]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
mm/memory_hotplug: make sure the pfn is aligned to the order when onlining
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static void generic_online_page(struct page *page, unsigned int order);
53
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58
59 void get_online_mems(void)
60 {
61 percpu_down_read(&mem_hotplug_lock);
62 }
63
64 void put_online_mems(void)
65 {
66 percpu_up_read(&mem_hotplug_lock);
67 }
68
69 bool movable_node_enabled = false;
70
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77
78 static int __init setup_memhp_default_state(char *str)
79 {
80 if (!strcmp(str, "online"))
81 memhp_auto_online = true;
82 else if (!strcmp(str, "offline"))
83 memhp_auto_online = false;
84
85 return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88
89 void mem_hotplug_begin(void)
90 {
91 cpus_read_lock();
92 percpu_down_write(&mem_hotplug_lock);
93 }
94
95 void mem_hotplug_done(void)
96 {
97 percpu_up_write(&mem_hotplug_lock);
98 cpus_read_unlock();
99 }
100
101 u64 max_mem_size = U64_MAX;
102
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 struct resource *res;
107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 char *resource_name = "System RAM";
109
110 if (start + size > max_mem_size)
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Request ownership of the new memory range. This might be
115 * a child of an existing resource that was present but
116 * not marked as busy.
117 */
118 res = __request_region(&iomem_resource, start, size,
119 resource_name, flags);
120
121 if (!res) {
122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 start, start + size);
124 return ERR_PTR(-EEXIST);
125 }
126 return res;
127 }
128
129 static void release_memory_resource(struct resource *res)
130 {
131 if (!res)
132 return;
133 release_resource(res);
134 kfree(res);
135 }
136
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info, struct page *page,
139 unsigned long type)
140 {
141 page->freelist = (void *)type;
142 SetPagePrivate(page);
143 set_page_private(page, info);
144 page_ref_inc(page);
145 }
146
147 void put_page_bootmem(struct page *page)
148 {
149 unsigned long type;
150
151 type = (unsigned long) page->freelist;
152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154
155 if (page_ref_dec_return(page) == 1) {
156 page->freelist = NULL;
157 ClearPagePrivate(page);
158 set_page_private(page, 0);
159 INIT_LIST_HEAD(&page->lru);
160 free_reserved_page(page);
161 }
162 }
163
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 unsigned long mapsize, section_nr, i;
169 struct mem_section *ms;
170 struct page *page, *memmap;
171 struct mem_section_usage *usage;
172
173 section_nr = pfn_to_section_nr(start_pfn);
174 ms = __nr_to_section(section_nr);
175
176 /* Get section's memmap address */
177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178
179 /*
180 * Get page for the memmap's phys address
181 * XXX: need more consideration for sparse_vmemmap...
182 */
183 page = virt_to_page(memmap);
184 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186
187 /* remember memmap's page */
188 for (i = 0; i < mapsize; i++, page++)
189 get_page_bootmem(section_nr, page, SECTION_INFO);
190
191 usage = ms->usage;
192 page = virt_to_page(usage);
193
194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195
196 for (i = 0; i < mapsize; i++, page++)
197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 unsigned long mapsize, section_nr, i;
204 struct mem_section *ms;
205 struct page *page, *memmap;
206 struct mem_section_usage *usage;
207
208 section_nr = pfn_to_section_nr(start_pfn);
209 ms = __nr_to_section(section_nr);
210
211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212
213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214
215 usage = ms->usage;
216 page = virt_to_page(usage);
217
218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224
225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 unsigned long i, pfn, end_pfn, nr_pages;
228 int node = pgdat->node_id;
229 struct page *page;
230
231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 page = virt_to_page(pgdat);
233
234 for (i = 0; i < nr_pages; i++, page++)
235 get_page_bootmem(node, page, NODE_INFO);
236
237 pfn = pgdat->node_start_pfn;
238 end_pfn = pgdat_end_pfn(pgdat);
239
240 /* register section info */
241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 /*
243 * Some platforms can assign the same pfn to multiple nodes - on
244 * node0 as well as nodeN. To avoid registering a pfn against
245 * multiple nodes we check that this pfn does not already
246 * reside in some other nodes.
247 */
248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 register_page_bootmem_info_section(pfn);
250 }
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253
254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 const char *reason)
256 {
257 /*
258 * Disallow all operations smaller than a sub-section and only
259 * allow operations smaller than a section for
260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 * enforces a larger memory_block_size_bytes() granularity for
262 * memory that will be marked online, so this check should only
263 * fire for direct arch_{add,remove}_memory() users outside of
264 * add_memory_resource().
265 */
266 unsigned long min_align;
267
268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 min_align = PAGES_PER_SUBSECTION;
270 else
271 min_align = PAGES_PER_SECTION;
272 if (!IS_ALIGNED(pfn, min_align)
273 || !IS_ALIGNED(nr_pages, min_align)) {
274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 reason, pfn, pfn + nr_pages - 1);
276 return -EINVAL;
277 }
278 return 0;
279 }
280
281 /*
282 * Reasonably generic function for adding memory. It is
283 * expected that archs that support memory hotplug will
284 * call this function after deciding the zone to which to
285 * add the new pages.
286 */
287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 struct mhp_restrictions *restrictions)
289 {
290 int err;
291 unsigned long nr, start_sec, end_sec;
292 struct vmem_altmap *altmap = restrictions->altmap;
293
294 if (altmap) {
295 /*
296 * Validate altmap is within bounds of the total request
297 */
298 if (altmap->base_pfn != pfn
299 || vmem_altmap_offset(altmap) > nr_pages) {
300 pr_warn_once("memory add fail, invalid altmap\n");
301 return -EINVAL;
302 }
303 altmap->alloc = 0;
304 }
305
306 err = check_pfn_span(pfn, nr_pages, "add");
307 if (err)
308 return err;
309
310 start_sec = pfn_to_section_nr(pfn);
311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 for (nr = start_sec; nr <= end_sec; nr++) {
313 unsigned long pfns;
314
315 pfns = min(nr_pages, PAGES_PER_SECTION
316 - (pfn & ~PAGE_SECTION_MASK));
317 err = sparse_add_section(nid, pfn, pfns, altmap);
318 if (err)
319 break;
320 pfn += pfns;
321 nr_pages -= pfns;
322 cond_resched();
323 }
324 vmemmap_populate_print_last();
325 return err;
326 }
327
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 unsigned long start_pfn,
331 unsigned long end_pfn)
332 {
333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 if (unlikely(!pfn_valid(start_pfn)))
335 continue;
336
337 if (unlikely(pfn_to_nid(start_pfn) != nid))
338 continue;
339
340 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 continue;
342
343 return start_pfn;
344 }
345
346 return 0;
347 }
348
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 unsigned long start_pfn,
352 unsigned long end_pfn)
353 {
354 unsigned long pfn;
355
356 /* pfn is the end pfn of a memory section. */
357 pfn = end_pfn - 1;
358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_valid(pfn)))
360 continue;
361
362 if (unlikely(pfn_to_nid(pfn) != nid))
363 continue;
364
365 if (zone && zone != page_zone(pfn_to_page(pfn)))
366 continue;
367
368 return pfn;
369 }
370
371 return 0;
372 }
373
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 unsigned long end_pfn)
376 {
377 unsigned long zone_start_pfn = zone->zone_start_pfn;
378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 unsigned long zone_end_pfn = z;
380 unsigned long pfn;
381 int nid = zone_to_nid(zone);
382
383 zone_span_writelock(zone);
384 if (zone_start_pfn == start_pfn) {
385 /*
386 * If the section is smallest section in the zone, it need
387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 * In this case, we find second smallest valid mem_section
389 * for shrinking zone.
390 */
391 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 zone_end_pfn);
393 if (pfn) {
394 zone->zone_start_pfn = pfn;
395 zone->spanned_pages = zone_end_pfn - pfn;
396 }
397 } else if (zone_end_pfn == end_pfn) {
398 /*
399 * If the section is biggest section in the zone, it need
400 * shrink zone->spanned_pages.
401 * In this case, we find second biggest valid mem_section for
402 * shrinking zone.
403 */
404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 start_pfn);
406 if (pfn)
407 zone->spanned_pages = pfn - zone_start_pfn + 1;
408 }
409
410 /*
411 * The section is not biggest or smallest mem_section in the zone, it
412 * only creates a hole in the zone. So in this case, we need not
413 * change the zone. But perhaps, the zone has only hole data. Thus
414 * it check the zone has only hole or not.
415 */
416 pfn = zone_start_pfn;
417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 if (unlikely(!pfn_valid(pfn)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* Skip range to be removed */
425 if (pfn >= start_pfn && pfn < end_pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437 }
438
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
441 {
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 int nid = pgdat->node_id;
447
448 if (pgdat_start_pfn == start_pfn) {
449 /*
450 * If the section is smallest section in the pgdat, it need
451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 * In this case, we find second smallest valid mem_section
453 * for shrinking zone.
454 */
455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 pgdat_end_pfn);
457 if (pfn) {
458 pgdat->node_start_pfn = pfn;
459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 }
461 } else if (pgdat_end_pfn == end_pfn) {
462 /*
463 * If the section is biggest section in the pgdat, it need
464 * shrink pgdat->node_spanned_pages.
465 * In this case, we find second biggest valid mem_section for
466 * shrinking zone.
467 */
468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 start_pfn);
470 if (pfn)
471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 }
473
474 /*
475 * If the section is not biggest or smallest mem_section in the pgdat,
476 * it only creates a hole in the pgdat. So in this case, we need not
477 * change the pgdat.
478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 * has only hole or not.
480 */
481 pfn = pgdat_start_pfn;
482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
483 if (unlikely(!pfn_valid(pfn)))
484 continue;
485
486 if (pfn_to_nid(pfn) != nid)
487 continue;
488
489 /* Skip range to be removed */
490 if (pfn >= start_pfn && pfn < end_pfn)
491 continue;
492
493 /* If we find valid section, we have nothing to do */
494 return;
495 }
496
497 /* The pgdat has no valid section */
498 pgdat->node_start_pfn = 0;
499 pgdat->node_spanned_pages = 0;
500 }
501
502 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
503 unsigned long nr_pages)
504 {
505 struct pglist_data *pgdat = zone->zone_pgdat;
506 unsigned long flags;
507
508 pgdat_resize_lock(zone->zone_pgdat, &flags);
509 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
510 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
511 pgdat_resize_unlock(zone->zone_pgdat, &flags);
512 }
513
514 static void __remove_section(struct zone *zone, unsigned long pfn,
515 unsigned long nr_pages, unsigned long map_offset,
516 struct vmem_altmap *altmap)
517 {
518 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
519
520 if (WARN_ON_ONCE(!valid_section(ms)))
521 return;
522
523 __remove_zone(zone, pfn, nr_pages);
524 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
525 }
526
527 /**
528 * __remove_pages() - remove sections of pages from a zone
529 * @zone: zone from which pages need to be removed
530 * @pfn: starting pageframe (must be aligned to start of a section)
531 * @nr_pages: number of pages to remove (must be multiple of section size)
532 * @altmap: alternative device page map or %NULL if default memmap is used
533 *
534 * Generic helper function to remove section mappings and sysfs entries
535 * for the section of the memory we are removing. Caller needs to make
536 * sure that pages are marked reserved and zones are adjust properly by
537 * calling offline_pages().
538 */
539 void __remove_pages(struct zone *zone, unsigned long pfn,
540 unsigned long nr_pages, struct vmem_altmap *altmap)
541 {
542 unsigned long map_offset = 0;
543 unsigned long nr, start_sec, end_sec;
544
545 map_offset = vmem_altmap_offset(altmap);
546
547 clear_zone_contiguous(zone);
548
549 if (check_pfn_span(pfn, nr_pages, "remove"))
550 return;
551
552 start_sec = pfn_to_section_nr(pfn);
553 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
554 for (nr = start_sec; nr <= end_sec; nr++) {
555 unsigned long pfns;
556
557 cond_resched();
558 pfns = min(nr_pages, PAGES_PER_SECTION
559 - (pfn & ~PAGE_SECTION_MASK));
560 __remove_section(zone, pfn, pfns, map_offset, altmap);
561 pfn += pfns;
562 nr_pages -= pfns;
563 map_offset = 0;
564 }
565
566 set_zone_contiguous(zone);
567 }
568
569 int set_online_page_callback(online_page_callback_t callback)
570 {
571 int rc = -EINVAL;
572
573 get_online_mems();
574 mutex_lock(&online_page_callback_lock);
575
576 if (online_page_callback == generic_online_page) {
577 online_page_callback = callback;
578 rc = 0;
579 }
580
581 mutex_unlock(&online_page_callback_lock);
582 put_online_mems();
583
584 return rc;
585 }
586 EXPORT_SYMBOL_GPL(set_online_page_callback);
587
588 int restore_online_page_callback(online_page_callback_t callback)
589 {
590 int rc = -EINVAL;
591
592 get_online_mems();
593 mutex_lock(&online_page_callback_lock);
594
595 if (online_page_callback == callback) {
596 online_page_callback = generic_online_page;
597 rc = 0;
598 }
599
600 mutex_unlock(&online_page_callback_lock);
601 put_online_mems();
602
603 return rc;
604 }
605 EXPORT_SYMBOL_GPL(restore_online_page_callback);
606
607 void __online_page_set_limits(struct page *page)
608 {
609 }
610 EXPORT_SYMBOL_GPL(__online_page_set_limits);
611
612 void __online_page_increment_counters(struct page *page)
613 {
614 adjust_managed_page_count(page, 1);
615 }
616 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
617
618 void __online_page_free(struct page *page)
619 {
620 __free_reserved_page(page);
621 }
622 EXPORT_SYMBOL_GPL(__online_page_free);
623
624 static void generic_online_page(struct page *page, unsigned int order)
625 {
626 kernel_map_pages(page, 1 << order, 1);
627 __free_pages_core(page, order);
628 totalram_pages_add(1UL << order);
629 #ifdef CONFIG_HIGHMEM
630 if (PageHighMem(page))
631 totalhigh_pages_add(1UL << order);
632 #endif
633 }
634
635 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
636 void *arg)
637 {
638 const unsigned long end_pfn = start_pfn + nr_pages;
639 unsigned long pfn;
640 int order;
641
642 /*
643 * Online the pages. The callback might decide to keep some pages
644 * PG_reserved (to add them to the buddy later), but we still account
645 * them as being online/belonging to this zone ("present").
646 */
647 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
648 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
649 /* __free_pages_core() wants pfns to be aligned to the order */
650 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
651 order = 0;
652 (*online_page_callback)(pfn_to_page(pfn), order);
653 }
654
655 /* mark all involved sections as online */
656 online_mem_sections(start_pfn, end_pfn);
657
658 *(unsigned long *)arg += nr_pages;
659 return 0;
660 }
661
662 /* check which state of node_states will be changed when online memory */
663 static void node_states_check_changes_online(unsigned long nr_pages,
664 struct zone *zone, struct memory_notify *arg)
665 {
666 int nid = zone_to_nid(zone);
667
668 arg->status_change_nid = NUMA_NO_NODE;
669 arg->status_change_nid_normal = NUMA_NO_NODE;
670 arg->status_change_nid_high = NUMA_NO_NODE;
671
672 if (!node_state(nid, N_MEMORY))
673 arg->status_change_nid = nid;
674 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
675 arg->status_change_nid_normal = nid;
676 #ifdef CONFIG_HIGHMEM
677 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
678 arg->status_change_nid_high = nid;
679 #endif
680 }
681
682 static void node_states_set_node(int node, struct memory_notify *arg)
683 {
684 if (arg->status_change_nid_normal >= 0)
685 node_set_state(node, N_NORMAL_MEMORY);
686
687 if (arg->status_change_nid_high >= 0)
688 node_set_state(node, N_HIGH_MEMORY);
689
690 if (arg->status_change_nid >= 0)
691 node_set_state(node, N_MEMORY);
692 }
693
694 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
695 unsigned long nr_pages)
696 {
697 unsigned long old_end_pfn = zone_end_pfn(zone);
698
699 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
700 zone->zone_start_pfn = start_pfn;
701
702 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
703 }
704
705 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
706 unsigned long nr_pages)
707 {
708 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
709
710 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
711 pgdat->node_start_pfn = start_pfn;
712
713 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
714
715 }
716 /*
717 * Associate the pfn range with the given zone, initializing the memmaps
718 * and resizing the pgdat/zone data to span the added pages. After this
719 * call, all affected pages are PG_reserved.
720 */
721 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
722 unsigned long nr_pages, struct vmem_altmap *altmap)
723 {
724 struct pglist_data *pgdat = zone->zone_pgdat;
725 int nid = pgdat->node_id;
726 unsigned long flags;
727
728 clear_zone_contiguous(zone);
729
730 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
731 pgdat_resize_lock(pgdat, &flags);
732 zone_span_writelock(zone);
733 if (zone_is_empty(zone))
734 init_currently_empty_zone(zone, start_pfn, nr_pages);
735 resize_zone_range(zone, start_pfn, nr_pages);
736 zone_span_writeunlock(zone);
737 resize_pgdat_range(pgdat, start_pfn, nr_pages);
738 pgdat_resize_unlock(pgdat, &flags);
739
740 /*
741 * TODO now we have a visible range of pages which are not associated
742 * with their zone properly. Not nice but set_pfnblock_flags_mask
743 * expects the zone spans the pfn range. All the pages in the range
744 * are reserved so nobody should be touching them so we should be safe
745 */
746 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
747 MEMMAP_HOTPLUG, altmap);
748
749 set_zone_contiguous(zone);
750 }
751
752 /*
753 * Returns a default kernel memory zone for the given pfn range.
754 * If no kernel zone covers this pfn range it will automatically go
755 * to the ZONE_NORMAL.
756 */
757 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
758 unsigned long nr_pages)
759 {
760 struct pglist_data *pgdat = NODE_DATA(nid);
761 int zid;
762
763 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
764 struct zone *zone = &pgdat->node_zones[zid];
765
766 if (zone_intersects(zone, start_pfn, nr_pages))
767 return zone;
768 }
769
770 return &pgdat->node_zones[ZONE_NORMAL];
771 }
772
773 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
774 unsigned long nr_pages)
775 {
776 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
777 nr_pages);
778 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
779 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
780 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
781
782 /*
783 * We inherit the existing zone in a simple case where zones do not
784 * overlap in the given range
785 */
786 if (in_kernel ^ in_movable)
787 return (in_kernel) ? kernel_zone : movable_zone;
788
789 /*
790 * If the range doesn't belong to any zone or two zones overlap in the
791 * given range then we use movable zone only if movable_node is
792 * enabled because we always online to a kernel zone by default.
793 */
794 return movable_node_enabled ? movable_zone : kernel_zone;
795 }
796
797 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
798 unsigned long nr_pages)
799 {
800 if (online_type == MMOP_ONLINE_KERNEL)
801 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
802
803 if (online_type == MMOP_ONLINE_MOVABLE)
804 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
805
806 return default_zone_for_pfn(nid, start_pfn, nr_pages);
807 }
808
809 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
810 {
811 unsigned long flags;
812 unsigned long onlined_pages = 0;
813 struct zone *zone;
814 int need_zonelists_rebuild = 0;
815 int nid;
816 int ret;
817 struct memory_notify arg;
818 struct memory_block *mem;
819
820 mem_hotplug_begin();
821
822 /*
823 * We can't use pfn_to_nid() because nid might be stored in struct page
824 * which is not yet initialized. Instead, we find nid from memory block.
825 */
826 mem = find_memory_block(__pfn_to_section(pfn));
827 nid = mem->nid;
828 put_device(&mem->dev);
829
830 /* associate pfn range with the zone */
831 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
832 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
833
834 arg.start_pfn = pfn;
835 arg.nr_pages = nr_pages;
836 node_states_check_changes_online(nr_pages, zone, &arg);
837
838 ret = memory_notify(MEM_GOING_ONLINE, &arg);
839 ret = notifier_to_errno(ret);
840 if (ret)
841 goto failed_addition;
842
843 /*
844 * If this zone is not populated, then it is not in zonelist.
845 * This means the page allocator ignores this zone.
846 * So, zonelist must be updated after online.
847 */
848 if (!populated_zone(zone)) {
849 need_zonelists_rebuild = 1;
850 setup_zone_pageset(zone);
851 }
852
853 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
854 online_pages_range);
855 if (ret) {
856 if (need_zonelists_rebuild)
857 zone_pcp_reset(zone);
858 goto failed_addition;
859 }
860
861 zone->present_pages += onlined_pages;
862
863 pgdat_resize_lock(zone->zone_pgdat, &flags);
864 zone->zone_pgdat->node_present_pages += onlined_pages;
865 pgdat_resize_unlock(zone->zone_pgdat, &flags);
866
867 shuffle_zone(zone);
868
869 if (onlined_pages) {
870 node_states_set_node(nid, &arg);
871 if (need_zonelists_rebuild)
872 build_all_zonelists(NULL);
873 else
874 zone_pcp_update(zone);
875 }
876
877 init_per_zone_wmark_min();
878
879 if (onlined_pages) {
880 kswapd_run(nid);
881 kcompactd_run(nid);
882 }
883
884 vm_total_pages = nr_free_pagecache_pages();
885
886 writeback_set_ratelimit();
887
888 if (onlined_pages)
889 memory_notify(MEM_ONLINE, &arg);
890 mem_hotplug_done();
891 return 0;
892
893 failed_addition:
894 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
895 (unsigned long long) pfn << PAGE_SHIFT,
896 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
897 memory_notify(MEM_CANCEL_ONLINE, &arg);
898 mem_hotplug_done();
899 return ret;
900 }
901 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
902
903 static void reset_node_present_pages(pg_data_t *pgdat)
904 {
905 struct zone *z;
906
907 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
908 z->present_pages = 0;
909
910 pgdat->node_present_pages = 0;
911 }
912
913 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
914 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
915 {
916 struct pglist_data *pgdat;
917 unsigned long start_pfn = PFN_DOWN(start);
918
919 pgdat = NODE_DATA(nid);
920 if (!pgdat) {
921 pgdat = arch_alloc_nodedata(nid);
922 if (!pgdat)
923 return NULL;
924
925 pgdat->per_cpu_nodestats =
926 alloc_percpu(struct per_cpu_nodestat);
927 arch_refresh_nodedata(nid, pgdat);
928 } else {
929 int cpu;
930 /*
931 * Reset the nr_zones, order and classzone_idx before reuse.
932 * Note that kswapd will init kswapd_classzone_idx properly
933 * when it starts in the near future.
934 */
935 pgdat->nr_zones = 0;
936 pgdat->kswapd_order = 0;
937 pgdat->kswapd_classzone_idx = 0;
938 for_each_online_cpu(cpu) {
939 struct per_cpu_nodestat *p;
940
941 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
942 memset(p, 0, sizeof(*p));
943 }
944 }
945
946 /* we can use NODE_DATA(nid) from here */
947
948 pgdat->node_id = nid;
949 pgdat->node_start_pfn = start_pfn;
950
951 /* init node's zones as empty zones, we don't have any present pages.*/
952 free_area_init_core_hotplug(nid);
953
954 /*
955 * The node we allocated has no zone fallback lists. For avoiding
956 * to access not-initialized zonelist, build here.
957 */
958 build_all_zonelists(pgdat);
959
960 /*
961 * When memory is hot-added, all the memory is in offline state. So
962 * clear all zones' present_pages because they will be updated in
963 * online_pages() and offline_pages().
964 */
965 reset_node_managed_pages(pgdat);
966 reset_node_present_pages(pgdat);
967
968 return pgdat;
969 }
970
971 static void rollback_node_hotadd(int nid)
972 {
973 pg_data_t *pgdat = NODE_DATA(nid);
974
975 arch_refresh_nodedata(nid, NULL);
976 free_percpu(pgdat->per_cpu_nodestats);
977 arch_free_nodedata(pgdat);
978 }
979
980
981 /**
982 * try_online_node - online a node if offlined
983 * @nid: the node ID
984 * @start: start addr of the node
985 * @set_node_online: Whether we want to online the node
986 * called by cpu_up() to online a node without onlined memory.
987 *
988 * Returns:
989 * 1 -> a new node has been allocated
990 * 0 -> the node is already online
991 * -ENOMEM -> the node could not be allocated
992 */
993 static int __try_online_node(int nid, u64 start, bool set_node_online)
994 {
995 pg_data_t *pgdat;
996 int ret = 1;
997
998 if (node_online(nid))
999 return 0;
1000
1001 pgdat = hotadd_new_pgdat(nid, start);
1002 if (!pgdat) {
1003 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1004 ret = -ENOMEM;
1005 goto out;
1006 }
1007
1008 if (set_node_online) {
1009 node_set_online(nid);
1010 ret = register_one_node(nid);
1011 BUG_ON(ret);
1012 }
1013 out:
1014 return ret;
1015 }
1016
1017 /*
1018 * Users of this function always want to online/register the node
1019 */
1020 int try_online_node(int nid)
1021 {
1022 int ret;
1023
1024 mem_hotplug_begin();
1025 ret = __try_online_node(nid, 0, true);
1026 mem_hotplug_done();
1027 return ret;
1028 }
1029
1030 static int check_hotplug_memory_range(u64 start, u64 size)
1031 {
1032 /* memory range must be block size aligned */
1033 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1034 !IS_ALIGNED(size, memory_block_size_bytes())) {
1035 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1036 memory_block_size_bytes(), start, size);
1037 return -EINVAL;
1038 }
1039
1040 return 0;
1041 }
1042
1043 static int online_memory_block(struct memory_block *mem, void *arg)
1044 {
1045 return device_online(&mem->dev);
1046 }
1047
1048 /*
1049 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1050 * and online/offline operations (triggered e.g. by sysfs).
1051 *
1052 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1053 */
1054 int __ref add_memory_resource(int nid, struct resource *res)
1055 {
1056 struct mhp_restrictions restrictions = {};
1057 u64 start, size;
1058 bool new_node = false;
1059 int ret;
1060
1061 start = res->start;
1062 size = resource_size(res);
1063
1064 ret = check_hotplug_memory_range(start, size);
1065 if (ret)
1066 return ret;
1067
1068 mem_hotplug_begin();
1069
1070 /*
1071 * Add new range to memblock so that when hotadd_new_pgdat() is called
1072 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1073 * this new range and calculate total pages correctly. The range will
1074 * be removed at hot-remove time.
1075 */
1076 memblock_add_node(start, size, nid);
1077
1078 ret = __try_online_node(nid, start, false);
1079 if (ret < 0)
1080 goto error;
1081 new_node = ret;
1082
1083 /* call arch's memory hotadd */
1084 ret = arch_add_memory(nid, start, size, &restrictions);
1085 if (ret < 0)
1086 goto error;
1087
1088 /* create memory block devices after memory was added */
1089 ret = create_memory_block_devices(start, size);
1090 if (ret) {
1091 arch_remove_memory(nid, start, size, NULL);
1092 goto error;
1093 }
1094
1095 if (new_node) {
1096 /* If sysfs file of new node can't be created, cpu on the node
1097 * can't be hot-added. There is no rollback way now.
1098 * So, check by BUG_ON() to catch it reluctantly..
1099 * We online node here. We can't roll back from here.
1100 */
1101 node_set_online(nid);
1102 ret = __register_one_node(nid);
1103 BUG_ON(ret);
1104 }
1105
1106 /* link memory sections under this node.*/
1107 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1108 BUG_ON(ret);
1109
1110 /* create new memmap entry */
1111 firmware_map_add_hotplug(start, start + size, "System RAM");
1112
1113 /* device_online() will take the lock when calling online_pages() */
1114 mem_hotplug_done();
1115
1116 /* online pages if requested */
1117 if (memhp_auto_online)
1118 walk_memory_blocks(start, size, NULL, online_memory_block);
1119
1120 return ret;
1121 error:
1122 /* rollback pgdat allocation and others */
1123 if (new_node)
1124 rollback_node_hotadd(nid);
1125 memblock_remove(start, size);
1126 mem_hotplug_done();
1127 return ret;
1128 }
1129
1130 /* requires device_hotplug_lock, see add_memory_resource() */
1131 int __ref __add_memory(int nid, u64 start, u64 size)
1132 {
1133 struct resource *res;
1134 int ret;
1135
1136 res = register_memory_resource(start, size);
1137 if (IS_ERR(res))
1138 return PTR_ERR(res);
1139
1140 ret = add_memory_resource(nid, res);
1141 if (ret < 0)
1142 release_memory_resource(res);
1143 return ret;
1144 }
1145
1146 int add_memory(int nid, u64 start, u64 size)
1147 {
1148 int rc;
1149
1150 lock_device_hotplug();
1151 rc = __add_memory(nid, start, size);
1152 unlock_device_hotplug();
1153
1154 return rc;
1155 }
1156 EXPORT_SYMBOL_GPL(add_memory);
1157
1158 #ifdef CONFIG_MEMORY_HOTREMOVE
1159 /*
1160 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1161 * set and the size of the free page is given by page_order(). Using this,
1162 * the function determines if the pageblock contains only free pages.
1163 * Due to buddy contraints, a free page at least the size of a pageblock will
1164 * be located at the start of the pageblock
1165 */
1166 static inline int pageblock_free(struct page *page)
1167 {
1168 return PageBuddy(page) && page_order(page) >= pageblock_order;
1169 }
1170
1171 /* Return the pfn of the start of the next active pageblock after a given pfn */
1172 static unsigned long next_active_pageblock(unsigned long pfn)
1173 {
1174 struct page *page = pfn_to_page(pfn);
1175
1176 /* Ensure the starting page is pageblock-aligned */
1177 BUG_ON(pfn & (pageblock_nr_pages - 1));
1178
1179 /* If the entire pageblock is free, move to the end of free page */
1180 if (pageblock_free(page)) {
1181 int order;
1182 /* be careful. we don't have locks, page_order can be changed.*/
1183 order = page_order(page);
1184 if ((order < MAX_ORDER) && (order >= pageblock_order))
1185 return pfn + (1 << order);
1186 }
1187
1188 return pfn + pageblock_nr_pages;
1189 }
1190
1191 static bool is_pageblock_removable_nolock(unsigned long pfn)
1192 {
1193 struct page *page = pfn_to_page(pfn);
1194 struct zone *zone;
1195
1196 /*
1197 * We have to be careful here because we are iterating over memory
1198 * sections which are not zone aware so we might end up outside of
1199 * the zone but still within the section.
1200 * We have to take care about the node as well. If the node is offline
1201 * its NODE_DATA will be NULL - see page_zone.
1202 */
1203 if (!node_online(page_to_nid(page)))
1204 return false;
1205
1206 zone = page_zone(page);
1207 pfn = page_to_pfn(page);
1208 if (!zone_spans_pfn(zone, pfn))
1209 return false;
1210
1211 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1212 }
1213
1214 /* Checks if this range of memory is likely to be hot-removable. */
1215 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1216 {
1217 unsigned long end_pfn, pfn;
1218
1219 end_pfn = min(start_pfn + nr_pages,
1220 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1221
1222 /* Check the starting page of each pageblock within the range */
1223 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1224 if (!is_pageblock_removable_nolock(pfn))
1225 return false;
1226 cond_resched();
1227 }
1228
1229 /* All pageblocks in the memory block are likely to be hot-removable */
1230 return true;
1231 }
1232
1233 /*
1234 * Confirm all pages in a range [start, end) belong to the same zone.
1235 * When true, return its valid [start, end).
1236 */
1237 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1238 unsigned long *valid_start, unsigned long *valid_end)
1239 {
1240 unsigned long pfn, sec_end_pfn;
1241 unsigned long start, end;
1242 struct zone *zone = NULL;
1243 struct page *page;
1244 int i;
1245 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1246 pfn < end_pfn;
1247 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1248 /* Make sure the memory section is present first */
1249 if (!present_section_nr(pfn_to_section_nr(pfn)))
1250 continue;
1251 for (; pfn < sec_end_pfn && pfn < end_pfn;
1252 pfn += MAX_ORDER_NR_PAGES) {
1253 i = 0;
1254 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1255 while ((i < MAX_ORDER_NR_PAGES) &&
1256 !pfn_valid_within(pfn + i))
1257 i++;
1258 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1259 continue;
1260 /* Check if we got outside of the zone */
1261 if (zone && !zone_spans_pfn(zone, pfn + i))
1262 return 0;
1263 page = pfn_to_page(pfn + i);
1264 if (zone && page_zone(page) != zone)
1265 return 0;
1266 if (!zone)
1267 start = pfn + i;
1268 zone = page_zone(page);
1269 end = pfn + MAX_ORDER_NR_PAGES;
1270 }
1271 }
1272
1273 if (zone) {
1274 *valid_start = start;
1275 *valid_end = min(end, end_pfn);
1276 return 1;
1277 } else {
1278 return 0;
1279 }
1280 }
1281
1282 /*
1283 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1284 * non-lru movable pages and hugepages). We scan pfn because it's much
1285 * easier than scanning over linked list. This function returns the pfn
1286 * of the first found movable page if it's found, otherwise 0.
1287 */
1288 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1289 {
1290 unsigned long pfn;
1291
1292 for (pfn = start; pfn < end; pfn++) {
1293 struct page *page, *head;
1294 unsigned long skip;
1295
1296 if (!pfn_valid(pfn))
1297 continue;
1298 page = pfn_to_page(pfn);
1299 if (PageLRU(page))
1300 return pfn;
1301 if (__PageMovable(page))
1302 return pfn;
1303
1304 if (!PageHuge(page))
1305 continue;
1306 head = compound_head(page);
1307 if (page_huge_active(head))
1308 return pfn;
1309 skip = compound_nr(head) - (page - head);
1310 pfn += skip - 1;
1311 }
1312 return 0;
1313 }
1314
1315 static struct page *new_node_page(struct page *page, unsigned long private)
1316 {
1317 int nid = page_to_nid(page);
1318 nodemask_t nmask = node_states[N_MEMORY];
1319
1320 /*
1321 * try to allocate from a different node but reuse this node if there
1322 * are no other online nodes to be used (e.g. we are offlining a part
1323 * of the only existing node)
1324 */
1325 node_clear(nid, nmask);
1326 if (nodes_empty(nmask))
1327 node_set(nid, nmask);
1328
1329 return new_page_nodemask(page, nid, &nmask);
1330 }
1331
1332 static int
1333 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1334 {
1335 unsigned long pfn;
1336 struct page *page;
1337 int ret = 0;
1338 LIST_HEAD(source);
1339
1340 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1341 if (!pfn_valid(pfn))
1342 continue;
1343 page = pfn_to_page(pfn);
1344
1345 if (PageHuge(page)) {
1346 struct page *head = compound_head(page);
1347 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1348 isolate_huge_page(head, &source);
1349 continue;
1350 } else if (PageTransHuge(page))
1351 pfn = page_to_pfn(compound_head(page))
1352 + hpage_nr_pages(page) - 1;
1353
1354 /*
1355 * HWPoison pages have elevated reference counts so the migration would
1356 * fail on them. It also doesn't make any sense to migrate them in the
1357 * first place. Still try to unmap such a page in case it is still mapped
1358 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1359 * the unmap as the catch all safety net).
1360 */
1361 if (PageHWPoison(page)) {
1362 if (WARN_ON(PageLRU(page)))
1363 isolate_lru_page(page);
1364 if (page_mapped(page))
1365 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1366 continue;
1367 }
1368
1369 if (!get_page_unless_zero(page))
1370 continue;
1371 /*
1372 * We can skip free pages. And we can deal with pages on
1373 * LRU and non-lru movable pages.
1374 */
1375 if (PageLRU(page))
1376 ret = isolate_lru_page(page);
1377 else
1378 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1379 if (!ret) { /* Success */
1380 list_add_tail(&page->lru, &source);
1381 if (!__PageMovable(page))
1382 inc_node_page_state(page, NR_ISOLATED_ANON +
1383 page_is_file_cache(page));
1384
1385 } else {
1386 pr_warn("failed to isolate pfn %lx\n", pfn);
1387 dump_page(page, "isolation failed");
1388 }
1389 put_page(page);
1390 }
1391 if (!list_empty(&source)) {
1392 /* Allocate a new page from the nearest neighbor node */
1393 ret = migrate_pages(&source, new_node_page, NULL, 0,
1394 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1395 if (ret) {
1396 list_for_each_entry(page, &source, lru) {
1397 pr_warn("migrating pfn %lx failed ret:%d ",
1398 page_to_pfn(page), ret);
1399 dump_page(page, "migration failure");
1400 }
1401 putback_movable_pages(&source);
1402 }
1403 }
1404
1405 return ret;
1406 }
1407
1408 /*
1409 * remove from free_area[] and mark all as Reserved.
1410 */
1411 static int
1412 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1413 void *data)
1414 {
1415 unsigned long *offlined_pages = (unsigned long *)data;
1416
1417 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1418 return 0;
1419 }
1420
1421 /*
1422 * Check all pages in range, recoreded as memory resource, are isolated.
1423 */
1424 static int
1425 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1426 void *data)
1427 {
1428 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1429 }
1430
1431 static int __init cmdline_parse_movable_node(char *p)
1432 {
1433 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1434 movable_node_enabled = true;
1435 #else
1436 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1437 #endif
1438 return 0;
1439 }
1440 early_param("movable_node", cmdline_parse_movable_node);
1441
1442 /* check which state of node_states will be changed when offline memory */
1443 static void node_states_check_changes_offline(unsigned long nr_pages,
1444 struct zone *zone, struct memory_notify *arg)
1445 {
1446 struct pglist_data *pgdat = zone->zone_pgdat;
1447 unsigned long present_pages = 0;
1448 enum zone_type zt;
1449
1450 arg->status_change_nid = NUMA_NO_NODE;
1451 arg->status_change_nid_normal = NUMA_NO_NODE;
1452 arg->status_change_nid_high = NUMA_NO_NODE;
1453
1454 /*
1455 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1456 * If the memory to be offline is within the range
1457 * [0..ZONE_NORMAL], and it is the last present memory there,
1458 * the zones in that range will become empty after the offlining,
1459 * thus we can determine that we need to clear the node from
1460 * node_states[N_NORMAL_MEMORY].
1461 */
1462 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1463 present_pages += pgdat->node_zones[zt].present_pages;
1464 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1465 arg->status_change_nid_normal = zone_to_nid(zone);
1466
1467 #ifdef CONFIG_HIGHMEM
1468 /*
1469 * node_states[N_HIGH_MEMORY] contains nodes which
1470 * have normal memory or high memory.
1471 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1472 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1473 * we determine that the zones in that range become empty,
1474 * we need to clear the node for N_HIGH_MEMORY.
1475 */
1476 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1477 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1478 arg->status_change_nid_high = zone_to_nid(zone);
1479 #endif
1480
1481 /*
1482 * We have accounted the pages from [0..ZONE_NORMAL), and
1483 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1484 * as well.
1485 * Here we count the possible pages from ZONE_MOVABLE.
1486 * If after having accounted all the pages, we see that the nr_pages
1487 * to be offlined is over or equal to the accounted pages,
1488 * we know that the node will become empty, and so, we can clear
1489 * it for N_MEMORY as well.
1490 */
1491 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1492
1493 if (nr_pages >= present_pages)
1494 arg->status_change_nid = zone_to_nid(zone);
1495 }
1496
1497 static void node_states_clear_node(int node, struct memory_notify *arg)
1498 {
1499 if (arg->status_change_nid_normal >= 0)
1500 node_clear_state(node, N_NORMAL_MEMORY);
1501
1502 if (arg->status_change_nid_high >= 0)
1503 node_clear_state(node, N_HIGH_MEMORY);
1504
1505 if (arg->status_change_nid >= 0)
1506 node_clear_state(node, N_MEMORY);
1507 }
1508
1509 static int __ref __offline_pages(unsigned long start_pfn,
1510 unsigned long end_pfn)
1511 {
1512 unsigned long pfn, nr_pages;
1513 unsigned long offlined_pages = 0;
1514 int ret, node, nr_isolate_pageblock;
1515 unsigned long flags;
1516 unsigned long valid_start, valid_end;
1517 struct zone *zone;
1518 struct memory_notify arg;
1519 char *reason;
1520
1521 mem_hotplug_begin();
1522
1523 /* This makes hotplug much easier...and readable.
1524 we assume this for now. .*/
1525 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1526 &valid_end)) {
1527 ret = -EINVAL;
1528 reason = "multizone range";
1529 goto failed_removal;
1530 }
1531
1532 zone = page_zone(pfn_to_page(valid_start));
1533 node = zone_to_nid(zone);
1534 nr_pages = end_pfn - start_pfn;
1535
1536 /* set above range as isolated */
1537 ret = start_isolate_page_range(start_pfn, end_pfn,
1538 MIGRATE_MOVABLE,
1539 SKIP_HWPOISON | REPORT_FAILURE);
1540 if (ret < 0) {
1541 reason = "failure to isolate range";
1542 goto failed_removal;
1543 }
1544 nr_isolate_pageblock = ret;
1545
1546 arg.start_pfn = start_pfn;
1547 arg.nr_pages = nr_pages;
1548 node_states_check_changes_offline(nr_pages, zone, &arg);
1549
1550 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1551 ret = notifier_to_errno(ret);
1552 if (ret) {
1553 reason = "notifier failure";
1554 goto failed_removal_isolated;
1555 }
1556
1557 do {
1558 for (pfn = start_pfn; pfn;) {
1559 if (signal_pending(current)) {
1560 ret = -EINTR;
1561 reason = "signal backoff";
1562 goto failed_removal_isolated;
1563 }
1564
1565 cond_resched();
1566 lru_add_drain_all();
1567
1568 pfn = scan_movable_pages(pfn, end_pfn);
1569 if (pfn) {
1570 /*
1571 * TODO: fatal migration failures should bail
1572 * out
1573 */
1574 do_migrate_range(pfn, end_pfn);
1575 }
1576 }
1577
1578 /*
1579 * Dissolve free hugepages in the memory block before doing
1580 * offlining actually in order to make hugetlbfs's object
1581 * counting consistent.
1582 */
1583 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1584 if (ret) {
1585 reason = "failure to dissolve huge pages";
1586 goto failed_removal_isolated;
1587 }
1588 /* check again */
1589 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1590 NULL, check_pages_isolated_cb);
1591 } while (ret);
1592
1593 /* Ok, all of our target is isolated.
1594 We cannot do rollback at this point. */
1595 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1596 &offlined_pages, offline_isolated_pages_cb);
1597 pr_info("Offlined Pages %ld\n", offlined_pages);
1598 /*
1599 * Onlining will reset pagetype flags and makes migrate type
1600 * MOVABLE, so just need to decrease the number of isolated
1601 * pageblocks zone counter here.
1602 */
1603 spin_lock_irqsave(&zone->lock, flags);
1604 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1605 spin_unlock_irqrestore(&zone->lock, flags);
1606
1607 /* removal success */
1608 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1609 zone->present_pages -= offlined_pages;
1610
1611 pgdat_resize_lock(zone->zone_pgdat, &flags);
1612 zone->zone_pgdat->node_present_pages -= offlined_pages;
1613 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1614
1615 init_per_zone_wmark_min();
1616
1617 if (!populated_zone(zone)) {
1618 zone_pcp_reset(zone);
1619 build_all_zonelists(NULL);
1620 } else
1621 zone_pcp_update(zone);
1622
1623 node_states_clear_node(node, &arg);
1624 if (arg.status_change_nid >= 0) {
1625 kswapd_stop(node);
1626 kcompactd_stop(node);
1627 }
1628
1629 vm_total_pages = nr_free_pagecache_pages();
1630 writeback_set_ratelimit();
1631
1632 memory_notify(MEM_OFFLINE, &arg);
1633 mem_hotplug_done();
1634 return 0;
1635
1636 failed_removal_isolated:
1637 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1638 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1639 failed_removal:
1640 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1641 (unsigned long long) start_pfn << PAGE_SHIFT,
1642 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1643 reason);
1644 /* pushback to free area */
1645 mem_hotplug_done();
1646 return ret;
1647 }
1648
1649 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1650 {
1651 return __offline_pages(start_pfn, start_pfn + nr_pages);
1652 }
1653
1654 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1655 {
1656 int ret = !is_memblock_offlined(mem);
1657
1658 if (unlikely(ret)) {
1659 phys_addr_t beginpa, endpa;
1660
1661 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1662 endpa = beginpa + memory_block_size_bytes() - 1;
1663 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1664 &beginpa, &endpa);
1665
1666 return -EBUSY;
1667 }
1668 return 0;
1669 }
1670
1671 static int check_cpu_on_node(pg_data_t *pgdat)
1672 {
1673 int cpu;
1674
1675 for_each_present_cpu(cpu) {
1676 if (cpu_to_node(cpu) == pgdat->node_id)
1677 /*
1678 * the cpu on this node isn't removed, and we can't
1679 * offline this node.
1680 */
1681 return -EBUSY;
1682 }
1683
1684 return 0;
1685 }
1686
1687 /**
1688 * try_offline_node
1689 * @nid: the node ID
1690 *
1691 * Offline a node if all memory sections and cpus of the node are removed.
1692 *
1693 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1694 * and online/offline operations before this call.
1695 */
1696 void try_offline_node(int nid)
1697 {
1698 pg_data_t *pgdat = NODE_DATA(nid);
1699 unsigned long start_pfn = pgdat->node_start_pfn;
1700 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1701 unsigned long pfn;
1702
1703 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1704 unsigned long section_nr = pfn_to_section_nr(pfn);
1705
1706 if (!present_section_nr(section_nr))
1707 continue;
1708
1709 if (pfn_to_nid(pfn) != nid)
1710 continue;
1711
1712 /*
1713 * some memory sections of this node are not removed, and we
1714 * can't offline node now.
1715 */
1716 return;
1717 }
1718
1719 if (check_cpu_on_node(pgdat))
1720 return;
1721
1722 /*
1723 * all memory/cpu of this node are removed, we can offline this
1724 * node now.
1725 */
1726 node_set_offline(nid);
1727 unregister_one_node(nid);
1728 }
1729 EXPORT_SYMBOL(try_offline_node);
1730
1731 static void __release_memory_resource(resource_size_t start,
1732 resource_size_t size)
1733 {
1734 int ret;
1735
1736 /*
1737 * When removing memory in the same granularity as it was added,
1738 * this function never fails. It might only fail if resources
1739 * have to be adjusted or split. We'll ignore the error, as
1740 * removing of memory cannot fail.
1741 */
1742 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1743 if (ret) {
1744 resource_size_t endres = start + size - 1;
1745
1746 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1747 &start, &endres, ret);
1748 }
1749 }
1750
1751 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1752 {
1753 int rc = 0;
1754
1755 BUG_ON(check_hotplug_memory_range(start, size));
1756
1757 mem_hotplug_begin();
1758
1759 /*
1760 * All memory blocks must be offlined before removing memory. Check
1761 * whether all memory blocks in question are offline and return error
1762 * if this is not the case.
1763 */
1764 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1765 if (rc)
1766 goto done;
1767
1768 /* remove memmap entry */
1769 firmware_map_remove(start, start + size, "System RAM");
1770 memblock_free(start, size);
1771 memblock_remove(start, size);
1772
1773 /* remove memory block devices before removing memory */
1774 remove_memory_block_devices(start, size);
1775
1776 arch_remove_memory(nid, start, size, NULL);
1777 __release_memory_resource(start, size);
1778
1779 try_offline_node(nid);
1780
1781 done:
1782 mem_hotplug_done();
1783 return rc;
1784 }
1785
1786 /**
1787 * remove_memory
1788 * @nid: the node ID
1789 * @start: physical address of the region to remove
1790 * @size: size of the region to remove
1791 *
1792 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1793 * and online/offline operations before this call, as required by
1794 * try_offline_node().
1795 */
1796 void __remove_memory(int nid, u64 start, u64 size)
1797 {
1798
1799 /*
1800 * trigger BUG() is some memory is not offlined prior to calling this
1801 * function
1802 */
1803 if (try_remove_memory(nid, start, size))
1804 BUG();
1805 }
1806
1807 /*
1808 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1809 * some memory is not offline
1810 */
1811 int remove_memory(int nid, u64 start, u64 size)
1812 {
1813 int rc;
1814
1815 lock_device_hotplug();
1816 rc = try_remove_memory(nid, start, size);
1817 unlock_device_hotplug();
1818
1819 return rc;
1820 }
1821 EXPORT_SYMBOL_GPL(remove_memory);
1822 #endif /* CONFIG_MEMORY_HOTREMOVE */