]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
[PATCH] mm: migration page refcounting fix
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/mm.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/gfp.h>
79 #include <linux/slab.h>
80 #include <linux/string.h>
81 #include <linux/module.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/mempolicy.h>
86 #include <linux/swap.h>
87 #include <linux/seq_file.h>
88 #include <linux/proc_fs.h>
89
90 #include <asm/tlbflush.h>
91 #include <asm/uaccess.h>
92
93 /* Internal flags */
94 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
95 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
96 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
97
98 static kmem_cache_t *policy_cache;
99 static kmem_cache_t *sn_cache;
100
101 #define PDprintk(fmt...)
102
103 /* Highest zone. An specific allocation for a zone below that is not
104 policied. */
105 int policy_zone = ZONE_DMA;
106
107 struct mempolicy default_policy = {
108 .refcnt = ATOMIC_INIT(1), /* never free it */
109 .policy = MPOL_DEFAULT,
110 };
111
112 /* Do sanity checking on a policy */
113 static int mpol_check_policy(int mode, nodemask_t *nodes)
114 {
115 int empty = nodes_empty(*nodes);
116
117 switch (mode) {
118 case MPOL_DEFAULT:
119 if (!empty)
120 return -EINVAL;
121 break;
122 case MPOL_BIND:
123 case MPOL_INTERLEAVE:
124 /* Preferred will only use the first bit, but allow
125 more for now. */
126 if (empty)
127 return -EINVAL;
128 break;
129 }
130 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
131 }
132 /* Generate a custom zonelist for the BIND policy. */
133 static struct zonelist *bind_zonelist(nodemask_t *nodes)
134 {
135 struct zonelist *zl;
136 int num, max, nd;
137
138 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
139 zl = kmalloc(sizeof(void *) * max, GFP_KERNEL);
140 if (!zl)
141 return NULL;
142 num = 0;
143 for_each_node_mask(nd, *nodes)
144 zl->zones[num++] = &NODE_DATA(nd)->node_zones[policy_zone];
145 zl->zones[num] = NULL;
146 return zl;
147 }
148
149 /* Create a new policy */
150 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
151 {
152 struct mempolicy *policy;
153
154 PDprintk("setting mode %d nodes[0] %lx\n", mode, nodes_addr(*nodes)[0]);
155 if (mode == MPOL_DEFAULT)
156 return NULL;
157 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
158 if (!policy)
159 return ERR_PTR(-ENOMEM);
160 atomic_set(&policy->refcnt, 1);
161 switch (mode) {
162 case MPOL_INTERLEAVE:
163 policy->v.nodes = *nodes;
164 if (nodes_weight(*nodes) == 0) {
165 kmem_cache_free(policy_cache, policy);
166 return ERR_PTR(-EINVAL);
167 }
168 break;
169 case MPOL_PREFERRED:
170 policy->v.preferred_node = first_node(*nodes);
171 if (policy->v.preferred_node >= MAX_NUMNODES)
172 policy->v.preferred_node = -1;
173 break;
174 case MPOL_BIND:
175 policy->v.zonelist = bind_zonelist(nodes);
176 if (policy->v.zonelist == NULL) {
177 kmem_cache_free(policy_cache, policy);
178 return ERR_PTR(-ENOMEM);
179 }
180 break;
181 }
182 policy->policy = mode;
183 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
184 return policy;
185 }
186
187 static void gather_stats(struct page *, void *);
188 static void migrate_page_add(struct vm_area_struct *vma,
189 struct page *page, struct list_head *pagelist, unsigned long flags);
190
191 /* Scan through pages checking if pages follow certain conditions. */
192 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
193 unsigned long addr, unsigned long end,
194 const nodemask_t *nodes, unsigned long flags,
195 void *private)
196 {
197 pte_t *orig_pte;
198 pte_t *pte;
199 spinlock_t *ptl;
200
201 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
202 do {
203 struct page *page;
204 unsigned int nid;
205
206 if (!pte_present(*pte))
207 continue;
208 page = vm_normal_page(vma, addr, *pte);
209 if (!page)
210 continue;
211 /*
212 * The check for PageReserved here is important to avoid
213 * handling zero pages and other pages that may have been
214 * marked special by the system.
215 *
216 * If the PageReserved would not be checked here then f.e.
217 * the location of the zero page could have an influence
218 * on MPOL_MF_STRICT, zero pages would be counted for
219 * the per node stats, and there would be useless attempts
220 * to put zero pages on the migration list.
221 */
222 if (PageReserved(page))
223 continue;
224 nid = page_to_nid(page);
225 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
226 continue;
227
228 if (flags & MPOL_MF_STATS)
229 gather_stats(page, private);
230 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
231 migrate_page_add(vma, page, private, flags);
232 else
233 break;
234 } while (pte++, addr += PAGE_SIZE, addr != end);
235 pte_unmap_unlock(orig_pte, ptl);
236 return addr != end;
237 }
238
239 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
240 unsigned long addr, unsigned long end,
241 const nodemask_t *nodes, unsigned long flags,
242 void *private)
243 {
244 pmd_t *pmd;
245 unsigned long next;
246
247 pmd = pmd_offset(pud, addr);
248 do {
249 next = pmd_addr_end(addr, end);
250 if (pmd_none_or_clear_bad(pmd))
251 continue;
252 if (check_pte_range(vma, pmd, addr, next, nodes,
253 flags, private))
254 return -EIO;
255 } while (pmd++, addr = next, addr != end);
256 return 0;
257 }
258
259 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
260 unsigned long addr, unsigned long end,
261 const nodemask_t *nodes, unsigned long flags,
262 void *private)
263 {
264 pud_t *pud;
265 unsigned long next;
266
267 pud = pud_offset(pgd, addr);
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
272 if (check_pmd_range(vma, pud, addr, next, nodes,
273 flags, private))
274 return -EIO;
275 } while (pud++, addr = next, addr != end);
276 return 0;
277 }
278
279 static inline int check_pgd_range(struct vm_area_struct *vma,
280 unsigned long addr, unsigned long end,
281 const nodemask_t *nodes, unsigned long flags,
282 void *private)
283 {
284 pgd_t *pgd;
285 unsigned long next;
286
287 pgd = pgd_offset(vma->vm_mm, addr);
288 do {
289 next = pgd_addr_end(addr, end);
290 if (pgd_none_or_clear_bad(pgd))
291 continue;
292 if (check_pud_range(vma, pgd, addr, next, nodes,
293 flags, private))
294 return -EIO;
295 } while (pgd++, addr = next, addr != end);
296 return 0;
297 }
298
299 /* Check if a vma is migratable */
300 static inline int vma_migratable(struct vm_area_struct *vma)
301 {
302 if (vma->vm_flags & (
303 VM_LOCKED|VM_IO|VM_HUGETLB|VM_PFNMAP|VM_RESERVED))
304 return 0;
305 return 1;
306 }
307
308 /*
309 * Check if all pages in a range are on a set of nodes.
310 * If pagelist != NULL then isolate pages from the LRU and
311 * put them on the pagelist.
312 */
313 static struct vm_area_struct *
314 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
315 const nodemask_t *nodes, unsigned long flags, void *private)
316 {
317 int err;
318 struct vm_area_struct *first, *vma, *prev;
319
320 /* Clear the LRU lists so pages can be isolated */
321 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
322 lru_add_drain_all();
323
324 first = find_vma(mm, start);
325 if (!first)
326 return ERR_PTR(-EFAULT);
327 prev = NULL;
328 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
329 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
330 if (!vma->vm_next && vma->vm_end < end)
331 return ERR_PTR(-EFAULT);
332 if (prev && prev->vm_end < vma->vm_start)
333 return ERR_PTR(-EFAULT);
334 }
335 if (!is_vm_hugetlb_page(vma) &&
336 ((flags & MPOL_MF_STRICT) ||
337 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
338 vma_migratable(vma)))) {
339 unsigned long endvma = vma->vm_end;
340
341 if (endvma > end)
342 endvma = end;
343 if (vma->vm_start > start)
344 start = vma->vm_start;
345 err = check_pgd_range(vma, start, endvma, nodes,
346 flags, private);
347 if (err) {
348 first = ERR_PTR(err);
349 break;
350 }
351 }
352 prev = vma;
353 }
354 return first;
355 }
356
357 /* Apply policy to a single VMA */
358 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
359 {
360 int err = 0;
361 struct mempolicy *old = vma->vm_policy;
362
363 PDprintk("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
364 vma->vm_start, vma->vm_end, vma->vm_pgoff,
365 vma->vm_ops, vma->vm_file,
366 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
367
368 if (vma->vm_ops && vma->vm_ops->set_policy)
369 err = vma->vm_ops->set_policy(vma, new);
370 if (!err) {
371 mpol_get(new);
372 vma->vm_policy = new;
373 mpol_free(old);
374 }
375 return err;
376 }
377
378 /* Step 2: apply policy to a range and do splits. */
379 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
380 unsigned long end, struct mempolicy *new)
381 {
382 struct vm_area_struct *next;
383 int err;
384
385 err = 0;
386 for (; vma && vma->vm_start < end; vma = next) {
387 next = vma->vm_next;
388 if (vma->vm_start < start)
389 err = split_vma(vma->vm_mm, vma, start, 1);
390 if (!err && vma->vm_end > end)
391 err = split_vma(vma->vm_mm, vma, end, 0);
392 if (!err)
393 err = policy_vma(vma, new);
394 if (err)
395 break;
396 }
397 return err;
398 }
399
400 static int contextualize_policy(int mode, nodemask_t *nodes)
401 {
402 if (!nodes)
403 return 0;
404
405 cpuset_update_task_memory_state();
406 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
407 return -EINVAL;
408 return mpol_check_policy(mode, nodes);
409 }
410
411 /* Set the process memory policy */
412 long do_set_mempolicy(int mode, nodemask_t *nodes)
413 {
414 struct mempolicy *new;
415
416 if (contextualize_policy(mode, nodes))
417 return -EINVAL;
418 new = mpol_new(mode, nodes);
419 if (IS_ERR(new))
420 return PTR_ERR(new);
421 mpol_free(current->mempolicy);
422 current->mempolicy = new;
423 if (new && new->policy == MPOL_INTERLEAVE)
424 current->il_next = first_node(new->v.nodes);
425 return 0;
426 }
427
428 /* Fill a zone bitmap for a policy */
429 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
430 {
431 int i;
432
433 nodes_clear(*nodes);
434 switch (p->policy) {
435 case MPOL_BIND:
436 for (i = 0; p->v.zonelist->zones[i]; i++)
437 node_set(p->v.zonelist->zones[i]->zone_pgdat->node_id,
438 *nodes);
439 break;
440 case MPOL_DEFAULT:
441 break;
442 case MPOL_INTERLEAVE:
443 *nodes = p->v.nodes;
444 break;
445 case MPOL_PREFERRED:
446 /* or use current node instead of online map? */
447 if (p->v.preferred_node < 0)
448 *nodes = node_online_map;
449 else
450 node_set(p->v.preferred_node, *nodes);
451 break;
452 default:
453 BUG();
454 }
455 }
456
457 static int lookup_node(struct mm_struct *mm, unsigned long addr)
458 {
459 struct page *p;
460 int err;
461
462 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
463 if (err >= 0) {
464 err = page_to_nid(p);
465 put_page(p);
466 }
467 return err;
468 }
469
470 /* Retrieve NUMA policy */
471 long do_get_mempolicy(int *policy, nodemask_t *nmask,
472 unsigned long addr, unsigned long flags)
473 {
474 int err;
475 struct mm_struct *mm = current->mm;
476 struct vm_area_struct *vma = NULL;
477 struct mempolicy *pol = current->mempolicy;
478
479 cpuset_update_task_memory_state();
480 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
481 return -EINVAL;
482 if (flags & MPOL_F_ADDR) {
483 down_read(&mm->mmap_sem);
484 vma = find_vma_intersection(mm, addr, addr+1);
485 if (!vma) {
486 up_read(&mm->mmap_sem);
487 return -EFAULT;
488 }
489 if (vma->vm_ops && vma->vm_ops->get_policy)
490 pol = vma->vm_ops->get_policy(vma, addr);
491 else
492 pol = vma->vm_policy;
493 } else if (addr)
494 return -EINVAL;
495
496 if (!pol)
497 pol = &default_policy;
498
499 if (flags & MPOL_F_NODE) {
500 if (flags & MPOL_F_ADDR) {
501 err = lookup_node(mm, addr);
502 if (err < 0)
503 goto out;
504 *policy = err;
505 } else if (pol == current->mempolicy &&
506 pol->policy == MPOL_INTERLEAVE) {
507 *policy = current->il_next;
508 } else {
509 err = -EINVAL;
510 goto out;
511 }
512 } else
513 *policy = pol->policy;
514
515 if (vma) {
516 up_read(&current->mm->mmap_sem);
517 vma = NULL;
518 }
519
520 err = 0;
521 if (nmask)
522 get_zonemask(pol, nmask);
523
524 out:
525 if (vma)
526 up_read(&current->mm->mmap_sem);
527 return err;
528 }
529
530 /*
531 * page migration
532 */
533
534 /* Check if we are the only process mapping the page in question */
535 static inline int single_mm_mapping(struct mm_struct *mm,
536 struct address_space *mapping)
537 {
538 struct vm_area_struct *vma;
539 struct prio_tree_iter iter;
540 int rc = 1;
541
542 spin_lock(&mapping->i_mmap_lock);
543 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
544 if (mm != vma->vm_mm) {
545 rc = 0;
546 goto out;
547 }
548 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
549 if (mm != vma->vm_mm) {
550 rc = 0;
551 goto out;
552 }
553 out:
554 spin_unlock(&mapping->i_mmap_lock);
555 return rc;
556 }
557
558 /*
559 * Add a page to be migrated to the pagelist
560 */
561 static void migrate_page_add(struct vm_area_struct *vma,
562 struct page *page, struct list_head *pagelist, unsigned long flags)
563 {
564 /*
565 * Avoid migrating a page that is shared by others and not writable.
566 */
567 if ((flags & MPOL_MF_MOVE_ALL) || !page->mapping || PageAnon(page) ||
568 mapping_writably_mapped(page->mapping) ||
569 single_mm_mapping(vma->vm_mm, page->mapping)) {
570 if (isolate_lru_page(page))
571 list_add(&page->lru, pagelist);
572 }
573 }
574
575 static int swap_pages(struct list_head *pagelist)
576 {
577 LIST_HEAD(moved);
578 LIST_HEAD(failed);
579 int n;
580
581 n = migrate_pages(pagelist, NULL, &moved, &failed);
582 putback_lru_pages(&failed);
583 putback_lru_pages(&moved);
584
585 return n;
586 }
587
588 /*
589 * For now migrate_pages simply swaps out the pages from nodes that are in
590 * the source set but not in the target set. In the future, we would
591 * want a function that moves pages between the two nodesets in such
592 * a way as to preserve the physical layout as much as possible.
593 *
594 * Returns the number of page that could not be moved.
595 */
596 int do_migrate_pages(struct mm_struct *mm,
597 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
598 {
599 LIST_HEAD(pagelist);
600 int count = 0;
601 nodemask_t nodes;
602
603 nodes_andnot(nodes, *from_nodes, *to_nodes);
604
605 down_read(&mm->mmap_sem);
606 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nodes,
607 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
608
609 if (!list_empty(&pagelist)) {
610 count = swap_pages(&pagelist);
611 putback_lru_pages(&pagelist);
612 }
613
614 up_read(&mm->mmap_sem);
615 return count;
616 }
617
618 long do_mbind(unsigned long start, unsigned long len,
619 unsigned long mode, nodemask_t *nmask, unsigned long flags)
620 {
621 struct vm_area_struct *vma;
622 struct mm_struct *mm = current->mm;
623 struct mempolicy *new;
624 unsigned long end;
625 int err;
626 LIST_HEAD(pagelist);
627
628 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
629 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
630 || mode > MPOL_MAX)
631 return -EINVAL;
632 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_RESOURCE))
633 return -EPERM;
634
635 if (start & ~PAGE_MASK)
636 return -EINVAL;
637
638 if (mode == MPOL_DEFAULT)
639 flags &= ~MPOL_MF_STRICT;
640
641 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
642 end = start + len;
643
644 if (end < start)
645 return -EINVAL;
646 if (end == start)
647 return 0;
648
649 if (mpol_check_policy(mode, nmask))
650 return -EINVAL;
651
652 new = mpol_new(mode, nmask);
653 if (IS_ERR(new))
654 return PTR_ERR(new);
655
656 /*
657 * If we are using the default policy then operation
658 * on discontinuous address spaces is okay after all
659 */
660 if (!new)
661 flags |= MPOL_MF_DISCONTIG_OK;
662
663 PDprintk("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
664 mode,nodes_addr(nodes)[0]);
665
666 down_write(&mm->mmap_sem);
667 vma = check_range(mm, start, end, nmask,
668 flags | MPOL_MF_INVERT, &pagelist);
669
670 err = PTR_ERR(vma);
671 if (!IS_ERR(vma)) {
672 int nr_failed = 0;
673
674 err = mbind_range(vma, start, end, new);
675 if (!list_empty(&pagelist))
676 nr_failed = swap_pages(&pagelist);
677
678 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
679 err = -EIO;
680 }
681 if (!list_empty(&pagelist))
682 putback_lru_pages(&pagelist);
683
684 up_write(&mm->mmap_sem);
685 mpol_free(new);
686 return err;
687 }
688
689 /*
690 * User space interface with variable sized bitmaps for nodelists.
691 */
692
693 /* Copy a node mask from user space. */
694 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
695 unsigned long maxnode)
696 {
697 unsigned long k;
698 unsigned long nlongs;
699 unsigned long endmask;
700
701 --maxnode;
702 nodes_clear(*nodes);
703 if (maxnode == 0 || !nmask)
704 return 0;
705
706 nlongs = BITS_TO_LONGS(maxnode);
707 if ((maxnode % BITS_PER_LONG) == 0)
708 endmask = ~0UL;
709 else
710 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
711
712 /* When the user specified more nodes than supported just check
713 if the non supported part is all zero. */
714 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
715 if (nlongs > PAGE_SIZE/sizeof(long))
716 return -EINVAL;
717 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
718 unsigned long t;
719 if (get_user(t, nmask + k))
720 return -EFAULT;
721 if (k == nlongs - 1) {
722 if (t & endmask)
723 return -EINVAL;
724 } else if (t)
725 return -EINVAL;
726 }
727 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
728 endmask = ~0UL;
729 }
730
731 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
732 return -EFAULT;
733 nodes_addr(*nodes)[nlongs-1] &= endmask;
734 return 0;
735 }
736
737 /* Copy a kernel node mask to user space */
738 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
739 nodemask_t *nodes)
740 {
741 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
742 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
743
744 if (copy > nbytes) {
745 if (copy > PAGE_SIZE)
746 return -EINVAL;
747 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
748 return -EFAULT;
749 copy = nbytes;
750 }
751 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
752 }
753
754 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
755 unsigned long mode,
756 unsigned long __user *nmask, unsigned long maxnode,
757 unsigned flags)
758 {
759 nodemask_t nodes;
760 int err;
761
762 err = get_nodes(&nodes, nmask, maxnode);
763 if (err)
764 return err;
765 return do_mbind(start, len, mode, &nodes, flags);
766 }
767
768 /* Set the process memory policy */
769 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
770 unsigned long maxnode)
771 {
772 int err;
773 nodemask_t nodes;
774
775 if (mode < 0 || mode > MPOL_MAX)
776 return -EINVAL;
777 err = get_nodes(&nodes, nmask, maxnode);
778 if (err)
779 return err;
780 return do_set_mempolicy(mode, &nodes);
781 }
782
783 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
784 const unsigned long __user *old_nodes,
785 const unsigned long __user *new_nodes)
786 {
787 struct mm_struct *mm;
788 struct task_struct *task;
789 nodemask_t old;
790 nodemask_t new;
791 nodemask_t task_nodes;
792 int err;
793
794 err = get_nodes(&old, old_nodes, maxnode);
795 if (err)
796 return err;
797
798 err = get_nodes(&new, new_nodes, maxnode);
799 if (err)
800 return err;
801
802 /* Find the mm_struct */
803 read_lock(&tasklist_lock);
804 task = pid ? find_task_by_pid(pid) : current;
805 if (!task) {
806 read_unlock(&tasklist_lock);
807 return -ESRCH;
808 }
809 mm = get_task_mm(task);
810 read_unlock(&tasklist_lock);
811
812 if (!mm)
813 return -EINVAL;
814
815 /*
816 * Check if this process has the right to modify the specified
817 * process. The right exists if the process has administrative
818 * capabilities, superuser priviledges or the same
819 * userid as the target process.
820 */
821 if ((current->euid != task->suid) && (current->euid != task->uid) &&
822 (current->uid != task->suid) && (current->uid != task->uid) &&
823 !capable(CAP_SYS_ADMIN)) {
824 err = -EPERM;
825 goto out;
826 }
827
828 task_nodes = cpuset_mems_allowed(task);
829 /* Is the user allowed to access the target nodes? */
830 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_ADMIN)) {
831 err = -EPERM;
832 goto out;
833 }
834
835 err = do_migrate_pages(mm, &old, &new, MPOL_MF_MOVE);
836 out:
837 mmput(mm);
838 return err;
839 }
840
841
842 /* Retrieve NUMA policy */
843 asmlinkage long sys_get_mempolicy(int __user *policy,
844 unsigned long __user *nmask,
845 unsigned long maxnode,
846 unsigned long addr, unsigned long flags)
847 {
848 int err, pval;
849 nodemask_t nodes;
850
851 if (nmask != NULL && maxnode < MAX_NUMNODES)
852 return -EINVAL;
853
854 err = do_get_mempolicy(&pval, &nodes, addr, flags);
855
856 if (err)
857 return err;
858
859 if (policy && put_user(pval, policy))
860 return -EFAULT;
861
862 if (nmask)
863 err = copy_nodes_to_user(nmask, maxnode, &nodes);
864
865 return err;
866 }
867
868 #ifdef CONFIG_COMPAT
869
870 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
871 compat_ulong_t __user *nmask,
872 compat_ulong_t maxnode,
873 compat_ulong_t addr, compat_ulong_t flags)
874 {
875 long err;
876 unsigned long __user *nm = NULL;
877 unsigned long nr_bits, alloc_size;
878 DECLARE_BITMAP(bm, MAX_NUMNODES);
879
880 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
881 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
882
883 if (nmask)
884 nm = compat_alloc_user_space(alloc_size);
885
886 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
887
888 if (!err && nmask) {
889 err = copy_from_user(bm, nm, alloc_size);
890 /* ensure entire bitmap is zeroed */
891 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
892 err |= compat_put_bitmap(nmask, bm, nr_bits);
893 }
894
895 return err;
896 }
897
898 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
899 compat_ulong_t maxnode)
900 {
901 long err = 0;
902 unsigned long __user *nm = NULL;
903 unsigned long nr_bits, alloc_size;
904 DECLARE_BITMAP(bm, MAX_NUMNODES);
905
906 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
907 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
908
909 if (nmask) {
910 err = compat_get_bitmap(bm, nmask, nr_bits);
911 nm = compat_alloc_user_space(alloc_size);
912 err |= copy_to_user(nm, bm, alloc_size);
913 }
914
915 if (err)
916 return -EFAULT;
917
918 return sys_set_mempolicy(mode, nm, nr_bits+1);
919 }
920
921 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
922 compat_ulong_t mode, compat_ulong_t __user *nmask,
923 compat_ulong_t maxnode, compat_ulong_t flags)
924 {
925 long err = 0;
926 unsigned long __user *nm = NULL;
927 unsigned long nr_bits, alloc_size;
928 nodemask_t bm;
929
930 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
931 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
932
933 if (nmask) {
934 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
935 nm = compat_alloc_user_space(alloc_size);
936 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
937 }
938
939 if (err)
940 return -EFAULT;
941
942 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
943 }
944
945 #endif
946
947 /* Return effective policy for a VMA */
948 static struct mempolicy * get_vma_policy(struct task_struct *task,
949 struct vm_area_struct *vma, unsigned long addr)
950 {
951 struct mempolicy *pol = task->mempolicy;
952
953 if (vma) {
954 if (vma->vm_ops && vma->vm_ops->get_policy)
955 pol = vma->vm_ops->get_policy(vma, addr);
956 else if (vma->vm_policy &&
957 vma->vm_policy->policy != MPOL_DEFAULT)
958 pol = vma->vm_policy;
959 }
960 if (!pol)
961 pol = &default_policy;
962 return pol;
963 }
964
965 /* Return a zonelist representing a mempolicy */
966 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
967 {
968 int nd;
969
970 switch (policy->policy) {
971 case MPOL_PREFERRED:
972 nd = policy->v.preferred_node;
973 if (nd < 0)
974 nd = numa_node_id();
975 break;
976 case MPOL_BIND:
977 /* Lower zones don't get a policy applied */
978 /* Careful: current->mems_allowed might have moved */
979 if (gfp_zone(gfp) >= policy_zone)
980 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
981 return policy->v.zonelist;
982 /*FALL THROUGH*/
983 case MPOL_INTERLEAVE: /* should not happen */
984 case MPOL_DEFAULT:
985 nd = numa_node_id();
986 break;
987 default:
988 nd = 0;
989 BUG();
990 }
991 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
992 }
993
994 /* Do dynamic interleaving for a process */
995 static unsigned interleave_nodes(struct mempolicy *policy)
996 {
997 unsigned nid, next;
998 struct task_struct *me = current;
999
1000 nid = me->il_next;
1001 next = next_node(nid, policy->v.nodes);
1002 if (next >= MAX_NUMNODES)
1003 next = first_node(policy->v.nodes);
1004 me->il_next = next;
1005 return nid;
1006 }
1007
1008 /* Do static interleaving for a VMA with known offset. */
1009 static unsigned offset_il_node(struct mempolicy *pol,
1010 struct vm_area_struct *vma, unsigned long off)
1011 {
1012 unsigned nnodes = nodes_weight(pol->v.nodes);
1013 unsigned target = (unsigned)off % nnodes;
1014 int c;
1015 int nid = -1;
1016
1017 c = 0;
1018 do {
1019 nid = next_node(nid, pol->v.nodes);
1020 c++;
1021 } while (c <= target);
1022 return nid;
1023 }
1024
1025 /* Determine a node number for interleave */
1026 static inline unsigned interleave_nid(struct mempolicy *pol,
1027 struct vm_area_struct *vma, unsigned long addr, int shift)
1028 {
1029 if (vma) {
1030 unsigned long off;
1031
1032 off = vma->vm_pgoff;
1033 off += (addr - vma->vm_start) >> shift;
1034 return offset_il_node(pol, vma, off);
1035 } else
1036 return interleave_nodes(pol);
1037 }
1038
1039 /* Return a zonelist suitable for a huge page allocation. */
1040 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr)
1041 {
1042 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1043
1044 if (pol->policy == MPOL_INTERLEAVE) {
1045 unsigned nid;
1046
1047 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1048 return NODE_DATA(nid)->node_zonelists + gfp_zone(GFP_HIGHUSER);
1049 }
1050 return zonelist_policy(GFP_HIGHUSER, pol);
1051 }
1052
1053 /* Allocate a page in interleaved policy.
1054 Own path because it needs to do special accounting. */
1055 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1056 unsigned nid)
1057 {
1058 struct zonelist *zl;
1059 struct page *page;
1060
1061 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1062 page = __alloc_pages(gfp, order, zl);
1063 if (page && page_zone(page) == zl->zones[0]) {
1064 zone_pcp(zl->zones[0],get_cpu())->interleave_hit++;
1065 put_cpu();
1066 }
1067 return page;
1068 }
1069
1070 /**
1071 * alloc_page_vma - Allocate a page for a VMA.
1072 *
1073 * @gfp:
1074 * %GFP_USER user allocation.
1075 * %GFP_KERNEL kernel allocations,
1076 * %GFP_HIGHMEM highmem/user allocations,
1077 * %GFP_FS allocation should not call back into a file system.
1078 * %GFP_ATOMIC don't sleep.
1079 *
1080 * @vma: Pointer to VMA or NULL if not available.
1081 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1082 *
1083 * This function allocates a page from the kernel page pool and applies
1084 * a NUMA policy associated with the VMA or the current process.
1085 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1086 * mm_struct of the VMA to prevent it from going away. Should be used for
1087 * all allocations for pages that will be mapped into
1088 * user space. Returns NULL when no page can be allocated.
1089 *
1090 * Should be called with the mm_sem of the vma hold.
1091 */
1092 struct page *
1093 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1094 {
1095 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1096
1097 cpuset_update_task_memory_state();
1098
1099 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1100 unsigned nid;
1101
1102 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1103 return alloc_page_interleave(gfp, 0, nid);
1104 }
1105 return __alloc_pages(gfp, 0, zonelist_policy(gfp, pol));
1106 }
1107
1108 /**
1109 * alloc_pages_current - Allocate pages.
1110 *
1111 * @gfp:
1112 * %GFP_USER user allocation,
1113 * %GFP_KERNEL kernel allocation,
1114 * %GFP_HIGHMEM highmem allocation,
1115 * %GFP_FS don't call back into a file system.
1116 * %GFP_ATOMIC don't sleep.
1117 * @order: Power of two of allocation size in pages. 0 is a single page.
1118 *
1119 * Allocate a page from the kernel page pool. When not in
1120 * interrupt context and apply the current process NUMA policy.
1121 * Returns NULL when no page can be allocated.
1122 *
1123 * Don't call cpuset_update_task_memory_state() unless
1124 * 1) it's ok to take cpuset_sem (can WAIT), and
1125 * 2) allocating for current task (not interrupt).
1126 */
1127 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1128 {
1129 struct mempolicy *pol = current->mempolicy;
1130
1131 if ((gfp & __GFP_WAIT) && !in_interrupt())
1132 cpuset_update_task_memory_state();
1133 if (!pol || in_interrupt())
1134 pol = &default_policy;
1135 if (pol->policy == MPOL_INTERLEAVE)
1136 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1137 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1138 }
1139 EXPORT_SYMBOL(alloc_pages_current);
1140
1141 /*
1142 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1143 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1144 * with the mems_allowed returned by cpuset_mems_allowed(). This
1145 * keeps mempolicies cpuset relative after its cpuset moves. See
1146 * further kernel/cpuset.c update_nodemask().
1147 */
1148 void *cpuset_being_rebound;
1149
1150 /* Slow path of a mempolicy copy */
1151 struct mempolicy *__mpol_copy(struct mempolicy *old)
1152 {
1153 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1154
1155 if (!new)
1156 return ERR_PTR(-ENOMEM);
1157 if (current_cpuset_is_being_rebound()) {
1158 nodemask_t mems = cpuset_mems_allowed(current);
1159 mpol_rebind_policy(old, &mems);
1160 }
1161 *new = *old;
1162 atomic_set(&new->refcnt, 1);
1163 if (new->policy == MPOL_BIND) {
1164 int sz = ksize(old->v.zonelist);
1165 new->v.zonelist = kmalloc(sz, SLAB_KERNEL);
1166 if (!new->v.zonelist) {
1167 kmem_cache_free(policy_cache, new);
1168 return ERR_PTR(-ENOMEM);
1169 }
1170 memcpy(new->v.zonelist, old->v.zonelist, sz);
1171 }
1172 return new;
1173 }
1174
1175 /* Slow path of a mempolicy comparison */
1176 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1177 {
1178 if (!a || !b)
1179 return 0;
1180 if (a->policy != b->policy)
1181 return 0;
1182 switch (a->policy) {
1183 case MPOL_DEFAULT:
1184 return 1;
1185 case MPOL_INTERLEAVE:
1186 return nodes_equal(a->v.nodes, b->v.nodes);
1187 case MPOL_PREFERRED:
1188 return a->v.preferred_node == b->v.preferred_node;
1189 case MPOL_BIND: {
1190 int i;
1191 for (i = 0; a->v.zonelist->zones[i]; i++)
1192 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1193 return 0;
1194 return b->v.zonelist->zones[i] == NULL;
1195 }
1196 default:
1197 BUG();
1198 return 0;
1199 }
1200 }
1201
1202 /* Slow path of a mpol destructor. */
1203 void __mpol_free(struct mempolicy *p)
1204 {
1205 if (!atomic_dec_and_test(&p->refcnt))
1206 return;
1207 if (p->policy == MPOL_BIND)
1208 kfree(p->v.zonelist);
1209 p->policy = MPOL_DEFAULT;
1210 kmem_cache_free(policy_cache, p);
1211 }
1212
1213 /*
1214 * Shared memory backing store policy support.
1215 *
1216 * Remember policies even when nobody has shared memory mapped.
1217 * The policies are kept in Red-Black tree linked from the inode.
1218 * They are protected by the sp->lock spinlock, which should be held
1219 * for any accesses to the tree.
1220 */
1221
1222 /* lookup first element intersecting start-end */
1223 /* Caller holds sp->lock */
1224 static struct sp_node *
1225 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1226 {
1227 struct rb_node *n = sp->root.rb_node;
1228
1229 while (n) {
1230 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1231
1232 if (start >= p->end)
1233 n = n->rb_right;
1234 else if (end <= p->start)
1235 n = n->rb_left;
1236 else
1237 break;
1238 }
1239 if (!n)
1240 return NULL;
1241 for (;;) {
1242 struct sp_node *w = NULL;
1243 struct rb_node *prev = rb_prev(n);
1244 if (!prev)
1245 break;
1246 w = rb_entry(prev, struct sp_node, nd);
1247 if (w->end <= start)
1248 break;
1249 n = prev;
1250 }
1251 return rb_entry(n, struct sp_node, nd);
1252 }
1253
1254 /* Insert a new shared policy into the list. */
1255 /* Caller holds sp->lock */
1256 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1257 {
1258 struct rb_node **p = &sp->root.rb_node;
1259 struct rb_node *parent = NULL;
1260 struct sp_node *nd;
1261
1262 while (*p) {
1263 parent = *p;
1264 nd = rb_entry(parent, struct sp_node, nd);
1265 if (new->start < nd->start)
1266 p = &(*p)->rb_left;
1267 else if (new->end > nd->end)
1268 p = &(*p)->rb_right;
1269 else
1270 BUG();
1271 }
1272 rb_link_node(&new->nd, parent, p);
1273 rb_insert_color(&new->nd, &sp->root);
1274 PDprintk("inserting %lx-%lx: %d\n", new->start, new->end,
1275 new->policy ? new->policy->policy : 0);
1276 }
1277
1278 /* Find shared policy intersecting idx */
1279 struct mempolicy *
1280 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1281 {
1282 struct mempolicy *pol = NULL;
1283 struct sp_node *sn;
1284
1285 if (!sp->root.rb_node)
1286 return NULL;
1287 spin_lock(&sp->lock);
1288 sn = sp_lookup(sp, idx, idx+1);
1289 if (sn) {
1290 mpol_get(sn->policy);
1291 pol = sn->policy;
1292 }
1293 spin_unlock(&sp->lock);
1294 return pol;
1295 }
1296
1297 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1298 {
1299 PDprintk("deleting %lx-l%x\n", n->start, n->end);
1300 rb_erase(&n->nd, &sp->root);
1301 mpol_free(n->policy);
1302 kmem_cache_free(sn_cache, n);
1303 }
1304
1305 struct sp_node *
1306 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1307 {
1308 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1309
1310 if (!n)
1311 return NULL;
1312 n->start = start;
1313 n->end = end;
1314 mpol_get(pol);
1315 n->policy = pol;
1316 return n;
1317 }
1318
1319 /* Replace a policy range. */
1320 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1321 unsigned long end, struct sp_node *new)
1322 {
1323 struct sp_node *n, *new2 = NULL;
1324
1325 restart:
1326 spin_lock(&sp->lock);
1327 n = sp_lookup(sp, start, end);
1328 /* Take care of old policies in the same range. */
1329 while (n && n->start < end) {
1330 struct rb_node *next = rb_next(&n->nd);
1331 if (n->start >= start) {
1332 if (n->end <= end)
1333 sp_delete(sp, n);
1334 else
1335 n->start = end;
1336 } else {
1337 /* Old policy spanning whole new range. */
1338 if (n->end > end) {
1339 if (!new2) {
1340 spin_unlock(&sp->lock);
1341 new2 = sp_alloc(end, n->end, n->policy);
1342 if (!new2)
1343 return -ENOMEM;
1344 goto restart;
1345 }
1346 n->end = start;
1347 sp_insert(sp, new2);
1348 new2 = NULL;
1349 break;
1350 } else
1351 n->end = start;
1352 }
1353 if (!next)
1354 break;
1355 n = rb_entry(next, struct sp_node, nd);
1356 }
1357 if (new)
1358 sp_insert(sp, new);
1359 spin_unlock(&sp->lock);
1360 if (new2) {
1361 mpol_free(new2->policy);
1362 kmem_cache_free(sn_cache, new2);
1363 }
1364 return 0;
1365 }
1366
1367 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1368 nodemask_t *policy_nodes)
1369 {
1370 info->root = RB_ROOT;
1371 spin_lock_init(&info->lock);
1372
1373 if (policy != MPOL_DEFAULT) {
1374 struct mempolicy *newpol;
1375
1376 /* Falls back to MPOL_DEFAULT on any error */
1377 newpol = mpol_new(policy, policy_nodes);
1378 if (!IS_ERR(newpol)) {
1379 /* Create pseudo-vma that contains just the policy */
1380 struct vm_area_struct pvma;
1381
1382 memset(&pvma, 0, sizeof(struct vm_area_struct));
1383 /* Policy covers entire file */
1384 pvma.vm_end = TASK_SIZE;
1385 mpol_set_shared_policy(info, &pvma, newpol);
1386 mpol_free(newpol);
1387 }
1388 }
1389 }
1390
1391 int mpol_set_shared_policy(struct shared_policy *info,
1392 struct vm_area_struct *vma, struct mempolicy *npol)
1393 {
1394 int err;
1395 struct sp_node *new = NULL;
1396 unsigned long sz = vma_pages(vma);
1397
1398 PDprintk("set_shared_policy %lx sz %lu %d %lx\n",
1399 vma->vm_pgoff,
1400 sz, npol? npol->policy : -1,
1401 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1402
1403 if (npol) {
1404 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1405 if (!new)
1406 return -ENOMEM;
1407 }
1408 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1409 if (err && new)
1410 kmem_cache_free(sn_cache, new);
1411 return err;
1412 }
1413
1414 /* Free a backing policy store on inode delete. */
1415 void mpol_free_shared_policy(struct shared_policy *p)
1416 {
1417 struct sp_node *n;
1418 struct rb_node *next;
1419
1420 if (!p->root.rb_node)
1421 return;
1422 spin_lock(&p->lock);
1423 next = rb_first(&p->root);
1424 while (next) {
1425 n = rb_entry(next, struct sp_node, nd);
1426 next = rb_next(&n->nd);
1427 rb_erase(&n->nd, &p->root);
1428 mpol_free(n->policy);
1429 kmem_cache_free(sn_cache, n);
1430 }
1431 spin_unlock(&p->lock);
1432 }
1433
1434 /* assumes fs == KERNEL_DS */
1435 void __init numa_policy_init(void)
1436 {
1437 policy_cache = kmem_cache_create("numa_policy",
1438 sizeof(struct mempolicy),
1439 0, SLAB_PANIC, NULL, NULL);
1440
1441 sn_cache = kmem_cache_create("shared_policy_node",
1442 sizeof(struct sp_node),
1443 0, SLAB_PANIC, NULL, NULL);
1444
1445 /* Set interleaving policy for system init. This way not all
1446 the data structures allocated at system boot end up in node zero. */
1447
1448 if (do_set_mempolicy(MPOL_INTERLEAVE, &node_online_map))
1449 printk("numa_policy_init: interleaving failed\n");
1450 }
1451
1452 /* Reset policy of current process to default */
1453 void numa_default_policy(void)
1454 {
1455 do_set_mempolicy(MPOL_DEFAULT, NULL);
1456 }
1457
1458 /* Migrate a policy to a different set of nodes */
1459 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1460 {
1461 nodemask_t *mpolmask;
1462 nodemask_t tmp;
1463
1464 if (!pol)
1465 return;
1466 mpolmask = &pol->cpuset_mems_allowed;
1467 if (nodes_equal(*mpolmask, *newmask))
1468 return;
1469
1470 switch (pol->policy) {
1471 case MPOL_DEFAULT:
1472 break;
1473 case MPOL_INTERLEAVE:
1474 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1475 pol->v.nodes = tmp;
1476 *mpolmask = *newmask;
1477 current->il_next = node_remap(current->il_next,
1478 *mpolmask, *newmask);
1479 break;
1480 case MPOL_PREFERRED:
1481 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1482 *mpolmask, *newmask);
1483 *mpolmask = *newmask;
1484 break;
1485 case MPOL_BIND: {
1486 nodemask_t nodes;
1487 struct zone **z;
1488 struct zonelist *zonelist;
1489
1490 nodes_clear(nodes);
1491 for (z = pol->v.zonelist->zones; *z; z++)
1492 node_set((*z)->zone_pgdat->node_id, nodes);
1493 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1494 nodes = tmp;
1495
1496 zonelist = bind_zonelist(&nodes);
1497
1498 /* If no mem, then zonelist is NULL and we keep old zonelist.
1499 * If that old zonelist has no remaining mems_allowed nodes,
1500 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1501 */
1502
1503 if (zonelist) {
1504 /* Good - got mem - substitute new zonelist */
1505 kfree(pol->v.zonelist);
1506 pol->v.zonelist = zonelist;
1507 }
1508 *mpolmask = *newmask;
1509 break;
1510 }
1511 default:
1512 BUG();
1513 break;
1514 }
1515 }
1516
1517 /*
1518 * Wrapper for mpol_rebind_policy() that just requires task
1519 * pointer, and updates task mempolicy.
1520 */
1521
1522 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1523 {
1524 mpol_rebind_policy(tsk->mempolicy, new);
1525 }
1526
1527 /*
1528 * Rebind each vma in mm to new nodemask.
1529 *
1530 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1531 */
1532
1533 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1534 {
1535 struct vm_area_struct *vma;
1536
1537 down_write(&mm->mmap_sem);
1538 for (vma = mm->mmap; vma; vma = vma->vm_next)
1539 mpol_rebind_policy(vma->vm_policy, new);
1540 up_write(&mm->mmap_sem);
1541 }
1542
1543 /*
1544 * Display pages allocated per node and memory policy via /proc.
1545 */
1546
1547 static const char *policy_types[] = { "default", "prefer", "bind",
1548 "interleave" };
1549
1550 /*
1551 * Convert a mempolicy into a string.
1552 * Returns the number of characters in buffer (if positive)
1553 * or an error (negative)
1554 */
1555 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1556 {
1557 char *p = buffer;
1558 int l;
1559 nodemask_t nodes;
1560 int mode = pol ? pol->policy : MPOL_DEFAULT;
1561
1562 switch (mode) {
1563 case MPOL_DEFAULT:
1564 nodes_clear(nodes);
1565 break;
1566
1567 case MPOL_PREFERRED:
1568 nodes_clear(nodes);
1569 node_set(pol->v.preferred_node, nodes);
1570 break;
1571
1572 case MPOL_BIND:
1573 get_zonemask(pol, &nodes);
1574 break;
1575
1576 case MPOL_INTERLEAVE:
1577 nodes = pol->v.nodes;
1578 break;
1579
1580 default:
1581 BUG();
1582 return -EFAULT;
1583 }
1584
1585 l = strlen(policy_types[mode]);
1586 if (buffer + maxlen < p + l + 1)
1587 return -ENOSPC;
1588
1589 strcpy(p, policy_types[mode]);
1590 p += l;
1591
1592 if (!nodes_empty(nodes)) {
1593 if (buffer + maxlen < p + 2)
1594 return -ENOSPC;
1595 *p++ = '=';
1596 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1597 }
1598 return p - buffer;
1599 }
1600
1601 struct numa_maps {
1602 unsigned long pages;
1603 unsigned long anon;
1604 unsigned long mapped;
1605 unsigned long mapcount_max;
1606 unsigned long node[MAX_NUMNODES];
1607 };
1608
1609 static void gather_stats(struct page *page, void *private)
1610 {
1611 struct numa_maps *md = private;
1612 int count = page_mapcount(page);
1613
1614 if (count)
1615 md->mapped++;
1616
1617 if (count > md->mapcount_max)
1618 md->mapcount_max = count;
1619
1620 md->pages++;
1621
1622 if (PageAnon(page))
1623 md->anon++;
1624
1625 md->node[page_to_nid(page)]++;
1626 cond_resched();
1627 }
1628
1629 int show_numa_map(struct seq_file *m, void *v)
1630 {
1631 struct task_struct *task = m->private;
1632 struct vm_area_struct *vma = v;
1633 struct numa_maps *md;
1634 int n;
1635 char buffer[50];
1636
1637 if (!vma->vm_mm)
1638 return 0;
1639
1640 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1641 if (!md)
1642 return 0;
1643
1644 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1645 &node_online_map, MPOL_MF_STATS, md);
1646
1647 if (md->pages) {
1648 mpol_to_str(buffer, sizeof(buffer),
1649 get_vma_policy(task, vma, vma->vm_start));
1650
1651 seq_printf(m, "%08lx %s pages=%lu mapped=%lu maxref=%lu",
1652 vma->vm_start, buffer, md->pages,
1653 md->mapped, md->mapcount_max);
1654
1655 if (md->anon)
1656 seq_printf(m," anon=%lu",md->anon);
1657
1658 for_each_online_node(n)
1659 if (md->node[n])
1660 seq_printf(m, " N%d=%lu", n, md->node[n]);
1661
1662 seq_putc(m, '\n');
1663 }
1664 kfree(md);
1665
1666 if (m->count < m->size)
1667 m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
1668 return 0;
1669 }
1670