]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
mm/memory_hotplug: drop MHP_MEMBLOCK_API
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static void generic_online_page(struct page *page, unsigned int order);
53
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58
59 void get_online_mems(void)
60 {
61 percpu_down_read(&mem_hotplug_lock);
62 }
63
64 void put_online_mems(void)
65 {
66 percpu_up_read(&mem_hotplug_lock);
67 }
68
69 bool movable_node_enabled = false;
70
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77
78 static int __init setup_memhp_default_state(char *str)
79 {
80 if (!strcmp(str, "online"))
81 memhp_auto_online = true;
82 else if (!strcmp(str, "offline"))
83 memhp_auto_online = false;
84
85 return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88
89 void mem_hotplug_begin(void)
90 {
91 cpus_read_lock();
92 percpu_down_write(&mem_hotplug_lock);
93 }
94
95 void mem_hotplug_done(void)
96 {
97 percpu_up_write(&mem_hotplug_lock);
98 cpus_read_unlock();
99 }
100
101 u64 max_mem_size = U64_MAX;
102
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 struct resource *res;
107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 char *resource_name = "System RAM";
109
110 if (start + size > max_mem_size)
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Request ownership of the new memory range. This might be
115 * a child of an existing resource that was present but
116 * not marked as busy.
117 */
118 res = __request_region(&iomem_resource, start, size,
119 resource_name, flags);
120
121 if (!res) {
122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 start, start + size);
124 return ERR_PTR(-EEXIST);
125 }
126 return res;
127 }
128
129 static void release_memory_resource(struct resource *res)
130 {
131 if (!res)
132 return;
133 release_resource(res);
134 kfree(res);
135 return;
136 }
137
138 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
139 void get_page_bootmem(unsigned long info, struct page *page,
140 unsigned long type)
141 {
142 page->freelist = (void *)type;
143 SetPagePrivate(page);
144 set_page_private(page, info);
145 page_ref_inc(page);
146 }
147
148 void put_page_bootmem(struct page *page)
149 {
150 unsigned long type;
151
152 type = (unsigned long) page->freelist;
153 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
154 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
155
156 if (page_ref_dec_return(page) == 1) {
157 page->freelist = NULL;
158 ClearPagePrivate(page);
159 set_page_private(page, 0);
160 INIT_LIST_HEAD(&page->lru);
161 free_reserved_page(page);
162 }
163 }
164
165 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
166 #ifndef CONFIG_SPARSEMEM_VMEMMAP
167 static void register_page_bootmem_info_section(unsigned long start_pfn)
168 {
169 unsigned long *usemap, mapsize, section_nr, i;
170 struct mem_section *ms;
171 struct page *page, *memmap;
172
173 section_nr = pfn_to_section_nr(start_pfn);
174 ms = __nr_to_section(section_nr);
175
176 /* Get section's memmap address */
177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178
179 /*
180 * Get page for the memmap's phys address
181 * XXX: need more consideration for sparse_vmemmap...
182 */
183 page = virt_to_page(memmap);
184 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186
187 /* remember memmap's page */
188 for (i = 0; i < mapsize; i++, page++)
189 get_page_bootmem(section_nr, page, SECTION_INFO);
190
191 usemap = ms->pageblock_flags;
192 page = virt_to_page(usemap);
193
194 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
195
196 for (i = 0; i < mapsize; i++, page++)
197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 unsigned long *usemap, mapsize, section_nr, i;
204 struct mem_section *ms;
205 struct page *page, *memmap;
206
207 section_nr = pfn_to_section_nr(start_pfn);
208 ms = __nr_to_section(section_nr);
209
210 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
211
212 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
213
214 usemap = ms->pageblock_flags;
215 page = virt_to_page(usemap);
216
217 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
218
219 for (i = 0; i < mapsize; i++, page++)
220 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
221 }
222 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
223
224 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
225 {
226 unsigned long i, pfn, end_pfn, nr_pages;
227 int node = pgdat->node_id;
228 struct page *page;
229
230 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
231 page = virt_to_page(pgdat);
232
233 for (i = 0; i < nr_pages; i++, page++)
234 get_page_bootmem(node, page, NODE_INFO);
235
236 pfn = pgdat->node_start_pfn;
237 end_pfn = pgdat_end_pfn(pgdat);
238
239 /* register section info */
240 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241 /*
242 * Some platforms can assign the same pfn to multiple nodes - on
243 * node0 as well as nodeN. To avoid registering a pfn against
244 * multiple nodes we check that this pfn does not already
245 * reside in some other nodes.
246 */
247 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
248 register_page_bootmem_info_section(pfn);
249 }
250 }
251 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
252
253 static int __meminit __add_section(int nid, unsigned long phys_start_pfn,
254 struct vmem_altmap *altmap)
255 {
256 int ret;
257
258 if (pfn_valid(phys_start_pfn))
259 return -EEXIST;
260
261 ret = sparse_add_one_section(nid, phys_start_pfn, altmap);
262 return ret < 0 ? ret : 0;
263 }
264
265 /*
266 * Reasonably generic function for adding memory. It is
267 * expected that archs that support memory hotplug will
268 * call this function after deciding the zone to which to
269 * add the new pages.
270 */
271 int __ref __add_pages(int nid, unsigned long phys_start_pfn,
272 unsigned long nr_pages, struct mhp_restrictions *restrictions)
273 {
274 unsigned long i;
275 int err = 0;
276 int start_sec, end_sec;
277 struct vmem_altmap *altmap = restrictions->altmap;
278
279 /* during initialize mem_map, align hot-added range to section */
280 start_sec = pfn_to_section_nr(phys_start_pfn);
281 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
282
283 if (altmap) {
284 /*
285 * Validate altmap is within bounds of the total request
286 */
287 if (altmap->base_pfn != phys_start_pfn
288 || vmem_altmap_offset(altmap) > nr_pages) {
289 pr_warn_once("memory add fail, invalid altmap\n");
290 err = -EINVAL;
291 goto out;
292 }
293 altmap->alloc = 0;
294 }
295
296 for (i = start_sec; i <= end_sec; i++) {
297 err = __add_section(nid, section_nr_to_pfn(i), altmap);
298
299 /*
300 * EEXIST is finally dealt with by ioresource collision
301 * check. see add_memory() => register_memory_resource()
302 * Warning will be printed if there is collision.
303 */
304 if (err && (err != -EEXIST))
305 break;
306 err = 0;
307 cond_resched();
308 }
309 vmemmap_populate_print_last();
310 out:
311 return err;
312 }
313
314 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
315 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
316 unsigned long start_pfn,
317 unsigned long end_pfn)
318 {
319 struct mem_section *ms;
320
321 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
322 ms = __pfn_to_section(start_pfn);
323
324 if (unlikely(!valid_section(ms)))
325 continue;
326
327 if (unlikely(pfn_to_nid(start_pfn) != nid))
328 continue;
329
330 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
331 continue;
332
333 return start_pfn;
334 }
335
336 return 0;
337 }
338
339 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
340 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
341 unsigned long start_pfn,
342 unsigned long end_pfn)
343 {
344 struct mem_section *ms;
345 unsigned long pfn;
346
347 /* pfn is the end pfn of a memory section. */
348 pfn = end_pfn - 1;
349 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
350 ms = __pfn_to_section(pfn);
351
352 if (unlikely(!valid_section(ms)))
353 continue;
354
355 if (unlikely(pfn_to_nid(pfn) != nid))
356 continue;
357
358 if (zone && zone != page_zone(pfn_to_page(pfn)))
359 continue;
360
361 return pfn;
362 }
363
364 return 0;
365 }
366
367 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
368 unsigned long end_pfn)
369 {
370 unsigned long zone_start_pfn = zone->zone_start_pfn;
371 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
372 unsigned long zone_end_pfn = z;
373 unsigned long pfn;
374 struct mem_section *ms;
375 int nid = zone_to_nid(zone);
376
377 zone_span_writelock(zone);
378 if (zone_start_pfn == start_pfn) {
379 /*
380 * If the section is smallest section in the zone, it need
381 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
382 * In this case, we find second smallest valid mem_section
383 * for shrinking zone.
384 */
385 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
386 zone_end_pfn);
387 if (pfn) {
388 zone->zone_start_pfn = pfn;
389 zone->spanned_pages = zone_end_pfn - pfn;
390 }
391 } else if (zone_end_pfn == end_pfn) {
392 /*
393 * If the section is biggest section in the zone, it need
394 * shrink zone->spanned_pages.
395 * In this case, we find second biggest valid mem_section for
396 * shrinking zone.
397 */
398 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
399 start_pfn);
400 if (pfn)
401 zone->spanned_pages = pfn - zone_start_pfn + 1;
402 }
403
404 /*
405 * The section is not biggest or smallest mem_section in the zone, it
406 * only creates a hole in the zone. So in this case, we need not
407 * change the zone. But perhaps, the zone has only hole data. Thus
408 * it check the zone has only hole or not.
409 */
410 pfn = zone_start_pfn;
411 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
412 ms = __pfn_to_section(pfn);
413
414 if (unlikely(!valid_section(ms)))
415 continue;
416
417 if (page_zone(pfn_to_page(pfn)) != zone)
418 continue;
419
420 /* If the section is current section, it continues the loop */
421 if (start_pfn == pfn)
422 continue;
423
424 /* If we find valid section, we have nothing to do */
425 zone_span_writeunlock(zone);
426 return;
427 }
428
429 /* The zone has no valid section */
430 zone->zone_start_pfn = 0;
431 zone->spanned_pages = 0;
432 zone_span_writeunlock(zone);
433 }
434
435 static void shrink_pgdat_span(struct pglist_data *pgdat,
436 unsigned long start_pfn, unsigned long end_pfn)
437 {
438 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
439 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
440 unsigned long pgdat_end_pfn = p;
441 unsigned long pfn;
442 struct mem_section *ms;
443 int nid = pgdat->node_id;
444
445 if (pgdat_start_pfn == start_pfn) {
446 /*
447 * If the section is smallest section in the pgdat, it need
448 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
449 * In this case, we find second smallest valid mem_section
450 * for shrinking zone.
451 */
452 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
453 pgdat_end_pfn);
454 if (pfn) {
455 pgdat->node_start_pfn = pfn;
456 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
457 }
458 } else if (pgdat_end_pfn == end_pfn) {
459 /*
460 * If the section is biggest section in the pgdat, it need
461 * shrink pgdat->node_spanned_pages.
462 * In this case, we find second biggest valid mem_section for
463 * shrinking zone.
464 */
465 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
466 start_pfn);
467 if (pfn)
468 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
469 }
470
471 /*
472 * If the section is not biggest or smallest mem_section in the pgdat,
473 * it only creates a hole in the pgdat. So in this case, we need not
474 * change the pgdat.
475 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
476 * has only hole or not.
477 */
478 pfn = pgdat_start_pfn;
479 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
480 ms = __pfn_to_section(pfn);
481
482 if (unlikely(!valid_section(ms)))
483 continue;
484
485 if (pfn_to_nid(pfn) != nid)
486 continue;
487
488 /* If the section is current section, it continues the loop */
489 if (start_pfn == pfn)
490 continue;
491
492 /* If we find valid section, we have nothing to do */
493 return;
494 }
495
496 /* The pgdat has no valid section */
497 pgdat->node_start_pfn = 0;
498 pgdat->node_spanned_pages = 0;
499 }
500
501 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
502 {
503 struct pglist_data *pgdat = zone->zone_pgdat;
504 int nr_pages = PAGES_PER_SECTION;
505 unsigned long flags;
506
507 pgdat_resize_lock(zone->zone_pgdat, &flags);
508 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
509 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
510 pgdat_resize_unlock(zone->zone_pgdat, &flags);
511 }
512
513 static void __remove_section(struct zone *zone, struct mem_section *ms,
514 unsigned long map_offset,
515 struct vmem_altmap *altmap)
516 {
517 unsigned long start_pfn;
518 int scn_nr;
519
520 if (WARN_ON_ONCE(!valid_section(ms)))
521 return;
522
523 unregister_memory_section(ms);
524
525 scn_nr = __section_nr(ms);
526 start_pfn = section_nr_to_pfn((unsigned long)scn_nr);
527 __remove_zone(zone, start_pfn);
528
529 sparse_remove_one_section(zone, ms, map_offset, altmap);
530 }
531
532 /**
533 * __remove_pages() - remove sections of pages from a zone
534 * @zone: zone from which pages need to be removed
535 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
536 * @nr_pages: number of pages to remove (must be multiple of section size)
537 * @altmap: alternative device page map or %NULL if default memmap is used
538 *
539 * Generic helper function to remove section mappings and sysfs entries
540 * for the section of the memory we are removing. Caller needs to make
541 * sure that pages are marked reserved and zones are adjust properly by
542 * calling offline_pages().
543 */
544 void __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
545 unsigned long nr_pages, struct vmem_altmap *altmap)
546 {
547 unsigned long i;
548 unsigned long map_offset = 0;
549 int sections_to_remove;
550
551 /* In the ZONE_DEVICE case device driver owns the memory region */
552 if (is_dev_zone(zone))
553 map_offset = vmem_altmap_offset(altmap);
554
555 clear_zone_contiguous(zone);
556
557 /*
558 * We can only remove entire sections
559 */
560 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
561 BUG_ON(nr_pages % PAGES_PER_SECTION);
562
563 sections_to_remove = nr_pages / PAGES_PER_SECTION;
564 for (i = 0; i < sections_to_remove; i++) {
565 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
566
567 cond_resched();
568 __remove_section(zone, __pfn_to_section(pfn), map_offset,
569 altmap);
570 map_offset = 0;
571 }
572
573 set_zone_contiguous(zone);
574 }
575
576 int set_online_page_callback(online_page_callback_t callback)
577 {
578 int rc = -EINVAL;
579
580 get_online_mems();
581 mutex_lock(&online_page_callback_lock);
582
583 if (online_page_callback == generic_online_page) {
584 online_page_callback = callback;
585 rc = 0;
586 }
587
588 mutex_unlock(&online_page_callback_lock);
589 put_online_mems();
590
591 return rc;
592 }
593 EXPORT_SYMBOL_GPL(set_online_page_callback);
594
595 int restore_online_page_callback(online_page_callback_t callback)
596 {
597 int rc = -EINVAL;
598
599 get_online_mems();
600 mutex_lock(&online_page_callback_lock);
601
602 if (online_page_callback == callback) {
603 online_page_callback = generic_online_page;
604 rc = 0;
605 }
606
607 mutex_unlock(&online_page_callback_lock);
608 put_online_mems();
609
610 return rc;
611 }
612 EXPORT_SYMBOL_GPL(restore_online_page_callback);
613
614 void __online_page_set_limits(struct page *page)
615 {
616 }
617 EXPORT_SYMBOL_GPL(__online_page_set_limits);
618
619 void __online_page_increment_counters(struct page *page)
620 {
621 adjust_managed_page_count(page, 1);
622 }
623 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
624
625 void __online_page_free(struct page *page)
626 {
627 __free_reserved_page(page);
628 }
629 EXPORT_SYMBOL_GPL(__online_page_free);
630
631 static void generic_online_page(struct page *page, unsigned int order)
632 {
633 kernel_map_pages(page, 1 << order, 1);
634 __free_pages_core(page, order);
635 totalram_pages_add(1UL << order);
636 #ifdef CONFIG_HIGHMEM
637 if (PageHighMem(page))
638 totalhigh_pages_add(1UL << order);
639 #endif
640 }
641
642 static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
643 {
644 unsigned long end = start + nr_pages;
645 int order, onlined_pages = 0;
646
647 while (start < end) {
648 order = min(MAX_ORDER - 1,
649 get_order(PFN_PHYS(end) - PFN_PHYS(start)));
650 (*online_page_callback)(pfn_to_page(start), order);
651
652 onlined_pages += (1UL << order);
653 start += (1UL << order);
654 }
655 return onlined_pages;
656 }
657
658 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
659 void *arg)
660 {
661 unsigned long onlined_pages = *(unsigned long *)arg;
662
663 if (PageReserved(pfn_to_page(start_pfn)))
664 onlined_pages += online_pages_blocks(start_pfn, nr_pages);
665
666 online_mem_sections(start_pfn, start_pfn + nr_pages);
667
668 *(unsigned long *)arg = onlined_pages;
669 return 0;
670 }
671
672 /* check which state of node_states will be changed when online memory */
673 static void node_states_check_changes_online(unsigned long nr_pages,
674 struct zone *zone, struct memory_notify *arg)
675 {
676 int nid = zone_to_nid(zone);
677
678 arg->status_change_nid = NUMA_NO_NODE;
679 arg->status_change_nid_normal = NUMA_NO_NODE;
680 arg->status_change_nid_high = NUMA_NO_NODE;
681
682 if (!node_state(nid, N_MEMORY))
683 arg->status_change_nid = nid;
684 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
685 arg->status_change_nid_normal = nid;
686 #ifdef CONFIG_HIGHMEM
687 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
688 arg->status_change_nid_high = nid;
689 #endif
690 }
691
692 static void node_states_set_node(int node, struct memory_notify *arg)
693 {
694 if (arg->status_change_nid_normal >= 0)
695 node_set_state(node, N_NORMAL_MEMORY);
696
697 if (arg->status_change_nid_high >= 0)
698 node_set_state(node, N_HIGH_MEMORY);
699
700 if (arg->status_change_nid >= 0)
701 node_set_state(node, N_MEMORY);
702 }
703
704 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
705 unsigned long nr_pages)
706 {
707 unsigned long old_end_pfn = zone_end_pfn(zone);
708
709 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
710 zone->zone_start_pfn = start_pfn;
711
712 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
713 }
714
715 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
716 unsigned long nr_pages)
717 {
718 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
719
720 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
721 pgdat->node_start_pfn = start_pfn;
722
723 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
724 }
725
726 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
727 unsigned long nr_pages, struct vmem_altmap *altmap)
728 {
729 struct pglist_data *pgdat = zone->zone_pgdat;
730 int nid = pgdat->node_id;
731 unsigned long flags;
732
733 clear_zone_contiguous(zone);
734
735 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
736 pgdat_resize_lock(pgdat, &flags);
737 zone_span_writelock(zone);
738 if (zone_is_empty(zone))
739 init_currently_empty_zone(zone, start_pfn, nr_pages);
740 resize_zone_range(zone, start_pfn, nr_pages);
741 zone_span_writeunlock(zone);
742 resize_pgdat_range(pgdat, start_pfn, nr_pages);
743 pgdat_resize_unlock(pgdat, &flags);
744
745 /*
746 * TODO now we have a visible range of pages which are not associated
747 * with their zone properly. Not nice but set_pfnblock_flags_mask
748 * expects the zone spans the pfn range. All the pages in the range
749 * are reserved so nobody should be touching them so we should be safe
750 */
751 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
752 MEMMAP_HOTPLUG, altmap);
753
754 set_zone_contiguous(zone);
755 }
756
757 /*
758 * Returns a default kernel memory zone for the given pfn range.
759 * If no kernel zone covers this pfn range it will automatically go
760 * to the ZONE_NORMAL.
761 */
762 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
763 unsigned long nr_pages)
764 {
765 struct pglist_data *pgdat = NODE_DATA(nid);
766 int zid;
767
768 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
769 struct zone *zone = &pgdat->node_zones[zid];
770
771 if (zone_intersects(zone, start_pfn, nr_pages))
772 return zone;
773 }
774
775 return &pgdat->node_zones[ZONE_NORMAL];
776 }
777
778 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
779 unsigned long nr_pages)
780 {
781 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
782 nr_pages);
783 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
784 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
785 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
786
787 /*
788 * We inherit the existing zone in a simple case where zones do not
789 * overlap in the given range
790 */
791 if (in_kernel ^ in_movable)
792 return (in_kernel) ? kernel_zone : movable_zone;
793
794 /*
795 * If the range doesn't belong to any zone or two zones overlap in the
796 * given range then we use movable zone only if movable_node is
797 * enabled because we always online to a kernel zone by default.
798 */
799 return movable_node_enabled ? movable_zone : kernel_zone;
800 }
801
802 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
803 unsigned long nr_pages)
804 {
805 if (online_type == MMOP_ONLINE_KERNEL)
806 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
807
808 if (online_type == MMOP_ONLINE_MOVABLE)
809 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
810
811 return default_zone_for_pfn(nid, start_pfn, nr_pages);
812 }
813
814 /*
815 * Associates the given pfn range with the given node and the zone appropriate
816 * for the given online type.
817 */
818 static struct zone * __meminit move_pfn_range(int online_type, int nid,
819 unsigned long start_pfn, unsigned long nr_pages)
820 {
821 struct zone *zone;
822
823 zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
824 move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
825 return zone;
826 }
827
828 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
829 {
830 unsigned long flags;
831 unsigned long onlined_pages = 0;
832 struct zone *zone;
833 int need_zonelists_rebuild = 0;
834 int nid;
835 int ret;
836 struct memory_notify arg;
837 struct memory_block *mem;
838
839 mem_hotplug_begin();
840
841 /*
842 * We can't use pfn_to_nid() because nid might be stored in struct page
843 * which is not yet initialized. Instead, we find nid from memory block.
844 */
845 mem = find_memory_block(__pfn_to_section(pfn));
846 nid = mem->nid;
847 put_device(&mem->dev);
848
849 /* associate pfn range with the zone */
850 zone = move_pfn_range(online_type, nid, pfn, nr_pages);
851
852 arg.start_pfn = pfn;
853 arg.nr_pages = nr_pages;
854 node_states_check_changes_online(nr_pages, zone, &arg);
855
856 ret = memory_notify(MEM_GOING_ONLINE, &arg);
857 ret = notifier_to_errno(ret);
858 if (ret)
859 goto failed_addition;
860
861 /*
862 * If this zone is not populated, then it is not in zonelist.
863 * This means the page allocator ignores this zone.
864 * So, zonelist must be updated after online.
865 */
866 if (!populated_zone(zone)) {
867 need_zonelists_rebuild = 1;
868 setup_zone_pageset(zone);
869 }
870
871 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
872 online_pages_range);
873 if (ret) {
874 if (need_zonelists_rebuild)
875 zone_pcp_reset(zone);
876 goto failed_addition;
877 }
878
879 zone->present_pages += onlined_pages;
880
881 pgdat_resize_lock(zone->zone_pgdat, &flags);
882 zone->zone_pgdat->node_present_pages += onlined_pages;
883 pgdat_resize_unlock(zone->zone_pgdat, &flags);
884
885 shuffle_zone(zone);
886
887 if (onlined_pages) {
888 node_states_set_node(nid, &arg);
889 if (need_zonelists_rebuild)
890 build_all_zonelists(NULL);
891 else
892 zone_pcp_update(zone);
893 }
894
895 init_per_zone_wmark_min();
896
897 if (onlined_pages) {
898 kswapd_run(nid);
899 kcompactd_run(nid);
900 }
901
902 vm_total_pages = nr_free_pagecache_pages();
903
904 writeback_set_ratelimit();
905
906 if (onlined_pages)
907 memory_notify(MEM_ONLINE, &arg);
908 mem_hotplug_done();
909 return 0;
910
911 failed_addition:
912 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
913 (unsigned long long) pfn << PAGE_SHIFT,
914 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
915 memory_notify(MEM_CANCEL_ONLINE, &arg);
916 mem_hotplug_done();
917 return ret;
918 }
919 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
920
921 static void reset_node_present_pages(pg_data_t *pgdat)
922 {
923 struct zone *z;
924
925 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
926 z->present_pages = 0;
927
928 pgdat->node_present_pages = 0;
929 }
930
931 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
932 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
933 {
934 struct pglist_data *pgdat;
935 unsigned long start_pfn = PFN_DOWN(start);
936
937 pgdat = NODE_DATA(nid);
938 if (!pgdat) {
939 pgdat = arch_alloc_nodedata(nid);
940 if (!pgdat)
941 return NULL;
942
943 arch_refresh_nodedata(nid, pgdat);
944 } else {
945 /*
946 * Reset the nr_zones, order and classzone_idx before reuse.
947 * Note that kswapd will init kswapd_classzone_idx properly
948 * when it starts in the near future.
949 */
950 pgdat->nr_zones = 0;
951 pgdat->kswapd_order = 0;
952 pgdat->kswapd_classzone_idx = 0;
953 }
954
955 /* we can use NODE_DATA(nid) from here */
956
957 pgdat->node_id = nid;
958 pgdat->node_start_pfn = start_pfn;
959
960 /* init node's zones as empty zones, we don't have any present pages.*/
961 free_area_init_core_hotplug(nid);
962 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
963
964 /*
965 * The node we allocated has no zone fallback lists. For avoiding
966 * to access not-initialized zonelist, build here.
967 */
968 build_all_zonelists(pgdat);
969
970 /*
971 * When memory is hot-added, all the memory is in offline state. So
972 * clear all zones' present_pages because they will be updated in
973 * online_pages() and offline_pages().
974 */
975 reset_node_managed_pages(pgdat);
976 reset_node_present_pages(pgdat);
977
978 return pgdat;
979 }
980
981 static void rollback_node_hotadd(int nid)
982 {
983 pg_data_t *pgdat = NODE_DATA(nid);
984
985 arch_refresh_nodedata(nid, NULL);
986 free_percpu(pgdat->per_cpu_nodestats);
987 arch_free_nodedata(pgdat);
988 return;
989 }
990
991
992 /**
993 * try_online_node - online a node if offlined
994 * @nid: the node ID
995 * @start: start addr of the node
996 * @set_node_online: Whether we want to online the node
997 * called by cpu_up() to online a node without onlined memory.
998 *
999 * Returns:
1000 * 1 -> a new node has been allocated
1001 * 0 -> the node is already online
1002 * -ENOMEM -> the node could not be allocated
1003 */
1004 static int __try_online_node(int nid, u64 start, bool set_node_online)
1005 {
1006 pg_data_t *pgdat;
1007 int ret = 1;
1008
1009 if (node_online(nid))
1010 return 0;
1011
1012 pgdat = hotadd_new_pgdat(nid, start);
1013 if (!pgdat) {
1014 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1015 ret = -ENOMEM;
1016 goto out;
1017 }
1018
1019 if (set_node_online) {
1020 node_set_online(nid);
1021 ret = register_one_node(nid);
1022 BUG_ON(ret);
1023 }
1024 out:
1025 return ret;
1026 }
1027
1028 /*
1029 * Users of this function always want to online/register the node
1030 */
1031 int try_online_node(int nid)
1032 {
1033 int ret;
1034
1035 mem_hotplug_begin();
1036 ret = __try_online_node(nid, 0, true);
1037 mem_hotplug_done();
1038 return ret;
1039 }
1040
1041 static int check_hotplug_memory_range(u64 start, u64 size)
1042 {
1043 /* memory range must be block size aligned */
1044 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1045 !IS_ALIGNED(size, memory_block_size_bytes())) {
1046 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1047 memory_block_size_bytes(), start, size);
1048 return -EINVAL;
1049 }
1050
1051 return 0;
1052 }
1053
1054 static int online_memory_block(struct memory_block *mem, void *arg)
1055 {
1056 return device_online(&mem->dev);
1057 }
1058
1059 /*
1060 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1061 * and online/offline operations (triggered e.g. by sysfs).
1062 *
1063 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1064 */
1065 int __ref add_memory_resource(int nid, struct resource *res)
1066 {
1067 struct mhp_restrictions restrictions = {};
1068 u64 start, size;
1069 bool new_node = false;
1070 int ret;
1071
1072 start = res->start;
1073 size = resource_size(res);
1074
1075 ret = check_hotplug_memory_range(start, size);
1076 if (ret)
1077 return ret;
1078
1079 mem_hotplug_begin();
1080
1081 /*
1082 * Add new range to memblock so that when hotadd_new_pgdat() is called
1083 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1084 * this new range and calculate total pages correctly. The range will
1085 * be removed at hot-remove time.
1086 */
1087 memblock_add_node(start, size, nid);
1088
1089 ret = __try_online_node(nid, start, false);
1090 if (ret < 0)
1091 goto error;
1092 new_node = ret;
1093
1094 /* call arch's memory hotadd */
1095 ret = arch_add_memory(nid, start, size, &restrictions);
1096 if (ret < 0)
1097 goto error;
1098
1099 /* create memory block devices after memory was added */
1100 ret = create_memory_block_devices(start, size);
1101 if (ret) {
1102 arch_remove_memory(nid, start, size, NULL);
1103 goto error;
1104 }
1105
1106 if (new_node) {
1107 /* If sysfs file of new node can't be created, cpu on the node
1108 * can't be hot-added. There is no rollback way now.
1109 * So, check by BUG_ON() to catch it reluctantly..
1110 * We online node here. We can't roll back from here.
1111 */
1112 node_set_online(nid);
1113 ret = __register_one_node(nid);
1114 BUG_ON(ret);
1115 }
1116
1117 /* link memory sections under this node.*/
1118 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1119 BUG_ON(ret);
1120
1121 /* create new memmap entry */
1122 firmware_map_add_hotplug(start, start + size, "System RAM");
1123
1124 /* device_online() will take the lock when calling online_pages() */
1125 mem_hotplug_done();
1126
1127 /* online pages if requested */
1128 if (memhp_auto_online)
1129 walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1),
1130 NULL, online_memory_block);
1131
1132 return ret;
1133 error:
1134 /* rollback pgdat allocation and others */
1135 if (new_node)
1136 rollback_node_hotadd(nid);
1137 memblock_remove(start, size);
1138 mem_hotplug_done();
1139 return ret;
1140 }
1141
1142 /* requires device_hotplug_lock, see add_memory_resource() */
1143 int __ref __add_memory(int nid, u64 start, u64 size)
1144 {
1145 struct resource *res;
1146 int ret;
1147
1148 res = register_memory_resource(start, size);
1149 if (IS_ERR(res))
1150 return PTR_ERR(res);
1151
1152 ret = add_memory_resource(nid, res);
1153 if (ret < 0)
1154 release_memory_resource(res);
1155 return ret;
1156 }
1157
1158 int add_memory(int nid, u64 start, u64 size)
1159 {
1160 int rc;
1161
1162 lock_device_hotplug();
1163 rc = __add_memory(nid, start, size);
1164 unlock_device_hotplug();
1165
1166 return rc;
1167 }
1168 EXPORT_SYMBOL_GPL(add_memory);
1169
1170 #ifdef CONFIG_MEMORY_HOTREMOVE
1171 /*
1172 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1173 * set and the size of the free page is given by page_order(). Using this,
1174 * the function determines if the pageblock contains only free pages.
1175 * Due to buddy contraints, a free page at least the size of a pageblock will
1176 * be located at the start of the pageblock
1177 */
1178 static inline int pageblock_free(struct page *page)
1179 {
1180 return PageBuddy(page) && page_order(page) >= pageblock_order;
1181 }
1182
1183 /* Return the pfn of the start of the next active pageblock after a given pfn */
1184 static unsigned long next_active_pageblock(unsigned long pfn)
1185 {
1186 struct page *page = pfn_to_page(pfn);
1187
1188 /* Ensure the starting page is pageblock-aligned */
1189 BUG_ON(pfn & (pageblock_nr_pages - 1));
1190
1191 /* If the entire pageblock is free, move to the end of free page */
1192 if (pageblock_free(page)) {
1193 int order;
1194 /* be careful. we don't have locks, page_order can be changed.*/
1195 order = page_order(page);
1196 if ((order < MAX_ORDER) && (order >= pageblock_order))
1197 return pfn + (1 << order);
1198 }
1199
1200 return pfn + pageblock_nr_pages;
1201 }
1202
1203 static bool is_pageblock_removable_nolock(unsigned long pfn)
1204 {
1205 struct page *page = pfn_to_page(pfn);
1206 struct zone *zone;
1207
1208 /*
1209 * We have to be careful here because we are iterating over memory
1210 * sections which are not zone aware so we might end up outside of
1211 * the zone but still within the section.
1212 * We have to take care about the node as well. If the node is offline
1213 * its NODE_DATA will be NULL - see page_zone.
1214 */
1215 if (!node_online(page_to_nid(page)))
1216 return false;
1217
1218 zone = page_zone(page);
1219 pfn = page_to_pfn(page);
1220 if (!zone_spans_pfn(zone, pfn))
1221 return false;
1222
1223 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1224 }
1225
1226 /* Checks if this range of memory is likely to be hot-removable. */
1227 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1228 {
1229 unsigned long end_pfn, pfn;
1230
1231 end_pfn = min(start_pfn + nr_pages,
1232 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1233
1234 /* Check the starting page of each pageblock within the range */
1235 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1236 if (!is_pageblock_removable_nolock(pfn))
1237 return false;
1238 cond_resched();
1239 }
1240
1241 /* All pageblocks in the memory block are likely to be hot-removable */
1242 return true;
1243 }
1244
1245 /*
1246 * Confirm all pages in a range [start, end) belong to the same zone.
1247 * When true, return its valid [start, end).
1248 */
1249 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1250 unsigned long *valid_start, unsigned long *valid_end)
1251 {
1252 unsigned long pfn, sec_end_pfn;
1253 unsigned long start, end;
1254 struct zone *zone = NULL;
1255 struct page *page;
1256 int i;
1257 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1258 pfn < end_pfn;
1259 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1260 /* Make sure the memory section is present first */
1261 if (!present_section_nr(pfn_to_section_nr(pfn)))
1262 continue;
1263 for (; pfn < sec_end_pfn && pfn < end_pfn;
1264 pfn += MAX_ORDER_NR_PAGES) {
1265 i = 0;
1266 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1267 while ((i < MAX_ORDER_NR_PAGES) &&
1268 !pfn_valid_within(pfn + i))
1269 i++;
1270 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1271 continue;
1272 /* Check if we got outside of the zone */
1273 if (zone && !zone_spans_pfn(zone, pfn + i))
1274 return 0;
1275 page = pfn_to_page(pfn + i);
1276 if (zone && page_zone(page) != zone)
1277 return 0;
1278 if (!zone)
1279 start = pfn + i;
1280 zone = page_zone(page);
1281 end = pfn + MAX_ORDER_NR_PAGES;
1282 }
1283 }
1284
1285 if (zone) {
1286 *valid_start = start;
1287 *valid_end = min(end, end_pfn);
1288 return 1;
1289 } else {
1290 return 0;
1291 }
1292 }
1293
1294 /*
1295 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1296 * non-lru movable pages and hugepages). We scan pfn because it's much
1297 * easier than scanning over linked list. This function returns the pfn
1298 * of the first found movable page if it's found, otherwise 0.
1299 */
1300 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1301 {
1302 unsigned long pfn;
1303
1304 for (pfn = start; pfn < end; pfn++) {
1305 struct page *page, *head;
1306 unsigned long skip;
1307
1308 if (!pfn_valid(pfn))
1309 continue;
1310 page = pfn_to_page(pfn);
1311 if (PageLRU(page))
1312 return pfn;
1313 if (__PageMovable(page))
1314 return pfn;
1315
1316 if (!PageHuge(page))
1317 continue;
1318 head = compound_head(page);
1319 if (page_huge_active(head))
1320 return pfn;
1321 skip = (1 << compound_order(head)) - (page - head);
1322 pfn += skip - 1;
1323 }
1324 return 0;
1325 }
1326
1327 static struct page *new_node_page(struct page *page, unsigned long private)
1328 {
1329 int nid = page_to_nid(page);
1330 nodemask_t nmask = node_states[N_MEMORY];
1331
1332 /*
1333 * try to allocate from a different node but reuse this node if there
1334 * are no other online nodes to be used (e.g. we are offlining a part
1335 * of the only existing node)
1336 */
1337 node_clear(nid, nmask);
1338 if (nodes_empty(nmask))
1339 node_set(nid, nmask);
1340
1341 return new_page_nodemask(page, nid, &nmask);
1342 }
1343
1344 static int
1345 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1346 {
1347 unsigned long pfn;
1348 struct page *page;
1349 int ret = 0;
1350 LIST_HEAD(source);
1351
1352 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1353 if (!pfn_valid(pfn))
1354 continue;
1355 page = pfn_to_page(pfn);
1356
1357 if (PageHuge(page)) {
1358 struct page *head = compound_head(page);
1359 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1360 isolate_huge_page(head, &source);
1361 continue;
1362 } else if (PageTransHuge(page))
1363 pfn = page_to_pfn(compound_head(page))
1364 + hpage_nr_pages(page) - 1;
1365
1366 /*
1367 * HWPoison pages have elevated reference counts so the migration would
1368 * fail on them. It also doesn't make any sense to migrate them in the
1369 * first place. Still try to unmap such a page in case it is still mapped
1370 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1371 * the unmap as the catch all safety net).
1372 */
1373 if (PageHWPoison(page)) {
1374 if (WARN_ON(PageLRU(page)))
1375 isolate_lru_page(page);
1376 if (page_mapped(page))
1377 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1378 continue;
1379 }
1380
1381 if (!get_page_unless_zero(page))
1382 continue;
1383 /*
1384 * We can skip free pages. And we can deal with pages on
1385 * LRU and non-lru movable pages.
1386 */
1387 if (PageLRU(page))
1388 ret = isolate_lru_page(page);
1389 else
1390 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1391 if (!ret) { /* Success */
1392 list_add_tail(&page->lru, &source);
1393 if (!__PageMovable(page))
1394 inc_node_page_state(page, NR_ISOLATED_ANON +
1395 page_is_file_cache(page));
1396
1397 } else {
1398 pr_warn("failed to isolate pfn %lx\n", pfn);
1399 dump_page(page, "isolation failed");
1400 }
1401 put_page(page);
1402 }
1403 if (!list_empty(&source)) {
1404 /* Allocate a new page from the nearest neighbor node */
1405 ret = migrate_pages(&source, new_node_page, NULL, 0,
1406 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1407 if (ret) {
1408 list_for_each_entry(page, &source, lru) {
1409 pr_warn("migrating pfn %lx failed ret:%d ",
1410 page_to_pfn(page), ret);
1411 dump_page(page, "migration failure");
1412 }
1413 putback_movable_pages(&source);
1414 }
1415 }
1416
1417 return ret;
1418 }
1419
1420 /*
1421 * remove from free_area[] and mark all as Reserved.
1422 */
1423 static int
1424 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1425 void *data)
1426 {
1427 unsigned long *offlined_pages = (unsigned long *)data;
1428
1429 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1430 return 0;
1431 }
1432
1433 /*
1434 * Check all pages in range, recoreded as memory resource, are isolated.
1435 */
1436 static int
1437 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1438 void *data)
1439 {
1440 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1441 }
1442
1443 static int __init cmdline_parse_movable_node(char *p)
1444 {
1445 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1446 movable_node_enabled = true;
1447 #else
1448 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1449 #endif
1450 return 0;
1451 }
1452 early_param("movable_node", cmdline_parse_movable_node);
1453
1454 /* check which state of node_states will be changed when offline memory */
1455 static void node_states_check_changes_offline(unsigned long nr_pages,
1456 struct zone *zone, struct memory_notify *arg)
1457 {
1458 struct pglist_data *pgdat = zone->zone_pgdat;
1459 unsigned long present_pages = 0;
1460 enum zone_type zt;
1461
1462 arg->status_change_nid = NUMA_NO_NODE;
1463 arg->status_change_nid_normal = NUMA_NO_NODE;
1464 arg->status_change_nid_high = NUMA_NO_NODE;
1465
1466 /*
1467 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1468 * If the memory to be offline is within the range
1469 * [0..ZONE_NORMAL], and it is the last present memory there,
1470 * the zones in that range will become empty after the offlining,
1471 * thus we can determine that we need to clear the node from
1472 * node_states[N_NORMAL_MEMORY].
1473 */
1474 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1475 present_pages += pgdat->node_zones[zt].present_pages;
1476 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1477 arg->status_change_nid_normal = zone_to_nid(zone);
1478
1479 #ifdef CONFIG_HIGHMEM
1480 /*
1481 * node_states[N_HIGH_MEMORY] contains nodes which
1482 * have normal memory or high memory.
1483 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1484 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1485 * we determine that the zones in that range become empty,
1486 * we need to clear the node for N_HIGH_MEMORY.
1487 */
1488 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1489 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1490 arg->status_change_nid_high = zone_to_nid(zone);
1491 #endif
1492
1493 /*
1494 * We have accounted the pages from [0..ZONE_NORMAL), and
1495 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1496 * as well.
1497 * Here we count the possible pages from ZONE_MOVABLE.
1498 * If after having accounted all the pages, we see that the nr_pages
1499 * to be offlined is over or equal to the accounted pages,
1500 * we know that the node will become empty, and so, we can clear
1501 * it for N_MEMORY as well.
1502 */
1503 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1504
1505 if (nr_pages >= present_pages)
1506 arg->status_change_nid = zone_to_nid(zone);
1507 }
1508
1509 static void node_states_clear_node(int node, struct memory_notify *arg)
1510 {
1511 if (arg->status_change_nid_normal >= 0)
1512 node_clear_state(node, N_NORMAL_MEMORY);
1513
1514 if (arg->status_change_nid_high >= 0)
1515 node_clear_state(node, N_HIGH_MEMORY);
1516
1517 if (arg->status_change_nid >= 0)
1518 node_clear_state(node, N_MEMORY);
1519 }
1520
1521 static int __ref __offline_pages(unsigned long start_pfn,
1522 unsigned long end_pfn)
1523 {
1524 unsigned long pfn, nr_pages;
1525 unsigned long offlined_pages = 0;
1526 int ret, node, nr_isolate_pageblock;
1527 unsigned long flags;
1528 unsigned long valid_start, valid_end;
1529 struct zone *zone;
1530 struct memory_notify arg;
1531 char *reason;
1532
1533 mem_hotplug_begin();
1534
1535 /* This makes hotplug much easier...and readable.
1536 we assume this for now. .*/
1537 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1538 &valid_end)) {
1539 ret = -EINVAL;
1540 reason = "multizone range";
1541 goto failed_removal;
1542 }
1543
1544 zone = page_zone(pfn_to_page(valid_start));
1545 node = zone_to_nid(zone);
1546 nr_pages = end_pfn - start_pfn;
1547
1548 /* set above range as isolated */
1549 ret = start_isolate_page_range(start_pfn, end_pfn,
1550 MIGRATE_MOVABLE,
1551 SKIP_HWPOISON | REPORT_FAILURE);
1552 if (ret < 0) {
1553 reason = "failure to isolate range";
1554 goto failed_removal;
1555 }
1556 nr_isolate_pageblock = ret;
1557
1558 arg.start_pfn = start_pfn;
1559 arg.nr_pages = nr_pages;
1560 node_states_check_changes_offline(nr_pages, zone, &arg);
1561
1562 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1563 ret = notifier_to_errno(ret);
1564 if (ret) {
1565 reason = "notifier failure";
1566 goto failed_removal_isolated;
1567 }
1568
1569 do {
1570 for (pfn = start_pfn; pfn;) {
1571 if (signal_pending(current)) {
1572 ret = -EINTR;
1573 reason = "signal backoff";
1574 goto failed_removal_isolated;
1575 }
1576
1577 cond_resched();
1578 lru_add_drain_all();
1579
1580 pfn = scan_movable_pages(pfn, end_pfn);
1581 if (pfn) {
1582 /*
1583 * TODO: fatal migration failures should bail
1584 * out
1585 */
1586 do_migrate_range(pfn, end_pfn);
1587 }
1588 }
1589
1590 /*
1591 * Dissolve free hugepages in the memory block before doing
1592 * offlining actually in order to make hugetlbfs's object
1593 * counting consistent.
1594 */
1595 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1596 if (ret) {
1597 reason = "failure to dissolve huge pages";
1598 goto failed_removal_isolated;
1599 }
1600 /* check again */
1601 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1602 NULL, check_pages_isolated_cb);
1603 } while (ret);
1604
1605 /* Ok, all of our target is isolated.
1606 We cannot do rollback at this point. */
1607 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1608 &offlined_pages, offline_isolated_pages_cb);
1609 pr_info("Offlined Pages %ld\n", offlined_pages);
1610 /*
1611 * Onlining will reset pagetype flags and makes migrate type
1612 * MOVABLE, so just need to decrease the number of isolated
1613 * pageblocks zone counter here.
1614 */
1615 spin_lock_irqsave(&zone->lock, flags);
1616 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1617 spin_unlock_irqrestore(&zone->lock, flags);
1618
1619 /* removal success */
1620 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1621 zone->present_pages -= offlined_pages;
1622
1623 pgdat_resize_lock(zone->zone_pgdat, &flags);
1624 zone->zone_pgdat->node_present_pages -= offlined_pages;
1625 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1626
1627 init_per_zone_wmark_min();
1628
1629 if (!populated_zone(zone)) {
1630 zone_pcp_reset(zone);
1631 build_all_zonelists(NULL);
1632 } else
1633 zone_pcp_update(zone);
1634
1635 node_states_clear_node(node, &arg);
1636 if (arg.status_change_nid >= 0) {
1637 kswapd_stop(node);
1638 kcompactd_stop(node);
1639 }
1640
1641 vm_total_pages = nr_free_pagecache_pages();
1642 writeback_set_ratelimit();
1643
1644 memory_notify(MEM_OFFLINE, &arg);
1645 mem_hotplug_done();
1646 return 0;
1647
1648 failed_removal_isolated:
1649 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1650 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1651 failed_removal:
1652 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1653 (unsigned long long) start_pfn << PAGE_SHIFT,
1654 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1655 reason);
1656 /* pushback to free area */
1657 mem_hotplug_done();
1658 return ret;
1659 }
1660
1661 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1662 {
1663 return __offline_pages(start_pfn, start_pfn + nr_pages);
1664 }
1665 #endif /* CONFIG_MEMORY_HOTREMOVE */
1666
1667 /**
1668 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1669 * @start_pfn: start pfn of the memory range
1670 * @end_pfn: end pfn of the memory range
1671 * @arg: argument passed to func
1672 * @func: callback for each memory section walked
1673 *
1674 * This function walks through all present mem sections in range
1675 * [start_pfn, end_pfn) and call func on each mem section.
1676 *
1677 * Returns the return value of func.
1678 */
1679 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1680 void *arg, int (*func)(struct memory_block *, void *))
1681 {
1682 struct memory_block *mem = NULL;
1683 struct mem_section *section;
1684 unsigned long pfn, section_nr;
1685 int ret;
1686
1687 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1688 section_nr = pfn_to_section_nr(pfn);
1689 if (!present_section_nr(section_nr))
1690 continue;
1691
1692 section = __nr_to_section(section_nr);
1693 /* same memblock? */
1694 if (mem)
1695 if ((section_nr >= mem->start_section_nr) &&
1696 (section_nr <= mem->end_section_nr))
1697 continue;
1698
1699 mem = find_memory_block_hinted(section, mem);
1700 if (!mem)
1701 continue;
1702
1703 ret = func(mem, arg);
1704 if (ret) {
1705 kobject_put(&mem->dev.kobj);
1706 return ret;
1707 }
1708 }
1709
1710 if (mem)
1711 kobject_put(&mem->dev.kobj);
1712
1713 return 0;
1714 }
1715
1716 #ifdef CONFIG_MEMORY_HOTREMOVE
1717 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1718 {
1719 int ret = !is_memblock_offlined(mem);
1720
1721 if (unlikely(ret)) {
1722 phys_addr_t beginpa, endpa;
1723
1724 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1725 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1726 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1727 &beginpa, &endpa);
1728
1729 return -EBUSY;
1730 }
1731 return 0;
1732 }
1733
1734 static int check_cpu_on_node(pg_data_t *pgdat)
1735 {
1736 int cpu;
1737
1738 for_each_present_cpu(cpu) {
1739 if (cpu_to_node(cpu) == pgdat->node_id)
1740 /*
1741 * the cpu on this node isn't removed, and we can't
1742 * offline this node.
1743 */
1744 return -EBUSY;
1745 }
1746
1747 return 0;
1748 }
1749
1750 /**
1751 * try_offline_node
1752 * @nid: the node ID
1753 *
1754 * Offline a node if all memory sections and cpus of the node are removed.
1755 *
1756 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1757 * and online/offline operations before this call.
1758 */
1759 void try_offline_node(int nid)
1760 {
1761 pg_data_t *pgdat = NODE_DATA(nid);
1762 unsigned long start_pfn = pgdat->node_start_pfn;
1763 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1764 unsigned long pfn;
1765
1766 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1767 unsigned long section_nr = pfn_to_section_nr(pfn);
1768
1769 if (!present_section_nr(section_nr))
1770 continue;
1771
1772 if (pfn_to_nid(pfn) != nid)
1773 continue;
1774
1775 /*
1776 * some memory sections of this node are not removed, and we
1777 * can't offline node now.
1778 */
1779 return;
1780 }
1781
1782 if (check_cpu_on_node(pgdat))
1783 return;
1784
1785 /*
1786 * all memory/cpu of this node are removed, we can offline this
1787 * node now.
1788 */
1789 node_set_offline(nid);
1790 unregister_one_node(nid);
1791 }
1792 EXPORT_SYMBOL(try_offline_node);
1793
1794 static void __release_memory_resource(resource_size_t start,
1795 resource_size_t size)
1796 {
1797 int ret;
1798
1799 /*
1800 * When removing memory in the same granularity as it was added,
1801 * this function never fails. It might only fail if resources
1802 * have to be adjusted or split. We'll ignore the error, as
1803 * removing of memory cannot fail.
1804 */
1805 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1806 if (ret) {
1807 resource_size_t endres = start + size - 1;
1808
1809 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1810 &start, &endres, ret);
1811 }
1812 }
1813
1814 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1815 {
1816 int rc = 0;
1817
1818 BUG_ON(check_hotplug_memory_range(start, size));
1819
1820 mem_hotplug_begin();
1821
1822 /*
1823 * All memory blocks must be offlined before removing memory. Check
1824 * whether all memory blocks in question are offline and return error
1825 * if this is not the case.
1826 */
1827 rc = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1828 check_memblock_offlined_cb);
1829 if (rc)
1830 goto done;
1831
1832 /* remove memmap entry */
1833 firmware_map_remove(start, start + size, "System RAM");
1834 memblock_free(start, size);
1835 memblock_remove(start, size);
1836
1837 arch_remove_memory(nid, start, size, NULL);
1838 __release_memory_resource(start, size);
1839
1840 try_offline_node(nid);
1841
1842 done:
1843 mem_hotplug_done();
1844 return rc;
1845 }
1846
1847 /**
1848 * remove_memory
1849 * @nid: the node ID
1850 * @start: physical address of the region to remove
1851 * @size: size of the region to remove
1852 *
1853 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1854 * and online/offline operations before this call, as required by
1855 * try_offline_node().
1856 */
1857 void __remove_memory(int nid, u64 start, u64 size)
1858 {
1859
1860 /*
1861 * trigger BUG() is some memory is not offlined prior to calling this
1862 * function
1863 */
1864 if (try_remove_memory(nid, start, size))
1865 BUG();
1866 }
1867
1868 /*
1869 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1870 * some memory is not offline
1871 */
1872 int remove_memory(int nid, u64 start, u64 size)
1873 {
1874 int rc;
1875
1876 lock_device_hotplug();
1877 rc = try_remove_memory(nid, start, size);
1878 unlock_device_hotplug();
1879
1880 return rc;
1881 }
1882 EXPORT_SYMBOL_GPL(remove_memory);
1883 #endif /* CONFIG_MEMORY_HOTREMOVE */