]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
Merge tag 'powerpc-5.11-7' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 /**
131 * numa_map_to_online_node - Find closest online node
132 * @node: Node id to start the search
133 *
134 * Lookup the next closest node by distance if @nid is not online.
135 */
136 int numa_map_to_online_node(int node)
137 {
138 int min_dist = INT_MAX, dist, n, min_node;
139
140 if (node == NUMA_NO_NODE || node_online(node))
141 return node;
142
143 min_node = node;
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
147 min_dist = dist;
148 min_node = n;
149 }
150 }
151
152 return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 struct mempolicy *pol = p->mempolicy;
159 int node;
160
161 if (pol)
162 return pol;
163
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
168 if (pol->mode)
169 return pol;
170 }
171
172 return &default_policy;
173 }
174
175 static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 return pol->flags & MPOL_MODE_FLAGS;
183 }
184
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
187 {
188 nodemask_t tmp;
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
191 }
192
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 if (nodes_empty(*nodes))
196 return -EINVAL;
197 pol->v.nodes = *nodes;
198 return 0;
199 }
200
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 if (!nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
207 else
208 pol->v.preferred_node = first_node(*nodes);
209 return 0;
210 }
211
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 if (nodes_empty(*nodes))
215 return -EINVAL;
216 pol->v.nodes = *nodes;
217 return 0;
218 }
219
220 /*
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 int ret;
233
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 if (pol == NULL)
236 return 0;
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
244 else {
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
255 }
256
257 if (nodes)
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 else
260 ret = mpol_ops[pol->mode].create(pol, NULL);
261 return ret;
262 }
263
264 /*
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
267 */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 nodemask_t *nodes)
270 {
271 struct mempolicy *policy;
272
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
279 return NULL;
280 }
281 VM_BUG_ON(!nodes);
282
283 /*
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
287 */
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
293 }
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 if (!policy)
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
306 policy->mode = mode;
307 policy->flags = flags;
308
309 return policy;
310 }
311
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 if (!atomic_dec_and_test(&p->refcnt))
316 return;
317 kmem_cache_free(policy_cache, p);
318 }
319
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 nodemask_t tmp;
327
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 else {
333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 *nodes);
335 pol->w.cpuset_mems_allowed = *nodes;
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 pol->v.nodes = tmp;
342 }
343
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
346 {
347 nodemask_t tmp;
348
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
351
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
355 } else
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
363 *nodes);
364 pol->w.cpuset_mems_allowed = *nodes;
365 }
366 }
367
368 /*
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
370 *
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
374 */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 if (!pol)
378 return;
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 return;
382
383 mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385
386 /*
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
389 *
390 * Called with task's alloc_lock held.
391 */
392
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 mpol_rebind_policy(tsk->mempolicy, new);
396 }
397
398 /*
399 * Rebind each vma in mm to new nodemask.
400 *
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
402 */
403
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 struct vm_area_struct *vma;
407
408 mmap_write_lock(mm);
409 for (vma = mm->mmap; vma; vma = vma->vm_next)
410 mpol_rebind_policy(vma->vm_policy, new);
411 mmap_write_unlock(mm);
412 }
413
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 [MPOL_DEFAULT] = {
416 .rebind = mpol_rebind_default,
417 },
418 [MPOL_INTERLEAVE] = {
419 .create = mpol_new_interleave,
420 .rebind = mpol_rebind_nodemask,
421 },
422 [MPOL_PREFERRED] = {
423 .create = mpol_new_preferred,
424 .rebind = mpol_rebind_preferred,
425 },
426 [MPOL_BIND] = {
427 .create = mpol_new_bind,
428 .rebind = mpol_rebind_nodemask,
429 },
430 };
431
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 unsigned long flags);
434
435 struct queue_pages {
436 struct list_head *pagelist;
437 unsigned long flags;
438 nodemask_t *nmask;
439 unsigned long start;
440 unsigned long end;
441 struct vm_area_struct *first;
442 };
443
444 /*
445 * Check if the page's nid is in qp->nmask.
446 *
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
449 */
450 static inline bool queue_pages_required(struct page *page,
451 struct queue_pages *qp)
452 {
453 int nid = page_to_nid(page);
454 unsigned long flags = qp->flags;
455
456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458
459 /*
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463 * specified.
464 * 2 - THP was split.
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
467 * policy.
468 */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
471 __releases(ptl)
472 {
473 int ret = 0;
474 struct page *page;
475 struct queue_pages *qp = walk->private;
476 unsigned long flags;
477
478 if (unlikely(is_pmd_migration_entry(*pmd))) {
479 ret = -EIO;
480 goto unlock;
481 }
482 page = pmd_page(*pmd);
483 if (is_huge_zero_page(page)) {
484 spin_unlock(ptl);
485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 ret = 2;
487 goto out;
488 }
489 if (!queue_pages_required(page, qp))
490 goto unlock;
491
492 flags = qp->flags;
493 /* go to thp migration */
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 if (!vma_migratable(walk->vma) ||
496 migrate_page_add(page, qp->pagelist, flags)) {
497 ret = 1;
498 goto unlock;
499 }
500 } else
501 ret = -EIO;
502 unlock:
503 spin_unlock(ptl);
504 out:
505 return ret;
506 }
507
508 /*
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
511 *
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515 * specified.
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
518 */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 unsigned long end, struct mm_walk *walk)
521 {
522 struct vm_area_struct *vma = walk->vma;
523 struct page *page;
524 struct queue_pages *qp = walk->private;
525 unsigned long flags = qp->flags;
526 int ret;
527 bool has_unmovable = false;
528 pte_t *pte, *mapped_pte;
529 spinlock_t *ptl;
530
531 ptl = pmd_trans_huge_lock(pmd, vma);
532 if (ptl) {
533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 if (ret != 2)
535 return ret;
536 }
537 /* THP was split, fall through to pte walk */
538
539 if (pmd_trans_unstable(pmd))
540 return 0;
541
542 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 for (; addr != end; pte++, addr += PAGE_SIZE) {
544 if (!pte_present(*pte))
545 continue;
546 page = vm_normal_page(vma, addr, *pte);
547 if (!page)
548 continue;
549 /*
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
552 */
553 if (PageReserved(page))
554 continue;
555 if (!queue_pages_required(page, qp))
556 continue;
557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma)) {
560 has_unmovable = true;
561 break;
562 }
563
564 /*
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
568 */
569 if (migrate_page_add(page, qp->pagelist, flags))
570 has_unmovable = true;
571 } else
572 break;
573 }
574 pte_unmap_unlock(mapped_pte, ptl);
575 cond_resched();
576
577 if (has_unmovable)
578 return 1;
579
580 return addr != end ? -EIO : 0;
581 }
582
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 unsigned long addr, unsigned long end,
585 struct mm_walk *walk)
586 {
587 int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages *qp = walk->private;
590 unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 struct page *page;
592 spinlock_t *ptl;
593 pte_t entry;
594
595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 entry = huge_ptep_get(pte);
597 if (!pte_present(entry))
598 goto unlock;
599 page = pte_page(entry);
600 if (!queue_pages_required(page, qp))
601 goto unlock;
602
603 if (flags == MPOL_MF_STRICT) {
604 /*
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
607 */
608 ret = -EIO;
609 goto unlock;
610 }
611
612 if (!vma_migratable(walk->vma)) {
613 /*
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
617 * have been queued.
618 */
619 ret = 1;
620 goto unlock;
621 }
622
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags & (MPOL_MF_MOVE_ALL) ||
625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 if (!isolate_huge_page(page, qp->pagelist) &&
627 (flags & MPOL_MF_STRICT))
628 /*
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
631 */
632 ret = 1;
633 }
634 unlock:
635 spin_unlock(ptl);
636 #else
637 BUG();
638 #endif
639 return ret;
640 }
641
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
647 *
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
651 */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 unsigned long addr, unsigned long end)
654 {
655 int nr_updated;
656
657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 if (nr_updated)
659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660
661 return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 unsigned long addr, unsigned long end)
666 {
667 return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 struct mm_walk *walk)
673 {
674 struct vm_area_struct *vma = walk->vma;
675 struct queue_pages *qp = walk->private;
676 unsigned long endvma = vma->vm_end;
677 unsigned long flags = qp->flags;
678
679 /* range check first */
680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681
682 if (!qp->first) {
683 qp->first = vma;
684 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 (qp->start < vma->vm_start))
686 /* hole at head side of range */
687 return -EFAULT;
688 }
689 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 ((vma->vm_end < qp->end) &&
691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 /* hole at middle or tail of range */
693 return -EFAULT;
694
695 /*
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
698 */
699 if (!vma_migratable(vma) &&
700 !(flags & MPOL_MF_STRICT))
701 return 1;
702
703 if (endvma > end)
704 endvma = end;
705
706 if (flags & MPOL_MF_LAZY) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 !(vma->vm_flags & VM_MIXEDMAP))
710 change_prot_numa(vma, start, endvma);
711 return 1;
712 }
713
714 /* queue pages from current vma */
715 if (flags & MPOL_MF_VALID)
716 return 0;
717 return 1;
718 }
719
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 .hugetlb_entry = queue_pages_hugetlb,
722 .pmd_entry = queue_pages_pte_range,
723 .test_walk = queue_pages_test_walk,
724 };
725
726 /*
727 * Walk through page tables and collect pages to be migrated.
728 *
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
732 *
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735 * specified.
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
740 */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 nodemask_t *nodes, unsigned long flags,
744 struct list_head *pagelist)
745 {
746 int err;
747 struct queue_pages qp = {
748 .pagelist = pagelist,
749 .flags = flags,
750 .nmask = nodes,
751 .start = start,
752 .end = end,
753 .first = NULL,
754 };
755
756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757
758 if (!qp.first)
759 /* whole range in hole */
760 err = -EFAULT;
761
762 return err;
763 }
764
765 /*
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
768 */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 struct mempolicy *pol)
771 {
772 int err;
773 struct mempolicy *old;
774 struct mempolicy *new;
775
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 vma->vm_ops, vma->vm_file,
779 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780
781 new = mpol_dup(pol);
782 if (IS_ERR(new))
783 return PTR_ERR(new);
784
785 if (vma->vm_ops && vma->vm_ops->set_policy) {
786 err = vma->vm_ops->set_policy(vma, new);
787 if (err)
788 goto err_out;
789 }
790
791 old = vma->vm_policy;
792 vma->vm_policy = new; /* protected by mmap_lock */
793 mpol_put(old);
794
795 return 0;
796 err_out:
797 mpol_put(new);
798 return err;
799 }
800
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
804 {
805 struct vm_area_struct *next;
806 struct vm_area_struct *prev;
807 struct vm_area_struct *vma;
808 int err = 0;
809 pgoff_t pgoff;
810 unsigned long vmstart;
811 unsigned long vmend;
812
813 vma = find_vma(mm, start);
814 VM_BUG_ON(!vma);
815
816 prev = vma->vm_prev;
817 if (start > vma->vm_start)
818 prev = vma;
819
820 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 next = vma->vm_next;
822 vmstart = max(start, vma->vm_start);
823 vmend = min(end, vma->vm_end);
824
825 if (mpol_equal(vma_policy(vma), new_pol))
826 continue;
827
828 pgoff = vma->vm_pgoff +
829 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 vma->anon_vma, vma->vm_file, pgoff,
832 new_pol, vma->vm_userfaultfd_ctx);
833 if (prev) {
834 vma = prev;
835 next = vma->vm_next;
836 if (mpol_equal(vma_policy(vma), new_pol))
837 continue;
838 /* vma_merge() joined vma && vma->next, case 8 */
839 goto replace;
840 }
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 if (err)
844 goto out;
845 }
846 if (vma->vm_end != vmend) {
847 err = split_vma(vma->vm_mm, vma, vmend, 0);
848 if (err)
849 goto out;
850 }
851 replace:
852 err = vma_replace_policy(vma, new_pol);
853 if (err)
854 goto out;
855 }
856
857 out:
858 return err;
859 }
860
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 nodemask_t *nodes)
864 {
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
867 int ret;
868
869 if (!scratch)
870 return -ENOMEM;
871
872 new = mpol_new(mode, flags, nodes);
873 if (IS_ERR(new)) {
874 ret = PTR_ERR(new);
875 goto out;
876 }
877
878 ret = mpol_set_nodemask(new, nodes, scratch);
879 if (ret) {
880 mpol_put(new);
881 goto out;
882 }
883 task_lock(current);
884 old = current->mempolicy;
885 current->mempolicy = new;
886 if (new && new->mode == MPOL_INTERLEAVE)
887 current->il_prev = MAX_NUMNODES-1;
888 task_unlock(current);
889 mpol_put(old);
890 ret = 0;
891 out:
892 NODEMASK_SCRATCH_FREE(scratch);
893 return ret;
894 }
895
896 /*
897 * Return nodemask for policy for get_mempolicy() query
898 *
899 * Called with task's alloc_lock held
900 */
901 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
902 {
903 nodes_clear(*nodes);
904 if (p == &default_policy)
905 return;
906
907 switch (p->mode) {
908 case MPOL_BIND:
909 case MPOL_INTERLEAVE:
910 *nodes = p->v.nodes;
911 break;
912 case MPOL_PREFERRED:
913 if (!(p->flags & MPOL_F_LOCAL))
914 node_set(p->v.preferred_node, *nodes);
915 /* else return empty node mask for local allocation */
916 break;
917 default:
918 BUG();
919 }
920 }
921
922 static int lookup_node(struct mm_struct *mm, unsigned long addr)
923 {
924 struct page *p = NULL;
925 int err;
926
927 int locked = 1;
928 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
929 if (err > 0) {
930 err = page_to_nid(p);
931 put_page(p);
932 }
933 if (locked)
934 mmap_read_unlock(mm);
935 return err;
936 }
937
938 /* Retrieve NUMA policy */
939 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
940 unsigned long addr, unsigned long flags)
941 {
942 int err;
943 struct mm_struct *mm = current->mm;
944 struct vm_area_struct *vma = NULL;
945 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
946
947 if (flags &
948 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
949 return -EINVAL;
950
951 if (flags & MPOL_F_MEMS_ALLOWED) {
952 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
953 return -EINVAL;
954 *policy = 0; /* just so it's initialized */
955 task_lock(current);
956 *nmask = cpuset_current_mems_allowed;
957 task_unlock(current);
958 return 0;
959 }
960
961 if (flags & MPOL_F_ADDR) {
962 /*
963 * Do NOT fall back to task policy if the
964 * vma/shared policy at addr is NULL. We
965 * want to return MPOL_DEFAULT in this case.
966 */
967 mmap_read_lock(mm);
968 vma = find_vma_intersection(mm, addr, addr+1);
969 if (!vma) {
970 mmap_read_unlock(mm);
971 return -EFAULT;
972 }
973 if (vma->vm_ops && vma->vm_ops->get_policy)
974 pol = vma->vm_ops->get_policy(vma, addr);
975 else
976 pol = vma->vm_policy;
977 } else if (addr)
978 return -EINVAL;
979
980 if (!pol)
981 pol = &default_policy; /* indicates default behavior */
982
983 if (flags & MPOL_F_NODE) {
984 if (flags & MPOL_F_ADDR) {
985 /*
986 * Take a refcount on the mpol, lookup_node()
987 * wil drop the mmap_lock, so after calling
988 * lookup_node() only "pol" remains valid, "vma"
989 * is stale.
990 */
991 pol_refcount = pol;
992 vma = NULL;
993 mpol_get(pol);
994 err = lookup_node(mm, addr);
995 if (err < 0)
996 goto out;
997 *policy = err;
998 } else if (pol == current->mempolicy &&
999 pol->mode == MPOL_INTERLEAVE) {
1000 *policy = next_node_in(current->il_prev, pol->v.nodes);
1001 } else {
1002 err = -EINVAL;
1003 goto out;
1004 }
1005 } else {
1006 *policy = pol == &default_policy ? MPOL_DEFAULT :
1007 pol->mode;
1008 /*
1009 * Internal mempolicy flags must be masked off before exposing
1010 * the policy to userspace.
1011 */
1012 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1013 }
1014
1015 err = 0;
1016 if (nmask) {
1017 if (mpol_store_user_nodemask(pol)) {
1018 *nmask = pol->w.user_nodemask;
1019 } else {
1020 task_lock(current);
1021 get_policy_nodemask(pol, nmask);
1022 task_unlock(current);
1023 }
1024 }
1025
1026 out:
1027 mpol_cond_put(pol);
1028 if (vma)
1029 mmap_read_unlock(mm);
1030 if (pol_refcount)
1031 mpol_put(pol_refcount);
1032 return err;
1033 }
1034
1035 #ifdef CONFIG_MIGRATION
1036 /*
1037 * page migration, thp tail pages can be passed.
1038 */
1039 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1040 unsigned long flags)
1041 {
1042 struct page *head = compound_head(page);
1043 /*
1044 * Avoid migrating a page that is shared with others.
1045 */
1046 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1047 if (!isolate_lru_page(head)) {
1048 list_add_tail(&head->lru, pagelist);
1049 mod_node_page_state(page_pgdat(head),
1050 NR_ISOLATED_ANON + page_is_file_lru(head),
1051 thp_nr_pages(head));
1052 } else if (flags & MPOL_MF_STRICT) {
1053 /*
1054 * Non-movable page may reach here. And, there may be
1055 * temporary off LRU pages or non-LRU movable pages.
1056 * Treat them as unmovable pages since they can't be
1057 * isolated, so they can't be moved at the moment. It
1058 * should return -EIO for this case too.
1059 */
1060 return -EIO;
1061 }
1062 }
1063
1064 return 0;
1065 }
1066
1067 /*
1068 * Migrate pages from one node to a target node.
1069 * Returns error or the number of pages not migrated.
1070 */
1071 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1072 int flags)
1073 {
1074 nodemask_t nmask;
1075 LIST_HEAD(pagelist);
1076 int err = 0;
1077 struct migration_target_control mtc = {
1078 .nid = dest,
1079 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1080 };
1081
1082 nodes_clear(nmask);
1083 node_set(source, nmask);
1084
1085 /*
1086 * This does not "check" the range but isolates all pages that
1087 * need migration. Between passing in the full user address
1088 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1089 */
1090 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1091 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1092 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1093
1094 if (!list_empty(&pagelist)) {
1095 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1096 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1097 if (err)
1098 putback_movable_pages(&pagelist);
1099 }
1100
1101 return err;
1102 }
1103
1104 /*
1105 * Move pages between the two nodesets so as to preserve the physical
1106 * layout as much as possible.
1107 *
1108 * Returns the number of page that could not be moved.
1109 */
1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 const nodemask_t *to, int flags)
1112 {
1113 int busy = 0;
1114 int err = 0;
1115 nodemask_t tmp;
1116
1117 migrate_prep();
1118
1119 mmap_read_lock(mm);
1120
1121 /*
1122 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1123 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1124 * bit in 'tmp', and return that <source, dest> pair for migration.
1125 * The pair of nodemasks 'to' and 'from' define the map.
1126 *
1127 * If no pair of bits is found that way, fallback to picking some
1128 * pair of 'source' and 'dest' bits that are not the same. If the
1129 * 'source' and 'dest' bits are the same, this represents a node
1130 * that will be migrating to itself, so no pages need move.
1131 *
1132 * If no bits are left in 'tmp', or if all remaining bits left
1133 * in 'tmp' correspond to the same bit in 'to', return false
1134 * (nothing left to migrate).
1135 *
1136 * This lets us pick a pair of nodes to migrate between, such that
1137 * if possible the dest node is not already occupied by some other
1138 * source node, minimizing the risk of overloading the memory on a
1139 * node that would happen if we migrated incoming memory to a node
1140 * before migrating outgoing memory source that same node.
1141 *
1142 * A single scan of tmp is sufficient. As we go, we remember the
1143 * most recent <s, d> pair that moved (s != d). If we find a pair
1144 * that not only moved, but what's better, moved to an empty slot
1145 * (d is not set in tmp), then we break out then, with that pair.
1146 * Otherwise when we finish scanning from_tmp, we at least have the
1147 * most recent <s, d> pair that moved. If we get all the way through
1148 * the scan of tmp without finding any node that moved, much less
1149 * moved to an empty node, then there is nothing left worth migrating.
1150 */
1151
1152 tmp = *from;
1153 while (!nodes_empty(tmp)) {
1154 int s,d;
1155 int source = NUMA_NO_NODE;
1156 int dest = 0;
1157
1158 for_each_node_mask(s, tmp) {
1159
1160 /*
1161 * do_migrate_pages() tries to maintain the relative
1162 * node relationship of the pages established between
1163 * threads and memory areas.
1164 *
1165 * However if the number of source nodes is not equal to
1166 * the number of destination nodes we can not preserve
1167 * this node relative relationship. In that case, skip
1168 * copying memory from a node that is in the destination
1169 * mask.
1170 *
1171 * Example: [2,3,4] -> [3,4,5] moves everything.
1172 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1173 */
1174
1175 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1176 (node_isset(s, *to)))
1177 continue;
1178
1179 d = node_remap(s, *from, *to);
1180 if (s == d)
1181 continue;
1182
1183 source = s; /* Node moved. Memorize */
1184 dest = d;
1185
1186 /* dest not in remaining from nodes? */
1187 if (!node_isset(dest, tmp))
1188 break;
1189 }
1190 if (source == NUMA_NO_NODE)
1191 break;
1192
1193 node_clear(source, tmp);
1194 err = migrate_to_node(mm, source, dest, flags);
1195 if (err > 0)
1196 busy += err;
1197 if (err < 0)
1198 break;
1199 }
1200 mmap_read_unlock(mm);
1201 if (err < 0)
1202 return err;
1203 return busy;
1204
1205 }
1206
1207 /*
1208 * Allocate a new page for page migration based on vma policy.
1209 * Start by assuming the page is mapped by the same vma as contains @start.
1210 * Search forward from there, if not. N.B., this assumes that the
1211 * list of pages handed to migrate_pages()--which is how we get here--
1212 * is in virtual address order.
1213 */
1214 static struct page *new_page(struct page *page, unsigned long start)
1215 {
1216 struct vm_area_struct *vma;
1217 unsigned long address;
1218
1219 vma = find_vma(current->mm, start);
1220 while (vma) {
1221 address = page_address_in_vma(page, vma);
1222 if (address != -EFAULT)
1223 break;
1224 vma = vma->vm_next;
1225 }
1226
1227 if (PageHuge(page)) {
1228 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1229 vma, address);
1230 } else if (PageTransHuge(page)) {
1231 struct page *thp;
1232
1233 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1234 HPAGE_PMD_ORDER);
1235 if (!thp)
1236 return NULL;
1237 prep_transhuge_page(thp);
1238 return thp;
1239 }
1240 /*
1241 * if !vma, alloc_page_vma() will use task or system default policy
1242 */
1243 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1244 vma, address);
1245 }
1246 #else
1247
1248 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1249 unsigned long flags)
1250 {
1251 return -EIO;
1252 }
1253
1254 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1255 const nodemask_t *to, int flags)
1256 {
1257 return -ENOSYS;
1258 }
1259
1260 static struct page *new_page(struct page *page, unsigned long start)
1261 {
1262 return NULL;
1263 }
1264 #endif
1265
1266 static long do_mbind(unsigned long start, unsigned long len,
1267 unsigned short mode, unsigned short mode_flags,
1268 nodemask_t *nmask, unsigned long flags)
1269 {
1270 struct mm_struct *mm = current->mm;
1271 struct mempolicy *new;
1272 unsigned long end;
1273 int err;
1274 int ret;
1275 LIST_HEAD(pagelist);
1276
1277 if (flags & ~(unsigned long)MPOL_MF_VALID)
1278 return -EINVAL;
1279 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1280 return -EPERM;
1281
1282 if (start & ~PAGE_MASK)
1283 return -EINVAL;
1284
1285 if (mode == MPOL_DEFAULT)
1286 flags &= ~MPOL_MF_STRICT;
1287
1288 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1289 end = start + len;
1290
1291 if (end < start)
1292 return -EINVAL;
1293 if (end == start)
1294 return 0;
1295
1296 new = mpol_new(mode, mode_flags, nmask);
1297 if (IS_ERR(new))
1298 return PTR_ERR(new);
1299
1300 if (flags & MPOL_MF_LAZY)
1301 new->flags |= MPOL_F_MOF;
1302
1303 /*
1304 * If we are using the default policy then operation
1305 * on discontinuous address spaces is okay after all
1306 */
1307 if (!new)
1308 flags |= MPOL_MF_DISCONTIG_OK;
1309
1310 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1311 start, start + len, mode, mode_flags,
1312 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1313
1314 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1315
1316 migrate_prep();
1317 }
1318 {
1319 NODEMASK_SCRATCH(scratch);
1320 if (scratch) {
1321 mmap_write_lock(mm);
1322 err = mpol_set_nodemask(new, nmask, scratch);
1323 if (err)
1324 mmap_write_unlock(mm);
1325 } else
1326 err = -ENOMEM;
1327 NODEMASK_SCRATCH_FREE(scratch);
1328 }
1329 if (err)
1330 goto mpol_out;
1331
1332 ret = queue_pages_range(mm, start, end, nmask,
1333 flags | MPOL_MF_INVERT, &pagelist);
1334
1335 if (ret < 0) {
1336 err = ret;
1337 goto up_out;
1338 }
1339
1340 err = mbind_range(mm, start, end, new);
1341
1342 if (!err) {
1343 int nr_failed = 0;
1344
1345 if (!list_empty(&pagelist)) {
1346 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1347 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1348 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1349 if (nr_failed)
1350 putback_movable_pages(&pagelist);
1351 }
1352
1353 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1354 err = -EIO;
1355 } else {
1356 up_out:
1357 if (!list_empty(&pagelist))
1358 putback_movable_pages(&pagelist);
1359 }
1360
1361 mmap_write_unlock(mm);
1362 mpol_out:
1363 mpol_put(new);
1364 return err;
1365 }
1366
1367 /*
1368 * User space interface with variable sized bitmaps for nodelists.
1369 */
1370
1371 /* Copy a node mask from user space. */
1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1373 unsigned long maxnode)
1374 {
1375 unsigned long k;
1376 unsigned long t;
1377 unsigned long nlongs;
1378 unsigned long endmask;
1379
1380 --maxnode;
1381 nodes_clear(*nodes);
1382 if (maxnode == 0 || !nmask)
1383 return 0;
1384 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1385 return -EINVAL;
1386
1387 nlongs = BITS_TO_LONGS(maxnode);
1388 if ((maxnode % BITS_PER_LONG) == 0)
1389 endmask = ~0UL;
1390 else
1391 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1392
1393 /*
1394 * When the user specified more nodes than supported just check
1395 * if the non supported part is all zero.
1396 *
1397 * If maxnode have more longs than MAX_NUMNODES, check
1398 * the bits in that area first. And then go through to
1399 * check the rest bits which equal or bigger than MAX_NUMNODES.
1400 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1401 */
1402 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1403 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1404 if (get_user(t, nmask + k))
1405 return -EFAULT;
1406 if (k == nlongs - 1) {
1407 if (t & endmask)
1408 return -EINVAL;
1409 } else if (t)
1410 return -EINVAL;
1411 }
1412 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1413 endmask = ~0UL;
1414 }
1415
1416 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1417 unsigned long valid_mask = endmask;
1418
1419 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1420 if (get_user(t, nmask + nlongs - 1))
1421 return -EFAULT;
1422 if (t & valid_mask)
1423 return -EINVAL;
1424 }
1425
1426 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1427 return -EFAULT;
1428 nodes_addr(*nodes)[nlongs-1] &= endmask;
1429 return 0;
1430 }
1431
1432 /* Copy a kernel node mask to user space */
1433 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1434 nodemask_t *nodes)
1435 {
1436 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1437 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1438
1439 if (copy > nbytes) {
1440 if (copy > PAGE_SIZE)
1441 return -EINVAL;
1442 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1443 return -EFAULT;
1444 copy = nbytes;
1445 }
1446 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447 }
1448
1449 static long kernel_mbind(unsigned long start, unsigned long len,
1450 unsigned long mode, const unsigned long __user *nmask,
1451 unsigned long maxnode, unsigned int flags)
1452 {
1453 nodemask_t nodes;
1454 int err;
1455 unsigned short mode_flags;
1456
1457 start = untagged_addr(start);
1458 mode_flags = mode & MPOL_MODE_FLAGS;
1459 mode &= ~MPOL_MODE_FLAGS;
1460 if (mode >= MPOL_MAX)
1461 return -EINVAL;
1462 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1463 (mode_flags & MPOL_F_RELATIVE_NODES))
1464 return -EINVAL;
1465 err = get_nodes(&nodes, nmask, maxnode);
1466 if (err)
1467 return err;
1468 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1469 }
1470
1471 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1472 unsigned long, mode, const unsigned long __user *, nmask,
1473 unsigned long, maxnode, unsigned int, flags)
1474 {
1475 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1476 }
1477
1478 /* Set the process memory policy */
1479 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1480 unsigned long maxnode)
1481 {
1482 int err;
1483 nodemask_t nodes;
1484 unsigned short flags;
1485
1486 flags = mode & MPOL_MODE_FLAGS;
1487 mode &= ~MPOL_MODE_FLAGS;
1488 if ((unsigned int)mode >= MPOL_MAX)
1489 return -EINVAL;
1490 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1491 return -EINVAL;
1492 err = get_nodes(&nodes, nmask, maxnode);
1493 if (err)
1494 return err;
1495 return do_set_mempolicy(mode, flags, &nodes);
1496 }
1497
1498 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1499 unsigned long, maxnode)
1500 {
1501 return kernel_set_mempolicy(mode, nmask, maxnode);
1502 }
1503
1504 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1505 const unsigned long __user *old_nodes,
1506 const unsigned long __user *new_nodes)
1507 {
1508 struct mm_struct *mm = NULL;
1509 struct task_struct *task;
1510 nodemask_t task_nodes;
1511 int err;
1512 nodemask_t *old;
1513 nodemask_t *new;
1514 NODEMASK_SCRATCH(scratch);
1515
1516 if (!scratch)
1517 return -ENOMEM;
1518
1519 old = &scratch->mask1;
1520 new = &scratch->mask2;
1521
1522 err = get_nodes(old, old_nodes, maxnode);
1523 if (err)
1524 goto out;
1525
1526 err = get_nodes(new, new_nodes, maxnode);
1527 if (err)
1528 goto out;
1529
1530 /* Find the mm_struct */
1531 rcu_read_lock();
1532 task = pid ? find_task_by_vpid(pid) : current;
1533 if (!task) {
1534 rcu_read_unlock();
1535 err = -ESRCH;
1536 goto out;
1537 }
1538 get_task_struct(task);
1539
1540 err = -EINVAL;
1541
1542 /*
1543 * Check if this process has the right to modify the specified process.
1544 * Use the regular "ptrace_may_access()" checks.
1545 */
1546 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1547 rcu_read_unlock();
1548 err = -EPERM;
1549 goto out_put;
1550 }
1551 rcu_read_unlock();
1552
1553 task_nodes = cpuset_mems_allowed(task);
1554 /* Is the user allowed to access the target nodes? */
1555 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1556 err = -EPERM;
1557 goto out_put;
1558 }
1559
1560 task_nodes = cpuset_mems_allowed(current);
1561 nodes_and(*new, *new, task_nodes);
1562 if (nodes_empty(*new))
1563 goto out_put;
1564
1565 err = security_task_movememory(task);
1566 if (err)
1567 goto out_put;
1568
1569 mm = get_task_mm(task);
1570 put_task_struct(task);
1571
1572 if (!mm) {
1573 err = -EINVAL;
1574 goto out;
1575 }
1576
1577 err = do_migrate_pages(mm, old, new,
1578 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1579
1580 mmput(mm);
1581 out:
1582 NODEMASK_SCRATCH_FREE(scratch);
1583
1584 return err;
1585
1586 out_put:
1587 put_task_struct(task);
1588 goto out;
1589
1590 }
1591
1592 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1593 const unsigned long __user *, old_nodes,
1594 const unsigned long __user *, new_nodes)
1595 {
1596 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1597 }
1598
1599
1600 /* Retrieve NUMA policy */
1601 static int kernel_get_mempolicy(int __user *policy,
1602 unsigned long __user *nmask,
1603 unsigned long maxnode,
1604 unsigned long addr,
1605 unsigned long flags)
1606 {
1607 int err;
1608 int pval;
1609 nodemask_t nodes;
1610
1611 if (nmask != NULL && maxnode < nr_node_ids)
1612 return -EINVAL;
1613
1614 addr = untagged_addr(addr);
1615
1616 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1617
1618 if (err)
1619 return err;
1620
1621 if (policy && put_user(pval, policy))
1622 return -EFAULT;
1623
1624 if (nmask)
1625 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1626
1627 return err;
1628 }
1629
1630 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1631 unsigned long __user *, nmask, unsigned long, maxnode,
1632 unsigned long, addr, unsigned long, flags)
1633 {
1634 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1635 }
1636
1637 #ifdef CONFIG_COMPAT
1638
1639 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 compat_ulong_t __user *, nmask,
1641 compat_ulong_t, maxnode,
1642 compat_ulong_t, addr, compat_ulong_t, flags)
1643 {
1644 long err;
1645 unsigned long __user *nm = NULL;
1646 unsigned long nr_bits, alloc_size;
1647 DECLARE_BITMAP(bm, MAX_NUMNODES);
1648
1649 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1650 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651
1652 if (nmask)
1653 nm = compat_alloc_user_space(alloc_size);
1654
1655 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1656
1657 if (!err && nmask) {
1658 unsigned long copy_size;
1659 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1660 err = copy_from_user(bm, nm, copy_size);
1661 /* ensure entire bitmap is zeroed */
1662 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1663 err |= compat_put_bitmap(nmask, bm, nr_bits);
1664 }
1665
1666 return err;
1667 }
1668
1669 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1670 compat_ulong_t, maxnode)
1671 {
1672 unsigned long __user *nm = NULL;
1673 unsigned long nr_bits, alloc_size;
1674 DECLARE_BITMAP(bm, MAX_NUMNODES);
1675
1676 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1677 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678
1679 if (nmask) {
1680 if (compat_get_bitmap(bm, nmask, nr_bits))
1681 return -EFAULT;
1682 nm = compat_alloc_user_space(alloc_size);
1683 if (copy_to_user(nm, bm, alloc_size))
1684 return -EFAULT;
1685 }
1686
1687 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1688 }
1689
1690 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1691 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1692 compat_ulong_t, maxnode, compat_ulong_t, flags)
1693 {
1694 unsigned long __user *nm = NULL;
1695 unsigned long nr_bits, alloc_size;
1696 nodemask_t bm;
1697
1698 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1699 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1700
1701 if (nmask) {
1702 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1703 return -EFAULT;
1704 nm = compat_alloc_user_space(alloc_size);
1705 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1706 return -EFAULT;
1707 }
1708
1709 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1710 }
1711
1712 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1713 compat_ulong_t, maxnode,
1714 const compat_ulong_t __user *, old_nodes,
1715 const compat_ulong_t __user *, new_nodes)
1716 {
1717 unsigned long __user *old = NULL;
1718 unsigned long __user *new = NULL;
1719 nodemask_t tmp_mask;
1720 unsigned long nr_bits;
1721 unsigned long size;
1722
1723 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1724 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1725 if (old_nodes) {
1726 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1727 return -EFAULT;
1728 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1729 if (new_nodes)
1730 new = old + size / sizeof(unsigned long);
1731 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1732 return -EFAULT;
1733 }
1734 if (new_nodes) {
1735 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1736 return -EFAULT;
1737 if (new == NULL)
1738 new = compat_alloc_user_space(size);
1739 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1740 return -EFAULT;
1741 }
1742 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1743 }
1744
1745 #endif /* CONFIG_COMPAT */
1746
1747 bool vma_migratable(struct vm_area_struct *vma)
1748 {
1749 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750 return false;
1751
1752 /*
1753 * DAX device mappings require predictable access latency, so avoid
1754 * incurring periodic faults.
1755 */
1756 if (vma_is_dax(vma))
1757 return false;
1758
1759 if (is_vm_hugetlb_page(vma) &&
1760 !hugepage_migration_supported(hstate_vma(vma)))
1761 return false;
1762
1763 /*
1764 * Migration allocates pages in the highest zone. If we cannot
1765 * do so then migration (at least from node to node) is not
1766 * possible.
1767 */
1768 if (vma->vm_file &&
1769 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1770 < policy_zone)
1771 return false;
1772 return true;
1773 }
1774
1775 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1776 unsigned long addr)
1777 {
1778 struct mempolicy *pol = NULL;
1779
1780 if (vma) {
1781 if (vma->vm_ops && vma->vm_ops->get_policy) {
1782 pol = vma->vm_ops->get_policy(vma, addr);
1783 } else if (vma->vm_policy) {
1784 pol = vma->vm_policy;
1785
1786 /*
1787 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1788 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1789 * count on these policies which will be dropped by
1790 * mpol_cond_put() later
1791 */
1792 if (mpol_needs_cond_ref(pol))
1793 mpol_get(pol);
1794 }
1795 }
1796
1797 return pol;
1798 }
1799
1800 /*
1801 * get_vma_policy(@vma, @addr)
1802 * @vma: virtual memory area whose policy is sought
1803 * @addr: address in @vma for shared policy lookup
1804 *
1805 * Returns effective policy for a VMA at specified address.
1806 * Falls back to current->mempolicy or system default policy, as necessary.
1807 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1808 * count--added by the get_policy() vm_op, as appropriate--to protect against
1809 * freeing by another task. It is the caller's responsibility to free the
1810 * extra reference for shared policies.
1811 */
1812 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1813 unsigned long addr)
1814 {
1815 struct mempolicy *pol = __get_vma_policy(vma, addr);
1816
1817 if (!pol)
1818 pol = get_task_policy(current);
1819
1820 return pol;
1821 }
1822
1823 bool vma_policy_mof(struct vm_area_struct *vma)
1824 {
1825 struct mempolicy *pol;
1826
1827 if (vma->vm_ops && vma->vm_ops->get_policy) {
1828 bool ret = false;
1829
1830 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1831 if (pol && (pol->flags & MPOL_F_MOF))
1832 ret = true;
1833 mpol_cond_put(pol);
1834
1835 return ret;
1836 }
1837
1838 pol = vma->vm_policy;
1839 if (!pol)
1840 pol = get_task_policy(current);
1841
1842 return pol->flags & MPOL_F_MOF;
1843 }
1844
1845 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1846 {
1847 enum zone_type dynamic_policy_zone = policy_zone;
1848
1849 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1850
1851 /*
1852 * if policy->v.nodes has movable memory only,
1853 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1854 *
1855 * policy->v.nodes is intersect with node_states[N_MEMORY].
1856 * so if the following test faile, it implies
1857 * policy->v.nodes has movable memory only.
1858 */
1859 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1860 dynamic_policy_zone = ZONE_MOVABLE;
1861
1862 return zone >= dynamic_policy_zone;
1863 }
1864
1865 /*
1866 * Return a nodemask representing a mempolicy for filtering nodes for
1867 * page allocation
1868 */
1869 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1870 {
1871 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1872 if (unlikely(policy->mode == MPOL_BIND) &&
1873 apply_policy_zone(policy, gfp_zone(gfp)) &&
1874 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1875 return &policy->v.nodes;
1876
1877 return NULL;
1878 }
1879
1880 /* Return the node id preferred by the given mempolicy, or the given id */
1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1882 {
1883 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1884 nd = policy->v.preferred_node;
1885 else {
1886 /*
1887 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 * because we might easily break the expectation to stay on the
1889 * requested node and not break the policy.
1890 */
1891 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1892 }
1893
1894 return nd;
1895 }
1896
1897 /* Do dynamic interleaving for a process */
1898 static unsigned interleave_nodes(struct mempolicy *policy)
1899 {
1900 unsigned next;
1901 struct task_struct *me = current;
1902
1903 next = next_node_in(me->il_prev, policy->v.nodes);
1904 if (next < MAX_NUMNODES)
1905 me->il_prev = next;
1906 return next;
1907 }
1908
1909 /*
1910 * Depending on the memory policy provide a node from which to allocate the
1911 * next slab entry.
1912 */
1913 unsigned int mempolicy_slab_node(void)
1914 {
1915 struct mempolicy *policy;
1916 int node = numa_mem_id();
1917
1918 if (in_interrupt())
1919 return node;
1920
1921 policy = current->mempolicy;
1922 if (!policy || policy->flags & MPOL_F_LOCAL)
1923 return node;
1924
1925 switch (policy->mode) {
1926 case MPOL_PREFERRED:
1927 /*
1928 * handled MPOL_F_LOCAL above
1929 */
1930 return policy->v.preferred_node;
1931
1932 case MPOL_INTERLEAVE:
1933 return interleave_nodes(policy);
1934
1935 case MPOL_BIND: {
1936 struct zoneref *z;
1937
1938 /*
1939 * Follow bind policy behavior and start allocation at the
1940 * first node.
1941 */
1942 struct zonelist *zonelist;
1943 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1944 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1945 z = first_zones_zonelist(zonelist, highest_zoneidx,
1946 &policy->v.nodes);
1947 return z->zone ? zone_to_nid(z->zone) : node;
1948 }
1949
1950 default:
1951 BUG();
1952 }
1953 }
1954
1955 /*
1956 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1957 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1958 * number of present nodes.
1959 */
1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961 {
1962 unsigned nnodes = nodes_weight(pol->v.nodes);
1963 unsigned target;
1964 int i;
1965 int nid;
1966
1967 if (!nnodes)
1968 return numa_node_id();
1969 target = (unsigned int)n % nnodes;
1970 nid = first_node(pol->v.nodes);
1971 for (i = 0; i < target; i++)
1972 nid = next_node(nid, pol->v.nodes);
1973 return nid;
1974 }
1975
1976 /* Determine a node number for interleave */
1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 struct vm_area_struct *vma, unsigned long addr, int shift)
1979 {
1980 if (vma) {
1981 unsigned long off;
1982
1983 /*
1984 * for small pages, there is no difference between
1985 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 * for huge pages, since vm_pgoff is in units of small
1987 * pages, we need to shift off the always 0 bits to get
1988 * a useful offset.
1989 */
1990 BUG_ON(shift < PAGE_SHIFT);
1991 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 off += (addr - vma->vm_start) >> shift;
1993 return offset_il_node(pol, off);
1994 } else
1995 return interleave_nodes(pol);
1996 }
1997
1998 #ifdef CONFIG_HUGETLBFS
1999 /*
2000 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001 * @vma: virtual memory area whose policy is sought
2002 * @addr: address in @vma for shared policy lookup and interleave policy
2003 * @gfp_flags: for requested zone
2004 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2006 *
2007 * Returns a nid suitable for a huge page allocation and a pointer
2008 * to the struct mempolicy for conditional unref after allocation.
2009 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2010 * @nodemask for filtering the zonelist.
2011 *
2012 * Must be protected by read_mems_allowed_begin()
2013 */
2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 struct mempolicy **mpol, nodemask_t **nodemask)
2016 {
2017 int nid;
2018
2019 *mpol = get_vma_policy(vma, addr);
2020 *nodemask = NULL; /* assume !MPOL_BIND */
2021
2022 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2023 nid = interleave_nid(*mpol, vma, addr,
2024 huge_page_shift(hstate_vma(vma)));
2025 } else {
2026 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2027 if ((*mpol)->mode == MPOL_BIND)
2028 *nodemask = &(*mpol)->v.nodes;
2029 }
2030 return nid;
2031 }
2032
2033 /*
2034 * init_nodemask_of_mempolicy
2035 *
2036 * If the current task's mempolicy is "default" [NULL], return 'false'
2037 * to indicate default policy. Otherwise, extract the policy nodemask
2038 * for 'bind' or 'interleave' policy into the argument nodemask, or
2039 * initialize the argument nodemask to contain the single node for
2040 * 'preferred' or 'local' policy and return 'true' to indicate presence
2041 * of non-default mempolicy.
2042 *
2043 * We don't bother with reference counting the mempolicy [mpol_get/put]
2044 * because the current task is examining it's own mempolicy and a task's
2045 * mempolicy is only ever changed by the task itself.
2046 *
2047 * N.B., it is the caller's responsibility to free a returned nodemask.
2048 */
2049 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 {
2051 struct mempolicy *mempolicy;
2052 int nid;
2053
2054 if (!(mask && current->mempolicy))
2055 return false;
2056
2057 task_lock(current);
2058 mempolicy = current->mempolicy;
2059 switch (mempolicy->mode) {
2060 case MPOL_PREFERRED:
2061 if (mempolicy->flags & MPOL_F_LOCAL)
2062 nid = numa_node_id();
2063 else
2064 nid = mempolicy->v.preferred_node;
2065 init_nodemask_of_node(mask, nid);
2066 break;
2067
2068 case MPOL_BIND:
2069 case MPOL_INTERLEAVE:
2070 *mask = mempolicy->v.nodes;
2071 break;
2072
2073 default:
2074 BUG();
2075 }
2076 task_unlock(current);
2077
2078 return true;
2079 }
2080 #endif
2081
2082 /*
2083 * mempolicy_nodemask_intersects
2084 *
2085 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086 * policy. Otherwise, check for intersection between mask and the policy
2087 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2088 * policy, always return true since it may allocate elsewhere on fallback.
2089 *
2090 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2091 */
2092 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2093 const nodemask_t *mask)
2094 {
2095 struct mempolicy *mempolicy;
2096 bool ret = true;
2097
2098 if (!mask)
2099 return ret;
2100 task_lock(tsk);
2101 mempolicy = tsk->mempolicy;
2102 if (!mempolicy)
2103 goto out;
2104
2105 switch (mempolicy->mode) {
2106 case MPOL_PREFERRED:
2107 /*
2108 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 * allocate from, they may fallback to other nodes when oom.
2110 * Thus, it's possible for tsk to have allocated memory from
2111 * nodes in mask.
2112 */
2113 break;
2114 case MPOL_BIND:
2115 case MPOL_INTERLEAVE:
2116 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2117 break;
2118 default:
2119 BUG();
2120 }
2121 out:
2122 task_unlock(tsk);
2123 return ret;
2124 }
2125
2126 /* Allocate a page in interleaved policy.
2127 Own path because it needs to do special accounting. */
2128 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2129 unsigned nid)
2130 {
2131 struct page *page;
2132
2133 page = __alloc_pages(gfp, order, nid);
2134 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 if (!static_branch_likely(&vm_numa_stat_key))
2136 return page;
2137 if (page && page_to_nid(page) == nid) {
2138 preempt_disable();
2139 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2140 preempt_enable();
2141 }
2142 return page;
2143 }
2144
2145 /**
2146 * alloc_pages_vma - Allocate a page for a VMA.
2147 *
2148 * @gfp:
2149 * %GFP_USER user allocation.
2150 * %GFP_KERNEL kernel allocations,
2151 * %GFP_HIGHMEM highmem/user allocations,
2152 * %GFP_FS allocation should not call back into a file system.
2153 * %GFP_ATOMIC don't sleep.
2154 *
2155 * @order:Order of the GFP allocation.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2158 * @node: Which node to prefer for allocation (modulo policy).
2159 * @hugepage: for hugepages try only the preferred node if possible
2160 *
2161 * This function allocates a page from the kernel page pool and applies
2162 * a NUMA policy associated with the VMA or the current process.
2163 * When VMA is not NULL caller must read-lock the mmap_lock of the
2164 * mm_struct of the VMA to prevent it from going away. Should be used for
2165 * all allocations for pages that will be mapped into user space. Returns
2166 * NULL when no page can be allocated.
2167 */
2168 struct page *
2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 unsigned long addr, int node, bool hugepage)
2171 {
2172 struct mempolicy *pol;
2173 struct page *page;
2174 int preferred_nid;
2175 nodemask_t *nmask;
2176
2177 pol = get_vma_policy(vma, addr);
2178
2179 if (pol->mode == MPOL_INTERLEAVE) {
2180 unsigned nid;
2181
2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2183 mpol_cond_put(pol);
2184 page = alloc_page_interleave(gfp, order, nid);
2185 goto out;
2186 }
2187
2188 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2189 int hpage_node = node;
2190
2191 /*
2192 * For hugepage allocation and non-interleave policy which
2193 * allows the current node (or other explicitly preferred
2194 * node) we only try to allocate from the current/preferred
2195 * node and don't fall back to other nodes, as the cost of
2196 * remote accesses would likely offset THP benefits.
2197 *
2198 * If the policy is interleave, or does not allow the current
2199 * node in its nodemask, we allocate the standard way.
2200 */
2201 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2202 hpage_node = pol->v.preferred_node;
2203
2204 nmask = policy_nodemask(gfp, pol);
2205 if (!nmask || node_isset(hpage_node, *nmask)) {
2206 mpol_cond_put(pol);
2207 /*
2208 * First, try to allocate THP only on local node, but
2209 * don't reclaim unnecessarily, just compact.
2210 */
2211 page = __alloc_pages_node(hpage_node,
2212 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2213
2214 /*
2215 * If hugepage allocations are configured to always
2216 * synchronous compact or the vma has been madvised
2217 * to prefer hugepage backing, retry allowing remote
2218 * memory with both reclaim and compact as well.
2219 */
2220 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2221 page = __alloc_pages_node(hpage_node,
2222 gfp, order);
2223
2224 goto out;
2225 }
2226 }
2227
2228 nmask = policy_nodemask(gfp, pol);
2229 preferred_nid = policy_node(gfp, pol, node);
2230 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2231 mpol_cond_put(pol);
2232 out:
2233 return page;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_vma);
2236
2237 /**
2238 * alloc_pages_current - Allocate pages.
2239 *
2240 * @gfp:
2241 * %GFP_USER user allocation,
2242 * %GFP_KERNEL kernel allocation,
2243 * %GFP_HIGHMEM highmem allocation,
2244 * %GFP_FS don't call back into a file system.
2245 * %GFP_ATOMIC don't sleep.
2246 * @order: Power of two of allocation size in pages. 0 is a single page.
2247 *
2248 * Allocate a page from the kernel page pool. When not in
2249 * interrupt context and apply the current process NUMA policy.
2250 * Returns NULL when no page can be allocated.
2251 */
2252 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2253 {
2254 struct mempolicy *pol = &default_policy;
2255 struct page *page;
2256
2257 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 pol = get_task_policy(current);
2259
2260 /*
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2263 */
2264 if (pol->mode == MPOL_INTERLEAVE)
2265 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 else
2267 page = __alloc_pages_nodemask(gfp, order,
2268 policy_node(gfp, pol, numa_node_id()),
2269 policy_nodemask(gfp, pol));
2270
2271 return page;
2272 }
2273 EXPORT_SYMBOL(alloc_pages_current);
2274
2275 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2276 {
2277 struct mempolicy *pol = mpol_dup(vma_policy(src));
2278
2279 if (IS_ERR(pol))
2280 return PTR_ERR(pol);
2281 dst->vm_policy = pol;
2282 return 0;
2283 }
2284
2285 /*
2286 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288 * with the mems_allowed returned by cpuset_mems_allowed(). This
2289 * keeps mempolicies cpuset relative after its cpuset moves. See
2290 * further kernel/cpuset.c update_nodemask().
2291 *
2292 * current's mempolicy may be rebinded by the other task(the task that changes
2293 * cpuset's mems), so we needn't do rebind work for current task.
2294 */
2295
2296 /* Slow path of a mempolicy duplicate */
2297 struct mempolicy *__mpol_dup(struct mempolicy *old)
2298 {
2299 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2300
2301 if (!new)
2302 return ERR_PTR(-ENOMEM);
2303
2304 /* task's mempolicy is protected by alloc_lock */
2305 if (old == current->mempolicy) {
2306 task_lock(current);
2307 *new = *old;
2308 task_unlock(current);
2309 } else
2310 *new = *old;
2311
2312 if (current_cpuset_is_being_rebound()) {
2313 nodemask_t mems = cpuset_mems_allowed(current);
2314 mpol_rebind_policy(new, &mems);
2315 }
2316 atomic_set(&new->refcnt, 1);
2317 return new;
2318 }
2319
2320 /* Slow path of a mempolicy comparison */
2321 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2322 {
2323 if (!a || !b)
2324 return false;
2325 if (a->mode != b->mode)
2326 return false;
2327 if (a->flags != b->flags)
2328 return false;
2329 if (mpol_store_user_nodemask(a))
2330 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2331 return false;
2332
2333 switch (a->mode) {
2334 case MPOL_BIND:
2335 case MPOL_INTERLEAVE:
2336 return !!nodes_equal(a->v.nodes, b->v.nodes);
2337 case MPOL_PREFERRED:
2338 /* a's ->flags is the same as b's */
2339 if (a->flags & MPOL_F_LOCAL)
2340 return true;
2341 return a->v.preferred_node == b->v.preferred_node;
2342 default:
2343 BUG();
2344 return false;
2345 }
2346 }
2347
2348 /*
2349 * Shared memory backing store policy support.
2350 *
2351 * Remember policies even when nobody has shared memory mapped.
2352 * The policies are kept in Red-Black tree linked from the inode.
2353 * They are protected by the sp->lock rwlock, which should be held
2354 * for any accesses to the tree.
2355 */
2356
2357 /*
2358 * lookup first element intersecting start-end. Caller holds sp->lock for
2359 * reading or for writing
2360 */
2361 static struct sp_node *
2362 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2363 {
2364 struct rb_node *n = sp->root.rb_node;
2365
2366 while (n) {
2367 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2368
2369 if (start >= p->end)
2370 n = n->rb_right;
2371 else if (end <= p->start)
2372 n = n->rb_left;
2373 else
2374 break;
2375 }
2376 if (!n)
2377 return NULL;
2378 for (;;) {
2379 struct sp_node *w = NULL;
2380 struct rb_node *prev = rb_prev(n);
2381 if (!prev)
2382 break;
2383 w = rb_entry(prev, struct sp_node, nd);
2384 if (w->end <= start)
2385 break;
2386 n = prev;
2387 }
2388 return rb_entry(n, struct sp_node, nd);
2389 }
2390
2391 /*
2392 * Insert a new shared policy into the list. Caller holds sp->lock for
2393 * writing.
2394 */
2395 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2396 {
2397 struct rb_node **p = &sp->root.rb_node;
2398 struct rb_node *parent = NULL;
2399 struct sp_node *nd;
2400
2401 while (*p) {
2402 parent = *p;
2403 nd = rb_entry(parent, struct sp_node, nd);
2404 if (new->start < nd->start)
2405 p = &(*p)->rb_left;
2406 else if (new->end > nd->end)
2407 p = &(*p)->rb_right;
2408 else
2409 BUG();
2410 }
2411 rb_link_node(&new->nd, parent, p);
2412 rb_insert_color(&new->nd, &sp->root);
2413 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2414 new->policy ? new->policy->mode : 0);
2415 }
2416
2417 /* Find shared policy intersecting idx */
2418 struct mempolicy *
2419 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2420 {
2421 struct mempolicy *pol = NULL;
2422 struct sp_node *sn;
2423
2424 if (!sp->root.rb_node)
2425 return NULL;
2426 read_lock(&sp->lock);
2427 sn = sp_lookup(sp, idx, idx+1);
2428 if (sn) {
2429 mpol_get(sn->policy);
2430 pol = sn->policy;
2431 }
2432 read_unlock(&sp->lock);
2433 return pol;
2434 }
2435
2436 static void sp_free(struct sp_node *n)
2437 {
2438 mpol_put(n->policy);
2439 kmem_cache_free(sn_cache, n);
2440 }
2441
2442 /**
2443 * mpol_misplaced - check whether current page node is valid in policy
2444 *
2445 * @page: page to be checked
2446 * @vma: vm area where page mapped
2447 * @addr: virtual address where page mapped
2448 *
2449 * Lookup current policy node id for vma,addr and "compare to" page's
2450 * node id.
2451 *
2452 * Returns:
2453 * -1 - not misplaced, page is in the right node
2454 * node - node id where the page should be
2455 *
2456 * Policy determination "mimics" alloc_page_vma().
2457 * Called from fault path where we know the vma and faulting address.
2458 */
2459 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2460 {
2461 struct mempolicy *pol;
2462 struct zoneref *z;
2463 int curnid = page_to_nid(page);
2464 unsigned long pgoff;
2465 int thiscpu = raw_smp_processor_id();
2466 int thisnid = cpu_to_node(thiscpu);
2467 int polnid = NUMA_NO_NODE;
2468 int ret = -1;
2469
2470 pol = get_vma_policy(vma, addr);
2471 if (!(pol->flags & MPOL_F_MOF))
2472 goto out;
2473
2474 switch (pol->mode) {
2475 case MPOL_INTERLEAVE:
2476 pgoff = vma->vm_pgoff;
2477 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2478 polnid = offset_il_node(pol, pgoff);
2479 break;
2480
2481 case MPOL_PREFERRED:
2482 if (pol->flags & MPOL_F_LOCAL)
2483 polnid = numa_node_id();
2484 else
2485 polnid = pol->v.preferred_node;
2486 break;
2487
2488 case MPOL_BIND:
2489
2490 /*
2491 * allows binding to multiple nodes.
2492 * use current page if in policy nodemask,
2493 * else select nearest allowed node, if any.
2494 * If no allowed nodes, use current [!misplaced].
2495 */
2496 if (node_isset(curnid, pol->v.nodes))
2497 goto out;
2498 z = first_zones_zonelist(
2499 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2500 gfp_zone(GFP_HIGHUSER),
2501 &pol->v.nodes);
2502 polnid = zone_to_nid(z->zone);
2503 break;
2504
2505 default:
2506 BUG();
2507 }
2508
2509 /* Migrate the page towards the node whose CPU is referencing it */
2510 if (pol->flags & MPOL_F_MORON) {
2511 polnid = thisnid;
2512
2513 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2514 goto out;
2515 }
2516
2517 if (curnid != polnid)
2518 ret = polnid;
2519 out:
2520 mpol_cond_put(pol);
2521
2522 return ret;
2523 }
2524
2525 /*
2526 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2527 * dropped after task->mempolicy is set to NULL so that any allocation done as
2528 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2529 * policy.
2530 */
2531 void mpol_put_task_policy(struct task_struct *task)
2532 {
2533 struct mempolicy *pol;
2534
2535 task_lock(task);
2536 pol = task->mempolicy;
2537 task->mempolicy = NULL;
2538 task_unlock(task);
2539 mpol_put(pol);
2540 }
2541
2542 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2543 {
2544 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2545 rb_erase(&n->nd, &sp->root);
2546 sp_free(n);
2547 }
2548
2549 static void sp_node_init(struct sp_node *node, unsigned long start,
2550 unsigned long end, struct mempolicy *pol)
2551 {
2552 node->start = start;
2553 node->end = end;
2554 node->policy = pol;
2555 }
2556
2557 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2558 struct mempolicy *pol)
2559 {
2560 struct sp_node *n;
2561 struct mempolicy *newpol;
2562
2563 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2564 if (!n)
2565 return NULL;
2566
2567 newpol = mpol_dup(pol);
2568 if (IS_ERR(newpol)) {
2569 kmem_cache_free(sn_cache, n);
2570 return NULL;
2571 }
2572 newpol->flags |= MPOL_F_SHARED;
2573 sp_node_init(n, start, end, newpol);
2574
2575 return n;
2576 }
2577
2578 /* Replace a policy range. */
2579 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2580 unsigned long end, struct sp_node *new)
2581 {
2582 struct sp_node *n;
2583 struct sp_node *n_new = NULL;
2584 struct mempolicy *mpol_new = NULL;
2585 int ret = 0;
2586
2587 restart:
2588 write_lock(&sp->lock);
2589 n = sp_lookup(sp, start, end);
2590 /* Take care of old policies in the same range. */
2591 while (n && n->start < end) {
2592 struct rb_node *next = rb_next(&n->nd);
2593 if (n->start >= start) {
2594 if (n->end <= end)
2595 sp_delete(sp, n);
2596 else
2597 n->start = end;
2598 } else {
2599 /* Old policy spanning whole new range. */
2600 if (n->end > end) {
2601 if (!n_new)
2602 goto alloc_new;
2603
2604 *mpol_new = *n->policy;
2605 atomic_set(&mpol_new->refcnt, 1);
2606 sp_node_init(n_new, end, n->end, mpol_new);
2607 n->end = start;
2608 sp_insert(sp, n_new);
2609 n_new = NULL;
2610 mpol_new = NULL;
2611 break;
2612 } else
2613 n->end = start;
2614 }
2615 if (!next)
2616 break;
2617 n = rb_entry(next, struct sp_node, nd);
2618 }
2619 if (new)
2620 sp_insert(sp, new);
2621 write_unlock(&sp->lock);
2622 ret = 0;
2623
2624 err_out:
2625 if (mpol_new)
2626 mpol_put(mpol_new);
2627 if (n_new)
2628 kmem_cache_free(sn_cache, n_new);
2629
2630 return ret;
2631
2632 alloc_new:
2633 write_unlock(&sp->lock);
2634 ret = -ENOMEM;
2635 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2636 if (!n_new)
2637 goto err_out;
2638 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2639 if (!mpol_new)
2640 goto err_out;
2641 goto restart;
2642 }
2643
2644 /**
2645 * mpol_shared_policy_init - initialize shared policy for inode
2646 * @sp: pointer to inode shared policy
2647 * @mpol: struct mempolicy to install
2648 *
2649 * Install non-NULL @mpol in inode's shared policy rb-tree.
2650 * On entry, the current task has a reference on a non-NULL @mpol.
2651 * This must be released on exit.
2652 * This is called at get_inode() calls and we can use GFP_KERNEL.
2653 */
2654 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2655 {
2656 int ret;
2657
2658 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2659 rwlock_init(&sp->lock);
2660
2661 if (mpol) {
2662 struct vm_area_struct pvma;
2663 struct mempolicy *new;
2664 NODEMASK_SCRATCH(scratch);
2665
2666 if (!scratch)
2667 goto put_mpol;
2668 /* contextualize the tmpfs mount point mempolicy */
2669 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2670 if (IS_ERR(new))
2671 goto free_scratch; /* no valid nodemask intersection */
2672
2673 task_lock(current);
2674 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2675 task_unlock(current);
2676 if (ret)
2677 goto put_new;
2678
2679 /* Create pseudo-vma that contains just the policy */
2680 vma_init(&pvma, NULL);
2681 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2682 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2683
2684 put_new:
2685 mpol_put(new); /* drop initial ref */
2686 free_scratch:
2687 NODEMASK_SCRATCH_FREE(scratch);
2688 put_mpol:
2689 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2690 }
2691 }
2692
2693 int mpol_set_shared_policy(struct shared_policy *info,
2694 struct vm_area_struct *vma, struct mempolicy *npol)
2695 {
2696 int err;
2697 struct sp_node *new = NULL;
2698 unsigned long sz = vma_pages(vma);
2699
2700 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2701 vma->vm_pgoff,
2702 sz, npol ? npol->mode : -1,
2703 npol ? npol->flags : -1,
2704 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2705
2706 if (npol) {
2707 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2708 if (!new)
2709 return -ENOMEM;
2710 }
2711 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2712 if (err && new)
2713 sp_free(new);
2714 return err;
2715 }
2716
2717 /* Free a backing policy store on inode delete. */
2718 void mpol_free_shared_policy(struct shared_policy *p)
2719 {
2720 struct sp_node *n;
2721 struct rb_node *next;
2722
2723 if (!p->root.rb_node)
2724 return;
2725 write_lock(&p->lock);
2726 next = rb_first(&p->root);
2727 while (next) {
2728 n = rb_entry(next, struct sp_node, nd);
2729 next = rb_next(&n->nd);
2730 sp_delete(p, n);
2731 }
2732 write_unlock(&p->lock);
2733 }
2734
2735 #ifdef CONFIG_NUMA_BALANCING
2736 static int __initdata numabalancing_override;
2737
2738 static void __init check_numabalancing_enable(void)
2739 {
2740 bool numabalancing_default = false;
2741
2742 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2743 numabalancing_default = true;
2744
2745 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2746 if (numabalancing_override)
2747 set_numabalancing_state(numabalancing_override == 1);
2748
2749 if (num_online_nodes() > 1 && !numabalancing_override) {
2750 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2751 numabalancing_default ? "Enabling" : "Disabling");
2752 set_numabalancing_state(numabalancing_default);
2753 }
2754 }
2755
2756 static int __init setup_numabalancing(char *str)
2757 {
2758 int ret = 0;
2759 if (!str)
2760 goto out;
2761
2762 if (!strcmp(str, "enable")) {
2763 numabalancing_override = 1;
2764 ret = 1;
2765 } else if (!strcmp(str, "disable")) {
2766 numabalancing_override = -1;
2767 ret = 1;
2768 }
2769 out:
2770 if (!ret)
2771 pr_warn("Unable to parse numa_balancing=\n");
2772
2773 return ret;
2774 }
2775 __setup("numa_balancing=", setup_numabalancing);
2776 #else
2777 static inline void __init check_numabalancing_enable(void)
2778 {
2779 }
2780 #endif /* CONFIG_NUMA_BALANCING */
2781
2782 /* assumes fs == KERNEL_DS */
2783 void __init numa_policy_init(void)
2784 {
2785 nodemask_t interleave_nodes;
2786 unsigned long largest = 0;
2787 int nid, prefer = 0;
2788
2789 policy_cache = kmem_cache_create("numa_policy",
2790 sizeof(struct mempolicy),
2791 0, SLAB_PANIC, NULL);
2792
2793 sn_cache = kmem_cache_create("shared_policy_node",
2794 sizeof(struct sp_node),
2795 0, SLAB_PANIC, NULL);
2796
2797 for_each_node(nid) {
2798 preferred_node_policy[nid] = (struct mempolicy) {
2799 .refcnt = ATOMIC_INIT(1),
2800 .mode = MPOL_PREFERRED,
2801 .flags = MPOL_F_MOF | MPOL_F_MORON,
2802 .v = { .preferred_node = nid, },
2803 };
2804 }
2805
2806 /*
2807 * Set interleaving policy for system init. Interleaving is only
2808 * enabled across suitably sized nodes (default is >= 16MB), or
2809 * fall back to the largest node if they're all smaller.
2810 */
2811 nodes_clear(interleave_nodes);
2812 for_each_node_state(nid, N_MEMORY) {
2813 unsigned long total_pages = node_present_pages(nid);
2814
2815 /* Preserve the largest node */
2816 if (largest < total_pages) {
2817 largest = total_pages;
2818 prefer = nid;
2819 }
2820
2821 /* Interleave this node? */
2822 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2823 node_set(nid, interleave_nodes);
2824 }
2825
2826 /* All too small, use the largest */
2827 if (unlikely(nodes_empty(interleave_nodes)))
2828 node_set(prefer, interleave_nodes);
2829
2830 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2831 pr_err("%s: interleaving failed\n", __func__);
2832
2833 check_numabalancing_enable();
2834 }
2835
2836 /* Reset policy of current process to default */
2837 void numa_default_policy(void)
2838 {
2839 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2840 }
2841
2842 /*
2843 * Parse and format mempolicy from/to strings
2844 */
2845
2846 /*
2847 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2848 */
2849 static const char * const policy_modes[] =
2850 {
2851 [MPOL_DEFAULT] = "default",
2852 [MPOL_PREFERRED] = "prefer",
2853 [MPOL_BIND] = "bind",
2854 [MPOL_INTERLEAVE] = "interleave",
2855 [MPOL_LOCAL] = "local",
2856 };
2857
2858
2859 #ifdef CONFIG_TMPFS
2860 /**
2861 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2862 * @str: string containing mempolicy to parse
2863 * @mpol: pointer to struct mempolicy pointer, returned on success.
2864 *
2865 * Format of input:
2866 * <mode>[=<flags>][:<nodelist>]
2867 *
2868 * On success, returns 0, else 1
2869 */
2870 int mpol_parse_str(char *str, struct mempolicy **mpol)
2871 {
2872 struct mempolicy *new = NULL;
2873 unsigned short mode_flags;
2874 nodemask_t nodes;
2875 char *nodelist = strchr(str, ':');
2876 char *flags = strchr(str, '=');
2877 int err = 1, mode;
2878
2879 if (flags)
2880 *flags++ = '\0'; /* terminate mode string */
2881
2882 if (nodelist) {
2883 /* NUL-terminate mode or flags string */
2884 *nodelist++ = '\0';
2885 if (nodelist_parse(nodelist, nodes))
2886 goto out;
2887 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2888 goto out;
2889 } else
2890 nodes_clear(nodes);
2891
2892 mode = match_string(policy_modes, MPOL_MAX, str);
2893 if (mode < 0)
2894 goto out;
2895
2896 switch (mode) {
2897 case MPOL_PREFERRED:
2898 /*
2899 * Insist on a nodelist of one node only, although later
2900 * we use first_node(nodes) to grab a single node, so here
2901 * nodelist (or nodes) cannot be empty.
2902 */
2903 if (nodelist) {
2904 char *rest = nodelist;
2905 while (isdigit(*rest))
2906 rest++;
2907 if (*rest)
2908 goto out;
2909 if (nodes_empty(nodes))
2910 goto out;
2911 }
2912 break;
2913 case MPOL_INTERLEAVE:
2914 /*
2915 * Default to online nodes with memory if no nodelist
2916 */
2917 if (!nodelist)
2918 nodes = node_states[N_MEMORY];
2919 break;
2920 case MPOL_LOCAL:
2921 /*
2922 * Don't allow a nodelist; mpol_new() checks flags
2923 */
2924 if (nodelist)
2925 goto out;
2926 mode = MPOL_PREFERRED;
2927 break;
2928 case MPOL_DEFAULT:
2929 /*
2930 * Insist on a empty nodelist
2931 */
2932 if (!nodelist)
2933 err = 0;
2934 goto out;
2935 case MPOL_BIND:
2936 /*
2937 * Insist on a nodelist
2938 */
2939 if (!nodelist)
2940 goto out;
2941 }
2942
2943 mode_flags = 0;
2944 if (flags) {
2945 /*
2946 * Currently, we only support two mutually exclusive
2947 * mode flags.
2948 */
2949 if (!strcmp(flags, "static"))
2950 mode_flags |= MPOL_F_STATIC_NODES;
2951 else if (!strcmp(flags, "relative"))
2952 mode_flags |= MPOL_F_RELATIVE_NODES;
2953 else
2954 goto out;
2955 }
2956
2957 new = mpol_new(mode, mode_flags, &nodes);
2958 if (IS_ERR(new))
2959 goto out;
2960
2961 /*
2962 * Save nodes for mpol_to_str() to show the tmpfs mount options
2963 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2964 */
2965 if (mode != MPOL_PREFERRED)
2966 new->v.nodes = nodes;
2967 else if (nodelist)
2968 new->v.preferred_node = first_node(nodes);
2969 else
2970 new->flags |= MPOL_F_LOCAL;
2971
2972 /*
2973 * Save nodes for contextualization: this will be used to "clone"
2974 * the mempolicy in a specific context [cpuset] at a later time.
2975 */
2976 new->w.user_nodemask = nodes;
2977
2978 err = 0;
2979
2980 out:
2981 /* Restore string for error message */
2982 if (nodelist)
2983 *--nodelist = ':';
2984 if (flags)
2985 *--flags = '=';
2986 if (!err)
2987 *mpol = new;
2988 return err;
2989 }
2990 #endif /* CONFIG_TMPFS */
2991
2992 /**
2993 * mpol_to_str - format a mempolicy structure for printing
2994 * @buffer: to contain formatted mempolicy string
2995 * @maxlen: length of @buffer
2996 * @pol: pointer to mempolicy to be formatted
2997 *
2998 * Convert @pol into a string. If @buffer is too short, truncate the string.
2999 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3000 * longest flag, "relative", and to display at least a few node ids.
3001 */
3002 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3003 {
3004 char *p = buffer;
3005 nodemask_t nodes = NODE_MASK_NONE;
3006 unsigned short mode = MPOL_DEFAULT;
3007 unsigned short flags = 0;
3008
3009 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3010 mode = pol->mode;
3011 flags = pol->flags;
3012 }
3013
3014 switch (mode) {
3015 case MPOL_DEFAULT:
3016 break;
3017 case MPOL_PREFERRED:
3018 if (flags & MPOL_F_LOCAL)
3019 mode = MPOL_LOCAL;
3020 else
3021 node_set(pol->v.preferred_node, nodes);
3022 break;
3023 case MPOL_BIND:
3024 case MPOL_INTERLEAVE:
3025 nodes = pol->v.nodes;
3026 break;
3027 default:
3028 WARN_ON_ONCE(1);
3029 snprintf(p, maxlen, "unknown");
3030 return;
3031 }
3032
3033 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3034
3035 if (flags & MPOL_MODE_FLAGS) {
3036 p += snprintf(p, buffer + maxlen - p, "=");
3037
3038 /*
3039 * Currently, the only defined flags are mutually exclusive
3040 */
3041 if (flags & MPOL_F_STATIC_NODES)
3042 p += snprintf(p, buffer + maxlen - p, "static");
3043 else if (flags & MPOL_F_RELATIVE_NODES)
3044 p += snprintf(p, buffer + maxlen - p, "relative");
3045 }
3046
3047 if (!nodes_empty(nodes))
3048 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3049 nodemask_pr_args(&nodes));
3050 }