't be hot-added. There is no rollback way now.
1424 * So, check by BUG_ON() to catch it reluctantly..
1425 * We online node here. We can't roll back from here.
1426 */
1427 node_set_online(nid);
1428 ret = __register_one_node(nid);
1429 BUG_ON(ret);
1430 }
1431
1432 /* link memory sections under this node.*/
1433 link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1),
1434 MEMINIT_HOTPLUG);
1435
1436 /* create new memmap entry */
1437 if (!strcmp(res->name, "System RAM"))
1438 firmware_map_add_hotplug(start, start + size, "System RAM");
1439
1440 /* device_online() will take the lock when calling online_pages() */
1441 mem_hotplug_done();
1442
1443 /*
1444 * In case we're allowed to merge the resource, flag it and trigger
1445 * merging now that adding succeeded.
1446 */
1447 if (mhp_flags & MHP_MERGE_RESOURCE)
1448 merge_system_ram_resource(res);
1449
1450 /* online pages if requested */
1451 if (mhp_default_online_type != MMOP_OFFLINE)
1452 walk_memory_blocks(start, size, NULL, online_memory_block);
1453
1454 return ret;
1455 error:
1456 /* rollback pgdat allocation and others */
1457 if (new_node)
1458 rollback_node_hotadd(nid);
1459 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1460 memblock_remove(start, size);
1461 mem_hotplug_done();
1462 return ret;
1463 }
1464
1465 /* requires device_hotplug_lock, see add_memory_resource() */
1466 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1467 {
1468 struct resource *res;
1469 int ret;
1470
1471 res = register_memory_resource(start, size, "System RAM");
1472 if (IS_ERR(res))
1473 return PTR_ERR(res);
1474
1475 ret = add_memory_resource(nid, res, mhp_flags);
1476 if (ret < 0)
1477 release_memory_resource(res);
1478 return ret;
1479 }
1480
1481 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1482 {
1483 int rc;
1484
1485 lock_device_hotplug();
1486 rc = __add_memory(nid, start, size, mhp_flags);
1487 unlock_device_hotplug();
1488
1489 return rc;
1490 }
1491 EXPORT_SYMBOL_GPL(add_memory);
1492
1493 /*
1494 * Add special, driver-managed memory to the system as system RAM. Such
1495 * memory is not exposed via the raw firmware-provided memmap as system
1496 * RAM, instead, it is detected and added by a driver - during cold boot,
1497 * after a reboot, and after kexec.
1498 *
1499 * Reasons why this memory should not be used for the initial memmap of a
1500 * kexec kernel or for placing kexec images:
1501 * - The booting kernel is in charge of determining how this memory will be
1502 * used (e.g., use persistent memory as system RAM)
1503 * - Coordination with a hypervisor is required before this memory
1504 * can be used (e.g., inaccessible parts).
1505 *
1506 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1507 * memory map") are created. Also, the created memory resource is flagged
1508 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1509 * this memory as well (esp., not place kexec images onto it).
1510 *
1511 * The resource_name (visible via /proc/iomem) has to have the format
1512 * "System RAM ($DRIVER)".
1513 */
1514 int add_memory_driver_managed(int nid, u64 start, u64 size,
1515 const char *resource_name, mhp_t mhp_flags)
1516 {
1517 struct resource *res;
1518 int rc;
1519
1520 if (!resource_name ||
1521 strstr(resource_name, "System RAM (") != resource_name ||
1522 resource_name[strlen(resource_name) - 1] != ')')
1523 return -EINVAL;
1524
1525 lock_device_hotplug();
1526
1527 res = register_memory_resource(start, size, resource_name);
1528 if (IS_ERR(res)) {
1529 rc = PTR_ERR(res);
1530 goto out_unlock;
1531 }
1532
1533 rc = add_memory_resource(nid, res, mhp_flags);
1534 if (rc < 0)
1535 release_memory_resource(res);
1536
1537 out_unlock:
1538 unlock_device_hotplug();
1539 return rc;
1540 }
1541 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1542
1543 /*
1544 * Platforms should define arch_get_mappable_range() that provides
1545 * maximum possible addressable physical memory range for which the
1546 * linear mapping could be created. The platform returned address
1547 * range must adhere to these following semantics.
1548 *
1549 * - range.start <= range.end
1550 * - Range includes both end points [range.start..range.end]
1551 *
1552 * There is also a fallback definition provided here, allowing the
1553 * entire possible physical address range in case any platform does
1554 * not define arch_get_mappable_range().
1555 */
1556 struct range __weak arch_get_mappable_range(void)
1557 {
1558 struct range mhp_range = {
1559 .start = 0UL,
1560 .end = -1ULL,
1561 };
1562 return mhp_range;
1563 }
1564
1565 struct range mhp_get_pluggable_range(bool need_mapping)
1566 {
1567 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1568 struct range mhp_range;
1569
1570 if (need_mapping) {
1571 mhp_range = arch_get_mappable_range();
1572 if (mhp_range.start > max_phys) {
1573 mhp_range.start = 0;
1574 mhp_range.end = 0;
1575 }
1576 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1577 } else {
1578 mhp_range.start = 0;
1579 mhp_range.end = max_phys;
1580 }
1581 return mhp_range;
1582 }
1583 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1584
1585 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1586 {
1587 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1588 u64 end = start + size;
1589
1590 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1591 return true;
1592
1593 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1594 start, end, mhp_range.start, mhp_range.end);
1595 return false;
1596 }
1597
1598 #ifdef CONFIG_MEMORY_HOTREMOVE
1599 /*
1600 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1601 * memory holes). When true, return the zone.
1602 */
1603 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1604 unsigned long end_pfn)
1605 {
1606 unsigned long pfn, sec_end_pfn;
1607 struct zone *zone = NULL;
1608 struct page *page;
1609
1610 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1611 pfn < end_pfn;
1612 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1613 /* Make sure the memory section is present first */
1614 if (!present_section_nr(pfn_to_section_nr(pfn)))
1615 continue;
1616 for (; pfn < sec_end_pfn && pfn < end_pfn;
1617 pfn += MAX_ORDER_NR_PAGES) {
1618 /* Check if we got outside of the zone */
1619 if (zone && !zone_spans_pfn(zone, pfn))
1620 return NULL;
1621 page = pfn_to_page(pfn);
1622 if (zone && page_zone(page) != zone)
1623 return NULL;
1624 zone = page_zone(page);
1625 }
1626 }
1627
1628 return zone;
1629 }
1630
1631 /*
1632 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1633 * non-lru movable pages and hugepages). Will skip over most unmovable
1634 * pages (esp., pages that can be skipped when offlining), but bail out on
1635 * definitely unmovable pages.
1636 *
1637 * Returns:
1638 * 0 in case a movable page is found and movable_pfn was updated.
1639 * -ENOENT in case no movable page was found.
1640 * -EBUSY in case a definitely unmovable page was found.
1641 */
1642 static int scan_movable_pages(unsigned long start, unsigned long end,
1643 unsigned long *movable_pfn)
1644 {
1645 unsigned long pfn;
1646
1647 for (pfn = start; pfn < end; pfn++) {
1648 struct page *page, *head;
1649 unsigned long skip;
1650
1651 if (!pfn_valid(pfn))
1652 continue;
1653 page = pfn_to_page(pfn);
1654 if (PageLRU(page))
1655 goto found;
1656 if (__PageMovable(page))
1657 goto found;
1658
1659 /*
1660 * PageOffline() pages that are not marked __PageMovable() and
1661 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1662 * definitely unmovable. If their reference count would be 0,
1663 * they could at least be skipped when offlining memory.
1664 */
1665 if (PageOffline(page) && page_count(page))
1666 return -EBUSY;
1667
1668 if (!PageHuge(page))
1669 continue;
1670 head = compound_head(page);
1671 /*
1672 * This test is racy as we hold no reference or lock. The
1673 * hugetlb page could have been free'ed and head is no longer
1674 * a hugetlb page before the following check. In such unlikely
1675 * cases false positives and negatives are possible. Calling
1676 * code must deal with these scenarios.
1677 */
1678 if (HPageMigratable(head))
1679 goto found;
1680 skip = compound_nr(head) - (page - head);
1681 pfn += skip - 1;
1682 }
1683 return -ENOENT;
1684 found:
1685 *movable_pfn = pfn;
1686 return 0;
1687 }
1688
1689 static int
1690 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1691 {
1692 unsigned long pfn;
1693 struct page *page, *head;
1694 int ret = 0;
1695 LIST_HEAD(source);
1696 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1697 DEFAULT_RATELIMIT_BURST);
1698
1699 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1700 if (!pfn_valid(pfn))
1701 continue;
1702 page = pfn_to_page(pfn);
1703 head = compound_head(page);
1704
1705 if (PageHuge(page)) {
1706 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1707 isolate_huge_page(head, &source);
1708 continue;
1709 } else if (PageTransHuge(page))
1710 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1711
1712 /*
1713 * HWPoison pages have elevated reference counts so the migration would
1714 * fail on them. It also doesn't make any sense to migrate them in the
1715 * first place. Still try to unmap such a page in case it is still mapped
1716 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1717 * the unmap as the catch all safety net).
1718 */
1719 if (PageHWPoison(page)) {
1720 if (WARN_ON(PageLRU(page)))
1721 isolate_lru_page(page);
1722 if (page_mapped(page))
1723 try_to_unmap(page, TTU_IGNORE_MLOCK);
1724 continue;
1725 }
1726
1727 if (!get_page_unless_zero(page))
1728 continue;
1729 /*
1730 * We can skip free pages. And we can deal with pages on
1731 * LRU and non-lru movable pages.
1732 */
1733 if (PageLRU(page))
1734 ret = isolate_lru_page(page);
1735 else
1736 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1737 if (!ret) { /* Success */
1738 list_add_tail(&page->lru, &source);
1739 if (!__PageMovable(page))
1740 inc_node_page_state(page, NR_ISOLATED_ANON +
1741 page_is_file_lru(page));
1742
1743 } else {
1744 if (__ratelimit(&migrate_rs)) {
1745 pr_warn("failed to isolate pfn %lx\n", pfn);
1746 dump_page(page, "isolation failed");
1747 }
1748 }
1749 put_page(page);
1750 }
1751 if (!list_empty(&source)) {
1752 nodemask_t nmask = node_states[N_MEMORY];
1753 struct migration_target_control mtc = {
1754 .nmask = &nmask,
1755 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1756 };
1757
1758 /*
1759 * We have checked that migration range is on a single zone so
1760 * we can use the nid of the first page to all the others.
1761 */
1762 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1763
1764 /*
1765 * try to allocate from a different node but reuse this node
1766 * if there are no other online nodes to be used (e.g. we are
1767 * offlining a part of the only existing node)
1768 */
1769 node_clear(mtc.nid, nmask);
1770 if (nodes_empty(nmask))
1771 node_set(mtc.nid, nmask);
1772 ret = migrate_pages(&source, alloc_migration_target, NULL,
1773 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1774 if (ret) {
1775 list_for_each_entry(page, &source, lru) {
1776 if (__ratelimit(&migrate_rs)) {
1777 pr_warn("migrating pfn %lx failed ret:%d\n",
1778 page_to_pfn(page), ret);
1779 dump_page(page, "migration failure");
1780 }
1781 }
1782 putback_movable_pages(&source);
1783 }
1784 }
1785
1786 return ret;
1787 }
1788
1789 static int __init cmdline_parse_movable_node(char *p)
1790 {
1791 movable_node_enabled = true;
1792 return 0;
1793 }
1794 early_param("movable_node", cmdline_parse_movable_node);
1795
1796 /* check which state of node_states will be changed when offline memory */
1797 static void node_states_check_changes_offline(unsigned long nr_pages,
1798 struct zone *zone, struct memory_notify *arg)
1799 {
1800 struct pglist_data *pgdat = zone->zone_pgdat;
1801 unsigned long present_pages = 0;
1802 enum zone_type zt;
1803
1804 arg->status_change_nid = NUMA_NO_NODE;
1805 arg->status_change_nid_normal = NUMA_NO_NODE;
1806 arg->status_change_nid_high = NUMA_NO_NODE;
1807
1808 /*
1809 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1810 * If the memory to be offline is within the range
1811 * [0..ZONE_NORMAL], and it is the last present memory there,
1812 * the zones in that range will become empty after the offlining,
1813 * thus we can determine that we need to clear the node from
1814 * node_states[N_NORMAL_MEMORY].
1815 */
1816 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1817 present_pages += pgdat->node_zones[zt].present_pages;
1818 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1819 arg->status_change_nid_normal = zone_to_nid(zone);
1820
1821 #ifdef CONFIG_HIGHMEM
1822 /*
1823 * node_states[N_HIGH_MEMORY] contains nodes which
1824 * have normal memory or high memory.
1825 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1826 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1827 * we determine that the zones in that range become empty,
1828 * we need to clear the node for N_HIGH_MEMORY.
1829 */
1830 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1831 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1832 arg->status_change_nid_high = zone_to_nid(zone);
1833 #endif
1834
1835 /*
1836 * We have accounted the pages from [0..ZONE_NORMAL), and
1837 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1838 * as well.
1839 * Here we count the possible pages from ZONE_MOVABLE.
1840 * If after having accounted all the pages, we see that the nr_pages
1841 * to be offlined is over or equal to the accounted pages,
1842 * we know that the node will become empty, and so, we can clear
1843 * it for N_MEMORY as well.
1844 */
1845 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1846
1847 if (nr_pages >= present_pages)
1848 arg->status_change_nid = zone_to_nid(zone);
1849 }
1850
1851 static void node_states_clear_node(int node, struct memory_notify *arg)
1852 {
1853 if (arg->status_change_nid_normal >= 0)
1854 node_clear_state(node, N_NORMAL_MEMORY);
1855
1856 if (arg->status_change_nid_high >= 0)
1857 node_clear_state(node, N_HIGH_MEMORY);
1858
1859 if (arg->status_change_nid >= 0)
1860 node_clear_state(node, N_MEMORY);
1861 }
1862
1863 static int count_system_ram_pages_cb(unsigned long start_pfn,
1864 unsigned long nr_pages, void *data)
1865 {
1866 unsigned long *nr_system_ram_pages = data;
1867
1868 *nr_system_ram_pages += nr_pages;
1869 return 0;
1870 }
1871
1872 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1873 struct memory_group *group)
1874 {
1875 const unsigned long end_pfn = start_pfn + nr_pages;
1876 unsigned long pfn, system_ram_pages = 0;
1877 unsigned long flags;
1878 struct zone *zone;
1879 struct memory_notify arg;
1880 int ret, node;
1881 char *reason;
1882
1883 /*
1884 * {on,off}lining is constrained to full memory sections (or more
1885 * precisely to memory blocks from the user space POV).
1886 * memmap_on_memory is an exception because it reserves initial part
1887 * of the physical memory space for vmemmaps. That space is pageblock
1888 * aligned.
1889 */
1890 if (WARN_ON_ONCE(!nr_pages ||
1891 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1892 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1893 return -EINVAL;
1894
1895 mem_hotplug_begin();
1896
1897 /*
1898 * Don't allow to offline memory blocks that contain holes.
1899 * Consequently, memory blocks with holes can never get onlined
1900 * via the hotplug path - online_pages() - as hotplugged memory has
1901 * no holes. This way, we e.g., don't have to worry about marking
1902 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1903 * avoid using walk_system_ram_range() later.
1904 */
1905 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1906 count_system_ram_pages_cb);
1907 if (system_ram_pages != nr_pages) {
1908 ret = -EINVAL;
1909 reason = "memory holes";
1910 goto failed_removal;
1911 }
1912
1913 /* This makes hotplug much easier...and readable.
1914 we assume this for now. .*/
1915 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1916 if (!zone) {
1917 ret = -EINVAL;
1918 reason = "multizone range";
1919 goto failed_removal;
1920 }
1921 node = zone_to_nid(zone);
1922
1923 /*
1924 * Disable pcplists so that page isolation cannot race with freeing
1925 * in a way that pages from isolated pageblock are left on pcplists.
1926 */
1927 zone_pcp_disable(zone);
1928 lru_cache_disable();
1929
1930 /* set above range as isolated */
1931 ret = start_isolate_page_range(start_pfn, end_pfn,
1932 MIGRATE_MOVABLE,
1933 MEMORY_OFFLINE | REPORT_FAILURE);
1934 if (ret) {
1935 reason = "failure to isolate range";
1936 goto failed_removal_pcplists_disabled;
1937 }
1938
1939 arg.start_pfn = start_pfn;
1940 arg.nr_pages = nr_pages;
1941 node_states_check_changes_offline(nr_pages, zone, &arg);
1942
1943 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1944 ret = notifier_to_errno(ret);
1945 if (ret) {
1946 reason = "notifier failure";
1947 goto failed_removal_isolated;
1948 }
1949
1950 do {
1951 pfn = start_pfn;
1952 do {
1953 if (signal_pending(current)) {
1954 ret = -EINTR;
1955 reason = "signal backoff";
1956 goto failed_removal_isolated;
1957 }
1958
1959 cond_resched();
1960
1961 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1962 if (!ret) {
1963 /*
1964 * TODO: fatal migration failures should bail
1965 * out
1966 */
1967 do_migrate_range(pfn, end_pfn);
1968 }
1969 } while (!ret);
1970
1971 if (ret != -ENOENT) {
1972 reason = "unmovable page";
1973 goto failed_removal_isolated;
1974 }
1975
1976 /*
1977 * Dissolve free hugepages in the memory block before doing
1978 * offlining actually in order to make hugetlbfs's object
1979 * counting consistent.
1980 */
1981 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1982 if (ret) {
1983 reason = "failure to dissolve huge pages";
1984 goto failed_removal_isolated;
1985 }
1986
1987 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1988
1989 } while (ret);
1990
1991 /* Mark all sections offline and remove free pages from the buddy. */
1992 __offline_isolated_pages(start_pfn, end_pfn);
1993 pr_debug("Offlined Pages %ld\n", nr_pages);
1994
1995 /*
1996 * The memory sections are marked offline, and the pageblock flags
1997 * effectively stale; nobody should be touching them. Fixup the number
1998 * of isolated pageblocks, memory onlining will properly revert this.
1999 */
2000 spin_lock_irqsave(&zone->lock, flags);
2001 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2002 spin_unlock_irqrestore(&zone->lock, flags);
2003
2004 lru_cache_enable();
2005 zone_pcp_enable(zone);
2006
2007 /* removal success */
2008 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
2009 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2010
2011 /* reinitialise watermarks and update pcp limits */
2012 init_per_zone_wmark_min();
2013
2014 if (!populated_zone(zone)) {
2015 zone_pcp_reset(zone);
2016 build_all_zonelists(NULL);
2017 }
2018
2019 node_states_clear_node(node, &arg);
2020 if (arg.status_change_nid >= 0) {
2021 kswapd_stop(node);
2022 kcompactd_stop(node);
2023 }
2024
2025 writeback_set_ratelimit();
2026
2027 memory_notify(MEM_OFFLINE, &arg);
2028 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2029 mem_hotplug_done();
2030 return 0;
2031
2032 failed_removal_isolated:
2033 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2034 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2035 failed_removal_pcplists_disabled:
2036 lru_cache_enable();
2037 zone_pcp_enable(zone);
2038 failed_removal:
2039 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2040 (unsigned long long) start_pfn << PAGE_SHIFT,
2041 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2042 reason);
2043 /* pushback to free area */
2044 mem_hotplug_done();
2045 return ret;
2046 }
2047
2048 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2049 {
2050 int ret = !is_memblock_offlined(mem);
2051 int *nid = arg;
2052
2053 *nid = mem->nid;
2054 if (unlikely(ret)) {
2055 phys_addr_t beginpa, endpa;
2056
2057 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2058 endpa = beginpa + memory_block_size_bytes() - 1;
2059 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2060 &beginpa, &endpa);
2061
2062 return -EBUSY;
2063 }
2064 return 0;
2065 }
2066
2067 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
2068 {
2069 /*
2070 * If not set, continue with the next block.
2071 */
2072 return mem->nr_vmemmap_pages;
2073 }
2074
2075 static int check_cpu_on_node(pg_data_t *pgdat)
2076 {
2077 int cpu;
2078
2079 for_each_present_cpu(cpu) {
2080 if (cpu_to_node(cpu) == pgdat->node_id)
2081 /*
2082 * the cpu on this node isn't removed, and we can't
2083 * offline this node.
2084 */
2085 return -EBUSY;
2086 }
2087
2088 return 0;
2089 }
2090
2091 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2092 {
2093 int nid = *(int *)arg;
2094
2095 /*
2096 * If a memory block belongs to multiple nodes, the stored nid is not
2097 * reliable. However, such blocks are always online (e.g., cannot get
2098 * offlined) and, therefore, are still spanned by the node.
2099 */
2100 return mem->nid == nid ? -EEXIST : 0;
2101 }
2102
2103 /**
2104 * try_offline_node
2105 * @nid: the node ID
2106 *
2107 * Offline a node if all memory sections and cpus of the node are removed.
2108 *
2109 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2110 * and online/offline operations before this call.
2111 */
2112 void try_offline_node(int nid)
2113 {
2114 pg_data_t *pgdat = NODE_DATA(nid);
2115 int rc;
2116
2117 /*
2118 * If the node still spans pages (especially ZONE_DEVICE), don't
2119 * offline it. A node spans memory after move_pfn_range_to_zone(),
2120 * e.g., after the memory block was onlined.
2121 */
2122 if (pgdat->node_spanned_pages)
2123 return;
2124
2125 /*
2126 * Especially offline memory blocks might not be spanned by the
2127 * node. They will get spanned by the node once they get onlined.
2128 * However, they link to the node in sysfs and can get onlined later.
2129 */
2130 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2131 if (rc)
2132 return;
2133
2134 if (check_cpu_on_node(pgdat))
2135 return;
2136
2137 /*
2138 * all memory/cpu of this node are removed, we can offline this
2139 * node now.
2140 */
2141 node_set_offline(nid);
2142 unregister_one_node(nid);
2143 }
2144 EXPORT_SYMBOL(try_offline_node);
2145
2146 static int __ref try_remove_memory(u64 start, u64 size)
2147 {
2148 struct vmem_altmap mhp_altmap = {};
2149 struct vmem_altmap *altmap = NULL;
2150 unsigned long nr_vmemmap_pages;
2151 int rc = 0, nid = NUMA_NO_NODE;
2152
2153 BUG_ON(check_hotplug_memory_range(start, size));
2154
2155 /*
2156 * All memory blocks must be offlined before removing memory. Check
2157 * whether all memory blocks in question are offline and return error
2158 * if this is not the case.
2159 *
2160 * While at it, determine the nid. Note that if we'd have mixed nodes,
2161 * we'd only try to offline the last determined one -- which is good
2162 * enough for the cases we care about.
2163 */
2164 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2165 if (rc)
2166 return rc;
2167
2168 /*
2169 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2170 * the same granularity it was added - a single memory block.
2171 */
2172 if (memmap_on_memory) {
2173 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2174 get_nr_vmemmap_pages_cb);
2175 if (nr_vmemmap_pages) {
2176 if (size != memory_block_size_bytes()) {
2177 pr_warn("Refuse to remove %#llx - %#llx,"
2178 "wrong granularity\n",
2179 start, start + size);
2180 return -EINVAL;
2181 }
2182
2183 /*
2184 * Let remove_pmd_table->free_hugepage_table do the
2185 * right thing if we used vmem_altmap when hot-adding
2186 * the range.
2187 */
2188 mhp_altmap.alloc = nr_vmemmap_pages;
2189 altmap = &mhp_altmap;
2190 }
2191 }
2192
2193 /* remove memmap entry */
2194 firmware_map_remove(start, start + size, "System RAM");
2195
2196 /*
2197 * Memory block device removal under the device_hotplug_lock is
2198 * a barrier against racing online attempts.
2199 */
2200 remove_memory_block_devices(start, size);
2201
2202 mem_hotplug_begin();
2203
2204 arch_remove_memory(start, size, altmap);
2205
2206 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2207 memblock_free(start, size);
2208 memblock_remove(start, size);
2209 }
2210
2211 release_mem_region_adjustable(start, size);
2212
2213 if (nid != NUMA_NO_NODE)
2214 try_offline_node(nid);
2215
2216 mem_hotplug_done();
2217 return 0;
2218 }
2219
2220 /**
2221 * __remove_memory - Remove memory if every memory block is offline
2222 * @start: physical address of the region to remove
2223 * @size: size of the region to remove
2224 *
2225 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2226 * and online/offline operations before this call, as required by
2227 * try_offline_node().
2228 */
2229 void __remove_memory(u64 start, u64 size)
2230 {
2231
2232 /*
2233 * trigger BUG() if some memory is not offlined prior to calling this
2234 * function
2235 */
2236 if (try_remove_memory(start, size))
2237 BUG();
2238 }
2239
2240 /*
2241 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2242 * some memory is not offline
2243 */
2244 int remove_memory(u64 start, u64 size)
2245 {
2246 int rc;
2247
2248 lock_device_hotplug();
2249 rc = try_remove_memory(start, size);
2250 unlock_device_hotplug();
2251
2252 return rc;
2253 }
2254 EXPORT_SYMBOL_GPL(remove_memory);
2255
2256 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2257 {
2258 uint8_t online_type = MMOP_ONLINE_KERNEL;
2259 uint8_t **online_types = arg;
2260 struct page *page;
2261 int rc;
2262
2263 /*
2264 * Sense the online_type via the zone of the memory block. Offlining
2265 * with multiple zones within one memory block will be rejected
2266 * by offlining code ... so we don't care about that.
2267 */
2268 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2269 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2270 online_type = MMOP_ONLINE_MOVABLE;
2271
2272 rc = device_offline(&mem->dev);
2273 /*
2274 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2275 * so try_reonline_memory_block() can do the right thing.
2276 */
2277 if (!rc)
2278 **online_types = online_type;
2279
2280 (*online_types)++;
2281 /* Ignore if already offline. */
2282 return rc < 0 ? rc : 0;
2283 }
2284
2285 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2286 {
2287 uint8_t **online_types = arg;
2288 int rc;
2289
2290 if (**online_types != MMOP_OFFLINE) {
2291 mem->online_type = **online_types;
2292 rc = device_online(&mem->dev);
2293 if (rc < 0)
2294 pr_warn("%s: Failed to re-online memory: %d",
2295 __func__, rc);
2296 }
2297
2298 /* Continue processing all remaining memory blocks. */
2299 (*online_types)++;
2300 return 0;
2301 }
2302
2303 /*
2304 * Try to offline and remove memory. Might take a long time to finish in case
2305 * memory is still in use. Primarily useful for memory devices that logically
2306 * unplugged all memory (so it's no longer in use) and want to offline + remove
2307 * that memory.
2308 */
2309 int offline_and_remove_memory(u64 start, u64 size)
2310 {
2311 const unsigned long mb_count = size / memory_block_size_bytes();
2312 uint8_t *online_types, *tmp;
2313 int rc;
2314
2315 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2316 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2317 return -EINVAL;
2318
2319 /*
2320 * We'll remember the old online type of each memory block, so we can
2321 * try to revert whatever we did when offlining one memory block fails
2322 * after offlining some others succeeded.
2323 */
2324 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2325 GFP_KERNEL);
2326 if (!online_types)
2327 return -ENOMEM;
2328 /*
2329 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2330 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2331 * try_reonline_memory_block().
2332 */
2333 memset(online_types, MMOP_OFFLINE, mb_count);
2334
2335 lock_device_hotplug();
2336
2337 tmp = online_types;
2338 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2339
2340 /*
2341 * In case we succeeded to offline all memory, remove it.
2342 * This cannot fail as it cannot get onlined in the meantime.
2343 */
2344 if (!rc) {
2345 rc = try_remove_memory(start, size);
2346 if (rc)
2347 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2348 }
2349
2350 /*
2351 * Rollback what we did. While memory onlining might theoretically fail
2352 * (nacked by a notifier), it barely ever happens.
2353 */
2354 if (rc) {
2355 tmp = online_types;
2356 walk_memory_blocks(start, size, &tmp,
2357 try_reonline_memory_block);
2358 }
2359 unlock_device_hotplug();
2360
2361 kfree(online_types);
2362 return rc;
2363 }
2364 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2365 #endif /* CONFIG_MEMORY_HOTREMOVE */