]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
mempolicy: change get_task_policy() to return default_policy rather than NULL
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 static struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 /* Check that the nodemask contains at least one populated zone */
166 static int is_valid_nodemask(const nodemask_t *nodemask)
167 {
168 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169 }
170
171 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 {
173 return pol->flags & MPOL_MODE_FLAGS;
174 }
175
176 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 const nodemask_t *rel)
178 {
179 nodemask_t tmp;
180 nodes_fold(tmp, *orig, nodes_weight(*rel));
181 nodes_onto(*ret, tmp, *rel);
182 }
183
184 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190 }
191
192 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 if (!nodes)
195 pol->flags |= MPOL_F_LOCAL; /* local allocation */
196 else if (nodes_empty(*nodes))
197 return -EINVAL; /* no allowed nodes */
198 else
199 pol->v.preferred_node = first_node(*nodes);
200 return 0;
201 }
202
203 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (!is_valid_nodemask(nodes))
206 return -EINVAL;
207 pol->v.nodes = *nodes;
208 return 0;
209 }
210
211 /*
212 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213 * any, for the new policy. mpol_new() has already validated the nodes
214 * parameter with respect to the policy mode and flags. But, we need to
215 * handle an empty nodemask with MPOL_PREFERRED here.
216 *
217 * Must be called holding task's alloc_lock to protect task's mems_allowed
218 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 */
220 static int mpol_set_nodemask(struct mempolicy *pol,
221 const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 {
223 int ret;
224
225 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 if (pol == NULL)
227 return 0;
228 /* Check N_MEMORY */
229 nodes_and(nsc->mask1,
230 cpuset_current_mems_allowed, node_states[N_MEMORY]);
231
232 VM_BUG_ON(!nodes);
233 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 nodes = NULL; /* explicit local allocation */
235 else {
236 if (pol->flags & MPOL_F_RELATIVE_NODES)
237 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 else
239 nodes_and(nsc->mask2, *nodes, nsc->mask1);
240
241 if (mpol_store_user_nodemask(pol))
242 pol->w.user_nodemask = *nodes;
243 else
244 pol->w.cpuset_mems_allowed =
245 cpuset_current_mems_allowed;
246 }
247
248 if (nodes)
249 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 else
251 ret = mpol_ops[pol->mode].create(pol, NULL);
252 return ret;
253 }
254
255 /*
256 * This function just creates a new policy, does some check and simple
257 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 */
259 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 nodemask_t *nodes)
261 {
262 struct mempolicy *policy;
263
264 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266
267 if (mode == MPOL_DEFAULT) {
268 if (nodes && !nodes_empty(*nodes))
269 return ERR_PTR(-EINVAL);
270 return NULL;
271 }
272 VM_BUG_ON(!nodes);
273
274 /*
275 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 * All other modes require a valid pointer to a non-empty nodemask.
278 */
279 if (mode == MPOL_PREFERRED) {
280 if (nodes_empty(*nodes)) {
281 if (((flags & MPOL_F_STATIC_NODES) ||
282 (flags & MPOL_F_RELATIVE_NODES)))
283 return ERR_PTR(-EINVAL);
284 }
285 } else if (mode == MPOL_LOCAL) {
286 if (!nodes_empty(*nodes))
287 return ERR_PTR(-EINVAL);
288 mode = MPOL_PREFERRED;
289 } else if (nodes_empty(*nodes))
290 return ERR_PTR(-EINVAL);
291 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 if (!policy)
293 return ERR_PTR(-ENOMEM);
294 atomic_set(&policy->refcnt, 1);
295 policy->mode = mode;
296 policy->flags = flags;
297
298 return policy;
299 }
300
301 /* Slow path of a mpol destructor. */
302 void __mpol_put(struct mempolicy *p)
303 {
304 if (!atomic_dec_and_test(&p->refcnt))
305 return;
306 kmem_cache_free(policy_cache, p);
307 }
308
309 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 enum mpol_rebind_step step)
311 {
312 }
313
314 /*
315 * step:
316 * MPOL_REBIND_ONCE - do rebind work at once
317 * MPOL_REBIND_STEP1 - set all the newly nodes
318 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 */
320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 enum mpol_rebind_step step)
322 {
323 nodemask_t tmp;
324
325 if (pol->flags & MPOL_F_STATIC_NODES)
326 nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 else {
330 /*
331 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 * result
333 */
334 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 nodes_remap(tmp, pol->v.nodes,
336 pol->w.cpuset_mems_allowed, *nodes);
337 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 } else if (step == MPOL_REBIND_STEP2) {
339 tmp = pol->w.cpuset_mems_allowed;
340 pol->w.cpuset_mems_allowed = *nodes;
341 } else
342 BUG();
343 }
344
345 if (nodes_empty(tmp))
346 tmp = *nodes;
347
348 if (step == MPOL_REBIND_STEP1)
349 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 pol->v.nodes = tmp;
352 else
353 BUG();
354
355 if (!node_isset(current->il_next, tmp)) {
356 current->il_next = next_node(current->il_next, tmp);
357 if (current->il_next >= MAX_NUMNODES)
358 current->il_next = first_node(tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = numa_node_id();
361 }
362 }
363
364 static void mpol_rebind_preferred(struct mempolicy *pol,
365 const nodemask_t *nodes,
366 enum mpol_rebind_step step)
367 {
368 nodemask_t tmp;
369
370 if (pol->flags & MPOL_F_STATIC_NODES) {
371 int node = first_node(pol->w.user_nodemask);
372
373 if (node_isset(node, *nodes)) {
374 pol->v.preferred_node = node;
375 pol->flags &= ~MPOL_F_LOCAL;
376 } else
377 pol->flags |= MPOL_F_LOCAL;
378 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 pol->v.preferred_node = first_node(tmp);
381 } else if (!(pol->flags & MPOL_F_LOCAL)) {
382 pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 pol->w.cpuset_mems_allowed,
384 *nodes);
385 pol->w.cpuset_mems_allowed = *nodes;
386 }
387 }
388
389 /*
390 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 *
392 * If read-side task has no lock to protect task->mempolicy, write-side
393 * task will rebind the task->mempolicy by two step. The first step is
394 * setting all the newly nodes, and the second step is cleaning all the
395 * disallowed nodes. In this way, we can avoid finding no node to alloc
396 * page.
397 * If we have a lock to protect task->mempolicy in read-side, we do
398 * rebind directly.
399 *
400 * step:
401 * MPOL_REBIND_ONCE - do rebind work at once
402 * MPOL_REBIND_STEP1 - set all the newly nodes
403 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 */
405 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 enum mpol_rebind_step step)
407 {
408 if (!pol)
409 return;
410 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 return;
413
414 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 return;
416
417 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 BUG();
419
420 if (step == MPOL_REBIND_STEP1)
421 pol->flags |= MPOL_F_REBINDING;
422 else if (step == MPOL_REBIND_STEP2)
423 pol->flags &= ~MPOL_F_REBINDING;
424 else if (step >= MPOL_REBIND_NSTEP)
425 BUG();
426
427 mpol_ops[pol->mode].rebind(pol, newmask, step);
428 }
429
430 /*
431 * Wrapper for mpol_rebind_policy() that just requires task
432 * pointer, and updates task mempolicy.
433 *
434 * Called with task's alloc_lock held.
435 */
436
437 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 enum mpol_rebind_step step)
439 {
440 mpol_rebind_policy(tsk->mempolicy, new, step);
441 }
442
443 /*
444 * Rebind each vma in mm to new nodemask.
445 *
446 * Call holding a reference to mm. Takes mm->mmap_sem during call.
447 */
448
449 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 {
451 struct vm_area_struct *vma;
452
453 down_write(&mm->mmap_sem);
454 for (vma = mm->mmap; vma; vma = vma->vm_next)
455 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 up_write(&mm->mmap_sem);
457 }
458
459 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 [MPOL_DEFAULT] = {
461 .rebind = mpol_rebind_default,
462 },
463 [MPOL_INTERLEAVE] = {
464 .create = mpol_new_interleave,
465 .rebind = mpol_rebind_nodemask,
466 },
467 [MPOL_PREFERRED] = {
468 .create = mpol_new_preferred,
469 .rebind = mpol_rebind_preferred,
470 },
471 [MPOL_BIND] = {
472 .create = mpol_new_bind,
473 .rebind = mpol_rebind_nodemask,
474 },
475 };
476
477 static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 unsigned long flags);
479
480 /*
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
483 */
484 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 unsigned long addr, unsigned long end,
486 const nodemask_t *nodes, unsigned long flags,
487 void *private)
488 {
489 pte_t *orig_pte;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 do {
495 struct page *page;
496 int nid;
497
498 if (!pte_present(*pte))
499 continue;
500 page = vm_normal_page(vma, addr, *pte);
501 if (!page)
502 continue;
503 /*
504 * vm_normal_page() filters out zero pages, but there might
505 * still be PageReserved pages to skip, perhaps in a VDSO.
506 */
507 if (PageReserved(page))
508 continue;
509 nid = page_to_nid(page);
510 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 continue;
512
513 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 migrate_page_add(page, private, flags);
515 else
516 break;
517 } while (pte++, addr += PAGE_SIZE, addr != end);
518 pte_unmap_unlock(orig_pte, ptl);
519 return addr != end;
520 }
521
522 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 void *private)
525 {
526 #ifdef CONFIG_HUGETLB_PAGE
527 int nid;
528 struct page *page;
529 spinlock_t *ptl;
530 pte_t entry;
531
532 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 entry = huge_ptep_get((pte_t *)pmd);
534 if (!pte_present(entry))
535 goto unlock;
536 page = pte_page(entry);
537 nid = page_to_nid(page);
538 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 goto unlock;
540 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 if (flags & (MPOL_MF_MOVE_ALL) ||
542 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 isolate_huge_page(page, private);
544 unlock:
545 spin_unlock(ptl);
546 #else
547 BUG();
548 #endif
549 }
550
551 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 unsigned long addr, unsigned long end,
553 const nodemask_t *nodes, unsigned long flags,
554 void *private)
555 {
556 pmd_t *pmd;
557 unsigned long next;
558
559 pmd = pmd_offset(pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 if (!pmd_present(*pmd))
563 continue;
564 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 flags, private);
567 continue;
568 }
569 split_huge_page_pmd(vma, addr, pmd);
570 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 continue;
572 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 flags, private))
574 return -EIO;
575 } while (pmd++, addr = next, addr != end);
576 return 0;
577 }
578
579 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 const nodemask_t *nodes, unsigned long flags,
582 void *private)
583 {
584 pud_t *pud;
585 unsigned long next;
586
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 continue;
592 if (pud_none_or_clear_bad(pud))
593 continue;
594 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 flags, private))
596 return -EIO;
597 } while (pud++, addr = next, addr != end);
598 return 0;
599 }
600
601 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end,
603 const nodemask_t *nodes, unsigned long flags,
604 void *private)
605 {
606 pgd_t *pgd;
607 unsigned long next;
608
609 pgd = pgd_offset(vma->vm_mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 flags, private))
616 return -EIO;
617 } while (pgd++, addr = next, addr != end);
618 return 0;
619 }
620
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
626 *
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
630 */
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633 {
634 int nr_updated;
635
636 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 if (nr_updated)
638 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639
640 return nr_updated;
641 }
642 #else
643 static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
645 {
646 return 0;
647 }
648 #endif /* CONFIG_NUMA_BALANCING */
649
650 /*
651 * Walk through page tables and collect pages to be migrated.
652 *
653 * If pages found in a given range are on a set of nodes (determined by
654 * @nodes and @flags,) it's isolated and queued to the pagelist which is
655 * passed via @private.)
656 */
657 static int
658 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 const nodemask_t *nodes, unsigned long flags, void *private)
660 {
661 int err = 0;
662 struct vm_area_struct *vma, *prev;
663
664 vma = find_vma(mm, start);
665 if (!vma)
666 return -EFAULT;
667 prev = NULL;
668 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 unsigned long endvma = vma->vm_end;
670
671 if (endvma > end)
672 endvma = end;
673 if (vma->vm_start > start)
674 start = vma->vm_start;
675
676 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 if (!vma->vm_next && vma->vm_end < end)
678 return -EFAULT;
679 if (prev && prev->vm_end < vma->vm_start)
680 return -EFAULT;
681 }
682
683 if (flags & MPOL_MF_LAZY) {
684 change_prot_numa(vma, start, endvma);
685 goto next;
686 }
687
688 if ((flags & MPOL_MF_STRICT) ||
689 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
690 vma_migratable(vma))) {
691
692 err = queue_pages_pgd_range(vma, start, endvma, nodes,
693 flags, private);
694 if (err)
695 break;
696 }
697 next:
698 prev = vma;
699 }
700 return err;
701 }
702
703 /*
704 * Apply policy to a single VMA
705 * This must be called with the mmap_sem held for writing.
706 */
707 static int vma_replace_policy(struct vm_area_struct *vma,
708 struct mempolicy *pol)
709 {
710 int err;
711 struct mempolicy *old;
712 struct mempolicy *new;
713
714 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
715 vma->vm_start, vma->vm_end, vma->vm_pgoff,
716 vma->vm_ops, vma->vm_file,
717 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
718
719 new = mpol_dup(pol);
720 if (IS_ERR(new))
721 return PTR_ERR(new);
722
723 if (vma->vm_ops && vma->vm_ops->set_policy) {
724 err = vma->vm_ops->set_policy(vma, new);
725 if (err)
726 goto err_out;
727 }
728
729 old = vma->vm_policy;
730 vma->vm_policy = new; /* protected by mmap_sem */
731 mpol_put(old);
732
733 return 0;
734 err_out:
735 mpol_put(new);
736 return err;
737 }
738
739 /* Step 2: apply policy to a range and do splits. */
740 static int mbind_range(struct mm_struct *mm, unsigned long start,
741 unsigned long end, struct mempolicy *new_pol)
742 {
743 struct vm_area_struct *next;
744 struct vm_area_struct *prev;
745 struct vm_area_struct *vma;
746 int err = 0;
747 pgoff_t pgoff;
748 unsigned long vmstart;
749 unsigned long vmend;
750
751 vma = find_vma(mm, start);
752 if (!vma || vma->vm_start > start)
753 return -EFAULT;
754
755 prev = vma->vm_prev;
756 if (start > vma->vm_start)
757 prev = vma;
758
759 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
760 next = vma->vm_next;
761 vmstart = max(start, vma->vm_start);
762 vmend = min(end, vma->vm_end);
763
764 if (mpol_equal(vma_policy(vma), new_pol))
765 continue;
766
767 pgoff = vma->vm_pgoff +
768 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
769 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
770 vma->anon_vma, vma->vm_file, pgoff,
771 new_pol);
772 if (prev) {
773 vma = prev;
774 next = vma->vm_next;
775 if (mpol_equal(vma_policy(vma), new_pol))
776 continue;
777 /* vma_merge() joined vma && vma->next, case 8 */
778 goto replace;
779 }
780 if (vma->vm_start != vmstart) {
781 err = split_vma(vma->vm_mm, vma, vmstart, 1);
782 if (err)
783 goto out;
784 }
785 if (vma->vm_end != vmend) {
786 err = split_vma(vma->vm_mm, vma, vmend, 0);
787 if (err)
788 goto out;
789 }
790 replace:
791 err = vma_replace_policy(vma, new_pol);
792 if (err)
793 goto out;
794 }
795
796 out:
797 return err;
798 }
799
800 /* Set the process memory policy */
801 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
802 nodemask_t *nodes)
803 {
804 struct mempolicy *new, *old;
805 struct mm_struct *mm = current->mm;
806 NODEMASK_SCRATCH(scratch);
807 int ret;
808
809 if (!scratch)
810 return -ENOMEM;
811
812 new = mpol_new(mode, flags, nodes);
813 if (IS_ERR(new)) {
814 ret = PTR_ERR(new);
815 goto out;
816 }
817 /*
818 * prevent changing our mempolicy while show_numa_maps()
819 * is using it.
820 * Note: do_set_mempolicy() can be called at init time
821 * with no 'mm'.
822 */
823 if (mm)
824 down_write(&mm->mmap_sem);
825 task_lock(current);
826 ret = mpol_set_nodemask(new, nodes, scratch);
827 if (ret) {
828 task_unlock(current);
829 if (mm)
830 up_write(&mm->mmap_sem);
831 mpol_put(new);
832 goto out;
833 }
834 old = current->mempolicy;
835 current->mempolicy = new;
836 if (new && new->mode == MPOL_INTERLEAVE &&
837 nodes_weight(new->v.nodes))
838 current->il_next = first_node(new->v.nodes);
839 task_unlock(current);
840 if (mm)
841 up_write(&mm->mmap_sem);
842
843 mpol_put(old);
844 ret = 0;
845 out:
846 NODEMASK_SCRATCH_FREE(scratch);
847 return ret;
848 }
849
850 /*
851 * Return nodemask for policy for get_mempolicy() query
852 *
853 * Called with task's alloc_lock held
854 */
855 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
856 {
857 nodes_clear(*nodes);
858 if (p == &default_policy)
859 return;
860
861 switch (p->mode) {
862 case MPOL_BIND:
863 /* Fall through */
864 case MPOL_INTERLEAVE:
865 *nodes = p->v.nodes;
866 break;
867 case MPOL_PREFERRED:
868 if (!(p->flags & MPOL_F_LOCAL))
869 node_set(p->v.preferred_node, *nodes);
870 /* else return empty node mask for local allocation */
871 break;
872 default:
873 BUG();
874 }
875 }
876
877 static int lookup_node(struct mm_struct *mm, unsigned long addr)
878 {
879 struct page *p;
880 int err;
881
882 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
883 if (err >= 0) {
884 err = page_to_nid(p);
885 put_page(p);
886 }
887 return err;
888 }
889
890 /* Retrieve NUMA policy */
891 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
892 unsigned long addr, unsigned long flags)
893 {
894 int err;
895 struct mm_struct *mm = current->mm;
896 struct vm_area_struct *vma = NULL;
897 struct mempolicy *pol = current->mempolicy;
898
899 if (flags &
900 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
901 return -EINVAL;
902
903 if (flags & MPOL_F_MEMS_ALLOWED) {
904 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
905 return -EINVAL;
906 *policy = 0; /* just so it's initialized */
907 task_lock(current);
908 *nmask = cpuset_current_mems_allowed;
909 task_unlock(current);
910 return 0;
911 }
912
913 if (flags & MPOL_F_ADDR) {
914 /*
915 * Do NOT fall back to task policy if the
916 * vma/shared policy at addr is NULL. We
917 * want to return MPOL_DEFAULT in this case.
918 */
919 down_read(&mm->mmap_sem);
920 vma = find_vma_intersection(mm, addr, addr+1);
921 if (!vma) {
922 up_read(&mm->mmap_sem);
923 return -EFAULT;
924 }
925 if (vma->vm_ops && vma->vm_ops->get_policy)
926 pol = vma->vm_ops->get_policy(vma, addr);
927 else
928 pol = vma->vm_policy;
929 } else if (addr)
930 return -EINVAL;
931
932 if (!pol)
933 pol = &default_policy; /* indicates default behavior */
934
935 if (flags & MPOL_F_NODE) {
936 if (flags & MPOL_F_ADDR) {
937 err = lookup_node(mm, addr);
938 if (err < 0)
939 goto out;
940 *policy = err;
941 } else if (pol == current->mempolicy &&
942 pol->mode == MPOL_INTERLEAVE) {
943 *policy = current->il_next;
944 } else {
945 err = -EINVAL;
946 goto out;
947 }
948 } else {
949 *policy = pol == &default_policy ? MPOL_DEFAULT :
950 pol->mode;
951 /*
952 * Internal mempolicy flags must be masked off before exposing
953 * the policy to userspace.
954 */
955 *policy |= (pol->flags & MPOL_MODE_FLAGS);
956 }
957
958 if (vma) {
959 up_read(&current->mm->mmap_sem);
960 vma = NULL;
961 }
962
963 err = 0;
964 if (nmask) {
965 if (mpol_store_user_nodemask(pol)) {
966 *nmask = pol->w.user_nodemask;
967 } else {
968 task_lock(current);
969 get_policy_nodemask(pol, nmask);
970 task_unlock(current);
971 }
972 }
973
974 out:
975 mpol_cond_put(pol);
976 if (vma)
977 up_read(&current->mm->mmap_sem);
978 return err;
979 }
980
981 #ifdef CONFIG_MIGRATION
982 /*
983 * page migration
984 */
985 static void migrate_page_add(struct page *page, struct list_head *pagelist,
986 unsigned long flags)
987 {
988 /*
989 * Avoid migrating a page that is shared with others.
990 */
991 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
992 if (!isolate_lru_page(page)) {
993 list_add_tail(&page->lru, pagelist);
994 inc_zone_page_state(page, NR_ISOLATED_ANON +
995 page_is_file_cache(page));
996 }
997 }
998 }
999
1000 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1001 {
1002 if (PageHuge(page))
1003 return alloc_huge_page_node(page_hstate(compound_head(page)),
1004 node);
1005 else
1006 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1007 }
1008
1009 /*
1010 * Migrate pages from one node to a target node.
1011 * Returns error or the number of pages not migrated.
1012 */
1013 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1014 int flags)
1015 {
1016 nodemask_t nmask;
1017 LIST_HEAD(pagelist);
1018 int err = 0;
1019
1020 nodes_clear(nmask);
1021 node_set(source, nmask);
1022
1023 /*
1024 * This does not "check" the range but isolates all pages that
1025 * need migration. Between passing in the full user address
1026 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1027 */
1028 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1029 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1030 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1031
1032 if (!list_empty(&pagelist)) {
1033 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1034 MIGRATE_SYNC, MR_SYSCALL);
1035 if (err)
1036 putback_movable_pages(&pagelist);
1037 }
1038
1039 return err;
1040 }
1041
1042 /*
1043 * Move pages between the two nodesets so as to preserve the physical
1044 * layout as much as possible.
1045 *
1046 * Returns the number of page that could not be moved.
1047 */
1048 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1049 const nodemask_t *to, int flags)
1050 {
1051 int busy = 0;
1052 int err;
1053 nodemask_t tmp;
1054
1055 err = migrate_prep();
1056 if (err)
1057 return err;
1058
1059 down_read(&mm->mmap_sem);
1060
1061 err = migrate_vmas(mm, from, to, flags);
1062 if (err)
1063 goto out;
1064
1065 /*
1066 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1067 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1068 * bit in 'tmp', and return that <source, dest> pair for migration.
1069 * The pair of nodemasks 'to' and 'from' define the map.
1070 *
1071 * If no pair of bits is found that way, fallback to picking some
1072 * pair of 'source' and 'dest' bits that are not the same. If the
1073 * 'source' and 'dest' bits are the same, this represents a node
1074 * that will be migrating to itself, so no pages need move.
1075 *
1076 * If no bits are left in 'tmp', or if all remaining bits left
1077 * in 'tmp' correspond to the same bit in 'to', return false
1078 * (nothing left to migrate).
1079 *
1080 * This lets us pick a pair of nodes to migrate between, such that
1081 * if possible the dest node is not already occupied by some other
1082 * source node, minimizing the risk of overloading the memory on a
1083 * node that would happen if we migrated incoming memory to a node
1084 * before migrating outgoing memory source that same node.
1085 *
1086 * A single scan of tmp is sufficient. As we go, we remember the
1087 * most recent <s, d> pair that moved (s != d). If we find a pair
1088 * that not only moved, but what's better, moved to an empty slot
1089 * (d is not set in tmp), then we break out then, with that pair.
1090 * Otherwise when we finish scanning from_tmp, we at least have the
1091 * most recent <s, d> pair that moved. If we get all the way through
1092 * the scan of tmp without finding any node that moved, much less
1093 * moved to an empty node, then there is nothing left worth migrating.
1094 */
1095
1096 tmp = *from;
1097 while (!nodes_empty(tmp)) {
1098 int s,d;
1099 int source = NUMA_NO_NODE;
1100 int dest = 0;
1101
1102 for_each_node_mask(s, tmp) {
1103
1104 /*
1105 * do_migrate_pages() tries to maintain the relative
1106 * node relationship of the pages established between
1107 * threads and memory areas.
1108 *
1109 * However if the number of source nodes is not equal to
1110 * the number of destination nodes we can not preserve
1111 * this node relative relationship. In that case, skip
1112 * copying memory from a node that is in the destination
1113 * mask.
1114 *
1115 * Example: [2,3,4] -> [3,4,5] moves everything.
1116 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1117 */
1118
1119 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1120 (node_isset(s, *to)))
1121 continue;
1122
1123 d = node_remap(s, *from, *to);
1124 if (s == d)
1125 continue;
1126
1127 source = s; /* Node moved. Memorize */
1128 dest = d;
1129
1130 /* dest not in remaining from nodes? */
1131 if (!node_isset(dest, tmp))
1132 break;
1133 }
1134 if (source == NUMA_NO_NODE)
1135 break;
1136
1137 node_clear(source, tmp);
1138 err = migrate_to_node(mm, source, dest, flags);
1139 if (err > 0)
1140 busy += err;
1141 if (err < 0)
1142 break;
1143 }
1144 out:
1145 up_read(&mm->mmap_sem);
1146 if (err < 0)
1147 return err;
1148 return busy;
1149
1150 }
1151
1152 /*
1153 * Allocate a new page for page migration based on vma policy.
1154 * Start by assuming the page is mapped by the same vma as contains @start.
1155 * Search forward from there, if not. N.B., this assumes that the
1156 * list of pages handed to migrate_pages()--which is how we get here--
1157 * is in virtual address order.
1158 */
1159 static struct page *new_page(struct page *page, unsigned long start, int **x)
1160 {
1161 struct vm_area_struct *vma;
1162 unsigned long uninitialized_var(address);
1163
1164 vma = find_vma(current->mm, start);
1165 while (vma) {
1166 address = page_address_in_vma(page, vma);
1167 if (address != -EFAULT)
1168 break;
1169 vma = vma->vm_next;
1170 }
1171
1172 if (PageHuge(page)) {
1173 BUG_ON(!vma);
1174 return alloc_huge_page_noerr(vma, address, 1);
1175 }
1176 /*
1177 * if !vma, alloc_page_vma() will use task or system default policy
1178 */
1179 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1180 }
1181 #else
1182
1183 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1184 unsigned long flags)
1185 {
1186 }
1187
1188 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1189 const nodemask_t *to, int flags)
1190 {
1191 return -ENOSYS;
1192 }
1193
1194 static struct page *new_page(struct page *page, unsigned long start, int **x)
1195 {
1196 return NULL;
1197 }
1198 #endif
1199
1200 static long do_mbind(unsigned long start, unsigned long len,
1201 unsigned short mode, unsigned short mode_flags,
1202 nodemask_t *nmask, unsigned long flags)
1203 {
1204 struct mm_struct *mm = current->mm;
1205 struct mempolicy *new;
1206 unsigned long end;
1207 int err;
1208 LIST_HEAD(pagelist);
1209
1210 if (flags & ~(unsigned long)MPOL_MF_VALID)
1211 return -EINVAL;
1212 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1213 return -EPERM;
1214
1215 if (start & ~PAGE_MASK)
1216 return -EINVAL;
1217
1218 if (mode == MPOL_DEFAULT)
1219 flags &= ~MPOL_MF_STRICT;
1220
1221 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1222 end = start + len;
1223
1224 if (end < start)
1225 return -EINVAL;
1226 if (end == start)
1227 return 0;
1228
1229 new = mpol_new(mode, mode_flags, nmask);
1230 if (IS_ERR(new))
1231 return PTR_ERR(new);
1232
1233 if (flags & MPOL_MF_LAZY)
1234 new->flags |= MPOL_F_MOF;
1235
1236 /*
1237 * If we are using the default policy then operation
1238 * on discontinuous address spaces is okay after all
1239 */
1240 if (!new)
1241 flags |= MPOL_MF_DISCONTIG_OK;
1242
1243 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1244 start, start + len, mode, mode_flags,
1245 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1246
1247 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1248
1249 err = migrate_prep();
1250 if (err)
1251 goto mpol_out;
1252 }
1253 {
1254 NODEMASK_SCRATCH(scratch);
1255 if (scratch) {
1256 down_write(&mm->mmap_sem);
1257 task_lock(current);
1258 err = mpol_set_nodemask(new, nmask, scratch);
1259 task_unlock(current);
1260 if (err)
1261 up_write(&mm->mmap_sem);
1262 } else
1263 err = -ENOMEM;
1264 NODEMASK_SCRATCH_FREE(scratch);
1265 }
1266 if (err)
1267 goto mpol_out;
1268
1269 err = queue_pages_range(mm, start, end, nmask,
1270 flags | MPOL_MF_INVERT, &pagelist);
1271 if (!err)
1272 err = mbind_range(mm, start, end, new);
1273
1274 if (!err) {
1275 int nr_failed = 0;
1276
1277 if (!list_empty(&pagelist)) {
1278 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1279 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1280 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1281 if (nr_failed)
1282 putback_movable_pages(&pagelist);
1283 }
1284
1285 if (nr_failed && (flags & MPOL_MF_STRICT))
1286 err = -EIO;
1287 } else
1288 putback_movable_pages(&pagelist);
1289
1290 up_write(&mm->mmap_sem);
1291 mpol_out:
1292 mpol_put(new);
1293 return err;
1294 }
1295
1296 /*
1297 * User space interface with variable sized bitmaps for nodelists.
1298 */
1299
1300 /* Copy a node mask from user space. */
1301 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1302 unsigned long maxnode)
1303 {
1304 unsigned long k;
1305 unsigned long nlongs;
1306 unsigned long endmask;
1307
1308 --maxnode;
1309 nodes_clear(*nodes);
1310 if (maxnode == 0 || !nmask)
1311 return 0;
1312 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1313 return -EINVAL;
1314
1315 nlongs = BITS_TO_LONGS(maxnode);
1316 if ((maxnode % BITS_PER_LONG) == 0)
1317 endmask = ~0UL;
1318 else
1319 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1320
1321 /* When the user specified more nodes than supported just check
1322 if the non supported part is all zero. */
1323 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1324 if (nlongs > PAGE_SIZE/sizeof(long))
1325 return -EINVAL;
1326 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1327 unsigned long t;
1328 if (get_user(t, nmask + k))
1329 return -EFAULT;
1330 if (k == nlongs - 1) {
1331 if (t & endmask)
1332 return -EINVAL;
1333 } else if (t)
1334 return -EINVAL;
1335 }
1336 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1337 endmask = ~0UL;
1338 }
1339
1340 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1341 return -EFAULT;
1342 nodes_addr(*nodes)[nlongs-1] &= endmask;
1343 return 0;
1344 }
1345
1346 /* Copy a kernel node mask to user space */
1347 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1348 nodemask_t *nodes)
1349 {
1350 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1351 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1352
1353 if (copy > nbytes) {
1354 if (copy > PAGE_SIZE)
1355 return -EINVAL;
1356 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1357 return -EFAULT;
1358 copy = nbytes;
1359 }
1360 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1361 }
1362
1363 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1364 unsigned long, mode, const unsigned long __user *, nmask,
1365 unsigned long, maxnode, unsigned, flags)
1366 {
1367 nodemask_t nodes;
1368 int err;
1369 unsigned short mode_flags;
1370
1371 mode_flags = mode & MPOL_MODE_FLAGS;
1372 mode &= ~MPOL_MODE_FLAGS;
1373 if (mode >= MPOL_MAX)
1374 return -EINVAL;
1375 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1376 (mode_flags & MPOL_F_RELATIVE_NODES))
1377 return -EINVAL;
1378 err = get_nodes(&nodes, nmask, maxnode);
1379 if (err)
1380 return err;
1381 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1382 }
1383
1384 /* Set the process memory policy */
1385 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1386 unsigned long, maxnode)
1387 {
1388 int err;
1389 nodemask_t nodes;
1390 unsigned short flags;
1391
1392 flags = mode & MPOL_MODE_FLAGS;
1393 mode &= ~MPOL_MODE_FLAGS;
1394 if ((unsigned int)mode >= MPOL_MAX)
1395 return -EINVAL;
1396 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1397 return -EINVAL;
1398 err = get_nodes(&nodes, nmask, maxnode);
1399 if (err)
1400 return err;
1401 return do_set_mempolicy(mode, flags, &nodes);
1402 }
1403
1404 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1405 const unsigned long __user *, old_nodes,
1406 const unsigned long __user *, new_nodes)
1407 {
1408 const struct cred *cred = current_cred(), *tcred;
1409 struct mm_struct *mm = NULL;
1410 struct task_struct *task;
1411 nodemask_t task_nodes;
1412 int err;
1413 nodemask_t *old;
1414 nodemask_t *new;
1415 NODEMASK_SCRATCH(scratch);
1416
1417 if (!scratch)
1418 return -ENOMEM;
1419
1420 old = &scratch->mask1;
1421 new = &scratch->mask2;
1422
1423 err = get_nodes(old, old_nodes, maxnode);
1424 if (err)
1425 goto out;
1426
1427 err = get_nodes(new, new_nodes, maxnode);
1428 if (err)
1429 goto out;
1430
1431 /* Find the mm_struct */
1432 rcu_read_lock();
1433 task = pid ? find_task_by_vpid(pid) : current;
1434 if (!task) {
1435 rcu_read_unlock();
1436 err = -ESRCH;
1437 goto out;
1438 }
1439 get_task_struct(task);
1440
1441 err = -EINVAL;
1442
1443 /*
1444 * Check if this process has the right to modify the specified
1445 * process. The right exists if the process has administrative
1446 * capabilities, superuser privileges or the same
1447 * userid as the target process.
1448 */
1449 tcred = __task_cred(task);
1450 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1451 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1452 !capable(CAP_SYS_NICE)) {
1453 rcu_read_unlock();
1454 err = -EPERM;
1455 goto out_put;
1456 }
1457 rcu_read_unlock();
1458
1459 task_nodes = cpuset_mems_allowed(task);
1460 /* Is the user allowed to access the target nodes? */
1461 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1462 err = -EPERM;
1463 goto out_put;
1464 }
1465
1466 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1467 err = -EINVAL;
1468 goto out_put;
1469 }
1470
1471 err = security_task_movememory(task);
1472 if (err)
1473 goto out_put;
1474
1475 mm = get_task_mm(task);
1476 put_task_struct(task);
1477
1478 if (!mm) {
1479 err = -EINVAL;
1480 goto out;
1481 }
1482
1483 err = do_migrate_pages(mm, old, new,
1484 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1485
1486 mmput(mm);
1487 out:
1488 NODEMASK_SCRATCH_FREE(scratch);
1489
1490 return err;
1491
1492 out_put:
1493 put_task_struct(task);
1494 goto out;
1495
1496 }
1497
1498
1499 /* Retrieve NUMA policy */
1500 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1501 unsigned long __user *, nmask, unsigned long, maxnode,
1502 unsigned long, addr, unsigned long, flags)
1503 {
1504 int err;
1505 int uninitialized_var(pval);
1506 nodemask_t nodes;
1507
1508 if (nmask != NULL && maxnode < MAX_NUMNODES)
1509 return -EINVAL;
1510
1511 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1512
1513 if (err)
1514 return err;
1515
1516 if (policy && put_user(pval, policy))
1517 return -EFAULT;
1518
1519 if (nmask)
1520 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1521
1522 return err;
1523 }
1524
1525 #ifdef CONFIG_COMPAT
1526
1527 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1528 compat_ulong_t __user *, nmask,
1529 compat_ulong_t, maxnode,
1530 compat_ulong_t, addr, compat_ulong_t, flags)
1531 {
1532 long err;
1533 unsigned long __user *nm = NULL;
1534 unsigned long nr_bits, alloc_size;
1535 DECLARE_BITMAP(bm, MAX_NUMNODES);
1536
1537 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1538 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1539
1540 if (nmask)
1541 nm = compat_alloc_user_space(alloc_size);
1542
1543 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1544
1545 if (!err && nmask) {
1546 unsigned long copy_size;
1547 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1548 err = copy_from_user(bm, nm, copy_size);
1549 /* ensure entire bitmap is zeroed */
1550 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1551 err |= compat_put_bitmap(nmask, bm, nr_bits);
1552 }
1553
1554 return err;
1555 }
1556
1557 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1558 compat_ulong_t, maxnode)
1559 {
1560 long err = 0;
1561 unsigned long __user *nm = NULL;
1562 unsigned long nr_bits, alloc_size;
1563 DECLARE_BITMAP(bm, MAX_NUMNODES);
1564
1565 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567
1568 if (nmask) {
1569 err = compat_get_bitmap(bm, nmask, nr_bits);
1570 nm = compat_alloc_user_space(alloc_size);
1571 err |= copy_to_user(nm, bm, alloc_size);
1572 }
1573
1574 if (err)
1575 return -EFAULT;
1576
1577 return sys_set_mempolicy(mode, nm, nr_bits+1);
1578 }
1579
1580 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1581 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1582 compat_ulong_t, maxnode, compat_ulong_t, flags)
1583 {
1584 long err = 0;
1585 unsigned long __user *nm = NULL;
1586 unsigned long nr_bits, alloc_size;
1587 nodemask_t bm;
1588
1589 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1590 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1591
1592 if (nmask) {
1593 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1594 nm = compat_alloc_user_space(alloc_size);
1595 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1596 }
1597
1598 if (err)
1599 return -EFAULT;
1600
1601 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1602 }
1603
1604 #endif
1605
1606 /*
1607 * get_vma_policy(@task, @vma, @addr)
1608 * @task: task for fallback if vma policy == default
1609 * @vma: virtual memory area whose policy is sought
1610 * @addr: address in @vma for shared policy lookup
1611 *
1612 * Returns effective policy for a VMA at specified address.
1613 * Falls back to @task or system default policy, as necessary.
1614 * Current or other task's task mempolicy and non-shared vma policies must be
1615 * protected by task_lock(task) by the caller.
1616 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1617 * count--added by the get_policy() vm_op, as appropriate--to protect against
1618 * freeing by another task. It is the caller's responsibility to free the
1619 * extra reference for shared policies.
1620 */
1621 struct mempolicy *get_vma_policy(struct task_struct *task,
1622 struct vm_area_struct *vma, unsigned long addr)
1623 {
1624 struct mempolicy *pol = get_task_policy(task);
1625
1626 if (vma) {
1627 if (vma->vm_ops && vma->vm_ops->get_policy) {
1628 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1629 addr);
1630 if (vpol)
1631 pol = vpol;
1632 } else if (vma->vm_policy) {
1633 pol = vma->vm_policy;
1634
1635 /*
1636 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1637 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1638 * count on these policies which will be dropped by
1639 * mpol_cond_put() later
1640 */
1641 if (mpol_needs_cond_ref(pol))
1642 mpol_get(pol);
1643 }
1644 }
1645
1646 return pol;
1647 }
1648
1649 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1650 {
1651 struct mempolicy *pol = get_task_policy(task);
1652
1653 if (vma) {
1654 if (vma->vm_ops && vma->vm_ops->get_policy) {
1655 bool ret = false;
1656
1657 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1658 if (pol && (pol->flags & MPOL_F_MOF))
1659 ret = true;
1660 mpol_cond_put(pol);
1661
1662 return ret;
1663 } else if (vma->vm_policy) {
1664 pol = vma->vm_policy;
1665 }
1666 }
1667
1668 return pol->flags & MPOL_F_MOF;
1669 }
1670
1671 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1672 {
1673 enum zone_type dynamic_policy_zone = policy_zone;
1674
1675 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1676
1677 /*
1678 * if policy->v.nodes has movable memory only,
1679 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1680 *
1681 * policy->v.nodes is intersect with node_states[N_MEMORY].
1682 * so if the following test faile, it implies
1683 * policy->v.nodes has movable memory only.
1684 */
1685 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1686 dynamic_policy_zone = ZONE_MOVABLE;
1687
1688 return zone >= dynamic_policy_zone;
1689 }
1690
1691 /*
1692 * Return a nodemask representing a mempolicy for filtering nodes for
1693 * page allocation
1694 */
1695 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1696 {
1697 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1698 if (unlikely(policy->mode == MPOL_BIND) &&
1699 apply_policy_zone(policy, gfp_zone(gfp)) &&
1700 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1701 return &policy->v.nodes;
1702
1703 return NULL;
1704 }
1705
1706 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1707 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1708 int nd)
1709 {
1710 switch (policy->mode) {
1711 case MPOL_PREFERRED:
1712 if (!(policy->flags & MPOL_F_LOCAL))
1713 nd = policy->v.preferred_node;
1714 break;
1715 case MPOL_BIND:
1716 /*
1717 * Normally, MPOL_BIND allocations are node-local within the
1718 * allowed nodemask. However, if __GFP_THISNODE is set and the
1719 * current node isn't part of the mask, we use the zonelist for
1720 * the first node in the mask instead.
1721 */
1722 if (unlikely(gfp & __GFP_THISNODE) &&
1723 unlikely(!node_isset(nd, policy->v.nodes)))
1724 nd = first_node(policy->v.nodes);
1725 break;
1726 default:
1727 BUG();
1728 }
1729 return node_zonelist(nd, gfp);
1730 }
1731
1732 /* Do dynamic interleaving for a process */
1733 static unsigned interleave_nodes(struct mempolicy *policy)
1734 {
1735 unsigned nid, next;
1736 struct task_struct *me = current;
1737
1738 nid = me->il_next;
1739 next = next_node(nid, policy->v.nodes);
1740 if (next >= MAX_NUMNODES)
1741 next = first_node(policy->v.nodes);
1742 if (next < MAX_NUMNODES)
1743 me->il_next = next;
1744 return nid;
1745 }
1746
1747 /*
1748 * Depending on the memory policy provide a node from which to allocate the
1749 * next slab entry.
1750 */
1751 unsigned int mempolicy_slab_node(void)
1752 {
1753 struct mempolicy *policy;
1754 int node = numa_mem_id();
1755
1756 if (in_interrupt())
1757 return node;
1758
1759 policy = current->mempolicy;
1760 if (!policy || policy->flags & MPOL_F_LOCAL)
1761 return node;
1762
1763 switch (policy->mode) {
1764 case MPOL_PREFERRED:
1765 /*
1766 * handled MPOL_F_LOCAL above
1767 */
1768 return policy->v.preferred_node;
1769
1770 case MPOL_INTERLEAVE:
1771 return interleave_nodes(policy);
1772
1773 case MPOL_BIND: {
1774 /*
1775 * Follow bind policy behavior and start allocation at the
1776 * first node.
1777 */
1778 struct zonelist *zonelist;
1779 struct zone *zone;
1780 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1781 zonelist = &NODE_DATA(node)->node_zonelists[0];
1782 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1783 &policy->v.nodes,
1784 &zone);
1785 return zone ? zone->node : node;
1786 }
1787
1788 default:
1789 BUG();
1790 }
1791 }
1792
1793 /* Do static interleaving for a VMA with known offset. */
1794 static unsigned offset_il_node(struct mempolicy *pol,
1795 struct vm_area_struct *vma, unsigned long off)
1796 {
1797 unsigned nnodes = nodes_weight(pol->v.nodes);
1798 unsigned target;
1799 int c;
1800 int nid = NUMA_NO_NODE;
1801
1802 if (!nnodes)
1803 return numa_node_id();
1804 target = (unsigned int)off % nnodes;
1805 c = 0;
1806 do {
1807 nid = next_node(nid, pol->v.nodes);
1808 c++;
1809 } while (c <= target);
1810 return nid;
1811 }
1812
1813 /* Determine a node number for interleave */
1814 static inline unsigned interleave_nid(struct mempolicy *pol,
1815 struct vm_area_struct *vma, unsigned long addr, int shift)
1816 {
1817 if (vma) {
1818 unsigned long off;
1819
1820 /*
1821 * for small pages, there is no difference between
1822 * shift and PAGE_SHIFT, so the bit-shift is safe.
1823 * for huge pages, since vm_pgoff is in units of small
1824 * pages, we need to shift off the always 0 bits to get
1825 * a useful offset.
1826 */
1827 BUG_ON(shift < PAGE_SHIFT);
1828 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1829 off += (addr - vma->vm_start) >> shift;
1830 return offset_il_node(pol, vma, off);
1831 } else
1832 return interleave_nodes(pol);
1833 }
1834
1835 /*
1836 * Return the bit number of a random bit set in the nodemask.
1837 * (returns NUMA_NO_NODE if nodemask is empty)
1838 */
1839 int node_random(const nodemask_t *maskp)
1840 {
1841 int w, bit = NUMA_NO_NODE;
1842
1843 w = nodes_weight(*maskp);
1844 if (w)
1845 bit = bitmap_ord_to_pos(maskp->bits,
1846 get_random_int() % w, MAX_NUMNODES);
1847 return bit;
1848 }
1849
1850 #ifdef CONFIG_HUGETLBFS
1851 /*
1852 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1853 * @vma: virtual memory area whose policy is sought
1854 * @addr: address in @vma for shared policy lookup and interleave policy
1855 * @gfp_flags: for requested zone
1856 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1857 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1858 *
1859 * Returns a zonelist suitable for a huge page allocation and a pointer
1860 * to the struct mempolicy for conditional unref after allocation.
1861 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1862 * @nodemask for filtering the zonelist.
1863 *
1864 * Must be protected by read_mems_allowed_begin()
1865 */
1866 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1867 gfp_t gfp_flags, struct mempolicy **mpol,
1868 nodemask_t **nodemask)
1869 {
1870 struct zonelist *zl;
1871
1872 *mpol = get_vma_policy(current, vma, addr);
1873 *nodemask = NULL; /* assume !MPOL_BIND */
1874
1875 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1876 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1877 huge_page_shift(hstate_vma(vma))), gfp_flags);
1878 } else {
1879 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1880 if ((*mpol)->mode == MPOL_BIND)
1881 *nodemask = &(*mpol)->v.nodes;
1882 }
1883 return zl;
1884 }
1885
1886 /*
1887 * init_nodemask_of_mempolicy
1888 *
1889 * If the current task's mempolicy is "default" [NULL], return 'false'
1890 * to indicate default policy. Otherwise, extract the policy nodemask
1891 * for 'bind' or 'interleave' policy into the argument nodemask, or
1892 * initialize the argument nodemask to contain the single node for
1893 * 'preferred' or 'local' policy and return 'true' to indicate presence
1894 * of non-default mempolicy.
1895 *
1896 * We don't bother with reference counting the mempolicy [mpol_get/put]
1897 * because the current task is examining it's own mempolicy and a task's
1898 * mempolicy is only ever changed by the task itself.
1899 *
1900 * N.B., it is the caller's responsibility to free a returned nodemask.
1901 */
1902 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1903 {
1904 struct mempolicy *mempolicy;
1905 int nid;
1906
1907 if (!(mask && current->mempolicy))
1908 return false;
1909
1910 task_lock(current);
1911 mempolicy = current->mempolicy;
1912 switch (mempolicy->mode) {
1913 case MPOL_PREFERRED:
1914 if (mempolicy->flags & MPOL_F_LOCAL)
1915 nid = numa_node_id();
1916 else
1917 nid = mempolicy->v.preferred_node;
1918 init_nodemask_of_node(mask, nid);
1919 break;
1920
1921 case MPOL_BIND:
1922 /* Fall through */
1923 case MPOL_INTERLEAVE:
1924 *mask = mempolicy->v.nodes;
1925 break;
1926
1927 default:
1928 BUG();
1929 }
1930 task_unlock(current);
1931
1932 return true;
1933 }
1934 #endif
1935
1936 /*
1937 * mempolicy_nodemask_intersects
1938 *
1939 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1940 * policy. Otherwise, check for intersection between mask and the policy
1941 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1942 * policy, always return true since it may allocate elsewhere on fallback.
1943 *
1944 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1945 */
1946 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1947 const nodemask_t *mask)
1948 {
1949 struct mempolicy *mempolicy;
1950 bool ret = true;
1951
1952 if (!mask)
1953 return ret;
1954 task_lock(tsk);
1955 mempolicy = tsk->mempolicy;
1956 if (!mempolicy)
1957 goto out;
1958
1959 switch (mempolicy->mode) {
1960 case MPOL_PREFERRED:
1961 /*
1962 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1963 * allocate from, they may fallback to other nodes when oom.
1964 * Thus, it's possible for tsk to have allocated memory from
1965 * nodes in mask.
1966 */
1967 break;
1968 case MPOL_BIND:
1969 case MPOL_INTERLEAVE:
1970 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1971 break;
1972 default:
1973 BUG();
1974 }
1975 out:
1976 task_unlock(tsk);
1977 return ret;
1978 }
1979
1980 /* Allocate a page in interleaved policy.
1981 Own path because it needs to do special accounting. */
1982 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1983 unsigned nid)
1984 {
1985 struct zonelist *zl;
1986 struct page *page;
1987
1988 zl = node_zonelist(nid, gfp);
1989 page = __alloc_pages(gfp, order, zl);
1990 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1991 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1992 return page;
1993 }
1994
1995 /**
1996 * alloc_pages_vma - Allocate a page for a VMA.
1997 *
1998 * @gfp:
1999 * %GFP_USER user allocation.
2000 * %GFP_KERNEL kernel allocations,
2001 * %GFP_HIGHMEM highmem/user allocations,
2002 * %GFP_FS allocation should not call back into a file system.
2003 * %GFP_ATOMIC don't sleep.
2004 *
2005 * @order:Order of the GFP allocation.
2006 * @vma: Pointer to VMA or NULL if not available.
2007 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2008 *
2009 * This function allocates a page from the kernel page pool and applies
2010 * a NUMA policy associated with the VMA or the current process.
2011 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2012 * mm_struct of the VMA to prevent it from going away. Should be used for
2013 * all allocations for pages that will be mapped into
2014 * user space. Returns NULL when no page can be allocated.
2015 *
2016 * Should be called with the mm_sem of the vma hold.
2017 */
2018 struct page *
2019 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2020 unsigned long addr, int node)
2021 {
2022 struct mempolicy *pol;
2023 struct page *page;
2024 unsigned int cpuset_mems_cookie;
2025
2026 retry_cpuset:
2027 pol = get_vma_policy(current, vma, addr);
2028 cpuset_mems_cookie = read_mems_allowed_begin();
2029
2030 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2031 unsigned nid;
2032
2033 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2034 mpol_cond_put(pol);
2035 page = alloc_page_interleave(gfp, order, nid);
2036 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2037 goto retry_cpuset;
2038
2039 return page;
2040 }
2041 page = __alloc_pages_nodemask(gfp, order,
2042 policy_zonelist(gfp, pol, node),
2043 policy_nodemask(gfp, pol));
2044 mpol_cond_put(pol);
2045 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2046 goto retry_cpuset;
2047 return page;
2048 }
2049
2050 /**
2051 * alloc_pages_current - Allocate pages.
2052 *
2053 * @gfp:
2054 * %GFP_USER user allocation,
2055 * %GFP_KERNEL kernel allocation,
2056 * %GFP_HIGHMEM highmem allocation,
2057 * %GFP_FS don't call back into a file system.
2058 * %GFP_ATOMIC don't sleep.
2059 * @order: Power of two of allocation size in pages. 0 is a single page.
2060 *
2061 * Allocate a page from the kernel page pool. When not in
2062 * interrupt context and apply the current process NUMA policy.
2063 * Returns NULL when no page can be allocated.
2064 *
2065 * Don't call cpuset_update_task_memory_state() unless
2066 * 1) it's ok to take cpuset_sem (can WAIT), and
2067 * 2) allocating for current task (not interrupt).
2068 */
2069 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2070 {
2071 struct mempolicy *pol = get_task_policy(current);
2072 struct page *page;
2073 unsigned int cpuset_mems_cookie;
2074
2075 if (in_interrupt() || (gfp & __GFP_THISNODE))
2076 pol = &default_policy;
2077
2078 retry_cpuset:
2079 cpuset_mems_cookie = read_mems_allowed_begin();
2080
2081 /*
2082 * No reference counting needed for current->mempolicy
2083 * nor system default_policy
2084 */
2085 if (pol->mode == MPOL_INTERLEAVE)
2086 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2087 else
2088 page = __alloc_pages_nodemask(gfp, order,
2089 policy_zonelist(gfp, pol, numa_node_id()),
2090 policy_nodemask(gfp, pol));
2091
2092 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2093 goto retry_cpuset;
2094
2095 return page;
2096 }
2097 EXPORT_SYMBOL(alloc_pages_current);
2098
2099 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2100 {
2101 struct mempolicy *pol = mpol_dup(vma_policy(src));
2102
2103 if (IS_ERR(pol))
2104 return PTR_ERR(pol);
2105 dst->vm_policy = pol;
2106 return 0;
2107 }
2108
2109 /*
2110 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2111 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2112 * with the mems_allowed returned by cpuset_mems_allowed(). This
2113 * keeps mempolicies cpuset relative after its cpuset moves. See
2114 * further kernel/cpuset.c update_nodemask().
2115 *
2116 * current's mempolicy may be rebinded by the other task(the task that changes
2117 * cpuset's mems), so we needn't do rebind work for current task.
2118 */
2119
2120 /* Slow path of a mempolicy duplicate */
2121 struct mempolicy *__mpol_dup(struct mempolicy *old)
2122 {
2123 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2124
2125 if (!new)
2126 return ERR_PTR(-ENOMEM);
2127
2128 /* task's mempolicy is protected by alloc_lock */
2129 if (old == current->mempolicy) {
2130 task_lock(current);
2131 *new = *old;
2132 task_unlock(current);
2133 } else
2134 *new = *old;
2135
2136 if (current_cpuset_is_being_rebound()) {
2137 nodemask_t mems = cpuset_mems_allowed(current);
2138 if (new->flags & MPOL_F_REBINDING)
2139 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2140 else
2141 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2142 }
2143 atomic_set(&new->refcnt, 1);
2144 return new;
2145 }
2146
2147 /* Slow path of a mempolicy comparison */
2148 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2149 {
2150 if (!a || !b)
2151 return false;
2152 if (a->mode != b->mode)
2153 return false;
2154 if (a->flags != b->flags)
2155 return false;
2156 if (mpol_store_user_nodemask(a))
2157 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2158 return false;
2159
2160 switch (a->mode) {
2161 case MPOL_BIND:
2162 /* Fall through */
2163 case MPOL_INTERLEAVE:
2164 return !!nodes_equal(a->v.nodes, b->v.nodes);
2165 case MPOL_PREFERRED:
2166 return a->v.preferred_node == b->v.preferred_node;
2167 default:
2168 BUG();
2169 return false;
2170 }
2171 }
2172
2173 /*
2174 * Shared memory backing store policy support.
2175 *
2176 * Remember policies even when nobody has shared memory mapped.
2177 * The policies are kept in Red-Black tree linked from the inode.
2178 * They are protected by the sp->lock spinlock, which should be held
2179 * for any accesses to the tree.
2180 */
2181
2182 /* lookup first element intersecting start-end */
2183 /* Caller holds sp->lock */
2184 static struct sp_node *
2185 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2186 {
2187 struct rb_node *n = sp->root.rb_node;
2188
2189 while (n) {
2190 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2191
2192 if (start >= p->end)
2193 n = n->rb_right;
2194 else if (end <= p->start)
2195 n = n->rb_left;
2196 else
2197 break;
2198 }
2199 if (!n)
2200 return NULL;
2201 for (;;) {
2202 struct sp_node *w = NULL;
2203 struct rb_node *prev = rb_prev(n);
2204 if (!prev)
2205 break;
2206 w = rb_entry(prev, struct sp_node, nd);
2207 if (w->end <= start)
2208 break;
2209 n = prev;
2210 }
2211 return rb_entry(n, struct sp_node, nd);
2212 }
2213
2214 /* Insert a new shared policy into the list. */
2215 /* Caller holds sp->lock */
2216 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2217 {
2218 struct rb_node **p = &sp->root.rb_node;
2219 struct rb_node *parent = NULL;
2220 struct sp_node *nd;
2221
2222 while (*p) {
2223 parent = *p;
2224 nd = rb_entry(parent, struct sp_node, nd);
2225 if (new->start < nd->start)
2226 p = &(*p)->rb_left;
2227 else if (new->end > nd->end)
2228 p = &(*p)->rb_right;
2229 else
2230 BUG();
2231 }
2232 rb_link_node(&new->nd, parent, p);
2233 rb_insert_color(&new->nd, &sp->root);
2234 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2235 new->policy ? new->policy->mode : 0);
2236 }
2237
2238 /* Find shared policy intersecting idx */
2239 struct mempolicy *
2240 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2241 {
2242 struct mempolicy *pol = NULL;
2243 struct sp_node *sn;
2244
2245 if (!sp->root.rb_node)
2246 return NULL;
2247 spin_lock(&sp->lock);
2248 sn = sp_lookup(sp, idx, idx+1);
2249 if (sn) {
2250 mpol_get(sn->policy);
2251 pol = sn->policy;
2252 }
2253 spin_unlock(&sp->lock);
2254 return pol;
2255 }
2256
2257 static void sp_free(struct sp_node *n)
2258 {
2259 mpol_put(n->policy);
2260 kmem_cache_free(sn_cache, n);
2261 }
2262
2263 /**
2264 * mpol_misplaced - check whether current page node is valid in policy
2265 *
2266 * @page: page to be checked
2267 * @vma: vm area where page mapped
2268 * @addr: virtual address where page mapped
2269 *
2270 * Lookup current policy node id for vma,addr and "compare to" page's
2271 * node id.
2272 *
2273 * Returns:
2274 * -1 - not misplaced, page is in the right node
2275 * node - node id where the page should be
2276 *
2277 * Policy determination "mimics" alloc_page_vma().
2278 * Called from fault path where we know the vma and faulting address.
2279 */
2280 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2281 {
2282 struct mempolicy *pol;
2283 struct zone *zone;
2284 int curnid = page_to_nid(page);
2285 unsigned long pgoff;
2286 int thiscpu = raw_smp_processor_id();
2287 int thisnid = cpu_to_node(thiscpu);
2288 int polnid = -1;
2289 int ret = -1;
2290
2291 BUG_ON(!vma);
2292
2293 pol = get_vma_policy(current, vma, addr);
2294 if (!(pol->flags & MPOL_F_MOF))
2295 goto out;
2296
2297 switch (pol->mode) {
2298 case MPOL_INTERLEAVE:
2299 BUG_ON(addr >= vma->vm_end);
2300 BUG_ON(addr < vma->vm_start);
2301
2302 pgoff = vma->vm_pgoff;
2303 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2304 polnid = offset_il_node(pol, vma, pgoff);
2305 break;
2306
2307 case MPOL_PREFERRED:
2308 if (pol->flags & MPOL_F_LOCAL)
2309 polnid = numa_node_id();
2310 else
2311 polnid = pol->v.preferred_node;
2312 break;
2313
2314 case MPOL_BIND:
2315 /*
2316 * allows binding to multiple nodes.
2317 * use current page if in policy nodemask,
2318 * else select nearest allowed node, if any.
2319 * If no allowed nodes, use current [!misplaced].
2320 */
2321 if (node_isset(curnid, pol->v.nodes))
2322 goto out;
2323 (void)first_zones_zonelist(
2324 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2325 gfp_zone(GFP_HIGHUSER),
2326 &pol->v.nodes, &zone);
2327 polnid = zone->node;
2328 break;
2329
2330 default:
2331 BUG();
2332 }
2333
2334 /* Migrate the page towards the node whose CPU is referencing it */
2335 if (pol->flags & MPOL_F_MORON) {
2336 polnid = thisnid;
2337
2338 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2339 goto out;
2340 }
2341
2342 if (curnid != polnid)
2343 ret = polnid;
2344 out:
2345 mpol_cond_put(pol);
2346
2347 return ret;
2348 }
2349
2350 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2351 {
2352 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2353 rb_erase(&n->nd, &sp->root);
2354 sp_free(n);
2355 }
2356
2357 static void sp_node_init(struct sp_node *node, unsigned long start,
2358 unsigned long end, struct mempolicy *pol)
2359 {
2360 node->start = start;
2361 node->end = end;
2362 node->policy = pol;
2363 }
2364
2365 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2366 struct mempolicy *pol)
2367 {
2368 struct sp_node *n;
2369 struct mempolicy *newpol;
2370
2371 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2372 if (!n)
2373 return NULL;
2374
2375 newpol = mpol_dup(pol);
2376 if (IS_ERR(newpol)) {
2377 kmem_cache_free(sn_cache, n);
2378 return NULL;
2379 }
2380 newpol->flags |= MPOL_F_SHARED;
2381 sp_node_init(n, start, end, newpol);
2382
2383 return n;
2384 }
2385
2386 /* Replace a policy range. */
2387 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2388 unsigned long end, struct sp_node *new)
2389 {
2390 struct sp_node *n;
2391 struct sp_node *n_new = NULL;
2392 struct mempolicy *mpol_new = NULL;
2393 int ret = 0;
2394
2395 restart:
2396 spin_lock(&sp->lock);
2397 n = sp_lookup(sp, start, end);
2398 /* Take care of old policies in the same range. */
2399 while (n && n->start < end) {
2400 struct rb_node *next = rb_next(&n->nd);
2401 if (n->start >= start) {
2402 if (n->end <= end)
2403 sp_delete(sp, n);
2404 else
2405 n->start = end;
2406 } else {
2407 /* Old policy spanning whole new range. */
2408 if (n->end > end) {
2409 if (!n_new)
2410 goto alloc_new;
2411
2412 *mpol_new = *n->policy;
2413 atomic_set(&mpol_new->refcnt, 1);
2414 sp_node_init(n_new, end, n->end, mpol_new);
2415 n->end = start;
2416 sp_insert(sp, n_new);
2417 n_new = NULL;
2418 mpol_new = NULL;
2419 break;
2420 } else
2421 n->end = start;
2422 }
2423 if (!next)
2424 break;
2425 n = rb_entry(next, struct sp_node, nd);
2426 }
2427 if (new)
2428 sp_insert(sp, new);
2429 spin_unlock(&sp->lock);
2430 ret = 0;
2431
2432 err_out:
2433 if (mpol_new)
2434 mpol_put(mpol_new);
2435 if (n_new)
2436 kmem_cache_free(sn_cache, n_new);
2437
2438 return ret;
2439
2440 alloc_new:
2441 spin_unlock(&sp->lock);
2442 ret = -ENOMEM;
2443 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2444 if (!n_new)
2445 goto err_out;
2446 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2447 if (!mpol_new)
2448 goto err_out;
2449 goto restart;
2450 }
2451
2452 /**
2453 * mpol_shared_policy_init - initialize shared policy for inode
2454 * @sp: pointer to inode shared policy
2455 * @mpol: struct mempolicy to install
2456 *
2457 * Install non-NULL @mpol in inode's shared policy rb-tree.
2458 * On entry, the current task has a reference on a non-NULL @mpol.
2459 * This must be released on exit.
2460 * This is called at get_inode() calls and we can use GFP_KERNEL.
2461 */
2462 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2463 {
2464 int ret;
2465
2466 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2467 spin_lock_init(&sp->lock);
2468
2469 if (mpol) {
2470 struct vm_area_struct pvma;
2471 struct mempolicy *new;
2472 NODEMASK_SCRATCH(scratch);
2473
2474 if (!scratch)
2475 goto put_mpol;
2476 /* contextualize the tmpfs mount point mempolicy */
2477 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2478 if (IS_ERR(new))
2479 goto free_scratch; /* no valid nodemask intersection */
2480
2481 task_lock(current);
2482 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2483 task_unlock(current);
2484 if (ret)
2485 goto put_new;
2486
2487 /* Create pseudo-vma that contains just the policy */
2488 memset(&pvma, 0, sizeof(struct vm_area_struct));
2489 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2490 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2491
2492 put_new:
2493 mpol_put(new); /* drop initial ref */
2494 free_scratch:
2495 NODEMASK_SCRATCH_FREE(scratch);
2496 put_mpol:
2497 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2498 }
2499 }
2500
2501 int mpol_set_shared_policy(struct shared_policy *info,
2502 struct vm_area_struct *vma, struct mempolicy *npol)
2503 {
2504 int err;
2505 struct sp_node *new = NULL;
2506 unsigned long sz = vma_pages(vma);
2507
2508 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2509 vma->vm_pgoff,
2510 sz, npol ? npol->mode : -1,
2511 npol ? npol->flags : -1,
2512 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2513
2514 if (npol) {
2515 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2516 if (!new)
2517 return -ENOMEM;
2518 }
2519 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2520 if (err && new)
2521 sp_free(new);
2522 return err;
2523 }
2524
2525 /* Free a backing policy store on inode delete. */
2526 void mpol_free_shared_policy(struct shared_policy *p)
2527 {
2528 struct sp_node *n;
2529 struct rb_node *next;
2530
2531 if (!p->root.rb_node)
2532 return;
2533 spin_lock(&p->lock);
2534 next = rb_first(&p->root);
2535 while (next) {
2536 n = rb_entry(next, struct sp_node, nd);
2537 next = rb_next(&n->nd);
2538 sp_delete(p, n);
2539 }
2540 spin_unlock(&p->lock);
2541 }
2542
2543 #ifdef CONFIG_NUMA_BALANCING
2544 static int __initdata numabalancing_override;
2545
2546 static void __init check_numabalancing_enable(void)
2547 {
2548 bool numabalancing_default = false;
2549
2550 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2551 numabalancing_default = true;
2552
2553 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2554 if (numabalancing_override)
2555 set_numabalancing_state(numabalancing_override == 1);
2556
2557 if (nr_node_ids > 1 && !numabalancing_override) {
2558 pr_info("%s automatic NUMA balancing. "
2559 "Configure with numa_balancing= or the "
2560 "kernel.numa_balancing sysctl",
2561 numabalancing_default ? "Enabling" : "Disabling");
2562 set_numabalancing_state(numabalancing_default);
2563 }
2564 }
2565
2566 static int __init setup_numabalancing(char *str)
2567 {
2568 int ret = 0;
2569 if (!str)
2570 goto out;
2571
2572 if (!strcmp(str, "enable")) {
2573 numabalancing_override = 1;
2574 ret = 1;
2575 } else if (!strcmp(str, "disable")) {
2576 numabalancing_override = -1;
2577 ret = 1;
2578 }
2579 out:
2580 if (!ret)
2581 pr_warn("Unable to parse numa_balancing=\n");
2582
2583 return ret;
2584 }
2585 __setup("numa_balancing=", setup_numabalancing);
2586 #else
2587 static inline void __init check_numabalancing_enable(void)
2588 {
2589 }
2590 #endif /* CONFIG_NUMA_BALANCING */
2591
2592 /* assumes fs == KERNEL_DS */
2593 void __init numa_policy_init(void)
2594 {
2595 nodemask_t interleave_nodes;
2596 unsigned long largest = 0;
2597 int nid, prefer = 0;
2598
2599 policy_cache = kmem_cache_create("numa_policy",
2600 sizeof(struct mempolicy),
2601 0, SLAB_PANIC, NULL);
2602
2603 sn_cache = kmem_cache_create("shared_policy_node",
2604 sizeof(struct sp_node),
2605 0, SLAB_PANIC, NULL);
2606
2607 for_each_node(nid) {
2608 preferred_node_policy[nid] = (struct mempolicy) {
2609 .refcnt = ATOMIC_INIT(1),
2610 .mode = MPOL_PREFERRED,
2611 .flags = MPOL_F_MOF | MPOL_F_MORON,
2612 .v = { .preferred_node = nid, },
2613 };
2614 }
2615
2616 /*
2617 * Set interleaving policy for system init. Interleaving is only
2618 * enabled across suitably sized nodes (default is >= 16MB), or
2619 * fall back to the largest node if they're all smaller.
2620 */
2621 nodes_clear(interleave_nodes);
2622 for_each_node_state(nid, N_MEMORY) {
2623 unsigned long total_pages = node_present_pages(nid);
2624
2625 /* Preserve the largest node */
2626 if (largest < total_pages) {
2627 largest = total_pages;
2628 prefer = nid;
2629 }
2630
2631 /* Interleave this node? */
2632 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2633 node_set(nid, interleave_nodes);
2634 }
2635
2636 /* All too small, use the largest */
2637 if (unlikely(nodes_empty(interleave_nodes)))
2638 node_set(prefer, interleave_nodes);
2639
2640 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2641 pr_err("%s: interleaving failed\n", __func__);
2642
2643 check_numabalancing_enable();
2644 }
2645
2646 /* Reset policy of current process to default */
2647 void numa_default_policy(void)
2648 {
2649 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2650 }
2651
2652 /*
2653 * Parse and format mempolicy from/to strings
2654 */
2655
2656 /*
2657 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2658 */
2659 static const char * const policy_modes[] =
2660 {
2661 [MPOL_DEFAULT] = "default",
2662 [MPOL_PREFERRED] = "prefer",
2663 [MPOL_BIND] = "bind",
2664 [MPOL_INTERLEAVE] = "interleave",
2665 [MPOL_LOCAL] = "local",
2666 };
2667
2668
2669 #ifdef CONFIG_TMPFS
2670 /**
2671 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2672 * @str: string containing mempolicy to parse
2673 * @mpol: pointer to struct mempolicy pointer, returned on success.
2674 *
2675 * Format of input:
2676 * <mode>[=<flags>][:<nodelist>]
2677 *
2678 * On success, returns 0, else 1
2679 */
2680 int mpol_parse_str(char *str, struct mempolicy **mpol)
2681 {
2682 struct mempolicy *new = NULL;
2683 unsigned short mode;
2684 unsigned short mode_flags;
2685 nodemask_t nodes;
2686 char *nodelist = strchr(str, ':');
2687 char *flags = strchr(str, '=');
2688 int err = 1;
2689
2690 if (nodelist) {
2691 /* NUL-terminate mode or flags string */
2692 *nodelist++ = '\0';
2693 if (nodelist_parse(nodelist, nodes))
2694 goto out;
2695 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2696 goto out;
2697 } else
2698 nodes_clear(nodes);
2699
2700 if (flags)
2701 *flags++ = '\0'; /* terminate mode string */
2702
2703 for (mode = 0; mode < MPOL_MAX; mode++) {
2704 if (!strcmp(str, policy_modes[mode])) {
2705 break;
2706 }
2707 }
2708 if (mode >= MPOL_MAX)
2709 goto out;
2710
2711 switch (mode) {
2712 case MPOL_PREFERRED:
2713 /*
2714 * Insist on a nodelist of one node only
2715 */
2716 if (nodelist) {
2717 char *rest = nodelist;
2718 while (isdigit(*rest))
2719 rest++;
2720 if (*rest)
2721 goto out;
2722 }
2723 break;
2724 case MPOL_INTERLEAVE:
2725 /*
2726 * Default to online nodes with memory if no nodelist
2727 */
2728 if (!nodelist)
2729 nodes = node_states[N_MEMORY];
2730 break;
2731 case MPOL_LOCAL:
2732 /*
2733 * Don't allow a nodelist; mpol_new() checks flags
2734 */
2735 if (nodelist)
2736 goto out;
2737 mode = MPOL_PREFERRED;
2738 break;
2739 case MPOL_DEFAULT:
2740 /*
2741 * Insist on a empty nodelist
2742 */
2743 if (!nodelist)
2744 err = 0;
2745 goto out;
2746 case MPOL_BIND:
2747 /*
2748 * Insist on a nodelist
2749 */
2750 if (!nodelist)
2751 goto out;
2752 }
2753
2754 mode_flags = 0;
2755 if (flags) {
2756 /*
2757 * Currently, we only support two mutually exclusive
2758 * mode flags.
2759 */
2760 if (!strcmp(flags, "static"))
2761 mode_flags |= MPOL_F_STATIC_NODES;
2762 else if (!strcmp(flags, "relative"))
2763 mode_flags |= MPOL_F_RELATIVE_NODES;
2764 else
2765 goto out;
2766 }
2767
2768 new = mpol_new(mode, mode_flags, &nodes);
2769 if (IS_ERR(new))
2770 goto out;
2771
2772 /*
2773 * Save nodes for mpol_to_str() to show the tmpfs mount options
2774 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2775 */
2776 if (mode != MPOL_PREFERRED)
2777 new->v.nodes = nodes;
2778 else if (nodelist)
2779 new->v.preferred_node = first_node(nodes);
2780 else
2781 new->flags |= MPOL_F_LOCAL;
2782
2783 /*
2784 * Save nodes for contextualization: this will be used to "clone"
2785 * the mempolicy in a specific context [cpuset] at a later time.
2786 */
2787 new->w.user_nodemask = nodes;
2788
2789 err = 0;
2790
2791 out:
2792 /* Restore string for error message */
2793 if (nodelist)
2794 *--nodelist = ':';
2795 if (flags)
2796 *--flags = '=';
2797 if (!err)
2798 *mpol = new;
2799 return err;
2800 }
2801 #endif /* CONFIG_TMPFS */
2802
2803 /**
2804 * mpol_to_str - format a mempolicy structure for printing
2805 * @buffer: to contain formatted mempolicy string
2806 * @maxlen: length of @buffer
2807 * @pol: pointer to mempolicy to be formatted
2808 *
2809 * Convert @pol into a string. If @buffer is too short, truncate the string.
2810 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2811 * longest flag, "relative", and to display at least a few node ids.
2812 */
2813 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2814 {
2815 char *p = buffer;
2816 nodemask_t nodes = NODE_MASK_NONE;
2817 unsigned short mode = MPOL_DEFAULT;
2818 unsigned short flags = 0;
2819
2820 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2821 mode = pol->mode;
2822 flags = pol->flags;
2823 }
2824
2825 switch (mode) {
2826 case MPOL_DEFAULT:
2827 break;
2828 case MPOL_PREFERRED:
2829 if (flags & MPOL_F_LOCAL)
2830 mode = MPOL_LOCAL;
2831 else
2832 node_set(pol->v.preferred_node, nodes);
2833 break;
2834 case MPOL_BIND:
2835 case MPOL_INTERLEAVE:
2836 nodes = pol->v.nodes;
2837 break;
2838 default:
2839 WARN_ON_ONCE(1);
2840 snprintf(p, maxlen, "unknown");
2841 return;
2842 }
2843
2844 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2845
2846 if (flags & MPOL_MODE_FLAGS) {
2847 p += snprintf(p, buffer + maxlen - p, "=");
2848
2849 /*
2850 * Currently, the only defined flags are mutually exclusive
2851 */
2852 if (flags & MPOL_F_STATIC_NODES)
2853 p += snprintf(p, buffer + maxlen - p, "static");
2854 else if (flags & MPOL_F_RELATIVE_NODES)
2855 p += snprintf(p, buffer + maxlen - p, "relative");
2856 }
2857
2858 if (!nodes_empty(nodes)) {
2859 p += snprintf(p, buffer + maxlen - p, ":");
2860 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2861 }
2862 }