]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memory_hotplug.c
Merge tag 'kbuild-fixes-v5.9-3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static online_page_callback_t online_page_callback = generic_online_page;
53 static DEFINE_MUTEX(online_page_callback_lock);
54
55 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
56
57 void get_online_mems(void)
58 {
59 percpu_down_read(&mem_hotplug_lock);
60 }
61
62 void put_online_mems(void)
63 {
64 percpu_up_read(&mem_hotplug_lock);
65 }
66
67 bool movable_node_enabled = false;
68
69 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
70 int memhp_default_online_type = MMOP_OFFLINE;
71 #else
72 int memhp_default_online_type = MMOP_ONLINE;
73 #endif
74
75 static int __init setup_memhp_default_state(char *str)
76 {
77 const int online_type = memhp_online_type_from_str(str);
78
79 if (online_type >= 0)
80 memhp_default_online_type = online_type;
81
82 return 1;
83 }
84 __setup("memhp_default_state=", setup_memhp_default_state);
85
86 void mem_hotplug_begin(void)
87 {
88 cpus_read_lock();
89 percpu_down_write(&mem_hotplug_lock);
90 }
91
92 void mem_hotplug_done(void)
93 {
94 percpu_up_write(&mem_hotplug_lock);
95 cpus_read_unlock();
96 }
97
98 u64 max_mem_size = U64_MAX;
99
100 /* add this memory to iomem resource */
101 static struct resource *register_memory_resource(u64 start, u64 size,
102 const char *resource_name)
103 {
104 struct resource *res;
105 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
106
107 if (strcmp(resource_name, "System RAM"))
108 flags |= IORESOURCE_MEM_DRIVER_MANAGED;
109
110 /*
111 * Make sure value parsed from 'mem=' only restricts memory adding
112 * while booting, so that memory hotplug won't be impacted. Please
113 * refer to document of 'mem=' in kernel-parameters.txt for more
114 * details.
115 */
116 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
117 return ERR_PTR(-E2BIG);
118
119 /*
120 * Request ownership of the new memory range. This might be
121 * a child of an existing resource that was present but
122 * not marked as busy.
123 */
124 res = __request_region(&iomem_resource, start, size,
125 resource_name, flags);
126
127 if (!res) {
128 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
129 start, start + size);
130 return ERR_PTR(-EEXIST);
131 }
132 return res;
133 }
134
135 static void release_memory_resource(struct resource *res)
136 {
137 if (!res)
138 return;
139 release_resource(res);
140 kfree(res);
141 }
142
143 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
144 void get_page_bootmem(unsigned long info, struct page *page,
145 unsigned long type)
146 {
147 page->freelist = (void *)type;
148 SetPagePrivate(page);
149 set_page_private(page, info);
150 page_ref_inc(page);
151 }
152
153 void put_page_bootmem(struct page *page)
154 {
155 unsigned long type;
156
157 type = (unsigned long) page->freelist;
158 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
159 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
160
161 if (page_ref_dec_return(page) == 1) {
162 page->freelist = NULL;
163 ClearPagePrivate(page);
164 set_page_private(page, 0);
165 INIT_LIST_HEAD(&page->lru);
166 free_reserved_page(page);
167 }
168 }
169
170 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
171 #ifndef CONFIG_SPARSEMEM_VMEMMAP
172 static void register_page_bootmem_info_section(unsigned long start_pfn)
173 {
174 unsigned long mapsize, section_nr, i;
175 struct mem_section *ms;
176 struct page *page, *memmap;
177 struct mem_section_usage *usage;
178
179 section_nr = pfn_to_section_nr(start_pfn);
180 ms = __nr_to_section(section_nr);
181
182 /* Get section's memmap address */
183 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
184
185 /*
186 * Get page for the memmap's phys address
187 * XXX: need more consideration for sparse_vmemmap...
188 */
189 page = virt_to_page(memmap);
190 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
191 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
192
193 /* remember memmap's page */
194 for (i = 0; i < mapsize; i++, page++)
195 get_page_bootmem(section_nr, page, SECTION_INFO);
196
197 usage = ms->usage;
198 page = virt_to_page(usage);
199
200 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
201
202 for (i = 0; i < mapsize; i++, page++)
203 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
204
205 }
206 #else /* CONFIG_SPARSEMEM_VMEMMAP */
207 static void register_page_bootmem_info_section(unsigned long start_pfn)
208 {
209 unsigned long mapsize, section_nr, i;
210 struct mem_section *ms;
211 struct page *page, *memmap;
212 struct mem_section_usage *usage;
213
214 section_nr = pfn_to_section_nr(start_pfn);
215 ms = __nr_to_section(section_nr);
216
217 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
218
219 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
220
221 usage = ms->usage;
222 page = virt_to_page(usage);
223
224 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
225
226 for (i = 0; i < mapsize; i++, page++)
227 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
228 }
229 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
230
231 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
232 {
233 unsigned long i, pfn, end_pfn, nr_pages;
234 int node = pgdat->node_id;
235 struct page *page;
236
237 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
238 page = virt_to_page(pgdat);
239
240 for (i = 0; i < nr_pages; i++, page++)
241 get_page_bootmem(node, page, NODE_INFO);
242
243 pfn = pgdat->node_start_pfn;
244 end_pfn = pgdat_end_pfn(pgdat);
245
246 /* register section info */
247 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
248 /*
249 * Some platforms can assign the same pfn to multiple nodes - on
250 * node0 as well as nodeN. To avoid registering a pfn against
251 * multiple nodes we check that this pfn does not already
252 * reside in some other nodes.
253 */
254 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
255 register_page_bootmem_info_section(pfn);
256 }
257 }
258 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
259
260 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
261 const char *reason)
262 {
263 /*
264 * Disallow all operations smaller than a sub-section and only
265 * allow operations smaller than a section for
266 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
267 * enforces a larger memory_block_size_bytes() granularity for
268 * memory that will be marked online, so this check should only
269 * fire for direct arch_{add,remove}_memory() users outside of
270 * add_memory_resource().
271 */
272 unsigned long min_align;
273
274 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
275 min_align = PAGES_PER_SUBSECTION;
276 else
277 min_align = PAGES_PER_SECTION;
278 if (!IS_ALIGNED(pfn, min_align)
279 || !IS_ALIGNED(nr_pages, min_align)) {
280 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
281 reason, pfn, pfn + nr_pages - 1);
282 return -EINVAL;
283 }
284 return 0;
285 }
286
287 static int check_hotplug_memory_addressable(unsigned long pfn,
288 unsigned long nr_pages)
289 {
290 const u64 max_addr = PFN_PHYS(pfn + nr_pages) - 1;
291
292 if (max_addr >> MAX_PHYSMEM_BITS) {
293 const u64 max_allowed = (1ull << (MAX_PHYSMEM_BITS + 1)) - 1;
294 WARN(1,
295 "Hotplugged memory exceeds maximum addressable address, range=%#llx-%#llx, maximum=%#llx\n",
296 (u64)PFN_PHYS(pfn), max_addr, max_allowed);
297 return -E2BIG;
298 }
299
300 return 0;
301 }
302
303 /*
304 * Reasonably generic function for adding memory. It is
305 * expected that archs that support memory hotplug will
306 * call this function after deciding the zone to which to
307 * add the new pages.
308 */
309 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
310 struct mhp_params *params)
311 {
312 const unsigned long end_pfn = pfn + nr_pages;
313 unsigned long cur_nr_pages;
314 int err;
315 struct vmem_altmap *altmap = params->altmap;
316
317 if (WARN_ON_ONCE(!params->pgprot.pgprot))
318 return -EINVAL;
319
320 err = check_hotplug_memory_addressable(pfn, nr_pages);
321 if (err)
322 return err;
323
324 if (altmap) {
325 /*
326 * Validate altmap is within bounds of the total request
327 */
328 if (altmap->base_pfn != pfn
329 || vmem_altmap_offset(altmap) > nr_pages) {
330 pr_warn_once("memory add fail, invalid altmap\n");
331 return -EINVAL;
332 }
333 altmap->alloc = 0;
334 }
335
336 err = check_pfn_span(pfn, nr_pages, "add");
337 if (err)
338 return err;
339
340 for (; pfn < end_pfn; pfn += cur_nr_pages) {
341 /* Select all remaining pages up to the next section boundary */
342 cur_nr_pages = min(end_pfn - pfn,
343 SECTION_ALIGN_UP(pfn + 1) - pfn);
344 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap);
345 if (err)
346 break;
347 cond_resched();
348 }
349 vmemmap_populate_print_last();
350 return err;
351 }
352
353 #ifdef CONFIG_NUMA
354 int __weak memory_add_physaddr_to_nid(u64 start)
355 {
356 pr_info_once("Unknown target node for memory at 0x%llx, assuming node 0\n",
357 start);
358 return 0;
359 }
360 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
361 #endif
362
363 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
364 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
365 unsigned long start_pfn,
366 unsigned long end_pfn)
367 {
368 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
369 if (unlikely(!pfn_to_online_page(start_pfn)))
370 continue;
371
372 if (unlikely(pfn_to_nid(start_pfn) != nid))
373 continue;
374
375 if (zone != page_zone(pfn_to_page(start_pfn)))
376 continue;
377
378 return start_pfn;
379 }
380
381 return 0;
382 }
383
384 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
385 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
386 unsigned long start_pfn,
387 unsigned long end_pfn)
388 {
389 unsigned long pfn;
390
391 /* pfn is the end pfn of a memory section. */
392 pfn = end_pfn - 1;
393 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
394 if (unlikely(!pfn_to_online_page(pfn)))
395 continue;
396
397 if (unlikely(pfn_to_nid(pfn) != nid))
398 continue;
399
400 if (zone != page_zone(pfn_to_page(pfn)))
401 continue;
402
403 return pfn;
404 }
405
406 return 0;
407 }
408
409 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
410 unsigned long end_pfn)
411 {
412 unsigned long pfn;
413 int nid = zone_to_nid(zone);
414
415 zone_span_writelock(zone);
416 if (zone->zone_start_pfn == start_pfn) {
417 /*
418 * If the section is smallest section in the zone, it need
419 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
420 * In this case, we find second smallest valid mem_section
421 * for shrinking zone.
422 */
423 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
424 zone_end_pfn(zone));
425 if (pfn) {
426 zone->spanned_pages = zone_end_pfn(zone) - pfn;
427 zone->zone_start_pfn = pfn;
428 } else {
429 zone->zone_start_pfn = 0;
430 zone->spanned_pages = 0;
431 }
432 } else if (zone_end_pfn(zone) == end_pfn) {
433 /*
434 * If the section is biggest section in the zone, it need
435 * shrink zone->spanned_pages.
436 * In this case, we find second biggest valid mem_section for
437 * shrinking zone.
438 */
439 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
440 start_pfn);
441 if (pfn)
442 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
443 else {
444 zone->zone_start_pfn = 0;
445 zone->spanned_pages = 0;
446 }
447 }
448 zone_span_writeunlock(zone);
449 }
450
451 static void update_pgdat_span(struct pglist_data *pgdat)
452 {
453 unsigned long node_start_pfn = 0, node_end_pfn = 0;
454 struct zone *zone;
455
456 for (zone = pgdat->node_zones;
457 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
458 unsigned long zone_end_pfn = zone->zone_start_pfn +
459 zone->spanned_pages;
460
461 /* No need to lock the zones, they can't change. */
462 if (!zone->spanned_pages)
463 continue;
464 if (!node_end_pfn) {
465 node_start_pfn = zone->zone_start_pfn;
466 node_end_pfn = zone_end_pfn;
467 continue;
468 }
469
470 if (zone_end_pfn > node_end_pfn)
471 node_end_pfn = zone_end_pfn;
472 if (zone->zone_start_pfn < node_start_pfn)
473 node_start_pfn = zone->zone_start_pfn;
474 }
475
476 pgdat->node_start_pfn = node_start_pfn;
477 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
478 }
479
480 void __ref remove_pfn_range_from_zone(struct zone *zone,
481 unsigned long start_pfn,
482 unsigned long nr_pages)
483 {
484 const unsigned long end_pfn = start_pfn + nr_pages;
485 struct pglist_data *pgdat = zone->zone_pgdat;
486 unsigned long pfn, cur_nr_pages, flags;
487
488 /* Poison struct pages because they are now uninitialized again. */
489 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
490 cond_resched();
491
492 /* Select all remaining pages up to the next section boundary */
493 cur_nr_pages =
494 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
495 page_init_poison(pfn_to_page(pfn),
496 sizeof(struct page) * cur_nr_pages);
497 }
498
499 #ifdef CONFIG_ZONE_DEVICE
500 /*
501 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
502 * we will not try to shrink the zones - which is okay as
503 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
504 */
505 if (zone_idx(zone) == ZONE_DEVICE)
506 return;
507 #endif
508
509 clear_zone_contiguous(zone);
510
511 pgdat_resize_lock(zone->zone_pgdat, &flags);
512 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
513 update_pgdat_span(pgdat);
514 pgdat_resize_unlock(zone->zone_pgdat, &flags);
515
516 set_zone_contiguous(zone);
517 }
518
519 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
520 unsigned long map_offset,
521 struct vmem_altmap *altmap)
522 {
523 struct mem_section *ms = __pfn_to_section(pfn);
524
525 if (WARN_ON_ONCE(!valid_section(ms)))
526 return;
527
528 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
529 }
530
531 /**
532 * __remove_pages() - remove sections of pages
533 * @pfn: starting pageframe (must be aligned to start of a section)
534 * @nr_pages: number of pages to remove (must be multiple of section size)
535 * @altmap: alternative device page map or %NULL if default memmap is used
536 *
537 * Generic helper function to remove section mappings and sysfs entries
538 * for the section of the memory we are removing. Caller needs to make
539 * sure that pages are marked reserved and zones are adjust properly by
540 * calling offline_pages().
541 */
542 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
543 struct vmem_altmap *altmap)
544 {
545 const unsigned long end_pfn = pfn + nr_pages;
546 unsigned long cur_nr_pages;
547 unsigned long map_offset = 0;
548
549 map_offset = vmem_altmap_offset(altmap);
550
551 if (check_pfn_span(pfn, nr_pages, "remove"))
552 return;
553
554 for (; pfn < end_pfn; pfn += cur_nr_pages) {
555 cond_resched();
556 /* Select all remaining pages up to the next section boundary */
557 cur_nr_pages = min(end_pfn - pfn,
558 SECTION_ALIGN_UP(pfn + 1) - pfn);
559 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
560 map_offset = 0;
561 }
562 }
563
564 int set_online_page_callback(online_page_callback_t callback)
565 {
566 int rc = -EINVAL;
567
568 get_online_mems();
569 mutex_lock(&online_page_callback_lock);
570
571 if (online_page_callback == generic_online_page) {
572 online_page_callback = callback;
573 rc = 0;
574 }
575
576 mutex_unlock(&online_page_callback_lock);
577 put_online_mems();
578
579 return rc;
580 }
581 EXPORT_SYMBOL_GPL(set_online_page_callback);
582
583 int restore_online_page_callback(online_page_callback_t callback)
584 {
585 int rc = -EINVAL;
586
587 get_online_mems();
588 mutex_lock(&online_page_callback_lock);
589
590 if (online_page_callback == callback) {
591 online_page_callback = generic_online_page;
592 rc = 0;
593 }
594
595 mutex_unlock(&online_page_callback_lock);
596 put_online_mems();
597
598 return rc;
599 }
600 EXPORT_SYMBOL_GPL(restore_online_page_callback);
601
602 void generic_online_page(struct page *page, unsigned int order)
603 {
604 /*
605 * Freeing the page with debug_pagealloc enabled will try to unmap it,
606 * so we should map it first. This is better than introducing a special
607 * case in page freeing fast path.
608 */
609 if (debug_pagealloc_enabled_static())
610 kernel_map_pages(page, 1 << order, 1);
611 __free_pages_core(page, order);
612 totalram_pages_add(1UL << order);
613 #ifdef CONFIG_HIGHMEM
614 if (PageHighMem(page))
615 totalhigh_pages_add(1UL << order);
616 #endif
617 }
618 EXPORT_SYMBOL_GPL(generic_online_page);
619
620 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
621 void *arg)
622 {
623 const unsigned long end_pfn = start_pfn + nr_pages;
624 unsigned long pfn;
625 int order;
626
627 /*
628 * Online the pages. The callback might decide to keep some pages
629 * PG_reserved (to add them to the buddy later), but we still account
630 * them as being online/belonging to this zone ("present").
631 */
632 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
633 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
634 /* __free_pages_core() wants pfns to be aligned to the order */
635 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
636 order = 0;
637 (*online_page_callback)(pfn_to_page(pfn), order);
638 }
639
640 /* mark all involved sections as online */
641 online_mem_sections(start_pfn, end_pfn);
642
643 *(unsigned long *)arg += nr_pages;
644 return 0;
645 }
646
647 /* check which state of node_states will be changed when online memory */
648 static void node_states_check_changes_online(unsigned long nr_pages,
649 struct zone *zone, struct memory_notify *arg)
650 {
651 int nid = zone_to_nid(zone);
652
653 arg->status_change_nid = NUMA_NO_NODE;
654 arg->status_change_nid_normal = NUMA_NO_NODE;
655 arg->status_change_nid_high = NUMA_NO_NODE;
656
657 if (!node_state(nid, N_MEMORY))
658 arg->status_change_nid = nid;
659 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
660 arg->status_change_nid_normal = nid;
661 #ifdef CONFIG_HIGHMEM
662 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
663 arg->status_change_nid_high = nid;
664 #endif
665 }
666
667 static void node_states_set_node(int node, struct memory_notify *arg)
668 {
669 if (arg->status_change_nid_normal >= 0)
670 node_set_state(node, N_NORMAL_MEMORY);
671
672 if (arg->status_change_nid_high >= 0)
673 node_set_state(node, N_HIGH_MEMORY);
674
675 if (arg->status_change_nid >= 0)
676 node_set_state(node, N_MEMORY);
677 }
678
679 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
680 unsigned long nr_pages)
681 {
682 unsigned long old_end_pfn = zone_end_pfn(zone);
683
684 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
685 zone->zone_start_pfn = start_pfn;
686
687 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
688 }
689
690 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
691 unsigned long nr_pages)
692 {
693 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
694
695 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
696 pgdat->node_start_pfn = start_pfn;
697
698 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
699
700 }
701 /*
702 * Associate the pfn range with the given zone, initializing the memmaps
703 * and resizing the pgdat/zone data to span the added pages. After this
704 * call, all affected pages are PG_reserved.
705 */
706 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
707 unsigned long nr_pages, struct vmem_altmap *altmap)
708 {
709 struct pglist_data *pgdat = zone->zone_pgdat;
710 int nid = pgdat->node_id;
711 unsigned long flags;
712
713 clear_zone_contiguous(zone);
714
715 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
716 pgdat_resize_lock(pgdat, &flags);
717 zone_span_writelock(zone);
718 if (zone_is_empty(zone))
719 init_currently_empty_zone(zone, start_pfn, nr_pages);
720 resize_zone_range(zone, start_pfn, nr_pages);
721 zone_span_writeunlock(zone);
722 resize_pgdat_range(pgdat, start_pfn, nr_pages);
723 pgdat_resize_unlock(pgdat, &flags);
724
725 /*
726 * TODO now we have a visible range of pages which are not associated
727 * with their zone properly. Not nice but set_pfnblock_flags_mask
728 * expects the zone spans the pfn range. All the pages in the range
729 * are reserved so nobody should be touching them so we should be safe
730 */
731 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
732 MEMMAP_HOTPLUG, altmap);
733
734 set_zone_contiguous(zone);
735 }
736
737 /*
738 * Returns a default kernel memory zone for the given pfn range.
739 * If no kernel zone covers this pfn range it will automatically go
740 * to the ZONE_NORMAL.
741 */
742 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
743 unsigned long nr_pages)
744 {
745 struct pglist_data *pgdat = NODE_DATA(nid);
746 int zid;
747
748 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
749 struct zone *zone = &pgdat->node_zones[zid];
750
751 if (zone_intersects(zone, start_pfn, nr_pages))
752 return zone;
753 }
754
755 return &pgdat->node_zones[ZONE_NORMAL];
756 }
757
758 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
759 unsigned long nr_pages)
760 {
761 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
762 nr_pages);
763 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
764 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
765 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
766
767 /*
768 * We inherit the existing zone in a simple case where zones do not
769 * overlap in the given range
770 */
771 if (in_kernel ^ in_movable)
772 return (in_kernel) ? kernel_zone : movable_zone;
773
774 /*
775 * If the range doesn't belong to any zone or two zones overlap in the
776 * given range then we use movable zone only if movable_node is
777 * enabled because we always online to a kernel zone by default.
778 */
779 return movable_node_enabled ? movable_zone : kernel_zone;
780 }
781
782 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
783 unsigned long nr_pages)
784 {
785 if (online_type == MMOP_ONLINE_KERNEL)
786 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
787
788 if (online_type == MMOP_ONLINE_MOVABLE)
789 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
790
791 return default_zone_for_pfn(nid, start_pfn, nr_pages);
792 }
793
794 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
795 int online_type, int nid)
796 {
797 unsigned long flags;
798 unsigned long onlined_pages = 0;
799 struct zone *zone;
800 int need_zonelists_rebuild = 0;
801 int ret;
802 struct memory_notify arg;
803
804 mem_hotplug_begin();
805
806 /* associate pfn range with the zone */
807 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
808 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
809
810 arg.start_pfn = pfn;
811 arg.nr_pages = nr_pages;
812 node_states_check_changes_online(nr_pages, zone, &arg);
813
814 ret = memory_notify(MEM_GOING_ONLINE, &arg);
815 ret = notifier_to_errno(ret);
816 if (ret)
817 goto failed_addition;
818
819 /*
820 * If this zone is not populated, then it is not in zonelist.
821 * This means the page allocator ignores this zone.
822 * So, zonelist must be updated after online.
823 */
824 if (!populated_zone(zone)) {
825 need_zonelists_rebuild = 1;
826 setup_zone_pageset(zone);
827 }
828
829 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
830 online_pages_range);
831 if (ret) {
832 /* not a single memory resource was applicable */
833 if (need_zonelists_rebuild)
834 zone_pcp_reset(zone);
835 goto failed_addition;
836 }
837
838 zone->present_pages += onlined_pages;
839
840 pgdat_resize_lock(zone->zone_pgdat, &flags);
841 zone->zone_pgdat->node_present_pages += onlined_pages;
842 pgdat_resize_unlock(zone->zone_pgdat, &flags);
843
844 /*
845 * When exposing larger, physically contiguous memory areas to the
846 * buddy, shuffling in the buddy (when freeing onlined pages, putting
847 * them either to the head or the tail of the freelist) is only helpful
848 * for maintaining the shuffle, but not for creating the initial
849 * shuffle. Shuffle the whole zone to make sure the just onlined pages
850 * are properly distributed across the whole freelist.
851 */
852 shuffle_zone(zone);
853
854 node_states_set_node(nid, &arg);
855 if (need_zonelists_rebuild)
856 build_all_zonelists(NULL);
857 zone_pcp_update(zone);
858
859 init_per_zone_wmark_min();
860
861 kswapd_run(nid);
862 kcompactd_run(nid);
863
864 writeback_set_ratelimit();
865
866 memory_notify(MEM_ONLINE, &arg);
867 mem_hotplug_done();
868 return 0;
869
870 failed_addition:
871 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
872 (unsigned long long) pfn << PAGE_SHIFT,
873 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
874 memory_notify(MEM_CANCEL_ONLINE, &arg);
875 remove_pfn_range_from_zone(zone, pfn, nr_pages);
876 mem_hotplug_done();
877 return ret;
878 }
879 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
880
881 static void reset_node_present_pages(pg_data_t *pgdat)
882 {
883 struct zone *z;
884
885 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
886 z->present_pages = 0;
887
888 pgdat->node_present_pages = 0;
889 }
890
891 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
892 static pg_data_t __ref *hotadd_new_pgdat(int nid)
893 {
894 struct pglist_data *pgdat;
895
896 pgdat = NODE_DATA(nid);
897 if (!pgdat) {
898 pgdat = arch_alloc_nodedata(nid);
899 if (!pgdat)
900 return NULL;
901
902 pgdat->per_cpu_nodestats =
903 alloc_percpu(struct per_cpu_nodestat);
904 arch_refresh_nodedata(nid, pgdat);
905 } else {
906 int cpu;
907 /*
908 * Reset the nr_zones, order and highest_zoneidx before reuse.
909 * Note that kswapd will init kswapd_highest_zoneidx properly
910 * when it starts in the near future.
911 */
912 pgdat->nr_zones = 0;
913 pgdat->kswapd_order = 0;
914 pgdat->kswapd_highest_zoneidx = 0;
915 for_each_online_cpu(cpu) {
916 struct per_cpu_nodestat *p;
917
918 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
919 memset(p, 0, sizeof(*p));
920 }
921 }
922
923 /* we can use NODE_DATA(nid) from here */
924 pgdat->node_id = nid;
925 pgdat->node_start_pfn = 0;
926
927 /* init node's zones as empty zones, we don't have any present pages.*/
928 free_area_init_core_hotplug(nid);
929
930 /*
931 * The node we allocated has no zone fallback lists. For avoiding
932 * to access not-initialized zonelist, build here.
933 */
934 build_all_zonelists(pgdat);
935
936 /*
937 * When memory is hot-added, all the memory is in offline state. So
938 * clear all zones' present_pages because they will be updated in
939 * online_pages() and offline_pages().
940 */
941 reset_node_managed_pages(pgdat);
942 reset_node_present_pages(pgdat);
943
944 return pgdat;
945 }
946
947 static void rollback_node_hotadd(int nid)
948 {
949 pg_data_t *pgdat = NODE_DATA(nid);
950
951 arch_refresh_nodedata(nid, NULL);
952 free_percpu(pgdat->per_cpu_nodestats);
953 arch_free_nodedata(pgdat);
954 }
955
956
957 /**
958 * try_online_node - online a node if offlined
959 * @nid: the node ID
960 * @set_node_online: Whether we want to online the node
961 * called by cpu_up() to online a node without onlined memory.
962 *
963 * Returns:
964 * 1 -> a new node has been allocated
965 * 0 -> the node is already online
966 * -ENOMEM -> the node could not be allocated
967 */
968 static int __try_online_node(int nid, bool set_node_online)
969 {
970 pg_data_t *pgdat;
971 int ret = 1;
972
973 if (node_online(nid))
974 return 0;
975
976 pgdat = hotadd_new_pgdat(nid);
977 if (!pgdat) {
978 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
979 ret = -ENOMEM;
980 goto out;
981 }
982
983 if (set_node_online) {
984 node_set_online(nid);
985 ret = register_one_node(nid);
986 BUG_ON(ret);
987 }
988 out:
989 return ret;
990 }
991
992 /*
993 * Users of this function always want to online/register the node
994 */
995 int try_online_node(int nid)
996 {
997 int ret;
998
999 mem_hotplug_begin();
1000 ret = __try_online_node(nid, true);
1001 mem_hotplug_done();
1002 return ret;
1003 }
1004
1005 static int check_hotplug_memory_range(u64 start, u64 size)
1006 {
1007 /* memory range must be block size aligned */
1008 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1009 !IS_ALIGNED(size, memory_block_size_bytes())) {
1010 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1011 memory_block_size_bytes(), start, size);
1012 return -EINVAL;
1013 }
1014
1015 return 0;
1016 }
1017
1018 static int online_memory_block(struct memory_block *mem, void *arg)
1019 {
1020 mem->online_type = memhp_default_online_type;
1021 return device_online(&mem->dev);
1022 }
1023
1024 /*
1025 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1026 * and online/offline operations (triggered e.g. by sysfs).
1027 *
1028 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1029 */
1030 int __ref add_memory_resource(int nid, struct resource *res)
1031 {
1032 struct mhp_params params = { .pgprot = PAGE_KERNEL };
1033 u64 start, size;
1034 bool new_node = false;
1035 int ret;
1036
1037 start = res->start;
1038 size = resource_size(res);
1039
1040 ret = check_hotplug_memory_range(start, size);
1041 if (ret)
1042 return ret;
1043
1044 if (!node_possible(nid)) {
1045 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1046 return -EINVAL;
1047 }
1048
1049 mem_hotplug_begin();
1050
1051 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1052 memblock_add_node(start, size, nid);
1053
1054 ret = __try_online_node(nid, false);
1055 if (ret < 0)
1056 goto error;
1057 new_node = ret;
1058
1059 /* call arch's memory hotadd */
1060 ret = arch_add_memory(nid, start, size, &params);
1061 if (ret < 0)
1062 goto error;
1063
1064 /* create memory block devices after memory was added */
1065 ret = create_memory_block_devices(start, size);
1066 if (ret) {
1067 arch_remove_memory(nid, start, size, NULL);
1068 goto error;
1069 }
1070
1071 if (new_node) {
1072 /* If sysfs file of new node can't be created, cpu on the node
1073 * can't be hot-added. There is no rollback way now.
1074 * So, check by BUG_ON() to catch it reluctantly..
1075 * We online node here. We can't roll back from here.
1076 */
1077 node_set_online(nid);
1078 ret = __register_one_node(nid);
1079 BUG_ON(ret);
1080 }
1081
1082 /* link memory sections under this node.*/
1083 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1084 BUG_ON(ret);
1085
1086 /* create new memmap entry */
1087 if (!strcmp(res->name, "System RAM"))
1088 firmware_map_add_hotplug(start, start + size, "System RAM");
1089
1090 /* device_online() will take the lock when calling online_pages() */
1091 mem_hotplug_done();
1092
1093 /* online pages if requested */
1094 if (memhp_default_online_type != MMOP_OFFLINE)
1095 walk_memory_blocks(start, size, NULL, online_memory_block);
1096
1097 return ret;
1098 error:
1099 /* rollback pgdat allocation and others */
1100 if (new_node)
1101 rollback_node_hotadd(nid);
1102 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1103 memblock_remove(start, size);
1104 mem_hotplug_done();
1105 return ret;
1106 }
1107
1108 /* requires device_hotplug_lock, see add_memory_resource() */
1109 int __ref __add_memory(int nid, u64 start, u64 size)
1110 {
1111 struct resource *res;
1112 int ret;
1113
1114 res = register_memory_resource(start, size, "System RAM");
1115 if (IS_ERR(res))
1116 return PTR_ERR(res);
1117
1118 ret = add_memory_resource(nid, res);
1119 if (ret < 0)
1120 release_memory_resource(res);
1121 return ret;
1122 }
1123
1124 int add_memory(int nid, u64 start, u64 size)
1125 {
1126 int rc;
1127
1128 lock_device_hotplug();
1129 rc = __add_memory(nid, start, size);
1130 unlock_device_hotplug();
1131
1132 return rc;
1133 }
1134 EXPORT_SYMBOL_GPL(add_memory);
1135
1136 /*
1137 * Add special, driver-managed memory to the system as system RAM. Such
1138 * memory is not exposed via the raw firmware-provided memmap as system
1139 * RAM, instead, it is detected and added by a driver - during cold boot,
1140 * after a reboot, and after kexec.
1141 *
1142 * Reasons why this memory should not be used for the initial memmap of a
1143 * kexec kernel or for placing kexec images:
1144 * - The booting kernel is in charge of determining how this memory will be
1145 * used (e.g., use persistent memory as system RAM)
1146 * - Coordination with a hypervisor is required before this memory
1147 * can be used (e.g., inaccessible parts).
1148 *
1149 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1150 * memory map") are created. Also, the created memory resource is flagged
1151 * with IORESOURCE_MEM_DRIVER_MANAGED, so in-kernel users can special-case
1152 * this memory as well (esp., not place kexec images onto it).
1153 *
1154 * The resource_name (visible via /proc/iomem) has to have the format
1155 * "System RAM ($DRIVER)".
1156 */
1157 int add_memory_driver_managed(int nid, u64 start, u64 size,
1158 const char *resource_name)
1159 {
1160 struct resource *res;
1161 int rc;
1162
1163 if (!resource_name ||
1164 strstr(resource_name, "System RAM (") != resource_name ||
1165 resource_name[strlen(resource_name) - 1] != ')')
1166 return -EINVAL;
1167
1168 lock_device_hotplug();
1169
1170 res = register_memory_resource(start, size, resource_name);
1171 if (IS_ERR(res)) {
1172 rc = PTR_ERR(res);
1173 goto out_unlock;
1174 }
1175
1176 rc = add_memory_resource(nid, res);
1177 if (rc < 0)
1178 release_memory_resource(res);
1179
1180 out_unlock:
1181 unlock_device_hotplug();
1182 return rc;
1183 }
1184 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1185
1186 #ifdef CONFIG_MEMORY_HOTREMOVE
1187 /*
1188 * Confirm all pages in a range [start, end) belong to the same zone (skipping
1189 * memory holes). When true, return the zone.
1190 */
1191 struct zone *test_pages_in_a_zone(unsigned long start_pfn,
1192 unsigned long end_pfn)
1193 {
1194 unsigned long pfn, sec_end_pfn;
1195 struct zone *zone = NULL;
1196 struct page *page;
1197 int i;
1198 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1199 pfn < end_pfn;
1200 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1201 /* Make sure the memory section is present first */
1202 if (!present_section_nr(pfn_to_section_nr(pfn)))
1203 continue;
1204 for (; pfn < sec_end_pfn && pfn < end_pfn;
1205 pfn += MAX_ORDER_NR_PAGES) {
1206 i = 0;
1207 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1208 while ((i < MAX_ORDER_NR_PAGES) &&
1209 !pfn_valid_within(pfn + i))
1210 i++;
1211 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1212 continue;
1213 /* Check if we got outside of the zone */
1214 if (zone && !zone_spans_pfn(zone, pfn + i))
1215 return NULL;
1216 page = pfn_to_page(pfn + i);
1217 if (zone && page_zone(page) != zone)
1218 return NULL;
1219 zone = page_zone(page);
1220 }
1221 }
1222
1223 return zone;
1224 }
1225
1226 /*
1227 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1228 * non-lru movable pages and hugepages). Will skip over most unmovable
1229 * pages (esp., pages that can be skipped when offlining), but bail out on
1230 * definitely unmovable pages.
1231 *
1232 * Returns:
1233 * 0 in case a movable page is found and movable_pfn was updated.
1234 * -ENOENT in case no movable page was found.
1235 * -EBUSY in case a definitely unmovable page was found.
1236 */
1237 static int scan_movable_pages(unsigned long start, unsigned long end,
1238 unsigned long *movable_pfn)
1239 {
1240 unsigned long pfn;
1241
1242 for (pfn = start; pfn < end; pfn++) {
1243 struct page *page, *head;
1244 unsigned long skip;
1245
1246 if (!pfn_valid(pfn))
1247 continue;
1248 page = pfn_to_page(pfn);
1249 if (PageLRU(page))
1250 goto found;
1251 if (__PageMovable(page))
1252 goto found;
1253
1254 /*
1255 * PageOffline() pages that are not marked __PageMovable() and
1256 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1257 * definitely unmovable. If their reference count would be 0,
1258 * they could at least be skipped when offlining memory.
1259 */
1260 if (PageOffline(page) && page_count(page))
1261 return -EBUSY;
1262
1263 if (!PageHuge(page))
1264 continue;
1265 head = compound_head(page);
1266 if (page_huge_active(head))
1267 goto found;
1268 skip = compound_nr(head) - (page - head);
1269 pfn += skip - 1;
1270 }
1271 return -ENOENT;
1272 found:
1273 *movable_pfn = pfn;
1274 return 0;
1275 }
1276
1277 static struct page *new_node_page(struct page *page, unsigned long private)
1278 {
1279 nodemask_t nmask = node_states[N_MEMORY];
1280 struct migration_target_control mtc = {
1281 .nid = page_to_nid(page),
1282 .nmask = &nmask,
1283 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1284 };
1285
1286 /*
1287 * try to allocate from a different node but reuse this node if there
1288 * are no other online nodes to be used (e.g. we are offlining a part
1289 * of the only existing node)
1290 */
1291 node_clear(mtc.nid, nmask);
1292 if (nodes_empty(nmask))
1293 node_set(mtc.nid, nmask);
1294
1295 return alloc_migration_target(page, (unsigned long)&mtc);
1296 }
1297
1298 static int
1299 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1300 {
1301 unsigned long pfn;
1302 struct page *page, *head;
1303 int ret = 0;
1304 LIST_HEAD(source);
1305
1306 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1307 if (!pfn_valid(pfn))
1308 continue;
1309 page = pfn_to_page(pfn);
1310 head = compound_head(page);
1311
1312 if (PageHuge(page)) {
1313 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1314 isolate_huge_page(head, &source);
1315 continue;
1316 } else if (PageTransHuge(page))
1317 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1318
1319 /*
1320 * HWPoison pages have elevated reference counts so the migration would
1321 * fail on them. It also doesn't make any sense to migrate them in the
1322 * first place. Still try to unmap such a page in case it is still mapped
1323 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1324 * the unmap as the catch all safety net).
1325 */
1326 if (PageHWPoison(page)) {
1327 if (WARN_ON(PageLRU(page)))
1328 isolate_lru_page(page);
1329 if (page_mapped(page))
1330 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1331 continue;
1332 }
1333
1334 if (!get_page_unless_zero(page))
1335 continue;
1336 /*
1337 * We can skip free pages. And we can deal with pages on
1338 * LRU and non-lru movable pages.
1339 */
1340 if (PageLRU(page))
1341 ret = isolate_lru_page(page);
1342 else
1343 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1344 if (!ret) { /* Success */
1345 list_add_tail(&page->lru, &source);
1346 if (!__PageMovable(page))
1347 inc_node_page_state(page, NR_ISOLATED_ANON +
1348 page_is_file_lru(page));
1349
1350 } else {
1351 pr_warn("failed to isolate pfn %lx\n", pfn);
1352 dump_page(page, "isolation failed");
1353 }
1354 put_page(page);
1355 }
1356 if (!list_empty(&source)) {
1357 /* Allocate a new page from the nearest neighbor node */
1358 ret = migrate_pages(&source, new_node_page, NULL, 0,
1359 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1360 if (ret) {
1361 list_for_each_entry(page, &source, lru) {
1362 pr_warn("migrating pfn %lx failed ret:%d ",
1363 page_to_pfn(page), ret);
1364 dump_page(page, "migration failure");
1365 }
1366 putback_movable_pages(&source);
1367 }
1368 }
1369
1370 return ret;
1371 }
1372
1373 /* Mark all sections offline and remove all free pages from the buddy. */
1374 static int
1375 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1376 void *data)
1377 {
1378 unsigned long *offlined_pages = (unsigned long *)data;
1379
1380 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1381 return 0;
1382 }
1383
1384 /*
1385 * Check all pages in range, recorded as memory resource, are isolated.
1386 */
1387 static int
1388 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1389 void *data)
1390 {
1391 return test_pages_isolated(start_pfn, start_pfn + nr_pages,
1392 MEMORY_OFFLINE);
1393 }
1394
1395 static int __init cmdline_parse_movable_node(char *p)
1396 {
1397 movable_node_enabled = true;
1398 return 0;
1399 }
1400 early_param("movable_node", cmdline_parse_movable_node);
1401
1402 /* check which state of node_states will be changed when offline memory */
1403 static void node_states_check_changes_offline(unsigned long nr_pages,
1404 struct zone *zone, struct memory_notify *arg)
1405 {
1406 struct pglist_data *pgdat = zone->zone_pgdat;
1407 unsigned long present_pages = 0;
1408 enum zone_type zt;
1409
1410 arg->status_change_nid = NUMA_NO_NODE;
1411 arg->status_change_nid_normal = NUMA_NO_NODE;
1412 arg->status_change_nid_high = NUMA_NO_NODE;
1413
1414 /*
1415 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1416 * If the memory to be offline is within the range
1417 * [0..ZONE_NORMAL], and it is the last present memory there,
1418 * the zones in that range will become empty after the offlining,
1419 * thus we can determine that we need to clear the node from
1420 * node_states[N_NORMAL_MEMORY].
1421 */
1422 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1423 present_pages += pgdat->node_zones[zt].present_pages;
1424 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1425 arg->status_change_nid_normal = zone_to_nid(zone);
1426
1427 #ifdef CONFIG_HIGHMEM
1428 /*
1429 * node_states[N_HIGH_MEMORY] contains nodes which
1430 * have normal memory or high memory.
1431 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1432 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1433 * we determine that the zones in that range become empty,
1434 * we need to clear the node for N_HIGH_MEMORY.
1435 */
1436 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1437 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1438 arg->status_change_nid_high = zone_to_nid(zone);
1439 #endif
1440
1441 /*
1442 * We have accounted the pages from [0..ZONE_NORMAL), and
1443 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1444 * as well.
1445 * Here we count the possible pages from ZONE_MOVABLE.
1446 * If after having accounted all the pages, we see that the nr_pages
1447 * to be offlined is over or equal to the accounted pages,
1448 * we know that the node will become empty, and so, we can clear
1449 * it for N_MEMORY as well.
1450 */
1451 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1452
1453 if (nr_pages >= present_pages)
1454 arg->status_change_nid = zone_to_nid(zone);
1455 }
1456
1457 static void node_states_clear_node(int node, struct memory_notify *arg)
1458 {
1459 if (arg->status_change_nid_normal >= 0)
1460 node_clear_state(node, N_NORMAL_MEMORY);
1461
1462 if (arg->status_change_nid_high >= 0)
1463 node_clear_state(node, N_HIGH_MEMORY);
1464
1465 if (arg->status_change_nid >= 0)
1466 node_clear_state(node, N_MEMORY);
1467 }
1468
1469 static int count_system_ram_pages_cb(unsigned long start_pfn,
1470 unsigned long nr_pages, void *data)
1471 {
1472 unsigned long *nr_system_ram_pages = data;
1473
1474 *nr_system_ram_pages += nr_pages;
1475 return 0;
1476 }
1477
1478 static int __ref __offline_pages(unsigned long start_pfn,
1479 unsigned long end_pfn)
1480 {
1481 unsigned long pfn, nr_pages = 0;
1482 unsigned long offlined_pages = 0;
1483 int ret, node, nr_isolate_pageblock;
1484 unsigned long flags;
1485 struct zone *zone;
1486 struct memory_notify arg;
1487 char *reason;
1488
1489 mem_hotplug_begin();
1490
1491 /*
1492 * Don't allow to offline memory blocks that contain holes.
1493 * Consequently, memory blocks with holes can never get onlined
1494 * via the hotplug path - online_pages() - as hotplugged memory has
1495 * no holes. This way, we e.g., don't have to worry about marking
1496 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1497 * avoid using walk_system_ram_range() later.
1498 */
1499 walk_system_ram_range(start_pfn, end_pfn - start_pfn, &nr_pages,
1500 count_system_ram_pages_cb);
1501 if (nr_pages != end_pfn - start_pfn) {
1502 ret = -EINVAL;
1503 reason = "memory holes";
1504 goto failed_removal;
1505 }
1506
1507 /* This makes hotplug much easier...and readable.
1508 we assume this for now. .*/
1509 zone = test_pages_in_a_zone(start_pfn, end_pfn);
1510 if (!zone) {
1511 ret = -EINVAL;
1512 reason = "multizone range";
1513 goto failed_removal;
1514 }
1515 node = zone_to_nid(zone);
1516
1517 /* set above range as isolated */
1518 ret = start_isolate_page_range(start_pfn, end_pfn,
1519 MIGRATE_MOVABLE,
1520 MEMORY_OFFLINE | REPORT_FAILURE);
1521 if (ret < 0) {
1522 reason = "failure to isolate range";
1523 goto failed_removal;
1524 }
1525 nr_isolate_pageblock = ret;
1526
1527 arg.start_pfn = start_pfn;
1528 arg.nr_pages = nr_pages;
1529 node_states_check_changes_offline(nr_pages, zone, &arg);
1530
1531 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1532 ret = notifier_to_errno(ret);
1533 if (ret) {
1534 reason = "notifier failure";
1535 goto failed_removal_isolated;
1536 }
1537
1538 do {
1539 pfn = start_pfn;
1540 do {
1541 if (signal_pending(current)) {
1542 ret = -EINTR;
1543 reason = "signal backoff";
1544 goto failed_removal_isolated;
1545 }
1546
1547 cond_resched();
1548 lru_add_drain_all();
1549
1550 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1551 if (!ret) {
1552 /*
1553 * TODO: fatal migration failures should bail
1554 * out
1555 */
1556 do_migrate_range(pfn, end_pfn);
1557 }
1558 } while (!ret);
1559
1560 if (ret != -ENOENT) {
1561 reason = "unmovable page";
1562 goto failed_removal_isolated;
1563 }
1564
1565 /*
1566 * Dissolve free hugepages in the memory block before doing
1567 * offlining actually in order to make hugetlbfs's object
1568 * counting consistent.
1569 */
1570 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1571 if (ret) {
1572 reason = "failure to dissolve huge pages";
1573 goto failed_removal_isolated;
1574 }
1575 /* check again */
1576 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1577 NULL, check_pages_isolated_cb);
1578 /*
1579 * per-cpu pages are drained in start_isolate_page_range, but if
1580 * there are still pages that are not free, make sure that we
1581 * drain again, because when we isolated range we might
1582 * have raced with another thread that was adding pages to pcp
1583 * list.
1584 *
1585 * Forward progress should be still guaranteed because
1586 * pages on the pcp list can only belong to MOVABLE_ZONE
1587 * because has_unmovable_pages explicitly checks for
1588 * PageBuddy on freed pages on other zones.
1589 */
1590 if (ret)
1591 drain_all_pages(zone);
1592 } while (ret);
1593
1594 /* Ok, all of our target is isolated.
1595 We cannot do rollback at this point. */
1596 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1597 &offlined_pages, offline_isolated_pages_cb);
1598 pr_info("Offlined Pages %ld\n", offlined_pages);
1599 /*
1600 * Onlining will reset pagetype flags and makes migrate type
1601 * MOVABLE, so just need to decrease the number of isolated
1602 * pageblocks zone counter here.
1603 */
1604 spin_lock_irqsave(&zone->lock, flags);
1605 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1606 spin_unlock_irqrestore(&zone->lock, flags);
1607
1608 /* removal success */
1609 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1610 zone->present_pages -= offlined_pages;
1611
1612 pgdat_resize_lock(zone->zone_pgdat, &flags);
1613 zone->zone_pgdat->node_present_pages -= offlined_pages;
1614 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1615
1616 init_per_zone_wmark_min();
1617
1618 if (!populated_zone(zone)) {
1619 zone_pcp_reset(zone);
1620 build_all_zonelists(NULL);
1621 } else
1622 zone_pcp_update(zone);
1623
1624 node_states_clear_node(node, &arg);
1625 if (arg.status_change_nid >= 0) {
1626 kswapd_stop(node);
1627 kcompactd_stop(node);
1628 }
1629
1630 writeback_set_ratelimit();
1631
1632 memory_notify(MEM_OFFLINE, &arg);
1633 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1634 mem_hotplug_done();
1635 return 0;
1636
1637 failed_removal_isolated:
1638 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1639 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1640 failed_removal:
1641 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1642 (unsigned long long) start_pfn << PAGE_SHIFT,
1643 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1644 reason);
1645 /* pushback to free area */
1646 mem_hotplug_done();
1647 return ret;
1648 }
1649
1650 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1651 {
1652 return __offline_pages(start_pfn, start_pfn + nr_pages);
1653 }
1654
1655 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1656 {
1657 int ret = !is_memblock_offlined(mem);
1658
1659 if (unlikely(ret)) {
1660 phys_addr_t beginpa, endpa;
1661
1662 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1663 endpa = beginpa + memory_block_size_bytes() - 1;
1664 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1665 &beginpa, &endpa);
1666
1667 return -EBUSY;
1668 }
1669 return 0;
1670 }
1671
1672 static int check_cpu_on_node(pg_data_t *pgdat)
1673 {
1674 int cpu;
1675
1676 for_each_present_cpu(cpu) {
1677 if (cpu_to_node(cpu) == pgdat->node_id)
1678 /*
1679 * the cpu on this node isn't removed, and we can't
1680 * offline this node.
1681 */
1682 return -EBUSY;
1683 }
1684
1685 return 0;
1686 }
1687
1688 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
1689 {
1690 int nid = *(int *)arg;
1691
1692 /*
1693 * If a memory block belongs to multiple nodes, the stored nid is not
1694 * reliable. However, such blocks are always online (e.g., cannot get
1695 * offlined) and, therefore, are still spanned by the node.
1696 */
1697 return mem->nid == nid ? -EEXIST : 0;
1698 }
1699
1700 /**
1701 * try_offline_node
1702 * @nid: the node ID
1703 *
1704 * Offline a node if all memory sections and cpus of the node are removed.
1705 *
1706 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1707 * and online/offline operations before this call.
1708 */
1709 void try_offline_node(int nid)
1710 {
1711 pg_data_t *pgdat = NODE_DATA(nid);
1712 int rc;
1713
1714 /*
1715 * If the node still spans pages (especially ZONE_DEVICE), don't
1716 * offline it. A node spans memory after move_pfn_range_to_zone(),
1717 * e.g., after the memory block was onlined.
1718 */
1719 if (pgdat->node_spanned_pages)
1720 return;
1721
1722 /*
1723 * Especially offline memory blocks might not be spanned by the
1724 * node. They will get spanned by the node once they get onlined.
1725 * However, they link to the node in sysfs and can get onlined later.
1726 */
1727 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
1728 if (rc)
1729 return;
1730
1731 if (check_cpu_on_node(pgdat))
1732 return;
1733
1734 /*
1735 * all memory/cpu of this node are removed, we can offline this
1736 * node now.
1737 */
1738 node_set_offline(nid);
1739 unregister_one_node(nid);
1740 }
1741 EXPORT_SYMBOL(try_offline_node);
1742
1743 static void __release_memory_resource(resource_size_t start,
1744 resource_size_t size)
1745 {
1746 int ret;
1747
1748 /*
1749 * When removing memory in the same granularity as it was added,
1750 * this function never fails. It might only fail if resources
1751 * have to be adjusted or split. We'll ignore the error, as
1752 * removing of memory cannot fail.
1753 */
1754 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1755 if (ret) {
1756 resource_size_t endres = start + size - 1;
1757
1758 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1759 &start, &endres, ret);
1760 }
1761 }
1762
1763 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1764 {
1765 int rc = 0;
1766
1767 BUG_ON(check_hotplug_memory_range(start, size));
1768
1769 /*
1770 * All memory blocks must be offlined before removing memory. Check
1771 * whether all memory blocks in question are offline and return error
1772 * if this is not the case.
1773 */
1774 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1775 if (rc)
1776 return rc;
1777
1778 /* remove memmap entry */
1779 firmware_map_remove(start, start + size, "System RAM");
1780
1781 /*
1782 * Memory block device removal under the device_hotplug_lock is
1783 * a barrier against racing online attempts.
1784 */
1785 remove_memory_block_devices(start, size);
1786
1787 mem_hotplug_begin();
1788
1789 arch_remove_memory(nid, start, size, NULL);
1790
1791 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1792 memblock_free(start, size);
1793 memblock_remove(start, size);
1794 }
1795
1796 __release_memory_resource(start, size);
1797
1798 try_offline_node(nid);
1799
1800 mem_hotplug_done();
1801 return 0;
1802 }
1803
1804 /**
1805 * remove_memory
1806 * @nid: the node ID
1807 * @start: physical address of the region to remove
1808 * @size: size of the region to remove
1809 *
1810 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1811 * and online/offline operations before this call, as required by
1812 * try_offline_node().
1813 */
1814 void __remove_memory(int nid, u64 start, u64 size)
1815 {
1816
1817 /*
1818 * trigger BUG() if some memory is not offlined prior to calling this
1819 * function
1820 */
1821 if (try_remove_memory(nid, start, size))
1822 BUG();
1823 }
1824
1825 /*
1826 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1827 * some memory is not offline
1828 */
1829 int remove_memory(int nid, u64 start, u64 size)
1830 {
1831 int rc;
1832
1833 lock_device_hotplug();
1834 rc = try_remove_memory(nid, start, size);
1835 unlock_device_hotplug();
1836
1837 return rc;
1838 }
1839 EXPORT_SYMBOL_GPL(remove_memory);
1840
1841 /*
1842 * Try to offline and remove a memory block. Might take a long time to
1843 * finish in case memory is still in use. Primarily useful for memory devices
1844 * that logically unplugged all memory (so it's no longer in use) and want to
1845 * offline + remove the memory block.
1846 */
1847 int offline_and_remove_memory(int nid, u64 start, u64 size)
1848 {
1849 struct memory_block *mem;
1850 int rc = -EINVAL;
1851
1852 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
1853 size != memory_block_size_bytes())
1854 return rc;
1855
1856 lock_device_hotplug();
1857 mem = find_memory_block(__pfn_to_section(PFN_DOWN(start)));
1858 if (mem)
1859 rc = device_offline(&mem->dev);
1860 /* Ignore if the device is already offline. */
1861 if (rc > 0)
1862 rc = 0;
1863
1864 /*
1865 * In case we succeeded to offline the memory block, remove it.
1866 * This cannot fail as it cannot get onlined in the meantime.
1867 */
1868 if (!rc) {
1869 rc = try_remove_memory(nid, start, size);
1870 WARN_ON_ONCE(rc);
1871 }
1872 unlock_device_hotplug();
1873
1874 return rc;
1875 }
1876 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
1877 #endif /* CONFIG_MEMORY_HOTREMOVE */