]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memory_hotplug.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / mm / memory_hotplug.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 /*
46 * online_page_callback contains pointer to current page onlining function.
47 * Initially it is generic_online_page(). If it is required it could be
48 * changed by calling set_online_page_callback() for callback registration
49 * and restore_online_page_callback() for generic callback restore.
50 */
51
52 static void generic_online_page(struct page *page, unsigned int order);
53
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58
59 void get_online_mems(void)
60 {
61 percpu_down_read(&mem_hotplug_lock);
62 }
63
64 void put_online_mems(void)
65 {
66 percpu_up_read(&mem_hotplug_lock);
67 }
68
69 bool movable_node_enabled = false;
70
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77
78 static int __init setup_memhp_default_state(char *str)
79 {
80 if (!strcmp(str, "online"))
81 memhp_auto_online = true;
82 else if (!strcmp(str, "offline"))
83 memhp_auto_online = false;
84
85 return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88
89 void mem_hotplug_begin(void)
90 {
91 cpus_read_lock();
92 percpu_down_write(&mem_hotplug_lock);
93 }
94
95 void mem_hotplug_done(void)
96 {
97 percpu_up_write(&mem_hotplug_lock);
98 cpus_read_unlock();
99 }
100
101 u64 max_mem_size = U64_MAX;
102
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 struct resource *res;
107 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 char *resource_name = "System RAM";
109
110 if (start + size > max_mem_size)
111 return ERR_PTR(-E2BIG);
112
113 /*
114 * Request ownership of the new memory range. This might be
115 * a child of an existing resource that was present but
116 * not marked as busy.
117 */
118 res = __request_region(&iomem_resource, start, size,
119 resource_name, flags);
120
121 if (!res) {
122 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 start, start + size);
124 return ERR_PTR(-EEXIST);
125 }
126 return res;
127 }
128
129 static void release_memory_resource(struct resource *res)
130 {
131 if (!res)
132 return;
133 release_resource(res);
134 kfree(res);
135 }
136
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info, struct page *page,
139 unsigned long type)
140 {
141 page->freelist = (void *)type;
142 SetPagePrivate(page);
143 set_page_private(page, info);
144 page_ref_inc(page);
145 }
146
147 void put_page_bootmem(struct page *page)
148 {
149 unsigned long type;
150
151 type = (unsigned long) page->freelist;
152 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154
155 if (page_ref_dec_return(page) == 1) {
156 page->freelist = NULL;
157 ClearPagePrivate(page);
158 set_page_private(page, 0);
159 INIT_LIST_HEAD(&page->lru);
160 free_reserved_page(page);
161 }
162 }
163
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 unsigned long mapsize, section_nr, i;
169 struct mem_section *ms;
170 struct page *page, *memmap;
171 struct mem_section_usage *usage;
172
173 section_nr = pfn_to_section_nr(start_pfn);
174 ms = __nr_to_section(section_nr);
175
176 /* Get section's memmap address */
177 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178
179 /*
180 * Get page for the memmap's phys address
181 * XXX: need more consideration for sparse_vmemmap...
182 */
183 page = virt_to_page(memmap);
184 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186
187 /* remember memmap's page */
188 for (i = 0; i < mapsize; i++, page++)
189 get_page_bootmem(section_nr, page, SECTION_INFO);
190
191 usage = ms->usage;
192 page = virt_to_page(usage);
193
194 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195
196 for (i = 0; i < mapsize; i++, page++)
197 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 unsigned long mapsize, section_nr, i;
204 struct mem_section *ms;
205 struct page *page, *memmap;
206 struct mem_section_usage *usage;
207
208 section_nr = pfn_to_section_nr(start_pfn);
209 ms = __nr_to_section(section_nr);
210
211 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212
213 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214
215 usage = ms->usage;
216 page = virt_to_page(usage);
217
218 mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219
220 for (i = 0; i < mapsize; i++, page++)
221 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224
225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 unsigned long i, pfn, end_pfn, nr_pages;
228 int node = pgdat->node_id;
229 struct page *page;
230
231 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 page = virt_to_page(pgdat);
233
234 for (i = 0; i < nr_pages; i++, page++)
235 get_page_bootmem(node, page, NODE_INFO);
236
237 pfn = pgdat->node_start_pfn;
238 end_pfn = pgdat_end_pfn(pgdat);
239
240 /* register section info */
241 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 /*
243 * Some platforms can assign the same pfn to multiple nodes - on
244 * node0 as well as nodeN. To avoid registering a pfn against
245 * multiple nodes we check that this pfn does not already
246 * reside in some other nodes.
247 */
248 if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 register_page_bootmem_info_section(pfn);
250 }
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253
254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 const char *reason)
256 {
257 /*
258 * Disallow all operations smaller than a sub-section and only
259 * allow operations smaller than a section for
260 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 * enforces a larger memory_block_size_bytes() granularity for
262 * memory that will be marked online, so this check should only
263 * fire for direct arch_{add,remove}_memory() users outside of
264 * add_memory_resource().
265 */
266 unsigned long min_align;
267
268 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 min_align = PAGES_PER_SUBSECTION;
270 else
271 min_align = PAGES_PER_SECTION;
272 if (!IS_ALIGNED(pfn, min_align)
273 || !IS_ALIGNED(nr_pages, min_align)) {
274 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 reason, pfn, pfn + nr_pages - 1);
276 return -EINVAL;
277 }
278 return 0;
279 }
280
281 /*
282 * Reasonably generic function for adding memory. It is
283 * expected that archs that support memory hotplug will
284 * call this function after deciding the zone to which to
285 * add the new pages.
286 */
287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 struct mhp_restrictions *restrictions)
289 {
290 int err;
291 unsigned long nr, start_sec, end_sec;
292 struct vmem_altmap *altmap = restrictions->altmap;
293
294 if (altmap) {
295 /*
296 * Validate altmap is within bounds of the total request
297 */
298 if (altmap->base_pfn != pfn
299 || vmem_altmap_offset(altmap) > nr_pages) {
300 pr_warn_once("memory add fail, invalid altmap\n");
301 return -EINVAL;
302 }
303 altmap->alloc = 0;
304 }
305
306 err = check_pfn_span(pfn, nr_pages, "add");
307 if (err)
308 return err;
309
310 start_sec = pfn_to_section_nr(pfn);
311 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 for (nr = start_sec; nr <= end_sec; nr++) {
313 unsigned long pfns;
314
315 pfns = min(nr_pages, PAGES_PER_SECTION
316 - (pfn & ~PAGE_SECTION_MASK));
317 err = sparse_add_section(nid, pfn, pfns, altmap);
318 if (err)
319 break;
320 pfn += pfns;
321 nr_pages -= pfns;
322 cond_resched();
323 }
324 vmemmap_populate_print_last();
325 return err;
326 }
327
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 unsigned long start_pfn,
331 unsigned long end_pfn)
332 {
333 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 if (unlikely(!pfn_valid(start_pfn)))
335 continue;
336
337 if (unlikely(pfn_to_nid(start_pfn) != nid))
338 continue;
339
340 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 continue;
342
343 return start_pfn;
344 }
345
346 return 0;
347 }
348
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 unsigned long start_pfn,
352 unsigned long end_pfn)
353 {
354 unsigned long pfn;
355
356 /* pfn is the end pfn of a memory section. */
357 pfn = end_pfn - 1;
358 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 if (unlikely(!pfn_valid(pfn)))
360 continue;
361
362 if (unlikely(pfn_to_nid(pfn) != nid))
363 continue;
364
365 if (zone && zone != page_zone(pfn_to_page(pfn)))
366 continue;
367
368 return pfn;
369 }
370
371 return 0;
372 }
373
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 unsigned long end_pfn)
376 {
377 unsigned long zone_start_pfn = zone->zone_start_pfn;
378 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 unsigned long zone_end_pfn = z;
380 unsigned long pfn;
381 int nid = zone_to_nid(zone);
382
383 zone_span_writelock(zone);
384 if (zone_start_pfn == start_pfn) {
385 /*
386 * If the section is smallest section in the zone, it need
387 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 * In this case, we find second smallest valid mem_section
389 * for shrinking zone.
390 */
391 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 zone_end_pfn);
393 if (pfn) {
394 zone->zone_start_pfn = pfn;
395 zone->spanned_pages = zone_end_pfn - pfn;
396 }
397 } else if (zone_end_pfn == end_pfn) {
398 /*
399 * If the section is biggest section in the zone, it need
400 * shrink zone->spanned_pages.
401 * In this case, we find second biggest valid mem_section for
402 * shrinking zone.
403 */
404 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 start_pfn);
406 if (pfn)
407 zone->spanned_pages = pfn - zone_start_pfn + 1;
408 }
409
410 /*
411 * The section is not biggest or smallest mem_section in the zone, it
412 * only creates a hole in the zone. So in this case, we need not
413 * change the zone. But perhaps, the zone has only hole data. Thus
414 * it check the zone has only hole or not.
415 */
416 pfn = zone_start_pfn;
417 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 if (unlikely(!pfn_valid(pfn)))
419 continue;
420
421 if (page_zone(pfn_to_page(pfn)) != zone)
422 continue;
423
424 /* Skip range to be removed */
425 if (pfn >= start_pfn && pfn < end_pfn)
426 continue;
427
428 /* If we find valid section, we have nothing to do */
429 zone_span_writeunlock(zone);
430 return;
431 }
432
433 /* The zone has no valid section */
434 zone->zone_start_pfn = 0;
435 zone->spanned_pages = 0;
436 zone_span_writeunlock(zone);
437 }
438
439 static void shrink_pgdat_span(struct pglist_data *pgdat,
440 unsigned long start_pfn, unsigned long end_pfn)
441 {
442 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
443 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
444 unsigned long pgdat_end_pfn = p;
445 unsigned long pfn;
446 int nid = pgdat->node_id;
447
448 if (pgdat_start_pfn == start_pfn) {
449 /*
450 * If the section is smallest section in the pgdat, it need
451 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
452 * In this case, we find second smallest valid mem_section
453 * for shrinking zone.
454 */
455 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
456 pgdat_end_pfn);
457 if (pfn) {
458 pgdat->node_start_pfn = pfn;
459 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
460 }
461 } else if (pgdat_end_pfn == end_pfn) {
462 /*
463 * If the section is biggest section in the pgdat, it need
464 * shrink pgdat->node_spanned_pages.
465 * In this case, we find second biggest valid mem_section for
466 * shrinking zone.
467 */
468 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
469 start_pfn);
470 if (pfn)
471 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
472 }
473
474 /*
475 * If the section is not biggest or smallest mem_section in the pgdat,
476 * it only creates a hole in the pgdat. So in this case, we need not
477 * change the pgdat.
478 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
479 * has only hole or not.
480 */
481 pfn = pgdat_start_pfn;
482 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
483 if (unlikely(!pfn_valid(pfn)))
484 continue;
485
486 if (pfn_to_nid(pfn) != nid)
487 continue;
488
489 /* Skip range to be removed */
490 if (pfn >= start_pfn && pfn < end_pfn)
491 continue;
492
493 /* If we find valid section, we have nothing to do */
494 return;
495 }
496
497 /* The pgdat has no valid section */
498 pgdat->node_start_pfn = 0;
499 pgdat->node_spanned_pages = 0;
500 }
501
502 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
503 unsigned long nr_pages)
504 {
505 struct pglist_data *pgdat = zone->zone_pgdat;
506 unsigned long flags;
507
508 pgdat_resize_lock(zone->zone_pgdat, &flags);
509 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
510 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
511 pgdat_resize_unlock(zone->zone_pgdat, &flags);
512 }
513
514 static void __remove_section(struct zone *zone, unsigned long pfn,
515 unsigned long nr_pages, unsigned long map_offset,
516 struct vmem_altmap *altmap)
517 {
518 struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
519
520 if (WARN_ON_ONCE(!valid_section(ms)))
521 return;
522
523 __remove_zone(zone, pfn, nr_pages);
524 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
525 }
526
527 /**
528 * __remove_pages() - remove sections of pages from a zone
529 * @zone: zone from which pages need to be removed
530 * @pfn: starting pageframe (must be aligned to start of a section)
531 * @nr_pages: number of pages to remove (must be multiple of section size)
532 * @altmap: alternative device page map or %NULL if default memmap is used
533 *
534 * Generic helper function to remove section mappings and sysfs entries
535 * for the section of the memory we are removing. Caller needs to make
536 * sure that pages are marked reserved and zones are adjust properly by
537 * calling offline_pages().
538 */
539 void __remove_pages(struct zone *zone, unsigned long pfn,
540 unsigned long nr_pages, struct vmem_altmap *altmap)
541 {
542 unsigned long map_offset = 0;
543 unsigned long nr, start_sec, end_sec;
544
545 map_offset = vmem_altmap_offset(altmap);
546
547 clear_zone_contiguous(zone);
548
549 if (check_pfn_span(pfn, nr_pages, "remove"))
550 return;
551
552 start_sec = pfn_to_section_nr(pfn);
553 end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
554 for (nr = start_sec; nr <= end_sec; nr++) {
555 unsigned long pfns;
556
557 cond_resched();
558 pfns = min(nr_pages, PAGES_PER_SECTION
559 - (pfn & ~PAGE_SECTION_MASK));
560 __remove_section(zone, pfn, pfns, map_offset, altmap);
561 pfn += pfns;
562 nr_pages -= pfns;
563 map_offset = 0;
564 }
565
566 set_zone_contiguous(zone);
567 }
568
569 int set_online_page_callback(online_page_callback_t callback)
570 {
571 int rc = -EINVAL;
572
573 get_online_mems();
574 mutex_lock(&online_page_callback_lock);
575
576 if (online_page_callback == generic_online_page) {
577 online_page_callback = callback;
578 rc = 0;
579 }
580
581 mutex_unlock(&online_page_callback_lock);
582 put_online_mems();
583
584 return rc;
585 }
586 EXPORT_SYMBOL_GPL(set_online_page_callback);
587
588 int restore_online_page_callback(online_page_callback_t callback)
589 {
590 int rc = -EINVAL;
591
592 get_online_mems();
593 mutex_lock(&online_page_callback_lock);
594
595 if (online_page_callback == callback) {
596 online_page_callback = generic_online_page;
597 rc = 0;
598 }
599
600 mutex_unlock(&online_page_callback_lock);
601 put_online_mems();
602
603 return rc;
604 }
605 EXPORT_SYMBOL_GPL(restore_online_page_callback);
606
607 void __online_page_set_limits(struct page *page)
608 {
609 }
610 EXPORT_SYMBOL_GPL(__online_page_set_limits);
611
612 void __online_page_increment_counters(struct page *page)
613 {
614 adjust_managed_page_count(page, 1);
615 }
616 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
617
618 void __online_page_free(struct page *page)
619 {
620 __free_reserved_page(page);
621 }
622 EXPORT_SYMBOL_GPL(__online_page_free);
623
624 static void generic_online_page(struct page *page, unsigned int order)
625 {
626 kernel_map_pages(page, 1 << order, 1);
627 __free_pages_core(page, order);
628 totalram_pages_add(1UL << order);
629 #ifdef CONFIG_HIGHMEM
630 if (PageHighMem(page))
631 totalhigh_pages_add(1UL << order);
632 #endif
633 }
634
635 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
636 void *arg)
637 {
638 const unsigned long end_pfn = start_pfn + nr_pages;
639 unsigned long pfn;
640 int order;
641
642 /*
643 * Online the pages. The callback might decide to keep some pages
644 * PG_reserved (to add them to the buddy later), but we still account
645 * them as being online/belonging to this zone ("present").
646 */
647 for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
648 order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
649 /* __free_pages_core() wants pfns to be aligned to the order */
650 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
651 order = 0;
652 (*online_page_callback)(pfn_to_page(pfn), order);
653 }
654
655 /* mark all involved sections as online */
656 online_mem_sections(start_pfn, end_pfn);
657
658 *(unsigned long *)arg += nr_pages;
659 return 0;
660 }
661
662 /* check which state of node_states will be changed when online memory */
663 static void node_states_check_changes_online(unsigned long nr_pages,
664 struct zone *zone, struct memory_notify *arg)
665 {
666 int nid = zone_to_nid(zone);
667
668 arg->status_change_nid = NUMA_NO_NODE;
669 arg->status_change_nid_normal = NUMA_NO_NODE;
670 arg->status_change_nid_high = NUMA_NO_NODE;
671
672 if (!node_state(nid, N_MEMORY))
673 arg->status_change_nid = nid;
674 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
675 arg->status_change_nid_normal = nid;
676 #ifdef CONFIG_HIGHMEM
677 if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
678 arg->status_change_nid_high = nid;
679 #endif
680 }
681
682 static void node_states_set_node(int node, struct memory_notify *arg)
683 {
684 if (arg->status_change_nid_normal >= 0)
685 node_set_state(node, N_NORMAL_MEMORY);
686
687 if (arg->status_change_nid_high >= 0)
688 node_set_state(node, N_HIGH_MEMORY);
689
690 if (arg->status_change_nid >= 0)
691 node_set_state(node, N_MEMORY);
692 }
693
694 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
695 unsigned long nr_pages)
696 {
697 unsigned long old_end_pfn = zone_end_pfn(zone);
698
699 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
700 zone->zone_start_pfn = start_pfn;
701
702 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
703 }
704
705 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
706 unsigned long nr_pages)
707 {
708 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
709
710 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
711 pgdat->node_start_pfn = start_pfn;
712
713 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
714
715 }
716 /*
717 * Associate the pfn range with the given zone, initializing the memmaps
718 * and resizing the pgdat/zone data to span the added pages. After this
719 * call, all affected pages are PG_reserved.
720 */
721 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
722 unsigned long nr_pages, struct vmem_altmap *altmap)
723 {
724 struct pglist_data *pgdat = zone->zone_pgdat;
725 int nid = pgdat->node_id;
726 unsigned long flags;
727
728 clear_zone_contiguous(zone);
729
730 /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
731 pgdat_resize_lock(pgdat, &flags);
732 zone_span_writelock(zone);
733 if (zone_is_empty(zone))
734 init_currently_empty_zone(zone, start_pfn, nr_pages);
735 resize_zone_range(zone, start_pfn, nr_pages);
736 zone_span_writeunlock(zone);
737 resize_pgdat_range(pgdat, start_pfn, nr_pages);
738 pgdat_resize_unlock(pgdat, &flags);
739
740 /*
741 * TODO now we have a visible range of pages which are not associated
742 * with their zone properly. Not nice but set_pfnblock_flags_mask
743 * expects the zone spans the pfn range. All the pages in the range
744 * are reserved so nobody should be touching them so we should be safe
745 */
746 memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
747 MEMMAP_HOTPLUG, altmap);
748
749 set_zone_contiguous(zone);
750 }
751
752 /*
753 * Returns a default kernel memory zone for the given pfn range.
754 * If no kernel zone covers this pfn range it will automatically go
755 * to the ZONE_NORMAL.
756 */
757 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
758 unsigned long nr_pages)
759 {
760 struct pglist_data *pgdat = NODE_DATA(nid);
761 int zid;
762
763 for (zid = 0; zid <= ZONE_NORMAL; zid++) {
764 struct zone *zone = &pgdat->node_zones[zid];
765
766 if (zone_intersects(zone, start_pfn, nr_pages))
767 return zone;
768 }
769
770 return &pgdat->node_zones[ZONE_NORMAL];
771 }
772
773 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
774 unsigned long nr_pages)
775 {
776 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
777 nr_pages);
778 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
779 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
780 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
781
782 /*
783 * We inherit the existing zone in a simple case where zones do not
784 * overlap in the given range
785 */
786 if (in_kernel ^ in_movable)
787 return (in_kernel) ? kernel_zone : movable_zone;
788
789 /*
790 * If the range doesn't belong to any zone or two zones overlap in the
791 * given range then we use movable zone only if movable_node is
792 * enabled because we always online to a kernel zone by default.
793 */
794 return movable_node_enabled ? movable_zone : kernel_zone;
795 }
796
797 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
798 unsigned long nr_pages)
799 {
800 if (online_type == MMOP_ONLINE_KERNEL)
801 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
802
803 if (online_type == MMOP_ONLINE_MOVABLE)
804 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
805
806 return default_zone_for_pfn(nid, start_pfn, nr_pages);
807 }
808
809 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
810 {
811 unsigned long flags;
812 unsigned long onlined_pages = 0;
813 struct zone *zone;
814 int need_zonelists_rebuild = 0;
815 int nid;
816 int ret;
817 struct memory_notify arg;
818 struct memory_block *mem;
819
820 mem_hotplug_begin();
821
822 /*
823 * We can't use pfn_to_nid() because nid might be stored in struct page
824 * which is not yet initialized. Instead, we find nid from memory block.
825 */
826 mem = find_memory_block(__pfn_to_section(pfn));
827 nid = mem->nid;
828 put_device(&mem->dev);
829
830 /* associate pfn range with the zone */
831 zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
832 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
833
834 arg.start_pfn = pfn;
835 arg.nr_pages = nr_pages;
836 node_states_check_changes_online(nr_pages, zone, &arg);
837
838 ret = memory_notify(MEM_GOING_ONLINE, &arg);
839 ret = notifier_to_errno(ret);
840 if (ret)
841 goto failed_addition;
842
843 /*
844 * If this zone is not populated, then it is not in zonelist.
845 * This means the page allocator ignores this zone.
846 * So, zonelist must be updated after online.
847 */
848 if (!populated_zone(zone)) {
849 need_zonelists_rebuild = 1;
850 setup_zone_pageset(zone);
851 }
852
853 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
854 online_pages_range);
855 if (ret) {
856 /* not a single memory resource was applicable */
857 if (need_zonelists_rebuild)
858 zone_pcp_reset(zone);
859 goto failed_addition;
860 }
861
862 zone->present_pages += onlined_pages;
863
864 pgdat_resize_lock(zone->zone_pgdat, &flags);
865 zone->zone_pgdat->node_present_pages += onlined_pages;
866 pgdat_resize_unlock(zone->zone_pgdat, &flags);
867
868 shuffle_zone(zone);
869
870 node_states_set_node(nid, &arg);
871 if (need_zonelists_rebuild)
872 build_all_zonelists(NULL);
873 else
874 zone_pcp_update(zone);
875
876 init_per_zone_wmark_min();
877
878 kswapd_run(nid);
879 kcompactd_run(nid);
880
881 vm_total_pages = nr_free_pagecache_pages();
882
883 writeback_set_ratelimit();
884
885 memory_notify(MEM_ONLINE, &arg);
886 mem_hotplug_done();
887 return 0;
888
889 failed_addition:
890 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
891 (unsigned long long) pfn << PAGE_SHIFT,
892 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
893 memory_notify(MEM_CANCEL_ONLINE, &arg);
894 mem_hotplug_done();
895 return ret;
896 }
897 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
898
899 static void reset_node_present_pages(pg_data_t *pgdat)
900 {
901 struct zone *z;
902
903 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
904 z->present_pages = 0;
905
906 pgdat->node_present_pages = 0;
907 }
908
909 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
910 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
911 {
912 struct pglist_data *pgdat;
913 unsigned long start_pfn = PFN_DOWN(start);
914
915 pgdat = NODE_DATA(nid);
916 if (!pgdat) {
917 pgdat = arch_alloc_nodedata(nid);
918 if (!pgdat)
919 return NULL;
920
921 pgdat->per_cpu_nodestats =
922 alloc_percpu(struct per_cpu_nodestat);
923 arch_refresh_nodedata(nid, pgdat);
924 } else {
925 int cpu;
926 /*
927 * Reset the nr_zones, order and classzone_idx before reuse.
928 * Note that kswapd will init kswapd_classzone_idx properly
929 * when it starts in the near future.
930 */
931 pgdat->nr_zones = 0;
932 pgdat->kswapd_order = 0;
933 pgdat->kswapd_classzone_idx = 0;
934 for_each_online_cpu(cpu) {
935 struct per_cpu_nodestat *p;
936
937 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
938 memset(p, 0, sizeof(*p));
939 }
940 }
941
942 /* we can use NODE_DATA(nid) from here */
943
944 pgdat->node_id = nid;
945 pgdat->node_start_pfn = start_pfn;
946
947 /* init node's zones as empty zones, we don't have any present pages.*/
948 free_area_init_core_hotplug(nid);
949
950 /*
951 * The node we allocated has no zone fallback lists. For avoiding
952 * to access not-initialized zonelist, build here.
953 */
954 build_all_zonelists(pgdat);
955
956 /*
957 * When memory is hot-added, all the memory is in offline state. So
958 * clear all zones' present_pages because they will be updated in
959 * online_pages() and offline_pages().
960 */
961 reset_node_managed_pages(pgdat);
962 reset_node_present_pages(pgdat);
963
964 return pgdat;
965 }
966
967 static void rollback_node_hotadd(int nid)
968 {
969 pg_data_t *pgdat = NODE_DATA(nid);
970
971 arch_refresh_nodedata(nid, NULL);
972 free_percpu(pgdat->per_cpu_nodestats);
973 arch_free_nodedata(pgdat);
974 }
975
976
977 /**
978 * try_online_node - online a node if offlined
979 * @nid: the node ID
980 * @start: start addr of the node
981 * @set_node_online: Whether we want to online the node
982 * called by cpu_up() to online a node without onlined memory.
983 *
984 * Returns:
985 * 1 -> a new node has been allocated
986 * 0 -> the node is already online
987 * -ENOMEM -> the node could not be allocated
988 */
989 static int __try_online_node(int nid, u64 start, bool set_node_online)
990 {
991 pg_data_t *pgdat;
992 int ret = 1;
993
994 if (node_online(nid))
995 return 0;
996
997 pgdat = hotadd_new_pgdat(nid, start);
998 if (!pgdat) {
999 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1000 ret = -ENOMEM;
1001 goto out;
1002 }
1003
1004 if (set_node_online) {
1005 node_set_online(nid);
1006 ret = register_one_node(nid);
1007 BUG_ON(ret);
1008 }
1009 out:
1010 return ret;
1011 }
1012
1013 /*
1014 * Users of this function always want to online/register the node
1015 */
1016 int try_online_node(int nid)
1017 {
1018 int ret;
1019
1020 mem_hotplug_begin();
1021 ret = __try_online_node(nid, 0, true);
1022 mem_hotplug_done();
1023 return ret;
1024 }
1025
1026 static int check_hotplug_memory_range(u64 start, u64 size)
1027 {
1028 /* memory range must be block size aligned */
1029 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1030 !IS_ALIGNED(size, memory_block_size_bytes())) {
1031 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1032 memory_block_size_bytes(), start, size);
1033 return -EINVAL;
1034 }
1035
1036 return 0;
1037 }
1038
1039 static int online_memory_block(struct memory_block *mem, void *arg)
1040 {
1041 return device_online(&mem->dev);
1042 }
1043
1044 /*
1045 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1046 * and online/offline operations (triggered e.g. by sysfs).
1047 *
1048 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1049 */
1050 int __ref add_memory_resource(int nid, struct resource *res)
1051 {
1052 struct mhp_restrictions restrictions = {};
1053 u64 start, size;
1054 bool new_node = false;
1055 int ret;
1056
1057 start = res->start;
1058 size = resource_size(res);
1059
1060 ret = check_hotplug_memory_range(start, size);
1061 if (ret)
1062 return ret;
1063
1064 mem_hotplug_begin();
1065
1066 /*
1067 * Add new range to memblock so that when hotadd_new_pgdat() is called
1068 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1069 * this new range and calculate total pages correctly. The range will
1070 * be removed at hot-remove time.
1071 */
1072 memblock_add_node(start, size, nid);
1073
1074 ret = __try_online_node(nid, start, false);
1075 if (ret < 0)
1076 goto error;
1077 new_node = ret;
1078
1079 /* call arch's memory hotadd */
1080 ret = arch_add_memory(nid, start, size, &restrictions);
1081 if (ret < 0)
1082 goto error;
1083
1084 /* create memory block devices after memory was added */
1085 ret = create_memory_block_devices(start, size);
1086 if (ret) {
1087 arch_remove_memory(nid, start, size, NULL);
1088 goto error;
1089 }
1090
1091 if (new_node) {
1092 /* If sysfs file of new node can't be created, cpu on the node
1093 * can't be hot-added. There is no rollback way now.
1094 * So, check by BUG_ON() to catch it reluctantly..
1095 * We online node here. We can't roll back from here.
1096 */
1097 node_set_online(nid);
1098 ret = __register_one_node(nid);
1099 BUG_ON(ret);
1100 }
1101
1102 /* link memory sections under this node.*/
1103 ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1104 BUG_ON(ret);
1105
1106 /* create new memmap entry */
1107 firmware_map_add_hotplug(start, start + size, "System RAM");
1108
1109 /* device_online() will take the lock when calling online_pages() */
1110 mem_hotplug_done();
1111
1112 /* online pages if requested */
1113 if (memhp_auto_online)
1114 walk_memory_blocks(start, size, NULL, online_memory_block);
1115
1116 return ret;
1117 error:
1118 /* rollback pgdat allocation and others */
1119 if (new_node)
1120 rollback_node_hotadd(nid);
1121 memblock_remove(start, size);
1122 mem_hotplug_done();
1123 return ret;
1124 }
1125
1126 /* requires device_hotplug_lock, see add_memory_resource() */
1127 int __ref __add_memory(int nid, u64 start, u64 size)
1128 {
1129 struct resource *res;
1130 int ret;
1131
1132 res = register_memory_resource(start, size);
1133 if (IS_ERR(res))
1134 return PTR_ERR(res);
1135
1136 ret = add_memory_resource(nid, res);
1137 if (ret < 0)
1138 release_memory_resource(res);
1139 return ret;
1140 }
1141
1142 int add_memory(int nid, u64 start, u64 size)
1143 {
1144 int rc;
1145
1146 lock_device_hotplug();
1147 rc = __add_memory(nid, start, size);
1148 unlock_device_hotplug();
1149
1150 return rc;
1151 }
1152 EXPORT_SYMBOL_GPL(add_memory);
1153
1154 #ifdef CONFIG_MEMORY_HOTREMOVE
1155 /*
1156 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1157 * set and the size of the free page is given by page_order(). Using this,
1158 * the function determines if the pageblock contains only free pages.
1159 * Due to buddy contraints, a free page at least the size of a pageblock will
1160 * be located at the start of the pageblock
1161 */
1162 static inline int pageblock_free(struct page *page)
1163 {
1164 return PageBuddy(page) && page_order(page) >= pageblock_order;
1165 }
1166
1167 /* Return the pfn of the start of the next active pageblock after a given pfn */
1168 static unsigned long next_active_pageblock(unsigned long pfn)
1169 {
1170 struct page *page = pfn_to_page(pfn);
1171
1172 /* Ensure the starting page is pageblock-aligned */
1173 BUG_ON(pfn & (pageblock_nr_pages - 1));
1174
1175 /* If the entire pageblock is free, move to the end of free page */
1176 if (pageblock_free(page)) {
1177 int order;
1178 /* be careful. we don't have locks, page_order can be changed.*/
1179 order = page_order(page);
1180 if ((order < MAX_ORDER) && (order >= pageblock_order))
1181 return pfn + (1 << order);
1182 }
1183
1184 return pfn + pageblock_nr_pages;
1185 }
1186
1187 static bool is_pageblock_removable_nolock(unsigned long pfn)
1188 {
1189 struct page *page = pfn_to_page(pfn);
1190 struct zone *zone;
1191
1192 /*
1193 * We have to be careful here because we are iterating over memory
1194 * sections which are not zone aware so we might end up outside of
1195 * the zone but still within the section.
1196 * We have to take care about the node as well. If the node is offline
1197 * its NODE_DATA will be NULL - see page_zone.
1198 */
1199 if (!node_online(page_to_nid(page)))
1200 return false;
1201
1202 zone = page_zone(page);
1203 pfn = page_to_pfn(page);
1204 if (!zone_spans_pfn(zone, pfn))
1205 return false;
1206
1207 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1208 }
1209
1210 /* Checks if this range of memory is likely to be hot-removable. */
1211 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1212 {
1213 unsigned long end_pfn, pfn;
1214
1215 end_pfn = min(start_pfn + nr_pages,
1216 zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1217
1218 /* Check the starting page of each pageblock within the range */
1219 for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1220 if (!is_pageblock_removable_nolock(pfn))
1221 return false;
1222 cond_resched();
1223 }
1224
1225 /* All pageblocks in the memory block are likely to be hot-removable */
1226 return true;
1227 }
1228
1229 /*
1230 * Confirm all pages in a range [start, end) belong to the same zone.
1231 * When true, return its valid [start, end).
1232 */
1233 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1234 unsigned long *valid_start, unsigned long *valid_end)
1235 {
1236 unsigned long pfn, sec_end_pfn;
1237 unsigned long start, end;
1238 struct zone *zone = NULL;
1239 struct page *page;
1240 int i;
1241 for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1242 pfn < end_pfn;
1243 pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1244 /* Make sure the memory section is present first */
1245 if (!present_section_nr(pfn_to_section_nr(pfn)))
1246 continue;
1247 for (; pfn < sec_end_pfn && pfn < end_pfn;
1248 pfn += MAX_ORDER_NR_PAGES) {
1249 i = 0;
1250 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1251 while ((i < MAX_ORDER_NR_PAGES) &&
1252 !pfn_valid_within(pfn + i))
1253 i++;
1254 if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1255 continue;
1256 /* Check if we got outside of the zone */
1257 if (zone && !zone_spans_pfn(zone, pfn + i))
1258 return 0;
1259 page = pfn_to_page(pfn + i);
1260 if (zone && page_zone(page) != zone)
1261 return 0;
1262 if (!zone)
1263 start = pfn + i;
1264 zone = page_zone(page);
1265 end = pfn + MAX_ORDER_NR_PAGES;
1266 }
1267 }
1268
1269 if (zone) {
1270 *valid_start = start;
1271 *valid_end = min(end, end_pfn);
1272 return 1;
1273 } else {
1274 return 0;
1275 }
1276 }
1277
1278 /*
1279 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1280 * non-lru movable pages and hugepages). We scan pfn because it's much
1281 * easier than scanning over linked list. This function returns the pfn
1282 * of the first found movable page if it's found, otherwise 0.
1283 */
1284 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1285 {
1286 unsigned long pfn;
1287
1288 for (pfn = start; pfn < end; pfn++) {
1289 struct page *page, *head;
1290 unsigned long skip;
1291
1292 if (!pfn_valid(pfn))
1293 continue;
1294 page = pfn_to_page(pfn);
1295 if (PageLRU(page))
1296 return pfn;
1297 if (__PageMovable(page))
1298 return pfn;
1299
1300 if (!PageHuge(page))
1301 continue;
1302 head = compound_head(page);
1303 if (page_huge_active(head))
1304 return pfn;
1305 skip = compound_nr(head) - (page - head);
1306 pfn += skip - 1;
1307 }
1308 return 0;
1309 }
1310
1311 static struct page *new_node_page(struct page *page, unsigned long private)
1312 {
1313 int nid = page_to_nid(page);
1314 nodemask_t nmask = node_states[N_MEMORY];
1315
1316 /*
1317 * try to allocate from a different node but reuse this node if there
1318 * are no other online nodes to be used (e.g. we are offlining a part
1319 * of the only existing node)
1320 */
1321 node_clear(nid, nmask);
1322 if (nodes_empty(nmask))
1323 node_set(nid, nmask);
1324
1325 return new_page_nodemask(page, nid, &nmask);
1326 }
1327
1328 static int
1329 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1330 {
1331 unsigned long pfn;
1332 struct page *page;
1333 int ret = 0;
1334 LIST_HEAD(source);
1335
1336 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1337 if (!pfn_valid(pfn))
1338 continue;
1339 page = pfn_to_page(pfn);
1340
1341 if (PageHuge(page)) {
1342 struct page *head = compound_head(page);
1343 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1344 isolate_huge_page(head, &source);
1345 continue;
1346 } else if (PageTransHuge(page))
1347 pfn = page_to_pfn(compound_head(page))
1348 + hpage_nr_pages(page) - 1;
1349
1350 /*
1351 * HWPoison pages have elevated reference counts so the migration would
1352 * fail on them. It also doesn't make any sense to migrate them in the
1353 * first place. Still try to unmap such a page in case it is still mapped
1354 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1355 * the unmap as the catch all safety net).
1356 */
1357 if (PageHWPoison(page)) {
1358 if (WARN_ON(PageLRU(page)))
1359 isolate_lru_page(page);
1360 if (page_mapped(page))
1361 try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1362 continue;
1363 }
1364
1365 if (!get_page_unless_zero(page))
1366 continue;
1367 /*
1368 * We can skip free pages. And we can deal with pages on
1369 * LRU and non-lru movable pages.
1370 */
1371 if (PageLRU(page))
1372 ret = isolate_lru_page(page);
1373 else
1374 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1375 if (!ret) { /* Success */
1376 list_add_tail(&page->lru, &source);
1377 if (!__PageMovable(page))
1378 inc_node_page_state(page, NR_ISOLATED_ANON +
1379 page_is_file_cache(page));
1380
1381 } else {
1382 pr_warn("failed to isolate pfn %lx\n", pfn);
1383 dump_page(page, "isolation failed");
1384 }
1385 put_page(page);
1386 }
1387 if (!list_empty(&source)) {
1388 /* Allocate a new page from the nearest neighbor node */
1389 ret = migrate_pages(&source, new_node_page, NULL, 0,
1390 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1391 if (ret) {
1392 list_for_each_entry(page, &source, lru) {
1393 pr_warn("migrating pfn %lx failed ret:%d ",
1394 page_to_pfn(page), ret);
1395 dump_page(page, "migration failure");
1396 }
1397 putback_movable_pages(&source);
1398 }
1399 }
1400
1401 return ret;
1402 }
1403
1404 /*
1405 * remove from free_area[] and mark all as Reserved.
1406 */
1407 static int
1408 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1409 void *data)
1410 {
1411 unsigned long *offlined_pages = (unsigned long *)data;
1412
1413 *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1414 return 0;
1415 }
1416
1417 /*
1418 * Check all pages in range, recoreded as memory resource, are isolated.
1419 */
1420 static int
1421 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1422 void *data)
1423 {
1424 return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1425 }
1426
1427 static int __init cmdline_parse_movable_node(char *p)
1428 {
1429 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1430 movable_node_enabled = true;
1431 #else
1432 pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1433 #endif
1434 return 0;
1435 }
1436 early_param("movable_node", cmdline_parse_movable_node);
1437
1438 /* check which state of node_states will be changed when offline memory */
1439 static void node_states_check_changes_offline(unsigned long nr_pages,
1440 struct zone *zone, struct memory_notify *arg)
1441 {
1442 struct pglist_data *pgdat = zone->zone_pgdat;
1443 unsigned long present_pages = 0;
1444 enum zone_type zt;
1445
1446 arg->status_change_nid = NUMA_NO_NODE;
1447 arg->status_change_nid_normal = NUMA_NO_NODE;
1448 arg->status_change_nid_high = NUMA_NO_NODE;
1449
1450 /*
1451 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1452 * If the memory to be offline is within the range
1453 * [0..ZONE_NORMAL], and it is the last present memory there,
1454 * the zones in that range will become empty after the offlining,
1455 * thus we can determine that we need to clear the node from
1456 * node_states[N_NORMAL_MEMORY].
1457 */
1458 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1459 present_pages += pgdat->node_zones[zt].present_pages;
1460 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1461 arg->status_change_nid_normal = zone_to_nid(zone);
1462
1463 #ifdef CONFIG_HIGHMEM
1464 /*
1465 * node_states[N_HIGH_MEMORY] contains nodes which
1466 * have normal memory or high memory.
1467 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1468 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1469 * we determine that the zones in that range become empty,
1470 * we need to clear the node for N_HIGH_MEMORY.
1471 */
1472 present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1473 if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1474 arg->status_change_nid_high = zone_to_nid(zone);
1475 #endif
1476
1477 /*
1478 * We have accounted the pages from [0..ZONE_NORMAL), and
1479 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1480 * as well.
1481 * Here we count the possible pages from ZONE_MOVABLE.
1482 * If after having accounted all the pages, we see that the nr_pages
1483 * to be offlined is over or equal to the accounted pages,
1484 * we know that the node will become empty, and so, we can clear
1485 * it for N_MEMORY as well.
1486 */
1487 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1488
1489 if (nr_pages >= present_pages)
1490 arg->status_change_nid = zone_to_nid(zone);
1491 }
1492
1493 static void node_states_clear_node(int node, struct memory_notify *arg)
1494 {
1495 if (arg->status_change_nid_normal >= 0)
1496 node_clear_state(node, N_NORMAL_MEMORY);
1497
1498 if (arg->status_change_nid_high >= 0)
1499 node_clear_state(node, N_HIGH_MEMORY);
1500
1501 if (arg->status_change_nid >= 0)
1502 node_clear_state(node, N_MEMORY);
1503 }
1504
1505 static int __ref __offline_pages(unsigned long start_pfn,
1506 unsigned long end_pfn)
1507 {
1508 unsigned long pfn, nr_pages;
1509 unsigned long offlined_pages = 0;
1510 int ret, node, nr_isolate_pageblock;
1511 unsigned long flags;
1512 unsigned long valid_start, valid_end;
1513 struct zone *zone;
1514 struct memory_notify arg;
1515 char *reason;
1516
1517 mem_hotplug_begin();
1518
1519 /* This makes hotplug much easier...and readable.
1520 we assume this for now. .*/
1521 if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1522 &valid_end)) {
1523 ret = -EINVAL;
1524 reason = "multizone range";
1525 goto failed_removal;
1526 }
1527
1528 zone = page_zone(pfn_to_page(valid_start));
1529 node = zone_to_nid(zone);
1530 nr_pages = end_pfn - start_pfn;
1531
1532 /* set above range as isolated */
1533 ret = start_isolate_page_range(start_pfn, end_pfn,
1534 MIGRATE_MOVABLE,
1535 SKIP_HWPOISON | REPORT_FAILURE);
1536 if (ret < 0) {
1537 reason = "failure to isolate range";
1538 goto failed_removal;
1539 }
1540 nr_isolate_pageblock = ret;
1541
1542 arg.start_pfn = start_pfn;
1543 arg.nr_pages = nr_pages;
1544 node_states_check_changes_offline(nr_pages, zone, &arg);
1545
1546 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1547 ret = notifier_to_errno(ret);
1548 if (ret) {
1549 reason = "notifier failure";
1550 goto failed_removal_isolated;
1551 }
1552
1553 do {
1554 for (pfn = start_pfn; pfn;) {
1555 if (signal_pending(current)) {
1556 ret = -EINTR;
1557 reason = "signal backoff";
1558 goto failed_removal_isolated;
1559 }
1560
1561 cond_resched();
1562 lru_add_drain_all();
1563
1564 pfn = scan_movable_pages(pfn, end_pfn);
1565 if (pfn) {
1566 /*
1567 * TODO: fatal migration failures should bail
1568 * out
1569 */
1570 do_migrate_range(pfn, end_pfn);
1571 }
1572 }
1573
1574 /*
1575 * Dissolve free hugepages in the memory block before doing
1576 * offlining actually in order to make hugetlbfs's object
1577 * counting consistent.
1578 */
1579 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1580 if (ret) {
1581 reason = "failure to dissolve huge pages";
1582 goto failed_removal_isolated;
1583 }
1584 /* check again */
1585 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1586 NULL, check_pages_isolated_cb);
1587 } while (ret);
1588
1589 /* Ok, all of our target is isolated.
1590 We cannot do rollback at this point. */
1591 walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1592 &offlined_pages, offline_isolated_pages_cb);
1593 pr_info("Offlined Pages %ld\n", offlined_pages);
1594 /*
1595 * Onlining will reset pagetype flags and makes migrate type
1596 * MOVABLE, so just need to decrease the number of isolated
1597 * pageblocks zone counter here.
1598 */
1599 spin_lock_irqsave(&zone->lock, flags);
1600 zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1601 spin_unlock_irqrestore(&zone->lock, flags);
1602
1603 /* removal success */
1604 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1605 zone->present_pages -= offlined_pages;
1606
1607 pgdat_resize_lock(zone->zone_pgdat, &flags);
1608 zone->zone_pgdat->node_present_pages -= offlined_pages;
1609 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1610
1611 init_per_zone_wmark_min();
1612
1613 if (!populated_zone(zone)) {
1614 zone_pcp_reset(zone);
1615 build_all_zonelists(NULL);
1616 } else
1617 zone_pcp_update(zone);
1618
1619 node_states_clear_node(node, &arg);
1620 if (arg.status_change_nid >= 0) {
1621 kswapd_stop(node);
1622 kcompactd_stop(node);
1623 }
1624
1625 vm_total_pages = nr_free_pagecache_pages();
1626 writeback_set_ratelimit();
1627
1628 memory_notify(MEM_OFFLINE, &arg);
1629 mem_hotplug_done();
1630 return 0;
1631
1632 failed_removal_isolated:
1633 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1634 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1635 failed_removal:
1636 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1637 (unsigned long long) start_pfn << PAGE_SHIFT,
1638 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1639 reason);
1640 /* pushback to free area */
1641 mem_hotplug_done();
1642 return ret;
1643 }
1644
1645 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1646 {
1647 return __offline_pages(start_pfn, start_pfn + nr_pages);
1648 }
1649
1650 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1651 {
1652 int ret = !is_memblock_offlined(mem);
1653
1654 if (unlikely(ret)) {
1655 phys_addr_t beginpa, endpa;
1656
1657 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1658 endpa = beginpa + memory_block_size_bytes() - 1;
1659 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1660 &beginpa, &endpa);
1661
1662 return -EBUSY;
1663 }
1664 return 0;
1665 }
1666
1667 static int check_cpu_on_node(pg_data_t *pgdat)
1668 {
1669 int cpu;
1670
1671 for_each_present_cpu(cpu) {
1672 if (cpu_to_node(cpu) == pgdat->node_id)
1673 /*
1674 * the cpu on this node isn't removed, and we can't
1675 * offline this node.
1676 */
1677 return -EBUSY;
1678 }
1679
1680 return 0;
1681 }
1682
1683 /**
1684 * try_offline_node
1685 * @nid: the node ID
1686 *
1687 * Offline a node if all memory sections and cpus of the node are removed.
1688 *
1689 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1690 * and online/offline operations before this call.
1691 */
1692 void try_offline_node(int nid)
1693 {
1694 pg_data_t *pgdat = NODE_DATA(nid);
1695 unsigned long start_pfn = pgdat->node_start_pfn;
1696 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1697 unsigned long pfn;
1698
1699 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1700 unsigned long section_nr = pfn_to_section_nr(pfn);
1701
1702 if (!present_section_nr(section_nr))
1703 continue;
1704
1705 if (pfn_to_nid(pfn) != nid)
1706 continue;
1707
1708 /*
1709 * some memory sections of this node are not removed, and we
1710 * can't offline node now.
1711 */
1712 return;
1713 }
1714
1715 if (check_cpu_on_node(pgdat))
1716 return;
1717
1718 /*
1719 * all memory/cpu of this node are removed, we can offline this
1720 * node now.
1721 */
1722 node_set_offline(nid);
1723 unregister_one_node(nid);
1724 }
1725 EXPORT_SYMBOL(try_offline_node);
1726
1727 static void __release_memory_resource(resource_size_t start,
1728 resource_size_t size)
1729 {
1730 int ret;
1731
1732 /*
1733 * When removing memory in the same granularity as it was added,
1734 * this function never fails. It might only fail if resources
1735 * have to be adjusted or split. We'll ignore the error, as
1736 * removing of memory cannot fail.
1737 */
1738 ret = release_mem_region_adjustable(&iomem_resource, start, size);
1739 if (ret) {
1740 resource_size_t endres = start + size - 1;
1741
1742 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1743 &start, &endres, ret);
1744 }
1745 }
1746
1747 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1748 {
1749 int rc = 0;
1750
1751 BUG_ON(check_hotplug_memory_range(start, size));
1752
1753 mem_hotplug_begin();
1754
1755 /*
1756 * All memory blocks must be offlined before removing memory. Check
1757 * whether all memory blocks in question are offline and return error
1758 * if this is not the case.
1759 */
1760 rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1761 if (rc)
1762 goto done;
1763
1764 /* remove memmap entry */
1765 firmware_map_remove(start, start + size, "System RAM");
1766 memblock_free(start, size);
1767 memblock_remove(start, size);
1768
1769 /* remove memory block devices before removing memory */
1770 remove_memory_block_devices(start, size);
1771
1772 arch_remove_memory(nid, start, size, NULL);
1773 __release_memory_resource(start, size);
1774
1775 try_offline_node(nid);
1776
1777 done:
1778 mem_hotplug_done();
1779 return rc;
1780 }
1781
1782 /**
1783 * remove_memory
1784 * @nid: the node ID
1785 * @start: physical address of the region to remove
1786 * @size: size of the region to remove
1787 *
1788 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1789 * and online/offline operations before this call, as required by
1790 * try_offline_node().
1791 */
1792 void __remove_memory(int nid, u64 start, u64 size)
1793 {
1794
1795 /*
1796 * trigger BUG() if some memory is not offlined prior to calling this
1797 * function
1798 */
1799 if (try_remove_memory(nid, start, size))
1800 BUG();
1801 }
1802
1803 /*
1804 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1805 * some memory is not offline
1806 */
1807 int remove_memory(int nid, u64 start, u64 size)
1808 {
1809 int rc;
1810
1811 lock_device_hotplug();
1812 rc = try_remove_memory(nid, start, size);
1813 unlock_device_hotplug();
1814
1815 return rc;
1816 }
1817 EXPORT_SYMBOL_GPL(remove_memory);
1818 #endif /* CONFIG_MEMORY_HOTREMOVE */