]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pages
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 unsigned long end, struct mm_walk *walk)
433 {
434 int ret = 0;
435 struct page *page;
436 struct queue_pages *qp = walk->private;
437 unsigned long flags;
438
439 if (unlikely(is_pmd_migration_entry(*pmd))) {
440 ret = 1;
441 goto unlock;
442 }
443 page = pmd_page(*pmd);
444 if (is_huge_zero_page(page)) {
445 spin_unlock(ptl);
446 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 goto out;
448 }
449 if (!thp_migration_supported()) {
450 get_page(page);
451 spin_unlock(ptl);
452 lock_page(page);
453 ret = split_huge_page(page);
454 unlock_page(page);
455 put_page(page);
456 goto out;
457 }
458 if (!queue_pages_required(page, qp)) {
459 ret = 1;
460 goto unlock;
461 }
462
463 ret = 1;
464 flags = qp->flags;
465 /* go to thp migration */
466 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
467 migrate_page_add(page, qp->pagelist, flags);
468 unlock:
469 spin_unlock(ptl);
470 out:
471 return ret;
472 }
473
474 /*
475 * Scan through pages checking if pages follow certain conditions,
476 * and move them to the pagelist if they do.
477 */
478 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
479 unsigned long end, struct mm_walk *walk)
480 {
481 struct vm_area_struct *vma = walk->vma;
482 struct page *page;
483 struct queue_pages *qp = walk->private;
484 unsigned long flags = qp->flags;
485 int ret;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 ptl = pmd_trans_huge_lock(pmd, vma);
490 if (ptl) {
491 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
492 if (ret)
493 return 0;
494 }
495
496 if (pmd_trans_unstable(pmd))
497 return 0;
498 retry:
499 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
500 for (; addr != end; pte++, addr += PAGE_SIZE) {
501 if (!pte_present(*pte))
502 continue;
503 page = vm_normal_page(vma, addr, *pte);
504 if (!page)
505 continue;
506 /*
507 * vm_normal_page() filters out zero pages, but there might
508 * still be PageReserved pages to skip, perhaps in a VDSO.
509 */
510 if (PageReserved(page))
511 continue;
512 if (!queue_pages_required(page, qp))
513 continue;
514 if (PageTransCompound(page) && !thp_migration_supported()) {
515 get_page(page);
516 pte_unmap_unlock(pte, ptl);
517 lock_page(page);
518 ret = split_huge_page(page);
519 unlock_page(page);
520 put_page(page);
521 /* Failed to split -- skip. */
522 if (ret) {
523 pte = pte_offset_map_lock(walk->mm, pmd,
524 addr, &ptl);
525 continue;
526 }
527 goto retry;
528 }
529
530 migrate_page_add(page, qp->pagelist, flags);
531 }
532 pte_unmap_unlock(pte - 1, ptl);
533 cond_resched();
534 return 0;
535 }
536
537 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
538 unsigned long addr, unsigned long end,
539 struct mm_walk *walk)
540 {
541 #ifdef CONFIG_HUGETLB_PAGE
542 struct queue_pages *qp = walk->private;
543 unsigned long flags = qp->flags;
544 struct page *page;
545 spinlock_t *ptl;
546 pte_t entry;
547
548 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
549 entry = huge_ptep_get(pte);
550 if (!pte_present(entry))
551 goto unlock;
552 page = pte_page(entry);
553 if (!queue_pages_required(page, qp))
554 goto unlock;
555 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
556 if (flags & (MPOL_MF_MOVE_ALL) ||
557 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
558 isolate_huge_page(page, qp->pagelist);
559 unlock:
560 spin_unlock(ptl);
561 #else
562 BUG();
563 #endif
564 return 0;
565 }
566
567 #ifdef CONFIG_NUMA_BALANCING
568 /*
569 * This is used to mark a range of virtual addresses to be inaccessible.
570 * These are later cleared by a NUMA hinting fault. Depending on these
571 * faults, pages may be migrated for better NUMA placement.
572 *
573 * This is assuming that NUMA faults are handled using PROT_NONE. If
574 * an architecture makes a different choice, it will need further
575 * changes to the core.
576 */
577 unsigned long change_prot_numa(struct vm_area_struct *vma,
578 unsigned long addr, unsigned long end)
579 {
580 int nr_updated;
581
582 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
583 if (nr_updated)
584 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
585
586 return nr_updated;
587 }
588 #else
589 static unsigned long change_prot_numa(struct vm_area_struct *vma,
590 unsigned long addr, unsigned long end)
591 {
592 return 0;
593 }
594 #endif /* CONFIG_NUMA_BALANCING */
595
596 static int queue_pages_test_walk(unsigned long start, unsigned long end,
597 struct mm_walk *walk)
598 {
599 struct vm_area_struct *vma = walk->vma;
600 struct queue_pages *qp = walk->private;
601 unsigned long endvma = vma->vm_end;
602 unsigned long flags = qp->flags;
603
604 if (!vma_migratable(vma))
605 return 1;
606
607 if (endvma > end)
608 endvma = end;
609 if (vma->vm_start > start)
610 start = vma->vm_start;
611
612 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
613 if (!vma->vm_next && vma->vm_end < end)
614 return -EFAULT;
615 if (qp->prev && qp->prev->vm_end < vma->vm_start)
616 return -EFAULT;
617 }
618
619 qp->prev = vma;
620
621 if (flags & MPOL_MF_LAZY) {
622 /* Similar to task_numa_work, skip inaccessible VMAs */
623 if (!is_vm_hugetlb_page(vma) &&
624 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
625 !(vma->vm_flags & VM_MIXEDMAP))
626 change_prot_numa(vma, start, endvma);
627 return 1;
628 }
629
630 /* queue pages from current vma */
631 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
632 return 0;
633 return 1;
634 }
635
636 /*
637 * Walk through page tables and collect pages to be migrated.
638 *
639 * If pages found in a given range are on a set of nodes (determined by
640 * @nodes and @flags,) it's isolated and queued to the pagelist which is
641 * passed via @private.)
642 */
643 static int
644 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
645 nodemask_t *nodes, unsigned long flags,
646 struct list_head *pagelist)
647 {
648 struct queue_pages qp = {
649 .pagelist = pagelist,
650 .flags = flags,
651 .nmask = nodes,
652 .prev = NULL,
653 };
654 struct mm_walk queue_pages_walk = {
655 .hugetlb_entry = queue_pages_hugetlb,
656 .pmd_entry = queue_pages_pte_range,
657 .test_walk = queue_pages_test_walk,
658 .mm = mm,
659 .private = &qp,
660 };
661
662 return walk_page_range(start, end, &queue_pages_walk);
663 }
664
665 /*
666 * Apply policy to a single VMA
667 * This must be called with the mmap_sem held for writing.
668 */
669 static int vma_replace_policy(struct vm_area_struct *vma,
670 struct mempolicy *pol)
671 {
672 int err;
673 struct mempolicy *old;
674 struct mempolicy *new;
675
676 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
677 vma->vm_start, vma->vm_end, vma->vm_pgoff,
678 vma->vm_ops, vma->vm_file,
679 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
680
681 new = mpol_dup(pol);
682 if (IS_ERR(new))
683 return PTR_ERR(new);
684
685 if (vma->vm_ops && vma->vm_ops->set_policy) {
686 err = vma->vm_ops->set_policy(vma, new);
687 if (err)
688 goto err_out;
689 }
690
691 old = vma->vm_policy;
692 vma->vm_policy = new; /* protected by mmap_sem */
693 mpol_put(old);
694
695 return 0;
696 err_out:
697 mpol_put(new);
698 return err;
699 }
700
701 /* Step 2: apply policy to a range and do splits. */
702 static int mbind_range(struct mm_struct *mm, unsigned long start,
703 unsigned long end, struct mempolicy *new_pol)
704 {
705 struct vm_area_struct *next;
706 struct vm_area_struct *prev;
707 struct vm_area_struct *vma;
708 int err = 0;
709 pgoff_t pgoff;
710 unsigned long vmstart;
711 unsigned long vmend;
712
713 vma = find_vma(mm, start);
714 if (!vma || vma->vm_start > start)
715 return -EFAULT;
716
717 prev = vma->vm_prev;
718 if (start > vma->vm_start)
719 prev = vma;
720
721 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
722 next = vma->vm_next;
723 vmstart = max(start, vma->vm_start);
724 vmend = min(end, vma->vm_end);
725
726 if (mpol_equal(vma_policy(vma), new_pol))
727 continue;
728
729 pgoff = vma->vm_pgoff +
730 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
731 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
732 vma->anon_vma, vma->vm_file, pgoff,
733 new_pol, vma->vm_userfaultfd_ctx);
734 if (prev) {
735 vma = prev;
736 next = vma->vm_next;
737 if (mpol_equal(vma_policy(vma), new_pol))
738 continue;
739 /* vma_merge() joined vma && vma->next, case 8 */
740 goto replace;
741 }
742 if (vma->vm_start != vmstart) {
743 err = split_vma(vma->vm_mm, vma, vmstart, 1);
744 if (err)
745 goto out;
746 }
747 if (vma->vm_end != vmend) {
748 err = split_vma(vma->vm_mm, vma, vmend, 0);
749 if (err)
750 goto out;
751 }
752 replace:
753 err = vma_replace_policy(vma, new_pol);
754 if (err)
755 goto out;
756 }
757
758 out:
759 return err;
760 }
761
762 /* Set the process memory policy */
763 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
764 nodemask_t *nodes)
765 {
766 struct mempolicy *new, *old;
767 NODEMASK_SCRATCH(scratch);
768 int ret;
769
770 if (!scratch)
771 return -ENOMEM;
772
773 new = mpol_new(mode, flags, nodes);
774 if (IS_ERR(new)) {
775 ret = PTR_ERR(new);
776 goto out;
777 }
778
779 task_lock(current);
780 ret = mpol_set_nodemask(new, nodes, scratch);
781 if (ret) {
782 task_unlock(current);
783 mpol_put(new);
784 goto out;
785 }
786 old = current->mempolicy;
787 current->mempolicy = new;
788 if (new && new->mode == MPOL_INTERLEAVE)
789 current->il_prev = MAX_NUMNODES-1;
790 task_unlock(current);
791 mpol_put(old);
792 ret = 0;
793 out:
794 NODEMASK_SCRATCH_FREE(scratch);
795 return ret;
796 }
797
798 /*
799 * Return nodemask for policy for get_mempolicy() query
800 *
801 * Called with task's alloc_lock held
802 */
803 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
804 {
805 nodes_clear(*nodes);
806 if (p == &default_policy)
807 return;
808
809 switch (p->mode) {
810 case MPOL_BIND:
811 /* Fall through */
812 case MPOL_INTERLEAVE:
813 *nodes = p->v.nodes;
814 break;
815 case MPOL_PREFERRED:
816 if (!(p->flags & MPOL_F_LOCAL))
817 node_set(p->v.preferred_node, *nodes);
818 /* else return empty node mask for local allocation */
819 break;
820 default:
821 BUG();
822 }
823 }
824
825 static int lookup_node(unsigned long addr)
826 {
827 struct page *p;
828 int err;
829
830 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
831 if (err >= 0) {
832 err = page_to_nid(p);
833 put_page(p);
834 }
835 return err;
836 }
837
838 /* Retrieve NUMA policy */
839 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
840 unsigned long addr, unsigned long flags)
841 {
842 int err;
843 struct mm_struct *mm = current->mm;
844 struct vm_area_struct *vma = NULL;
845 struct mempolicy *pol = current->mempolicy;
846
847 if (flags &
848 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
849 return -EINVAL;
850
851 if (flags & MPOL_F_MEMS_ALLOWED) {
852 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
853 return -EINVAL;
854 *policy = 0; /* just so it's initialized */
855 task_lock(current);
856 *nmask = cpuset_current_mems_allowed;
857 task_unlock(current);
858 return 0;
859 }
860
861 if (flags & MPOL_F_ADDR) {
862 /*
863 * Do NOT fall back to task policy if the
864 * vma/shared policy at addr is NULL. We
865 * want to return MPOL_DEFAULT in this case.
866 */
867 down_read(&mm->mmap_sem);
868 vma = find_vma_intersection(mm, addr, addr+1);
869 if (!vma) {
870 up_read(&mm->mmap_sem);
871 return -EFAULT;
872 }
873 if (vma->vm_ops && vma->vm_ops->get_policy)
874 pol = vma->vm_ops->get_policy(vma, addr);
875 else
876 pol = vma->vm_policy;
877 } else if (addr)
878 return -EINVAL;
879
880 if (!pol)
881 pol = &default_policy; /* indicates default behavior */
882
883 if (flags & MPOL_F_NODE) {
884 if (flags & MPOL_F_ADDR) {
885 err = lookup_node(addr);
886 if (err < 0)
887 goto out;
888 *policy = err;
889 } else if (pol == current->mempolicy &&
890 pol->mode == MPOL_INTERLEAVE) {
891 *policy = next_node_in(current->il_prev, pol->v.nodes);
892 } else {
893 err = -EINVAL;
894 goto out;
895 }
896 } else {
897 *policy = pol == &default_policy ? MPOL_DEFAULT :
898 pol->mode;
899 /*
900 * Internal mempolicy flags must be masked off before exposing
901 * the policy to userspace.
902 */
903 *policy |= (pol->flags & MPOL_MODE_FLAGS);
904 }
905
906 err = 0;
907 if (nmask) {
908 if (mpol_store_user_nodemask(pol)) {
909 *nmask = pol->w.user_nodemask;
910 } else {
911 task_lock(current);
912 get_policy_nodemask(pol, nmask);
913 task_unlock(current);
914 }
915 }
916
917 out:
918 mpol_cond_put(pol);
919 if (vma)
920 up_read(&current->mm->mmap_sem);
921 return err;
922 }
923
924 #ifdef CONFIG_MIGRATION
925 /*
926 * page migration, thp tail pages can be passed.
927 */
928 static void migrate_page_add(struct page *page, struct list_head *pagelist,
929 unsigned long flags)
930 {
931 struct page *head = compound_head(page);
932 /*
933 * Avoid migrating a page that is shared with others.
934 */
935 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
936 if (!isolate_lru_page(head)) {
937 list_add_tail(&head->lru, pagelist);
938 mod_node_page_state(page_pgdat(head),
939 NR_ISOLATED_ANON + page_is_file_cache(head),
940 hpage_nr_pages(head));
941 }
942 }
943 }
944
945 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
946 {
947 if (PageHuge(page))
948 return alloc_huge_page_node(page_hstate(compound_head(page)),
949 node);
950 else if (thp_migration_supported() && PageTransHuge(page)) {
951 struct page *thp;
952
953 thp = alloc_pages_node(node,
954 (GFP_TRANSHUGE | __GFP_THISNODE),
955 HPAGE_PMD_ORDER);
956 if (!thp)
957 return NULL;
958 prep_transhuge_page(thp);
959 return thp;
960 } else
961 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
962 __GFP_THISNODE, 0);
963 }
964
965 /*
966 * Migrate pages from one node to a target node.
967 * Returns error or the number of pages not migrated.
968 */
969 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
970 int flags)
971 {
972 nodemask_t nmask;
973 LIST_HEAD(pagelist);
974 int err = 0;
975
976 nodes_clear(nmask);
977 node_set(source, nmask);
978
979 /*
980 * This does not "check" the range but isolates all pages that
981 * need migration. Between passing in the full user address
982 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
983 */
984 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
985 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
986 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
987
988 if (!list_empty(&pagelist)) {
989 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
990 MIGRATE_SYNC, MR_SYSCALL);
991 if (err)
992 putback_movable_pages(&pagelist);
993 }
994
995 return err;
996 }
997
998 /*
999 * Move pages between the two nodesets so as to preserve the physical
1000 * layout as much as possible.
1001 *
1002 * Returns the number of page that could not be moved.
1003 */
1004 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1005 const nodemask_t *to, int flags)
1006 {
1007 int busy = 0;
1008 int err;
1009 nodemask_t tmp;
1010
1011 err = migrate_prep();
1012 if (err)
1013 return err;
1014
1015 down_read(&mm->mmap_sem);
1016
1017 /*
1018 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1019 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1020 * bit in 'tmp', and return that <source, dest> pair for migration.
1021 * The pair of nodemasks 'to' and 'from' define the map.
1022 *
1023 * If no pair of bits is found that way, fallback to picking some
1024 * pair of 'source' and 'dest' bits that are not the same. If the
1025 * 'source' and 'dest' bits are the same, this represents a node
1026 * that will be migrating to itself, so no pages need move.
1027 *
1028 * If no bits are left in 'tmp', or if all remaining bits left
1029 * in 'tmp' correspond to the same bit in 'to', return false
1030 * (nothing left to migrate).
1031 *
1032 * This lets us pick a pair of nodes to migrate between, such that
1033 * if possible the dest node is not already occupied by some other
1034 * source node, minimizing the risk of overloading the memory on a
1035 * node that would happen if we migrated incoming memory to a node
1036 * before migrating outgoing memory source that same node.
1037 *
1038 * A single scan of tmp is sufficient. As we go, we remember the
1039 * most recent <s, d> pair that moved (s != d). If we find a pair
1040 * that not only moved, but what's better, moved to an empty slot
1041 * (d is not set in tmp), then we break out then, with that pair.
1042 * Otherwise when we finish scanning from_tmp, we at least have the
1043 * most recent <s, d> pair that moved. If we get all the way through
1044 * the scan of tmp without finding any node that moved, much less
1045 * moved to an empty node, then there is nothing left worth migrating.
1046 */
1047
1048 tmp = *from;
1049 while (!nodes_empty(tmp)) {
1050 int s,d;
1051 int source = NUMA_NO_NODE;
1052 int dest = 0;
1053
1054 for_each_node_mask(s, tmp) {
1055
1056 /*
1057 * do_migrate_pages() tries to maintain the relative
1058 * node relationship of the pages established between
1059 * threads and memory areas.
1060 *
1061 * However if the number of source nodes is not equal to
1062 * the number of destination nodes we can not preserve
1063 * this node relative relationship. In that case, skip
1064 * copying memory from a node that is in the destination
1065 * mask.
1066 *
1067 * Example: [2,3,4] -> [3,4,5] moves everything.
1068 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1069 */
1070
1071 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1072 (node_isset(s, *to)))
1073 continue;
1074
1075 d = node_remap(s, *from, *to);
1076 if (s == d)
1077 continue;
1078
1079 source = s; /* Node moved. Memorize */
1080 dest = d;
1081
1082 /* dest not in remaining from nodes? */
1083 if (!node_isset(dest, tmp))
1084 break;
1085 }
1086 if (source == NUMA_NO_NODE)
1087 break;
1088
1089 node_clear(source, tmp);
1090 err = migrate_to_node(mm, source, dest, flags);
1091 if (err > 0)
1092 busy += err;
1093 if (err < 0)
1094 break;
1095 }
1096 up_read(&mm->mmap_sem);
1097 if (err < 0)
1098 return err;
1099 return busy;
1100
1101 }
1102
1103 /*
1104 * Allocate a new page for page migration based on vma policy.
1105 * Start by assuming the page is mapped by the same vma as contains @start.
1106 * Search forward from there, if not. N.B., this assumes that the
1107 * list of pages handed to migrate_pages()--which is how we get here--
1108 * is in virtual address order.
1109 */
1110 static struct page *new_page(struct page *page, unsigned long start, int **x)
1111 {
1112 struct vm_area_struct *vma;
1113 unsigned long uninitialized_var(address);
1114
1115 vma = find_vma(current->mm, start);
1116 while (vma) {
1117 address = page_address_in_vma(page, vma);
1118 if (address != -EFAULT)
1119 break;
1120 vma = vma->vm_next;
1121 }
1122
1123 if (PageHuge(page)) {
1124 BUG_ON(!vma);
1125 return alloc_huge_page_noerr(vma, address, 1);
1126 } else if (thp_migration_supported() && PageTransHuge(page)) {
1127 struct page *thp;
1128
1129 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1130 HPAGE_PMD_ORDER);
1131 if (!thp)
1132 return NULL;
1133 prep_transhuge_page(thp);
1134 return thp;
1135 }
1136 /*
1137 * if !vma, alloc_page_vma() will use task or system default policy
1138 */
1139 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1140 vma, address);
1141 }
1142 #else
1143
1144 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1145 unsigned long flags)
1146 {
1147 }
1148
1149 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1150 const nodemask_t *to, int flags)
1151 {
1152 return -ENOSYS;
1153 }
1154
1155 static struct page *new_page(struct page *page, unsigned long start, int **x)
1156 {
1157 return NULL;
1158 }
1159 #endif
1160
1161 static long do_mbind(unsigned long start, unsigned long len,
1162 unsigned short mode, unsigned short mode_flags,
1163 nodemask_t *nmask, unsigned long flags)
1164 {
1165 struct mm_struct *mm = current->mm;
1166 struct mempolicy *new;
1167 unsigned long end;
1168 int err;
1169 LIST_HEAD(pagelist);
1170
1171 if (flags & ~(unsigned long)MPOL_MF_VALID)
1172 return -EINVAL;
1173 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1174 return -EPERM;
1175
1176 if (start & ~PAGE_MASK)
1177 return -EINVAL;
1178
1179 if (mode == MPOL_DEFAULT)
1180 flags &= ~MPOL_MF_STRICT;
1181
1182 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1183 end = start + len;
1184
1185 if (end < start)
1186 return -EINVAL;
1187 if (end == start)
1188 return 0;
1189
1190 new = mpol_new(mode, mode_flags, nmask);
1191 if (IS_ERR(new))
1192 return PTR_ERR(new);
1193
1194 if (flags & MPOL_MF_LAZY)
1195 new->flags |= MPOL_F_MOF;
1196
1197 /*
1198 * If we are using the default policy then operation
1199 * on discontinuous address spaces is okay after all
1200 */
1201 if (!new)
1202 flags |= MPOL_MF_DISCONTIG_OK;
1203
1204 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1205 start, start + len, mode, mode_flags,
1206 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1207
1208 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1209
1210 err = migrate_prep();
1211 if (err)
1212 goto mpol_out;
1213 }
1214 {
1215 NODEMASK_SCRATCH(scratch);
1216 if (scratch) {
1217 down_write(&mm->mmap_sem);
1218 task_lock(current);
1219 err = mpol_set_nodemask(new, nmask, scratch);
1220 task_unlock(current);
1221 if (err)
1222 up_write(&mm->mmap_sem);
1223 } else
1224 err = -ENOMEM;
1225 NODEMASK_SCRATCH_FREE(scratch);
1226 }
1227 if (err)
1228 goto mpol_out;
1229
1230 err = queue_pages_range(mm, start, end, nmask,
1231 flags | MPOL_MF_INVERT, &pagelist);
1232 if (!err)
1233 err = mbind_range(mm, start, end, new);
1234
1235 if (!err) {
1236 int nr_failed = 0;
1237
1238 if (!list_empty(&pagelist)) {
1239 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1240 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1241 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1242 if (nr_failed)
1243 putback_movable_pages(&pagelist);
1244 }
1245
1246 if (nr_failed && (flags & MPOL_MF_STRICT))
1247 err = -EIO;
1248 } else
1249 putback_movable_pages(&pagelist);
1250
1251 up_write(&mm->mmap_sem);
1252 mpol_out:
1253 mpol_put(new);
1254 return err;
1255 }
1256
1257 /*
1258 * User space interface with variable sized bitmaps for nodelists.
1259 */
1260
1261 /* Copy a node mask from user space. */
1262 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1263 unsigned long maxnode)
1264 {
1265 unsigned long k;
1266 unsigned long nlongs;
1267 unsigned long endmask;
1268
1269 --maxnode;
1270 nodes_clear(*nodes);
1271 if (maxnode == 0 || !nmask)
1272 return 0;
1273 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1274 return -EINVAL;
1275
1276 nlongs = BITS_TO_LONGS(maxnode);
1277 if ((maxnode % BITS_PER_LONG) == 0)
1278 endmask = ~0UL;
1279 else
1280 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1281
1282 /* When the user specified more nodes than supported just check
1283 if the non supported part is all zero. */
1284 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1285 if (nlongs > PAGE_SIZE/sizeof(long))
1286 return -EINVAL;
1287 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1288 unsigned long t;
1289 if (get_user(t, nmask + k))
1290 return -EFAULT;
1291 if (k == nlongs - 1) {
1292 if (t & endmask)
1293 return -EINVAL;
1294 } else if (t)
1295 return -EINVAL;
1296 }
1297 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1298 endmask = ~0UL;
1299 }
1300
1301 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1302 return -EFAULT;
1303 nodes_addr(*nodes)[nlongs-1] &= endmask;
1304 return 0;
1305 }
1306
1307 /* Copy a kernel node mask to user space */
1308 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1309 nodemask_t *nodes)
1310 {
1311 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1312 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1313
1314 if (copy > nbytes) {
1315 if (copy > PAGE_SIZE)
1316 return -EINVAL;
1317 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1318 return -EFAULT;
1319 copy = nbytes;
1320 }
1321 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1322 }
1323
1324 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1325 unsigned long, mode, const unsigned long __user *, nmask,
1326 unsigned long, maxnode, unsigned, flags)
1327 {
1328 nodemask_t nodes;
1329 int err;
1330 unsigned short mode_flags;
1331
1332 mode_flags = mode & MPOL_MODE_FLAGS;
1333 mode &= ~MPOL_MODE_FLAGS;
1334 if (mode >= MPOL_MAX)
1335 return -EINVAL;
1336 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1337 (mode_flags & MPOL_F_RELATIVE_NODES))
1338 return -EINVAL;
1339 err = get_nodes(&nodes, nmask, maxnode);
1340 if (err)
1341 return err;
1342 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1343 }
1344
1345 /* Set the process memory policy */
1346 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1347 unsigned long, maxnode)
1348 {
1349 int err;
1350 nodemask_t nodes;
1351 unsigned short flags;
1352
1353 flags = mode & MPOL_MODE_FLAGS;
1354 mode &= ~MPOL_MODE_FLAGS;
1355 if ((unsigned int)mode >= MPOL_MAX)
1356 return -EINVAL;
1357 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1358 return -EINVAL;
1359 err = get_nodes(&nodes, nmask, maxnode);
1360 if (err)
1361 return err;
1362 return do_set_mempolicy(mode, flags, &nodes);
1363 }
1364
1365 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1366 const unsigned long __user *, old_nodes,
1367 const unsigned long __user *, new_nodes)
1368 {
1369 struct mm_struct *mm = NULL;
1370 struct task_struct *task;
1371 nodemask_t task_nodes;
1372 int err;
1373 nodemask_t *old;
1374 nodemask_t *new;
1375 NODEMASK_SCRATCH(scratch);
1376
1377 if (!scratch)
1378 return -ENOMEM;
1379
1380 old = &scratch->mask1;
1381 new = &scratch->mask2;
1382
1383 err = get_nodes(old, old_nodes, maxnode);
1384 if (err)
1385 goto out;
1386
1387 err = get_nodes(new, new_nodes, maxnode);
1388 if (err)
1389 goto out;
1390
1391 /* Find the mm_struct */
1392 rcu_read_lock();
1393 task = pid ? find_task_by_vpid(pid) : current;
1394 if (!task) {
1395 rcu_read_unlock();
1396 err = -ESRCH;
1397 goto out;
1398 }
1399 get_task_struct(task);
1400
1401 err = -EINVAL;
1402
1403 /*
1404 * Check if this process has the right to modify the specified process.
1405 * Use the regular "ptrace_may_access()" checks.
1406 */
1407 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1408 rcu_read_unlock();
1409 err = -EPERM;
1410 goto out_put;
1411 }
1412 rcu_read_unlock();
1413
1414 task_nodes = cpuset_mems_allowed(task);
1415 /* Is the user allowed to access the target nodes? */
1416 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1417 err = -EPERM;
1418 goto out_put;
1419 }
1420
1421 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1422 err = -EINVAL;
1423 goto out_put;
1424 }
1425
1426 err = security_task_movememory(task);
1427 if (err)
1428 goto out_put;
1429
1430 mm = get_task_mm(task);
1431 put_task_struct(task);
1432
1433 if (!mm) {
1434 err = -EINVAL;
1435 goto out;
1436 }
1437
1438 err = do_migrate_pages(mm, old, new,
1439 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1440
1441 mmput(mm);
1442 out:
1443 NODEMASK_SCRATCH_FREE(scratch);
1444
1445 return err;
1446
1447 out_put:
1448 put_task_struct(task);
1449 goto out;
1450
1451 }
1452
1453
1454 /* Retrieve NUMA policy */
1455 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1456 unsigned long __user *, nmask, unsigned long, maxnode,
1457 unsigned long, addr, unsigned long, flags)
1458 {
1459 int err;
1460 int uninitialized_var(pval);
1461 nodemask_t nodes;
1462
1463 if (nmask != NULL && maxnode < MAX_NUMNODES)
1464 return -EINVAL;
1465
1466 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1467
1468 if (err)
1469 return err;
1470
1471 if (policy && put_user(pval, policy))
1472 return -EFAULT;
1473
1474 if (nmask)
1475 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1476
1477 return err;
1478 }
1479
1480 #ifdef CONFIG_COMPAT
1481
1482 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1483 compat_ulong_t __user *, nmask,
1484 compat_ulong_t, maxnode,
1485 compat_ulong_t, addr, compat_ulong_t, flags)
1486 {
1487 long err;
1488 unsigned long __user *nm = NULL;
1489 unsigned long nr_bits, alloc_size;
1490 DECLARE_BITMAP(bm, MAX_NUMNODES);
1491
1492 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1493 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1494
1495 if (nmask)
1496 nm = compat_alloc_user_space(alloc_size);
1497
1498 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1499
1500 if (!err && nmask) {
1501 unsigned long copy_size;
1502 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1503 err = copy_from_user(bm, nm, copy_size);
1504 /* ensure entire bitmap is zeroed */
1505 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1506 err |= compat_put_bitmap(nmask, bm, nr_bits);
1507 }
1508
1509 return err;
1510 }
1511
1512 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1513 compat_ulong_t, maxnode)
1514 {
1515 unsigned long __user *nm = NULL;
1516 unsigned long nr_bits, alloc_size;
1517 DECLARE_BITMAP(bm, MAX_NUMNODES);
1518
1519 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1520 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1521
1522 if (nmask) {
1523 if (compat_get_bitmap(bm, nmask, nr_bits))
1524 return -EFAULT;
1525 nm = compat_alloc_user_space(alloc_size);
1526 if (copy_to_user(nm, bm, alloc_size))
1527 return -EFAULT;
1528 }
1529
1530 return sys_set_mempolicy(mode, nm, nr_bits+1);
1531 }
1532
1533 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1534 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1535 compat_ulong_t, maxnode, compat_ulong_t, flags)
1536 {
1537 unsigned long __user *nm = NULL;
1538 unsigned long nr_bits, alloc_size;
1539 nodemask_t bm;
1540
1541 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1542 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1543
1544 if (nmask) {
1545 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1546 return -EFAULT;
1547 nm = compat_alloc_user_space(alloc_size);
1548 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1549 return -EFAULT;
1550 }
1551
1552 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1553 }
1554
1555 #endif
1556
1557 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1558 unsigned long addr)
1559 {
1560 struct mempolicy *pol = NULL;
1561
1562 if (vma) {
1563 if (vma->vm_ops && vma->vm_ops->get_policy) {
1564 pol = vma->vm_ops->get_policy(vma, addr);
1565 } else if (vma->vm_policy) {
1566 pol = vma->vm_policy;
1567
1568 /*
1569 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1570 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1571 * count on these policies which will be dropped by
1572 * mpol_cond_put() later
1573 */
1574 if (mpol_needs_cond_ref(pol))
1575 mpol_get(pol);
1576 }
1577 }
1578
1579 return pol;
1580 }
1581
1582 /*
1583 * get_vma_policy(@vma, @addr)
1584 * @vma: virtual memory area whose policy is sought
1585 * @addr: address in @vma for shared policy lookup
1586 *
1587 * Returns effective policy for a VMA at specified address.
1588 * Falls back to current->mempolicy or system default policy, as necessary.
1589 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1590 * count--added by the get_policy() vm_op, as appropriate--to protect against
1591 * freeing by another task. It is the caller's responsibility to free the
1592 * extra reference for shared policies.
1593 */
1594 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1595 unsigned long addr)
1596 {
1597 struct mempolicy *pol = __get_vma_policy(vma, addr);
1598
1599 if (!pol)
1600 pol = get_task_policy(current);
1601
1602 return pol;
1603 }
1604
1605 bool vma_policy_mof(struct vm_area_struct *vma)
1606 {
1607 struct mempolicy *pol;
1608
1609 if (vma->vm_ops && vma->vm_ops->get_policy) {
1610 bool ret = false;
1611
1612 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1613 if (pol && (pol->flags & MPOL_F_MOF))
1614 ret = true;
1615 mpol_cond_put(pol);
1616
1617 return ret;
1618 }
1619
1620 pol = vma->vm_policy;
1621 if (!pol)
1622 pol = get_task_policy(current);
1623
1624 return pol->flags & MPOL_F_MOF;
1625 }
1626
1627 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1628 {
1629 enum zone_type dynamic_policy_zone = policy_zone;
1630
1631 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1632
1633 /*
1634 * if policy->v.nodes has movable memory only,
1635 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1636 *
1637 * policy->v.nodes is intersect with node_states[N_MEMORY].
1638 * so if the following test faile, it implies
1639 * policy->v.nodes has movable memory only.
1640 */
1641 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1642 dynamic_policy_zone = ZONE_MOVABLE;
1643
1644 return zone >= dynamic_policy_zone;
1645 }
1646
1647 /*
1648 * Return a nodemask representing a mempolicy for filtering nodes for
1649 * page allocation
1650 */
1651 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1652 {
1653 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1654 if (unlikely(policy->mode == MPOL_BIND) &&
1655 apply_policy_zone(policy, gfp_zone(gfp)) &&
1656 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1657 return &policy->v.nodes;
1658
1659 return NULL;
1660 }
1661
1662 /* Return the node id preferred by the given mempolicy, or the given id */
1663 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1664 int nd)
1665 {
1666 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1667 nd = policy->v.preferred_node;
1668 else {
1669 /*
1670 * __GFP_THISNODE shouldn't even be used with the bind policy
1671 * because we might easily break the expectation to stay on the
1672 * requested node and not break the policy.
1673 */
1674 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1675 }
1676
1677 return nd;
1678 }
1679
1680 /* Do dynamic interleaving for a process */
1681 static unsigned interleave_nodes(struct mempolicy *policy)
1682 {
1683 unsigned next;
1684 struct task_struct *me = current;
1685
1686 next = next_node_in(me->il_prev, policy->v.nodes);
1687 if (next < MAX_NUMNODES)
1688 me->il_prev = next;
1689 return next;
1690 }
1691
1692 /*
1693 * Depending on the memory policy provide a node from which to allocate the
1694 * next slab entry.
1695 */
1696 unsigned int mempolicy_slab_node(void)
1697 {
1698 struct mempolicy *policy;
1699 int node = numa_mem_id();
1700
1701 if (in_interrupt())
1702 return node;
1703
1704 policy = current->mempolicy;
1705 if (!policy || policy->flags & MPOL_F_LOCAL)
1706 return node;
1707
1708 switch (policy->mode) {
1709 case MPOL_PREFERRED:
1710 /*
1711 * handled MPOL_F_LOCAL above
1712 */
1713 return policy->v.preferred_node;
1714
1715 case MPOL_INTERLEAVE:
1716 return interleave_nodes(policy);
1717
1718 case MPOL_BIND: {
1719 struct zoneref *z;
1720
1721 /*
1722 * Follow bind policy behavior and start allocation at the
1723 * first node.
1724 */
1725 struct zonelist *zonelist;
1726 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1727 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1728 z = first_zones_zonelist(zonelist, highest_zoneidx,
1729 &policy->v.nodes);
1730 return z->zone ? z->zone->node : node;
1731 }
1732
1733 default:
1734 BUG();
1735 }
1736 }
1737
1738 /*
1739 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1740 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1741 * number of present nodes.
1742 */
1743 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1744 {
1745 unsigned nnodes = nodes_weight(pol->v.nodes);
1746 unsigned target;
1747 int i;
1748 int nid;
1749
1750 if (!nnodes)
1751 return numa_node_id();
1752 target = (unsigned int)n % nnodes;
1753 nid = first_node(pol->v.nodes);
1754 for (i = 0; i < target; i++)
1755 nid = next_node(nid, pol->v.nodes);
1756 return nid;
1757 }
1758
1759 /* Determine a node number for interleave */
1760 static inline unsigned interleave_nid(struct mempolicy *pol,
1761 struct vm_area_struct *vma, unsigned long addr, int shift)
1762 {
1763 if (vma) {
1764 unsigned long off;
1765
1766 /*
1767 * for small pages, there is no difference between
1768 * shift and PAGE_SHIFT, so the bit-shift is safe.
1769 * for huge pages, since vm_pgoff is in units of small
1770 * pages, we need to shift off the always 0 bits to get
1771 * a useful offset.
1772 */
1773 BUG_ON(shift < PAGE_SHIFT);
1774 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1775 off += (addr - vma->vm_start) >> shift;
1776 return offset_il_node(pol, off);
1777 } else
1778 return interleave_nodes(pol);
1779 }
1780
1781 #ifdef CONFIG_HUGETLBFS
1782 /*
1783 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1784 * @vma: virtual memory area whose policy is sought
1785 * @addr: address in @vma for shared policy lookup and interleave policy
1786 * @gfp_flags: for requested zone
1787 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1788 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1789 *
1790 * Returns a nid suitable for a huge page allocation and a pointer
1791 * to the struct mempolicy for conditional unref after allocation.
1792 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1793 * @nodemask for filtering the zonelist.
1794 *
1795 * Must be protected by read_mems_allowed_begin()
1796 */
1797 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1798 struct mempolicy **mpol, nodemask_t **nodemask)
1799 {
1800 int nid;
1801
1802 *mpol = get_vma_policy(vma, addr);
1803 *nodemask = NULL; /* assume !MPOL_BIND */
1804
1805 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1806 nid = interleave_nid(*mpol, vma, addr,
1807 huge_page_shift(hstate_vma(vma)));
1808 } else {
1809 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1810 if ((*mpol)->mode == MPOL_BIND)
1811 *nodemask = &(*mpol)->v.nodes;
1812 }
1813 return nid;
1814 }
1815
1816 /*
1817 * init_nodemask_of_mempolicy
1818 *
1819 * If the current task's mempolicy is "default" [NULL], return 'false'
1820 * to indicate default policy. Otherwise, extract the policy nodemask
1821 * for 'bind' or 'interleave' policy into the argument nodemask, or
1822 * initialize the argument nodemask to contain the single node for
1823 * 'preferred' or 'local' policy and return 'true' to indicate presence
1824 * of non-default mempolicy.
1825 *
1826 * We don't bother with reference counting the mempolicy [mpol_get/put]
1827 * because the current task is examining it's own mempolicy and a task's
1828 * mempolicy is only ever changed by the task itself.
1829 *
1830 * N.B., it is the caller's responsibility to free a returned nodemask.
1831 */
1832 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1833 {
1834 struct mempolicy *mempolicy;
1835 int nid;
1836
1837 if (!(mask && current->mempolicy))
1838 return false;
1839
1840 task_lock(current);
1841 mempolicy = current->mempolicy;
1842 switch (mempolicy->mode) {
1843 case MPOL_PREFERRED:
1844 if (mempolicy->flags & MPOL_F_LOCAL)
1845 nid = numa_node_id();
1846 else
1847 nid = mempolicy->v.preferred_node;
1848 init_nodemask_of_node(mask, nid);
1849 break;
1850
1851 case MPOL_BIND:
1852 /* Fall through */
1853 case MPOL_INTERLEAVE:
1854 *mask = mempolicy->v.nodes;
1855 break;
1856
1857 default:
1858 BUG();
1859 }
1860 task_unlock(current);
1861
1862 return true;
1863 }
1864 #endif
1865
1866 /*
1867 * mempolicy_nodemask_intersects
1868 *
1869 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1870 * policy. Otherwise, check for intersection between mask and the policy
1871 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1872 * policy, always return true since it may allocate elsewhere on fallback.
1873 *
1874 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1875 */
1876 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1877 const nodemask_t *mask)
1878 {
1879 struct mempolicy *mempolicy;
1880 bool ret = true;
1881
1882 if (!mask)
1883 return ret;
1884 task_lock(tsk);
1885 mempolicy = tsk->mempolicy;
1886 if (!mempolicy)
1887 goto out;
1888
1889 switch (mempolicy->mode) {
1890 case MPOL_PREFERRED:
1891 /*
1892 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1893 * allocate from, they may fallback to other nodes when oom.
1894 * Thus, it's possible for tsk to have allocated memory from
1895 * nodes in mask.
1896 */
1897 break;
1898 case MPOL_BIND:
1899 case MPOL_INTERLEAVE:
1900 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1901 break;
1902 default:
1903 BUG();
1904 }
1905 out:
1906 task_unlock(tsk);
1907 return ret;
1908 }
1909
1910 /* Allocate a page in interleaved policy.
1911 Own path because it needs to do special accounting. */
1912 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1913 unsigned nid)
1914 {
1915 struct page *page;
1916
1917 page = __alloc_pages(gfp, order, nid);
1918 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1919 if (!static_branch_likely(&vm_numa_stat_key))
1920 return page;
1921 if (page && page_to_nid(page) == nid) {
1922 preempt_disable();
1923 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1924 preempt_enable();
1925 }
1926 return page;
1927 }
1928
1929 /**
1930 * alloc_pages_vma - Allocate a page for a VMA.
1931 *
1932 * @gfp:
1933 * %GFP_USER user allocation.
1934 * %GFP_KERNEL kernel allocations,
1935 * %GFP_HIGHMEM highmem/user allocations,
1936 * %GFP_FS allocation should not call back into a file system.
1937 * %GFP_ATOMIC don't sleep.
1938 *
1939 * @order:Order of the GFP allocation.
1940 * @vma: Pointer to VMA or NULL if not available.
1941 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1942 * @node: Which node to prefer for allocation (modulo policy).
1943 * @hugepage: for hugepages try only the preferred node if possible
1944 *
1945 * This function allocates a page from the kernel page pool and applies
1946 * a NUMA policy associated with the VMA or the current process.
1947 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1948 * mm_struct of the VMA to prevent it from going away. Should be used for
1949 * all allocations for pages that will be mapped into user space. Returns
1950 * NULL when no page can be allocated.
1951 */
1952 struct page *
1953 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1954 unsigned long addr, int node, bool hugepage)
1955 {
1956 struct mempolicy *pol;
1957 struct page *page;
1958 int preferred_nid;
1959 nodemask_t *nmask;
1960
1961 pol = get_vma_policy(vma, addr);
1962
1963 if (pol->mode == MPOL_INTERLEAVE) {
1964 unsigned nid;
1965
1966 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1967 mpol_cond_put(pol);
1968 page = alloc_page_interleave(gfp, order, nid);
1969 goto out;
1970 }
1971
1972 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1973 int hpage_node = node;
1974
1975 /*
1976 * For hugepage allocation and non-interleave policy which
1977 * allows the current node (or other explicitly preferred
1978 * node) we only try to allocate from the current/preferred
1979 * node and don't fall back to other nodes, as the cost of
1980 * remote accesses would likely offset THP benefits.
1981 *
1982 * If the policy is interleave, or does not allow the current
1983 * node in its nodemask, we allocate the standard way.
1984 */
1985 if (pol->mode == MPOL_PREFERRED &&
1986 !(pol->flags & MPOL_F_LOCAL))
1987 hpage_node = pol->v.preferred_node;
1988
1989 nmask = policy_nodemask(gfp, pol);
1990 if (!nmask || node_isset(hpage_node, *nmask)) {
1991 mpol_cond_put(pol);
1992 page = __alloc_pages_node(hpage_node,
1993 gfp | __GFP_THISNODE, order);
1994 goto out;
1995 }
1996 }
1997
1998 nmask = policy_nodemask(gfp, pol);
1999 preferred_nid = policy_node(gfp, pol, node);
2000 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2001 mpol_cond_put(pol);
2002 out:
2003 return page;
2004 }
2005
2006 /**
2007 * alloc_pages_current - Allocate pages.
2008 *
2009 * @gfp:
2010 * %GFP_USER user allocation,
2011 * %GFP_KERNEL kernel allocation,
2012 * %GFP_HIGHMEM highmem allocation,
2013 * %GFP_FS don't call back into a file system.
2014 * %GFP_ATOMIC don't sleep.
2015 * @order: Power of two of allocation size in pages. 0 is a single page.
2016 *
2017 * Allocate a page from the kernel page pool. When not in
2018 * interrupt context and apply the current process NUMA policy.
2019 * Returns NULL when no page can be allocated.
2020 */
2021 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2022 {
2023 struct mempolicy *pol = &default_policy;
2024 struct page *page;
2025
2026 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2027 pol = get_task_policy(current);
2028
2029 /*
2030 * No reference counting needed for current->mempolicy
2031 * nor system default_policy
2032 */
2033 if (pol->mode == MPOL_INTERLEAVE)
2034 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2035 else
2036 page = __alloc_pages_nodemask(gfp, order,
2037 policy_node(gfp, pol, numa_node_id()),
2038 policy_nodemask(gfp, pol));
2039
2040 return page;
2041 }
2042 EXPORT_SYMBOL(alloc_pages_current);
2043
2044 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2045 {
2046 struct mempolicy *pol = mpol_dup(vma_policy(src));
2047
2048 if (IS_ERR(pol))
2049 return PTR_ERR(pol);
2050 dst->vm_policy = pol;
2051 return 0;
2052 }
2053
2054 /*
2055 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2056 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2057 * with the mems_allowed returned by cpuset_mems_allowed(). This
2058 * keeps mempolicies cpuset relative after its cpuset moves. See
2059 * further kernel/cpuset.c update_nodemask().
2060 *
2061 * current's mempolicy may be rebinded by the other task(the task that changes
2062 * cpuset's mems), so we needn't do rebind work for current task.
2063 */
2064
2065 /* Slow path of a mempolicy duplicate */
2066 struct mempolicy *__mpol_dup(struct mempolicy *old)
2067 {
2068 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2069
2070 if (!new)
2071 return ERR_PTR(-ENOMEM);
2072
2073 /* task's mempolicy is protected by alloc_lock */
2074 if (old == current->mempolicy) {
2075 task_lock(current);
2076 *new = *old;
2077 task_unlock(current);
2078 } else
2079 *new = *old;
2080
2081 if (current_cpuset_is_being_rebound()) {
2082 nodemask_t mems = cpuset_mems_allowed(current);
2083 mpol_rebind_policy(new, &mems);
2084 }
2085 atomic_set(&new->refcnt, 1);
2086 return new;
2087 }
2088
2089 /* Slow path of a mempolicy comparison */
2090 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2091 {
2092 if (!a || !b)
2093 return false;
2094 if (a->mode != b->mode)
2095 return false;
2096 if (a->flags != b->flags)
2097 return false;
2098 if (mpol_store_user_nodemask(a))
2099 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2100 return false;
2101
2102 switch (a->mode) {
2103 case MPOL_BIND:
2104 /* Fall through */
2105 case MPOL_INTERLEAVE:
2106 return !!nodes_equal(a->v.nodes, b->v.nodes);
2107 case MPOL_PREFERRED:
2108 return a->v.preferred_node == b->v.preferred_node;
2109 default:
2110 BUG();
2111 return false;
2112 }
2113 }
2114
2115 /*
2116 * Shared memory backing store policy support.
2117 *
2118 * Remember policies even when nobody has shared memory mapped.
2119 * The policies are kept in Red-Black tree linked from the inode.
2120 * They are protected by the sp->lock rwlock, which should be held
2121 * for any accesses to the tree.
2122 */
2123
2124 /*
2125 * lookup first element intersecting start-end. Caller holds sp->lock for
2126 * reading or for writing
2127 */
2128 static struct sp_node *
2129 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2130 {
2131 struct rb_node *n = sp->root.rb_node;
2132
2133 while (n) {
2134 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2135
2136 if (start >= p->end)
2137 n = n->rb_right;
2138 else if (end <= p->start)
2139 n = n->rb_left;
2140 else
2141 break;
2142 }
2143 if (!n)
2144 return NULL;
2145 for (;;) {
2146 struct sp_node *w = NULL;
2147 struct rb_node *prev = rb_prev(n);
2148 if (!prev)
2149 break;
2150 w = rb_entry(prev, struct sp_node, nd);
2151 if (w->end <= start)
2152 break;
2153 n = prev;
2154 }
2155 return rb_entry(n, struct sp_node, nd);
2156 }
2157
2158 /*
2159 * Insert a new shared policy into the list. Caller holds sp->lock for
2160 * writing.
2161 */
2162 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2163 {
2164 struct rb_node **p = &sp->root.rb_node;
2165 struct rb_node *parent = NULL;
2166 struct sp_node *nd;
2167
2168 while (*p) {
2169 parent = *p;
2170 nd = rb_entry(parent, struct sp_node, nd);
2171 if (new->start < nd->start)
2172 p = &(*p)->rb_left;
2173 else if (new->end > nd->end)
2174 p = &(*p)->rb_right;
2175 else
2176 BUG();
2177 }
2178 rb_link_node(&new->nd, parent, p);
2179 rb_insert_color(&new->nd, &sp->root);
2180 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2181 new->policy ? new->policy->mode : 0);
2182 }
2183
2184 /* Find shared policy intersecting idx */
2185 struct mempolicy *
2186 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2187 {
2188 struct mempolicy *pol = NULL;
2189 struct sp_node *sn;
2190
2191 if (!sp->root.rb_node)
2192 return NULL;
2193 read_lock(&sp->lock);
2194 sn = sp_lookup(sp, idx, idx+1);
2195 if (sn) {
2196 mpol_get(sn->policy);
2197 pol = sn->policy;
2198 }
2199 read_unlock(&sp->lock);
2200 return pol;
2201 }
2202
2203 static void sp_free(struct sp_node *n)
2204 {
2205 mpol_put(n->policy);
2206 kmem_cache_free(sn_cache, n);
2207 }
2208
2209 /**
2210 * mpol_misplaced - check whether current page node is valid in policy
2211 *
2212 * @page: page to be checked
2213 * @vma: vm area where page mapped
2214 * @addr: virtual address where page mapped
2215 *
2216 * Lookup current policy node id for vma,addr and "compare to" page's
2217 * node id.
2218 *
2219 * Returns:
2220 * -1 - not misplaced, page is in the right node
2221 * node - node id where the page should be
2222 *
2223 * Policy determination "mimics" alloc_page_vma().
2224 * Called from fault path where we know the vma and faulting address.
2225 */
2226 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2227 {
2228 struct mempolicy *pol;
2229 struct zoneref *z;
2230 int curnid = page_to_nid(page);
2231 unsigned long pgoff;
2232 int thiscpu = raw_smp_processor_id();
2233 int thisnid = cpu_to_node(thiscpu);
2234 int polnid = -1;
2235 int ret = -1;
2236
2237 pol = get_vma_policy(vma, addr);
2238 if (!(pol->flags & MPOL_F_MOF))
2239 goto out;
2240
2241 switch (pol->mode) {
2242 case MPOL_INTERLEAVE:
2243 pgoff = vma->vm_pgoff;
2244 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2245 polnid = offset_il_node(pol, pgoff);
2246 break;
2247
2248 case MPOL_PREFERRED:
2249 if (pol->flags & MPOL_F_LOCAL)
2250 polnid = numa_node_id();
2251 else
2252 polnid = pol->v.preferred_node;
2253 break;
2254
2255 case MPOL_BIND:
2256
2257 /*
2258 * allows binding to multiple nodes.
2259 * use current page if in policy nodemask,
2260 * else select nearest allowed node, if any.
2261 * If no allowed nodes, use current [!misplaced].
2262 */
2263 if (node_isset(curnid, pol->v.nodes))
2264 goto out;
2265 z = first_zones_zonelist(
2266 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2267 gfp_zone(GFP_HIGHUSER),
2268 &pol->v.nodes);
2269 polnid = z->zone->node;
2270 break;
2271
2272 default:
2273 BUG();
2274 }
2275
2276 /* Migrate the page towards the node whose CPU is referencing it */
2277 if (pol->flags & MPOL_F_MORON) {
2278 polnid = thisnid;
2279
2280 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2281 goto out;
2282 }
2283
2284 if (curnid != polnid)
2285 ret = polnid;
2286 out:
2287 mpol_cond_put(pol);
2288
2289 return ret;
2290 }
2291
2292 /*
2293 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2294 * dropped after task->mempolicy is set to NULL so that any allocation done as
2295 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2296 * policy.
2297 */
2298 void mpol_put_task_policy(struct task_struct *task)
2299 {
2300 struct mempolicy *pol;
2301
2302 task_lock(task);
2303 pol = task->mempolicy;
2304 task->mempolicy = NULL;
2305 task_unlock(task);
2306 mpol_put(pol);
2307 }
2308
2309 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2310 {
2311 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2312 rb_erase(&n->nd, &sp->root);
2313 sp_free(n);
2314 }
2315
2316 static void sp_node_init(struct sp_node *node, unsigned long start,
2317 unsigned long end, struct mempolicy *pol)
2318 {
2319 node->start = start;
2320 node->end = end;
2321 node->policy = pol;
2322 }
2323
2324 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2325 struct mempolicy *pol)
2326 {
2327 struct sp_node *n;
2328 struct mempolicy *newpol;
2329
2330 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2331 if (!n)
2332 return NULL;
2333
2334 newpol = mpol_dup(pol);
2335 if (IS_ERR(newpol)) {
2336 kmem_cache_free(sn_cache, n);
2337 return NULL;
2338 }
2339 newpol->flags |= MPOL_F_SHARED;
2340 sp_node_init(n, start, end, newpol);
2341
2342 return n;
2343 }
2344
2345 /* Replace a policy range. */
2346 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2347 unsigned long end, struct sp_node *new)
2348 {
2349 struct sp_node *n;
2350 struct sp_node *n_new = NULL;
2351 struct mempolicy *mpol_new = NULL;
2352 int ret = 0;
2353
2354 restart:
2355 write_lock(&sp->lock);
2356 n = sp_lookup(sp, start, end);
2357 /* Take care of old policies in the same range. */
2358 while (n && n->start < end) {
2359 struct rb_node *next = rb_next(&n->nd);
2360 if (n->start >= start) {
2361 if (n->end <= end)
2362 sp_delete(sp, n);
2363 else
2364 n->start = end;
2365 } else {
2366 /* Old policy spanning whole new range. */
2367 if (n->end > end) {
2368 if (!n_new)
2369 goto alloc_new;
2370
2371 *mpol_new = *n->policy;
2372 atomic_set(&mpol_new->refcnt, 1);
2373 sp_node_init(n_new, end, n->end, mpol_new);
2374 n->end = start;
2375 sp_insert(sp, n_new);
2376 n_new = NULL;
2377 mpol_new = NULL;
2378 break;
2379 } else
2380 n->end = start;
2381 }
2382 if (!next)
2383 break;
2384 n = rb_entry(next, struct sp_node, nd);
2385 }
2386 if (new)
2387 sp_insert(sp, new);
2388 write_unlock(&sp->lock);
2389 ret = 0;
2390
2391 err_out:
2392 if (mpol_new)
2393 mpol_put(mpol_new);
2394 if (n_new)
2395 kmem_cache_free(sn_cache, n_new);
2396
2397 return ret;
2398
2399 alloc_new:
2400 write_unlock(&sp->lock);
2401 ret = -ENOMEM;
2402 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2403 if (!n_new)
2404 goto err_out;
2405 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2406 if (!mpol_new)
2407 goto err_out;
2408 goto restart;
2409 }
2410
2411 /**
2412 * mpol_shared_policy_init - initialize shared policy for inode
2413 * @sp: pointer to inode shared policy
2414 * @mpol: struct mempolicy to install
2415 *
2416 * Install non-NULL @mpol in inode's shared policy rb-tree.
2417 * On entry, the current task has a reference on a non-NULL @mpol.
2418 * This must be released on exit.
2419 * This is called at get_inode() calls and we can use GFP_KERNEL.
2420 */
2421 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2422 {
2423 int ret;
2424
2425 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2426 rwlock_init(&sp->lock);
2427
2428 if (mpol) {
2429 struct vm_area_struct pvma;
2430 struct mempolicy *new;
2431 NODEMASK_SCRATCH(scratch);
2432
2433 if (!scratch)
2434 goto put_mpol;
2435 /* contextualize the tmpfs mount point mempolicy */
2436 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2437 if (IS_ERR(new))
2438 goto free_scratch; /* no valid nodemask intersection */
2439
2440 task_lock(current);
2441 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2442 task_unlock(current);
2443 if (ret)
2444 goto put_new;
2445
2446 /* Create pseudo-vma that contains just the policy */
2447 memset(&pvma, 0, sizeof(struct vm_area_struct));
2448 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2449 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2450
2451 put_new:
2452 mpol_put(new); /* drop initial ref */
2453 free_scratch:
2454 NODEMASK_SCRATCH_FREE(scratch);
2455 put_mpol:
2456 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2457 }
2458 }
2459
2460 int mpol_set_shared_policy(struct shared_policy *info,
2461 struct vm_area_struct *vma, struct mempolicy *npol)
2462 {
2463 int err;
2464 struct sp_node *new = NULL;
2465 unsigned long sz = vma_pages(vma);
2466
2467 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2468 vma->vm_pgoff,
2469 sz, npol ? npol->mode : -1,
2470 npol ? npol->flags : -1,
2471 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2472
2473 if (npol) {
2474 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2475 if (!new)
2476 return -ENOMEM;
2477 }
2478 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2479 if (err && new)
2480 sp_free(new);
2481 return err;
2482 }
2483
2484 /* Free a backing policy store on inode delete. */
2485 void mpol_free_shared_policy(struct shared_policy *p)
2486 {
2487 struct sp_node *n;
2488 struct rb_node *next;
2489
2490 if (!p->root.rb_node)
2491 return;
2492 write_lock(&p->lock);
2493 next = rb_first(&p->root);
2494 while (next) {
2495 n = rb_entry(next, struct sp_node, nd);
2496 next = rb_next(&n->nd);
2497 sp_delete(p, n);
2498 }
2499 write_unlock(&p->lock);
2500 }
2501
2502 #ifdef CONFIG_NUMA_BALANCING
2503 static int __initdata numabalancing_override;
2504
2505 static void __init check_numabalancing_enable(void)
2506 {
2507 bool numabalancing_default = false;
2508
2509 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2510 numabalancing_default = true;
2511
2512 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2513 if (numabalancing_override)
2514 set_numabalancing_state(numabalancing_override == 1);
2515
2516 if (num_online_nodes() > 1 && !numabalancing_override) {
2517 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2518 numabalancing_default ? "Enabling" : "Disabling");
2519 set_numabalancing_state(numabalancing_default);
2520 }
2521 }
2522
2523 static int __init setup_numabalancing(char *str)
2524 {
2525 int ret = 0;
2526 if (!str)
2527 goto out;
2528
2529 if (!strcmp(str, "enable")) {
2530 numabalancing_override = 1;
2531 ret = 1;
2532 } else if (!strcmp(str, "disable")) {
2533 numabalancing_override = -1;
2534 ret = 1;
2535 }
2536 out:
2537 if (!ret)
2538 pr_warn("Unable to parse numa_balancing=\n");
2539
2540 return ret;
2541 }
2542 __setup("numa_balancing=", setup_numabalancing);
2543 #else
2544 static inline void __init check_numabalancing_enable(void)
2545 {
2546 }
2547 #endif /* CONFIG_NUMA_BALANCING */
2548
2549 /* assumes fs == KERNEL_DS */
2550 void __init numa_policy_init(void)
2551 {
2552 nodemask_t interleave_nodes;
2553 unsigned long largest = 0;
2554 int nid, prefer = 0;
2555
2556 policy_cache = kmem_cache_create("numa_policy",
2557 sizeof(struct mempolicy),
2558 0, SLAB_PANIC, NULL);
2559
2560 sn_cache = kmem_cache_create("shared_policy_node",
2561 sizeof(struct sp_node),
2562 0, SLAB_PANIC, NULL);
2563
2564 for_each_node(nid) {
2565 preferred_node_policy[nid] = (struct mempolicy) {
2566 .refcnt = ATOMIC_INIT(1),
2567 .mode = MPOL_PREFERRED,
2568 .flags = MPOL_F_MOF | MPOL_F_MORON,
2569 .v = { .preferred_node = nid, },
2570 };
2571 }
2572
2573 /*
2574 * Set interleaving policy for system init. Interleaving is only
2575 * enabled across suitably sized nodes (default is >= 16MB), or
2576 * fall back to the largest node if they're all smaller.
2577 */
2578 nodes_clear(interleave_nodes);
2579 for_each_node_state(nid, N_MEMORY) {
2580 unsigned long total_pages = node_present_pages(nid);
2581
2582 /* Preserve the largest node */
2583 if (largest < total_pages) {
2584 largest = total_pages;
2585 prefer = nid;
2586 }
2587
2588 /* Interleave this node? */
2589 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2590 node_set(nid, interleave_nodes);
2591 }
2592
2593 /* All too small, use the largest */
2594 if (unlikely(nodes_empty(interleave_nodes)))
2595 node_set(prefer, interleave_nodes);
2596
2597 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2598 pr_err("%s: interleaving failed\n", __func__);
2599
2600 check_numabalancing_enable();
2601 }
2602
2603 /* Reset policy of current process to default */
2604 void numa_default_policy(void)
2605 {
2606 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2607 }
2608
2609 /*
2610 * Parse and format mempolicy from/to strings
2611 */
2612
2613 /*
2614 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2615 */
2616 static const char * const policy_modes[] =
2617 {
2618 [MPOL_DEFAULT] = "default",
2619 [MPOL_PREFERRED] = "prefer",
2620 [MPOL_BIND] = "bind",
2621 [MPOL_INTERLEAVE] = "interleave",
2622 [MPOL_LOCAL] = "local",
2623 };
2624
2625
2626 #ifdef CONFIG_TMPFS
2627 /**
2628 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2629 * @str: string containing mempolicy to parse
2630 * @mpol: pointer to struct mempolicy pointer, returned on success.
2631 *
2632 * Format of input:
2633 * <mode>[=<flags>][:<nodelist>]
2634 *
2635 * On success, returns 0, else 1
2636 */
2637 int mpol_parse_str(char *str, struct mempolicy **mpol)
2638 {
2639 struct mempolicy *new = NULL;
2640 unsigned short mode;
2641 unsigned short mode_flags;
2642 nodemask_t nodes;
2643 char *nodelist = strchr(str, ':');
2644 char *flags = strchr(str, '=');
2645 int err = 1;
2646
2647 if (nodelist) {
2648 /* NUL-terminate mode or flags string */
2649 *nodelist++ = '\0';
2650 if (nodelist_parse(nodelist, nodes))
2651 goto out;
2652 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2653 goto out;
2654 } else
2655 nodes_clear(nodes);
2656
2657 if (flags)
2658 *flags++ = '\0'; /* terminate mode string */
2659
2660 for (mode = 0; mode < MPOL_MAX; mode++) {
2661 if (!strcmp(str, policy_modes[mode])) {
2662 break;
2663 }
2664 }
2665 if (mode >= MPOL_MAX)
2666 goto out;
2667
2668 switch (mode) {
2669 case MPOL_PREFERRED:
2670 /*
2671 * Insist on a nodelist of one node only
2672 */
2673 if (nodelist) {
2674 char *rest = nodelist;
2675 while (isdigit(*rest))
2676 rest++;
2677 if (*rest)
2678 goto out;
2679 }
2680 break;
2681 case MPOL_INTERLEAVE:
2682 /*
2683 * Default to online nodes with memory if no nodelist
2684 */
2685 if (!nodelist)
2686 nodes = node_states[N_MEMORY];
2687 break;
2688 case MPOL_LOCAL:
2689 /*
2690 * Don't allow a nodelist; mpol_new() checks flags
2691 */
2692 if (nodelist)
2693 goto out;
2694 mode = MPOL_PREFERRED;
2695 break;
2696 case MPOL_DEFAULT:
2697 /*
2698 * Insist on a empty nodelist
2699 */
2700 if (!nodelist)
2701 err = 0;
2702 goto out;
2703 case MPOL_BIND:
2704 /*
2705 * Insist on a nodelist
2706 */
2707 if (!nodelist)
2708 goto out;
2709 }
2710
2711 mode_flags = 0;
2712 if (flags) {
2713 /*
2714 * Currently, we only support two mutually exclusive
2715 * mode flags.
2716 */
2717 if (!strcmp(flags, "static"))
2718 mode_flags |= MPOL_F_STATIC_NODES;
2719 else if (!strcmp(flags, "relative"))
2720 mode_flags |= MPOL_F_RELATIVE_NODES;
2721 else
2722 goto out;
2723 }
2724
2725 new = mpol_new(mode, mode_flags, &nodes);
2726 if (IS_ERR(new))
2727 goto out;
2728
2729 /*
2730 * Save nodes for mpol_to_str() to show the tmpfs mount options
2731 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2732 */
2733 if (mode != MPOL_PREFERRED)
2734 new->v.nodes = nodes;
2735 else if (nodelist)
2736 new->v.preferred_node = first_node(nodes);
2737 else
2738 new->flags |= MPOL_F_LOCAL;
2739
2740 /*
2741 * Save nodes for contextualization: this will be used to "clone"
2742 * the mempolicy in a specific context [cpuset] at a later time.
2743 */
2744 new->w.user_nodemask = nodes;
2745
2746 err = 0;
2747
2748 out:
2749 /* Restore string for error message */
2750 if (nodelist)
2751 *--nodelist = ':';
2752 if (flags)
2753 *--flags = '=';
2754 if (!err)
2755 *mpol = new;
2756 return err;
2757 }
2758 #endif /* CONFIG_TMPFS */
2759
2760 /**
2761 * mpol_to_str - format a mempolicy structure for printing
2762 * @buffer: to contain formatted mempolicy string
2763 * @maxlen: length of @buffer
2764 * @pol: pointer to mempolicy to be formatted
2765 *
2766 * Convert @pol into a string. If @buffer is too short, truncate the string.
2767 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2768 * longest flag, "relative", and to display at least a few node ids.
2769 */
2770 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2771 {
2772 char *p = buffer;
2773 nodemask_t nodes = NODE_MASK_NONE;
2774 unsigned short mode = MPOL_DEFAULT;
2775 unsigned short flags = 0;
2776
2777 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2778 mode = pol->mode;
2779 flags = pol->flags;
2780 }
2781
2782 switch (mode) {
2783 case MPOL_DEFAULT:
2784 break;
2785 case MPOL_PREFERRED:
2786 if (flags & MPOL_F_LOCAL)
2787 mode = MPOL_LOCAL;
2788 else
2789 node_set(pol->v.preferred_node, nodes);
2790 break;
2791 case MPOL_BIND:
2792 case MPOL_INTERLEAVE:
2793 nodes = pol->v.nodes;
2794 break;
2795 default:
2796 WARN_ON_ONCE(1);
2797 snprintf(p, maxlen, "unknown");
2798 return;
2799 }
2800
2801 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2802
2803 if (flags & MPOL_MODE_FLAGS) {
2804 p += snprintf(p, buffer + maxlen - p, "=");
2805
2806 /*
2807 * Currently, the only defined flags are mutually exclusive
2808 */
2809 if (flags & MPOL_F_STATIC_NODES)
2810 p += snprintf(p, buffer + maxlen - p, "static");
2811 else if (flags & MPOL_F_RELATIVE_NODES)
2812 p += snprintf(p, buffer + maxlen - p, "relative");
2813 }
2814
2815 if (!nodes_empty(nodes))
2816 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2817 nodemask_pr_args(&nodes));
2818 }