]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
Merge tag 'drm-fixes-5.3-2019-08-21' of git://people.freedesktop.org/~agd5f/linux...
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static void generic_online_page(struct page *page, unsigned int order);
53
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58
59 void get_online_mems(void)
60 {
61 percpu_down_read(&mem_hotplug_lock);
62 }
63
64 void put_online_mems(void)
65 {
66 percpu_up_read(&mem_hotplug_lock);
67 }
68
69 bool movable_node_enabled = false;
70
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77
78 static int __init setup_memhp_default_state(char *str)
79 {
80 if (!strcmp(str, "online"))
81 memhp_auto_online = true;
82 else if (!strcmp(str, "offline"))
83 memhp_auto_online = false;
84
85 return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88
89 void mem_hotplug_begin(void)
90 {
91 cpus_read_lock();
92 percpu_down_write(&mem_hotplug_lock);
93 }
94
95 void mem_hotplug_done(void)
96 {
97 percpu_up_write(&mem_hotplug_lock);
98 cpus_read_unlock();
99 }
100
101 u64 max_mem_size = U64_MAX;
102
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 struct resource *res;
107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 char *resource_name = "System RAM";
109
110 if (start + size > max_mem_size)
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Request ownership of the new memory range. This might be
115 * a child of an existing resource that was present but
116 * not marked as busy.
117 */
118 res = __request_region(&iomem_resource, start, size,
119 resource_name, flags);
120
121 if (!res) {
122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 start, start + size);
124 return ERR_PTR(-EEXIST);
125 }
126 return res;
127 }
128
129 static void release_memory_resource(struct resource *res)
130 {
131 if (!res)
132 return;
133 release_resource(res);
134 kfree(res);
135 }
136
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info, struct page *page,
139 unsigned long type)
140 {
141 page->freelist = (void *)type;
142 SetPagePrivate(page);
143 set_page_private(page, info);
144 page_ref_inc(page);
145 }
146
147 void put_page_bootmem(struct page *page)
148 {
149 unsigned long type;
150
151 type = (unsigned long) page->freelist;
152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154
155 if (page_ref_dec_return(page) == 1) {
156 page->freelist = NULL;
157 ClearPagePrivate(page);
158 set_page_private(page, 0);
159 INIT_LIST_HEAD(&page->lru);
160 free_reserved_page(page);
161 }
162 }
163
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 unsigned long mapsize, section_nr, i;
169 struct mem_section *ms;
170 struct page *page, *memmap;
171 struct mem_section_usage *usage;
172
173 section_nr = pfn_to_section_nr(start_pfn);
174 ms = __nr_to_section(section_nr);
175
176 /* Get section's memmap address */
177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178
179 /*
180 * Get page for the memmap's phys address
181 * XXX: need more consideration for sparse_vmemmap...
182 */
183 page = virt_to_page(memmap);
184 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186
187 /* remember memmap's page */
188 for (i = 0; i < mapsize; i++, page++)
189 get_page_bootmem(section_nr, page, SECTION_INFO);
190
191 usage = ms->usage;
192 page = virt_to_page(usage);
193
194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195
196 for (i = 0; i < mapsize; i++, page++)
197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 unsigned long mapsize, section_nr, i;
204 struct mem_section *ms;
205 struct page *page, *memmap;
206 struct mem_section_usage *usage;
207
208 section_nr = pfn_to_section_nr(start_pfn);
209 ms = __nr_to_section(section_nr);
210
211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212
213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214
215 usage = ms->usage;
216 page = virt_to_page(usage);
217
218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224
225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 unsigned long i, pfn, end_pfn, nr_pages;
228 int node = pgdat->node_id;
229 struct page *page;
230
231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 page = virt_to_page(pgdat);
233
234 for (i = 0; i < nr_pages; i++, page++)
235 get_page_bootmem(node, page, NODE_INFO);
236
237 pfn = pgdat->node_start_pfn;
238 end_pfn = pgdat_end_pfn(pgdat);
239
240 /* register section info */
241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 /*
243 * Some platforms can assign the same pfn to multiple nodes - on
244 * node0 as well as nodeN. To avoid registering a pfn against
245 * multiple nodes we check that this pfn does not already
246 * reside in some other nodes.
247 */
248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 register_page_bootmem_info_section(pfn);
250 }
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253
254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 const char *reason)
256 {
257 /*
258 * Disallow all operations smaller than a sub-section and only
259 * allow operations smaller than a section for
260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 * enforces a larger memory_block_size_bytes() granularity for
262 * memory that will be marked online, so this check should only
263 * fire for direct arch_{add,remove}_memory() users outside of
264 * add_memory_resource().
265 */
266 unsigned long min_align;
267
268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 min_align = PAGES_PER_SUBSECTION;
270 else
271 min_align = PAGES_PER_SECTION;
272 if (!IS_ALIGNED(pfn, min_align)
273 || !IS_ALIGNED(nr_pages, min_align)) {
274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 reason, pfn, pfn + nr_pages - 1);
276 return -EINVAL;
277 }
278 return 0;
279 }
280
281 /*
282 * Reasonably generic function for adding memory. It is
283 * expected that archs that support memory hotplug will
284 * call this function after deciding the zone to which to
285 * add the new pages.
286 */
287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 struct mhp_restrictions *restrictions)
289 {
290 int err;
291 unsigned long nr, start_sec, end_sec;
292 struct vmem_altmap *altmap = restrictions->altmap;
293
294 if (altmap) {
295 /*
296 * Validate altmap is within bounds of the total request
297 */
298 if (altmap->base_pfn != pfn
299 || vmem_altmap_offset(altmap) > nr_pages) {
300 pr_warn_once("memory add fail, invalid altmap\n");
301 return -EINVAL;
302 }
303 altmap->alloc = 0;
304 }
305
306 err = check_pfn_span(pfn, nr_pages, "add");
307 if (err)
308 return err;
309
310 start_sec = pfn_to_section_nr(pfn);
311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 for (nr = start_sec; nr <= end_sec; nr++) {
313 unsigned long pfns;
314
315 pfns = min(nr_pages, PAGES_PER_SECTION
316 - (pfn & ~PAGE_SECTION_MASK));
317 err = sparse_add_section(nid, pfn, pfns, altmap);
318 if (err)
319 break;
320 pfn += pfns;
321 nr_pages -= pfns;
322 cond_resched();
323 }
324 vmemmap_populate_print_last();
325 return err;
326 }
327
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 unsigned long start_pfn,
331 unsigned long end_pfn)
332 {
333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 if (unlikely(!pfn_valid(start_pfn)))
335 continue;
336
337 if (unlikely(pfn_to_nid(start_pfn) != nid))
338 continue;
339
340 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 continue;
342
343 return start_pfn;
344 }
345
346 return 0;
347 }
348
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 unsigned long start_pfn,
352 unsigned long end_pfn)
353 {
354 unsigned long pfn;
355
356 /* pfn is the end pfn of a memory section. */
357 pfn = end_pfn - 1;
358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_valid(pfn)))
360 continue;
361
362 if (unlikely(pfn_to_nid(pfn) != nid))
363 continue;
364
365 if (zone && zone != page_zone(pfn_to_page(pfn)))
366 continue;
367
368 return pfn;
369 }
370
371 return 0;
372 }
373
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 unsigned long end_pfn)
376 {
377 unsigned long zone_start_pfn = zone->zone_start_pfn;
378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 unsigned long zone_end_pfn = z;
380 unsigned long pfn;
381 int nid = zone_to_nid(zone);
382
383 zone_span_writelock(zone);
384 if (zone_start_pfn == start_pfn) {
385 /*
386 * If the section is smallest section in the zone, it need
387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 * In this case, we find second smallest valid mem_section
389 * for shrinking zone.
390 */
391 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 zone_end_pfn);
393 if (pfn) {
394 zone->zone_start_pfn = pfn;
395 zone->spanned_pages = zone_end_pfn - pfn;
396 }
397 } else if (zone_end_pfn == end_pfn) {
398 /*
399 * If the section is biggest section in the zone, it need
400 * shrink zone->spanned_pages.
401 * In this case, we find second biggest valid mem_section for
402 * shrinking zone.
403 */
404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 start_pfn);
406 if (pfn)
407 zone->spanned_pages = pfn - zone_start_pfn + 1;
408 }
409
410 /*
411 * The section is not biggest or smallest mem_section in the zone, it
412 * only creates a hole in the zone. So in this case, we need not
413 * change the zone. But perhaps, the zone has only hole data. Thus
414 * it check the zone has only hole or not.
415 */
416 pfn = zone_start_pfn;
417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 if (unlikely(!pfn_valid(pfn)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* Skip range to be removed */
425 if (pfn >= start_pfn && pfn < end_pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437 }
438
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
441 {
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 int nid = pgdat->node_id;
447
448 if (pgdat_start_pfn == start_pfn) {
449 /*
450 * If the section is smallest section in the pgdat, it need
451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 * In this case, we find second smallest valid mem_section
453 * for shrinking zone.
454 */
455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 pgdat_end_pfn);
457 if (pfn) {
458 pgdat->node_start_pfn = pfn;
459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 }
461 } else if (pgdat_end_pfn == end_pfn) {
462 /*
463 * If the section is biggest section in the pgdat, it need
464 * shrink pgdat->node_spanned_pages.
465 * In this case, we find second biggest valid mem_section for
466 * shrinking zone.
467 */
468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 start_pfn);
470 if (pfn)
471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 }
473
474 /*
475 * If the section is not biggest or smallest mem_section in the pgdat,
476 * it only creates a hole in the pgdat. So in this case, we need not
477 * change the pgdat.
478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 * has only hole or not.
480 */
481 pfn = pgdat_start_pfn;
482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
483 if (unlikely(!pfn_valid(pfn)))
484 continue;
485
486 if (pfn_to_nid(pfn) != nid)
487 continue;
488
489 /* Skip range to be removed */
490 if (pfn >= start_pfn && pfn < end_pfn)
491 continue;
492
493 /* If we find valid section, we have nothing to do */
494 return;
495 }
496
497 /* The pgdat has no valid section */
498 pgdat->node_start_pfn = 0;
499 pgdat->node_spanned_pages = 0;
500 }
501
502 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
503 unsigned long nr_pages)
504 {
505 struct pglist_data *pgdat = zone->zone_pgdat;
506 unsigned long flags;
507
508 pgdat_resize_lock(zone->zone_pgdat, &flags);
509 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
510 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
511 pgdat_resize_unlock(zone->zone_pgdat, &flags);
512 }
513
514 static void __remove_section(struct zone *zone, unsigned long pfn,
515 unsigned long nr_pages, unsigned long map_offset,
516 struct vmem_altmap *altmap)
517 {
518 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
519
520 if (WARN_ON_ONCE(!valid_section(ms)))
521 return;
522
523 __remove_zone(zone, pfn, nr_pages);
524 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
525 }
526
527 /**
528 * __remove_pages() - remove sections of pages from a zone
529 * @zone: zone from which pages need to be removed
530 * @pfn: starting pageframe (must be aligned to start of a section)
531 * @nr_pages: number of pages to remove (must be multiple of section size)
532 * @altmap: alternative device page map or %NULL if default memmap is used
533 *
534 * Generic helper function to remove section mappings and sysfs entries
535 * for the section of the memory we are removing. Caller needs to make
536 * sure that pages are marked reserved and zones are adjust properly by
537 * calling offline_pages().
538 */
539 void __remove_pages(struct zone *zone, unsigned long pfn,
540 unsigned long nr_pages, struct vmem_altmap *altmap)
541 {
542 unsigned long map_offset = 0;
543 unsigned long nr, start_sec, end_sec;
544
545 map_offset = vmem_altmap_offset(altmap);
546
547 clear_zone_contiguous(zone);
548
549 if (check_pfn_span(pfn, nr_pages, "remove"))
550 return;
551
552 start_sec = pfn_to_section_nr(pfn);
553 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
554 for (nr = start_sec; nr <= end_sec; nr++) {
555 unsigned long pfns;
556
557 cond_resched();
558 pfns = min(nr_pages, PAGES_PER_SECTION
559 - (pfn & ~PAGE_SECTION_MASK));
560 __remove_section(zone, pfn, pfns, map_offset, altmap);
561 pfn += pfns;
562 nr_pages -= pfns;
563 map_offset = 0;
564 }
565
566 set_zone_contiguous(zone);
567 }
568
569 int set_online_page_callback(online_page_callback_t callback)
570 {
571 int rc = -EINVAL;
572
573 get_online_mems();
574 mutex_lock(&online_page_callback_lock);
575
576 if (online_page_callback == generic_online_page) {
577 online_page_callback = callback;
578 rc = 0;
579 }
580
581 mutex_unlock(&online_page_callback_lock);
582 put_online_mems();
583
584 return rc;
585 }
586 EXPORT_SYMBOL_GPL(set_online_page_callback);
587
588 int restore_online_page_callback(online_page_callback_t callback)
589 {
590 int rc = -EINVAL;
591
592 get_online_mems();
593 mutex_lock(&online_page_callback_lock);
594
595 if (online_page_callback == callback) {
596 online_page_callback = generic_online_page;
597 rc = 0;
598 }
599
600 mutex_unlock(&online_page_callback_lock);
601 put_online_mems();
602
603 return rc;
604 }
605 EXPORT_SYMBOL_GPL(restore_online_page_callback);
606
607 void __online_page_set_limits(struct page *page)
608 {
609 }
610 EXPORT_SYMBOL_GPL(__online_page_set_limits);
611
612 void __online_page_increment_counters(struct page *page)
613 {
614 adjust_managed_page_count(page, 1);
615 }
616 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
617
618 void __online_page_free(struct page *page)
619 {
620 __free_reserved_page(page);
621 }
622 EXPORT_SYMBOL_GPL(__online_page_free);
623
624 static void generic_online_page(struct page *page, unsigned int order)
625 {
626 kernel_map_pages(page, 1 << order, 1);
627 __free_pages_core(page, order);
628 totalram_pages_add(1UL << order);
629 #ifdef CONFIG_HIGHMEM
630 if (PageHighMem(page))
631 totalhigh_pages_add(1UL << order);
632 #endif
633 }
634
635 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
636 {
637 unsigned long end = start + nr_pages;
638 int order, onlined_pages = 0;
639
640 while (start < end) {
641 order = min(MAX_ORDER - 1,
642 get_order(PFN_PHYS(end) - PFN_PHYS(start)));
643 (*online_page_callback)(pfn_to_page(start), order);
644
645 onlined_pages += (1UL << order);
646 start += (1UL << order);
647 }
648 return onlined_pages;
649 }
650
651 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
652 void *arg)
653 {
654 unsigned long onlined_pages = *(unsigned long *)arg;
655
656 if (PageReserved(pfn_to_page(start_pfn)))
657 onlined_pages += online_pages_blocks(start_pfn, nr_pages);
658
659 online_mem_sections(start_pfn, start_pfn + nr_pages);
660
661 *(unsigned long *)arg = onlined_pages;
662 return 0;
663 }
664
665 /* check which state of node_states will be changed when online memory */
666 static void node_states_check_changes_online(unsigned long nr_pages,
667 struct zone *zone, struct memory_notify *arg)
668 {
669 int nid = zone_to_nid(zone);
670
671 arg->status_change_nid = NUMA_NO_NODE;
672 arg->status_change_nid_normal = NUMA_NO_NODE;
673 arg->status_change_nid_high = NUMA_NO_NODE;
674
675 if (!node_state(nid, N_MEMORY))
676 arg->status_change_nid = nid;
677 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
678 arg->status_change_nid_normal = nid;
679 #ifdef CONFIG_HIGHMEM
680 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
681 arg->status_change_nid_high = nid;
682 #endif
683 }
684
685 static void node_states_set_node(int node, struct memory_notify *arg)
686 {
687 if (arg->status_change_nid_normal >= 0)
688 node_set_state(node, N_NORMAL_MEMORY);
689
690 if (arg->status_change_nid_high >= 0)
691 node_set_state(node, N_HIGH_MEMORY);
692
693 if (arg->status_change_nid >= 0)
694 node_set_state(node, N_MEMORY);
695 }
696
697 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
698 unsigned long nr_pages)
699 {
700 unsigned long old_end_pfn = zone_end_pfn(zone);
701
702 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
703 zone->zone_start_pfn = start_pfn;
704
705 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
706 }
707
708 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
709 unsigned long nr_pages)
710 {
711 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
712
713 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
714 pgdat->node_start_pfn = start_pfn;
715
716 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
717 }
718
719 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
720 unsigned long nr_pages, struct vmem_altmap *altmap)
721 {
722 struct pglist_data *pgdat = zone->zone_pgdat;
723 int nid = pgdat->node_id;
724 unsigned long flags;
725
726 clear_zone_contiguous(zone);
727
728 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
729 pgdat_resize_lock(pgdat, &flags);
730 zone_span_writelock(zone);
731 if (zone_is_empty(zone))
732 init_currently_empty_zone(zone, start_pfn, nr_pages);
733 resize_zone_range(zone, start_pfn, nr_pages);
734 zone_span_writeunlock(zone);
735 resize_pgdat_range(pgdat, start_pfn, nr_pages);
736 pgdat_resize_unlock(pgdat, &flags);
737
738 /*
739 * TODO now we have a visible range of pages which are not associated
740 * with their zone properly. Not nice but set_pfnblock_flags_mask
741 * expects the zone spans the pfn range. All the pages in the range
742 * are reserved so nobody should be touching them so we should be safe
743 */
744 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
745 MEMMAP_HOTPLUG, altmap);
746
747 set_zone_contiguous(zone);
748 }
749
750 /*
751 * Returns a default kernel memory zone for the given pfn range.
752 * If no kernel zone covers this pfn range it will automatically go
753 * to the ZONE_NORMAL.
754 */
755 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
756 unsigned long nr_pages)
757 {
758 struct pglist_data *pgdat = NODE_DATA(nid);
759 int zid;
760
761 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
762 struct zone *zone = &pgdat->node_zones[zid];
763
764 if (zone_intersects(zone, start_pfn, nr_pages))
765 return zone;
766 }
767
768 return &pgdat->node_zones[ZONE_NORMAL];
769 }
770
771 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
772 unsigned long nr_pages)
773 {
774 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
775 nr_pages);
776 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
777 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
778 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
779
780 /*
781 * We inherit the existing zone in a simple case where zones do not
782 * overlap in the given range
783 */
784 if (in_kernel ^ in_movable)
785 return (in_kernel) ? kernel_zone : movable_zone;
786
787 /*
788 * If the range doesn't belong to any zone or two zones overlap in the
789 * given range then we use movable zone only if movable_node is
790 * enabled because we always online to a kernel zone by default.
791 */
792 return movable_node_enabled ? movable_zone : kernel_zone;
793 }
794
795 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
796 unsigned long nr_pages)
797 {
798 if (online_type == MMOP_ONLINE_KERNEL)
799 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
800
801 if (online_type == MMOP_ONLINE_MOVABLE)
802 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
803
804 return default_zone_for_pfn(nid, start_pfn, nr_pages);
805 }
806
807 /*
808 * Associates the given pfn range with the given node and the zone appropriate
809 * for the given online type.
810 */
811 static struct zone * __meminit move_pfn_range(int online_type, int nid,
812 unsigned long start_pfn, unsigned long nr_pages)
813 {
814 struct zone *zone;
815
816 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
817 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
818 return zone;
819 }
820
821 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
822 {
823 unsigned long flags;
824 unsigned long onlined_pages = 0;
825 struct zone *zone;
826 int need_zonelists_rebuild = 0;
827 int nid;
828 int ret;
829 struct memory_notify arg;
830 struct memory_block *mem;
831
832 mem_hotplug_begin();
833
834 /*
835 * We can't use pfn_to_nid() because nid might be stored in struct page
836 * which is not yet initialized. Instead, we find nid from memory block.
837 */
838 mem = find_memory_block(__pfn_to_section(pfn));
839 nid = mem->nid;
840 put_device(&mem->dev);
841
842 /* associate pfn range with the zone */
843 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
844
845 arg.start_pfn = pfn;
846 arg.nr_pages = nr_pages;
847 node_states_check_changes_online(nr_pages, zone, &arg);
848
849 ret = memory_notify(MEM_GOING_ONLINE, &arg);
850 ret = notifier_to_errno(ret);
851 if (ret)
852 goto failed_addition;
853
854 /*
855 * If this zone is not populated, then it is not in zonelist.
856 * This means the page allocator ignores this zone.
857 * So, zonelist must be updated after online.
858 */
859 if (!populated_zone(zone)) {
860 need_zonelists_rebuild = 1;
861 setup_zone_pageset(zone);
862 }
863
864 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
865 online_pages_range);
866 if (ret) {
867 if (need_zonelists_rebuild)
868 zone_pcp_reset(zone);
869 goto failed_addition;
870 }
871
872 zone->present_pages += onlined_pages;
873
874 pgdat_resize_lock(zone->zone_pgdat, &flags);
875 zone->zone_pgdat->node_present_pages += onlined_pages;
876 pgdat_resize_unlock(zone->zone_pgdat, &flags);
877
878 shuffle_zone(zone);
879
880 if (onlined_pages) {
881 node_states_set_node(nid, &arg);
882 if (need_zonelists_rebuild)
883 build_all_zonelists(NULL);
884 else
885 zone_pcp_update(zone);
886 }
887
888 init_per_zone_wmark_min();
889
890 if (onlined_pages) {
891 kswapd_run(nid);
892 kcompactd_run(nid);
893 }
894
895 vm_total_pages = nr_free_pagecache_pages();
896
897 writeback_set_ratelimit();
898
899 if (onlined_pages)
900 memory_notify(MEM_ONLINE, &arg);
901 mem_hotplug_done();
902 return 0;
903
904 failed_addition:
905 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
906 (unsigned long long) pfn << PAGE_SHIFT,
907 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
908 memory_notify(MEM_CANCEL_ONLINE, &arg);
909 mem_hotplug_done();
910 return ret;
911 }
912 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
913
914 static void reset_node_present_pages(pg_data_t *pgdat)
915 {
916 struct zone *z;
917
918 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
919 z->present_pages = 0;
920
921 pgdat->node_present_pages = 0;
922 }
923
924 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
925 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
926 {
927 struct pglist_data *pgdat;
928 unsigned long start_pfn = PFN_DOWN(start);
929
930 pgdat = NODE_DATA(nid);
931 if (!pgdat) {
932 pgdat = arch_alloc_nodedata(nid);
933 if (!pgdat)
934 return NULL;
935
936 arch_refresh_nodedata(nid, pgdat);
937 } else {
938 /*
939 * Reset the nr_zones, order and classzone_idx before reuse.
940 * Note that kswapd will init kswapd_classzone_idx properly
941 * when it starts in the near future.
942 */
943 pgdat->nr_zones = 0;
944 pgdat->kswapd_order = 0;
945 pgdat->kswapd_classzone_idx = 0;
946 }
947
948 /* we can use NODE_DATA(nid) from here */
949
950 pgdat->node_id = nid;
951 pgdat->node_start_pfn = start_pfn;
952
953 /* init node's zones as empty zones, we don't have any present pages.*/
954 free_area_init_core_hotplug(nid);
955 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
956
957 /*
958 * The node we allocated has no zone fallback lists. For avoiding
959 * to access not-initialized zonelist, build here.
960 */
961 build_all_zonelists(pgdat);
962
963 /*
964 * When memory is hot-added, all the memory is in offline state. So
965 * clear all zones' present_pages because they will be updated in
966 * online_pages() and offline_pages().
967 */
968 reset_node_managed_pages(pgdat);
969 reset_node_present_pages(pgdat);
970
971 return pgdat;
972 }
973
974 static void rollback_node_hotadd(int nid)
975 {
976 pg_data_t *pgdat = NODE_DATA(nid);
977
978 arch_refresh_nodedata(nid, NULL);
979 free_percpu(pgdat->per_cpu_nodestats);
980 arch_free_nodedata(pgdat);
981 }
982
983
984 /**
985 * try_online_node - online a node if offlined
986 * @nid: the node ID
987 * @start: start addr of the node
988 * @set_node_online: Whether we want to online the node
989 * called by cpu_up() to online a node without onlined memory.
990 *
991 * Returns:
992 * 1 -> a new node has been allocated
993 * 0 -> the node is already online
994 * -ENOMEM -> the node could not be allocated
995 */
996 static int __try_online_node(int nid, u64 start, bool set_node_online)
997 {
998 pg_data_t *pgdat;
999 int ret = 1;
1000
1001 if (node_online(nid))
1002 return 0;
1003
1004 pgdat = hotadd_new_pgdat(nid, start);
1005 if (!pgdat) {
1006 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1007 ret = -ENOMEM;
1008 goto out;
1009 }
1010
1011 if (set_node_online) {
1012 node_set_online(nid);
1013 ret = register_one_node(nid);
1014 BUG_ON(ret);
1015 }
1016 out:
1017 return ret;
1018 }
1019
1020 /*
1021 * Users of this function always want to online/register the node
1022 */
1023 int try_online_node(int nid)
1024 {
1025 int ret;
1026
1027 mem_hotplug_begin();
1028 ret = __try_online_node(nid, 0, true);
1029 mem_hotplug_done();
1030 return ret;
1031 }
1032
1033 static int check_hotplug_memory_range(u64 start, u64 size)
1034 {
1035 /* memory range must be block size aligned */
1036 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1037 !IS_ALIGNED(size, memory_block_size_bytes())) {
1038 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1039 memory_block_size_bytes(), start, size);
1040 return -EINVAL;
1041 }
1042
1043 return 0;
1044 }
1045
1046 static int online_memory_block(struct memory_block *mem, void *arg)
1047 {
1048 return device_online(&mem->dev);
1049 }
1050
1051 /*
1052 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1053 * and online/offline operations (triggered e.g. by sysfs).
1054 *
1055 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1056 */
1057 int __ref add_memory_resource(int nid, struct resource *res)
1058 {
1059 struct mhp_restrictions restrictions = {};
1060 u64 start, size;
1061 bool new_node = false;
1062 int ret;
1063
1064 start = res->start;
1065 size = resource_size(res);
1066
1067 ret = check_hotplug_memory_range(start, size);
1068 if (ret)
1069 return ret;
1070
1071 mem_hotplug_begin();
1072
1073 /*
1074 * Add new range to memblock so that when hotadd_new_pgdat() is called
1075 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1076 * this new range and calculate total pages correctly. The range will
1077 * be removed at hot-remove time.
1078 */
1079 memblock_add_node(start, size, nid);
1080
1081 ret = __try_online_node(nid, start, false);
1082 if (ret < 0)
1083 goto error;
1084 new_node = ret;
1085
1086 /* call arch's memory hotadd */
1087 ret = arch_add_memory(nid, start, size, &restrictions);
1088 if (ret < 0)
1089 goto error;
1090
1091 /* create memory block devices after memory was added */
1092 ret = create_memory_block_devices(start, size);
1093 if (ret) {
1094 arch_remove_memory(nid, start, size, NULL);
1095 goto error;
1096 }
1097
1098 if (new_node) {
1099 /* If sysfs file of new node can't be created, cpu on the node
1100 * can't be hot-added. There is no rollback way now.
1101 * So, check by BUG_ON() to catch it reluctantly..
1102 * We online node here. We can't roll back from here.
1103 */
1104 node_set_online(nid);
1105 ret = __register_one_node(nid);
1106 BUG_ON(ret);
1107 }
1108
1109 /* link memory sections under this node.*/
1110 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1111 BUG_ON(ret);
1112
1113 /* create new memmap entry */
1114 firmware_map_add_hotplug(start, start + size, "System RAM");
1115
1116 /* device_online() will take the lock when calling online_pages() */
1117 mem_hotplug_done();
1118
1119 /* online pages if requested */
1120 if (memhp_auto_online)
1121 walk_memory_blocks(start, size, NULL, online_memory_block);
1122
1123 return ret;
1124 error:
1125 /* rollback pgdat allocation and others */
1126 if (new_node)
1127 rollback_node_hotadd(nid);
1128 memblock_remove(start, size);
1129 mem_hotplug_done();
1130 return ret;
1131 }
1132
1133 /* requires device_hotplug_lock, see add_memory_resource() */
1134 int __ref __add_memory(int nid, u64 start, u64 size)
1135 {
1136 struct resource *res;
1137 int ret;
1138
1139 res = register_memory_resource(start, size);
1140 if (IS_ERR(res))
1141 return PTR_ERR(res);
1142
1143 ret = add_memory_resource(nid, res);
1144 if (ret < 0)
1145 release_memory_resource(res);
1146 return ret;
1147 }
1148
1149 int add_memory(int nid, u64 start, u64 size)
1150 {
1151 int rc;
1152
1153 lock_device_hotplug();
1154 rc = __add_memory(nid, start, size);
1155 unlock_device_hotplug();
1156
1157 return rc;
1158 }
1159 EXPORT_SYMBOL_GPL(add_memory);
1160
1161 #ifdef CONFIG_MEMORY_HOTREMOVE
1162 /*
1163 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1164 * set and the size of the free page is given by page_order(). Using this,
1165 * the function determines if the pageblock contains only free pages.
1166 * Due to buddy contraints, a free page at least the size of a pageblock will
1167 * be located at the start of the pageblock
1168 */
1169 static inline int pageblock_free(struct page *page)
1170 {
1171 return PageBuddy(page) && page_order(page) >= pageblock_order;
1172 }
1173
1174 /* Return the pfn of the start of the next active pageblock after a given pfn */
1175 static unsigned long next_active_pageblock(unsigned long pfn)
1176 {
1177 struct page *page = pfn_to_page(pfn);
1178
1179 /* Ensure the starting page is pageblock-aligned */
1180 BUG_ON(pfn & (pageblock_nr_pages - 1));
1181
1182 /* If the entire pageblock is free, move to the end of free page */
1183 if (pageblock_free(page)) {
1184 int order;
1185 /* be careful. we don't have locks, page_order can be changed.*/
1186 order = page_order(page);
1187 if ((order < MAX_ORDER) && (order >= pageblock_order))
1188 return pfn + (1 << order);
1189 }
1190
1191 return pfn + pageblock_nr_pages;
1192 }
1193
1194 static bool is_pageblock_removable_nolock(unsigned long pfn)
1195 {
1196 struct page *page = pfn_to_page(pfn);
1197 struct zone *zone;
1198
1199 /*
1200 * We have to be careful here because we are iterating over memory
1201 * sections which are not zone aware so we might end up outside of
1202 * the zone but still within the section.
1203 * We have to take care about the node as well. If the node is offline
1204 * its NODE_DATA will be NULL - see page_zone.
1205 */
1206 if (!node_online(page_to_nid(page)))
1207 return false;
1208
1209 zone = page_zone(page);
1210 pfn = page_to_pfn(page);
1211 if (!zone_spans_pfn(zone, pfn))
1212 return false;
1213
1214 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1215 }
1216
1217 /* Checks if this range of memory is likely to be hot-removable. */
1218 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1219 {
1220 unsigned long end_pfn, pfn;
1221
1222 end_pfn = min(start_pfn + nr_pages,
1223 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1224
1225 /* Check the starting page of each pageblock within the range */
1226 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1227 if (!is_pageblock_removable_nolock(pfn))
1228 return false;
1229 cond_resched();
1230 }
1231
1232 /* All pageblocks in the memory block are likely to be hot-removable */
1233 return true;
1234 }
1235
1236 /*
1237 * Confirm all pages in a range [start, end) belong to the same zone.
1238 * When true, return its valid [start, end).
1239 */
1240 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1241 unsigned long *valid_start, unsigned long *valid_end)
1242 {
1243 unsigned long pfn, sec_end_pfn;
1244 unsigned long start, end;
1245 struct zone *zone = NULL;
1246 struct page *page;
1247 int i;
1248 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1249 pfn < end_pfn;
1250 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1251 /* Make sure the memory section is present first */
1252 if (!present_section_nr(pfn_to_section_nr(pfn)))
1253 continue;
1254 for (; pfn < sec_end_pfn && pfn < end_pfn;
1255 pfn += MAX_ORDER_NR_PAGES) {
1256 i = 0;
1257 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1258 while ((i < MAX_ORDER_NR_PAGES) &&
1259 !pfn_valid_within(pfn + i))
1260 i++;
1261 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1262 continue;
1263 /* Check if we got outside of the zone */
1264 if (zone && !zone_spans_pfn(zone, pfn + i))
1265 return 0;
1266 page = pfn_to_page(pfn + i);
1267 if (zone && page_zone(page) != zone)
1268 return 0;
1269 if (!zone)
1270 start = pfn + i;
1271 zone = page_zone(page);
1272 end = pfn + MAX_ORDER_NR_PAGES;
1273 }
1274 }
1275
1276 if (zone) {
1277 *valid_start = start;
1278 *valid_end = min(end, end_pfn);
1279 return 1;
1280 } else {
1281 return 0;
1282 }
1283 }
1284
1285 /*
1286 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1287 * non-lru movable pages and hugepages). We scan pfn because it's much
1288 * easier than scanning over linked list. This function returns the pfn
1289 * of the first found movable page if it's found, otherwise 0.
1290 */
1291 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1292 {
1293 unsigned long pfn;
1294
1295 for (pfn = start; pfn < end; pfn++) {
1296 struct page *page, *head;
1297 unsigned long skip;
1298
1299 if (!pfn_valid(pfn))
1300 continue;
1301 page = pfn_to_page(pfn);
1302 if (PageLRU(page))
1303 return pfn;
1304 if (__PageMovable(page))
1305 return pfn;
1306
1307 if (!PageHuge(page))
1308 continue;
1309 head = compound_head(page);
1310 if (page_huge_active(head))
1311 return pfn;
1312 skip = (1 << compound_order(head)) - (page - head);
1313 pfn += skip - 1;
1314 }
1315 return 0;
1316 }
1317
1318 static struct page *new_node_page(struct page *page, unsigned long private)
1319 {
1320 int nid = page_to_nid(page);
1321 nodemask_t nmask = node_states[N_MEMORY];
1322
1323 /*
1324 * try to allocate from a different node but reuse this node if there
1325 * are no other online nodes to be used (e.g. we are offlining a part
1326 * of the only existing node)
1327 */
1328 node_clear(nid, nmask);
1329 if (nodes_empty(nmask))
1330 node_set(nid, nmask);
1331
1332 return new_page_nodemask(page, nid, &nmask);
1333 }
1334
1335 static int
1336 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1337 {
1338 unsigned long pfn;
1339 struct page *page;
1340 int ret = 0;
1341 LIST_HEAD(source);
1342
1343 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344 if (!pfn_valid(pfn))
1345 continue;
1346 page = pfn_to_page(pfn);
1347
1348 if (PageHuge(page)) {
1349 struct page *head = compound_head(page);
1350 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1351 isolate_huge_page(head, &source);
1352 continue;
1353 } else if (PageTransHuge(page))
1354 pfn = page_to_pfn(compound_head(page))
1355 + hpage_nr_pages(page) - 1;
1356
1357 /*
1358 * HWPoison pages have elevated reference counts so the migration would
1359 * fail on them. It also doesn't make any sense to migrate them in the
1360 * first place. Still try to unmap such a page in case it is still mapped
1361 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1362 * the unmap as the catch all safety net).
1363 */
1364 if (PageHWPoison(page)) {
1365 if (WARN_ON(PageLRU(page)))
1366 isolate_lru_page(page);
1367 if (page_mapped(page))
1368 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1369 continue;
1370 }
1371
1372 if (!get_page_unless_zero(page))
1373 continue;
1374 /*
1375 * We can skip free pages. And we can deal with pages on
1376 * LRU and non-lru movable pages.
1377 */
1378 if (PageLRU(page))
1379 ret = isolate_lru_page(page);
1380 else
1381 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382 if (!ret) { /* Success */
1383 list_add_tail(&page->lru, &source);
1384 if (!__PageMovable(page))
1385 inc_node_page_state(page, NR_ISOLATED_ANON +
1386 page_is_file_cache(page));
1387
1388 } else {
1389 pr_warn("failed to isolate pfn %lx\n", pfn);
1390 dump_page(page, "isolation failed");
1391 }
1392 put_page(page);
1393 }
1394 if (!list_empty(&source)) {
1395 /* Allocate a new page from the nearest neighbor node */
1396 ret = migrate_pages(&source, new_node_page, NULL, 0,
1397 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1398 if (ret) {
1399 list_for_each_entry(page, &source, lru) {
1400 pr_warn("migrating pfn %lx failed ret:%d ",
1401 page_to_pfn(page), ret);
1402 dump_page(page, "migration failure");
1403 }
1404 putback_movable_pages(&source);
1405 }
1406 }
1407
1408 return ret;
1409 }
1410
1411 /*
1412 * remove from free_area[] and mark all as Reserved.
1413 */
1414 static int
1415 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1416 void *data)
1417 {
1418 unsigned long *offlined_pages = (unsigned long *)data;
1419
1420 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1421 return 0;
1422 }
1423
1424 /*
1425 * Check all pages in range, recoreded as memory resource, are isolated.
1426 */
1427 static int
1428 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1429 void *data)
1430 {
1431 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1432 }
1433
1434 static int __init cmdline_parse_movable_node(char *p)
1435 {
1436 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1437 movable_node_enabled = true;
1438 #else
1439 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1440 #endif
1441 return 0;
1442 }
1443 early_param("movable_node", cmdline_parse_movable_node);
1444
1445 /* check which state of node_states will be changed when offline memory */
1446 static void node_states_check_changes_offline(unsigned long nr_pages,
1447 struct zone *zone, struct memory_notify *arg)
1448 {
1449 struct pglist_data *pgdat = zone->zone_pgdat;
1450 unsigned long present_pages = 0;
1451 enum zone_type zt;
1452
1453 arg->status_change_nid = NUMA_NO_NODE;
1454 arg->status_change_nid_normal = NUMA_NO_NODE;
1455 arg->status_change_nid_high = NUMA_NO_NODE;
1456
1457 /*
1458 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1459 * If the memory to be offline is within the range
1460 * [0..ZONE_NORMAL], and it is the last present memory there,
1461 * the zones in that range will become empty after the offlining,
1462 * thus we can determine that we need to clear the node from
1463 * node_states[N_NORMAL_MEMORY].
1464 */
1465 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1466 present_pages += pgdat->node_zones[zt].present_pages;
1467 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1468 arg->status_change_nid_normal = zone_to_nid(zone);
1469
1470 #ifdef CONFIG_HIGHMEM
1471 /*
1472 * node_states[N_HIGH_MEMORY] contains nodes which
1473 * have normal memory or high memory.
1474 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1475 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1476 * we determine that the zones in that range become empty,
1477 * we need to clear the node for N_HIGH_MEMORY.
1478 */
1479 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1480 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1481 arg->status_change_nid_high = zone_to_nid(zone);
1482 #endif
1483
1484 /*
1485 * We have accounted the pages from [0..ZONE_NORMAL), and
1486 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1487 * as well.
1488 * Here we count the possible pages from ZONE_MOVABLE.
1489 * If after having accounted all the pages, we see that the nr_pages
1490 * to be offlined is over or equal to the accounted pages,
1491 * we know that the node will become empty, and so, we can clear
1492 * it for N_MEMORY as well.
1493 */
1494 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1495
1496 if (nr_pages >= present_pages)
1497 arg->status_change_nid = zone_to_nid(zone);
1498 }
1499
1500 static void node_states_clear_node(int node, struct memory_notify *arg)
1501 {
1502 if (arg->status_change_nid_normal >= 0)
1503 node_clear_state(node, N_NORMAL_MEMORY);
1504
1505 if (arg->status_change_nid_high >= 0)
1506 node_clear_state(node, N_HIGH_MEMORY);
1507
1508 if (arg->status_change_nid >= 0)
1509 node_clear_state(node, N_MEMORY);
1510 }
1511
1512 static int __ref __offline_pages(unsigned long start_pfn,
1513 unsigned long end_pfn)
1514 {
1515 unsigned long pfn, nr_pages;
1516 unsigned long offlined_pages = 0;
1517 int ret, node, nr_isolate_pageblock;
1518 unsigned long flags;
1519 unsigned long valid_start, valid_end;
1520 struct zone *zone;
1521 struct memory_notify arg;
1522 char *reason;
1523
1524 mem_hotplug_begin();
1525
1526 /* This makes hotplug much easier...and readable.
1527 we assume this for now. .*/
1528 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1529 &valid_end)) {
1530 ret = -EINVAL;
1531 reason = "multizone range";
1532 goto failed_removal;
1533 }
1534
1535 zone = page_zone(pfn_to_page(valid_start));
1536 node = zone_to_nid(zone);
1537 nr_pages = end_pfn - start_pfn;
1538
1539 /* set above range as isolated */
1540 ret = start_isolate_page_range(start_pfn, end_pfn,
1541 MIGRATE_MOVABLE,
1542 SKIP_HWPOISON | REPORT_FAILURE);
1543 if (ret < 0) {
1544 reason = "failure to isolate range";
1545 goto failed_removal;
1546 }
1547 nr_isolate_pageblock = ret;
1548
1549 arg.start_pfn = start_pfn;
1550 arg.nr_pages = nr_pages;
1551 node_states_check_changes_offline(nr_pages, zone, &arg);
1552
1553 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1554 ret = notifier_to_errno(ret);
1555 if (ret) {
1556 reason = "notifier failure";
1557 goto failed_removal_isolated;
1558 }
1559
1560 do {
1561 for (pfn = start_pfn; pfn;) {
1562 if (signal_pending(current)) {
1563 ret = -EINTR;
1564 reason = "signal backoff";
1565 goto failed_removal_isolated;
1566 }
1567
1568 cond_resched();
1569 lru_add_drain_all();
1570
1571 pfn = scan_movable_pages(pfn, end_pfn);
1572 if (pfn) {
1573 /*
1574 * TODO: fatal migration failures should bail
1575 * out
1576 */
1577 do_migrate_range(pfn, end_pfn);
1578 }
1579 }
1580
1581 /*
1582 * Dissolve free hugepages in the memory block before doing
1583 * offlining actually in order to make hugetlbfs's object
1584 * counting consistent.
1585 */
1586 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1587 if (ret) {
1588 reason = "failure to dissolve huge pages";
1589 goto failed_removal_isolated;
1590 }
1591 /* check again */
1592 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1593 NULL, check_pages_isolated_cb);
1594 } while (ret);
1595
1596 /* Ok, all of our target is isolated.
1597 We cannot do rollback at this point. */
1598 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1599 &offlined_pages, offline_isolated_pages_cb);
1600 pr_info("Offlined Pages %ld\n", offlined_pages);
1601 /*
1602 * Onlining will reset pagetype flags and makes migrate type
1603 * MOVABLE, so just need to decrease the number of isolated
1604 * pageblocks zone counter here.
1605 */
1606 spin_lock_irqsave(&zone->lock, flags);
1607 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1608 spin_unlock_irqrestore(&zone->lock, flags);
1609
1610 /* removal success */
1611 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1612 zone->present_pages -= offlined_pages;
1613
1614 pgdat_resize_lock(zone->zone_pgdat, &flags);
1615 zone->zone_pgdat->node_present_pages -= offlined_pages;
1616 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1617
1618 init_per_zone_wmark_min();
1619
1620 if (!populated_zone(zone)) {
1621 zone_pcp_reset(zone);
1622 build_all_zonelists(NULL);
1623 } else
1624 zone_pcp_update(zone);
1625
1626 node_states_clear_node(node, &arg);
1627 if (arg.status_change_nid >= 0) {
1628 kswapd_stop(node);
1629 kcompactd_stop(node);
1630 }
1631
1632 vm_total_pages = nr_free_pagecache_pages();
1633 writeback_set_ratelimit();
1634
1635 memory_notify(MEM_OFFLINE, &arg);
1636 mem_hotplug_done();
1637 return 0;
1638
1639 failed_removal_isolated:
1640 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1641 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1642 failed_removal:
1643 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1644 (unsigned long long) start_pfn << PAGE_SHIFT,
1645 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1646 reason);
1647 /* pushback to free area */
1648 mem_hotplug_done();
1649 return ret;
1650 }
1651
1652 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1653 {
1654 return __offline_pages(start_pfn, start_pfn + nr_pages);
1655 }
1656
1657 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1658 {
1659 int ret = !is_memblock_offlined(mem);
1660
1661 if (unlikely(ret)) {
1662 phys_addr_t beginpa, endpa;
1663
1664 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1665 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1666 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1667 &beginpa, &endpa);
1668
1669 return -EBUSY;
1670 }
1671 return 0;
1672 }
1673
1674 static int check_cpu_on_node(pg_data_t *pgdat)
1675 {
1676 int cpu;
1677
1678 for_each_present_cpu(cpu) {
1679 if (cpu_to_node(cpu) == pgdat->node_id)
1680 /*
1681 * the cpu on this node isn't removed, and we can't
1682 * offline this node.
1683 */
1684 return -EBUSY;
1685 }
1686
1687 return 0;
1688 }
1689
1690 /**
1691 * try_offline_node
1692 * @nid: the node ID
1693 *
1694 * Offline a node if all memory sections and cpus of the node are removed.
1695 *
1696 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1697 * and online/offline operations before this call.
1698 */
1699 void try_offline_node(int nid)
1700 {
1701 pg_data_t *pgdat = NODE_DATA(nid);
1702 unsigned long start_pfn = pgdat->node_start_pfn;
1703 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1704 unsigned long pfn;
1705
1706 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1707 unsigned long section_nr = pfn_to_section_nr(pfn);
1708
1709 if (!present_section_nr(section_nr))
1710 continue;
1711
1712 if (pfn_to_nid(pfn) != nid)
1713 continue;
1714
1715 /*
1716 * some memory sections of this node are not removed, and we
1717 * can't offline node now.
1718 */
1719 return;
1720 }
1721
1722 if (check_cpu_on_node(pgdat))
1723 return;
1724
1725 /*
1726 * all memory/cpu of this node are removed, we can offline this
1727 * node now.
1728 */
1729 node_set_offline(nid);
1730 unregister_one_node(nid);
1731 }
1732 EXPORT_SYMBOL(try_offline_node);
1733
1734 static void __release_memory_resource(resource_size_t start,
1735 resource_size_t size)
1736 {
1737 int ret;
1738
1739 /*
1740 * When removing memory in the same granularity as it was added,
1741 * this function never fails. It might only fail if resources
1742 * have to be adjusted or split. We'll ignore the error, as
1743 * removing of memory cannot fail.
1744 */
1745 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1746 if (ret) {
1747 resource_size_t endres = start + size - 1;
1748
1749 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1750 &start, &endres, ret);
1751 }
1752 }
1753
1754 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1755 {
1756 int rc = 0;
1757
1758 BUG_ON(check_hotplug_memory_range(start, size));
1759
1760 mem_hotplug_begin();
1761
1762 /*
1763 * All memory blocks must be offlined before removing memory. Check
1764 * whether all memory blocks in question are offline and return error
1765 * if this is not the case.
1766 */
1767 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1768 if (rc)
1769 goto done;
1770
1771 /* remove memmap entry */
1772 firmware_map_remove(start, start + size, "System RAM");
1773 memblock_free(start, size);
1774 memblock_remove(start, size);
1775
1776 /* remove memory block devices before removing memory */
1777 remove_memory_block_devices(start, size);
1778
1779 arch_remove_memory(nid, start, size, NULL);
1780 __release_memory_resource(start, size);
1781
1782 try_offline_node(nid);
1783
1784 done:
1785 mem_hotplug_done();
1786 return rc;
1787 }
1788
1789 /**
1790 * remove_memory
1791 * @nid: the node ID
1792 * @start: physical address of the region to remove
1793 * @size: size of the region to remove
1794 *
1795 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1796 * and online/offline operations before this call, as required by
1797 * try_offline_node().
1798 */
1799 void __remove_memory(int nid, u64 start, u64 size)
1800 {
1801
1802 /*
1803 * trigger BUG() is some memory is not offlined prior to calling this
1804 * function
1805 */
1806 if (try_remove_memory(nid, start, size))
1807 BUG();
1808 }
1809
1810 /*
1811 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1812 * some memory is not offline
1813 */
1814 int remove_memory(int nid, u64 start, u64 size)
1815 {
1816 int rc;
1817
1818 lock_device_hotplug();
1819 rc = try_remove_memory(nid, start, size);
1820 unlock_device_hotplug();
1821
1822 return rc;
1823 }
1824 EXPORT_SYMBOL_GPL(remove_memory);
1825 #endif /* CONFIG_MEMORY_HOTREMOVE */