]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 unsigned long end, struct mm_walk *walk)
433 {
434 int ret = 0;
435 struct page *page;
436 struct queue_pages *qp = walk->private;
437 unsigned long flags;
438
439 if (unlikely(is_pmd_migration_entry(*pmd))) {
440 ret = 1;
441 goto unlock;
442 }
443 page = pmd_page(*pmd);
444 if (is_huge_zero_page(page)) {
445 spin_unlock(ptl);
446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 goto out;
448 }
449 if (!thp_migration_supported()) {
450 get_page(page);
451 spin_unlock(ptl);
452 lock_page(page);
453 ret = split_huge_page(page);
454 unlock_page(page);
455 put_page(page);
456 goto out;
457 }
458 if (!queue_pages_required(page, qp)) {
459 ret = 1;
460 goto unlock;
461 }
462
463 ret = 1;
464 flags = qp->flags;
465 /* go to thp migration */
466 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 migrate_page_add(page, qp->pagelist, flags);
468 unlock:
469 spin_unlock(ptl);
470 out:
471 return ret;
472 }
473
474 /*
475 * Scan through pages checking if pages follow certain conditions,
476 * and move them to the pagelist if they do.
477 */
478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 unsigned long end, struct mm_walk *walk)
480 {
481 struct vm_area_struct *vma = walk->vma;
482 struct page *page;
483 struct queue_pages *qp = walk->private;
484 unsigned long flags = qp->flags;
485 int ret;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 ptl = pmd_trans_huge_lock(pmd, vma);
490 if (ptl) {
491 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 if (ret)
493 return 0;
494 }
495
496 if (pmd_trans_unstable(pmd))
497 return 0;
498 retry:
499 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 for (; addr != end; pte++, addr += PAGE_SIZE) {
501 if (!pte_present(*pte))
502 continue;
503 page = vm_normal_page(vma, addr, *pte);
504 if (!page)
505 continue;
506 /*
507 * vm_normal_page() filters out zero pages, but there might
508 * still be PageReserved pages to skip, perhaps in a VDSO.
509 */
510 if (PageReserved(page))
511 continue;
512 if (!queue_pages_required(page, qp))
513 continue;
514 if (PageTransCompound(page) && !thp_migration_supported()) {
515 get_page(page);
516 pte_unmap_unlock(pte, ptl);
517 lock_page(page);
518 ret = split_huge_page(page);
519 unlock_page(page);
520 put_page(page);
521 /* Failed to split -- skip. */
522 if (ret) {
523 pte = pte_offset_map_lock(walk->mm, pmd,
524 addr, &ptl);
525 continue;
526 }
527 goto retry;
528 }
529
530 migrate_page_add(page, qp->pagelist, flags);
531 }
532 pte_unmap_unlock(pte - 1, ptl);
533 cond_resched();
534 return 0;
535 }
536
537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 unsigned long addr, unsigned long end,
539 struct mm_walk *walk)
540 {
541 #ifdef CONFIG_HUGETLB_PAGE
542 struct queue_pages *qp = walk->private;
543 unsigned long flags = qp->flags;
544 struct page *page;
545 spinlock_t *ptl;
546 pte_t entry;
547
548 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 entry = huge_ptep_get(pte);
550 if (!pte_present(entry))
551 goto unlock;
552 page = pte_page(entry);
553 if (!queue_pages_required(page, qp))
554 goto unlock;
555 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 if (flags & (MPOL_MF_MOVE_ALL) ||
557 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 isolate_huge_page(page, qp->pagelist);
559 unlock:
560 spin_unlock(ptl);
561 #else
562 BUG();
563 #endif
564 return 0;
565 }
566
567 #ifdef CONFIG_NUMA_BALANCING
568 /*
569 * This is used to mark a range of virtual addresses to be inaccessible.
570 * These are later cleared by a NUMA hinting fault. Depending on these
571 * faults, pages may be migrated for better NUMA placement.
572 *
573 * This is assuming that NUMA faults are handled using PROT_NONE. If
574 * an architecture makes a different choice, it will need further
575 * changes to the core.
576 */
577 unsigned long change_prot_numa(struct vm_area_struct *vma,
578 unsigned long addr, unsigned long end)
579 {
580 int nr_updated;
581
582 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 if (nr_updated)
584 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585
586 return nr_updated;
587 }
588 #else
589 static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 unsigned long addr, unsigned long end)
591 {
592 return 0;
593 }
594 #endif /* CONFIG_NUMA_BALANCING */
595
596 static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 struct mm_walk *walk)
598 {
599 struct vm_area_struct *vma = walk->vma;
600 struct queue_pages *qp = walk->private;
601 unsigned long endvma = vma->vm_end;
602 unsigned long flags = qp->flags;
603
604 if (!vma_migratable(vma))
605 return 1;
606
607 if (endvma > end)
608 endvma = end;
609 if (vma->vm_start > start)
610 start = vma->vm_start;
611
612 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 if (!vma->vm_next && vma->vm_end < end)
614 return -EFAULT;
615 if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 return -EFAULT;
617 }
618
619 qp->prev = vma;
620
621 if (flags & MPOL_MF_LAZY) {
622 /* Similar to task_numa_work, skip inaccessible VMAs */
623 if (!is_vm_hugetlb_page(vma) &&
624 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 !(vma->vm_flags & VM_MIXEDMAP))
626 change_prot_numa(vma, start, endvma);
627 return 1;
628 }
629
630 /* queue pages from current vma */
631 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 return 0;
633 return 1;
634 }
635
636 /*
637 * Walk through page tables and collect pages to be migrated.
638 *
639 * If pages found in a given range are on a set of nodes (determined by
640 * @nodes and @flags,) it's isolated and queued to the pagelist which is
641 * passed via @private.)
642 */
643 static int
644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 nodemask_t *nodes, unsigned long flags,
646 struct list_head *pagelist)
647 {
648 struct queue_pages qp = {
649 .pagelist = pagelist,
650 .flags = flags,
651 .nmask = nodes,
652 .prev = NULL,
653 };
654 struct mm_walk queue_pages_walk = {
655 .hugetlb_entry = queue_pages_hugetlb,
656 .pmd_entry = queue_pages_pte_range,
657 .test_walk = queue_pages_test_walk,
658 .mm = mm,
659 .private = &qp,
660 };
661
662 return walk_page_range(start, end, &queue_pages_walk);
663 }
664
665 /*
666 * Apply policy to a single VMA
667 * This must be called with the mmap_sem held for writing.
668 */
669 static int vma_replace_policy(struct vm_area_struct *vma,
670 struct mempolicy *pol)
671 {
672 int err;
673 struct mempolicy *old;
674 struct mempolicy *new;
675
676 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 vma->vm_ops, vma->vm_file,
679 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680
681 new = mpol_dup(pol);
682 if (IS_ERR(new))
683 return PTR_ERR(new);
684
685 if (vma->vm_ops && vma->vm_ops->set_policy) {
686 err = vma->vm_ops->set_policy(vma, new);
687 if (err)
688 goto err_out;
689 }
690
691 old = vma->vm_policy;
692 vma->vm_policy = new; /* protected by mmap_sem */
693 mpol_put(old);
694
695 return 0;
696 err_out:
697 mpol_put(new);
698 return err;
699 }
700
701 /* Step 2: apply policy to a range and do splits. */
702 static int mbind_range(struct mm_struct *mm, unsigned long start,
703 unsigned long end, struct mempolicy *new_pol)
704 {
705 struct vm_area_struct *next;
706 struct vm_area_struct *prev;
707 struct vm_area_struct *vma;
708 int err = 0;
709 pgoff_t pgoff;
710 unsigned long vmstart;
711 unsigned long vmend;
712
713 vma = find_vma(mm, start);
714 if (!vma || vma->vm_start > start)
715 return -EFAULT;
716
717 prev = vma->vm_prev;
718 if (start > vma->vm_start)
719 prev = vma;
720
721 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 next = vma->vm_next;
723 vmstart = max(start, vma->vm_start);
724 vmend = min(end, vma->vm_end);
725
726 if (mpol_equal(vma_policy(vma), new_pol))
727 continue;
728
729 pgoff = vma->vm_pgoff +
730 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 vma->anon_vma, vma->vm_file, pgoff,
733 new_pol, vma->vm_userfaultfd_ctx);
734 if (prev) {
735 vma = prev;
736 next = vma->vm_next;
737 if (mpol_equal(vma_policy(vma), new_pol))
738 continue;
739 /* vma_merge() joined vma && vma->next, case 8 */
740 goto replace;
741 }
742 if (vma->vm_start != vmstart) {
743 err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 if (err)
745 goto out;
746 }
747 if (vma->vm_end != vmend) {
748 err = split_vma(vma->vm_mm, vma, vmend, 0);
749 if (err)
750 goto out;
751 }
752 replace:
753 err = vma_replace_policy(vma, new_pol);
754 if (err)
755 goto out;
756 }
757
758 out:
759 return err;
760 }
761
762 /* Set the process memory policy */
763 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 nodemask_t *nodes)
765 {
766 struct mempolicy *new, *old;
767 NODEMASK_SCRATCH(scratch);
768 int ret;
769
770 if (!scratch)
771 return -ENOMEM;
772
773 new = mpol_new(mode, flags, nodes);
774 if (IS_ERR(new)) {
775 ret = PTR_ERR(new);
776 goto out;
777 }
778
779 task_lock(current);
780 ret = mpol_set_nodemask(new, nodes, scratch);
781 if (ret) {
782 task_unlock(current);
783 mpol_put(new);
784 goto out;
785 }
786 old = current->mempolicy;
787 current->mempolicy = new;
788 if (new && new->mode == MPOL_INTERLEAVE)
789 current->il_prev = MAX_NUMNODES-1;
790 task_unlock(current);
791 mpol_put(old);
792 ret = 0;
793 out:
794 NODEMASK_SCRATCH_FREE(scratch);
795 return ret;
796 }
797
798 /*
799 * Return nodemask for policy for get_mempolicy() query
800 *
801 * Called with task's alloc_lock held
802 */
803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804 {
805 nodes_clear(*nodes);
806 if (p == &default_policy)
807 return;
808
809 switch (p->mode) {
810 case MPOL_BIND:
811 /* Fall through */
812 case MPOL_INTERLEAVE:
813 *nodes = p->v.nodes;
814 break;
815 case MPOL_PREFERRED:
816 if (!(p->flags & MPOL_F_LOCAL))
817 node_set(p->v.preferred_node, *nodes);
818 /* else return empty node mask for local allocation */
819 break;
820 default:
821 BUG();
822 }
823 }
824
825 static int lookup_node(unsigned long addr)
826 {
827 struct page *p;
828 int err;
829
830 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 if (err >= 0) {
832 err = page_to_nid(p);
833 put_page(p);
834 }
835 return err;
836 }
837
838 /* Retrieve NUMA policy */
839 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 unsigned long addr, unsigned long flags)
841 {
842 int err;
843 struct mm_struct *mm = current->mm;
844 struct vm_area_struct *vma = NULL;
845 struct mempolicy *pol = current->mempolicy;
846
847 if (flags &
848 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 return -EINVAL;
850
851 if (flags & MPOL_F_MEMS_ALLOWED) {
852 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 return -EINVAL;
854 *policy = 0; /* just so it's initialized */
855 task_lock(current);
856 *nmask = cpuset_current_mems_allowed;
857 task_unlock(current);
858 return 0;
859 }
860
861 if (flags & MPOL_F_ADDR) {
862 /*
863 * Do NOT fall back to task policy if the
864 * vma/shared policy at addr is NULL. We
865 * want to return MPOL_DEFAULT in this case.
866 */
867 down_read(&mm->mmap_sem);
868 vma = find_vma_intersection(mm, addr, addr+1);
869 if (!vma) {
870 up_read(&mm->mmap_sem);
871 return -EFAULT;
872 }
873 if (vma->vm_ops && vma->vm_ops->get_policy)
874 pol = vma->vm_ops->get_policy(vma, addr);
875 else
876 pol = vma->vm_policy;
877 } else if (addr)
878 return -EINVAL;
879
880 if (!pol)
881 pol = &default_policy; /* indicates default behavior */
882
883 if (flags & MPOL_F_NODE) {
884 if (flags & MPOL_F_ADDR) {
885 err = lookup_node(addr);
886 if (err < 0)
887 goto out;
888 *policy = err;
889 } else if (pol == current->mempolicy &&
890 pol->mode == MPOL_INTERLEAVE) {
891 *policy = next_node_in(current->il_prev, pol->v.nodes);
892 } else {
893 err = -EINVAL;
894 goto out;
895 }
896 } else {
897 *policy = pol == &default_policy ? MPOL_DEFAULT :
898 pol->mode;
899 /*
900 * Internal mempolicy flags must be masked off before exposing
901 * the policy to userspace.
902 */
903 *policy |= (pol->flags & MPOL_MODE_FLAGS);
904 }
905
906 err = 0;
907 if (nmask) {
908 if (mpol_store_user_nodemask(pol)) {
909 *nmask = pol->w.user_nodemask;
910 } else {
911 task_lock(current);
912 get_policy_nodemask(pol, nmask);
913 task_unlock(current);
914 }
915 }
916
917 out:
918 mpol_cond_put(pol);
919 if (vma)
920 up_read(&current->mm->mmap_sem);
921 return err;
922 }
923
924 #ifdef CONFIG_MIGRATION
925 /*
926 * page migration, thp tail pages can be passed.
927 */
928 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 unsigned long flags)
930 {
931 struct page *head = compound_head(page);
932 /*
933 * Avoid migrating a page that is shared with others.
934 */
935 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 if (!isolate_lru_page(head)) {
937 list_add_tail(&head->lru, pagelist);
938 mod_node_page_state(page_pgdat(head),
939 NR_ISOLATED_ANON + page_is_file_cache(head),
940 hpage_nr_pages(head));
941 }
942 }
943 }
944
945 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946 {
947 if (PageHuge(page))
948 return alloc_huge_page_node(page_hstate(compound_head(page)),
949 node);
950 else if (thp_migration_supported() && PageTransHuge(page)) {
951 struct page *thp;
952
953 thp = alloc_pages_node(node,
954 (GFP_TRANSHUGE | __GFP_THISNODE),
955 HPAGE_PMD_ORDER);
956 if (!thp)
957 return NULL;
958 prep_transhuge_page(thp);
959 return thp;
960 } else
961 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 __GFP_THISNODE, 0);
963 }
964
965 /*
966 * Migrate pages from one node to a target node.
967 * Returns error or the number of pages not migrated.
968 */
969 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 int flags)
971 {
972 nodemask_t nmask;
973 LIST_HEAD(pagelist);
974 int err = 0;
975
976 nodes_clear(nmask);
977 node_set(source, nmask);
978
979 /*
980 * This does not "check" the range but isolates all pages that
981 * need migration. Between passing in the full user address
982 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 */
984 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987
988 if (!list_empty(&pagelist)) {
989 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 MIGRATE_SYNC, MR_SYSCALL);
991 if (err)
992 putback_movable_pages(&pagelist);
993 }
994
995 return err;
996 }
997
998 /*
999 * Move pages between the two nodesets so as to preserve the physical
1000 * layout as much as possible.
1001 *
1002 * Returns the number of page that could not be moved.
1003 */
1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 const nodemask_t *to, int flags)
1006 {
1007 int busy = 0;
1008 int err;
1009 nodemask_t tmp;
1010
1011 err = migrate_prep();
1012 if (err)
1013 return err;
1014
1015 down_read(&mm->mmap_sem);
1016
1017 /*
1018 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1020 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 * The pair of nodemasks 'to' and 'from' define the map.
1022 *
1023 * If no pair of bits is found that way, fallback to picking some
1024 * pair of 'source' and 'dest' bits that are not the same. If the
1025 * 'source' and 'dest' bits are the same, this represents a node
1026 * that will be migrating to itself, so no pages need move.
1027 *
1028 * If no bits are left in 'tmp', or if all remaining bits left
1029 * in 'tmp' correspond to the same bit in 'to', return false
1030 * (nothing left to migrate).
1031 *
1032 * This lets us pick a pair of nodes to migrate between, such that
1033 * if possible the dest node is not already occupied by some other
1034 * source node, minimizing the risk of overloading the memory on a
1035 * node that would happen if we migrated incoming memory to a node
1036 * before migrating outgoing memory source that same node.
1037 *
1038 * A single scan of tmp is sufficient. As we go, we remember the
1039 * most recent <s, d> pair that moved (s != d). If we find a pair
1040 * that not only moved, but what's better, moved to an empty slot
1041 * (d is not set in tmp), then we break out then, with that pair.
1042 * Otherwise when we finish scanning from_tmp, we at least have the
1043 * most recent <s, d> pair that moved. If we get all the way through
1044 * the scan of tmp without finding any node that moved, much less
1045 * moved to an empty node, then there is nothing left worth migrating.
1046 */
1047
1048 tmp = *from;
1049 while (!nodes_empty(tmp)) {
1050 int s,d;
1051 int source = NUMA_NO_NODE;
1052 int dest = 0;
1053
1054 for_each_node_mask(s, tmp) {
1055
1056 /*
1057 * do_migrate_pages() tries to maintain the relative
1058 * node relationship of the pages established between
1059 * threads and memory areas.
1060 *
1061 * However if the number of source nodes is not equal to
1062 * the number of destination nodes we can not preserve
1063 * this node relative relationship. In that case, skip
1064 * copying memory from a node that is in the destination
1065 * mask.
1066 *
1067 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 */
1070
1071 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 (node_isset(s, *to)))
1073 continue;
1074
1075 d = node_remap(s, *from, *to);
1076 if (s == d)
1077 continue;
1078
1079 source = s; /* Node moved. Memorize */
1080 dest = d;
1081
1082 /* dest not in remaining from nodes? */
1083 if (!node_isset(dest, tmp))
1084 break;
1085 }
1086 if (source == NUMA_NO_NODE)
1087 break;
1088
1089 node_clear(source, tmp);
1090 err = migrate_to_node(mm, source, dest, flags);
1091 if (err > 0)
1092 busy += err;
1093 if (err < 0)
1094 break;
1095 }
1096 up_read(&mm->mmap_sem);
1097 if (err < 0)
1098 return err;
1099 return busy;
1100
1101 }
1102
1103 /*
1104 * Allocate a new page for page migration based on vma policy.
1105 * Start by assuming the page is mapped by the same vma as contains @start.
1106 * Search forward from there, if not. N.B., this assumes that the
1107 * list of pages handed to migrate_pages()--which is how we get here--
1108 * is in virtual address order.
1109 */
1110 static struct page *new_page(struct page *page, unsigned long start, int **x)
1111 {
1112 struct vm_area_struct *vma;
1113 unsigned long uninitialized_var(address);
1114
1115 vma = find_vma(current->mm, start);
1116 while (vma) {
1117 address = page_address_in_vma(page, vma);
1118 if (address != -EFAULT)
1119 break;
1120 vma = vma->vm_next;
1121 }
1122
1123 if (PageHuge(page)) {
1124 BUG_ON(!vma);
1125 return alloc_huge_page_noerr(vma, address, 1);
1126 } else if (thp_migration_supported() && PageTransHuge(page)) {
1127 struct page *thp;
1128
1129 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 HPAGE_PMD_ORDER);
1131 if (!thp)
1132 return NULL;
1133 prep_transhuge_page(thp);
1134 return thp;
1135 }
1136 /*
1137 * if !vma, alloc_page_vma() will use task or system default policy
1138 */
1139 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 vma, address);
1141 }
1142 #else
1143
1144 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 unsigned long flags)
1146 {
1147 }
1148
1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 const nodemask_t *to, int flags)
1151 {
1152 return -ENOSYS;
1153 }
1154
1155 static struct page *new_page(struct page *page, unsigned long start, int **x)
1156 {
1157 return NULL;
1158 }
1159 #endif
1160
1161 static long do_mbind(unsigned long start, unsigned long len,
1162 unsigned short mode, unsigned short mode_flags,
1163 nodemask_t *nmask, unsigned long flags)
1164 {
1165 struct mm_struct *mm = current->mm;
1166 struct mempolicy *new;
1167 unsigned long end;
1168 int err;
1169 LIST_HEAD(pagelist);
1170
1171 if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 return -EINVAL;
1173 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 return -EPERM;
1175
1176 if (start & ~PAGE_MASK)
1177 return -EINVAL;
1178
1179 if (mode == MPOL_DEFAULT)
1180 flags &= ~MPOL_MF_STRICT;
1181
1182 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 end = start + len;
1184
1185 if (end < start)
1186 return -EINVAL;
1187 if (end == start)
1188 return 0;
1189
1190 new = mpol_new(mode, mode_flags, nmask);
1191 if (IS_ERR(new))
1192 return PTR_ERR(new);
1193
1194 if (flags & MPOL_MF_LAZY)
1195 new->flags |= MPOL_F_MOF;
1196
1197 /*
1198 * If we are using the default policy then operation
1199 * on discontinuous address spaces is okay after all
1200 */
1201 if (!new)
1202 flags |= MPOL_MF_DISCONTIG_OK;
1203
1204 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 start, start + len, mode, mode_flags,
1206 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207
1208 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209
1210 err = migrate_prep();
1211 if (err)
1212 goto mpol_out;
1213 }
1214 {
1215 NODEMASK_SCRATCH(scratch);
1216 if (scratch) {
1217 down_write(&mm->mmap_sem);
1218 task_lock(current);
1219 err = mpol_set_nodemask(new, nmask, scratch);
1220 task_unlock(current);
1221 if (err)
1222 up_write(&mm->mmap_sem);
1223 } else
1224 err = -ENOMEM;
1225 NODEMASK_SCRATCH_FREE(scratch);
1226 }
1227 if (err)
1228 goto mpol_out;
1229
1230 err = queue_pages_range(mm, start, end, nmask,
1231 flags | MPOL_MF_INVERT, &pagelist);
1232 if (!err)
1233 err = mbind_range(mm, start, end, new);
1234
1235 if (!err) {
1236 int nr_failed = 0;
1237
1238 if (!list_empty(&pagelist)) {
1239 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 if (nr_failed)
1243 putback_movable_pages(&pagelist);
1244 }
1245
1246 if (nr_failed && (flags & MPOL_MF_STRICT))
1247 err = -EIO;
1248 } else
1249 putback_movable_pages(&pagelist);
1250
1251 up_write(&mm->mmap_sem);
1252 mpol_out:
1253 mpol_put(new);
1254 return err;
1255 }
1256
1257 /*
1258 * User space interface with variable sized bitmaps for nodelists.
1259 */
1260
1261 /* Copy a node mask from user space. */
1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 unsigned long maxnode)
1264 {
1265 unsigned long k;
1266 unsigned long t;
1267 unsigned long nlongs;
1268 unsigned long endmask;
1269
1270 --maxnode;
1271 nodes_clear(*nodes);
1272 if (maxnode == 0 || !nmask)
1273 return 0;
1274 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1275 return -EINVAL;
1276
1277 nlongs = BITS_TO_LONGS(maxnode);
1278 if ((maxnode % BITS_PER_LONG) == 0)
1279 endmask = ~0UL;
1280 else
1281 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1282
1283 /*
1284 * When the user specified more nodes than supported just check
1285 * if the non supported part is all zero.
1286 *
1287 * If maxnode have more longs than MAX_NUMNODES, check
1288 * the bits in that area first. And then go through to
1289 * check the rest bits which equal or bigger than MAX_NUMNODES.
1290 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1291 */
1292 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1293 if (nlongs > PAGE_SIZE/sizeof(long))
1294 return -EINVAL;
1295 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1296 if (get_user(t, nmask + k))
1297 return -EFAULT;
1298 if (k == nlongs - 1) {
1299 if (t & endmask)
1300 return -EINVAL;
1301 } else if (t)
1302 return -EINVAL;
1303 }
1304 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1305 endmask = ~0UL;
1306 }
1307
1308 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1309 unsigned long valid_mask = endmask;
1310
1311 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1312 if (get_user(t, nmask + nlongs - 1))
1313 return -EFAULT;
1314 if (t & valid_mask)
1315 return -EINVAL;
1316 }
1317
1318 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1319 return -EFAULT;
1320 nodes_addr(*nodes)[nlongs-1] &= endmask;
1321 return 0;
1322 }
1323
1324 /* Copy a kernel node mask to user space */
1325 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1326 nodemask_t *nodes)
1327 {
1328 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1329 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1330
1331 if (copy > nbytes) {
1332 if (copy > PAGE_SIZE)
1333 return -EINVAL;
1334 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1335 return -EFAULT;
1336 copy = nbytes;
1337 }
1338 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1339 }
1340
1341 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1342 unsigned long, mode, const unsigned long __user *, nmask,
1343 unsigned long, maxnode, unsigned, flags)
1344 {
1345 nodemask_t nodes;
1346 int err;
1347 unsigned short mode_flags;
1348
1349 mode_flags = mode & MPOL_MODE_FLAGS;
1350 mode &= ~MPOL_MODE_FLAGS;
1351 if (mode >= MPOL_MAX)
1352 return -EINVAL;
1353 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1354 (mode_flags & MPOL_F_RELATIVE_NODES))
1355 return -EINVAL;
1356 err = get_nodes(&nodes, nmask, maxnode);
1357 if (err)
1358 return err;
1359 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1360 }
1361
1362 /* Set the process memory policy */
1363 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364 unsigned long, maxnode)
1365 {
1366 int err;
1367 nodemask_t nodes;
1368 unsigned short flags;
1369
1370 flags = mode & MPOL_MODE_FLAGS;
1371 mode &= ~MPOL_MODE_FLAGS;
1372 if ((unsigned int)mode >= MPOL_MAX)
1373 return -EINVAL;
1374 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1375 return -EINVAL;
1376 err = get_nodes(&nodes, nmask, maxnode);
1377 if (err)
1378 return err;
1379 return do_set_mempolicy(mode, flags, &nodes);
1380 }
1381
1382 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1383 const unsigned long __user *, old_nodes,
1384 const unsigned long __user *, new_nodes)
1385 {
1386 struct mm_struct *mm = NULL;
1387 struct task_struct *task;
1388 nodemask_t task_nodes;
1389 int err;
1390 nodemask_t *old;
1391 nodemask_t *new;
1392 NODEMASK_SCRATCH(scratch);
1393
1394 if (!scratch)
1395 return -ENOMEM;
1396
1397 old = &scratch->mask1;
1398 new = &scratch->mask2;
1399
1400 err = get_nodes(old, old_nodes, maxnode);
1401 if (err)
1402 goto out;
1403
1404 err = get_nodes(new, new_nodes, maxnode);
1405 if (err)
1406 goto out;
1407
1408 /* Find the mm_struct */
1409 rcu_read_lock();
1410 task = pid ? find_task_by_vpid(pid) : current;
1411 if (!task) {
1412 rcu_read_unlock();
1413 err = -ESRCH;
1414 goto out;
1415 }
1416 get_task_struct(task);
1417
1418 err = -EINVAL;
1419
1420 /*
1421 * Check if this process has the right to modify the specified process.
1422 * Use the regular "ptrace_may_access()" checks.
1423 */
1424 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1425 rcu_read_unlock();
1426 err = -EPERM;
1427 goto out_put;
1428 }
1429 rcu_read_unlock();
1430
1431 task_nodes = cpuset_mems_allowed(task);
1432 /* Is the user allowed to access the target nodes? */
1433 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1434 err = -EPERM;
1435 goto out_put;
1436 }
1437
1438 task_nodes = cpuset_mems_allowed(current);
1439 nodes_and(*new, *new, task_nodes);
1440 if (nodes_empty(*new))
1441 goto out_put;
1442
1443 nodes_and(*new, *new, node_states[N_MEMORY]);
1444 if (nodes_empty(*new))
1445 goto out_put;
1446
1447 err = security_task_movememory(task);
1448 if (err)
1449 goto out_put;
1450
1451 mm = get_task_mm(task);
1452 put_task_struct(task);
1453
1454 if (!mm) {
1455 err = -EINVAL;
1456 goto out;
1457 }
1458
1459 err = do_migrate_pages(mm, old, new,
1460 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1461
1462 mmput(mm);
1463 out:
1464 NODEMASK_SCRATCH_FREE(scratch);
1465
1466 return err;
1467
1468 out_put:
1469 put_task_struct(task);
1470 goto out;
1471
1472 }
1473
1474
1475 /* Retrieve NUMA policy */
1476 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1477 unsigned long __user *, nmask, unsigned long, maxnode,
1478 unsigned long, addr, unsigned long, flags)
1479 {
1480 int err;
1481 int uninitialized_var(pval);
1482 nodemask_t nodes;
1483
1484 if (nmask != NULL && maxnode < MAX_NUMNODES)
1485 return -EINVAL;
1486
1487 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1488
1489 if (err)
1490 return err;
1491
1492 if (policy && put_user(pval, policy))
1493 return -EFAULT;
1494
1495 if (nmask)
1496 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1497
1498 return err;
1499 }
1500
1501 #ifdef CONFIG_COMPAT
1502
1503 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1504 compat_ulong_t __user *, nmask,
1505 compat_ulong_t, maxnode,
1506 compat_ulong_t, addr, compat_ulong_t, flags)
1507 {
1508 long err;
1509 unsigned long __user *nm = NULL;
1510 unsigned long nr_bits, alloc_size;
1511 DECLARE_BITMAP(bm, MAX_NUMNODES);
1512
1513 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1514 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1515
1516 if (nmask)
1517 nm = compat_alloc_user_space(alloc_size);
1518
1519 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1520
1521 if (!err && nmask) {
1522 unsigned long copy_size;
1523 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1524 err = copy_from_user(bm, nm, copy_size);
1525 /* ensure entire bitmap is zeroed */
1526 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1527 err |= compat_put_bitmap(nmask, bm, nr_bits);
1528 }
1529
1530 return err;
1531 }
1532
1533 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1534 compat_ulong_t, maxnode)
1535 {
1536 unsigned long __user *nm = NULL;
1537 unsigned long nr_bits, alloc_size;
1538 DECLARE_BITMAP(bm, MAX_NUMNODES);
1539
1540 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1541 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1542
1543 if (nmask) {
1544 if (compat_get_bitmap(bm, nmask, nr_bits))
1545 return -EFAULT;
1546 nm = compat_alloc_user_space(alloc_size);
1547 if (copy_to_user(nm, bm, alloc_size))
1548 return -EFAULT;
1549 }
1550
1551 return sys_set_mempolicy(mode, nm, nr_bits+1);
1552 }
1553
1554 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1555 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1556 compat_ulong_t, maxnode, compat_ulong_t, flags)
1557 {
1558 unsigned long __user *nm = NULL;
1559 unsigned long nr_bits, alloc_size;
1560 nodemask_t bm;
1561
1562 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1563 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1564
1565 if (nmask) {
1566 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1567 return -EFAULT;
1568 nm = compat_alloc_user_space(alloc_size);
1569 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1570 return -EFAULT;
1571 }
1572
1573 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1574 }
1575
1576 #endif
1577
1578 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1579 unsigned long addr)
1580 {
1581 struct mempolicy *pol = NULL;
1582
1583 if (vma) {
1584 if (vma->vm_ops && vma->vm_ops->get_policy) {
1585 pol = vma->vm_ops->get_policy(vma, addr);
1586 } else if (vma->vm_policy) {
1587 pol = vma->vm_policy;
1588
1589 /*
1590 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1591 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1592 * count on these policies which will be dropped by
1593 * mpol_cond_put() later
1594 */
1595 if (mpol_needs_cond_ref(pol))
1596 mpol_get(pol);
1597 }
1598 }
1599
1600 return pol;
1601 }
1602
1603 /*
1604 * get_vma_policy(@vma, @addr)
1605 * @vma: virtual memory area whose policy is sought
1606 * @addr: address in @vma for shared policy lookup
1607 *
1608 * Returns effective policy for a VMA at specified address.
1609 * Falls back to current->mempolicy or system default policy, as necessary.
1610 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1611 * count--added by the get_policy() vm_op, as appropriate--to protect against
1612 * freeing by another task. It is the caller's responsibility to free the
1613 * extra reference for shared policies.
1614 */
1615 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1616 unsigned long addr)
1617 {
1618 struct mempolicy *pol = __get_vma_policy(vma, addr);
1619
1620 if (!pol)
1621 pol = get_task_policy(current);
1622
1623 return pol;
1624 }
1625
1626 bool vma_policy_mof(struct vm_area_struct *vma)
1627 {
1628 struct mempolicy *pol;
1629
1630 if (vma->vm_ops && vma->vm_ops->get_policy) {
1631 bool ret = false;
1632
1633 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1634 if (pol && (pol->flags & MPOL_F_MOF))
1635 ret = true;
1636 mpol_cond_put(pol);
1637
1638 return ret;
1639 }
1640
1641 pol = vma->vm_policy;
1642 if (!pol)
1643 pol = get_task_policy(current);
1644
1645 return pol->flags & MPOL_F_MOF;
1646 }
1647
1648 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1649 {
1650 enum zone_type dynamic_policy_zone = policy_zone;
1651
1652 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1653
1654 /*
1655 * if policy->v.nodes has movable memory only,
1656 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1657 *
1658 * policy->v.nodes is intersect with node_states[N_MEMORY].
1659 * so if the following test faile, it implies
1660 * policy->v.nodes has movable memory only.
1661 */
1662 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1663 dynamic_policy_zone = ZONE_MOVABLE;
1664
1665 return zone >= dynamic_policy_zone;
1666 }
1667
1668 /*
1669 * Return a nodemask representing a mempolicy for filtering nodes for
1670 * page allocation
1671 */
1672 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1673 {
1674 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1675 if (unlikely(policy->mode == MPOL_BIND) &&
1676 apply_policy_zone(policy, gfp_zone(gfp)) &&
1677 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1678 return &policy->v.nodes;
1679
1680 return NULL;
1681 }
1682
1683 /* Return the node id preferred by the given mempolicy, or the given id */
1684 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1685 int nd)
1686 {
1687 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1688 nd = policy->v.preferred_node;
1689 else {
1690 /*
1691 * __GFP_THISNODE shouldn't even be used with the bind policy
1692 * because we might easily break the expectation to stay on the
1693 * requested node and not break the policy.
1694 */
1695 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1696 }
1697
1698 return nd;
1699 }
1700
1701 /* Do dynamic interleaving for a process */
1702 static unsigned interleave_nodes(struct mempolicy *policy)
1703 {
1704 unsigned next;
1705 struct task_struct *me = current;
1706
1707 next = next_node_in(me->il_prev, policy->v.nodes);
1708 if (next < MAX_NUMNODES)
1709 me->il_prev = next;
1710 return next;
1711 }
1712
1713 /*
1714 * Depending on the memory policy provide a node from which to allocate the
1715 * next slab entry.
1716 */
1717 unsigned int mempolicy_slab_node(void)
1718 {
1719 struct mempolicy *policy;
1720 int node = numa_mem_id();
1721
1722 if (in_interrupt())
1723 return node;
1724
1725 policy = current->mempolicy;
1726 if (!policy || policy->flags & MPOL_F_LOCAL)
1727 return node;
1728
1729 switch (policy->mode) {
1730 case MPOL_PREFERRED:
1731 /*
1732 * handled MPOL_F_LOCAL above
1733 */
1734 return policy->v.preferred_node;
1735
1736 case MPOL_INTERLEAVE:
1737 return interleave_nodes(policy);
1738
1739 case MPOL_BIND: {
1740 struct zoneref *z;
1741
1742 /*
1743 * Follow bind policy behavior and start allocation at the
1744 * first node.
1745 */
1746 struct zonelist *zonelist;
1747 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1748 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1749 z = first_zones_zonelist(zonelist, highest_zoneidx,
1750 &policy->v.nodes);
1751 return z->zone ? z->zone->node : node;
1752 }
1753
1754 default:
1755 BUG();
1756 }
1757 }
1758
1759 /*
1760 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1761 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1762 * number of present nodes.
1763 */
1764 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1765 {
1766 unsigned nnodes = nodes_weight(pol->v.nodes);
1767 unsigned target;
1768 int i;
1769 int nid;
1770
1771 if (!nnodes)
1772 return numa_node_id();
1773 target = (unsigned int)n % nnodes;
1774 nid = first_node(pol->v.nodes);
1775 for (i = 0; i < target; i++)
1776 nid = next_node(nid, pol->v.nodes);
1777 return nid;
1778 }
1779
1780 /* Determine a node number for interleave */
1781 static inline unsigned interleave_nid(struct mempolicy *pol,
1782 struct vm_area_struct *vma, unsigned long addr, int shift)
1783 {
1784 if (vma) {
1785 unsigned long off;
1786
1787 /*
1788 * for small pages, there is no difference between
1789 * shift and PAGE_SHIFT, so the bit-shift is safe.
1790 * for huge pages, since vm_pgoff is in units of small
1791 * pages, we need to shift off the always 0 bits to get
1792 * a useful offset.
1793 */
1794 BUG_ON(shift < PAGE_SHIFT);
1795 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1796 off += (addr - vma->vm_start) >> shift;
1797 return offset_il_node(pol, off);
1798 } else
1799 return interleave_nodes(pol);
1800 }
1801
1802 #ifdef CONFIG_HUGETLBFS
1803 /*
1804 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1805 * @vma: virtual memory area whose policy is sought
1806 * @addr: address in @vma for shared policy lookup and interleave policy
1807 * @gfp_flags: for requested zone
1808 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1809 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1810 *
1811 * Returns a nid suitable for a huge page allocation and a pointer
1812 * to the struct mempolicy for conditional unref after allocation.
1813 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1814 * @nodemask for filtering the zonelist.
1815 *
1816 * Must be protected by read_mems_allowed_begin()
1817 */
1818 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1819 struct mempolicy **mpol, nodemask_t **nodemask)
1820 {
1821 int nid;
1822
1823 *mpol = get_vma_policy(vma, addr);
1824 *nodemask = NULL; /* assume !MPOL_BIND */
1825
1826 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1827 nid = interleave_nid(*mpol, vma, addr,
1828 huge_page_shift(hstate_vma(vma)));
1829 } else {
1830 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1831 if ((*mpol)->mode == MPOL_BIND)
1832 *nodemask = &(*mpol)->v.nodes;
1833 }
1834 return nid;
1835 }
1836
1837 /*
1838 * init_nodemask_of_mempolicy
1839 *
1840 * If the current task's mempolicy is "default" [NULL], return 'false'
1841 * to indicate default policy. Otherwise, extract the policy nodemask
1842 * for 'bind' or 'interleave' policy into the argument nodemask, or
1843 * initialize the argument nodemask to contain the single node for
1844 * 'preferred' or 'local' policy and return 'true' to indicate presence
1845 * of non-default mempolicy.
1846 *
1847 * We don't bother with reference counting the mempolicy [mpol_get/put]
1848 * because the current task is examining it's own mempolicy and a task's
1849 * mempolicy is only ever changed by the task itself.
1850 *
1851 * N.B., it is the caller's responsibility to free a returned nodemask.
1852 */
1853 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1854 {
1855 struct mempolicy *mempolicy;
1856 int nid;
1857
1858 if (!(mask && current->mempolicy))
1859 return false;
1860
1861 task_lock(current);
1862 mempolicy = current->mempolicy;
1863 switch (mempolicy->mode) {
1864 case MPOL_PREFERRED:
1865 if (mempolicy->flags & MPOL_F_LOCAL)
1866 nid = numa_node_id();
1867 else
1868 nid = mempolicy->v.preferred_node;
1869 init_nodemask_of_node(mask, nid);
1870 break;
1871
1872 case MPOL_BIND:
1873 /* Fall through */
1874 case MPOL_INTERLEAVE:
1875 *mask = mempolicy->v.nodes;
1876 break;
1877
1878 default:
1879 BUG();
1880 }
1881 task_unlock(current);
1882
1883 return true;
1884 }
1885 #endif
1886
1887 /*
1888 * mempolicy_nodemask_intersects
1889 *
1890 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1891 * policy. Otherwise, check for intersection between mask and the policy
1892 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1893 * policy, always return true since it may allocate elsewhere on fallback.
1894 *
1895 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1896 */
1897 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1898 const nodemask_t *mask)
1899 {
1900 struct mempolicy *mempolicy;
1901 bool ret = true;
1902
1903 if (!mask)
1904 return ret;
1905 task_lock(tsk);
1906 mempolicy = tsk->mempolicy;
1907 if (!mempolicy)
1908 goto out;
1909
1910 switch (mempolicy->mode) {
1911 case MPOL_PREFERRED:
1912 /*
1913 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1914 * allocate from, they may fallback to other nodes when oom.
1915 * Thus, it's possible for tsk to have allocated memory from
1916 * nodes in mask.
1917 */
1918 break;
1919 case MPOL_BIND:
1920 case MPOL_INTERLEAVE:
1921 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1922 break;
1923 default:
1924 BUG();
1925 }
1926 out:
1927 task_unlock(tsk);
1928 return ret;
1929 }
1930
1931 /* Allocate a page in interleaved policy.
1932 Own path because it needs to do special accounting. */
1933 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1934 unsigned nid)
1935 {
1936 struct page *page;
1937
1938 page = __alloc_pages(gfp, order, nid);
1939 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1940 if (!static_branch_likely(&vm_numa_stat_key))
1941 return page;
1942 if (page && page_to_nid(page) == nid) {
1943 preempt_disable();
1944 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1945 preempt_enable();
1946 }
1947 return page;
1948 }
1949
1950 /**
1951 * alloc_pages_vma - Allocate a page for a VMA.
1952 *
1953 * @gfp:
1954 * %GFP_USER user allocation.
1955 * %GFP_KERNEL kernel allocations,
1956 * %GFP_HIGHMEM highmem/user allocations,
1957 * %GFP_FS allocation should not call back into a file system.
1958 * %GFP_ATOMIC don't sleep.
1959 *
1960 * @order:Order of the GFP allocation.
1961 * @vma: Pointer to VMA or NULL if not available.
1962 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1963 * @node: Which node to prefer for allocation (modulo policy).
1964 * @hugepage: for hugepages try only the preferred node if possible
1965 *
1966 * This function allocates a page from the kernel page pool and applies
1967 * a NUMA policy associated with the VMA or the current process.
1968 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1969 * mm_struct of the VMA to prevent it from going away. Should be used for
1970 * all allocations for pages that will be mapped into user space. Returns
1971 * NULL when no page can be allocated.
1972 */
1973 struct page *
1974 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1975 unsigned long addr, int node, bool hugepage)
1976 {
1977 struct mempolicy *pol;
1978 struct page *page;
1979 int preferred_nid;
1980 nodemask_t *nmask;
1981
1982 pol = get_vma_policy(vma, addr);
1983
1984 if (pol->mode == MPOL_INTERLEAVE) {
1985 unsigned nid;
1986
1987 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1988 mpol_cond_put(pol);
1989 page = alloc_page_interleave(gfp, order, nid);
1990 goto out;
1991 }
1992
1993 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1994 int hpage_node = node;
1995
1996 /*
1997 * For hugepage allocation and non-interleave policy which
1998 * allows the current node (or other explicitly preferred
1999 * node) we only try to allocate from the current/preferred
2000 * node and don't fall back to other nodes, as the cost of
2001 * remote accesses would likely offset THP benefits.
2002 *
2003 * If the policy is interleave, or does not allow the current
2004 * node in its nodemask, we allocate the standard way.
2005 */
2006 if (pol->mode == MPOL_PREFERRED &&
2007 !(pol->flags & MPOL_F_LOCAL))
2008 hpage_node = pol->v.preferred_node;
2009
2010 nmask = policy_nodemask(gfp, pol);
2011 if (!nmask || node_isset(hpage_node, *nmask)) {
2012 mpol_cond_put(pol);
2013 page = __alloc_pages_node(hpage_node,
2014 gfp | __GFP_THISNODE, order);
2015 goto out;
2016 }
2017 }
2018
2019 nmask = policy_nodemask(gfp, pol);
2020 preferred_nid = policy_node(gfp, pol, node);
2021 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2022 mpol_cond_put(pol);
2023 out:
2024 return page;
2025 }
2026
2027 /**
2028 * alloc_pages_current - Allocate pages.
2029 *
2030 * @gfp:
2031 * %GFP_USER user allocation,
2032 * %GFP_KERNEL kernel allocation,
2033 * %GFP_HIGHMEM highmem allocation,
2034 * %GFP_FS don't call back into a file system.
2035 * %GFP_ATOMIC don't sleep.
2036 * @order: Power of two of allocation size in pages. 0 is a single page.
2037 *
2038 * Allocate a page from the kernel page pool. When not in
2039 * interrupt context and apply the current process NUMA policy.
2040 * Returns NULL when no page can be allocated.
2041 */
2042 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2043 {
2044 struct mempolicy *pol = &default_policy;
2045 struct page *page;
2046
2047 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2048 pol = get_task_policy(current);
2049
2050 /*
2051 * No reference counting needed for current->mempolicy
2052 * nor system default_policy
2053 */
2054 if (pol->mode == MPOL_INTERLEAVE)
2055 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2056 else
2057 page = __alloc_pages_nodemask(gfp, order,
2058 policy_node(gfp, pol, numa_node_id()),
2059 policy_nodemask(gfp, pol));
2060
2061 return page;
2062 }
2063 EXPORT_SYMBOL(alloc_pages_current);
2064
2065 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2066 {
2067 struct mempolicy *pol = mpol_dup(vma_policy(src));
2068
2069 if (IS_ERR(pol))
2070 return PTR_ERR(pol);
2071 dst->vm_policy = pol;
2072 return 0;
2073 }
2074
2075 /*
2076 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2077 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2078 * with the mems_allowed returned by cpuset_mems_allowed(). This
2079 * keeps mempolicies cpuset relative after its cpuset moves. See
2080 * further kernel/cpuset.c update_nodemask().
2081 *
2082 * current's mempolicy may be rebinded by the other task(the task that changes
2083 * cpuset's mems), so we needn't do rebind work for current task.
2084 */
2085
2086 /* Slow path of a mempolicy duplicate */
2087 struct mempolicy *__mpol_dup(struct mempolicy *old)
2088 {
2089 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2090
2091 if (!new)
2092 return ERR_PTR(-ENOMEM);
2093
2094 /* task's mempolicy is protected by alloc_lock */
2095 if (old == current->mempolicy) {
2096 task_lock(current);
2097 *new = *old;
2098 task_unlock(current);
2099 } else
2100 *new = *old;
2101
2102 if (current_cpuset_is_being_rebound()) {
2103 nodemask_t mems = cpuset_mems_allowed(current);
2104 mpol_rebind_policy(new, &mems);
2105 }
2106 atomic_set(&new->refcnt, 1);
2107 return new;
2108 }
2109
2110 /* Slow path of a mempolicy comparison */
2111 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2112 {
2113 if (!a || !b)
2114 return false;
2115 if (a->mode != b->mode)
2116 return false;
2117 if (a->flags != b->flags)
2118 return false;
2119 if (mpol_store_user_nodemask(a))
2120 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2121 return false;
2122
2123 switch (a->mode) {
2124 case MPOL_BIND:
2125 /* Fall through */
2126 case MPOL_INTERLEAVE:
2127 return !!nodes_equal(a->v.nodes, b->v.nodes);
2128 case MPOL_PREFERRED:
2129 /* a's ->flags is the same as b's */
2130 if (a->flags & MPOL_F_LOCAL)
2131 return true;
2132 return a->v.preferred_node == b->v.preferred_node;
2133 default:
2134 BUG();
2135 return false;
2136 }
2137 }
2138
2139 /*
2140 * Shared memory backing store policy support.
2141 *
2142 * Remember policies even when nobody has shared memory mapped.
2143 * The policies are kept in Red-Black tree linked from the inode.
2144 * They are protected by the sp->lock rwlock, which should be held
2145 * for any accesses to the tree.
2146 */
2147
2148 /*
2149 * lookup first element intersecting start-end. Caller holds sp->lock for
2150 * reading or for writing
2151 */
2152 static struct sp_node *
2153 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2154 {
2155 struct rb_node *n = sp->root.rb_node;
2156
2157 while (n) {
2158 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2159
2160 if (start >= p->end)
2161 n = n->rb_right;
2162 else if (end <= p->start)
2163 n = n->rb_left;
2164 else
2165 break;
2166 }
2167 if (!n)
2168 return NULL;
2169 for (;;) {
2170 struct sp_node *w = NULL;
2171 struct rb_node *prev = rb_prev(n);
2172 if (!prev)
2173 break;
2174 w = rb_entry(prev, struct sp_node, nd);
2175 if (w->end <= start)
2176 break;
2177 n = prev;
2178 }
2179 return rb_entry(n, struct sp_node, nd);
2180 }
2181
2182 /*
2183 * Insert a new shared policy into the list. Caller holds sp->lock for
2184 * writing.
2185 */
2186 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2187 {
2188 struct rb_node **p = &sp->root.rb_node;
2189 struct rb_node *parent = NULL;
2190 struct sp_node *nd;
2191
2192 while (*p) {
2193 parent = *p;
2194 nd = rb_entry(parent, struct sp_node, nd);
2195 if (new->start < nd->start)
2196 p = &(*p)->rb_left;
2197 else if (new->end > nd->end)
2198 p = &(*p)->rb_right;
2199 else
2200 BUG();
2201 }
2202 rb_link_node(&new->nd, parent, p);
2203 rb_insert_color(&new->nd, &sp->root);
2204 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2205 new->policy ? new->policy->mode : 0);
2206 }
2207
2208 /* Find shared policy intersecting idx */
2209 struct mempolicy *
2210 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2211 {
2212 struct mempolicy *pol = NULL;
2213 struct sp_node *sn;
2214
2215 if (!sp->root.rb_node)
2216 return NULL;
2217 read_lock(&sp->lock);
2218 sn = sp_lookup(sp, idx, idx+1);
2219 if (sn) {
2220 mpol_get(sn->policy);
2221 pol = sn->policy;
2222 }
2223 read_unlock(&sp->lock);
2224 return pol;
2225 }
2226
2227 static void sp_free(struct sp_node *n)
2228 {
2229 mpol_put(n->policy);
2230 kmem_cache_free(sn_cache, n);
2231 }
2232
2233 /**
2234 * mpol_misplaced - check whether current page node is valid in policy
2235 *
2236 * @page: page to be checked
2237 * @vma: vm area where page mapped
2238 * @addr: virtual address where page mapped
2239 *
2240 * Lookup current policy node id for vma,addr and "compare to" page's
2241 * node id.
2242 *
2243 * Returns:
2244 * -1 - not misplaced, page is in the right node
2245 * node - node id where the page should be
2246 *
2247 * Policy determination "mimics" alloc_page_vma().
2248 * Called from fault path where we know the vma and faulting address.
2249 */
2250 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2251 {
2252 struct mempolicy *pol;
2253 struct zoneref *z;
2254 int curnid = page_to_nid(page);
2255 unsigned long pgoff;
2256 int thiscpu = raw_smp_processor_id();
2257 int thisnid = cpu_to_node(thiscpu);
2258 int polnid = -1;
2259 int ret = -1;
2260
2261 pol = get_vma_policy(vma, addr);
2262 if (!(pol->flags & MPOL_F_MOF))
2263 goto out;
2264
2265 switch (pol->mode) {
2266 case MPOL_INTERLEAVE:
2267 pgoff = vma->vm_pgoff;
2268 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2269 polnid = offset_il_node(pol, pgoff);
2270 break;
2271
2272 case MPOL_PREFERRED:
2273 if (pol->flags & MPOL_F_LOCAL)
2274 polnid = numa_node_id();
2275 else
2276 polnid = pol->v.preferred_node;
2277 break;
2278
2279 case MPOL_BIND:
2280
2281 /*
2282 * allows binding to multiple nodes.
2283 * use current page if in policy nodemask,
2284 * else select nearest allowed node, if any.
2285 * If no allowed nodes, use current [!misplaced].
2286 */
2287 if (node_isset(curnid, pol->v.nodes))
2288 goto out;
2289 z = first_zones_zonelist(
2290 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2291 gfp_zone(GFP_HIGHUSER),
2292 &pol->v.nodes);
2293 polnid = z->zone->node;
2294 break;
2295
2296 default:
2297 BUG();
2298 }
2299
2300 /* Migrate the page towards the node whose CPU is referencing it */
2301 if (pol->flags & MPOL_F_MORON) {
2302 polnid = thisnid;
2303
2304 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2305 goto out;
2306 }
2307
2308 if (curnid != polnid)
2309 ret = polnid;
2310 out:
2311 mpol_cond_put(pol);
2312
2313 return ret;
2314 }
2315
2316 /*
2317 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2318 * dropped after task->mempolicy is set to NULL so that any allocation done as
2319 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2320 * policy.
2321 */
2322 void mpol_put_task_policy(struct task_struct *task)
2323 {
2324 struct mempolicy *pol;
2325
2326 task_lock(task);
2327 pol = task->mempolicy;
2328 task->mempolicy = NULL;
2329 task_unlock(task);
2330 mpol_put(pol);
2331 }
2332
2333 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2334 {
2335 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2336 rb_erase(&n->nd, &sp->root);
2337 sp_free(n);
2338 }
2339
2340 static void sp_node_init(struct sp_node *node, unsigned long start,
2341 unsigned long end, struct mempolicy *pol)
2342 {
2343 node->start = start;
2344 node->end = end;
2345 node->policy = pol;
2346 }
2347
2348 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2349 struct mempolicy *pol)
2350 {
2351 struct sp_node *n;
2352 struct mempolicy *newpol;
2353
2354 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2355 if (!n)
2356 return NULL;
2357
2358 newpol = mpol_dup(pol);
2359 if (IS_ERR(newpol)) {
2360 kmem_cache_free(sn_cache, n);
2361 return NULL;
2362 }
2363 newpol->flags |= MPOL_F_SHARED;
2364 sp_node_init(n, start, end, newpol);
2365
2366 return n;
2367 }
2368
2369 /* Replace a policy range. */
2370 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2371 unsigned long end, struct sp_node *new)
2372 {
2373 struct sp_node *n;
2374 struct sp_node *n_new = NULL;
2375 struct mempolicy *mpol_new = NULL;
2376 int ret = 0;
2377
2378 restart:
2379 write_lock(&sp->lock);
2380 n = sp_lookup(sp, start, end);
2381 /* Take care of old policies in the same range. */
2382 while (n && n->start < end) {
2383 struct rb_node *next = rb_next(&n->nd);
2384 if (n->start >= start) {
2385 if (n->end <= end)
2386 sp_delete(sp, n);
2387 else
2388 n->start = end;
2389 } else {
2390 /* Old policy spanning whole new range. */
2391 if (n->end > end) {
2392 if (!n_new)
2393 goto alloc_new;
2394
2395 *mpol_new = *n->policy;
2396 atomic_set(&mpol_new->refcnt, 1);
2397 sp_node_init(n_new, end, n->end, mpol_new);
2398 n->end = start;
2399 sp_insert(sp, n_new);
2400 n_new = NULL;
2401 mpol_new = NULL;
2402 break;
2403 } else
2404 n->end = start;
2405 }
2406 if (!next)
2407 break;
2408 n = rb_entry(next, struct sp_node, nd);
2409 }
2410 if (new)
2411 sp_insert(sp, new);
2412 write_unlock(&sp->lock);
2413 ret = 0;
2414
2415 err_out:
2416 if (mpol_new)
2417 mpol_put(mpol_new);
2418 if (n_new)
2419 kmem_cache_free(sn_cache, n_new);
2420
2421 return ret;
2422
2423 alloc_new:
2424 write_unlock(&sp->lock);
2425 ret = -ENOMEM;
2426 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2427 if (!n_new)
2428 goto err_out;
2429 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2430 if (!mpol_new)
2431 goto err_out;
2432 goto restart;
2433 }
2434
2435 /**
2436 * mpol_shared_policy_init - initialize shared policy for inode
2437 * @sp: pointer to inode shared policy
2438 * @mpol: struct mempolicy to install
2439 *
2440 * Install non-NULL @mpol in inode's shared policy rb-tree.
2441 * On entry, the current task has a reference on a non-NULL @mpol.
2442 * This must be released on exit.
2443 * This is called at get_inode() calls and we can use GFP_KERNEL.
2444 */
2445 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2446 {
2447 int ret;
2448
2449 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2450 rwlock_init(&sp->lock);
2451
2452 if (mpol) {
2453 struct vm_area_struct pvma;
2454 struct mempolicy *new;
2455 NODEMASK_SCRATCH(scratch);
2456
2457 if (!scratch)
2458 goto put_mpol;
2459 /* contextualize the tmpfs mount point mempolicy */
2460 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2461 if (IS_ERR(new))
2462 goto free_scratch; /* no valid nodemask intersection */
2463
2464 task_lock(current);
2465 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2466 task_unlock(current);
2467 if (ret)
2468 goto put_new;
2469
2470 /* Create pseudo-vma that contains just the policy */
2471 memset(&pvma, 0, sizeof(struct vm_area_struct));
2472 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2473 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2474
2475 put_new:
2476 mpol_put(new); /* drop initial ref */
2477 free_scratch:
2478 NODEMASK_SCRATCH_FREE(scratch);
2479 put_mpol:
2480 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2481 }
2482 }
2483
2484 int mpol_set_shared_policy(struct shared_policy *info,
2485 struct vm_area_struct *vma, struct mempolicy *npol)
2486 {
2487 int err;
2488 struct sp_node *new = NULL;
2489 unsigned long sz = vma_pages(vma);
2490
2491 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2492 vma->vm_pgoff,
2493 sz, npol ? npol->mode : -1,
2494 npol ? npol->flags : -1,
2495 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2496
2497 if (npol) {
2498 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2499 if (!new)
2500 return -ENOMEM;
2501 }
2502 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2503 if (err && new)
2504 sp_free(new);
2505 return err;
2506 }
2507
2508 /* Free a backing policy store on inode delete. */
2509 void mpol_free_shared_policy(struct shared_policy *p)
2510 {
2511 struct sp_node *n;
2512 struct rb_node *next;
2513
2514 if (!p->root.rb_node)
2515 return;
2516 write_lock(&p->lock);
2517 next = rb_first(&p->root);
2518 while (next) {
2519 n = rb_entry(next, struct sp_node, nd);
2520 next = rb_next(&n->nd);
2521 sp_delete(p, n);
2522 }
2523 write_unlock(&p->lock);
2524 }
2525
2526 #ifdef CONFIG_NUMA_BALANCING
2527 static int __initdata numabalancing_override;
2528
2529 static void __init check_numabalancing_enable(void)
2530 {
2531 bool numabalancing_default = false;
2532
2533 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2534 numabalancing_default = true;
2535
2536 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2537 if (numabalancing_override)
2538 set_numabalancing_state(numabalancing_override == 1);
2539
2540 if (num_online_nodes() > 1 && !numabalancing_override) {
2541 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2542 numabalancing_default ? "Enabling" : "Disabling");
2543 set_numabalancing_state(numabalancing_default);
2544 }
2545 }
2546
2547 static int __init setup_numabalancing(char *str)
2548 {
2549 int ret = 0;
2550 if (!str)
2551 goto out;
2552
2553 if (!strcmp(str, "enable")) {
2554 numabalancing_override = 1;
2555 ret = 1;
2556 } else if (!strcmp(str, "disable")) {
2557 numabalancing_override = -1;
2558 ret = 1;
2559 }
2560 out:
2561 if (!ret)
2562 pr_warn("Unable to parse numa_balancing=\n");
2563
2564 return ret;
2565 }
2566 __setup("numa_balancing=", setup_numabalancing);
2567 #else
2568 static inline void __init check_numabalancing_enable(void)
2569 {
2570 }
2571 #endif /* CONFIG_NUMA_BALANCING */
2572
2573 /* assumes fs == KERNEL_DS */
2574 void __init numa_policy_init(void)
2575 {
2576 nodemask_t interleave_nodes;
2577 unsigned long largest = 0;
2578 int nid, prefer = 0;
2579
2580 policy_cache = kmem_cache_create("numa_policy",
2581 sizeof(struct mempolicy),
2582 0, SLAB_PANIC, NULL);
2583
2584 sn_cache = kmem_cache_create("shared_policy_node",
2585 sizeof(struct sp_node),
2586 0, SLAB_PANIC, NULL);
2587
2588 for_each_node(nid) {
2589 preferred_node_policy[nid] = (struct mempolicy) {
2590 .refcnt = ATOMIC_INIT(1),
2591 .mode = MPOL_PREFERRED,
2592 .flags = MPOL_F_MOF | MPOL_F_MORON,
2593 .v = { .preferred_node = nid, },
2594 };
2595 }
2596
2597 /*
2598 * Set interleaving policy for system init. Interleaving is only
2599 * enabled across suitably sized nodes (default is >= 16MB), or
2600 * fall back to the largest node if they're all smaller.
2601 */
2602 nodes_clear(interleave_nodes);
2603 for_each_node_state(nid, N_MEMORY) {
2604 unsigned long total_pages = node_present_pages(nid);
2605
2606 /* Preserve the largest node */
2607 if (largest < total_pages) {
2608 largest = total_pages;
2609 prefer = nid;
2610 }
2611
2612 /* Interleave this node? */
2613 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2614 node_set(nid, interleave_nodes);
2615 }
2616
2617 /* All too small, use the largest */
2618 if (unlikely(nodes_empty(interleave_nodes)))
2619 node_set(prefer, interleave_nodes);
2620
2621 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2622 pr_err("%s: interleaving failed\n", __func__);
2623
2624 check_numabalancing_enable();
2625 }
2626
2627 /* Reset policy of current process to default */
2628 void numa_default_policy(void)
2629 {
2630 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2631 }
2632
2633 /*
2634 * Parse and format mempolicy from/to strings
2635 */
2636
2637 /*
2638 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2639 */
2640 static const char * const policy_modes[] =
2641 {
2642 [MPOL_DEFAULT] = "default",
2643 [MPOL_PREFERRED] = "prefer",
2644 [MPOL_BIND] = "bind",
2645 [MPOL_INTERLEAVE] = "interleave",
2646 [MPOL_LOCAL] = "local",
2647 };
2648
2649
2650 #ifdef CONFIG_TMPFS
2651 /**
2652 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2653 * @str: string containing mempolicy to parse
2654 * @mpol: pointer to struct mempolicy pointer, returned on success.
2655 *
2656 * Format of input:
2657 * <mode>[=<flags>][:<nodelist>]
2658 *
2659 * On success, returns 0, else 1
2660 */
2661 int mpol_parse_str(char *str, struct mempolicy **mpol)
2662 {
2663 struct mempolicy *new = NULL;
2664 unsigned short mode;
2665 unsigned short mode_flags;
2666 nodemask_t nodes;
2667 char *nodelist = strchr(str, ':');
2668 char *flags = strchr(str, '=');
2669 int err = 1;
2670
2671 if (nodelist) {
2672 /* NUL-terminate mode or flags string */
2673 *nodelist++ = '\0';
2674 if (nodelist_parse(nodelist, nodes))
2675 goto out;
2676 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2677 goto out;
2678 } else
2679 nodes_clear(nodes);
2680
2681 if (flags)
2682 *flags++ = '\0'; /* terminate mode string */
2683
2684 for (mode = 0; mode < MPOL_MAX; mode++) {
2685 if (!strcmp(str, policy_modes[mode])) {
2686 break;
2687 }
2688 }
2689 if (mode >= MPOL_MAX)
2690 goto out;
2691
2692 switch (mode) {
2693 case MPOL_PREFERRED:
2694 /*
2695 * Insist on a nodelist of one node only
2696 */
2697 if (nodelist) {
2698 char *rest = nodelist;
2699 while (isdigit(*rest))
2700 rest++;
2701 if (*rest)
2702 goto out;
2703 }
2704 break;
2705 case MPOL_INTERLEAVE:
2706 /*
2707 * Default to online nodes with memory if no nodelist
2708 */
2709 if (!nodelist)
2710 nodes = node_states[N_MEMORY];
2711 break;
2712 case MPOL_LOCAL:
2713 /*
2714 * Don't allow a nodelist; mpol_new() checks flags
2715 */
2716 if (nodelist)
2717 goto out;
2718 mode = MPOL_PREFERRED;
2719 break;
2720 case MPOL_DEFAULT:
2721 /*
2722 * Insist on a empty nodelist
2723 */
2724 if (!nodelist)
2725 err = 0;
2726 goto out;
2727 case MPOL_BIND:
2728 /*
2729 * Insist on a nodelist
2730 */
2731 if (!nodelist)
2732 goto out;
2733 }
2734
2735 mode_flags = 0;
2736 if (flags) {
2737 /*
2738 * Currently, we only support two mutually exclusive
2739 * mode flags.
2740 */
2741 if (!strcmp(flags, "static"))
2742 mode_flags |= MPOL_F_STATIC_NODES;
2743 else if (!strcmp(flags, "relative"))
2744 mode_flags |= MPOL_F_RELATIVE_NODES;
2745 else
2746 goto out;
2747 }
2748
2749 new = mpol_new(mode, mode_flags, &nodes);
2750 if (IS_ERR(new))
2751 goto out;
2752
2753 /*
2754 * Save nodes for mpol_to_str() to show the tmpfs mount options
2755 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2756 */
2757 if (mode != MPOL_PREFERRED)
2758 new->v.nodes = nodes;
2759 else if (nodelist)
2760 new->v.preferred_node = first_node(nodes);
2761 else
2762 new->flags |= MPOL_F_LOCAL;
2763
2764 /*
2765 * Save nodes for contextualization: this will be used to "clone"
2766 * the mempolicy in a specific context [cpuset] at a later time.
2767 */
2768 new->w.user_nodemask = nodes;
2769
2770 err = 0;
2771
2772 out:
2773 /* Restore string for error message */
2774 if (nodelist)
2775 *--nodelist = ':';
2776 if (flags)
2777 *--flags = '=';
2778 if (!err)
2779 *mpol = new;
2780 return err;
2781 }
2782 #endif /* CONFIG_TMPFS */
2783
2784 /**
2785 * mpol_to_str - format a mempolicy structure for printing
2786 * @buffer: to contain formatted mempolicy string
2787 * @maxlen: length of @buffer
2788 * @pol: pointer to mempolicy to be formatted
2789 *
2790 * Convert @pol into a string. If @buffer is too short, truncate the string.
2791 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2792 * longest flag, "relative", and to display at least a few node ids.
2793 */
2794 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2795 {
2796 char *p = buffer;
2797 nodemask_t nodes = NODE_MASK_NONE;
2798 unsigned short mode = MPOL_DEFAULT;
2799 unsigned short flags = 0;
2800
2801 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2802 mode = pol->mode;
2803 flags = pol->flags;
2804 }
2805
2806 switch (mode) {
2807 case MPOL_DEFAULT:
2808 break;
2809 case MPOL_PREFERRED:
2810 if (flags & MPOL_F_LOCAL)
2811 mode = MPOL_LOCAL;
2812 else
2813 node_set(pol->v.preferred_node, nodes);
2814 break;
2815 case MPOL_BIND:
2816 case MPOL_INTERLEAVE:
2817 nodes = pol->v.nodes;
2818 break;
2819 default:
2820 WARN_ON_ONCE(1);
2821 snprintf(p, maxlen, "unknown");
2822 return;
2823 }
2824
2825 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2826
2827 if (flags & MPOL_MODE_FLAGS) {
2828 p += snprintf(p, buffer + maxlen - p, "=");
2829
2830 /*
2831 * Currently, the only defined flags are mutually exclusive
2832 */
2833 if (flags & MPOL_F_STATIC_NODES)
2834 p += snprintf(p, buffer + maxlen - p, "static");
2835 else if (flags & MPOL_F_RELATIVE_NODES)
2836 p += snprintf(p, buffer + maxlen - p, "relative");
2837 }
2838
2839 if (!nodes_empty(nodes))
2840 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2841 nodemask_pr_args(&nodes));
2842 }