]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory_hotplug.c
Merge tag 'gfs2-for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[mirror_ubuntu-hirsute-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57 void get_online_mems(void)
58 {
59 percpu_down_read(&mem_hotplug_lock);
60 }
61
62 void put_online_mems(void)
63 {
64 percpu_up_read(&mem_hotplug_lock);
65 }
66
67 bool movable_node_enabled = false;
68
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 bool memhp_auto_online;
71 #else
72 bool memhp_auto_online = true;
73 #endif
74 EXPORT_SYMBOL_GPL(memhp_auto_online);
75
76 static int __init setup_memhp_default_state(char *str)
77 {
78 if (!strcmp(str, "online"))
79 memhp_auto_online = true;
80 else if (!strcmp(str, "offline"))
81 memhp_auto_online = false;
82
83 return 1;
84 }
85 __setup("memhp_default_state=", setup_memhp_default_state);
86
87 void mem_hotplug_begin(void)
88 {
89 cpus_read_lock();
90 percpu_down_write(&mem_hotplug_lock);
91 }
92
93 void mem_hotplug_done(void)
94 {
95 percpu_up_write(&mem_hotplug_lock);
96 cpus_read_unlock();
97 }
98
99 u64 max_mem_size = U64_MAX;
100
101 /* add this memory to iomem resource */
102 static struct resource *register_memory_resource(u64 start, u64 size)
103 {
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106 char *resource_name = "System RAM";
107
108 if (start + size > max_mem_size)
109 return ERR_PTR(-E2BIG);
110
111 /*
112 * Request ownership of the new memory range. This might be
113 * a child of an existing resource that was present but
114 * not marked as busy.
115 */
116 res = __request_region(&iomem_resource, start, size,
117 resource_name, flags);
118
119 if (!res) {
120 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
121 start, start + size);
122 return ERR_PTR(-EEXIST);
123 }
124 return res;
125 }
126
127 static void release_memory_resource(struct resource *res)
128 {
129 if (!res)
130 return;
131 release_resource(res);
132 kfree(res);
133 }
134
135 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
136 void get_page_bootmem(unsigned long info, struct page *page,
137 unsigned long type)
138 {
139 page->freelist = (void *)type;
140 SetPagePrivate(page);
141 set_page_private(page, info);
142 page_ref_inc(page);
143 }
144
145 void put_page_bootmem(struct page *page)
146 {
147 unsigned long type;
148
149 type = (unsigned long) page->freelist;
150 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
151 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
152
153 if (page_ref_dec_return(page) == 1) {
154 page->freelist = NULL;
155 ClearPagePrivate(page);
156 set_page_private(page, 0);
157 INIT_LIST_HEAD(&page->lru);
158 free_reserved_page(page);
159 }
160 }
161
162 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
163 #ifndef CONFIG_SPARSEMEM_VMEMMAP
164 static void register_page_bootmem_info_section(unsigned long start_pfn)
165 {
166 unsigned long mapsize, section_nr, i;
167 struct mem_section *ms;
168 struct page *page, *memmap;
169 struct mem_section_usage *usage;
170
171 section_nr = pfn_to_section_nr(start_pfn);
172 ms = __nr_to_section(section_nr);
173
174 /* Get section's memmap address */
175 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
176
177 /*
178 * Get page for the memmap's phys address
179 * XXX: need more consideration for sparse_vmemmap...
180 */
181 page = virt_to_page(memmap);
182 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
183 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
184
185 /* remember memmap's page */
186 for (i = 0; i < mapsize; i++, page++)
187 get_page_bootmem(section_nr, page, SECTION_INFO);
188
189 usage = ms->usage;
190 page = virt_to_page(usage);
191
192 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
193
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
196
197 }
198 #else /* CONFIG_SPARSEMEM_VMEMMAP */
199 static void register_page_bootmem_info_section(unsigned long start_pfn)
200 {
201 unsigned long mapsize, section_nr, i;
202 struct mem_section *ms;
203 struct page *page, *memmap;
204 struct mem_section_usage *usage;
205
206 section_nr = pfn_to_section_nr(start_pfn);
207 ms = __nr_to_section(section_nr);
208
209 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
210
211 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
212
213 usage = ms->usage;
214 page = virt_to_page(usage);
215
216 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
217
218 for (i = 0; i < mapsize; i++, page++)
219 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
220 }
221 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
222
223 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
224 {
225 unsigned long i, pfn, end_pfn, nr_pages;
226 int node = pgdat->node_id;
227 struct page *page;
228
229 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
230 page = virt_to_page(pgdat);
231
232 for (i = 0; i < nr_pages; i++, page++)
233 get_page_bootmem(node, page, NODE_INFO);
234
235 pfn = pgdat->node_start_pfn;
236 end_pfn = pgdat_end_pfn(pgdat);
237
238 /* register section info */
239 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
240 /*
241 * Some platforms can assign the same pfn to multiple nodes - on
242 * node0 as well as nodeN. To avoid registering a pfn against
243 * multiple nodes we check that this pfn does not already
244 * reside in some other nodes.
245 */
246 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
247 register_page_bootmem_info_section(pfn);
248 }
249 }
250 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
251
252 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
253 const char *reason)
254 {
255 /*
256 * Disallow all operations smaller than a sub-section and only
257 * allow operations smaller than a section for
258 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
259 * enforces a larger memory_block_size_bytes() granularity for
260 * memory that will be marked online, so this check should only
261 * fire for direct arch_{add,remove}_memory() users outside of
262 * add_memory_resource().
263 */
264 unsigned long min_align;
265
266 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
267 min_align = PAGES_PER_SUBSECTION;
268 else
269 min_align = PAGES_PER_SECTION;
270 if (!IS_ALIGNED(pfn, min_align)
271 || !IS_ALIGNED(nr_pages, min_align)) {
272 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
273 reason, pfn, pfn + nr_pages - 1);
274 return -EINVAL;
275 }
276 return 0;
277 }
278
279 static int check_hotplug_memory_addressable(unsigned long pfn,
280 unsigned long nr_pages)
281 {
282 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
283
284 if (max_addr >> MAX_PHYSMEM_BITS) {
285 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
286 WARN(1,
287 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
288 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
289 return -E2BIG;
290 }
291
292 return 0;
293 }
294
295 /*
296 * Reasonably generic function for adding memory. It is
297 * expected that archs that support memory hotplug will
298 * call this function after deciding the zone to which to
299 * add the new pages.
300 */
301 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
302 struct mhp_restrictions *restrictions)
303 {
304 int err;
305 unsigned long nr, start_sec, end_sec;
306 struct vmem_altmap *altmap = restrictions->altmap;
307
308 err = check_hotplug_memory_addressable(pfn, nr_pages);
309 if (err)
310 return err;
311
312 if (altmap) {
313 /*
314 * Validate altmap is within bounds of the total request
315 */
316 if (altmap->base_pfn != pfn
317 || vmem_altmap_offset(altmap) > nr_pages) {
318 pr_warn_once("memory add fail, invalid altmap\n");
319 return -EINVAL;
320 }
321 altmap->alloc = 0;
322 }
323
324 err = check_pfn_span(pfn, nr_pages, "add");
325 if (err)
326 return err;
327
328 start_sec = pfn_to_section_nr(pfn);
329 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
330 for (nr = start_sec; nr <= end_sec; nr++) {
331 unsigned long pfns;
332
333 pfns = min(nr_pages, PAGES_PER_SECTION
334 - (pfn & ~PAGE_SECTION_MASK));
335 err = sparse_add_section(nid, pfn, pfns, altmap);
336 if (err)
337 break;
338 pfn += pfns;
339 nr_pages -= pfns;
340 cond_resched();
341 }
342 vmemmap_populate_print_last();
343 return err;
344 }
345
346 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
347 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
348 unsigned long start_pfn,
349 unsigned long end_pfn)
350 {
351 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
352 if (unlikely(!pfn_to_online_page(start_pfn)))
353 continue;
354
355 if (unlikely(pfn_to_nid(start_pfn) != nid))
356 continue;
357
358 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
359 continue;
360
361 return start_pfn;
362 }
363
364 return 0;
365 }
366
367 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
368 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
369 unsigned long start_pfn,
370 unsigned long end_pfn)
371 {
372 unsigned long pfn;
373
374 /* pfn is the end pfn of a memory section. */
375 pfn = end_pfn - 1;
376 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
377 if (unlikely(!pfn_to_online_page(pfn)))
378 continue;
379
380 if (unlikely(pfn_to_nid(pfn) != nid))
381 continue;
382
383 if (zone && zone != page_zone(pfn_to_page(pfn)))
384 continue;
385
386 return pfn;
387 }
388
389 return 0;
390 }
391
392 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
393 unsigned long end_pfn)
394 {
395 unsigned long zone_start_pfn = zone->zone_start_pfn;
396 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
397 unsigned long zone_end_pfn = z;
398 unsigned long pfn;
399 int nid = zone_to_nid(zone);
400
401 zone_span_writelock(zone);
402 if (zone_start_pfn == start_pfn) {
403 /*
404 * If the section is smallest section in the zone, it need
405 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
406 * In this case, we find second smallest valid mem_section
407 * for shrinking zone.
408 */
409 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
410 zone_end_pfn);
411 if (pfn) {
412 zone->zone_start_pfn = pfn;
413 zone->spanned_pages = zone_end_pfn - pfn;
414 }
415 } else if (zone_end_pfn == end_pfn) {
416 /*
417 * If the section is biggest section in the zone, it need
418 * shrink zone->spanned_pages.
419 * In this case, we find second biggest valid mem_section for
420 * shrinking zone.
421 */
422 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
423 start_pfn);
424 if (pfn)
425 zone->spanned_pages = pfn - zone_start_pfn + 1;
426 }
427
428 /*
429 * The section is not biggest or smallest mem_section in the zone, it
430 * only creates a hole in the zone. So in this case, we need not
431 * change the zone. But perhaps, the zone has only hole data. Thus
432 * it check the zone has only hole or not.
433 */
434 pfn = zone_start_pfn;
435 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
436 if (unlikely(!pfn_to_online_page(pfn)))
437 continue;
438
439 if (page_zone(pfn_to_page(pfn)) != zone)
440 continue;
441
442 /* Skip range to be removed */
443 if (pfn >= start_pfn && pfn < end_pfn)
444 continue;
445
446 /* If we find valid section, we have nothing to do */
447 zone_span_writeunlock(zone);
448 return;
449 }
450
451 /* The zone has no valid section */
452 zone->zone_start_pfn = 0;
453 zone->spanned_pages = 0;
454 zone_span_writeunlock(zone);
455 }
456
457 static void update_pgdat_span(struct pglist_data *pgdat)
458 {
459 unsigned long node_start_pfn = 0, node_end_pfn = 0;
460 struct zone *zone;
461
462 for (zone = pgdat->node_zones;
463 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
464 unsigned long zone_end_pfn = zone->zone_start_pfn +
465 zone->spanned_pages;
466
467 /* No need to lock the zones, they can't change. */
468 if (!zone->spanned_pages)
469 continue;
470 if (!node_end_pfn) {
471 node_start_pfn = zone->zone_start_pfn;
472 node_end_pfn = zone_end_pfn;
473 continue;
474 }
475
476 if (zone_end_pfn > node_end_pfn)
477 node_end_pfn = zone_end_pfn;
478 if (zone->zone_start_pfn < node_start_pfn)
479 node_start_pfn = zone->zone_start_pfn;
480 }
481
482 pgdat->node_start_pfn = node_start_pfn;
483 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
484 }
485
486 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
487 unsigned long nr_pages)
488 {
489 struct pglist_data *pgdat = zone->zone_pgdat;
490 unsigned long flags;
491
492 #ifdef CONFIG_ZONE_DEVICE
493 /*
494 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
495 * we will not try to shrink the zones - which is okay as
496 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
497 */
498 if (zone_idx(zone) == ZONE_DEVICE)
499 return;
500 #endif
501
502 pgdat_resize_lock(zone->zone_pgdat, &flags);
503 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
504 update_pgdat_span(pgdat);
505 pgdat_resize_unlock(zone->zone_pgdat, &flags);
506 }
507
508 static void __remove_section(struct zone *zone, unsigned long pfn,
509 unsigned long nr_pages, unsigned long map_offset,
510 struct vmem_altmap *altmap)
511 {
512 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
513
514 if (WARN_ON_ONCE(!valid_section(ms)))
515 return;
516
517 __remove_zone(zone, pfn, nr_pages);
518 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
519 }
520
521 /**
522 * __remove_pages() - remove sections of pages from a zone
523 * @zone: zone from which pages need to be removed
524 * @pfn: starting pageframe (must be aligned to start of a section)
525 * @nr_pages: number of pages to remove (must be multiple of section size)
526 * @altmap: alternative device page map or %NULL if default memmap is used
527 *
528 * Generic helper function to remove section mappings and sysfs entries
529 * for the section of the memory we are removing. Caller needs to make
530 * sure that pages are marked reserved and zones are adjust properly by
531 * calling offline_pages().
532 */
533 void __remove_pages(struct zone *zone, unsigned long pfn,
534 unsigned long nr_pages, struct vmem_altmap *altmap)
535 {
536 unsigned long map_offset = 0;
537 unsigned long nr, start_sec, end_sec;
538
539 map_offset = vmem_altmap_offset(altmap);
540
541 clear_zone_contiguous(zone);
542
543 if (check_pfn_span(pfn, nr_pages, "remove"))
544 return;
545
546 start_sec = pfn_to_section_nr(pfn);
547 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
548 for (nr = start_sec; nr <= end_sec; nr++) {
549 unsigned long pfns;
550
551 cond_resched();
552 pfns = min(nr_pages, PAGES_PER_SECTION
553 - (pfn & ~PAGE_SECTION_MASK));
554 __remove_section(zone, pfn, pfns, map_offset, altmap);
555 pfn += pfns;
556 nr_pages -= pfns;
557 map_offset = 0;
558 }
559
560 set_zone_contiguous(zone);
561 }
562
563 int set_online_page_callback(online_page_callback_t callback)
564 {
565 int rc = -EINVAL;
566
567 get_online_mems();
568 mutex_lock(&online_page_callback_lock);
569
570 if (online_page_callback == generic_online_page) {
571 online_page_callback = callback;
572 rc = 0;
573 }
574
575 mutex_unlock(&online_page_callback_lock);
576 put_online_mems();
577
578 return rc;
579 }
580 EXPORT_SYMBOL_GPL(set_online_page_callback);
581
582 int restore_online_page_callback(online_page_callback_t callback)
583 {
584 int rc = -EINVAL;
585
586 get_online_mems();
587 mutex_lock(&online_page_callback_lock);
588
589 if (online_page_callback == callback) {
590 online_page_callback = generic_online_page;
591 rc = 0;
592 }
593
594 mutex_unlock(&online_page_callback_lock);
595 put_online_mems();
596
597 return rc;
598 }
599 EXPORT_SYMBOL_GPL(restore_online_page_callback);
600
601 void generic_online_page(struct page *page, unsigned int order)
602 {
603 kernel_map_pages(page, 1 << order, 1);
604 __free_pages_core(page, order);
605 totalram_pages_add(1UL << order);
606 #ifdef CONFIG_HIGHMEM
607 if (PageHighMem(page))
608 totalhigh_pages_add(1UL << order);
609 #endif
610 }
611 EXPORT_SYMBOL_GPL(generic_online_page);
612
613 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
614 void *arg)
615 {
616 const unsigned long end_pfn = start_pfn + nr_pages;
617 unsigned long pfn;
618 int order;
619
620 /*
621 * Online the pages. The callback might decide to keep some pages
622 * PG_reserved (to add them to the buddy later), but we still account
623 * them as being online/belonging to this zone ("present").
624 */
625 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
626 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
627 /* __free_pages_core() wants pfns to be aligned to the order */
628 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
629 order = 0;
630 (*online_page_callback)(pfn_to_page(pfn), order);
631 }
632
633 /* mark all involved sections as online */
634 online_mem_sections(start_pfn, end_pfn);
635
636 *(unsigned long *)arg += nr_pages;
637 return 0;
638 }
639
640 /* check which state of node_states will be changed when online memory */
641 static void node_states_check_changes_online(unsigned long nr_pages,
642 struct zone *zone, struct memory_notify *arg)
643 {
644 int nid = zone_to_nid(zone);
645
646 arg->status_change_nid = NUMA_NO_NODE;
647 arg->status_change_nid_normal = NUMA_NO_NODE;
648 arg->status_change_nid_high = NUMA_NO_NODE;
649
650 if (!node_state(nid, N_MEMORY))
651 arg->status_change_nid = nid;
652 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
653 arg->status_change_nid_normal = nid;
654 #ifdef CONFIG_HIGHMEM
655 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
656 arg->status_change_nid_high = nid;
657 #endif
658 }
659
660 static void node_states_set_node(int node, struct memory_notify *arg)
661 {
662 if (arg->status_change_nid_normal >= 0)
663 node_set_state(node, N_NORMAL_MEMORY);
664
665 if (arg->status_change_nid_high >= 0)
666 node_set_state(node, N_HIGH_MEMORY);
667
668 if (arg->status_change_nid >= 0)
669 node_set_state(node, N_MEMORY);
670 }
671
672 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
673 unsigned long nr_pages)
674 {
675 unsigned long old_end_pfn = zone_end_pfn(zone);
676
677 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
678 zone->zone_start_pfn = start_pfn;
679
680 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
681 }
682
683 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
684 unsigned long nr_pages)
685 {
686 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
687
688 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
689 pgdat->node_start_pfn = start_pfn;
690
691 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
692
693 }
694 /*
695 * Associate the pfn range with the given zone, initializing the memmaps
696 * and resizing the pgdat/zone data to span the added pages. After this
697 * call, all affected pages are PG_reserved.
698 */
699 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
700 unsigned long nr_pages, struct vmem_altmap *altmap)
701 {
702 struct pglist_data *pgdat = zone->zone_pgdat;
703 int nid = pgdat->node_id;
704 unsigned long flags;
705
706 clear_zone_contiguous(zone);
707
708 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
709 pgdat_resize_lock(pgdat, &flags);
710 zone_span_writelock(zone);
711 if (zone_is_empty(zone))
712 init_currently_empty_zone(zone, start_pfn, nr_pages);
713 resize_zone_range(zone, start_pfn, nr_pages);
714 zone_span_writeunlock(zone);
715 resize_pgdat_range(pgdat, start_pfn, nr_pages);
716 pgdat_resize_unlock(pgdat, &flags);
717
718 /*
719 * TODO now we have a visible range of pages which are not associated
720 * with their zone properly. Not nice but set_pfnblock_flags_mask
721 * expects the zone spans the pfn range. All the pages in the range
722 * are reserved so nobody should be touching them so we should be safe
723 */
724 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
725 MEMMAP_HOTPLUG, altmap);
726
727 set_zone_contiguous(zone);
728 }
729
730 /*
731 * Returns a default kernel memory zone for the given pfn range.
732 * If no kernel zone covers this pfn range it will automatically go
733 * to the ZONE_NORMAL.
734 */
735 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
736 unsigned long nr_pages)
737 {
738 struct pglist_data *pgdat = NODE_DATA(nid);
739 int zid;
740
741 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
742 struct zone *zone = &pgdat->node_zones[zid];
743
744 if (zone_intersects(zone, start_pfn, nr_pages))
745 return zone;
746 }
747
748 return &pgdat->node_zones[ZONE_NORMAL];
749 }
750
751 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
752 unsigned long nr_pages)
753 {
754 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
755 nr_pages);
756 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
757 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
758 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
759
760 /*
761 * We inherit the existing zone in a simple case where zones do not
762 * overlap in the given range
763 */
764 if (in_kernel ^ in_movable)
765 return (in_kernel) ? kernel_zone : movable_zone;
766
767 /*
768 * If the range doesn't belong to any zone or two zones overlap in the
769 * given range then we use movable zone only if movable_node is
770 * enabled because we always online to a kernel zone by default.
771 */
772 return movable_node_enabled ? movable_zone : kernel_zone;
773 }
774
775 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
776 unsigned long nr_pages)
777 {
778 if (online_type == MMOP_ONLINE_KERNEL)
779 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
780
781 if (online_type == MMOP_ONLINE_MOVABLE)
782 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
783
784 return default_zone_for_pfn(nid, start_pfn, nr_pages);
785 }
786
787 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
788 {
789 unsigned long flags;
790 unsigned long onlined_pages = 0;
791 struct zone *zone;
792 int need_zonelists_rebuild = 0;
793 int nid;
794 int ret;
795 struct memory_notify arg;
796 struct memory_block *mem;
797
798 mem_hotplug_begin();
799
800 /*
801 * We can't use pfn_to_nid() because nid might be stored in struct page
802 * which is not yet initialized. Instead, we find nid from memory block.
803 */
804 mem = find_memory_block(__pfn_to_section(pfn));
805 nid = mem->nid;
806 put_device(&mem->dev);
807
808 /* associate pfn range with the zone */
809 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
810 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
811
812 arg.start_pfn = pfn;
813 arg.nr_pages = nr_pages;
814 node_states_check_changes_online(nr_pages, zone, &arg);
815
816 ret = memory_notify(MEM_GOING_ONLINE, &arg);
817 ret = notifier_to_errno(ret);
818 if (ret)
819 goto failed_addition;
820
821 /*
822 * If this zone is not populated, then it is not in zonelist.
823 * This means the page allocator ignores this zone.
824 * So, zonelist must be updated after online.
825 */
826 if (!populated_zone(zone)) {
827 need_zonelists_rebuild = 1;
828 setup_zone_pageset(zone);
829 }
830
831 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
832 online_pages_range);
833 if (ret) {
834 /* not a single memory resource was applicable */
835 if (need_zonelists_rebuild)
836 zone_pcp_reset(zone);
837 goto failed_addition;
838 }
839
840 zone->present_pages += onlined_pages;
841
842 pgdat_resize_lock(zone->zone_pgdat, &flags);
843 zone->zone_pgdat->node_present_pages += onlined_pages;
844 pgdat_resize_unlock(zone->zone_pgdat, &flags);
845
846 shuffle_zone(zone);
847
848 node_states_set_node(nid, &arg);
849 if (need_zonelists_rebuild)
850 build_all_zonelists(NULL);
851 else
852 zone_pcp_update(zone);
853
854 init_per_zone_wmark_min();
855
856 kswapd_run(nid);
857 kcompactd_run(nid);
858
859 vm_total_pages = nr_free_pagecache_pages();
860
861 writeback_set_ratelimit();
862
863 memory_notify(MEM_ONLINE, &arg);
864 mem_hotplug_done();
865 return 0;
866
867 failed_addition:
868 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
869 (unsigned long long) pfn << PAGE_SHIFT,
870 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
871 memory_notify(MEM_CANCEL_ONLINE, &arg);
872 mem_hotplug_done();
873 return ret;
874 }
875 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
876
877 static void reset_node_present_pages(pg_data_t *pgdat)
878 {
879 struct zone *z;
880
881 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
882 z->present_pages = 0;
883
884 pgdat->node_present_pages = 0;
885 }
886
887 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
888 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
889 {
890 struct pglist_data *pgdat;
891 unsigned long start_pfn = PFN_DOWN(start);
892
893 pgdat = NODE_DATA(nid);
894 if (!pgdat) {
895 pgdat = arch_alloc_nodedata(nid);
896 if (!pgdat)
897 return NULL;
898
899 pgdat->per_cpu_nodestats =
900 alloc_percpu(struct per_cpu_nodestat);
901 arch_refresh_nodedata(nid, pgdat);
902 } else {
903 int cpu;
904 /*
905 * Reset the nr_zones, order and classzone_idx before reuse.
906 * Note that kswapd will init kswapd_classzone_idx properly
907 * when it starts in the near future.
908 */
909 pgdat->nr_zones = 0;
910 pgdat->kswapd_order = 0;
911 pgdat->kswapd_classzone_idx = 0;
912 for_each_online_cpu(cpu) {
913 struct per_cpu_nodestat *p;
914
915 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
916 memset(p, 0, sizeof(*p));
917 }
918 }
919
920 /* we can use NODE_DATA(nid) from here */
921
922 pgdat->node_id = nid;
923 pgdat->node_start_pfn = start_pfn;
924
925 /* init node's zones as empty zones, we don't have any present pages.*/
926 free_area_init_core_hotplug(nid);
927
928 /*
929 * The node we allocated has no zone fallback lists. For avoiding
930 * to access not-initialized zonelist, build here.
931 */
932 build_all_zonelists(pgdat);
933
934 /*
935 * When memory is hot-added, all the memory is in offline state. So
936 * clear all zones' present_pages because they will be updated in
937 * online_pages() and offline_pages().
938 */
939 reset_node_managed_pages(pgdat);
940 reset_node_present_pages(pgdat);
941
942 return pgdat;
943 }
944
945 static void rollback_node_hotadd(int nid)
946 {
947 pg_data_t *pgdat = NODE_DATA(nid);
948
949 arch_refresh_nodedata(nid, NULL);
950 free_percpu(pgdat->per_cpu_nodestats);
951 arch_free_nodedata(pgdat);
952 }
953
954
955 /**
956 * try_online_node - online a node if offlined
957 * @nid: the node ID
958 * @start: start addr of the node
959 * @set_node_online: Whether we want to online the node
960 * called by cpu_up() to online a node without onlined memory.
961 *
962 * Returns:
963 * 1 -> a new node has been allocated
964 * 0 -> the node is already online
965 * -ENOMEM -> the node could not be allocated
966 */
967 static int __try_online_node(int nid, u64 start, bool set_node_online)
968 {
969 pg_data_t *pgdat;
970 int ret = 1;
971
972 if (node_online(nid))
973 return 0;
974
975 pgdat = hotadd_new_pgdat(nid, start);
976 if (!pgdat) {
977 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
978 ret = -ENOMEM;
979 goto out;
980 }
981
982 if (set_node_online) {
983 node_set_online(nid);
984 ret = register_one_node(nid);
985 BUG_ON(ret);
986 }
987 out:
988 return ret;
989 }
990
991 /*
992 * Users of this function always want to online/register the node
993 */
994 int try_online_node(int nid)
995 {
996 int ret;
997
998 mem_hotplug_begin();
999 ret = __try_online_node(nid, 0, true);
1000 mem_hotplug_done();
1001 return ret;
1002 }
1003
1004 static int check_hotplug_memory_range(u64 start, u64 size)
1005 {
1006 /* memory range must be block size aligned */
1007 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1008 !IS_ALIGNED(size, memory_block_size_bytes())) {
1009 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1010 memory_block_size_bytes(), start, size);
1011 return -EINVAL;
1012 }
1013
1014 return 0;
1015 }
1016
1017 static int online_memory_block(struct memory_block *mem, void *arg)
1018 {
1019 return device_online(&mem->dev);
1020 }
1021
1022 /*
1023 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1024 * and online/offline operations (triggered e.g. by sysfs).
1025 *
1026 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1027 */
1028 int __ref add_memory_resource(int nid, struct resource *res)
1029 {
1030 struct mhp_restrictions restrictions = {};
1031 u64 start, size;
1032 bool new_node = false;
1033 int ret;
1034
1035 start = res->start;
1036 size = resource_size(res);
1037
1038 ret = check_hotplug_memory_range(start, size);
1039 if (ret)
1040 return ret;
1041
1042 mem_hotplug_begin();
1043
1044 /*
1045 * Add new range to memblock so that when hotadd_new_pgdat() is called
1046 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1047 * this new range and calculate total pages correctly. The range will
1048 * be removed at hot-remove time.
1049 */
1050 memblock_add_node(start, size, nid);
1051
1052 ret = __try_online_node(nid, start, false);
1053 if (ret < 0)
1054 goto error;
1055 new_node = ret;
1056
1057 /* call arch's memory hotadd */
1058 ret = arch_add_memory(nid, start, size, &restrictions);
1059 if (ret < 0)
1060 goto error;
1061
1062 /* create memory block devices after memory was added */
1063 ret = create_memory_block_devices(start, size);
1064 if (ret) {
1065 arch_remove_memory(nid, start, size, NULL);
1066 goto error;
1067 }
1068
1069 if (new_node) {
1070 /* If sysfs file of new node can't be created, cpu on the node
1071 * can't be hot-added. There is no rollback way now.
1072 * So, check by BUG_ON() to catch it reluctantly..
1073 * We online node here. We can't roll back from here.
1074 */
1075 node_set_online(nid);
1076 ret = __register_one_node(nid);
1077 BUG_ON(ret);
1078 }
1079
1080 /* link memory sections under this node.*/
1081 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1082 BUG_ON(ret);
1083
1084 /* create new memmap entry */
1085 firmware_map_add_hotplug(start, start + size, "System RAM");
1086
1087 /* device_online() will take the lock when calling online_pages() */
1088 mem_hotplug_done();
1089
1090 /* online pages if requested */
1091 if (memhp_auto_online)
1092 walk_memory_blocks(start, size, NULL, online_memory_block);
1093
1094 return ret;
1095 error:
1096 /* rollback pgdat allocation and others */
1097 if (new_node)
1098 rollback_node_hotadd(nid);
1099 memblock_remove(start, size);
1100 mem_hotplug_done();
1101 return ret;
1102 }
1103
1104 /* requires device_hotplug_lock, see add_memory_resource() */
1105 int __ref __add_memory(int nid, u64 start, u64 size)
1106 {
1107 struct resource *res;
1108 int ret;
1109
1110 res = register_memory_resource(start, size);
1111 if (IS_ERR(res))
1112 return PTR_ERR(res);
1113
1114 ret = add_memory_resource(nid, res);
1115 if (ret < 0)
1116 release_memory_resource(res);
1117 return ret;
1118 }
1119
1120 int add_memory(int nid, u64 start, u64 size)
1121 {
1122 int rc;
1123
1124 lock_device_hotplug();
1125 rc = __add_memory(nid, start, size);
1126 unlock_device_hotplug();
1127
1128 return rc;
1129 }
1130 EXPORT_SYMBOL_GPL(add_memory);
1131
1132 #ifdef CONFIG_MEMORY_HOTREMOVE
1133 /*
1134 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1135 * set and the size of the free page is given by page_order(). Using this,
1136 * the function determines if the pageblock contains only free pages.
1137 * Due to buddy contraints, a free page at least the size of a pageblock will
1138 * be located at the start of the pageblock
1139 */
1140 static inline int pageblock_free(struct page *page)
1141 {
1142 return PageBuddy(page) && page_order(page) >= pageblock_order;
1143 }
1144
1145 /* Return the pfn of the start of the next active pageblock after a given pfn */
1146 static unsigned long next_active_pageblock(unsigned long pfn)
1147 {
1148 struct page *page = pfn_to_page(pfn);
1149
1150 /* Ensure the starting page is pageblock-aligned */
1151 BUG_ON(pfn & (pageblock_nr_pages - 1));
1152
1153 /* If the entire pageblock is free, move to the end of free page */
1154 if (pageblock_free(page)) {
1155 int order;
1156 /* be careful. we don't have locks, page_order can be changed.*/
1157 order = page_order(page);
1158 if ((order < MAX_ORDER) && (order >= pageblock_order))
1159 return pfn + (1 << order);
1160 }
1161
1162 return pfn + pageblock_nr_pages;
1163 }
1164
1165 static bool is_pageblock_removable_nolock(unsigned long pfn)
1166 {
1167 struct page *page = pfn_to_page(pfn);
1168 struct zone *zone;
1169
1170 /*
1171 * We have to be careful here because we are iterating over memory
1172 * sections which are not zone aware so we might end up outside of
1173 * the zone but still within the section.
1174 * We have to take care about the node as well. If the node is offline
1175 * its NODE_DATA will be NULL - see page_zone.
1176 */
1177 if (!node_online(page_to_nid(page)))
1178 return false;
1179
1180 zone = page_zone(page);
1181 pfn = page_to_pfn(page);
1182 if (!zone_spans_pfn(zone, pfn))
1183 return false;
1184
1185 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE,
1186 MEMORY_OFFLINE);
1187 }
1188
1189 /* Checks if this range of memory is likely to be hot-removable. */
1190 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1191 {
1192 unsigned long end_pfn, pfn;
1193
1194 end_pfn = min(start_pfn + nr_pages,
1195 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1196
1197 /* Check the starting page of each pageblock within the range */
1198 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1199 if (!is_pageblock_removable_nolock(pfn))
1200 return false;
1201 cond_resched();
1202 }
1203
1204 /* All pageblocks in the memory block are likely to be hot-removable */
1205 return true;
1206 }
1207
1208 /*
1209 * Confirm all pages in a range [start, end) belong to the same zone.
1210 * When true, return its valid [start, end).
1211 */
1212 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1213 unsigned long *valid_start, unsigned long *valid_end)
1214 {
1215 unsigned long pfn, sec_end_pfn;
1216 unsigned long start, end;
1217 struct zone *zone = NULL;
1218 struct page *page;
1219 int i;
1220 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1221 pfn < end_pfn;
1222 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1223 /* Make sure the memory section is present first */
1224 if (!present_section_nr(pfn_to_section_nr(pfn)))
1225 continue;
1226 for (; pfn < sec_end_pfn && pfn < end_pfn;
1227 pfn += MAX_ORDER_NR_PAGES) {
1228 i = 0;
1229 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1230 while ((i < MAX_ORDER_NR_PAGES) &&
1231 !pfn_valid_within(pfn + i))
1232 i++;
1233 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1234 continue;
1235 /* Check if we got outside of the zone */
1236 if (zone && !zone_spans_pfn(zone, pfn + i))
1237 return 0;
1238 page = pfn_to_page(pfn + i);
1239 if (zone && page_zone(page) != zone)
1240 return 0;
1241 if (!zone)
1242 start = pfn + i;
1243 zone = page_zone(page);
1244 end = pfn + MAX_ORDER_NR_PAGES;
1245 }
1246 }
1247
1248 if (zone) {
1249 *valid_start = start;
1250 *valid_end = min(end, end_pfn);
1251 return 1;
1252 } else {
1253 return 0;
1254 }
1255 }
1256
1257 /*
1258 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1259 * non-lru movable pages and hugepages). We scan pfn because it's much
1260 * easier than scanning over linked list. This function returns the pfn
1261 * of the first found movable page if it's found, otherwise 0.
1262 */
1263 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1264 {
1265 unsigned long pfn;
1266
1267 for (pfn = start; pfn < end; pfn++) {
1268 struct page *page, *head;
1269 unsigned long skip;
1270
1271 if (!pfn_valid(pfn))
1272 continue;
1273 page = pfn_to_page(pfn);
1274 if (PageLRU(page))
1275 return pfn;
1276 if (__PageMovable(page))
1277 return pfn;
1278
1279 if (!PageHuge(page))
1280 continue;
1281 head = compound_head(page);
1282 if (page_huge_active(head))
1283 return pfn;
1284 skip = compound_nr(head) - (page - head);
1285 pfn += skip - 1;
1286 }
1287 return 0;
1288 }
1289
1290 static struct page *new_node_page(struct page *page, unsigned long private)
1291 {
1292 int nid = page_to_nid(page);
1293 nodemask_t nmask = node_states[N_MEMORY];
1294
1295 /*
1296 * try to allocate from a different node but reuse this node if there
1297 * are no other online nodes to be used (e.g. we are offlining a part
1298 * of the only existing node)
1299 */
1300 node_clear(nid, nmask);
1301 if (nodes_empty(nmask))
1302 node_set(nid, nmask);
1303
1304 return new_page_nodemask(page, nid, &nmask);
1305 }
1306
1307 static int
1308 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1309 {
1310 unsigned long pfn;
1311 struct page *page;
1312 int ret = 0;
1313 LIST_HEAD(source);
1314
1315 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1316 if (!pfn_valid(pfn))
1317 continue;
1318 page = pfn_to_page(pfn);
1319
1320 if (PageHuge(page)) {
1321 struct page *head = compound_head(page);
1322 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1323 isolate_huge_page(head, &source);
1324 continue;
1325 } else if (PageTransHuge(page))
1326 pfn = page_to_pfn(compound_head(page))
1327 + hpage_nr_pages(page) - 1;
1328
1329 /*
1330 * HWPoison pages have elevated reference counts so the migration would
1331 * fail on them. It also doesn't make any sense to migrate them in the
1332 * first place. Still try to unmap such a page in case it is still mapped
1333 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1334 * the unmap as the catch all safety net).
1335 */
1336 if (PageHWPoison(page)) {
1337 if (WARN_ON(PageLRU(page)))
1338 isolate_lru_page(page);
1339 if (page_mapped(page))
1340 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1341 continue;
1342 }
1343
1344 if (!get_page_unless_zero(page))
1345 continue;
1346 /*
1347 * We can skip free pages. And we can deal with pages on
1348 * LRU and non-lru movable pages.
1349 */
1350 if (PageLRU(page))
1351 ret = isolate_lru_page(page);
1352 else
1353 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1354 if (!ret) { /* Success */
1355 list_add_tail(&page->lru, &source);
1356 if (!__PageMovable(page))
1357 inc_node_page_state(page, NR_ISOLATED_ANON +
1358 page_is_file_cache(page));
1359
1360 } else {
1361 pr_warn("failed to isolate pfn %lx\n", pfn);
1362 dump_page(page, "isolation failed");
1363 }
1364 put_page(page);
1365 }
1366 if (!list_empty(&source)) {
1367 /* Allocate a new page from the nearest neighbor node */
1368 ret = migrate_pages(&source, new_node_page, NULL, 0,
1369 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1370 if (ret) {
1371 list_for_each_entry(page, &source, lru) {
1372 pr_warn("migrating pfn %lx failed ret:%d ",
1373 page_to_pfn(page), ret);
1374 dump_page(page, "migration failure");
1375 }
1376 putback_movable_pages(&source);
1377 }
1378 }
1379
1380 return ret;
1381 }
1382
1383 /* Mark all sections offline and remove all free pages from the buddy. */
1384 static int
1385 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1386 void *data)
1387 {
1388 unsigned long *offlined_pages = (unsigned long *)data;
1389
1390 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1391 return 0;
1392 }
1393
1394 /*
1395 * Check all pages in range, recoreded as memory resource, are isolated.
1396 */
1397 static int
1398 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1399 void *data)
1400 {
1401 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1402 MEMORY_OFFLINE);
1403 }
1404
1405 static int __init cmdline_parse_movable_node(char *p)
1406 {
1407 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1408 movable_node_enabled = true;
1409 #else
1410 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1411 #endif
1412 return 0;
1413 }
1414 early_param("movable_node", cmdline_parse_movable_node);
1415
1416 /* check which state of node_states will be changed when offline memory */
1417 static void node_states_check_changes_offline(unsigned long nr_pages,
1418 struct zone *zone, struct memory_notify *arg)
1419 {
1420 struct pglist_data *pgdat = zone->zone_pgdat;
1421 unsigned long present_pages = 0;
1422 enum zone_type zt;
1423
1424 arg->status_change_nid = NUMA_NO_NODE;
1425 arg->status_change_nid_normal = NUMA_NO_NODE;
1426 arg->status_change_nid_high = NUMA_NO_NODE;
1427
1428 /*
1429 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1430 * If the memory to be offline is within the range
1431 * [0..ZONE_NORMAL], and it is the last present memory there,
1432 * the zones in that range will become empty after the offlining,
1433 * thus we can determine that we need to clear the node from
1434 * node_states[N_NORMAL_MEMORY].
1435 */
1436 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1437 present_pages += pgdat->node_zones[zt].present_pages;
1438 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1439 arg->status_change_nid_normal = zone_to_nid(zone);
1440
1441 #ifdef CONFIG_HIGHMEM
1442 /*
1443 * node_states[N_HIGH_MEMORY] contains nodes which
1444 * have normal memory or high memory.
1445 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1446 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1447 * we determine that the zones in that range become empty,
1448 * we need to clear the node for N_HIGH_MEMORY.
1449 */
1450 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1451 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1452 arg->status_change_nid_high = zone_to_nid(zone);
1453 #endif
1454
1455 /*
1456 * We have accounted the pages from [0..ZONE_NORMAL), and
1457 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1458 * as well.
1459 * Here we count the possible pages from ZONE_MOVABLE.
1460 * If after having accounted all the pages, we see that the nr_pages
1461 * to be offlined is over or equal to the accounted pages,
1462 * we know that the node will become empty, and so, we can clear
1463 * it for N_MEMORY as well.
1464 */
1465 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1466
1467 if (nr_pages >= present_pages)
1468 arg->status_change_nid = zone_to_nid(zone);
1469 }
1470
1471 static void node_states_clear_node(int node, struct memory_notify *arg)
1472 {
1473 if (arg->status_change_nid_normal >= 0)
1474 node_clear_state(node, N_NORMAL_MEMORY);
1475
1476 if (arg->status_change_nid_high >= 0)
1477 node_clear_state(node, N_HIGH_MEMORY);
1478
1479 if (arg->status_change_nid >= 0)
1480 node_clear_state(node, N_MEMORY);
1481 }
1482
1483 static int count_system_ram_pages_cb(unsigned long start_pfn,
1484 unsigned long nr_pages, void *data)
1485 {
1486 unsigned long *nr_system_ram_pages = data;
1487
1488 *nr_system_ram_pages += nr_pages;
1489 return 0;
1490 }
1491
1492 static int __ref __offline_pages(unsigned long start_pfn,
1493 unsigned long end_pfn)
1494 {
1495 unsigned long pfn, nr_pages = 0;
1496 unsigned long offlined_pages = 0;
1497 int ret, node, nr_isolate_pageblock;
1498 unsigned long flags;
1499 unsigned long valid_start, valid_end;
1500 struct zone *zone;
1501 struct memory_notify arg;
1502 char *reason;
1503
1504 mem_hotplug_begin();
1505
1506 /*
1507 * Don't allow to offline memory blocks that contain holes.
1508 * Consequently, memory blocks with holes can never get onlined
1509 * via the hotplug path - online_pages() - as hotplugged memory has
1510 * no holes. This way, we e.g., don't have to worry about marking
1511 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1512 * avoid using walk_system_ram_range() later.
1513 */
1514 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1515 count_system_ram_pages_cb);
1516 if (nr_pages != end_pfn - start_pfn) {
1517 ret = -EINVAL;
1518 reason = "memory holes";
1519 goto failed_removal;
1520 }
1521
1522 /* This makes hotplug much easier...and readable.
1523 we assume this for now. .*/
1524 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1525 &valid_end)) {
1526 ret = -EINVAL;
1527 reason = "multizone range";
1528 goto failed_removal;
1529 }
1530
1531 zone = page_zone(pfn_to_page(valid_start));
1532 node = zone_to_nid(zone);
1533
1534 /* set above range as isolated */
1535 ret = start_isolate_page_range(start_pfn, end_pfn,
1536 MIGRATE_MOVABLE,
1537 MEMORY_OFFLINE | REPORT_FAILURE);
1538 if (ret < 0) {
1539 reason = "failure to isolate range";
1540 goto failed_removal;
1541 }
1542 nr_isolate_pageblock = ret;
1543
1544 arg.start_pfn = start_pfn;
1545 arg.nr_pages = nr_pages;
1546 node_states_check_changes_offline(nr_pages, zone, &arg);
1547
1548 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1549 ret = notifier_to_errno(ret);
1550 if (ret) {
1551 reason = "notifier failure";
1552 goto failed_removal_isolated;
1553 }
1554
1555 do {
1556 for (pfn = start_pfn; pfn;) {
1557 if (signal_pending(current)) {
1558 ret = -EINTR;
1559 reason = "signal backoff";
1560 goto failed_removal_isolated;
1561 }
1562
1563 cond_resched();
1564 lru_add_drain_all();
1565
1566 pfn = scan_movable_pages(pfn, end_pfn);
1567 if (pfn) {
1568 /*
1569 * TODO: fatal migration failures should bail
1570 * out
1571 */
1572 do_migrate_range(pfn, end_pfn);
1573 }
1574 }
1575
1576 /*
1577 * Dissolve free hugepages in the memory block before doing
1578 * offlining actually in order to make hugetlbfs's object
1579 * counting consistent.
1580 */
1581 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1582 if (ret) {
1583 reason = "failure to dissolve huge pages";
1584 goto failed_removal_isolated;
1585 }
1586 /* check again */
1587 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1588 NULL, check_pages_isolated_cb);
1589 } while (ret);
1590
1591 /* Ok, all of our target is isolated.
1592 We cannot do rollback at this point. */
1593 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1594 &offlined_pages, offline_isolated_pages_cb);
1595 pr_info("Offlined Pages %ld\n", offlined_pages);
1596 /*
1597 * Onlining will reset pagetype flags and makes migrate type
1598 * MOVABLE, so just need to decrease the number of isolated
1599 * pageblocks zone counter here.
1600 */
1601 spin_lock_irqsave(&zone->lock, flags);
1602 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1603 spin_unlock_irqrestore(&zone->lock, flags);
1604
1605 /* removal success */
1606 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1607 zone->present_pages -= offlined_pages;
1608
1609 pgdat_resize_lock(zone->zone_pgdat, &flags);
1610 zone->zone_pgdat->node_present_pages -= offlined_pages;
1611 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1612
1613 init_per_zone_wmark_min();
1614
1615 if (!populated_zone(zone)) {
1616 zone_pcp_reset(zone);
1617 build_all_zonelists(NULL);
1618 } else
1619 zone_pcp_update(zone);
1620
1621 node_states_clear_node(node, &arg);
1622 if (arg.status_change_nid >= 0) {
1623 kswapd_stop(node);
1624 kcompactd_stop(node);
1625 }
1626
1627 vm_total_pages = nr_free_pagecache_pages();
1628 writeback_set_ratelimit();
1629
1630 memory_notify(MEM_OFFLINE, &arg);
1631 mem_hotplug_done();
1632 return 0;
1633
1634 failed_removal_isolated:
1635 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1636 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1637 failed_removal:
1638 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1639 (unsigned long long) start_pfn << PAGE_SHIFT,
1640 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1641 reason);
1642 /* pushback to free area */
1643 mem_hotplug_done();
1644 return ret;
1645 }
1646
1647 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1648 {
1649 return __offline_pages(start_pfn, start_pfn + nr_pages);
1650 }
1651
1652 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1653 {
1654 int ret = !is_memblock_offlined(mem);
1655
1656 if (unlikely(ret)) {
1657 phys_addr_t beginpa, endpa;
1658
1659 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1660 endpa = beginpa + memory_block_size_bytes() - 1;
1661 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1662 &beginpa, &endpa);
1663
1664 return -EBUSY;
1665 }
1666 return 0;
1667 }
1668
1669 static int check_cpu_on_node(pg_data_t *pgdat)
1670 {
1671 int cpu;
1672
1673 for_each_present_cpu(cpu) {
1674 if (cpu_to_node(cpu) == pgdat->node_id)
1675 /*
1676 * the cpu on this node isn't removed, and we can't
1677 * offline this node.
1678 */
1679 return -EBUSY;
1680 }
1681
1682 return 0;
1683 }
1684
1685 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1686 {
1687 int nid = *(int *)arg;
1688
1689 /*
1690 * If a memory block belongs to multiple nodes, the stored nid is not
1691 * reliable. However, such blocks are always online (e.g., cannot get
1692 * offlined) and, therefore, are still spanned by the node.
1693 */
1694 return mem->nid == nid ? -EEXIST : 0;
1695 }
1696
1697 /**
1698 * try_offline_node
1699 * @nid: the node ID
1700 *
1701 * Offline a node if all memory sections and cpus of the node are removed.
1702 *
1703 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1704 * and online/offline operations before this call.
1705 */
1706 void try_offline_node(int nid)
1707 {
1708 pg_data_t *pgdat = NODE_DATA(nid);
1709 int rc;
1710
1711 /*
1712 * If the node still spans pages (especially ZONE_DEVICE), don't
1713 * offline it. A node spans memory after move_pfn_range_to_zone(),
1714 * e.g., after the memory block was onlined.
1715 */
1716 if (pgdat->node_spanned_pages)
1717 return;
1718
1719 /*
1720 * Especially offline memory blocks might not be spanned by the
1721 * node. They will get spanned by the node once they get onlined.
1722 * However, they link to the node in sysfs and can get onlined later.
1723 */
1724 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1725 if (rc)
1726 return;
1727
1728 if (check_cpu_on_node(pgdat))
1729 return;
1730
1731 /*
1732 * all memory/cpu of this node are removed, we can offline this
1733 * node now.
1734 */
1735 node_set_offline(nid);
1736 unregister_one_node(nid);
1737 }
1738 EXPORT_SYMBOL(try_offline_node);
1739
1740 static void __release_memory_resource(resource_size_t start,
1741 resource_size_t size)
1742 {
1743 int ret;
1744
1745 /*
1746 * When removing memory in the same granularity as it was added,
1747 * this function never fails. It might only fail if resources
1748 * have to be adjusted or split. We'll ignore the error, as
1749 * removing of memory cannot fail.
1750 */
1751 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1752 if (ret) {
1753 resource_size_t endres = start + size - 1;
1754
1755 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1756 &start, &endres, ret);
1757 }
1758 }
1759
1760 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1761 {
1762 int rc = 0;
1763
1764 BUG_ON(check_hotplug_memory_range(start, size));
1765
1766 mem_hotplug_begin();
1767
1768 /*
1769 * All memory blocks must be offlined before removing memory. Check
1770 * whether all memory blocks in question are offline and return error
1771 * if this is not the case.
1772 */
1773 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1774 if (rc)
1775 goto done;
1776
1777 /* remove memmap entry */
1778 firmware_map_remove(start, start + size, "System RAM");
1779
1780 /* remove memory block devices before removing memory */
1781 remove_memory_block_devices(start, size);
1782
1783 arch_remove_memory(nid, start, size, NULL);
1784 memblock_free(start, size);
1785 memblock_remove(start, size);
1786 __release_memory_resource(start, size);
1787
1788 try_offline_node(nid);
1789
1790 done:
1791 mem_hotplug_done();
1792 return rc;
1793 }
1794
1795 /**
1796 * remove_memory
1797 * @nid: the node ID
1798 * @start: physical address of the region to remove
1799 * @size: size of the region to remove
1800 *
1801 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1802 * and online/offline operations before this call, as required by
1803 * try_offline_node().
1804 */
1805 void __remove_memory(int nid, u64 start, u64 size)
1806 {
1807
1808 /*
1809 * trigger BUG() if some memory is not offlined prior to calling this
1810 * function
1811 */
1812 if (try_remove_memory(nid, start, size))
1813 BUG();
1814 }
1815
1816 /*
1817 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1818 * some memory is not offline
1819 */
1820 int remove_memory(int nid, u64 start, u64 size)
1821 {
1822 int rc;
1823
1824 lock_device_hotplug();
1825 rc = try_remove_memory(nid, start, size);
1826 unlock_device_hotplug();
1827
1828 return rc;
1829 }
1830 EXPORT_SYMBOL_GPL(remove_memory);
1831 #endif /* CONFIG_MEMORY_HOTREMOVE */