]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memory_hotplug.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57 void get_online_mems(void)
58 {
59 percpu_down_read(&mem_hotplug_lock);
60 }
61
62 void put_online_mems(void)
63 {
64 percpu_up_read(&mem_hotplug_lock);
65 }
66
67 bool movable_node_enabled = false;
68
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74
75 static int __init setup_memhp_default_state(char *str)
76 {
77 const int online_type = memhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
81
82 return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85
86 void mem_hotplug_begin(void)
87 {
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90 }
91
92 void mem_hotplug_done(void)
93 {
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96 }
97
98 u64 max_mem_size = U64_MAX;
99
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size)
102 {
103 struct resource *res;
104 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
105 char *resource_name = "System RAM";
106
107 /*
108 * Make sure value parsed from 'mem=' only restricts memory adding
109 * while booting, so that memory hotplug won't be impacted. Please
110 * refer to document of 'mem=' in kernel-parameters.txt for more
111 * details.
112 */
113 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
114 return ERR_PTR(-E2BIG);
115
116 /*
117 * Request ownership of the new memory range. This might be
118 * a child of an existing resource that was present but
119 * not marked as busy.
120 */
121 res = __request_region(&iomem_resource, start, size,
122 resource_name, flags);
123
124 if (!res) {
125 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
126 start, start + size);
127 return ERR_PTR(-EEXIST);
128 }
129 return res;
130 }
131
132 static void release_memory_resource(struct resource *res)
133 {
134 if (!res)
135 return;
136 release_resource(res);
137 kfree(res);
138 }
139
140 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
141 void get_page_bootmem(unsigned long info, struct page *page,
142 unsigned long type)
143 {
144 page->freelist = (void *)type;
145 SetPagePrivate(page);
146 set_page_private(page, info);
147 page_ref_inc(page);
148 }
149
150 void put_page_bootmem(struct page *page)
151 {
152 unsigned long type;
153
154 type = (unsigned long) page->freelist;
155 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
156 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
157
158 if (page_ref_dec_return(page) == 1) {
159 page->freelist = NULL;
160 ClearPagePrivate(page);
161 set_page_private(page, 0);
162 INIT_LIST_HEAD(&page->lru);
163 free_reserved_page(page);
164 }
165 }
166
167 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
168 #ifndef CONFIG_SPARSEMEM_VMEMMAP
169 static void register_page_bootmem_info_section(unsigned long start_pfn)
170 {
171 unsigned long mapsize, section_nr, i;
172 struct mem_section *ms;
173 struct page *page, *memmap;
174 struct mem_section_usage *usage;
175
176 section_nr = pfn_to_section_nr(start_pfn);
177 ms = __nr_to_section(section_nr);
178
179 /* Get section's memmap address */
180 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
181
182 /*
183 * Get page for the memmap's phys address
184 * XXX: need more consideration for sparse_vmemmap...
185 */
186 page = virt_to_page(memmap);
187 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
188 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
189
190 /* remember memmap's page */
191 for (i = 0; i < mapsize; i++, page++)
192 get_page_bootmem(section_nr, page, SECTION_INFO);
193
194 usage = ms->usage;
195 page = virt_to_page(usage);
196
197 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
198
199 for (i = 0; i < mapsize; i++, page++)
200 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
201
202 }
203 #else /* CONFIG_SPARSEMEM_VMEMMAP */
204 static void register_page_bootmem_info_section(unsigned long start_pfn)
205 {
206 unsigned long mapsize, section_nr, i;
207 struct mem_section *ms;
208 struct page *page, *memmap;
209 struct mem_section_usage *usage;
210
211 section_nr = pfn_to_section_nr(start_pfn);
212 ms = __nr_to_section(section_nr);
213
214 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
215
216 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
217
218 usage = ms->usage;
219 page = virt_to_page(usage);
220
221 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
222
223 for (i = 0; i < mapsize; i++, page++)
224 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
225 }
226 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
227
228 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
229 {
230 unsigned long i, pfn, end_pfn, nr_pages;
231 int node = pgdat->node_id;
232 struct page *page;
233
234 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
235 page = virt_to_page(pgdat);
236
237 for (i = 0; i < nr_pages; i++, page++)
238 get_page_bootmem(node, page, NODE_INFO);
239
240 pfn = pgdat->node_start_pfn;
241 end_pfn = pgdat_end_pfn(pgdat);
242
243 /* register section info */
244 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
245 /*
246 * Some platforms can assign the same pfn to multiple nodes - on
247 * node0 as well as nodeN. To avoid registering a pfn against
248 * multiple nodes we check that this pfn does not already
249 * reside in some other nodes.
250 */
251 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
252 register_page_bootmem_info_section(pfn);
253 }
254 }
255 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
256
257 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
258 const char *reason)
259 {
260 /*
261 * Disallow all operations smaller than a sub-section and only
262 * allow operations smaller than a section for
263 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
264 * enforces a larger memory_block_size_bytes() granularity for
265 * memory that will be marked online, so this check should only
266 * fire for direct arch_{add,remove}_memory() users outside of
267 * add_memory_resource().
268 */
269 unsigned long min_align;
270
271 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
272 min_align = PAGES_PER_SUBSECTION;
273 else
274 min_align = PAGES_PER_SECTION;
275 if (!IS_ALIGNED(pfn, min_align)
276 || !IS_ALIGNED(nr_pages, min_align)) {
277 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
278 reason, pfn, pfn + nr_pages - 1);
279 return -EINVAL;
280 }
281 return 0;
282 }
283
284 static int check_hotplug_memory_addressable(unsigned long pfn,
285 unsigned long nr_pages)
286 {
287 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
288
289 if (max_addr >> MAX_PHYSMEM_BITS) {
290 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
291 WARN(1,
292 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
293 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
294 return -E2BIG;
295 }
296
297 return 0;
298 }
299
300 /*
301 * Reasonably generic function for adding memory. It is
302 * expected that archs that support memory hotplug will
303 * call this function after deciding the zone to which to
304 * add the new pages.
305 */
306 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
307 struct mhp_params *params)
308 {
309 const unsigned long end_pfn = pfn + nr_pages;
310 unsigned long cur_nr_pages;
311 int err;
312 struct vmem_altmap *altmap = params->altmap;
313
314 if (WARN_ON_ONCE(!params->pgprot.pgprot))
315 return -EINVAL;
316
317 err = check_hotplug_memory_addressable(pfn, nr_pages);
318 if (err)
319 return err;
320
321 if (altmap) {
322 /*
323 * Validate altmap is within bounds of the total request
324 */
325 if (altmap->base_pfn != pfn
326 || vmem_altmap_offset(altmap) > nr_pages) {
327 pr_warn_once("memory add fail, invalid altmap\n");
328 return -EINVAL;
329 }
330 altmap->alloc = 0;
331 }
332
333 err = check_pfn_span(pfn, nr_pages, "add");
334 if (err)
335 return err;
336
337 for (; pfn < end_pfn; pfn += cur_nr_pages) {
338 /* Select all remaining pages up to the next section boundary */
339 cur_nr_pages = min(end_pfn - pfn,
340 SECTION_ALIGN_UP(pfn + 1) - pfn);
341 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
342 if (err)
343 break;
344 cond_resched();
345 }
346 vmemmap_populate_print_last();
347 return err;
348 }
349
350 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
351 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
352 unsigned long start_pfn,
353 unsigned long end_pfn)
354 {
355 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
356 if (unlikely(!pfn_to_online_page(start_pfn)))
357 continue;
358
359 if (unlikely(pfn_to_nid(start_pfn) != nid))
360 continue;
361
362 if (zone != page_zone(pfn_to_page(start_pfn)))
363 continue;
364
365 return start_pfn;
366 }
367
368 return 0;
369 }
370
371 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
372 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
373 unsigned long start_pfn,
374 unsigned long end_pfn)
375 {
376 unsigned long pfn;
377
378 /* pfn is the end pfn of a memory section. */
379 pfn = end_pfn - 1;
380 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
381 if (unlikely(!pfn_to_online_page(pfn)))
382 continue;
383
384 if (unlikely(pfn_to_nid(pfn) != nid))
385 continue;
386
387 if (zone != page_zone(pfn_to_page(pfn)))
388 continue;
389
390 return pfn;
391 }
392
393 return 0;
394 }
395
396 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
397 unsigned long end_pfn)
398 {
399 unsigned long pfn;
400 int nid = zone_to_nid(zone);
401
402 zone_span_writelock(zone);
403 if (zone->zone_start_pfn == start_pfn) {
404 /*
405 * If the section is smallest section in the zone, it need
406 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
407 * In this case, we find second smallest valid mem_section
408 * for shrinking zone.
409 */
410 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
411 zone_end_pfn(zone));
412 if (pfn) {
413 zone->spanned_pages = zone_end_pfn(zone) - pfn;
414 zone->zone_start_pfn = pfn;
415 } else {
416 zone->zone_start_pfn = 0;
417 zone->spanned_pages = 0;
418 }
419 } else if (zone_end_pfn(zone) == end_pfn) {
420 /*
421 * If the section is biggest section in the zone, it need
422 * shrink zone->spanned_pages.
423 * In this case, we find second biggest valid mem_section for
424 * shrinking zone.
425 */
426 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
427 start_pfn);
428 if (pfn)
429 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
430 else {
431 zone->zone_start_pfn = 0;
432 zone->spanned_pages = 0;
433 }
434 }
435 zone_span_writeunlock(zone);
436 }
437
438 static void update_pgdat_span(struct pglist_data *pgdat)
439 {
440 unsigned long node_start_pfn = 0, node_end_pfn = 0;
441 struct zone *zone;
442
443 for (zone = pgdat->node_zones;
444 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
445 unsigned long zone_end_pfn = zone->zone_start_pfn +
446 zone->spanned_pages;
447
448 /* No need to lock the zones, they can't change. */
449 if (!zone->spanned_pages)
450 continue;
451 if (!node_end_pfn) {
452 node_start_pfn = zone->zone_start_pfn;
453 node_end_pfn = zone_end_pfn;
454 continue;
455 }
456
457 if (zone_end_pfn > node_end_pfn)
458 node_end_pfn = zone_end_pfn;
459 if (zone->zone_start_pfn < node_start_pfn)
460 node_start_pfn = zone->zone_start_pfn;
461 }
462
463 pgdat->node_start_pfn = node_start_pfn;
464 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
465 }
466
467 void __ref remove_pfn_range_from_zone(struct zone *zone,
468 unsigned long start_pfn,
469 unsigned long nr_pages)
470 {
471 struct pglist_data *pgdat = zone->zone_pgdat;
472 unsigned long flags;
473
474 /* Poison struct pages because they are now uninitialized again. */
475 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
476
477 #ifdef CONFIG_ZONE_DEVICE
478 /*
479 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
480 * we will not try to shrink the zones - which is okay as
481 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
482 */
483 if (zone_idx(zone) == ZONE_DEVICE)
484 return;
485 #endif
486
487 clear_zone_contiguous(zone);
488
489 pgdat_resize_lock(zone->zone_pgdat, &flags);
490 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
491 update_pgdat_span(pgdat);
492 pgdat_resize_unlock(zone->zone_pgdat, &flags);
493
494 set_zone_contiguous(zone);
495 }
496
497 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
498 unsigned long map_offset,
499 struct vmem_altmap *altmap)
500 {
501 struct mem_section *ms = __pfn_to_section(pfn);
502
503 if (WARN_ON_ONCE(!valid_section(ms)))
504 return;
505
506 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
507 }
508
509 /**
510 * __remove_pages() - remove sections of pages
511 * @pfn: starting pageframe (must be aligned to start of a section)
512 * @nr_pages: number of pages to remove (must be multiple of section size)
513 * @altmap: alternative device page map or %NULL if default memmap is used
514 *
515 * Generic helper function to remove section mappings and sysfs entries
516 * for the section of the memory we are removing. Caller needs to make
517 * sure that pages are marked reserved and zones are adjust properly by
518 * calling offline_pages().
519 */
520 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
521 struct vmem_altmap *altmap)
522 {
523 const unsigned long end_pfn = pfn + nr_pages;
524 unsigned long cur_nr_pages;
525 unsigned long map_offset = 0;
526
527 map_offset = vmem_altmap_offset(altmap);
528
529 if (check_pfn_span(pfn, nr_pages, "remove"))
530 return;
531
532 for (; pfn < end_pfn; pfn += cur_nr_pages) {
533 cond_resched();
534 /* Select all remaining pages up to the next section boundary */
535 cur_nr_pages = min(end_pfn - pfn,
536 SECTION_ALIGN_UP(pfn + 1) - pfn);
537 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
538 map_offset = 0;
539 }
540 }
541
542 int set_online_page_callback(online_page_callback_t callback)
543 {
544 int rc = -EINVAL;
545
546 get_online_mems();
547 mutex_lock(&online_page_callback_lock);
548
549 if (online_page_callback == generic_online_page) {
550 online_page_callback = callback;
551 rc = 0;
552 }
553
554 mutex_unlock(&online_page_callback_lock);
555 put_online_mems();
556
557 return rc;
558 }
559 EXPORT_SYMBOL_GPL(set_online_page_callback);
560
561 int restore_online_page_callback(online_page_callback_t callback)
562 {
563 int rc = -EINVAL;
564
565 get_online_mems();
566 mutex_lock(&online_page_callback_lock);
567
568 if (online_page_callback == callback) {
569 online_page_callback = generic_online_page;
570 rc = 0;
571 }
572
573 mutex_unlock(&online_page_callback_lock);
574 put_online_mems();
575
576 return rc;
577 }
578 EXPORT_SYMBOL_GPL(restore_online_page_callback);
579
580 void generic_online_page(struct page *page, unsigned int order)
581 {
582 /*
583 * Freeing the page with debug_pagealloc enabled will try to unmap it,
584 * so we should map it first. This is better than introducing a special
585 * case in page freeing fast path.
586 */
587 if (debug_pagealloc_enabled_static())
588 kernel_map_pages(page, 1 << order, 1);
589 __free_pages_core(page, order);
590 totalram_pages_add(1UL << order);
591 #ifdef CONFIG_HIGHMEM
592 if (PageHighMem(page))
593 totalhigh_pages_add(1UL << order);
594 #endif
595 }
596 EXPORT_SYMBOL_GPL(generic_online_page);
597
598 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
599 void *arg)
600 {
601 const unsigned long end_pfn = start_pfn + nr_pages;
602 unsigned long pfn;
603 int order;
604
605 /*
606 * Online the pages. The callback might decide to keep some pages
607 * PG_reserved (to add them to the buddy later), but we still account
608 * them as being online/belonging to this zone ("present").
609 */
610 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
611 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
612 /* __free_pages_core() wants pfns to be aligned to the order */
613 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
614 order = 0;
615 (*online_page_callback)(pfn_to_page(pfn), order);
616 }
617
618 /* mark all involved sections as online */
619 online_mem_sections(start_pfn, end_pfn);
620
621 *(unsigned long *)arg += nr_pages;
622 return 0;
623 }
624
625 /* check which state of node_states will be changed when online memory */
626 static void node_states_check_changes_online(unsigned long nr_pages,
627 struct zone *zone, struct memory_notify *arg)
628 {
629 int nid = zone_to_nid(zone);
630
631 arg->status_change_nid = NUMA_NO_NODE;
632 arg->status_change_nid_normal = NUMA_NO_NODE;
633 arg->status_change_nid_high = NUMA_NO_NODE;
634
635 if (!node_state(nid, N_MEMORY))
636 arg->status_change_nid = nid;
637 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
638 arg->status_change_nid_normal = nid;
639 #ifdef CONFIG_HIGHMEM
640 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
641 arg->status_change_nid_high = nid;
642 #endif
643 }
644
645 static void node_states_set_node(int node, struct memory_notify *arg)
646 {
647 if (arg->status_change_nid_normal >= 0)
648 node_set_state(node, N_NORMAL_MEMORY);
649
650 if (arg->status_change_nid_high >= 0)
651 node_set_state(node, N_HIGH_MEMORY);
652
653 if (arg->status_change_nid >= 0)
654 node_set_state(node, N_MEMORY);
655 }
656
657 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
658 unsigned long nr_pages)
659 {
660 unsigned long old_end_pfn = zone_end_pfn(zone);
661
662 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
663 zone->zone_start_pfn = start_pfn;
664
665 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
666 }
667
668 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
669 unsigned long nr_pages)
670 {
671 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
672
673 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
674 pgdat->node_start_pfn = start_pfn;
675
676 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
677
678 }
679 /*
680 * Associate the pfn range with the given zone, initializing the memmaps
681 * and resizing the pgdat/zone data to span the added pages. After this
682 * call, all affected pages are PG_reserved.
683 */
684 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
685 unsigned long nr_pages, struct vmem_altmap *altmap)
686 {
687 struct pglist_data *pgdat = zone->zone_pgdat;
688 int nid = pgdat->node_id;
689 unsigned long flags;
690
691 clear_zone_contiguous(zone);
692
693 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
694 pgdat_resize_lock(pgdat, &flags);
695 zone_span_writelock(zone);
696 if (zone_is_empty(zone))
697 init_currently_empty_zone(zone, start_pfn, nr_pages);
698 resize_zone_range(zone, start_pfn, nr_pages);
699 zone_span_writeunlock(zone);
700 resize_pgdat_range(pgdat, start_pfn, nr_pages);
701 pgdat_resize_unlock(pgdat, &flags);
702
703 /*
704 * TODO now we have a visible range of pages which are not associated
705 * with their zone properly. Not nice but set_pfnblock_flags_mask
706 * expects the zone spans the pfn range. All the pages in the range
707 * are reserved so nobody should be touching them so we should be safe
708 */
709 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
710 MEMMAP_HOTPLUG, altmap);
711
712 set_zone_contiguous(zone);
713 }
714
715 /*
716 * Returns a default kernel memory zone for the given pfn range.
717 * If no kernel zone covers this pfn range it will automatically go
718 * to the ZONE_NORMAL.
719 */
720 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
721 unsigned long nr_pages)
722 {
723 struct pglist_data *pgdat = NODE_DATA(nid);
724 int zid;
725
726 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
727 struct zone *zone = &pgdat->node_zones[zid];
728
729 if (zone_intersects(zone, start_pfn, nr_pages))
730 return zone;
731 }
732
733 return &pgdat->node_zones[ZONE_NORMAL];
734 }
735
736 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
737 unsigned long nr_pages)
738 {
739 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
740 nr_pages);
741 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
742 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
743 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
744
745 /*
746 * We inherit the existing zone in a simple case where zones do not
747 * overlap in the given range
748 */
749 if (in_kernel ^ in_movable)
750 return (in_kernel) ? kernel_zone : movable_zone;
751
752 /*
753 * If the range doesn't belong to any zone or two zones overlap in the
754 * given range then we use movable zone only if movable_node is
755 * enabled because we always online to a kernel zone by default.
756 */
757 return movable_node_enabled ? movable_zone : kernel_zone;
758 }
759
760 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
761 unsigned long nr_pages)
762 {
763 if (online_type == MMOP_ONLINE_KERNEL)
764 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
765
766 if (online_type == MMOP_ONLINE_MOVABLE)
767 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
768
769 return default_zone_for_pfn(nid, start_pfn, nr_pages);
770 }
771
772 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
773 int online_type, int nid)
774 {
775 unsigned long flags;
776 unsigned long onlined_pages = 0;
777 struct zone *zone;
778 int need_zonelists_rebuild = 0;
779 int ret;
780 struct memory_notify arg;
781
782 mem_hotplug_begin();
783
784 /* associate pfn range with the zone */
785 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
786 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
787
788 arg.start_pfn = pfn;
789 arg.nr_pages = nr_pages;
790 node_states_check_changes_online(nr_pages, zone, &arg);
791
792 ret = memory_notify(MEM_GOING_ONLINE, &arg);
793 ret = notifier_to_errno(ret);
794 if (ret)
795 goto failed_addition;
796
797 /*
798 * If this zone is not populated, then it is not in zonelist.
799 * This means the page allocator ignores this zone.
800 * So, zonelist must be updated after online.
801 */
802 if (!populated_zone(zone)) {
803 need_zonelists_rebuild = 1;
804 setup_zone_pageset(zone);
805 }
806
807 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
808 online_pages_range);
809 if (ret) {
810 /* not a single memory resource was applicable */
811 if (need_zonelists_rebuild)
812 zone_pcp_reset(zone);
813 goto failed_addition;
814 }
815
816 zone->present_pages += onlined_pages;
817
818 pgdat_resize_lock(zone->zone_pgdat, &flags);
819 zone->zone_pgdat->node_present_pages += onlined_pages;
820 pgdat_resize_unlock(zone->zone_pgdat, &flags);
821
822 shuffle_zone(zone);
823
824 node_states_set_node(nid, &arg);
825 if (need_zonelists_rebuild)
826 build_all_zonelists(NULL);
827 else
828 zone_pcp_update(zone);
829
830 init_per_zone_wmark_min();
831
832 kswapd_run(nid);
833 kcompactd_run(nid);
834
835 vm_total_pages = nr_free_pagecache_pages();
836
837 writeback_set_ratelimit();
838
839 memory_notify(MEM_ONLINE, &arg);
840 mem_hotplug_done();
841 return 0;
842
843 failed_addition:
844 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
845 (unsigned long long) pfn << PAGE_SHIFT,
846 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
847 memory_notify(MEM_CANCEL_ONLINE, &arg);
848 remove_pfn_range_from_zone(zone, pfn, nr_pages);
849 mem_hotplug_done();
850 return ret;
851 }
852 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
853
854 static void reset_node_present_pages(pg_data_t *pgdat)
855 {
856 struct zone *z;
857
858 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
859 z->present_pages = 0;
860
861 pgdat->node_present_pages = 0;
862 }
863
864 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
865 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
866 {
867 struct pglist_data *pgdat;
868 unsigned long start_pfn = PFN_DOWN(start);
869
870 pgdat = NODE_DATA(nid);
871 if (!pgdat) {
872 pgdat = arch_alloc_nodedata(nid);
873 if (!pgdat)
874 return NULL;
875
876 pgdat->per_cpu_nodestats =
877 alloc_percpu(struct per_cpu_nodestat);
878 arch_refresh_nodedata(nid, pgdat);
879 } else {
880 int cpu;
881 /*
882 * Reset the nr_zones, order and classzone_idx before reuse.
883 * Note that kswapd will init kswapd_classzone_idx properly
884 * when it starts in the near future.
885 */
886 pgdat->nr_zones = 0;
887 pgdat->kswapd_order = 0;
888 pgdat->kswapd_classzone_idx = 0;
889 for_each_online_cpu(cpu) {
890 struct per_cpu_nodestat *p;
891
892 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
893 memset(p, 0, sizeof(*p));
894 }
895 }
896
897 /* we can use NODE_DATA(nid) from here */
898
899 pgdat->node_id = nid;
900 pgdat->node_start_pfn = start_pfn;
901
902 /* init node's zones as empty zones, we don't have any present pages.*/
903 free_area_init_core_hotplug(nid);
904
905 /*
906 * The node we allocated has no zone fallback lists. For avoiding
907 * to access not-initialized zonelist, build here.
908 */
909 build_all_zonelists(pgdat);
910
911 /*
912 * When memory is hot-added, all the memory is in offline state. So
913 * clear all zones' present_pages because they will be updated in
914 * online_pages() and offline_pages().
915 */
916 reset_node_managed_pages(pgdat);
917 reset_node_present_pages(pgdat);
918
919 return pgdat;
920 }
921
922 static void rollback_node_hotadd(int nid)
923 {
924 pg_data_t *pgdat = NODE_DATA(nid);
925
926 arch_refresh_nodedata(nid, NULL);
927 free_percpu(pgdat->per_cpu_nodestats);
928 arch_free_nodedata(pgdat);
929 }
930
931
932 /**
933 * try_online_node - online a node if offlined
934 * @nid: the node ID
935 * @start: start addr of the node
936 * @set_node_online: Whether we want to online the node
937 * called by cpu_up() to online a node without onlined memory.
938 *
939 * Returns:
940 * 1 -> a new node has been allocated
941 * 0 -> the node is already online
942 * -ENOMEM -> the node could not be allocated
943 */
944 static int __try_online_node(int nid, u64 start, bool set_node_online)
945 {
946 pg_data_t *pgdat;
947 int ret = 1;
948
949 if (node_online(nid))
950 return 0;
951
952 pgdat = hotadd_new_pgdat(nid, start);
953 if (!pgdat) {
954 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
955 ret = -ENOMEM;
956 goto out;
957 }
958
959 if (set_node_online) {
960 node_set_online(nid);
961 ret = register_one_node(nid);
962 BUG_ON(ret);
963 }
964 out:
965 return ret;
966 }
967
968 /*
969 * Users of this function always want to online/register the node
970 */
971 int try_online_node(int nid)
972 {
973 int ret;
974
975 mem_hotplug_begin();
976 ret = __try_online_node(nid, 0, true);
977 mem_hotplug_done();
978 return ret;
979 }
980
981 static int check_hotplug_memory_range(u64 start, u64 size)
982 {
983 /* memory range must be block size aligned */
984 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
985 !IS_ALIGNED(size, memory_block_size_bytes())) {
986 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
987 memory_block_size_bytes(), start, size);
988 return -EINVAL;
989 }
990
991 return 0;
992 }
993
994 static int online_memory_block(struct memory_block *mem, void *arg)
995 {
996 mem->online_type = memhp_default_online_type;
997 return device_online(&mem->dev);
998 }
999
1000 /*
1001 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1002 * and online/offline operations (triggered e.g. by sysfs).
1003 *
1004 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1005 */
1006 int __ref add_memory_resource(int nid, struct resource *res)
1007 {
1008 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1009 u64 start, size;
1010 bool new_node = false;
1011 int ret;
1012
1013 start = res->start;
1014 size = resource_size(res);
1015
1016 ret = check_hotplug_memory_range(start, size);
1017 if (ret)
1018 return ret;
1019
1020 mem_hotplug_begin();
1021
1022 /*
1023 * Add new range to memblock so that when hotadd_new_pgdat() is called
1024 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1025 * this new range and calculate total pages correctly. The range will
1026 * be removed at hot-remove time.
1027 */
1028 memblock_add_node(start, size, nid);
1029
1030 ret = __try_online_node(nid, start, false);
1031 if (ret < 0)
1032 goto error;
1033 new_node = ret;
1034
1035 /* call arch's memory hotadd */
1036 ret = arch_add_memory(nid, start, size, &params);
1037 if (ret < 0)
1038 goto error;
1039
1040 /* create memory block devices after memory was added */
1041 ret = create_memory_block_devices(start, size);
1042 if (ret) {
1043 arch_remove_memory(nid, start, size, NULL);
1044 goto error;
1045 }
1046
1047 if (new_node) {
1048 /* If sysfs file of new node can't be created, cpu on the node
1049 * can't be hot-added. There is no rollback way now.
1050 * So, check by BUG_ON() to catch it reluctantly..
1051 * We online node here. We can't roll back from here.
1052 */
1053 node_set_online(nid);
1054 ret = __register_one_node(nid);
1055 BUG_ON(ret);
1056 }
1057
1058 /* link memory sections under this node.*/
1059 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1060 BUG_ON(ret);
1061
1062 /* create new memmap entry */
1063 firmware_map_add_hotplug(start, start + size, "System RAM");
1064
1065 /* device_online() will take the lock when calling online_pages() */
1066 mem_hotplug_done();
1067
1068 /* online pages if requested */
1069 if (memhp_default_online_type != MMOP_OFFLINE)
1070 walk_memory_blocks(start, size, NULL, online_memory_block);
1071
1072 return ret;
1073 error:
1074 /* rollback pgdat allocation and others */
1075 if (new_node)
1076 rollback_node_hotadd(nid);
1077 memblock_remove(start, size);
1078 mem_hotplug_done();
1079 return ret;
1080 }
1081
1082 /* requires device_hotplug_lock, see add_memory_resource() */
1083 int __ref __add_memory(int nid, u64 start, u64 size)
1084 {
1085 struct resource *res;
1086 int ret;
1087
1088 res = register_memory_resource(start, size);
1089 if (IS_ERR(res))
1090 return PTR_ERR(res);
1091
1092 ret = add_memory_resource(nid, res);
1093 if (ret < 0)
1094 release_memory_resource(res);
1095 return ret;
1096 }
1097
1098 int add_memory(int nid, u64 start, u64 size)
1099 {
1100 int rc;
1101
1102 lock_device_hotplug();
1103 rc = __add_memory(nid, start, size);
1104 unlock_device_hotplug();
1105
1106 return rc;
1107 }
1108 EXPORT_SYMBOL_GPL(add_memory);
1109
1110 #ifdef CONFIG_MEMORY_HOTREMOVE
1111 /*
1112 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1113 * set and the size of the free page is given by page_order(). Using this,
1114 * the function determines if the pageblock contains only free pages.
1115 * Due to buddy contraints, a free page at least the size of a pageblock will
1116 * be located at the start of the pageblock
1117 */
1118 static inline int pageblock_free(struct page *page)
1119 {
1120 return PageBuddy(page) && page_order(page) >= pageblock_order;
1121 }
1122
1123 /* Return the pfn of the start of the next active pageblock after a given pfn */
1124 static unsigned long next_active_pageblock(unsigned long pfn)
1125 {
1126 struct page *page = pfn_to_page(pfn);
1127
1128 /* Ensure the starting page is pageblock-aligned */
1129 BUG_ON(pfn & (pageblock_nr_pages - 1));
1130
1131 /* If the entire pageblock is free, move to the end of free page */
1132 if (pageblock_free(page)) {
1133 int order;
1134 /* be careful. we don't have locks, page_order can be changed.*/
1135 order = page_order(page);
1136 if ((order < MAX_ORDER) && (order >= pageblock_order))
1137 return pfn + (1 << order);
1138 }
1139
1140 return pfn + pageblock_nr_pages;
1141 }
1142
1143 static bool is_pageblock_removable_nolock(unsigned long pfn)
1144 {
1145 struct page *page = pfn_to_page(pfn);
1146 struct zone *zone;
1147
1148 /*
1149 * We have to be careful here because we are iterating over memory
1150 * sections which are not zone aware so we might end up outside of
1151 * the zone but still within the section.
1152 * We have to take care about the node as well. If the node is offline
1153 * its NODE_DATA will be NULL - see page_zone.
1154 */
1155 if (!node_online(page_to_nid(page)))
1156 return false;
1157
1158 zone = page_zone(page);
1159 pfn = page_to_pfn(page);
1160 if (!zone_spans_pfn(zone, pfn))
1161 return false;
1162
1163 return !has_unmovable_pages(zone, page, MIGRATE_MOVABLE,
1164 MEMORY_OFFLINE);
1165 }
1166
1167 /* Checks if this range of memory is likely to be hot-removable. */
1168 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1169 {
1170 unsigned long end_pfn, pfn;
1171
1172 end_pfn = min(start_pfn + nr_pages,
1173 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1174
1175 /* Check the starting page of each pageblock within the range */
1176 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1177 if (!is_pageblock_removable_nolock(pfn))
1178 return false;
1179 cond_resched();
1180 }
1181
1182 /* All pageblocks in the memory block are likely to be hot-removable */
1183 return true;
1184 }
1185
1186 /*
1187 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1188 * memory holes). When true, return the zone.
1189 */
1190 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1191 unsigned long end_pfn)
1192 {
1193 unsigned long pfn, sec_end_pfn;
1194 struct zone *zone = NULL;
1195 struct page *page;
1196 int i;
1197 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1198 pfn < end_pfn;
1199 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1200 /* Make sure the memory section is present first */
1201 if (!present_section_nr(pfn_to_section_nr(pfn)))
1202 continue;
1203 for (; pfn < sec_end_pfn && pfn < end_pfn;
1204 pfn += MAX_ORDER_NR_PAGES) {
1205 i = 0;
1206 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1207 while ((i < MAX_ORDER_NR_PAGES) &&
1208 !pfn_valid_within(pfn + i))
1209 i++;
1210 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1211 continue;
1212 /* Check if we got outside of the zone */
1213 if (zone && !zone_spans_pfn(zone, pfn + i))
1214 return NULL;
1215 page = pfn_to_page(pfn + i);
1216 if (zone && page_zone(page) != zone)
1217 return NULL;
1218 zone = page_zone(page);
1219 }
1220 }
1221
1222 return zone;
1223 }
1224
1225 /*
1226 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1227 * non-lru movable pages and hugepages). We scan pfn because it's much
1228 * easier than scanning over linked list. This function returns the pfn
1229 * of the first found movable page if it's found, otherwise 0.
1230 */
1231 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1232 {
1233 unsigned long pfn;
1234
1235 for (pfn = start; pfn < end; pfn++) {
1236 struct page *page, *head;
1237 unsigned long skip;
1238
1239 if (!pfn_valid(pfn))
1240 continue;
1241 page = pfn_to_page(pfn);
1242 if (PageLRU(page))
1243 return pfn;
1244 if (__PageMovable(page))
1245 return pfn;
1246
1247 if (!PageHuge(page))
1248 continue;
1249 head = compound_head(page);
1250 if (page_huge_active(head))
1251 return pfn;
1252 skip = compound_nr(head) - (page - head);
1253 pfn += skip - 1;
1254 }
1255 return 0;
1256 }
1257
1258 static struct page *new_node_page(struct page *page, unsigned long private)
1259 {
1260 int nid = page_to_nid(page);
1261 nodemask_t nmask = node_states[N_MEMORY];
1262
1263 /*
1264 * try to allocate from a different node but reuse this node if there
1265 * are no other online nodes to be used (e.g. we are offlining a part
1266 * of the only existing node)
1267 */
1268 node_clear(nid, nmask);
1269 if (nodes_empty(nmask))
1270 node_set(nid, nmask);
1271
1272 return new_page_nodemask(page, nid, &nmask);
1273 }
1274
1275 static int
1276 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1277 {
1278 unsigned long pfn;
1279 struct page *page;
1280 int ret = 0;
1281 LIST_HEAD(source);
1282
1283 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1284 if (!pfn_valid(pfn))
1285 continue;
1286 page = pfn_to_page(pfn);
1287
1288 if (PageHuge(page)) {
1289 struct page *head = compound_head(page);
1290 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1291 isolate_huge_page(head, &source);
1292 continue;
1293 } else if (PageTransHuge(page))
1294 pfn = page_to_pfn(compound_head(page))
1295 + hpage_nr_pages(page) - 1;
1296
1297 /*
1298 * HWPoison pages have elevated reference counts so the migration would
1299 * fail on them. It also doesn't make any sense to migrate them in the
1300 * first place. Still try to unmap such a page in case it is still mapped
1301 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1302 * the unmap as the catch all safety net).
1303 */
1304 if (PageHWPoison(page)) {
1305 if (WARN_ON(PageLRU(page)))
1306 isolate_lru_page(page);
1307 if (page_mapped(page))
1308 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1309 continue;
1310 }
1311
1312 if (!get_page_unless_zero(page))
1313 continue;
1314 /*
1315 * We can skip free pages. And we can deal with pages on
1316 * LRU and non-lru movable pages.
1317 */
1318 if (PageLRU(page))
1319 ret = isolate_lru_page(page);
1320 else
1321 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1322 if (!ret) { /* Success */
1323 list_add_tail(&page->lru, &source);
1324 if (!__PageMovable(page))
1325 inc_node_page_state(page, NR_ISOLATED_ANON +
1326 page_is_file_lru(page));
1327
1328 } else {
1329 pr_warn("failed to isolate pfn %lx\n", pfn);
1330 dump_page(page, "isolation failed");
1331 }
1332 put_page(page);
1333 }
1334 if (!list_empty(&source)) {
1335 /* Allocate a new page from the nearest neighbor node */
1336 ret = migrate_pages(&source, new_node_page, NULL, 0,
1337 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1338 if (ret) {
1339 list_for_each_entry(page, &source, lru) {
1340 pr_warn("migrating pfn %lx failed ret:%d ",
1341 page_to_pfn(page), ret);
1342 dump_page(page, "migration failure");
1343 }
1344 putback_movable_pages(&source);
1345 }
1346 }
1347
1348 return ret;
1349 }
1350
1351 /* Mark all sections offline and remove all free pages from the buddy. */
1352 static int
1353 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1354 void *data)
1355 {
1356 unsigned long *offlined_pages = (unsigned long *)data;
1357
1358 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1359 return 0;
1360 }
1361
1362 /*
1363 * Check all pages in range, recoreded as memory resource, are isolated.
1364 */
1365 static int
1366 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367 void *data)
1368 {
1369 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1370 MEMORY_OFFLINE);
1371 }
1372
1373 static int __init cmdline_parse_movable_node(char *p)
1374 {
1375 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1376 movable_node_enabled = true;
1377 #else
1378 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1379 #endif
1380 return 0;
1381 }
1382 early_param("movable_node", cmdline_parse_movable_node);
1383
1384 /* check which state of node_states will be changed when offline memory */
1385 static void node_states_check_changes_offline(unsigned long nr_pages,
1386 struct zone *zone, struct memory_notify *arg)
1387 {
1388 struct pglist_data *pgdat = zone->zone_pgdat;
1389 unsigned long present_pages = 0;
1390 enum zone_type zt;
1391
1392 arg->status_change_nid = NUMA_NO_NODE;
1393 arg->status_change_nid_normal = NUMA_NO_NODE;
1394 arg->status_change_nid_high = NUMA_NO_NODE;
1395
1396 /*
1397 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1398 * If the memory to be offline is within the range
1399 * [0..ZONE_NORMAL], and it is the last present memory there,
1400 * the zones in that range will become empty after the offlining,
1401 * thus we can determine that we need to clear the node from
1402 * node_states[N_NORMAL_MEMORY].
1403 */
1404 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1405 present_pages += pgdat->node_zones[zt].present_pages;
1406 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1407 arg->status_change_nid_normal = zone_to_nid(zone);
1408
1409 #ifdef CONFIG_HIGHMEM
1410 /*
1411 * node_states[N_HIGH_MEMORY] contains nodes which
1412 * have normal memory or high memory.
1413 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1414 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1415 * we determine that the zones in that range become empty,
1416 * we need to clear the node for N_HIGH_MEMORY.
1417 */
1418 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1419 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1420 arg->status_change_nid_high = zone_to_nid(zone);
1421 #endif
1422
1423 /*
1424 * We have accounted the pages from [0..ZONE_NORMAL), and
1425 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1426 * as well.
1427 * Here we count the possible pages from ZONE_MOVABLE.
1428 * If after having accounted all the pages, we see that the nr_pages
1429 * to be offlined is over or equal to the accounted pages,
1430 * we know that the node will become empty, and so, we can clear
1431 * it for N_MEMORY as well.
1432 */
1433 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1434
1435 if (nr_pages >= present_pages)
1436 arg->status_change_nid = zone_to_nid(zone);
1437 }
1438
1439 static void node_states_clear_node(int node, struct memory_notify *arg)
1440 {
1441 if (arg->status_change_nid_normal >= 0)
1442 node_clear_state(node, N_NORMAL_MEMORY);
1443
1444 if (arg->status_change_nid_high >= 0)
1445 node_clear_state(node, N_HIGH_MEMORY);
1446
1447 if (arg->status_change_nid >= 0)
1448 node_clear_state(node, N_MEMORY);
1449 }
1450
1451 static int count_system_ram_pages_cb(unsigned long start_pfn,
1452 unsigned long nr_pages, void *data)
1453 {
1454 unsigned long *nr_system_ram_pages = data;
1455
1456 *nr_system_ram_pages += nr_pages;
1457 return 0;
1458 }
1459
1460 static int __ref __offline_pages(unsigned long start_pfn,
1461 unsigned long end_pfn)
1462 {
1463 unsigned long pfn, nr_pages = 0;
1464 unsigned long offlined_pages = 0;
1465 int ret, node, nr_isolate_pageblock;
1466 unsigned long flags;
1467 struct zone *zone;
1468 struct memory_notify arg;
1469 char *reason;
1470
1471 mem_hotplug_begin();
1472
1473 /*
1474 * Don't allow to offline memory blocks that contain holes.
1475 * Consequently, memory blocks with holes can never get onlined
1476 * via the hotplug path - online_pages() - as hotplugged memory has
1477 * no holes. This way, we e.g., don't have to worry about marking
1478 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1479 * avoid using walk_system_ram_range() later.
1480 */
1481 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1482 count_system_ram_pages_cb);
1483 if (nr_pages != end_pfn - start_pfn) {
1484 ret = -EINVAL;
1485 reason = "memory holes";
1486 goto failed_removal;
1487 }
1488
1489 /* This makes hotplug much easier...and readable.
1490 we assume this for now. .*/
1491 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1492 if (!zone) {
1493 ret = -EINVAL;
1494 reason = "multizone range";
1495 goto failed_removal;
1496 }
1497 node = zone_to_nid(zone);
1498
1499 /* set above range as isolated */
1500 ret = start_isolate_page_range(start_pfn, end_pfn,
1501 MIGRATE_MOVABLE,
1502 MEMORY_OFFLINE | REPORT_FAILURE);
1503 if (ret < 0) {
1504 reason = "failure to isolate range";
1505 goto failed_removal;
1506 }
1507 nr_isolate_pageblock = ret;
1508
1509 arg.start_pfn = start_pfn;
1510 arg.nr_pages = nr_pages;
1511 node_states_check_changes_offline(nr_pages, zone, &arg);
1512
1513 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1514 ret = notifier_to_errno(ret);
1515 if (ret) {
1516 reason = "notifier failure";
1517 goto failed_removal_isolated;
1518 }
1519
1520 do {
1521 for (pfn = start_pfn; pfn;) {
1522 if (signal_pending(current)) {
1523 ret = -EINTR;
1524 reason = "signal backoff";
1525 goto failed_removal_isolated;
1526 }
1527
1528 cond_resched();
1529 lru_add_drain_all();
1530
1531 pfn = scan_movable_pages(pfn, end_pfn);
1532 if (pfn) {
1533 /*
1534 * TODO: fatal migration failures should bail
1535 * out
1536 */
1537 do_migrate_range(pfn, end_pfn);
1538 }
1539 }
1540
1541 /*
1542 * Dissolve free hugepages in the memory block before doing
1543 * offlining actually in order to make hugetlbfs's object
1544 * counting consistent.
1545 */
1546 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1547 if (ret) {
1548 reason = "failure to dissolve huge pages";
1549 goto failed_removal_isolated;
1550 }
1551 /* check again */
1552 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1553 NULL, check_pages_isolated_cb);
1554 } while (ret);
1555
1556 /* Ok, all of our target is isolated.
1557 We cannot do rollback at this point. */
1558 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1559 &offlined_pages, offline_isolated_pages_cb);
1560 pr_info("Offlined Pages %ld\n", offlined_pages);
1561 /*
1562 * Onlining will reset pagetype flags and makes migrate type
1563 * MOVABLE, so just need to decrease the number of isolated
1564 * pageblocks zone counter here.
1565 */
1566 spin_lock_irqsave(&zone->lock, flags);
1567 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1568 spin_unlock_irqrestore(&zone->lock, flags);
1569
1570 /* removal success */
1571 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1572 zone->present_pages -= offlined_pages;
1573
1574 pgdat_resize_lock(zone->zone_pgdat, &flags);
1575 zone->zone_pgdat->node_present_pages -= offlined_pages;
1576 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1577
1578 init_per_zone_wmark_min();
1579
1580 if (!populated_zone(zone)) {
1581 zone_pcp_reset(zone);
1582 build_all_zonelists(NULL);
1583 } else
1584 zone_pcp_update(zone);
1585
1586 node_states_clear_node(node, &arg);
1587 if (arg.status_change_nid >= 0) {
1588 kswapd_stop(node);
1589 kcompactd_stop(node);
1590 }
1591
1592 vm_total_pages = nr_free_pagecache_pages();
1593 writeback_set_ratelimit();
1594
1595 memory_notify(MEM_OFFLINE, &arg);
1596 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1597 mem_hotplug_done();
1598 return 0;
1599
1600 failed_removal_isolated:
1601 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1602 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1603 failed_removal:
1604 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1605 (unsigned long long) start_pfn << PAGE_SHIFT,
1606 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1607 reason);
1608 /* pushback to free area */
1609 mem_hotplug_done();
1610 return ret;
1611 }
1612
1613 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1614 {
1615 return __offline_pages(start_pfn, start_pfn + nr_pages);
1616 }
1617
1618 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1619 {
1620 int ret = !is_memblock_offlined(mem);
1621
1622 if (unlikely(ret)) {
1623 phys_addr_t beginpa, endpa;
1624
1625 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1626 endpa = beginpa + memory_block_size_bytes() - 1;
1627 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1628 &beginpa, &endpa);
1629
1630 return -EBUSY;
1631 }
1632 return 0;
1633 }
1634
1635 static int check_cpu_on_node(pg_data_t *pgdat)
1636 {
1637 int cpu;
1638
1639 for_each_present_cpu(cpu) {
1640 if (cpu_to_node(cpu) == pgdat->node_id)
1641 /*
1642 * the cpu on this node isn't removed, and we can't
1643 * offline this node.
1644 */
1645 return -EBUSY;
1646 }
1647
1648 return 0;
1649 }
1650
1651 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1652 {
1653 int nid = *(int *)arg;
1654
1655 /*
1656 * If a memory block belongs to multiple nodes, the stored nid is not
1657 * reliable. However, such blocks are always online (e.g., cannot get
1658 * offlined) and, therefore, are still spanned by the node.
1659 */
1660 return mem->nid == nid ? -EEXIST : 0;
1661 }
1662
1663 /**
1664 * try_offline_node
1665 * @nid: the node ID
1666 *
1667 * Offline a node if all memory sections and cpus of the node are removed.
1668 *
1669 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1670 * and online/offline operations before this call.
1671 */
1672 void try_offline_node(int nid)
1673 {
1674 pg_data_t *pgdat = NODE_DATA(nid);
1675 int rc;
1676
1677 /*
1678 * If the node still spans pages (especially ZONE_DEVICE), don't
1679 * offline it. A node spans memory after move_pfn_range_to_zone(),
1680 * e.g., after the memory block was onlined.
1681 */
1682 if (pgdat->node_spanned_pages)
1683 return;
1684
1685 /*
1686 * Especially offline memory blocks might not be spanned by the
1687 * node. They will get spanned by the node once they get onlined.
1688 * However, they link to the node in sysfs and can get onlined later.
1689 */
1690 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1691 if (rc)
1692 return;
1693
1694 if (check_cpu_on_node(pgdat))
1695 return;
1696
1697 /*
1698 * all memory/cpu of this node are removed, we can offline this
1699 * node now.
1700 */
1701 node_set_offline(nid);
1702 unregister_one_node(nid);
1703 }
1704 EXPORT_SYMBOL(try_offline_node);
1705
1706 static void __release_memory_resource(resource_size_t start,
1707 resource_size_t size)
1708 {
1709 int ret;
1710
1711 /*
1712 * When removing memory in the same granularity as it was added,
1713 * this function never fails. It might only fail if resources
1714 * have to be adjusted or split. We'll ignore the error, as
1715 * removing of memory cannot fail.
1716 */
1717 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1718 if (ret) {
1719 resource_size_t endres = start + size - 1;
1720
1721 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1722 &start, &endres, ret);
1723 }
1724 }
1725
1726 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1727 {
1728 int rc = 0;
1729
1730 BUG_ON(check_hotplug_memory_range(start, size));
1731
1732 /*
1733 * All memory blocks must be offlined before removing memory. Check
1734 * whether all memory blocks in question are offline and return error
1735 * if this is not the case.
1736 */
1737 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1738 if (rc)
1739 goto done;
1740
1741 /* remove memmap entry */
1742 firmware_map_remove(start, start + size, "System RAM");
1743
1744 /*
1745 * Memory block device removal under the device_hotplug_lock is
1746 * a barrier against racing online attempts.
1747 */
1748 remove_memory_block_devices(start, size);
1749
1750 mem_hotplug_begin();
1751
1752 arch_remove_memory(nid, start, size, NULL);
1753 memblock_free(start, size);
1754 memblock_remove(start, size);
1755 __release_memory_resource(start, size);
1756
1757 try_offline_node(nid);
1758
1759 done:
1760 mem_hotplug_done();
1761 return rc;
1762 }
1763
1764 /**
1765 * remove_memory
1766 * @nid: the node ID
1767 * @start: physical address of the region to remove
1768 * @size: size of the region to remove
1769 *
1770 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1771 * and online/offline operations before this call, as required by
1772 * try_offline_node().
1773 */
1774 void __remove_memory(int nid, u64 start, u64 size)
1775 {
1776
1777 /*
1778 * trigger BUG() if some memory is not offlined prior to calling this
1779 * function
1780 */
1781 if (try_remove_memory(nid, start, size))
1782 BUG();
1783 }
1784
1785 /*
1786 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1787 * some memory is not offline
1788 */
1789 int remove_memory(int nid, u64 start, u64 size)
1790 {
1791 int rc;
1792
1793 lock_device_hotplug();
1794 rc = try_remove_memory(nid, start, size);
1795 unlock_device_hotplug();
1796
1797 return rc;
1798 }
1799 EXPORT_SYMBOL_GPL(remove_memory);
1800 #endif /* CONFIG_MEMORY_HOTREMOVE */