]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
Merge tag 'libnvdimm-for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm...
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 /**
131 * numa_map_to_online_node - Find closest online node
132 * @nid: Node id to start the search
133 *
134 * Lookup the next closest node by distance if @nid is not online.
135 */
136 int numa_map_to_online_node(int node)
137 {
138 int min_dist = INT_MAX, dist, n, min_node;
139
140 if (node == NUMA_NO_NODE || node_online(node))
141 return node;
142
143 min_node = node;
144 for_each_online_node(n) {
145 dist = node_distance(node, n);
146 if (dist < min_dist) {
147 min_dist = dist;
148 min_node = n;
149 }
150 }
151
152 return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155
156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 struct mempolicy *pol = p->mempolicy;
159 int node;
160
161 if (pol)
162 return pol;
163
164 node = numa_node_id();
165 if (node != NUMA_NO_NODE) {
166 pol = &preferred_node_policy[node];
167 /* preferred_node_policy is not initialised early in boot */
168 if (pol->mode)
169 return pol;
170 }
171
172 return &default_policy;
173 }
174
175 static const struct mempolicy_operations {
176 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179
180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 return pol->flags & MPOL_MODE_FLAGS;
183 }
184
185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 const nodemask_t *rel)
187 {
188 nodemask_t tmp;
189 nodes_fold(tmp, *orig, nodes_weight(*rel));
190 nodes_onto(*ret, tmp, *rel);
191 }
192
193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 if (nodes_empty(*nodes))
196 return -EINVAL;
197 pol->v.nodes = *nodes;
198 return 0;
199 }
200
201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 if (!nodes)
204 pol->flags |= MPOL_F_LOCAL; /* local allocation */
205 else if (nodes_empty(*nodes))
206 return -EINVAL; /* no allowed nodes */
207 else
208 pol->v.preferred_node = first_node(*nodes);
209 return 0;
210 }
211
212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 if (nodes_empty(*nodes))
215 return -EINVAL;
216 pol->v.nodes = *nodes;
217 return 0;
218 }
219
220 /*
221 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222 * any, for the new policy. mpol_new() has already validated the nodes
223 * parameter with respect to the policy mode and flags. But, we need to
224 * handle an empty nodemask with MPOL_PREFERRED here.
225 *
226 * Must be called holding task's alloc_lock to protect task's mems_allowed
227 * and mempolicy. May also be called holding the mmap_lock for write.
228 */
229 static int mpol_set_nodemask(struct mempolicy *pol,
230 const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 int ret;
233
234 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 if (pol == NULL)
236 return 0;
237 /* Check N_MEMORY */
238 nodes_and(nsc->mask1,
239 cpuset_current_mems_allowed, node_states[N_MEMORY]);
240
241 VM_BUG_ON(!nodes);
242 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 nodes = NULL; /* explicit local allocation */
244 else {
245 if (pol->flags & MPOL_F_RELATIVE_NODES)
246 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 else
248 nodes_and(nsc->mask2, *nodes, nsc->mask1);
249
250 if (mpol_store_user_nodemask(pol))
251 pol->w.user_nodemask = *nodes;
252 else
253 pol->w.cpuset_mems_allowed =
254 cpuset_current_mems_allowed;
255 }
256
257 if (nodes)
258 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 else
260 ret = mpol_ops[pol->mode].create(pol, NULL);
261 return ret;
262 }
263
264 /*
265 * This function just creates a new policy, does some check and simple
266 * initialization. You must invoke mpol_set_nodemask() to set nodes.
267 */
268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 nodemask_t *nodes)
270 {
271 struct mempolicy *policy;
272
273 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275
276 if (mode == MPOL_DEFAULT) {
277 if (nodes && !nodes_empty(*nodes))
278 return ERR_PTR(-EINVAL);
279 return NULL;
280 }
281 VM_BUG_ON(!nodes);
282
283 /*
284 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 * All other modes require a valid pointer to a non-empty nodemask.
287 */
288 if (mode == MPOL_PREFERRED) {
289 if (nodes_empty(*nodes)) {
290 if (((flags & MPOL_F_STATIC_NODES) ||
291 (flags & MPOL_F_RELATIVE_NODES)))
292 return ERR_PTR(-EINVAL);
293 }
294 } else if (mode == MPOL_LOCAL) {
295 if (!nodes_empty(*nodes) ||
296 (flags & MPOL_F_STATIC_NODES) ||
297 (flags & MPOL_F_RELATIVE_NODES))
298 return ERR_PTR(-EINVAL);
299 mode = MPOL_PREFERRED;
300 } else if (nodes_empty(*nodes))
301 return ERR_PTR(-EINVAL);
302 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 if (!policy)
304 return ERR_PTR(-ENOMEM);
305 atomic_set(&policy->refcnt, 1);
306 policy->mode = mode;
307 policy->flags = flags;
308
309 return policy;
310 }
311
312 /* Slow path of a mpol destructor. */
313 void __mpol_put(struct mempolicy *p)
314 {
315 if (!atomic_dec_and_test(&p->refcnt))
316 return;
317 kmem_cache_free(policy_cache, p);
318 }
319
320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323
324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 nodemask_t tmp;
327
328 if (pol->flags & MPOL_F_STATIC_NODES)
329 nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 else {
333 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 *nodes);
335 pol->w.cpuset_mems_allowed = *nodes;
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 pol->v.nodes = tmp;
342 }
343
344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 const nodemask_t *nodes)
346 {
347 nodemask_t tmp;
348
349 if (pol->flags & MPOL_F_STATIC_NODES) {
350 int node = first_node(pol->w.user_nodemask);
351
352 if (node_isset(node, *nodes)) {
353 pol->v.preferred_node = node;
354 pol->flags &= ~MPOL_F_LOCAL;
355 } else
356 pol->flags |= MPOL_F_LOCAL;
357 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 pol->v.preferred_node = first_node(tmp);
360 } else if (!(pol->flags & MPOL_F_LOCAL)) {
361 pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 pol->w.cpuset_mems_allowed,
363 *nodes);
364 pol->w.cpuset_mems_allowed = *nodes;
365 }
366 }
367
368 /*
369 * mpol_rebind_policy - Migrate a policy to a different set of nodes
370 *
371 * Per-vma policies are protected by mmap_lock. Allocations using per-task
372 * policies are protected by task->mems_allowed_seq to prevent a premature
373 * OOM/allocation failure due to parallel nodemask modification.
374 */
375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 if (!pol)
378 return;
379 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 return;
382
383 mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385
386 /*
387 * Wrapper for mpol_rebind_policy() that just requires task
388 * pointer, and updates task mempolicy.
389 *
390 * Called with task's alloc_lock held.
391 */
392
393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 mpol_rebind_policy(tsk->mempolicy, new);
396 }
397
398 /*
399 * Rebind each vma in mm to new nodemask.
400 *
401 * Call holding a reference to mm. Takes mm->mmap_lock during call.
402 */
403
404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 struct vm_area_struct *vma;
407
408 mmap_write_lock(mm);
409 for (vma = mm->mmap; vma; vma = vma->vm_next)
410 mpol_rebind_policy(vma->vm_policy, new);
411 mmap_write_unlock(mm);
412 }
413
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 [MPOL_DEFAULT] = {
416 .rebind = mpol_rebind_default,
417 },
418 [MPOL_INTERLEAVE] = {
419 .create = mpol_new_interleave,
420 .rebind = mpol_rebind_nodemask,
421 },
422 [MPOL_PREFERRED] = {
423 .create = mpol_new_preferred,
424 .rebind = mpol_rebind_preferred,
425 },
426 [MPOL_BIND] = {
427 .create = mpol_new_bind,
428 .rebind = mpol_rebind_nodemask,
429 },
430 };
431
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 unsigned long flags);
434
435 struct queue_pages {
436 struct list_head *pagelist;
437 unsigned long flags;
438 nodemask_t *nmask;
439 unsigned long start;
440 unsigned long end;
441 struct vm_area_struct *first;
442 };
443
444 /*
445 * Check if the page's nid is in qp->nmask.
446 *
447 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448 * in the invert of qp->nmask.
449 */
450 static inline bool queue_pages_required(struct page *page,
451 struct queue_pages *qp)
452 {
453 int nid = page_to_nid(page);
454 unsigned long flags = qp->flags;
455
456 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458
459 /*
460 * queue_pages_pmd() has four possible return values:
461 * 0 - pages are placed on the right node or queued successfully.
462 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463 * specified.
464 * 2 - THP was split.
465 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466 * existing page was already on a node that does not follow the
467 * policy.
468 */
469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 unsigned long end, struct mm_walk *walk)
471 __releases(ptl)
472 {
473 int ret = 0;
474 struct page *page;
475 struct queue_pages *qp = walk->private;
476 unsigned long flags;
477
478 if (unlikely(is_pmd_migration_entry(*pmd))) {
479 ret = -EIO;
480 goto unlock;
481 }
482 page = pmd_page(*pmd);
483 if (is_huge_zero_page(page)) {
484 spin_unlock(ptl);
485 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 ret = 2;
487 goto out;
488 }
489 if (!queue_pages_required(page, qp))
490 goto unlock;
491
492 flags = qp->flags;
493 /* go to thp migration */
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 if (!vma_migratable(walk->vma) ||
496 migrate_page_add(page, qp->pagelist, flags)) {
497 ret = 1;
498 goto unlock;
499 }
500 } else
501 ret = -EIO;
502 unlock:
503 spin_unlock(ptl);
504 out:
505 return ret;
506 }
507
508 /*
509 * Scan through pages checking if pages follow certain conditions,
510 * and move them to the pagelist if they do.
511 *
512 * queue_pages_pte_range() has three possible return values:
513 * 0 - pages are placed on the right node or queued successfully.
514 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515 * specified.
516 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517 * on a node that does not follow the policy.
518 */
519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 unsigned long end, struct mm_walk *walk)
521 {
522 struct vm_area_struct *vma = walk->vma;
523 struct page *page;
524 struct queue_pages *qp = walk->private;
525 unsigned long flags = qp->flags;
526 int ret;
527 bool has_unmovable = false;
528 pte_t *pte;
529 spinlock_t *ptl;
530
531 ptl = pmd_trans_huge_lock(pmd, vma);
532 if (ptl) {
533 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 if (ret != 2)
535 return ret;
536 }
537 /* THP was split, fall through to pte walk */
538
539 if (pmd_trans_unstable(pmd))
540 return 0;
541
542 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 for (; addr != end; pte++, addr += PAGE_SIZE) {
544 if (!pte_present(*pte))
545 continue;
546 page = vm_normal_page(vma, addr, *pte);
547 if (!page)
548 continue;
549 /*
550 * vm_normal_page() filters out zero pages, but there might
551 * still be PageReserved pages to skip, perhaps in a VDSO.
552 */
553 if (PageReserved(page))
554 continue;
555 if (!queue_pages_required(page, qp))
556 continue;
557 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 /* MPOL_MF_STRICT must be specified if we get here */
559 if (!vma_migratable(vma)) {
560 has_unmovable = true;
561 break;
562 }
563
564 /*
565 * Do not abort immediately since there may be
566 * temporary off LRU pages in the range. Still
567 * need migrate other LRU pages.
568 */
569 if (migrate_page_add(page, qp->pagelist, flags))
570 has_unmovable = true;
571 } else
572 break;
573 }
574 pte_unmap_unlock(pte - 1, ptl);
575 cond_resched();
576
577 if (has_unmovable)
578 return 1;
579
580 return addr != end ? -EIO : 0;
581 }
582
583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 unsigned long addr, unsigned long end,
585 struct mm_walk *walk)
586 {
587 int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 struct queue_pages *qp = walk->private;
590 unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 struct page *page;
592 spinlock_t *ptl;
593 pte_t entry;
594
595 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 entry = huge_ptep_get(pte);
597 if (!pte_present(entry))
598 goto unlock;
599 page = pte_page(entry);
600 if (!queue_pages_required(page, qp))
601 goto unlock;
602
603 if (flags == MPOL_MF_STRICT) {
604 /*
605 * STRICT alone means only detecting misplaced page and no
606 * need to further check other vma.
607 */
608 ret = -EIO;
609 goto unlock;
610 }
611
612 if (!vma_migratable(walk->vma)) {
613 /*
614 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 * stopped walking current vma.
616 * Detecting misplaced page but allow migrating pages which
617 * have been queued.
618 */
619 ret = 1;
620 goto unlock;
621 }
622
623 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 if (flags & (MPOL_MF_MOVE_ALL) ||
625 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
626 if (!isolate_huge_page(page, qp->pagelist) &&
627 (flags & MPOL_MF_STRICT))
628 /*
629 * Failed to isolate page but allow migrating pages
630 * which have been queued.
631 */
632 ret = 1;
633 }
634 unlock:
635 spin_unlock(ptl);
636 #else
637 BUG();
638 #endif
639 return ret;
640 }
641
642 #ifdef CONFIG_NUMA_BALANCING
643 /*
644 * This is used to mark a range of virtual addresses to be inaccessible.
645 * These are later cleared by a NUMA hinting fault. Depending on these
646 * faults, pages may be migrated for better NUMA placement.
647 *
648 * This is assuming that NUMA faults are handled using PROT_NONE. If
649 * an architecture makes a different choice, it will need further
650 * changes to the core.
651 */
652 unsigned long change_prot_numa(struct vm_area_struct *vma,
653 unsigned long addr, unsigned long end)
654 {
655 int nr_updated;
656
657 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
658 if (nr_updated)
659 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
660
661 return nr_updated;
662 }
663 #else
664 static unsigned long change_prot_numa(struct vm_area_struct *vma,
665 unsigned long addr, unsigned long end)
666 {
667 return 0;
668 }
669 #endif /* CONFIG_NUMA_BALANCING */
670
671 static int queue_pages_test_walk(unsigned long start, unsigned long end,
672 struct mm_walk *walk)
673 {
674 struct vm_area_struct *vma = walk->vma;
675 struct queue_pages *qp = walk->private;
676 unsigned long endvma = vma->vm_end;
677 unsigned long flags = qp->flags;
678
679 /* range check first */
680 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
681
682 if (!qp->first) {
683 qp->first = vma;
684 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
685 (qp->start < vma->vm_start))
686 /* hole at head side of range */
687 return -EFAULT;
688 }
689 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
690 ((vma->vm_end < qp->end) &&
691 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
692 /* hole at middle or tail of range */
693 return -EFAULT;
694
695 /*
696 * Need check MPOL_MF_STRICT to return -EIO if possible
697 * regardless of vma_migratable
698 */
699 if (!vma_migratable(vma) &&
700 !(flags & MPOL_MF_STRICT))
701 return 1;
702
703 if (endvma > end)
704 endvma = end;
705
706 if (flags & MPOL_MF_LAZY) {
707 /* Similar to task_numa_work, skip inaccessible VMAs */
708 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
709 !(vma->vm_flags & VM_MIXEDMAP))
710 change_prot_numa(vma, start, endvma);
711 return 1;
712 }
713
714 /* queue pages from current vma */
715 if (flags & MPOL_MF_VALID)
716 return 0;
717 return 1;
718 }
719
720 static const struct mm_walk_ops queue_pages_walk_ops = {
721 .hugetlb_entry = queue_pages_hugetlb,
722 .pmd_entry = queue_pages_pte_range,
723 .test_walk = queue_pages_test_walk,
724 };
725
726 /*
727 * Walk through page tables and collect pages to be migrated.
728 *
729 * If pages found in a given range are on a set of nodes (determined by
730 * @nodes and @flags,) it's isolated and queued to the pagelist which is
731 * passed via @private.
732 *
733 * queue_pages_range() has three possible return values:
734 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
735 * specified.
736 * 0 - queue pages successfully or no misplaced page.
737 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
738 * memory range specified by nodemask and maxnode points outside
739 * your accessible address space (-EFAULT)
740 */
741 static int
742 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
743 nodemask_t *nodes, unsigned long flags,
744 struct list_head *pagelist)
745 {
746 int err;
747 struct queue_pages qp = {
748 .pagelist = pagelist,
749 .flags = flags,
750 .nmask = nodes,
751 .start = start,
752 .end = end,
753 .first = NULL,
754 };
755
756 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
757
758 if (!qp.first)
759 /* whole range in hole */
760 err = -EFAULT;
761
762 return err;
763 }
764
765 /*
766 * Apply policy to a single VMA
767 * This must be called with the mmap_lock held for writing.
768 */
769 static int vma_replace_policy(struct vm_area_struct *vma,
770 struct mempolicy *pol)
771 {
772 int err;
773 struct mempolicy *old;
774 struct mempolicy *new;
775
776 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
777 vma->vm_start, vma->vm_end, vma->vm_pgoff,
778 vma->vm_ops, vma->vm_file,
779 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
780
781 new = mpol_dup(pol);
782 if (IS_ERR(new))
783 return PTR_ERR(new);
784
785 if (vma->vm_ops && vma->vm_ops->set_policy) {
786 err = vma->vm_ops->set_policy(vma, new);
787 if (err)
788 goto err_out;
789 }
790
791 old = vma->vm_policy;
792 vma->vm_policy = new; /* protected by mmap_lock */
793 mpol_put(old);
794
795 return 0;
796 err_out:
797 mpol_put(new);
798 return err;
799 }
800
801 /* Step 2: apply policy to a range and do splits. */
802 static int mbind_range(struct mm_struct *mm, unsigned long start,
803 unsigned long end, struct mempolicy *new_pol)
804 {
805 struct vm_area_struct *next;
806 struct vm_area_struct *prev;
807 struct vm_area_struct *vma;
808 int err = 0;
809 pgoff_t pgoff;
810 unsigned long vmstart;
811 unsigned long vmend;
812
813 vma = find_vma(mm, start);
814 VM_BUG_ON(!vma);
815
816 prev = vma->vm_prev;
817 if (start > vma->vm_start)
818 prev = vma;
819
820 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
821 next = vma->vm_next;
822 vmstart = max(start, vma->vm_start);
823 vmend = min(end, vma->vm_end);
824
825 if (mpol_equal(vma_policy(vma), new_pol))
826 continue;
827
828 pgoff = vma->vm_pgoff +
829 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
830 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
831 vma->anon_vma, vma->vm_file, pgoff,
832 new_pol, vma->vm_userfaultfd_ctx);
833 if (prev) {
834 vma = prev;
835 next = vma->vm_next;
836 if (mpol_equal(vma_policy(vma), new_pol))
837 continue;
838 /* vma_merge() joined vma && vma->next, case 8 */
839 goto replace;
840 }
841 if (vma->vm_start != vmstart) {
842 err = split_vma(vma->vm_mm, vma, vmstart, 1);
843 if (err)
844 goto out;
845 }
846 if (vma->vm_end != vmend) {
847 err = split_vma(vma->vm_mm, vma, vmend, 0);
848 if (err)
849 goto out;
850 }
851 replace:
852 err = vma_replace_policy(vma, new_pol);
853 if (err)
854 goto out;
855 }
856
857 out:
858 return err;
859 }
860
861 /* Set the process memory policy */
862 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
863 nodemask_t *nodes)
864 {
865 struct mempolicy *new, *old;
866 NODEMASK_SCRATCH(scratch);
867 int ret;
868
869 if (!scratch)
870 return -ENOMEM;
871
872 new = mpol_new(mode, flags, nodes);
873 if (IS_ERR(new)) {
874 ret = PTR_ERR(new);
875 goto out;
876 }
877
878 task_lock(current);
879 ret = mpol_set_nodemask(new, nodes, scratch);
880 if (ret) {
881 task_unlock(current);
882 mpol_put(new);
883 goto out;
884 }
885 old = current->mempolicy;
886 current->mempolicy = new;
887 if (new && new->mode == MPOL_INTERLEAVE)
888 current->il_prev = MAX_NUMNODES-1;
889 task_unlock(current);
890 mpol_put(old);
891 ret = 0;
892 out:
893 NODEMASK_SCRATCH_FREE(scratch);
894 return ret;
895 }
896
897 /*
898 * Return nodemask for policy for get_mempolicy() query
899 *
900 * Called with task's alloc_lock held
901 */
902 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
903 {
904 nodes_clear(*nodes);
905 if (p == &default_policy)
906 return;
907
908 switch (p->mode) {
909 case MPOL_BIND:
910 case MPOL_INTERLEAVE:
911 *nodes = p->v.nodes;
912 break;
913 case MPOL_PREFERRED:
914 if (!(p->flags & MPOL_F_LOCAL))
915 node_set(p->v.preferred_node, *nodes);
916 /* else return empty node mask for local allocation */
917 break;
918 default:
919 BUG();
920 }
921 }
922
923 static int lookup_node(struct mm_struct *mm, unsigned long addr)
924 {
925 struct page *p = NULL;
926 int err;
927
928 int locked = 1;
929 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
930 if (err > 0) {
931 err = page_to_nid(p);
932 put_page(p);
933 }
934 if (locked)
935 mmap_read_unlock(mm);
936 return err;
937 }
938
939 /* Retrieve NUMA policy */
940 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
941 unsigned long addr, unsigned long flags)
942 {
943 int err;
944 struct mm_struct *mm = current->mm;
945 struct vm_area_struct *vma = NULL;
946 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
947
948 if (flags &
949 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
950 return -EINVAL;
951
952 if (flags & MPOL_F_MEMS_ALLOWED) {
953 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
954 return -EINVAL;
955 *policy = 0; /* just so it's initialized */
956 task_lock(current);
957 *nmask = cpuset_current_mems_allowed;
958 task_unlock(current);
959 return 0;
960 }
961
962 if (flags & MPOL_F_ADDR) {
963 /*
964 * Do NOT fall back to task policy if the
965 * vma/shared policy at addr is NULL. We
966 * want to return MPOL_DEFAULT in this case.
967 */
968 mmap_read_lock(mm);
969 vma = find_vma_intersection(mm, addr, addr+1);
970 if (!vma) {
971 mmap_read_unlock(mm);
972 return -EFAULT;
973 }
974 if (vma->vm_ops && vma->vm_ops->get_policy)
975 pol = vma->vm_ops->get_policy(vma, addr);
976 else
977 pol = vma->vm_policy;
978 } else if (addr)
979 return -EINVAL;
980
981 if (!pol)
982 pol = &default_policy; /* indicates default behavior */
983
984 if (flags & MPOL_F_NODE) {
985 if (flags & MPOL_F_ADDR) {
986 /*
987 * Take a refcount on the mpol, lookup_node()
988 * wil drop the mmap_lock, so after calling
989 * lookup_node() only "pol" remains valid, "vma"
990 * is stale.
991 */
992 pol_refcount = pol;
993 vma = NULL;
994 mpol_get(pol);
995 err = lookup_node(mm, addr);
996 if (err < 0)
997 goto out;
998 *policy = err;
999 } else if (pol == current->mempolicy &&
1000 pol->mode == MPOL_INTERLEAVE) {
1001 *policy = next_node_in(current->il_prev, pol->v.nodes);
1002 } else {
1003 err = -EINVAL;
1004 goto out;
1005 }
1006 } else {
1007 *policy = pol == &default_policy ? MPOL_DEFAULT :
1008 pol->mode;
1009 /*
1010 * Internal mempolicy flags must be masked off before exposing
1011 * the policy to userspace.
1012 */
1013 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1014 }
1015
1016 err = 0;
1017 if (nmask) {
1018 if (mpol_store_user_nodemask(pol)) {
1019 *nmask = pol->w.user_nodemask;
1020 } else {
1021 task_lock(current);
1022 get_policy_nodemask(pol, nmask);
1023 task_unlock(current);
1024 }
1025 }
1026
1027 out:
1028 mpol_cond_put(pol);
1029 if (vma)
1030 mmap_read_unlock(mm);
1031 if (pol_refcount)
1032 mpol_put(pol_refcount);
1033 return err;
1034 }
1035
1036 #ifdef CONFIG_MIGRATION
1037 /*
1038 * page migration, thp tail pages can be passed.
1039 */
1040 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1041 unsigned long flags)
1042 {
1043 struct page *head = compound_head(page);
1044 /*
1045 * Avoid migrating a page that is shared with others.
1046 */
1047 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1048 if (!isolate_lru_page(head)) {
1049 list_add_tail(&head->lru, pagelist);
1050 mod_node_page_state(page_pgdat(head),
1051 NR_ISOLATED_ANON + page_is_file_lru(head),
1052 hpage_nr_pages(head));
1053 } else if (flags & MPOL_MF_STRICT) {
1054 /*
1055 * Non-movable page may reach here. And, there may be
1056 * temporary off LRU pages or non-LRU movable pages.
1057 * Treat them as unmovable pages since they can't be
1058 * isolated, so they can't be moved at the moment. It
1059 * should return -EIO for this case too.
1060 */
1061 return -EIO;
1062 }
1063 }
1064
1065 return 0;
1066 }
1067
1068 /* page allocation callback for NUMA node migration */
1069 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1070 {
1071 if (PageHuge(page))
1072 return alloc_huge_page_node(page_hstate(compound_head(page)),
1073 node);
1074 else if (PageTransHuge(page)) {
1075 struct page *thp;
1076
1077 thp = alloc_pages_node(node,
1078 (GFP_TRANSHUGE | __GFP_THISNODE),
1079 HPAGE_PMD_ORDER);
1080 if (!thp)
1081 return NULL;
1082 prep_transhuge_page(thp);
1083 return thp;
1084 } else
1085 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1086 __GFP_THISNODE, 0);
1087 }
1088
1089 /*
1090 * Migrate pages from one node to a target node.
1091 * Returns error or the number of pages not migrated.
1092 */
1093 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1094 int flags)
1095 {
1096 nodemask_t nmask;
1097 LIST_HEAD(pagelist);
1098 int err = 0;
1099
1100 nodes_clear(nmask);
1101 node_set(source, nmask);
1102
1103 /*
1104 * This does not "check" the range but isolates all pages that
1105 * need migration. Between passing in the full user address
1106 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1107 */
1108 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1109 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1110 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1111
1112 if (!list_empty(&pagelist)) {
1113 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1114 MIGRATE_SYNC, MR_SYSCALL);
1115 if (err)
1116 putback_movable_pages(&pagelist);
1117 }
1118
1119 return err;
1120 }
1121
1122 /*
1123 * Move pages between the two nodesets so as to preserve the physical
1124 * layout as much as possible.
1125 *
1126 * Returns the number of page that could not be moved.
1127 */
1128 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1129 const nodemask_t *to, int flags)
1130 {
1131 int busy = 0;
1132 int err;
1133 nodemask_t tmp;
1134
1135 err = migrate_prep();
1136 if (err)
1137 return err;
1138
1139 mmap_read_lock(mm);
1140
1141 /*
1142 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1143 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1144 * bit in 'tmp', and return that <source, dest> pair for migration.
1145 * The pair of nodemasks 'to' and 'from' define the map.
1146 *
1147 * If no pair of bits is found that way, fallback to picking some
1148 * pair of 'source' and 'dest' bits that are not the same. If the
1149 * 'source' and 'dest' bits are the same, this represents a node
1150 * that will be migrating to itself, so no pages need move.
1151 *
1152 * If no bits are left in 'tmp', or if all remaining bits left
1153 * in 'tmp' correspond to the same bit in 'to', return false
1154 * (nothing left to migrate).
1155 *
1156 * This lets us pick a pair of nodes to migrate between, such that
1157 * if possible the dest node is not already occupied by some other
1158 * source node, minimizing the risk of overloading the memory on a
1159 * node that would happen if we migrated incoming memory to a node
1160 * before migrating outgoing memory source that same node.
1161 *
1162 * A single scan of tmp is sufficient. As we go, we remember the
1163 * most recent <s, d> pair that moved (s != d). If we find a pair
1164 * that not only moved, but what's better, moved to an empty slot
1165 * (d is not set in tmp), then we break out then, with that pair.
1166 * Otherwise when we finish scanning from_tmp, we at least have the
1167 * most recent <s, d> pair that moved. If we get all the way through
1168 * the scan of tmp without finding any node that moved, much less
1169 * moved to an empty node, then there is nothing left worth migrating.
1170 */
1171
1172 tmp = *from;
1173 while (!nodes_empty(tmp)) {
1174 int s,d;
1175 int source = NUMA_NO_NODE;
1176 int dest = 0;
1177
1178 for_each_node_mask(s, tmp) {
1179
1180 /*
1181 * do_migrate_pages() tries to maintain the relative
1182 * node relationship of the pages established between
1183 * threads and memory areas.
1184 *
1185 * However if the number of source nodes is not equal to
1186 * the number of destination nodes we can not preserve
1187 * this node relative relationship. In that case, skip
1188 * copying memory from a node that is in the destination
1189 * mask.
1190 *
1191 * Example: [2,3,4] -> [3,4,5] moves everything.
1192 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1193 */
1194
1195 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1196 (node_isset(s, *to)))
1197 continue;
1198
1199 d = node_remap(s, *from, *to);
1200 if (s == d)
1201 continue;
1202
1203 source = s; /* Node moved. Memorize */
1204 dest = d;
1205
1206 /* dest not in remaining from nodes? */
1207 if (!node_isset(dest, tmp))
1208 break;
1209 }
1210 if (source == NUMA_NO_NODE)
1211 break;
1212
1213 node_clear(source, tmp);
1214 err = migrate_to_node(mm, source, dest, flags);
1215 if (err > 0)
1216 busy += err;
1217 if (err < 0)
1218 break;
1219 }
1220 mmap_read_unlock(mm);
1221 if (err < 0)
1222 return err;
1223 return busy;
1224
1225 }
1226
1227 /*
1228 * Allocate a new page for page migration based on vma policy.
1229 * Start by assuming the page is mapped by the same vma as contains @start.
1230 * Search forward from there, if not. N.B., this assumes that the
1231 * list of pages handed to migrate_pages()--which is how we get here--
1232 * is in virtual address order.
1233 */
1234 static struct page *new_page(struct page *page, unsigned long start)
1235 {
1236 struct vm_area_struct *vma;
1237 unsigned long uninitialized_var(address);
1238
1239 vma = find_vma(current->mm, start);
1240 while (vma) {
1241 address = page_address_in_vma(page, vma);
1242 if (address != -EFAULT)
1243 break;
1244 vma = vma->vm_next;
1245 }
1246
1247 if (PageHuge(page)) {
1248 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1249 vma, address);
1250 } else if (PageTransHuge(page)) {
1251 struct page *thp;
1252
1253 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1254 HPAGE_PMD_ORDER);
1255 if (!thp)
1256 return NULL;
1257 prep_transhuge_page(thp);
1258 return thp;
1259 }
1260 /*
1261 * if !vma, alloc_page_vma() will use task or system default policy
1262 */
1263 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1264 vma, address);
1265 }
1266 #else
1267
1268 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1269 unsigned long flags)
1270 {
1271 return -EIO;
1272 }
1273
1274 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1275 const nodemask_t *to, int flags)
1276 {
1277 return -ENOSYS;
1278 }
1279
1280 static struct page *new_page(struct page *page, unsigned long start)
1281 {
1282 return NULL;
1283 }
1284 #endif
1285
1286 static long do_mbind(unsigned long start, unsigned long len,
1287 unsigned short mode, unsigned short mode_flags,
1288 nodemask_t *nmask, unsigned long flags)
1289 {
1290 struct mm_struct *mm = current->mm;
1291 struct mempolicy *new;
1292 unsigned long end;
1293 int err;
1294 int ret;
1295 LIST_HEAD(pagelist);
1296
1297 if (flags & ~(unsigned long)MPOL_MF_VALID)
1298 return -EINVAL;
1299 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1300 return -EPERM;
1301
1302 if (start & ~PAGE_MASK)
1303 return -EINVAL;
1304
1305 if (mode == MPOL_DEFAULT)
1306 flags &= ~MPOL_MF_STRICT;
1307
1308 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1309 end = start + len;
1310
1311 if (end < start)
1312 return -EINVAL;
1313 if (end == start)
1314 return 0;
1315
1316 new = mpol_new(mode, mode_flags, nmask);
1317 if (IS_ERR(new))
1318 return PTR_ERR(new);
1319
1320 if (flags & MPOL_MF_LAZY)
1321 new->flags |= MPOL_F_MOF;
1322
1323 /*
1324 * If we are using the default policy then operation
1325 * on discontinuous address spaces is okay after all
1326 */
1327 if (!new)
1328 flags |= MPOL_MF_DISCONTIG_OK;
1329
1330 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1331 start, start + len, mode, mode_flags,
1332 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1333
1334 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1335
1336 err = migrate_prep();
1337 if (err)
1338 goto mpol_out;
1339 }
1340 {
1341 NODEMASK_SCRATCH(scratch);
1342 if (scratch) {
1343 mmap_write_lock(mm);
1344 task_lock(current);
1345 err = mpol_set_nodemask(new, nmask, scratch);
1346 task_unlock(current);
1347 if (err)
1348 mmap_write_unlock(mm);
1349 } else
1350 err = -ENOMEM;
1351 NODEMASK_SCRATCH_FREE(scratch);
1352 }
1353 if (err)
1354 goto mpol_out;
1355
1356 ret = queue_pages_range(mm, start, end, nmask,
1357 flags | MPOL_MF_INVERT, &pagelist);
1358
1359 if (ret < 0) {
1360 err = ret;
1361 goto up_out;
1362 }
1363
1364 err = mbind_range(mm, start, end, new);
1365
1366 if (!err) {
1367 int nr_failed = 0;
1368
1369 if (!list_empty(&pagelist)) {
1370 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1371 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1372 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1373 if (nr_failed)
1374 putback_movable_pages(&pagelist);
1375 }
1376
1377 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1378 err = -EIO;
1379 } else {
1380 up_out:
1381 if (!list_empty(&pagelist))
1382 putback_movable_pages(&pagelist);
1383 }
1384
1385 mmap_write_unlock(mm);
1386 mpol_out:
1387 mpol_put(new);
1388 return err;
1389 }
1390
1391 /*
1392 * User space interface with variable sized bitmaps for nodelists.
1393 */
1394
1395 /* Copy a node mask from user space. */
1396 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1397 unsigned long maxnode)
1398 {
1399 unsigned long k;
1400 unsigned long t;
1401 unsigned long nlongs;
1402 unsigned long endmask;
1403
1404 --maxnode;
1405 nodes_clear(*nodes);
1406 if (maxnode == 0 || !nmask)
1407 return 0;
1408 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1409 return -EINVAL;
1410
1411 nlongs = BITS_TO_LONGS(maxnode);
1412 if ((maxnode % BITS_PER_LONG) == 0)
1413 endmask = ~0UL;
1414 else
1415 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1416
1417 /*
1418 * When the user specified more nodes than supported just check
1419 * if the non supported part is all zero.
1420 *
1421 * If maxnode have more longs than MAX_NUMNODES, check
1422 * the bits in that area first. And then go through to
1423 * check the rest bits which equal or bigger than MAX_NUMNODES.
1424 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1425 */
1426 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1427 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1428 if (get_user(t, nmask + k))
1429 return -EFAULT;
1430 if (k == nlongs - 1) {
1431 if (t & endmask)
1432 return -EINVAL;
1433 } else if (t)
1434 return -EINVAL;
1435 }
1436 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1437 endmask = ~0UL;
1438 }
1439
1440 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1441 unsigned long valid_mask = endmask;
1442
1443 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1444 if (get_user(t, nmask + nlongs - 1))
1445 return -EFAULT;
1446 if (t & valid_mask)
1447 return -EINVAL;
1448 }
1449
1450 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1451 return -EFAULT;
1452 nodes_addr(*nodes)[nlongs-1] &= endmask;
1453 return 0;
1454 }
1455
1456 /* Copy a kernel node mask to user space */
1457 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1458 nodemask_t *nodes)
1459 {
1460 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1461 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1462
1463 if (copy > nbytes) {
1464 if (copy > PAGE_SIZE)
1465 return -EINVAL;
1466 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1467 return -EFAULT;
1468 copy = nbytes;
1469 }
1470 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1471 }
1472
1473 static long kernel_mbind(unsigned long start, unsigned long len,
1474 unsigned long mode, const unsigned long __user *nmask,
1475 unsigned long maxnode, unsigned int flags)
1476 {
1477 nodemask_t nodes;
1478 int err;
1479 unsigned short mode_flags;
1480
1481 start = untagged_addr(start);
1482 mode_flags = mode & MPOL_MODE_FLAGS;
1483 mode &= ~MPOL_MODE_FLAGS;
1484 if (mode >= MPOL_MAX)
1485 return -EINVAL;
1486 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1487 (mode_flags & MPOL_F_RELATIVE_NODES))
1488 return -EINVAL;
1489 err = get_nodes(&nodes, nmask, maxnode);
1490 if (err)
1491 return err;
1492 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1493 }
1494
1495 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1496 unsigned long, mode, const unsigned long __user *, nmask,
1497 unsigned long, maxnode, unsigned int, flags)
1498 {
1499 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1500 }
1501
1502 /* Set the process memory policy */
1503 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1504 unsigned long maxnode)
1505 {
1506 int err;
1507 nodemask_t nodes;
1508 unsigned short flags;
1509
1510 flags = mode & MPOL_MODE_FLAGS;
1511 mode &= ~MPOL_MODE_FLAGS;
1512 if ((unsigned int)mode >= MPOL_MAX)
1513 return -EINVAL;
1514 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1515 return -EINVAL;
1516 err = get_nodes(&nodes, nmask, maxnode);
1517 if (err)
1518 return err;
1519 return do_set_mempolicy(mode, flags, &nodes);
1520 }
1521
1522 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1523 unsigned long, maxnode)
1524 {
1525 return kernel_set_mempolicy(mode, nmask, maxnode);
1526 }
1527
1528 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1529 const unsigned long __user *old_nodes,
1530 const unsigned long __user *new_nodes)
1531 {
1532 struct mm_struct *mm = NULL;
1533 struct task_struct *task;
1534 nodemask_t task_nodes;
1535 int err;
1536 nodemask_t *old;
1537 nodemask_t *new;
1538 NODEMASK_SCRATCH(scratch);
1539
1540 if (!scratch)
1541 return -ENOMEM;
1542
1543 old = &scratch->mask1;
1544 new = &scratch->mask2;
1545
1546 err = get_nodes(old, old_nodes, maxnode);
1547 if (err)
1548 goto out;
1549
1550 err = get_nodes(new, new_nodes, maxnode);
1551 if (err)
1552 goto out;
1553
1554 /* Find the mm_struct */
1555 rcu_read_lock();
1556 task = pid ? find_task_by_vpid(pid) : current;
1557 if (!task) {
1558 rcu_read_unlock();
1559 err = -ESRCH;
1560 goto out;
1561 }
1562 get_task_struct(task);
1563
1564 err = -EINVAL;
1565
1566 /*
1567 * Check if this process has the right to modify the specified process.
1568 * Use the regular "ptrace_may_access()" checks.
1569 */
1570 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1571 rcu_read_unlock();
1572 err = -EPERM;
1573 goto out_put;
1574 }
1575 rcu_read_unlock();
1576
1577 task_nodes = cpuset_mems_allowed(task);
1578 /* Is the user allowed to access the target nodes? */
1579 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1580 err = -EPERM;
1581 goto out_put;
1582 }
1583
1584 task_nodes = cpuset_mems_allowed(current);
1585 nodes_and(*new, *new, task_nodes);
1586 if (nodes_empty(*new))
1587 goto out_put;
1588
1589 err = security_task_movememory(task);
1590 if (err)
1591 goto out_put;
1592
1593 mm = get_task_mm(task);
1594 put_task_struct(task);
1595
1596 if (!mm) {
1597 err = -EINVAL;
1598 goto out;
1599 }
1600
1601 err = do_migrate_pages(mm, old, new,
1602 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1603
1604 mmput(mm);
1605 out:
1606 NODEMASK_SCRATCH_FREE(scratch);
1607
1608 return err;
1609
1610 out_put:
1611 put_task_struct(task);
1612 goto out;
1613
1614 }
1615
1616 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1617 const unsigned long __user *, old_nodes,
1618 const unsigned long __user *, new_nodes)
1619 {
1620 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1621 }
1622
1623
1624 /* Retrieve NUMA policy */
1625 static int kernel_get_mempolicy(int __user *policy,
1626 unsigned long __user *nmask,
1627 unsigned long maxnode,
1628 unsigned long addr,
1629 unsigned long flags)
1630 {
1631 int err;
1632 int uninitialized_var(pval);
1633 nodemask_t nodes;
1634
1635 addr = untagged_addr(addr);
1636
1637 if (nmask != NULL && maxnode < nr_node_ids)
1638 return -EINVAL;
1639
1640 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1641
1642 if (err)
1643 return err;
1644
1645 if (policy && put_user(pval, policy))
1646 return -EFAULT;
1647
1648 if (nmask)
1649 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1650
1651 return err;
1652 }
1653
1654 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1655 unsigned long __user *, nmask, unsigned long, maxnode,
1656 unsigned long, addr, unsigned long, flags)
1657 {
1658 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1659 }
1660
1661 #ifdef CONFIG_COMPAT
1662
1663 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1664 compat_ulong_t __user *, nmask,
1665 compat_ulong_t, maxnode,
1666 compat_ulong_t, addr, compat_ulong_t, flags)
1667 {
1668 long err;
1669 unsigned long __user *nm = NULL;
1670 unsigned long nr_bits, alloc_size;
1671 DECLARE_BITMAP(bm, MAX_NUMNODES);
1672
1673 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1674 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1675
1676 if (nmask)
1677 nm = compat_alloc_user_space(alloc_size);
1678
1679 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1680
1681 if (!err && nmask) {
1682 unsigned long copy_size;
1683 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1684 err = copy_from_user(bm, nm, copy_size);
1685 /* ensure entire bitmap is zeroed */
1686 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1687 err |= compat_put_bitmap(nmask, bm, nr_bits);
1688 }
1689
1690 return err;
1691 }
1692
1693 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1694 compat_ulong_t, maxnode)
1695 {
1696 unsigned long __user *nm = NULL;
1697 unsigned long nr_bits, alloc_size;
1698 DECLARE_BITMAP(bm, MAX_NUMNODES);
1699
1700 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1701 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1702
1703 if (nmask) {
1704 if (compat_get_bitmap(bm, nmask, nr_bits))
1705 return -EFAULT;
1706 nm = compat_alloc_user_space(alloc_size);
1707 if (copy_to_user(nm, bm, alloc_size))
1708 return -EFAULT;
1709 }
1710
1711 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1712 }
1713
1714 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1715 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1716 compat_ulong_t, maxnode, compat_ulong_t, flags)
1717 {
1718 unsigned long __user *nm = NULL;
1719 unsigned long nr_bits, alloc_size;
1720 nodemask_t bm;
1721
1722 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1723 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1724
1725 if (nmask) {
1726 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1727 return -EFAULT;
1728 nm = compat_alloc_user_space(alloc_size);
1729 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1730 return -EFAULT;
1731 }
1732
1733 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1734 }
1735
1736 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1737 compat_ulong_t, maxnode,
1738 const compat_ulong_t __user *, old_nodes,
1739 const compat_ulong_t __user *, new_nodes)
1740 {
1741 unsigned long __user *old = NULL;
1742 unsigned long __user *new = NULL;
1743 nodemask_t tmp_mask;
1744 unsigned long nr_bits;
1745 unsigned long size;
1746
1747 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1748 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1749 if (old_nodes) {
1750 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1751 return -EFAULT;
1752 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1753 if (new_nodes)
1754 new = old + size / sizeof(unsigned long);
1755 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1756 return -EFAULT;
1757 }
1758 if (new_nodes) {
1759 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1760 return -EFAULT;
1761 if (new == NULL)
1762 new = compat_alloc_user_space(size);
1763 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1764 return -EFAULT;
1765 }
1766 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1767 }
1768
1769 #endif /* CONFIG_COMPAT */
1770
1771 bool vma_migratable(struct vm_area_struct *vma)
1772 {
1773 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1774 return false;
1775
1776 /*
1777 * DAX device mappings require predictable access latency, so avoid
1778 * incurring periodic faults.
1779 */
1780 if (vma_is_dax(vma))
1781 return false;
1782
1783 if (is_vm_hugetlb_page(vma) &&
1784 !hugepage_migration_supported(hstate_vma(vma)))
1785 return false;
1786
1787 /*
1788 * Migration allocates pages in the highest zone. If we cannot
1789 * do so then migration (at least from node to node) is not
1790 * possible.
1791 */
1792 if (vma->vm_file &&
1793 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1794 < policy_zone)
1795 return false;
1796 return true;
1797 }
1798
1799 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1800 unsigned long addr)
1801 {
1802 struct mempolicy *pol = NULL;
1803
1804 if (vma) {
1805 if (vma->vm_ops && vma->vm_ops->get_policy) {
1806 pol = vma->vm_ops->get_policy(vma, addr);
1807 } else if (vma->vm_policy) {
1808 pol = vma->vm_policy;
1809
1810 /*
1811 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1812 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1813 * count on these policies which will be dropped by
1814 * mpol_cond_put() later
1815 */
1816 if (mpol_needs_cond_ref(pol))
1817 mpol_get(pol);
1818 }
1819 }
1820
1821 return pol;
1822 }
1823
1824 /*
1825 * get_vma_policy(@vma, @addr)
1826 * @vma: virtual memory area whose policy is sought
1827 * @addr: address in @vma for shared policy lookup
1828 *
1829 * Returns effective policy for a VMA at specified address.
1830 * Falls back to current->mempolicy or system default policy, as necessary.
1831 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1832 * count--added by the get_policy() vm_op, as appropriate--to protect against
1833 * freeing by another task. It is the caller's responsibility to free the
1834 * extra reference for shared policies.
1835 */
1836 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1837 unsigned long addr)
1838 {
1839 struct mempolicy *pol = __get_vma_policy(vma, addr);
1840
1841 if (!pol)
1842 pol = get_task_policy(current);
1843
1844 return pol;
1845 }
1846
1847 bool vma_policy_mof(struct vm_area_struct *vma)
1848 {
1849 struct mempolicy *pol;
1850
1851 if (vma->vm_ops && vma->vm_ops->get_policy) {
1852 bool ret = false;
1853
1854 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1855 if (pol && (pol->flags & MPOL_F_MOF))
1856 ret = true;
1857 mpol_cond_put(pol);
1858
1859 return ret;
1860 }
1861
1862 pol = vma->vm_policy;
1863 if (!pol)
1864 pol = get_task_policy(current);
1865
1866 return pol->flags & MPOL_F_MOF;
1867 }
1868
1869 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1870 {
1871 enum zone_type dynamic_policy_zone = policy_zone;
1872
1873 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1874
1875 /*
1876 * if policy->v.nodes has movable memory only,
1877 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1878 *
1879 * policy->v.nodes is intersect with node_states[N_MEMORY].
1880 * so if the following test faile, it implies
1881 * policy->v.nodes has movable memory only.
1882 */
1883 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1884 dynamic_policy_zone = ZONE_MOVABLE;
1885
1886 return zone >= dynamic_policy_zone;
1887 }
1888
1889 /*
1890 * Return a nodemask representing a mempolicy for filtering nodes for
1891 * page allocation
1892 */
1893 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1894 {
1895 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1896 if (unlikely(policy->mode == MPOL_BIND) &&
1897 apply_policy_zone(policy, gfp_zone(gfp)) &&
1898 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1899 return &policy->v.nodes;
1900
1901 return NULL;
1902 }
1903
1904 /* Return the node id preferred by the given mempolicy, or the given id */
1905 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1906 int nd)
1907 {
1908 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1909 nd = policy->v.preferred_node;
1910 else {
1911 /*
1912 * __GFP_THISNODE shouldn't even be used with the bind policy
1913 * because we might easily break the expectation to stay on the
1914 * requested node and not break the policy.
1915 */
1916 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1917 }
1918
1919 return nd;
1920 }
1921
1922 /* Do dynamic interleaving for a process */
1923 static unsigned interleave_nodes(struct mempolicy *policy)
1924 {
1925 unsigned next;
1926 struct task_struct *me = current;
1927
1928 next = next_node_in(me->il_prev, policy->v.nodes);
1929 if (next < MAX_NUMNODES)
1930 me->il_prev = next;
1931 return next;
1932 }
1933
1934 /*
1935 * Depending on the memory policy provide a node from which to allocate the
1936 * next slab entry.
1937 */
1938 unsigned int mempolicy_slab_node(void)
1939 {
1940 struct mempolicy *policy;
1941 int node = numa_mem_id();
1942
1943 if (in_interrupt())
1944 return node;
1945
1946 policy = current->mempolicy;
1947 if (!policy || policy->flags & MPOL_F_LOCAL)
1948 return node;
1949
1950 switch (policy->mode) {
1951 case MPOL_PREFERRED:
1952 /*
1953 * handled MPOL_F_LOCAL above
1954 */
1955 return policy->v.preferred_node;
1956
1957 case MPOL_INTERLEAVE:
1958 return interleave_nodes(policy);
1959
1960 case MPOL_BIND: {
1961 struct zoneref *z;
1962
1963 /*
1964 * Follow bind policy behavior and start allocation at the
1965 * first node.
1966 */
1967 struct zonelist *zonelist;
1968 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1969 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1970 z = first_zones_zonelist(zonelist, highest_zoneidx,
1971 &policy->v.nodes);
1972 return z->zone ? zone_to_nid(z->zone) : node;
1973 }
1974
1975 default:
1976 BUG();
1977 }
1978 }
1979
1980 /*
1981 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1982 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1983 * number of present nodes.
1984 */
1985 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1986 {
1987 unsigned nnodes = nodes_weight(pol->v.nodes);
1988 unsigned target;
1989 int i;
1990 int nid;
1991
1992 if (!nnodes)
1993 return numa_node_id();
1994 target = (unsigned int)n % nnodes;
1995 nid = first_node(pol->v.nodes);
1996 for (i = 0; i < target; i++)
1997 nid = next_node(nid, pol->v.nodes);
1998 return nid;
1999 }
2000
2001 /* Determine a node number for interleave */
2002 static inline unsigned interleave_nid(struct mempolicy *pol,
2003 struct vm_area_struct *vma, unsigned long addr, int shift)
2004 {
2005 if (vma) {
2006 unsigned long off;
2007
2008 /*
2009 * for small pages, there is no difference between
2010 * shift and PAGE_SHIFT, so the bit-shift is safe.
2011 * for huge pages, since vm_pgoff is in units of small
2012 * pages, we need to shift off the always 0 bits to get
2013 * a useful offset.
2014 */
2015 BUG_ON(shift < PAGE_SHIFT);
2016 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
2017 off += (addr - vma->vm_start) >> shift;
2018 return offset_il_node(pol, off);
2019 } else
2020 return interleave_nodes(pol);
2021 }
2022
2023 #ifdef CONFIG_HUGETLBFS
2024 /*
2025 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2026 * @vma: virtual memory area whose policy is sought
2027 * @addr: address in @vma for shared policy lookup and interleave policy
2028 * @gfp_flags: for requested zone
2029 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2030 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2031 *
2032 * Returns a nid suitable for a huge page allocation and a pointer
2033 * to the struct mempolicy for conditional unref after allocation.
2034 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2035 * @nodemask for filtering the zonelist.
2036 *
2037 * Must be protected by read_mems_allowed_begin()
2038 */
2039 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2040 struct mempolicy **mpol, nodemask_t **nodemask)
2041 {
2042 int nid;
2043
2044 *mpol = get_vma_policy(vma, addr);
2045 *nodemask = NULL; /* assume !MPOL_BIND */
2046
2047 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2048 nid = interleave_nid(*mpol, vma, addr,
2049 huge_page_shift(hstate_vma(vma)));
2050 } else {
2051 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2052 if ((*mpol)->mode == MPOL_BIND)
2053 *nodemask = &(*mpol)->v.nodes;
2054 }
2055 return nid;
2056 }
2057
2058 /*
2059 * init_nodemask_of_mempolicy
2060 *
2061 * If the current task's mempolicy is "default" [NULL], return 'false'
2062 * to indicate default policy. Otherwise, extract the policy nodemask
2063 * for 'bind' or 'interleave' policy into the argument nodemask, or
2064 * initialize the argument nodemask to contain the single node for
2065 * 'preferred' or 'local' policy and return 'true' to indicate presence
2066 * of non-default mempolicy.
2067 *
2068 * We don't bother with reference counting the mempolicy [mpol_get/put]
2069 * because the current task is examining it's own mempolicy and a task's
2070 * mempolicy is only ever changed by the task itself.
2071 *
2072 * N.B., it is the caller's responsibility to free a returned nodemask.
2073 */
2074 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2075 {
2076 struct mempolicy *mempolicy;
2077 int nid;
2078
2079 if (!(mask && current->mempolicy))
2080 return false;
2081
2082 task_lock(current);
2083 mempolicy = current->mempolicy;
2084 switch (mempolicy->mode) {
2085 case MPOL_PREFERRED:
2086 if (mempolicy->flags & MPOL_F_LOCAL)
2087 nid = numa_node_id();
2088 else
2089 nid = mempolicy->v.preferred_node;
2090 init_nodemask_of_node(mask, nid);
2091 break;
2092
2093 case MPOL_BIND:
2094 case MPOL_INTERLEAVE:
2095 *mask = mempolicy->v.nodes;
2096 break;
2097
2098 default:
2099 BUG();
2100 }
2101 task_unlock(current);
2102
2103 return true;
2104 }
2105 #endif
2106
2107 /*
2108 * mempolicy_nodemask_intersects
2109 *
2110 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2111 * policy. Otherwise, check for intersection between mask and the policy
2112 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2113 * policy, always return true since it may allocate elsewhere on fallback.
2114 *
2115 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2116 */
2117 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2118 const nodemask_t *mask)
2119 {
2120 struct mempolicy *mempolicy;
2121 bool ret = true;
2122
2123 if (!mask)
2124 return ret;
2125 task_lock(tsk);
2126 mempolicy = tsk->mempolicy;
2127 if (!mempolicy)
2128 goto out;
2129
2130 switch (mempolicy->mode) {
2131 case MPOL_PREFERRED:
2132 /*
2133 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2134 * allocate from, they may fallback to other nodes when oom.
2135 * Thus, it's possible for tsk to have allocated memory from
2136 * nodes in mask.
2137 */
2138 break;
2139 case MPOL_BIND:
2140 case MPOL_INTERLEAVE:
2141 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2142 break;
2143 default:
2144 BUG();
2145 }
2146 out:
2147 task_unlock(tsk);
2148 return ret;
2149 }
2150
2151 /* Allocate a page in interleaved policy.
2152 Own path because it needs to do special accounting. */
2153 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2154 unsigned nid)
2155 {
2156 struct page *page;
2157
2158 page = __alloc_pages(gfp, order, nid);
2159 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2160 if (!static_branch_likely(&vm_numa_stat_key))
2161 return page;
2162 if (page && page_to_nid(page) == nid) {
2163 preempt_disable();
2164 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2165 preempt_enable();
2166 }
2167 return page;
2168 }
2169
2170 /**
2171 * alloc_pages_vma - Allocate a page for a VMA.
2172 *
2173 * @gfp:
2174 * %GFP_USER user allocation.
2175 * %GFP_KERNEL kernel allocations,
2176 * %GFP_HIGHMEM highmem/user allocations,
2177 * %GFP_FS allocation should not call back into a file system.
2178 * %GFP_ATOMIC don't sleep.
2179 *
2180 * @order:Order of the GFP allocation.
2181 * @vma: Pointer to VMA or NULL if not available.
2182 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2183 * @node: Which node to prefer for allocation (modulo policy).
2184 * @hugepage: for hugepages try only the preferred node if possible
2185 *
2186 * This function allocates a page from the kernel page pool and applies
2187 * a NUMA policy associated with the VMA or the current process.
2188 * When VMA is not NULL caller must read-lock the mmap_lock of the
2189 * mm_struct of the VMA to prevent it from going away. Should be used for
2190 * all allocations for pages that will be mapped into user space. Returns
2191 * NULL when no page can be allocated.
2192 */
2193 struct page *
2194 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2195 unsigned long addr, int node, bool hugepage)
2196 {
2197 struct mempolicy *pol;
2198 struct page *page;
2199 int preferred_nid;
2200 nodemask_t *nmask;
2201
2202 pol = get_vma_policy(vma, addr);
2203
2204 if (pol->mode == MPOL_INTERLEAVE) {
2205 unsigned nid;
2206
2207 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2208 mpol_cond_put(pol);
2209 page = alloc_page_interleave(gfp, order, nid);
2210 goto out;
2211 }
2212
2213 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2214 int hpage_node = node;
2215
2216 /*
2217 * For hugepage allocation and non-interleave policy which
2218 * allows the current node (or other explicitly preferred
2219 * node) we only try to allocate from the current/preferred
2220 * node and don't fall back to other nodes, as the cost of
2221 * remote accesses would likely offset THP benefits.
2222 *
2223 * If the policy is interleave, or does not allow the current
2224 * node in its nodemask, we allocate the standard way.
2225 */
2226 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2227 hpage_node = pol->v.preferred_node;
2228
2229 nmask = policy_nodemask(gfp, pol);
2230 if (!nmask || node_isset(hpage_node, *nmask)) {
2231 mpol_cond_put(pol);
2232 /*
2233 * First, try to allocate THP only on local node, but
2234 * don't reclaim unnecessarily, just compact.
2235 */
2236 page = __alloc_pages_node(hpage_node,
2237 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2238
2239 /*
2240 * If hugepage allocations are configured to always
2241 * synchronous compact or the vma has been madvised
2242 * to prefer hugepage backing, retry allowing remote
2243 * memory with both reclaim and compact as well.
2244 */
2245 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2246 page = __alloc_pages_node(hpage_node,
2247 gfp, order);
2248
2249 goto out;
2250 }
2251 }
2252
2253 nmask = policy_nodemask(gfp, pol);
2254 preferred_nid = policy_node(gfp, pol, node);
2255 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2256 mpol_cond_put(pol);
2257 out:
2258 return page;
2259 }
2260 EXPORT_SYMBOL(alloc_pages_vma);
2261
2262 /**
2263 * alloc_pages_current - Allocate pages.
2264 *
2265 * @gfp:
2266 * %GFP_USER user allocation,
2267 * %GFP_KERNEL kernel allocation,
2268 * %GFP_HIGHMEM highmem allocation,
2269 * %GFP_FS don't call back into a file system.
2270 * %GFP_ATOMIC don't sleep.
2271 * @order: Power of two of allocation size in pages. 0 is a single page.
2272 *
2273 * Allocate a page from the kernel page pool. When not in
2274 * interrupt context and apply the current process NUMA policy.
2275 * Returns NULL when no page can be allocated.
2276 */
2277 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2278 {
2279 struct mempolicy *pol = &default_policy;
2280 struct page *page;
2281
2282 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2283 pol = get_task_policy(current);
2284
2285 /*
2286 * No reference counting needed for current->mempolicy
2287 * nor system default_policy
2288 */
2289 if (pol->mode == MPOL_INTERLEAVE)
2290 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2291 else
2292 page = __alloc_pages_nodemask(gfp, order,
2293 policy_node(gfp, pol, numa_node_id()),
2294 policy_nodemask(gfp, pol));
2295
2296 return page;
2297 }
2298 EXPORT_SYMBOL(alloc_pages_current);
2299
2300 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2301 {
2302 struct mempolicy *pol = mpol_dup(vma_policy(src));
2303
2304 if (IS_ERR(pol))
2305 return PTR_ERR(pol);
2306 dst->vm_policy = pol;
2307 return 0;
2308 }
2309
2310 /*
2311 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2312 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2313 * with the mems_allowed returned by cpuset_mems_allowed(). This
2314 * keeps mempolicies cpuset relative after its cpuset moves. See
2315 * further kernel/cpuset.c update_nodemask().
2316 *
2317 * current's mempolicy may be rebinded by the other task(the task that changes
2318 * cpuset's mems), so we needn't do rebind work for current task.
2319 */
2320
2321 /* Slow path of a mempolicy duplicate */
2322 struct mempolicy *__mpol_dup(struct mempolicy *old)
2323 {
2324 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2325
2326 if (!new)
2327 return ERR_PTR(-ENOMEM);
2328
2329 /* task's mempolicy is protected by alloc_lock */
2330 if (old == current->mempolicy) {
2331 task_lock(current);
2332 *new = *old;
2333 task_unlock(current);
2334 } else
2335 *new = *old;
2336
2337 if (current_cpuset_is_being_rebound()) {
2338 nodemask_t mems = cpuset_mems_allowed(current);
2339 mpol_rebind_policy(new, &mems);
2340 }
2341 atomic_set(&new->refcnt, 1);
2342 return new;
2343 }
2344
2345 /* Slow path of a mempolicy comparison */
2346 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2347 {
2348 if (!a || !b)
2349 return false;
2350 if (a->mode != b->mode)
2351 return false;
2352 if (a->flags != b->flags)
2353 return false;
2354 if (mpol_store_user_nodemask(a))
2355 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2356 return false;
2357
2358 switch (a->mode) {
2359 case MPOL_BIND:
2360 case MPOL_INTERLEAVE:
2361 return !!nodes_equal(a->v.nodes, b->v.nodes);
2362 case MPOL_PREFERRED:
2363 /* a's ->flags is the same as b's */
2364 if (a->flags & MPOL_F_LOCAL)
2365 return true;
2366 return a->v.preferred_node == b->v.preferred_node;
2367 default:
2368 BUG();
2369 return false;
2370 }
2371 }
2372
2373 /*
2374 * Shared memory backing store policy support.
2375 *
2376 * Remember policies even when nobody has shared memory mapped.
2377 * The policies are kept in Red-Black tree linked from the inode.
2378 * They are protected by the sp->lock rwlock, which should be held
2379 * for any accesses to the tree.
2380 */
2381
2382 /*
2383 * lookup first element intersecting start-end. Caller holds sp->lock for
2384 * reading or for writing
2385 */
2386 static struct sp_node *
2387 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2388 {
2389 struct rb_node *n = sp->root.rb_node;
2390
2391 while (n) {
2392 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2393
2394 if (start >= p->end)
2395 n = n->rb_right;
2396 else if (end <= p->start)
2397 n = n->rb_left;
2398 else
2399 break;
2400 }
2401 if (!n)
2402 return NULL;
2403 for (;;) {
2404 struct sp_node *w = NULL;
2405 struct rb_node *prev = rb_prev(n);
2406 if (!prev)
2407 break;
2408 w = rb_entry(prev, struct sp_node, nd);
2409 if (w->end <= start)
2410 break;
2411 n = prev;
2412 }
2413 return rb_entry(n, struct sp_node, nd);
2414 }
2415
2416 /*
2417 * Insert a new shared policy into the list. Caller holds sp->lock for
2418 * writing.
2419 */
2420 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2421 {
2422 struct rb_node **p = &sp->root.rb_node;
2423 struct rb_node *parent = NULL;
2424 struct sp_node *nd;
2425
2426 while (*p) {
2427 parent = *p;
2428 nd = rb_entry(parent, struct sp_node, nd);
2429 if (new->start < nd->start)
2430 p = &(*p)->rb_left;
2431 else if (new->end > nd->end)
2432 p = &(*p)->rb_right;
2433 else
2434 BUG();
2435 }
2436 rb_link_node(&new->nd, parent, p);
2437 rb_insert_color(&new->nd, &sp->root);
2438 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2439 new->policy ? new->policy->mode : 0);
2440 }
2441
2442 /* Find shared policy intersecting idx */
2443 struct mempolicy *
2444 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2445 {
2446 struct mempolicy *pol = NULL;
2447 struct sp_node *sn;
2448
2449 if (!sp->root.rb_node)
2450 return NULL;
2451 read_lock(&sp->lock);
2452 sn = sp_lookup(sp, idx, idx+1);
2453 if (sn) {
2454 mpol_get(sn->policy);
2455 pol = sn->policy;
2456 }
2457 read_unlock(&sp->lock);
2458 return pol;
2459 }
2460
2461 static void sp_free(struct sp_node *n)
2462 {
2463 mpol_put(n->policy);
2464 kmem_cache_free(sn_cache, n);
2465 }
2466
2467 /**
2468 * mpol_misplaced - check whether current page node is valid in policy
2469 *
2470 * @page: page to be checked
2471 * @vma: vm area where page mapped
2472 * @addr: virtual address where page mapped
2473 *
2474 * Lookup current policy node id for vma,addr and "compare to" page's
2475 * node id.
2476 *
2477 * Returns:
2478 * -1 - not misplaced, page is in the right node
2479 * node - node id where the page should be
2480 *
2481 * Policy determination "mimics" alloc_page_vma().
2482 * Called from fault path where we know the vma and faulting address.
2483 */
2484 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2485 {
2486 struct mempolicy *pol;
2487 struct zoneref *z;
2488 int curnid = page_to_nid(page);
2489 unsigned long pgoff;
2490 int thiscpu = raw_smp_processor_id();
2491 int thisnid = cpu_to_node(thiscpu);
2492 int polnid = NUMA_NO_NODE;
2493 int ret = -1;
2494
2495 pol = get_vma_policy(vma, addr);
2496 if (!(pol->flags & MPOL_F_MOF))
2497 goto out;
2498
2499 switch (pol->mode) {
2500 case MPOL_INTERLEAVE:
2501 pgoff = vma->vm_pgoff;
2502 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2503 polnid = offset_il_node(pol, pgoff);
2504 break;
2505
2506 case MPOL_PREFERRED:
2507 if (pol->flags & MPOL_F_LOCAL)
2508 polnid = numa_node_id();
2509 else
2510 polnid = pol->v.preferred_node;
2511 break;
2512
2513 case MPOL_BIND:
2514
2515 /*
2516 * allows binding to multiple nodes.
2517 * use current page if in policy nodemask,
2518 * else select nearest allowed node, if any.
2519 * If no allowed nodes, use current [!misplaced].
2520 */
2521 if (node_isset(curnid, pol->v.nodes))
2522 goto out;
2523 z = first_zones_zonelist(
2524 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2525 gfp_zone(GFP_HIGHUSER),
2526 &pol->v.nodes);
2527 polnid = zone_to_nid(z->zone);
2528 break;
2529
2530 default:
2531 BUG();
2532 }
2533
2534 /* Migrate the page towards the node whose CPU is referencing it */
2535 if (pol->flags & MPOL_F_MORON) {
2536 polnid = thisnid;
2537
2538 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2539 goto out;
2540 }
2541
2542 if (curnid != polnid)
2543 ret = polnid;
2544 out:
2545 mpol_cond_put(pol);
2546
2547 return ret;
2548 }
2549
2550 /*
2551 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2552 * dropped after task->mempolicy is set to NULL so that any allocation done as
2553 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2554 * policy.
2555 */
2556 void mpol_put_task_policy(struct task_struct *task)
2557 {
2558 struct mempolicy *pol;
2559
2560 task_lock(task);
2561 pol = task->mempolicy;
2562 task->mempolicy = NULL;
2563 task_unlock(task);
2564 mpol_put(pol);
2565 }
2566
2567 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2568 {
2569 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2570 rb_erase(&n->nd, &sp->root);
2571 sp_free(n);
2572 }
2573
2574 static void sp_node_init(struct sp_node *node, unsigned long start,
2575 unsigned long end, struct mempolicy *pol)
2576 {
2577 node->start = start;
2578 node->end = end;
2579 node->policy = pol;
2580 }
2581
2582 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2583 struct mempolicy *pol)
2584 {
2585 struct sp_node *n;
2586 struct mempolicy *newpol;
2587
2588 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2589 if (!n)
2590 return NULL;
2591
2592 newpol = mpol_dup(pol);
2593 if (IS_ERR(newpol)) {
2594 kmem_cache_free(sn_cache, n);
2595 return NULL;
2596 }
2597 newpol->flags |= MPOL_F_SHARED;
2598 sp_node_init(n, start, end, newpol);
2599
2600 return n;
2601 }
2602
2603 /* Replace a policy range. */
2604 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2605 unsigned long end, struct sp_node *new)
2606 {
2607 struct sp_node *n;
2608 struct sp_node *n_new = NULL;
2609 struct mempolicy *mpol_new = NULL;
2610 int ret = 0;
2611
2612 restart:
2613 write_lock(&sp->lock);
2614 n = sp_lookup(sp, start, end);
2615 /* Take care of old policies in the same range. */
2616 while (n && n->start < end) {
2617 struct rb_node *next = rb_next(&n->nd);
2618 if (n->start >= start) {
2619 if (n->end <= end)
2620 sp_delete(sp, n);
2621 else
2622 n->start = end;
2623 } else {
2624 /* Old policy spanning whole new range. */
2625 if (n->end > end) {
2626 if (!n_new)
2627 goto alloc_new;
2628
2629 *mpol_new = *n->policy;
2630 atomic_set(&mpol_new->refcnt, 1);
2631 sp_node_init(n_new, end, n->end, mpol_new);
2632 n->end = start;
2633 sp_insert(sp, n_new);
2634 n_new = NULL;
2635 mpol_new = NULL;
2636 break;
2637 } else
2638 n->end = start;
2639 }
2640 if (!next)
2641 break;
2642 n = rb_entry(next, struct sp_node, nd);
2643 }
2644 if (new)
2645 sp_insert(sp, new);
2646 write_unlock(&sp->lock);
2647 ret = 0;
2648
2649 err_out:
2650 if (mpol_new)
2651 mpol_put(mpol_new);
2652 if (n_new)
2653 kmem_cache_free(sn_cache, n_new);
2654
2655 return ret;
2656
2657 alloc_new:
2658 write_unlock(&sp->lock);
2659 ret = -ENOMEM;
2660 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2661 if (!n_new)
2662 goto err_out;
2663 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2664 if (!mpol_new)
2665 goto err_out;
2666 goto restart;
2667 }
2668
2669 /**
2670 * mpol_shared_policy_init - initialize shared policy for inode
2671 * @sp: pointer to inode shared policy
2672 * @mpol: struct mempolicy to install
2673 *
2674 * Install non-NULL @mpol in inode's shared policy rb-tree.
2675 * On entry, the current task has a reference on a non-NULL @mpol.
2676 * This must be released on exit.
2677 * This is called at get_inode() calls and we can use GFP_KERNEL.
2678 */
2679 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2680 {
2681 int ret;
2682
2683 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2684 rwlock_init(&sp->lock);
2685
2686 if (mpol) {
2687 struct vm_area_struct pvma;
2688 struct mempolicy *new;
2689 NODEMASK_SCRATCH(scratch);
2690
2691 if (!scratch)
2692 goto put_mpol;
2693 /* contextualize the tmpfs mount point mempolicy */
2694 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2695 if (IS_ERR(new))
2696 goto free_scratch; /* no valid nodemask intersection */
2697
2698 task_lock(current);
2699 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2700 task_unlock(current);
2701 if (ret)
2702 goto put_new;
2703
2704 /* Create pseudo-vma that contains just the policy */
2705 vma_init(&pvma, NULL);
2706 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2707 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2708
2709 put_new:
2710 mpol_put(new); /* drop initial ref */
2711 free_scratch:
2712 NODEMASK_SCRATCH_FREE(scratch);
2713 put_mpol:
2714 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2715 }
2716 }
2717
2718 int mpol_set_shared_policy(struct shared_policy *info,
2719 struct vm_area_struct *vma, struct mempolicy *npol)
2720 {
2721 int err;
2722 struct sp_node *new = NULL;
2723 unsigned long sz = vma_pages(vma);
2724
2725 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2726 vma->vm_pgoff,
2727 sz, npol ? npol->mode : -1,
2728 npol ? npol->flags : -1,
2729 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2730
2731 if (npol) {
2732 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2733 if (!new)
2734 return -ENOMEM;
2735 }
2736 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2737 if (err && new)
2738 sp_free(new);
2739 return err;
2740 }
2741
2742 /* Free a backing policy store on inode delete. */
2743 void mpol_free_shared_policy(struct shared_policy *p)
2744 {
2745 struct sp_node *n;
2746 struct rb_node *next;
2747
2748 if (!p->root.rb_node)
2749 return;
2750 write_lock(&p->lock);
2751 next = rb_first(&p->root);
2752 while (next) {
2753 n = rb_entry(next, struct sp_node, nd);
2754 next = rb_next(&n->nd);
2755 sp_delete(p, n);
2756 }
2757 write_unlock(&p->lock);
2758 }
2759
2760 #ifdef CONFIG_NUMA_BALANCING
2761 static int __initdata numabalancing_override;
2762
2763 static void __init check_numabalancing_enable(void)
2764 {
2765 bool numabalancing_default = false;
2766
2767 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2768 numabalancing_default = true;
2769
2770 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2771 if (numabalancing_override)
2772 set_numabalancing_state(numabalancing_override == 1);
2773
2774 if (num_online_nodes() > 1 && !numabalancing_override) {
2775 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2776 numabalancing_default ? "Enabling" : "Disabling");
2777 set_numabalancing_state(numabalancing_default);
2778 }
2779 }
2780
2781 static int __init setup_numabalancing(char *str)
2782 {
2783 int ret = 0;
2784 if (!str)
2785 goto out;
2786
2787 if (!strcmp(str, "enable")) {
2788 numabalancing_override = 1;
2789 ret = 1;
2790 } else if (!strcmp(str, "disable")) {
2791 numabalancing_override = -1;
2792 ret = 1;
2793 }
2794 out:
2795 if (!ret)
2796 pr_warn("Unable to parse numa_balancing=\n");
2797
2798 return ret;
2799 }
2800 __setup("numa_balancing=", setup_numabalancing);
2801 #else
2802 static inline void __init check_numabalancing_enable(void)
2803 {
2804 }
2805 #endif /* CONFIG_NUMA_BALANCING */
2806
2807 /* assumes fs == KERNEL_DS */
2808 void __init numa_policy_init(void)
2809 {
2810 nodemask_t interleave_nodes;
2811 unsigned long largest = 0;
2812 int nid, prefer = 0;
2813
2814 policy_cache = kmem_cache_create("numa_policy",
2815 sizeof(struct mempolicy),
2816 0, SLAB_PANIC, NULL);
2817
2818 sn_cache = kmem_cache_create("shared_policy_node",
2819 sizeof(struct sp_node),
2820 0, SLAB_PANIC, NULL);
2821
2822 for_each_node(nid) {
2823 preferred_node_policy[nid] = (struct mempolicy) {
2824 .refcnt = ATOMIC_INIT(1),
2825 .mode = MPOL_PREFERRED,
2826 .flags = MPOL_F_MOF | MPOL_F_MORON,
2827 .v = { .preferred_node = nid, },
2828 };
2829 }
2830
2831 /*
2832 * Set interleaving policy for system init. Interleaving is only
2833 * enabled across suitably sized nodes (default is >= 16MB), or
2834 * fall back to the largest node if they're all smaller.
2835 */
2836 nodes_clear(interleave_nodes);
2837 for_each_node_state(nid, N_MEMORY) {
2838 unsigned long total_pages = node_present_pages(nid);
2839
2840 /* Preserve the largest node */
2841 if (largest < total_pages) {
2842 largest = total_pages;
2843 prefer = nid;
2844 }
2845
2846 /* Interleave this node? */
2847 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2848 node_set(nid, interleave_nodes);
2849 }
2850
2851 /* All too small, use the largest */
2852 if (unlikely(nodes_empty(interleave_nodes)))
2853 node_set(prefer, interleave_nodes);
2854
2855 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2856 pr_err("%s: interleaving failed\n", __func__);
2857
2858 check_numabalancing_enable();
2859 }
2860
2861 /* Reset policy of current process to default */
2862 void numa_default_policy(void)
2863 {
2864 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2865 }
2866
2867 /*
2868 * Parse and format mempolicy from/to strings
2869 */
2870
2871 /*
2872 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2873 */
2874 static const char * const policy_modes[] =
2875 {
2876 [MPOL_DEFAULT] = "default",
2877 [MPOL_PREFERRED] = "prefer",
2878 [MPOL_BIND] = "bind",
2879 [MPOL_INTERLEAVE] = "interleave",
2880 [MPOL_LOCAL] = "local",
2881 };
2882
2883
2884 #ifdef CONFIG_TMPFS
2885 /**
2886 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2887 * @str: string containing mempolicy to parse
2888 * @mpol: pointer to struct mempolicy pointer, returned on success.
2889 *
2890 * Format of input:
2891 * <mode>[=<flags>][:<nodelist>]
2892 *
2893 * On success, returns 0, else 1
2894 */
2895 int mpol_parse_str(char *str, struct mempolicy **mpol)
2896 {
2897 struct mempolicy *new = NULL;
2898 unsigned short mode_flags;
2899 nodemask_t nodes;
2900 char *nodelist = strchr(str, ':');
2901 char *flags = strchr(str, '=');
2902 int err = 1, mode;
2903
2904 if (flags)
2905 *flags++ = '\0'; /* terminate mode string */
2906
2907 if (nodelist) {
2908 /* NUL-terminate mode or flags string */
2909 *nodelist++ = '\0';
2910 if (nodelist_parse(nodelist, nodes))
2911 goto out;
2912 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2913 goto out;
2914 } else
2915 nodes_clear(nodes);
2916
2917 mode = match_string(policy_modes, MPOL_MAX, str);
2918 if (mode < 0)
2919 goto out;
2920
2921 switch (mode) {
2922 case MPOL_PREFERRED:
2923 /*
2924 * Insist on a nodelist of one node only, although later
2925 * we use first_node(nodes) to grab a single node, so here
2926 * nodelist (or nodes) cannot be empty.
2927 */
2928 if (nodelist) {
2929 char *rest = nodelist;
2930 while (isdigit(*rest))
2931 rest++;
2932 if (*rest)
2933 goto out;
2934 if (nodes_empty(nodes))
2935 goto out;
2936 }
2937 break;
2938 case MPOL_INTERLEAVE:
2939 /*
2940 * Default to online nodes with memory if no nodelist
2941 */
2942 if (!nodelist)
2943 nodes = node_states[N_MEMORY];
2944 break;
2945 case MPOL_LOCAL:
2946 /*
2947 * Don't allow a nodelist; mpol_new() checks flags
2948 */
2949 if (nodelist)
2950 goto out;
2951 mode = MPOL_PREFERRED;
2952 break;
2953 case MPOL_DEFAULT:
2954 /*
2955 * Insist on a empty nodelist
2956 */
2957 if (!nodelist)
2958 err = 0;
2959 goto out;
2960 case MPOL_BIND:
2961 /*
2962 * Insist on a nodelist
2963 */
2964 if (!nodelist)
2965 goto out;
2966 }
2967
2968 mode_flags = 0;
2969 if (flags) {
2970 /*
2971 * Currently, we only support two mutually exclusive
2972 * mode flags.
2973 */
2974 if (!strcmp(flags, "static"))
2975 mode_flags |= MPOL_F_STATIC_NODES;
2976 else if (!strcmp(flags, "relative"))
2977 mode_flags |= MPOL_F_RELATIVE_NODES;
2978 else
2979 goto out;
2980 }
2981
2982 new = mpol_new(mode, mode_flags, &nodes);
2983 if (IS_ERR(new))
2984 goto out;
2985
2986 /*
2987 * Save nodes for mpol_to_str() to show the tmpfs mount options
2988 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2989 */
2990 if (mode != MPOL_PREFERRED)
2991 new->v.nodes = nodes;
2992 else if (nodelist)
2993 new->v.preferred_node = first_node(nodes);
2994 else
2995 new->flags |= MPOL_F_LOCAL;
2996
2997 /*
2998 * Save nodes for contextualization: this will be used to "clone"
2999 * the mempolicy in a specific context [cpuset] at a later time.
3000 */
3001 new->w.user_nodemask = nodes;
3002
3003 err = 0;
3004
3005 out:
3006 /* Restore string for error message */
3007 if (nodelist)
3008 *--nodelist = ':';
3009 if (flags)
3010 *--flags = '=';
3011 if (!err)
3012 *mpol = new;
3013 return err;
3014 }
3015 #endif /* CONFIG_TMPFS */
3016
3017 /**
3018 * mpol_to_str - format a mempolicy structure for printing
3019 * @buffer: to contain formatted mempolicy string
3020 * @maxlen: length of @buffer
3021 * @pol: pointer to mempolicy to be formatted
3022 *
3023 * Convert @pol into a string. If @buffer is too short, truncate the string.
3024 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3025 * longest flag, "relative", and to display at least a few node ids.
3026 */
3027 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3028 {
3029 char *p = buffer;
3030 nodemask_t nodes = NODE_MASK_NONE;
3031 unsigned short mode = MPOL_DEFAULT;
3032 unsigned short flags = 0;
3033
3034 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3035 mode = pol->mode;
3036 flags = pol->flags;
3037 }
3038
3039 switch (mode) {
3040 case MPOL_DEFAULT:
3041 break;
3042 case MPOL_PREFERRED:
3043 if (flags & MPOL_F_LOCAL)
3044 mode = MPOL_LOCAL;
3045 else
3046 node_set(pol->v.preferred_node, nodes);
3047 break;
3048 case MPOL_BIND:
3049 case MPOL_INTERLEAVE:
3050 nodes = pol->v.nodes;
3051 break;
3052 default:
3053 WARN_ON_ONCE(1);
3054 snprintf(p, maxlen, "unknown");
3055 return;
3056 }
3057
3058 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3059
3060 if (flags & MPOL_MODE_FLAGS) {
3061 p += snprintf(p, buffer + maxlen - p, "=");
3062
3063 /*
3064 * Currently, the only defined flags are mutually exclusive
3065 */
3066 if (flags & MPOL_F_STATIC_NODES)
3067 p += snprintf(p, buffer + maxlen - p, "static");
3068 else if (flags & MPOL_F_RELATIVE_NODES)
3069 p += snprintf(p, buffer + maxlen - p, "relative");
3070 }
3071
3072 if (!nodes_empty(nodes))
3073 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3074 nodemask_pr_args(&nodes));
3075 }