]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
swap: use an array for the LRU pagevecs
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 #include "internal.h"
97
98 /* Internal flags */
99 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
100 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
101 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
102
103 static struct kmem_cache *policy_cache;
104 static struct kmem_cache *sn_cache;
105
106 /* Highest zone. An specific allocation for a zone below that is not
107 policied. */
108 enum zone_type policy_zone = 0;
109
110 /*
111 * run-time system-wide default policy => local allocation
112 */
113 struct mempolicy default_policy = {
114 .refcnt = ATOMIC_INIT(1), /* never free it */
115 .mode = MPOL_PREFERRED,
116 .flags = MPOL_F_LOCAL,
117 };
118
119 static const struct mempolicy_operations {
120 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
121 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
122 } mpol_ops[MPOL_MAX];
123
124 /* Check that the nodemask contains at least one populated zone */
125 static int is_valid_nodemask(const nodemask_t *nodemask)
126 {
127 int nd, k;
128
129 /* Check that there is something useful in this mask */
130 k = policy_zone;
131
132 for_each_node_mask(nd, *nodemask) {
133 struct zone *z;
134
135 for (k = 0; k <= policy_zone; k++) {
136 z = &NODE_DATA(nd)->node_zones[k];
137 if (z->present_pages > 0)
138 return 1;
139 }
140 }
141
142 return 0;
143 }
144
145 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
146 {
147 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
148 }
149
150 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
151 const nodemask_t *rel)
152 {
153 nodemask_t tmp;
154 nodes_fold(tmp, *orig, nodes_weight(*rel));
155 nodes_onto(*ret, tmp, *rel);
156 }
157
158 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
159 {
160 if (nodes_empty(*nodes))
161 return -EINVAL;
162 pol->v.nodes = *nodes;
163 return 0;
164 }
165
166 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 if (!nodes)
169 pol->flags |= MPOL_F_LOCAL; /* local allocation */
170 else if (nodes_empty(*nodes))
171 return -EINVAL; /* no allowed nodes */
172 else
173 pol->v.preferred_node = first_node(*nodes);
174 return 0;
175 }
176
177 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (!is_valid_nodemask(nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
185 /* Create a new policy */
186 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
187 nodemask_t *nodes)
188 {
189 struct mempolicy *policy;
190 nodemask_t cpuset_context_nmask;
191 int ret;
192
193 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
194 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
195
196 if (mode == MPOL_DEFAULT) {
197 if (nodes && !nodes_empty(*nodes))
198 return ERR_PTR(-EINVAL);
199 return NULL; /* simply delete any existing policy */
200 }
201 VM_BUG_ON(!nodes);
202
203 /*
204 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
205 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
206 * All other modes require a valid pointer to a non-empty nodemask.
207 */
208 if (mode == MPOL_PREFERRED) {
209 if (nodes_empty(*nodes)) {
210 if (((flags & MPOL_F_STATIC_NODES) ||
211 (flags & MPOL_F_RELATIVE_NODES)))
212 return ERR_PTR(-EINVAL);
213 nodes = NULL; /* flag local alloc */
214 }
215 } else if (nodes_empty(*nodes))
216 return ERR_PTR(-EINVAL);
217 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
218 if (!policy)
219 return ERR_PTR(-ENOMEM);
220 atomic_set(&policy->refcnt, 1);
221 policy->mode = mode;
222 policy->flags = flags;
223
224 if (nodes) {
225 /*
226 * cpuset related setup doesn't apply to local allocation
227 */
228 cpuset_update_task_memory_state();
229 if (flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
231 &cpuset_current_mems_allowed);
232 else
233 nodes_and(cpuset_context_nmask, *nodes,
234 cpuset_current_mems_allowed);
235 if (mpol_store_user_nodemask(policy))
236 policy->w.user_nodemask = *nodes;
237 else
238 policy->w.cpuset_mems_allowed =
239 cpuset_mems_allowed(current);
240 }
241
242 ret = mpol_ops[mode].create(policy,
243 nodes ? &cpuset_context_nmask : NULL);
244 if (ret < 0) {
245 kmem_cache_free(policy_cache, policy);
246 return ERR_PTR(ret);
247 }
248 return policy;
249 }
250
251 /* Slow path of a mpol destructor. */
252 void __mpol_put(struct mempolicy *p)
253 {
254 if (!atomic_dec_and_test(&p->refcnt))
255 return;
256 kmem_cache_free(policy_cache, p);
257 }
258
259 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
260 {
261 }
262
263 static void mpol_rebind_nodemask(struct mempolicy *pol,
264 const nodemask_t *nodes)
265 {
266 nodemask_t tmp;
267
268 if (pol->flags & MPOL_F_STATIC_NODES)
269 nodes_and(tmp, pol->w.user_nodemask, *nodes);
270 else if (pol->flags & MPOL_F_RELATIVE_NODES)
271 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
272 else {
273 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
274 *nodes);
275 pol->w.cpuset_mems_allowed = *nodes;
276 }
277
278 pol->v.nodes = tmp;
279 if (!node_isset(current->il_next, tmp)) {
280 current->il_next = next_node(current->il_next, tmp);
281 if (current->il_next >= MAX_NUMNODES)
282 current->il_next = first_node(tmp);
283 if (current->il_next >= MAX_NUMNODES)
284 current->il_next = numa_node_id();
285 }
286 }
287
288 static void mpol_rebind_preferred(struct mempolicy *pol,
289 const nodemask_t *nodes)
290 {
291 nodemask_t tmp;
292
293 if (pol->flags & MPOL_F_STATIC_NODES) {
294 int node = first_node(pol->w.user_nodemask);
295
296 if (node_isset(node, *nodes)) {
297 pol->v.preferred_node = node;
298 pol->flags &= ~MPOL_F_LOCAL;
299 } else
300 pol->flags |= MPOL_F_LOCAL;
301 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
302 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
303 pol->v.preferred_node = first_node(tmp);
304 } else if (!(pol->flags & MPOL_F_LOCAL)) {
305 pol->v.preferred_node = node_remap(pol->v.preferred_node,
306 pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = *nodes;
309 }
310 }
311
312 /* Migrate a policy to a different set of nodes */
313 static void mpol_rebind_policy(struct mempolicy *pol,
314 const nodemask_t *newmask)
315 {
316 if (!pol)
317 return;
318 if (!mpol_store_user_nodemask(pol) &&
319 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
320 return;
321 mpol_ops[pol->mode].rebind(pol, newmask);
322 }
323
324 /*
325 * Wrapper for mpol_rebind_policy() that just requires task
326 * pointer, and updates task mempolicy.
327 */
328
329 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
330 {
331 mpol_rebind_policy(tsk->mempolicy, new);
332 }
333
334 /*
335 * Rebind each vma in mm to new nodemask.
336 *
337 * Call holding a reference to mm. Takes mm->mmap_sem during call.
338 */
339
340 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
341 {
342 struct vm_area_struct *vma;
343
344 down_write(&mm->mmap_sem);
345 for (vma = mm->mmap; vma; vma = vma->vm_next)
346 mpol_rebind_policy(vma->vm_policy, new);
347 up_write(&mm->mmap_sem);
348 }
349
350 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
351 [MPOL_DEFAULT] = {
352 .rebind = mpol_rebind_default,
353 },
354 [MPOL_INTERLEAVE] = {
355 .create = mpol_new_interleave,
356 .rebind = mpol_rebind_nodemask,
357 },
358 [MPOL_PREFERRED] = {
359 .create = mpol_new_preferred,
360 .rebind = mpol_rebind_preferred,
361 },
362 [MPOL_BIND] = {
363 .create = mpol_new_bind,
364 .rebind = mpol_rebind_nodemask,
365 },
366 };
367
368 static void gather_stats(struct page *, void *, int pte_dirty);
369 static void migrate_page_add(struct page *page, struct list_head *pagelist,
370 unsigned long flags);
371
372 /* Scan through pages checking if pages follow certain conditions. */
373 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
374 unsigned long addr, unsigned long end,
375 const nodemask_t *nodes, unsigned long flags,
376 void *private)
377 {
378 pte_t *orig_pte;
379 pte_t *pte;
380 spinlock_t *ptl;
381
382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 do {
384 struct page *page;
385 int nid;
386
387 if (!pte_present(*pte))
388 continue;
389 page = vm_normal_page(vma, addr, *pte);
390 if (!page)
391 continue;
392 /*
393 * The check for PageReserved here is important to avoid
394 * handling zero pages and other pages that may have been
395 * marked special by the system.
396 *
397 * If the PageReserved would not be checked here then f.e.
398 * the location of the zero page could have an influence
399 * on MPOL_MF_STRICT, zero pages would be counted for
400 * the per node stats, and there would be useless attempts
401 * to put zero pages on the migration list.
402 */
403 if (PageReserved(page))
404 continue;
405 nid = page_to_nid(page);
406 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
407 continue;
408
409 if (flags & MPOL_MF_STATS)
410 gather_stats(page, private, pte_dirty(*pte));
411 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
412 migrate_page_add(page, private, flags);
413 else
414 break;
415 } while (pte++, addr += PAGE_SIZE, addr != end);
416 pte_unmap_unlock(orig_pte, ptl);
417 return addr != end;
418 }
419
420 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
421 unsigned long addr, unsigned long end,
422 const nodemask_t *nodes, unsigned long flags,
423 void *private)
424 {
425 pmd_t *pmd;
426 unsigned long next;
427
428 pmd = pmd_offset(pud, addr);
429 do {
430 next = pmd_addr_end(addr, end);
431 if (pmd_none_or_clear_bad(pmd))
432 continue;
433 if (check_pte_range(vma, pmd, addr, next, nodes,
434 flags, private))
435 return -EIO;
436 } while (pmd++, addr = next, addr != end);
437 return 0;
438 }
439
440 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
441 unsigned long addr, unsigned long end,
442 const nodemask_t *nodes, unsigned long flags,
443 void *private)
444 {
445 pud_t *pud;
446 unsigned long next;
447
448 pud = pud_offset(pgd, addr);
449 do {
450 next = pud_addr_end(addr, end);
451 if (pud_none_or_clear_bad(pud))
452 continue;
453 if (check_pmd_range(vma, pud, addr, next, nodes,
454 flags, private))
455 return -EIO;
456 } while (pud++, addr = next, addr != end);
457 return 0;
458 }
459
460 static inline int check_pgd_range(struct vm_area_struct *vma,
461 unsigned long addr, unsigned long end,
462 const nodemask_t *nodes, unsigned long flags,
463 void *private)
464 {
465 pgd_t *pgd;
466 unsigned long next;
467
468 pgd = pgd_offset(vma->vm_mm, addr);
469 do {
470 next = pgd_addr_end(addr, end);
471 if (pgd_none_or_clear_bad(pgd))
472 continue;
473 if (check_pud_range(vma, pgd, addr, next, nodes,
474 flags, private))
475 return -EIO;
476 } while (pgd++, addr = next, addr != end);
477 return 0;
478 }
479
480 /*
481 * Check if all pages in a range are on a set of nodes.
482 * If pagelist != NULL then isolate pages from the LRU and
483 * put them on the pagelist.
484 */
485 static struct vm_area_struct *
486 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
487 const nodemask_t *nodes, unsigned long flags, void *private)
488 {
489 int err;
490 struct vm_area_struct *first, *vma, *prev;
491
492 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
493
494 err = migrate_prep();
495 if (err)
496 return ERR_PTR(err);
497 }
498
499 first = find_vma(mm, start);
500 if (!first)
501 return ERR_PTR(-EFAULT);
502 prev = NULL;
503 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
504 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
505 if (!vma->vm_next && vma->vm_end < end)
506 return ERR_PTR(-EFAULT);
507 if (prev && prev->vm_end < vma->vm_start)
508 return ERR_PTR(-EFAULT);
509 }
510 if (!is_vm_hugetlb_page(vma) &&
511 ((flags & MPOL_MF_STRICT) ||
512 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
513 vma_migratable(vma)))) {
514 unsigned long endvma = vma->vm_end;
515
516 if (endvma > end)
517 endvma = end;
518 if (vma->vm_start > start)
519 start = vma->vm_start;
520 err = check_pgd_range(vma, start, endvma, nodes,
521 flags, private);
522 if (err) {
523 first = ERR_PTR(err);
524 break;
525 }
526 }
527 prev = vma;
528 }
529 return first;
530 }
531
532 /* Apply policy to a single VMA */
533 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
534 {
535 int err = 0;
536 struct mempolicy *old = vma->vm_policy;
537
538 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
539 vma->vm_start, vma->vm_end, vma->vm_pgoff,
540 vma->vm_ops, vma->vm_file,
541 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
542
543 if (vma->vm_ops && vma->vm_ops->set_policy)
544 err = vma->vm_ops->set_policy(vma, new);
545 if (!err) {
546 mpol_get(new);
547 vma->vm_policy = new;
548 mpol_put(old);
549 }
550 return err;
551 }
552
553 /* Step 2: apply policy to a range and do splits. */
554 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end, struct mempolicy *new)
556 {
557 struct vm_area_struct *next;
558 int err;
559
560 err = 0;
561 for (; vma && vma->vm_start < end; vma = next) {
562 next = vma->vm_next;
563 if (vma->vm_start < start)
564 err = split_vma(vma->vm_mm, vma, start, 1);
565 if (!err && vma->vm_end > end)
566 err = split_vma(vma->vm_mm, vma, end, 0);
567 if (!err)
568 err = policy_vma(vma, new);
569 if (err)
570 break;
571 }
572 return err;
573 }
574
575 /*
576 * Update task->flags PF_MEMPOLICY bit: set iff non-default
577 * mempolicy. Allows more rapid checking of this (combined perhaps
578 * with other PF_* flag bits) on memory allocation hot code paths.
579 *
580 * If called from outside this file, the task 'p' should -only- be
581 * a newly forked child not yet visible on the task list, because
582 * manipulating the task flags of a visible task is not safe.
583 *
584 * The above limitation is why this routine has the funny name
585 * mpol_fix_fork_child_flag().
586 *
587 * It is also safe to call this with a task pointer of current,
588 * which the static wrapper mpol_set_task_struct_flag() does,
589 * for use within this file.
590 */
591
592 void mpol_fix_fork_child_flag(struct task_struct *p)
593 {
594 if (p->mempolicy)
595 p->flags |= PF_MEMPOLICY;
596 else
597 p->flags &= ~PF_MEMPOLICY;
598 }
599
600 static void mpol_set_task_struct_flag(void)
601 {
602 mpol_fix_fork_child_flag(current);
603 }
604
605 /* Set the process memory policy */
606 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
607 nodemask_t *nodes)
608 {
609 struct mempolicy *new;
610 struct mm_struct *mm = current->mm;
611
612 new = mpol_new(mode, flags, nodes);
613 if (IS_ERR(new))
614 return PTR_ERR(new);
615
616 /*
617 * prevent changing our mempolicy while show_numa_maps()
618 * is using it.
619 * Note: do_set_mempolicy() can be called at init time
620 * with no 'mm'.
621 */
622 if (mm)
623 down_write(&mm->mmap_sem);
624 mpol_put(current->mempolicy);
625 current->mempolicy = new;
626 mpol_set_task_struct_flag();
627 if (new && new->mode == MPOL_INTERLEAVE &&
628 nodes_weight(new->v.nodes))
629 current->il_next = first_node(new->v.nodes);
630 if (mm)
631 up_write(&mm->mmap_sem);
632
633 return 0;
634 }
635
636 /*
637 * Return nodemask for policy for get_mempolicy() query
638 */
639 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
640 {
641 nodes_clear(*nodes);
642 if (p == &default_policy)
643 return;
644
645 switch (p->mode) {
646 case MPOL_BIND:
647 /* Fall through */
648 case MPOL_INTERLEAVE:
649 *nodes = p->v.nodes;
650 break;
651 case MPOL_PREFERRED:
652 if (!(p->flags & MPOL_F_LOCAL))
653 node_set(p->v.preferred_node, *nodes);
654 /* else return empty node mask for local allocation */
655 break;
656 default:
657 BUG();
658 }
659 }
660
661 static int lookup_node(struct mm_struct *mm, unsigned long addr)
662 {
663 struct page *p;
664 int err;
665
666 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
667 if (err >= 0) {
668 err = page_to_nid(p);
669 put_page(p);
670 }
671 return err;
672 }
673
674 /* Retrieve NUMA policy */
675 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
676 unsigned long addr, unsigned long flags)
677 {
678 int err;
679 struct mm_struct *mm = current->mm;
680 struct vm_area_struct *vma = NULL;
681 struct mempolicy *pol = current->mempolicy;
682
683 cpuset_update_task_memory_state();
684 if (flags &
685 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
686 return -EINVAL;
687
688 if (flags & MPOL_F_MEMS_ALLOWED) {
689 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
690 return -EINVAL;
691 *policy = 0; /* just so it's initialized */
692 *nmask = cpuset_current_mems_allowed;
693 return 0;
694 }
695
696 if (flags & MPOL_F_ADDR) {
697 /*
698 * Do NOT fall back to task policy if the
699 * vma/shared policy at addr is NULL. We
700 * want to return MPOL_DEFAULT in this case.
701 */
702 down_read(&mm->mmap_sem);
703 vma = find_vma_intersection(mm, addr, addr+1);
704 if (!vma) {
705 up_read(&mm->mmap_sem);
706 return -EFAULT;
707 }
708 if (vma->vm_ops && vma->vm_ops->get_policy)
709 pol = vma->vm_ops->get_policy(vma, addr);
710 else
711 pol = vma->vm_policy;
712 } else if (addr)
713 return -EINVAL;
714
715 if (!pol)
716 pol = &default_policy; /* indicates default behavior */
717
718 if (flags & MPOL_F_NODE) {
719 if (flags & MPOL_F_ADDR) {
720 err = lookup_node(mm, addr);
721 if (err < 0)
722 goto out;
723 *policy = err;
724 } else if (pol == current->mempolicy &&
725 pol->mode == MPOL_INTERLEAVE) {
726 *policy = current->il_next;
727 } else {
728 err = -EINVAL;
729 goto out;
730 }
731 } else {
732 *policy = pol == &default_policy ? MPOL_DEFAULT :
733 pol->mode;
734 /*
735 * Internal mempolicy flags must be masked off before exposing
736 * the policy to userspace.
737 */
738 *policy |= (pol->flags & MPOL_MODE_FLAGS);
739 }
740
741 if (vma) {
742 up_read(&current->mm->mmap_sem);
743 vma = NULL;
744 }
745
746 err = 0;
747 if (nmask)
748 get_policy_nodemask(pol, nmask);
749
750 out:
751 mpol_cond_put(pol);
752 if (vma)
753 up_read(&current->mm->mmap_sem);
754 return err;
755 }
756
757 #ifdef CONFIG_MIGRATION
758 /*
759 * page migration
760 */
761 static void migrate_page_add(struct page *page, struct list_head *pagelist,
762 unsigned long flags)
763 {
764 /*
765 * Avoid migrating a page that is shared with others.
766 */
767 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
768 if (!isolate_lru_page(page)) {
769 list_add_tail(&page->lru, pagelist);
770 }
771 }
772 }
773
774 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
775 {
776 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
777 }
778
779 /*
780 * Migrate pages from one node to a target node.
781 * Returns error or the number of pages not migrated.
782 */
783 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
784 int flags)
785 {
786 nodemask_t nmask;
787 LIST_HEAD(pagelist);
788 int err = 0;
789
790 nodes_clear(nmask);
791 node_set(source, nmask);
792
793 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
794 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
795
796 if (!list_empty(&pagelist))
797 err = migrate_pages(&pagelist, new_node_page, dest);
798
799 return err;
800 }
801
802 /*
803 * Move pages between the two nodesets so as to preserve the physical
804 * layout as much as possible.
805 *
806 * Returns the number of page that could not be moved.
807 */
808 int do_migrate_pages(struct mm_struct *mm,
809 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
810 {
811 int busy = 0;
812 int err = 0;
813 nodemask_t tmp;
814
815 down_read(&mm->mmap_sem);
816
817 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
818 if (err)
819 goto out;
820
821 /*
822 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
823 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
824 * bit in 'tmp', and return that <source, dest> pair for migration.
825 * The pair of nodemasks 'to' and 'from' define the map.
826 *
827 * If no pair of bits is found that way, fallback to picking some
828 * pair of 'source' and 'dest' bits that are not the same. If the
829 * 'source' and 'dest' bits are the same, this represents a node
830 * that will be migrating to itself, so no pages need move.
831 *
832 * If no bits are left in 'tmp', or if all remaining bits left
833 * in 'tmp' correspond to the same bit in 'to', return false
834 * (nothing left to migrate).
835 *
836 * This lets us pick a pair of nodes to migrate between, such that
837 * if possible the dest node is not already occupied by some other
838 * source node, minimizing the risk of overloading the memory on a
839 * node that would happen if we migrated incoming memory to a node
840 * before migrating outgoing memory source that same node.
841 *
842 * A single scan of tmp is sufficient. As we go, we remember the
843 * most recent <s, d> pair that moved (s != d). If we find a pair
844 * that not only moved, but what's better, moved to an empty slot
845 * (d is not set in tmp), then we break out then, with that pair.
846 * Otherwise when we finish scannng from_tmp, we at least have the
847 * most recent <s, d> pair that moved. If we get all the way through
848 * the scan of tmp without finding any node that moved, much less
849 * moved to an empty node, then there is nothing left worth migrating.
850 */
851
852 tmp = *from_nodes;
853 while (!nodes_empty(tmp)) {
854 int s,d;
855 int source = -1;
856 int dest = 0;
857
858 for_each_node_mask(s, tmp) {
859 d = node_remap(s, *from_nodes, *to_nodes);
860 if (s == d)
861 continue;
862
863 source = s; /* Node moved. Memorize */
864 dest = d;
865
866 /* dest not in remaining from nodes? */
867 if (!node_isset(dest, tmp))
868 break;
869 }
870 if (source == -1)
871 break;
872
873 node_clear(source, tmp);
874 err = migrate_to_node(mm, source, dest, flags);
875 if (err > 0)
876 busy += err;
877 if (err < 0)
878 break;
879 }
880 out:
881 up_read(&mm->mmap_sem);
882 if (err < 0)
883 return err;
884 return busy;
885
886 }
887
888 /*
889 * Allocate a new page for page migration based on vma policy.
890 * Start assuming that page is mapped by vma pointed to by @private.
891 * Search forward from there, if not. N.B., this assumes that the
892 * list of pages handed to migrate_pages()--which is how we get here--
893 * is in virtual address order.
894 */
895 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
896 {
897 struct vm_area_struct *vma = (struct vm_area_struct *)private;
898 unsigned long uninitialized_var(address);
899
900 while (vma) {
901 address = page_address_in_vma(page, vma);
902 if (address != -EFAULT)
903 break;
904 vma = vma->vm_next;
905 }
906
907 /*
908 * if !vma, alloc_page_vma() will use task or system default policy
909 */
910 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
911 }
912 #else
913
914 static void migrate_page_add(struct page *page, struct list_head *pagelist,
915 unsigned long flags)
916 {
917 }
918
919 int do_migrate_pages(struct mm_struct *mm,
920 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
921 {
922 return -ENOSYS;
923 }
924
925 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
926 {
927 return NULL;
928 }
929 #endif
930
931 static long do_mbind(unsigned long start, unsigned long len,
932 unsigned short mode, unsigned short mode_flags,
933 nodemask_t *nmask, unsigned long flags)
934 {
935 struct vm_area_struct *vma;
936 struct mm_struct *mm = current->mm;
937 struct mempolicy *new;
938 unsigned long end;
939 int err;
940 LIST_HEAD(pagelist);
941
942 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
943 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
944 return -EINVAL;
945 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
946 return -EPERM;
947
948 if (start & ~PAGE_MASK)
949 return -EINVAL;
950
951 if (mode == MPOL_DEFAULT)
952 flags &= ~MPOL_MF_STRICT;
953
954 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
955 end = start + len;
956
957 if (end < start)
958 return -EINVAL;
959 if (end == start)
960 return 0;
961
962 new = mpol_new(mode, mode_flags, nmask);
963 if (IS_ERR(new))
964 return PTR_ERR(new);
965
966 /*
967 * If we are using the default policy then operation
968 * on discontinuous address spaces is okay after all
969 */
970 if (!new)
971 flags |= MPOL_MF_DISCONTIG_OK;
972
973 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
974 start, start + len, mode, mode_flags,
975 nmask ? nodes_addr(*nmask)[0] : -1);
976
977 down_write(&mm->mmap_sem);
978 vma = check_range(mm, start, end, nmask,
979 flags | MPOL_MF_INVERT, &pagelist);
980
981 err = PTR_ERR(vma);
982 if (!IS_ERR(vma)) {
983 int nr_failed = 0;
984
985 err = mbind_range(vma, start, end, new);
986
987 if (!list_empty(&pagelist))
988 nr_failed = migrate_pages(&pagelist, new_vma_page,
989 (unsigned long)vma);
990
991 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
992 err = -EIO;
993 }
994
995 up_write(&mm->mmap_sem);
996 mpol_put(new);
997 return err;
998 }
999
1000 /*
1001 * User space interface with variable sized bitmaps for nodelists.
1002 */
1003
1004 /* Copy a node mask from user space. */
1005 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1006 unsigned long maxnode)
1007 {
1008 unsigned long k;
1009 unsigned long nlongs;
1010 unsigned long endmask;
1011
1012 --maxnode;
1013 nodes_clear(*nodes);
1014 if (maxnode == 0 || !nmask)
1015 return 0;
1016 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1017 return -EINVAL;
1018
1019 nlongs = BITS_TO_LONGS(maxnode);
1020 if ((maxnode % BITS_PER_LONG) == 0)
1021 endmask = ~0UL;
1022 else
1023 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1024
1025 /* When the user specified more nodes than supported just check
1026 if the non supported part is all zero. */
1027 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1028 if (nlongs > PAGE_SIZE/sizeof(long))
1029 return -EINVAL;
1030 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1031 unsigned long t;
1032 if (get_user(t, nmask + k))
1033 return -EFAULT;
1034 if (k == nlongs - 1) {
1035 if (t & endmask)
1036 return -EINVAL;
1037 } else if (t)
1038 return -EINVAL;
1039 }
1040 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1041 endmask = ~0UL;
1042 }
1043
1044 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1045 return -EFAULT;
1046 nodes_addr(*nodes)[nlongs-1] &= endmask;
1047 return 0;
1048 }
1049
1050 /* Copy a kernel node mask to user space */
1051 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1052 nodemask_t *nodes)
1053 {
1054 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1055 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1056
1057 if (copy > nbytes) {
1058 if (copy > PAGE_SIZE)
1059 return -EINVAL;
1060 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1061 return -EFAULT;
1062 copy = nbytes;
1063 }
1064 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1065 }
1066
1067 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1068 unsigned long mode,
1069 unsigned long __user *nmask, unsigned long maxnode,
1070 unsigned flags)
1071 {
1072 nodemask_t nodes;
1073 int err;
1074 unsigned short mode_flags;
1075
1076 mode_flags = mode & MPOL_MODE_FLAGS;
1077 mode &= ~MPOL_MODE_FLAGS;
1078 if (mode >= MPOL_MAX)
1079 return -EINVAL;
1080 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1081 (mode_flags & MPOL_F_RELATIVE_NODES))
1082 return -EINVAL;
1083 err = get_nodes(&nodes, nmask, maxnode);
1084 if (err)
1085 return err;
1086 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1087 }
1088
1089 /* Set the process memory policy */
1090 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1091 unsigned long maxnode)
1092 {
1093 int err;
1094 nodemask_t nodes;
1095 unsigned short flags;
1096
1097 flags = mode & MPOL_MODE_FLAGS;
1098 mode &= ~MPOL_MODE_FLAGS;
1099 if ((unsigned int)mode >= MPOL_MAX)
1100 return -EINVAL;
1101 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1102 return -EINVAL;
1103 err = get_nodes(&nodes, nmask, maxnode);
1104 if (err)
1105 return err;
1106 return do_set_mempolicy(mode, flags, &nodes);
1107 }
1108
1109 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1110 const unsigned long __user *old_nodes,
1111 const unsigned long __user *new_nodes)
1112 {
1113 struct mm_struct *mm;
1114 struct task_struct *task;
1115 nodemask_t old;
1116 nodemask_t new;
1117 nodemask_t task_nodes;
1118 int err;
1119
1120 err = get_nodes(&old, old_nodes, maxnode);
1121 if (err)
1122 return err;
1123
1124 err = get_nodes(&new, new_nodes, maxnode);
1125 if (err)
1126 return err;
1127
1128 /* Find the mm_struct */
1129 read_lock(&tasklist_lock);
1130 task = pid ? find_task_by_vpid(pid) : current;
1131 if (!task) {
1132 read_unlock(&tasklist_lock);
1133 return -ESRCH;
1134 }
1135 mm = get_task_mm(task);
1136 read_unlock(&tasklist_lock);
1137
1138 if (!mm)
1139 return -EINVAL;
1140
1141 /*
1142 * Check if this process has the right to modify the specified
1143 * process. The right exists if the process has administrative
1144 * capabilities, superuser privileges or the same
1145 * userid as the target process.
1146 */
1147 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1148 (current->uid != task->suid) && (current->uid != task->uid) &&
1149 !capable(CAP_SYS_NICE)) {
1150 err = -EPERM;
1151 goto out;
1152 }
1153
1154 task_nodes = cpuset_mems_allowed(task);
1155 /* Is the user allowed to access the target nodes? */
1156 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1157 err = -EPERM;
1158 goto out;
1159 }
1160
1161 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1162 err = -EINVAL;
1163 goto out;
1164 }
1165
1166 err = security_task_movememory(task);
1167 if (err)
1168 goto out;
1169
1170 err = do_migrate_pages(mm, &old, &new,
1171 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1172 out:
1173 mmput(mm);
1174 return err;
1175 }
1176
1177
1178 /* Retrieve NUMA policy */
1179 asmlinkage long sys_get_mempolicy(int __user *policy,
1180 unsigned long __user *nmask,
1181 unsigned long maxnode,
1182 unsigned long addr, unsigned long flags)
1183 {
1184 int err;
1185 int uninitialized_var(pval);
1186 nodemask_t nodes;
1187
1188 if (nmask != NULL && maxnode < MAX_NUMNODES)
1189 return -EINVAL;
1190
1191 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1192
1193 if (err)
1194 return err;
1195
1196 if (policy && put_user(pval, policy))
1197 return -EFAULT;
1198
1199 if (nmask)
1200 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1201
1202 return err;
1203 }
1204
1205 #ifdef CONFIG_COMPAT
1206
1207 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1208 compat_ulong_t __user *nmask,
1209 compat_ulong_t maxnode,
1210 compat_ulong_t addr, compat_ulong_t flags)
1211 {
1212 long err;
1213 unsigned long __user *nm = NULL;
1214 unsigned long nr_bits, alloc_size;
1215 DECLARE_BITMAP(bm, MAX_NUMNODES);
1216
1217 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1218 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1219
1220 if (nmask)
1221 nm = compat_alloc_user_space(alloc_size);
1222
1223 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1224
1225 if (!err && nmask) {
1226 err = copy_from_user(bm, nm, alloc_size);
1227 /* ensure entire bitmap is zeroed */
1228 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1229 err |= compat_put_bitmap(nmask, bm, nr_bits);
1230 }
1231
1232 return err;
1233 }
1234
1235 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1236 compat_ulong_t maxnode)
1237 {
1238 long err = 0;
1239 unsigned long __user *nm = NULL;
1240 unsigned long nr_bits, alloc_size;
1241 DECLARE_BITMAP(bm, MAX_NUMNODES);
1242
1243 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1244 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1245
1246 if (nmask) {
1247 err = compat_get_bitmap(bm, nmask, nr_bits);
1248 nm = compat_alloc_user_space(alloc_size);
1249 err |= copy_to_user(nm, bm, alloc_size);
1250 }
1251
1252 if (err)
1253 return -EFAULT;
1254
1255 return sys_set_mempolicy(mode, nm, nr_bits+1);
1256 }
1257
1258 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1259 compat_ulong_t mode, compat_ulong_t __user *nmask,
1260 compat_ulong_t maxnode, compat_ulong_t flags)
1261 {
1262 long err = 0;
1263 unsigned long __user *nm = NULL;
1264 unsigned long nr_bits, alloc_size;
1265 nodemask_t bm;
1266
1267 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1268 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1269
1270 if (nmask) {
1271 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1272 nm = compat_alloc_user_space(alloc_size);
1273 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1274 }
1275
1276 if (err)
1277 return -EFAULT;
1278
1279 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1280 }
1281
1282 #endif
1283
1284 /*
1285 * get_vma_policy(@task, @vma, @addr)
1286 * @task - task for fallback if vma policy == default
1287 * @vma - virtual memory area whose policy is sought
1288 * @addr - address in @vma for shared policy lookup
1289 *
1290 * Returns effective policy for a VMA at specified address.
1291 * Falls back to @task or system default policy, as necessary.
1292 * Current or other task's task mempolicy and non-shared vma policies
1293 * are protected by the task's mmap_sem, which must be held for read by
1294 * the caller.
1295 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1296 * count--added by the get_policy() vm_op, as appropriate--to protect against
1297 * freeing by another task. It is the caller's responsibility to free the
1298 * extra reference for shared policies.
1299 */
1300 static struct mempolicy *get_vma_policy(struct task_struct *task,
1301 struct vm_area_struct *vma, unsigned long addr)
1302 {
1303 struct mempolicy *pol = task->mempolicy;
1304
1305 if (vma) {
1306 if (vma->vm_ops && vma->vm_ops->get_policy) {
1307 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1308 addr);
1309 if (vpol)
1310 pol = vpol;
1311 } else if (vma->vm_policy)
1312 pol = vma->vm_policy;
1313 }
1314 if (!pol)
1315 pol = &default_policy;
1316 return pol;
1317 }
1318
1319 /*
1320 * Return a nodemask representing a mempolicy for filtering nodes for
1321 * page allocation
1322 */
1323 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1324 {
1325 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1326 if (unlikely(policy->mode == MPOL_BIND) &&
1327 gfp_zone(gfp) >= policy_zone &&
1328 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1329 return &policy->v.nodes;
1330
1331 return NULL;
1332 }
1333
1334 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1335 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1336 {
1337 int nd = numa_node_id();
1338
1339 switch (policy->mode) {
1340 case MPOL_PREFERRED:
1341 if (!(policy->flags & MPOL_F_LOCAL))
1342 nd = policy->v.preferred_node;
1343 break;
1344 case MPOL_BIND:
1345 /*
1346 * Normally, MPOL_BIND allocations are node-local within the
1347 * allowed nodemask. However, if __GFP_THISNODE is set and the
1348 * current node is part of the mask, we use the zonelist for
1349 * the first node in the mask instead.
1350 */
1351 if (unlikely(gfp & __GFP_THISNODE) &&
1352 unlikely(!node_isset(nd, policy->v.nodes)))
1353 nd = first_node(policy->v.nodes);
1354 break;
1355 case MPOL_INTERLEAVE: /* should not happen */
1356 break;
1357 default:
1358 BUG();
1359 }
1360 return node_zonelist(nd, gfp);
1361 }
1362
1363 /* Do dynamic interleaving for a process */
1364 static unsigned interleave_nodes(struct mempolicy *policy)
1365 {
1366 unsigned nid, next;
1367 struct task_struct *me = current;
1368
1369 nid = me->il_next;
1370 next = next_node(nid, policy->v.nodes);
1371 if (next >= MAX_NUMNODES)
1372 next = first_node(policy->v.nodes);
1373 if (next < MAX_NUMNODES)
1374 me->il_next = next;
1375 return nid;
1376 }
1377
1378 /*
1379 * Depending on the memory policy provide a node from which to allocate the
1380 * next slab entry.
1381 * @policy must be protected by freeing by the caller. If @policy is
1382 * the current task's mempolicy, this protection is implicit, as only the
1383 * task can change it's policy. The system default policy requires no
1384 * such protection.
1385 */
1386 unsigned slab_node(struct mempolicy *policy)
1387 {
1388 if (!policy || policy->flags & MPOL_F_LOCAL)
1389 return numa_node_id();
1390
1391 switch (policy->mode) {
1392 case MPOL_PREFERRED:
1393 /*
1394 * handled MPOL_F_LOCAL above
1395 */
1396 return policy->v.preferred_node;
1397
1398 case MPOL_INTERLEAVE:
1399 return interleave_nodes(policy);
1400
1401 case MPOL_BIND: {
1402 /*
1403 * Follow bind policy behavior and start allocation at the
1404 * first node.
1405 */
1406 struct zonelist *zonelist;
1407 struct zone *zone;
1408 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1409 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1410 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1411 &policy->v.nodes,
1412 &zone);
1413 return zone->node;
1414 }
1415
1416 default:
1417 BUG();
1418 }
1419 }
1420
1421 /* Do static interleaving for a VMA with known offset. */
1422 static unsigned offset_il_node(struct mempolicy *pol,
1423 struct vm_area_struct *vma, unsigned long off)
1424 {
1425 unsigned nnodes = nodes_weight(pol->v.nodes);
1426 unsigned target;
1427 int c;
1428 int nid = -1;
1429
1430 if (!nnodes)
1431 return numa_node_id();
1432 target = (unsigned int)off % nnodes;
1433 c = 0;
1434 do {
1435 nid = next_node(nid, pol->v.nodes);
1436 c++;
1437 } while (c <= target);
1438 return nid;
1439 }
1440
1441 /* Determine a node number for interleave */
1442 static inline unsigned interleave_nid(struct mempolicy *pol,
1443 struct vm_area_struct *vma, unsigned long addr, int shift)
1444 {
1445 if (vma) {
1446 unsigned long off;
1447
1448 /*
1449 * for small pages, there is no difference between
1450 * shift and PAGE_SHIFT, so the bit-shift is safe.
1451 * for huge pages, since vm_pgoff is in units of small
1452 * pages, we need to shift off the always 0 bits to get
1453 * a useful offset.
1454 */
1455 BUG_ON(shift < PAGE_SHIFT);
1456 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1457 off += (addr - vma->vm_start) >> shift;
1458 return offset_il_node(pol, vma, off);
1459 } else
1460 return interleave_nodes(pol);
1461 }
1462
1463 #ifdef CONFIG_HUGETLBFS
1464 /*
1465 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1466 * @vma = virtual memory area whose policy is sought
1467 * @addr = address in @vma for shared policy lookup and interleave policy
1468 * @gfp_flags = for requested zone
1469 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1470 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1471 *
1472 * Returns a zonelist suitable for a huge page allocation and a pointer
1473 * to the struct mempolicy for conditional unref after allocation.
1474 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1475 * @nodemask for filtering the zonelist.
1476 */
1477 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1478 gfp_t gfp_flags, struct mempolicy **mpol,
1479 nodemask_t **nodemask)
1480 {
1481 struct zonelist *zl;
1482
1483 *mpol = get_vma_policy(current, vma, addr);
1484 *nodemask = NULL; /* assume !MPOL_BIND */
1485
1486 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1487 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1488 huge_page_shift(hstate_vma(vma))), gfp_flags);
1489 } else {
1490 zl = policy_zonelist(gfp_flags, *mpol);
1491 if ((*mpol)->mode == MPOL_BIND)
1492 *nodemask = &(*mpol)->v.nodes;
1493 }
1494 return zl;
1495 }
1496 #endif
1497
1498 /* Allocate a page in interleaved policy.
1499 Own path because it needs to do special accounting. */
1500 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1501 unsigned nid)
1502 {
1503 struct zonelist *zl;
1504 struct page *page;
1505
1506 zl = node_zonelist(nid, gfp);
1507 page = __alloc_pages(gfp, order, zl);
1508 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1509 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1510 return page;
1511 }
1512
1513 /**
1514 * alloc_page_vma - Allocate a page for a VMA.
1515 *
1516 * @gfp:
1517 * %GFP_USER user allocation.
1518 * %GFP_KERNEL kernel allocations,
1519 * %GFP_HIGHMEM highmem/user allocations,
1520 * %GFP_FS allocation should not call back into a file system.
1521 * %GFP_ATOMIC don't sleep.
1522 *
1523 * @vma: Pointer to VMA or NULL if not available.
1524 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1525 *
1526 * This function allocates a page from the kernel page pool and applies
1527 * a NUMA policy associated with the VMA or the current process.
1528 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1529 * mm_struct of the VMA to prevent it from going away. Should be used for
1530 * all allocations for pages that will be mapped into
1531 * user space. Returns NULL when no page can be allocated.
1532 *
1533 * Should be called with the mm_sem of the vma hold.
1534 */
1535 struct page *
1536 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1537 {
1538 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1539 struct zonelist *zl;
1540
1541 cpuset_update_task_memory_state();
1542
1543 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1544 unsigned nid;
1545
1546 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1547 mpol_cond_put(pol);
1548 return alloc_page_interleave(gfp, 0, nid);
1549 }
1550 zl = policy_zonelist(gfp, pol);
1551 if (unlikely(mpol_needs_cond_ref(pol))) {
1552 /*
1553 * slow path: ref counted shared policy
1554 */
1555 struct page *page = __alloc_pages_nodemask(gfp, 0,
1556 zl, policy_nodemask(gfp, pol));
1557 __mpol_put(pol);
1558 return page;
1559 }
1560 /*
1561 * fast path: default or task policy
1562 */
1563 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1564 }
1565
1566 /**
1567 * alloc_pages_current - Allocate pages.
1568 *
1569 * @gfp:
1570 * %GFP_USER user allocation,
1571 * %GFP_KERNEL kernel allocation,
1572 * %GFP_HIGHMEM highmem allocation,
1573 * %GFP_FS don't call back into a file system.
1574 * %GFP_ATOMIC don't sleep.
1575 * @order: Power of two of allocation size in pages. 0 is a single page.
1576 *
1577 * Allocate a page from the kernel page pool. When not in
1578 * interrupt context and apply the current process NUMA policy.
1579 * Returns NULL when no page can be allocated.
1580 *
1581 * Don't call cpuset_update_task_memory_state() unless
1582 * 1) it's ok to take cpuset_sem (can WAIT), and
1583 * 2) allocating for current task (not interrupt).
1584 */
1585 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1586 {
1587 struct mempolicy *pol = current->mempolicy;
1588
1589 if ((gfp & __GFP_WAIT) && !in_interrupt())
1590 cpuset_update_task_memory_state();
1591 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1592 pol = &default_policy;
1593
1594 /*
1595 * No reference counting needed for current->mempolicy
1596 * nor system default_policy
1597 */
1598 if (pol->mode == MPOL_INTERLEAVE)
1599 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1600 return __alloc_pages_nodemask(gfp, order,
1601 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1602 }
1603 EXPORT_SYMBOL(alloc_pages_current);
1604
1605 /*
1606 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1607 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1608 * with the mems_allowed returned by cpuset_mems_allowed(). This
1609 * keeps mempolicies cpuset relative after its cpuset moves. See
1610 * further kernel/cpuset.c update_nodemask().
1611 */
1612
1613 /* Slow path of a mempolicy duplicate */
1614 struct mempolicy *__mpol_dup(struct mempolicy *old)
1615 {
1616 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1617
1618 if (!new)
1619 return ERR_PTR(-ENOMEM);
1620 if (current_cpuset_is_being_rebound()) {
1621 nodemask_t mems = cpuset_mems_allowed(current);
1622 mpol_rebind_policy(old, &mems);
1623 }
1624 *new = *old;
1625 atomic_set(&new->refcnt, 1);
1626 return new;
1627 }
1628
1629 /*
1630 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1631 * eliminate the * MPOL_F_* flags that require conditional ref and
1632 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1633 * after return. Use the returned value.
1634 *
1635 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1636 * policy lookup, even if the policy needs/has extra ref on lookup.
1637 * shmem_readahead needs this.
1638 */
1639 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1640 struct mempolicy *frompol)
1641 {
1642 if (!mpol_needs_cond_ref(frompol))
1643 return frompol;
1644
1645 *tompol = *frompol;
1646 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1647 __mpol_put(frompol);
1648 return tompol;
1649 }
1650
1651 static int mpol_match_intent(const struct mempolicy *a,
1652 const struct mempolicy *b)
1653 {
1654 if (a->flags != b->flags)
1655 return 0;
1656 if (!mpol_store_user_nodemask(a))
1657 return 1;
1658 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1659 }
1660
1661 /* Slow path of a mempolicy comparison */
1662 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1663 {
1664 if (!a || !b)
1665 return 0;
1666 if (a->mode != b->mode)
1667 return 0;
1668 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1669 return 0;
1670 switch (a->mode) {
1671 case MPOL_BIND:
1672 /* Fall through */
1673 case MPOL_INTERLEAVE:
1674 return nodes_equal(a->v.nodes, b->v.nodes);
1675 case MPOL_PREFERRED:
1676 return a->v.preferred_node == b->v.preferred_node &&
1677 a->flags == b->flags;
1678 default:
1679 BUG();
1680 return 0;
1681 }
1682 }
1683
1684 /*
1685 * Shared memory backing store policy support.
1686 *
1687 * Remember policies even when nobody has shared memory mapped.
1688 * The policies are kept in Red-Black tree linked from the inode.
1689 * They are protected by the sp->lock spinlock, which should be held
1690 * for any accesses to the tree.
1691 */
1692
1693 /* lookup first element intersecting start-end */
1694 /* Caller holds sp->lock */
1695 static struct sp_node *
1696 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1697 {
1698 struct rb_node *n = sp->root.rb_node;
1699
1700 while (n) {
1701 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1702
1703 if (start >= p->end)
1704 n = n->rb_right;
1705 else if (end <= p->start)
1706 n = n->rb_left;
1707 else
1708 break;
1709 }
1710 if (!n)
1711 return NULL;
1712 for (;;) {
1713 struct sp_node *w = NULL;
1714 struct rb_node *prev = rb_prev(n);
1715 if (!prev)
1716 break;
1717 w = rb_entry(prev, struct sp_node, nd);
1718 if (w->end <= start)
1719 break;
1720 n = prev;
1721 }
1722 return rb_entry(n, struct sp_node, nd);
1723 }
1724
1725 /* Insert a new shared policy into the list. */
1726 /* Caller holds sp->lock */
1727 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1728 {
1729 struct rb_node **p = &sp->root.rb_node;
1730 struct rb_node *parent = NULL;
1731 struct sp_node *nd;
1732
1733 while (*p) {
1734 parent = *p;
1735 nd = rb_entry(parent, struct sp_node, nd);
1736 if (new->start < nd->start)
1737 p = &(*p)->rb_left;
1738 else if (new->end > nd->end)
1739 p = &(*p)->rb_right;
1740 else
1741 BUG();
1742 }
1743 rb_link_node(&new->nd, parent, p);
1744 rb_insert_color(&new->nd, &sp->root);
1745 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1746 new->policy ? new->policy->mode : 0);
1747 }
1748
1749 /* Find shared policy intersecting idx */
1750 struct mempolicy *
1751 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1752 {
1753 struct mempolicy *pol = NULL;
1754 struct sp_node *sn;
1755
1756 if (!sp->root.rb_node)
1757 return NULL;
1758 spin_lock(&sp->lock);
1759 sn = sp_lookup(sp, idx, idx+1);
1760 if (sn) {
1761 mpol_get(sn->policy);
1762 pol = sn->policy;
1763 }
1764 spin_unlock(&sp->lock);
1765 return pol;
1766 }
1767
1768 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1769 {
1770 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1771 rb_erase(&n->nd, &sp->root);
1772 mpol_put(n->policy);
1773 kmem_cache_free(sn_cache, n);
1774 }
1775
1776 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1777 struct mempolicy *pol)
1778 {
1779 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1780
1781 if (!n)
1782 return NULL;
1783 n->start = start;
1784 n->end = end;
1785 mpol_get(pol);
1786 pol->flags |= MPOL_F_SHARED; /* for unref */
1787 n->policy = pol;
1788 return n;
1789 }
1790
1791 /* Replace a policy range. */
1792 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1793 unsigned long end, struct sp_node *new)
1794 {
1795 struct sp_node *n, *new2 = NULL;
1796
1797 restart:
1798 spin_lock(&sp->lock);
1799 n = sp_lookup(sp, start, end);
1800 /* Take care of old policies in the same range. */
1801 while (n && n->start < end) {
1802 struct rb_node *next = rb_next(&n->nd);
1803 if (n->start >= start) {
1804 if (n->end <= end)
1805 sp_delete(sp, n);
1806 else
1807 n->start = end;
1808 } else {
1809 /* Old policy spanning whole new range. */
1810 if (n->end > end) {
1811 if (!new2) {
1812 spin_unlock(&sp->lock);
1813 new2 = sp_alloc(end, n->end, n->policy);
1814 if (!new2)
1815 return -ENOMEM;
1816 goto restart;
1817 }
1818 n->end = start;
1819 sp_insert(sp, new2);
1820 new2 = NULL;
1821 break;
1822 } else
1823 n->end = start;
1824 }
1825 if (!next)
1826 break;
1827 n = rb_entry(next, struct sp_node, nd);
1828 }
1829 if (new)
1830 sp_insert(sp, new);
1831 spin_unlock(&sp->lock);
1832 if (new2) {
1833 mpol_put(new2->policy);
1834 kmem_cache_free(sn_cache, new2);
1835 }
1836 return 0;
1837 }
1838
1839 /**
1840 * mpol_shared_policy_init - initialize shared policy for inode
1841 * @sp: pointer to inode shared policy
1842 * @mpol: struct mempolicy to install
1843 *
1844 * Install non-NULL @mpol in inode's shared policy rb-tree.
1845 * On entry, the current task has a reference on a non-NULL @mpol.
1846 * This must be released on exit.
1847 */
1848 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1849 {
1850 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1851 spin_lock_init(&sp->lock);
1852
1853 if (mpol) {
1854 struct vm_area_struct pvma;
1855 struct mempolicy *new;
1856
1857 /* contextualize the tmpfs mount point mempolicy */
1858 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
1859 mpol_put(mpol); /* drop our ref on sb mpol */
1860 if (IS_ERR(new))
1861 return; /* no valid nodemask intersection */
1862
1863 /* Create pseudo-vma that contains just the policy */
1864 memset(&pvma, 0, sizeof(struct vm_area_struct));
1865 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
1866 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
1867 mpol_put(new); /* drop initial ref */
1868 }
1869 }
1870
1871 int mpol_set_shared_policy(struct shared_policy *info,
1872 struct vm_area_struct *vma, struct mempolicy *npol)
1873 {
1874 int err;
1875 struct sp_node *new = NULL;
1876 unsigned long sz = vma_pages(vma);
1877
1878 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1879 vma->vm_pgoff,
1880 sz, npol ? npol->mode : -1,
1881 npol ? npol->flags : -1,
1882 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1883
1884 if (npol) {
1885 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1886 if (!new)
1887 return -ENOMEM;
1888 }
1889 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1890 if (err && new)
1891 kmem_cache_free(sn_cache, new);
1892 return err;
1893 }
1894
1895 /* Free a backing policy store on inode delete. */
1896 void mpol_free_shared_policy(struct shared_policy *p)
1897 {
1898 struct sp_node *n;
1899 struct rb_node *next;
1900
1901 if (!p->root.rb_node)
1902 return;
1903 spin_lock(&p->lock);
1904 next = rb_first(&p->root);
1905 while (next) {
1906 n = rb_entry(next, struct sp_node, nd);
1907 next = rb_next(&n->nd);
1908 rb_erase(&n->nd, &p->root);
1909 mpol_put(n->policy);
1910 kmem_cache_free(sn_cache, n);
1911 }
1912 spin_unlock(&p->lock);
1913 }
1914
1915 /* assumes fs == KERNEL_DS */
1916 void __init numa_policy_init(void)
1917 {
1918 nodemask_t interleave_nodes;
1919 unsigned long largest = 0;
1920 int nid, prefer = 0;
1921
1922 policy_cache = kmem_cache_create("numa_policy",
1923 sizeof(struct mempolicy),
1924 0, SLAB_PANIC, NULL);
1925
1926 sn_cache = kmem_cache_create("shared_policy_node",
1927 sizeof(struct sp_node),
1928 0, SLAB_PANIC, NULL);
1929
1930 /*
1931 * Set interleaving policy for system init. Interleaving is only
1932 * enabled across suitably sized nodes (default is >= 16MB), or
1933 * fall back to the largest node if they're all smaller.
1934 */
1935 nodes_clear(interleave_nodes);
1936 for_each_node_state(nid, N_HIGH_MEMORY) {
1937 unsigned long total_pages = node_present_pages(nid);
1938
1939 /* Preserve the largest node */
1940 if (largest < total_pages) {
1941 largest = total_pages;
1942 prefer = nid;
1943 }
1944
1945 /* Interleave this node? */
1946 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1947 node_set(nid, interleave_nodes);
1948 }
1949
1950 /* All too small, use the largest */
1951 if (unlikely(nodes_empty(interleave_nodes)))
1952 node_set(prefer, interleave_nodes);
1953
1954 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1955 printk("numa_policy_init: interleaving failed\n");
1956 }
1957
1958 /* Reset policy of current process to default */
1959 void numa_default_policy(void)
1960 {
1961 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1962 }
1963
1964 /*
1965 * Parse and format mempolicy from/to strings
1966 */
1967
1968 /*
1969 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
1970 * Used only for mpol_parse_str() and mpol_to_str()
1971 */
1972 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1973 static const char * const policy_types[] =
1974 { "default", "prefer", "bind", "interleave", "local" };
1975
1976
1977 #ifdef CONFIG_TMPFS
1978 /**
1979 * mpol_parse_str - parse string to mempolicy
1980 * @str: string containing mempolicy to parse
1981 * @mpol: pointer to struct mempolicy pointer, returned on success.
1982 * @no_context: flag whether to "contextualize" the mempolicy
1983 *
1984 * Format of input:
1985 * <mode>[=<flags>][:<nodelist>]
1986 *
1987 * if @no_context is true, save the input nodemask in w.user_nodemask in
1988 * the returned mempolicy. This will be used to "clone" the mempolicy in
1989 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
1990 * mount option. Note that if 'static' or 'relative' mode flags were
1991 * specified, the input nodemask will already have been saved. Saving
1992 * it again is redundant, but safe.
1993 *
1994 * On success, returns 0, else 1
1995 */
1996 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
1997 {
1998 struct mempolicy *new = NULL;
1999 unsigned short uninitialized_var(mode);
2000 unsigned short uninitialized_var(mode_flags);
2001 nodemask_t nodes;
2002 char *nodelist = strchr(str, ':');
2003 char *flags = strchr(str, '=');
2004 int i;
2005 int err = 1;
2006
2007 if (nodelist) {
2008 /* NUL-terminate mode or flags string */
2009 *nodelist++ = '\0';
2010 if (nodelist_parse(nodelist, nodes))
2011 goto out;
2012 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2013 goto out;
2014 } else
2015 nodes_clear(nodes);
2016
2017 if (flags)
2018 *flags++ = '\0'; /* terminate mode string */
2019
2020 for (i = 0; i <= MPOL_LOCAL; i++) {
2021 if (!strcmp(str, policy_types[i])) {
2022 mode = i;
2023 break;
2024 }
2025 }
2026 if (i > MPOL_LOCAL)
2027 goto out;
2028
2029 switch (mode) {
2030 case MPOL_PREFERRED:
2031 /*
2032 * Insist on a nodelist of one node only
2033 */
2034 if (nodelist) {
2035 char *rest = nodelist;
2036 while (isdigit(*rest))
2037 rest++;
2038 if (!*rest)
2039 err = 0;
2040 }
2041 break;
2042 case MPOL_INTERLEAVE:
2043 /*
2044 * Default to online nodes with memory if no nodelist
2045 */
2046 if (!nodelist)
2047 nodes = node_states[N_HIGH_MEMORY];
2048 err = 0;
2049 break;
2050 case MPOL_LOCAL:
2051 /*
2052 * Don't allow a nodelist; mpol_new() checks flags
2053 */
2054 if (nodelist)
2055 goto out;
2056 mode = MPOL_PREFERRED;
2057 break;
2058
2059 /*
2060 * case MPOL_BIND: mpol_new() enforces non-empty nodemask.
2061 * case MPOL_DEFAULT: mpol_new() enforces empty nodemask, ignores flags.
2062 */
2063 }
2064
2065 mode_flags = 0;
2066 if (flags) {
2067 /*
2068 * Currently, we only support two mutually exclusive
2069 * mode flags.
2070 */
2071 if (!strcmp(flags, "static"))
2072 mode_flags |= MPOL_F_STATIC_NODES;
2073 else if (!strcmp(flags, "relative"))
2074 mode_flags |= MPOL_F_RELATIVE_NODES;
2075 else
2076 err = 1;
2077 }
2078
2079 new = mpol_new(mode, mode_flags, &nodes);
2080 if (IS_ERR(new))
2081 err = 1;
2082 else if (no_context)
2083 new->w.user_nodemask = nodes; /* save for contextualization */
2084
2085 out:
2086 /* Restore string for error message */
2087 if (nodelist)
2088 *--nodelist = ':';
2089 if (flags)
2090 *--flags = '=';
2091 if (!err)
2092 *mpol = new;
2093 return err;
2094 }
2095 #endif /* CONFIG_TMPFS */
2096
2097 /**
2098 * mpol_to_str - format a mempolicy structure for printing
2099 * @buffer: to contain formatted mempolicy string
2100 * @maxlen: length of @buffer
2101 * @pol: pointer to mempolicy to be formatted
2102 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2103 *
2104 * Convert a mempolicy into a string.
2105 * Returns the number of characters in buffer (if positive)
2106 * or an error (negative)
2107 */
2108 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2109 {
2110 char *p = buffer;
2111 int l;
2112 nodemask_t nodes;
2113 unsigned short mode;
2114 unsigned short flags = pol ? pol->flags : 0;
2115
2116 /*
2117 * Sanity check: room for longest mode, flag and some nodes
2118 */
2119 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2120
2121 if (!pol || pol == &default_policy)
2122 mode = MPOL_DEFAULT;
2123 else
2124 mode = pol->mode;
2125
2126 switch (mode) {
2127 case MPOL_DEFAULT:
2128 nodes_clear(nodes);
2129 break;
2130
2131 case MPOL_PREFERRED:
2132 nodes_clear(nodes);
2133 if (flags & MPOL_F_LOCAL)
2134 mode = MPOL_LOCAL; /* pseudo-policy */
2135 else
2136 node_set(pol->v.preferred_node, nodes);
2137 break;
2138
2139 case MPOL_BIND:
2140 /* Fall through */
2141 case MPOL_INTERLEAVE:
2142 if (no_context)
2143 nodes = pol->w.user_nodemask;
2144 else
2145 nodes = pol->v.nodes;
2146 break;
2147
2148 default:
2149 BUG();
2150 }
2151
2152 l = strlen(policy_types[mode]);
2153 if (buffer + maxlen < p + l + 1)
2154 return -ENOSPC;
2155
2156 strcpy(p, policy_types[mode]);
2157 p += l;
2158
2159 if (flags & MPOL_MODE_FLAGS) {
2160 if (buffer + maxlen < p + 2)
2161 return -ENOSPC;
2162 *p++ = '=';
2163
2164 /*
2165 * Currently, the only defined flags are mutually exclusive
2166 */
2167 if (flags & MPOL_F_STATIC_NODES)
2168 p += snprintf(p, buffer + maxlen - p, "static");
2169 else if (flags & MPOL_F_RELATIVE_NODES)
2170 p += snprintf(p, buffer + maxlen - p, "relative");
2171 }
2172
2173 if (!nodes_empty(nodes)) {
2174 if (buffer + maxlen < p + 2)
2175 return -ENOSPC;
2176 *p++ = ':';
2177 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2178 }
2179 return p - buffer;
2180 }
2181
2182 struct numa_maps {
2183 unsigned long pages;
2184 unsigned long anon;
2185 unsigned long active;
2186 unsigned long writeback;
2187 unsigned long mapcount_max;
2188 unsigned long dirty;
2189 unsigned long swapcache;
2190 unsigned long node[MAX_NUMNODES];
2191 };
2192
2193 static void gather_stats(struct page *page, void *private, int pte_dirty)
2194 {
2195 struct numa_maps *md = private;
2196 int count = page_mapcount(page);
2197
2198 md->pages++;
2199 if (pte_dirty || PageDirty(page))
2200 md->dirty++;
2201
2202 if (PageSwapCache(page))
2203 md->swapcache++;
2204
2205 if (PageActive(page))
2206 md->active++;
2207
2208 if (PageWriteback(page))
2209 md->writeback++;
2210
2211 if (PageAnon(page))
2212 md->anon++;
2213
2214 if (count > md->mapcount_max)
2215 md->mapcount_max = count;
2216
2217 md->node[page_to_nid(page)]++;
2218 }
2219
2220 #ifdef CONFIG_HUGETLB_PAGE
2221 static void check_huge_range(struct vm_area_struct *vma,
2222 unsigned long start, unsigned long end,
2223 struct numa_maps *md)
2224 {
2225 unsigned long addr;
2226 struct page *page;
2227 struct hstate *h = hstate_vma(vma);
2228 unsigned long sz = huge_page_size(h);
2229
2230 for (addr = start; addr < end; addr += sz) {
2231 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2232 addr & huge_page_mask(h));
2233 pte_t pte;
2234
2235 if (!ptep)
2236 continue;
2237
2238 pte = *ptep;
2239 if (pte_none(pte))
2240 continue;
2241
2242 page = pte_page(pte);
2243 if (!page)
2244 continue;
2245
2246 gather_stats(page, md, pte_dirty(*ptep));
2247 }
2248 }
2249 #else
2250 static inline void check_huge_range(struct vm_area_struct *vma,
2251 unsigned long start, unsigned long end,
2252 struct numa_maps *md)
2253 {
2254 }
2255 #endif
2256
2257 /*
2258 * Display pages allocated per node and memory policy via /proc.
2259 */
2260 int show_numa_map(struct seq_file *m, void *v)
2261 {
2262 struct proc_maps_private *priv = m->private;
2263 struct vm_area_struct *vma = v;
2264 struct numa_maps *md;
2265 struct file *file = vma->vm_file;
2266 struct mm_struct *mm = vma->vm_mm;
2267 struct mempolicy *pol;
2268 int n;
2269 char buffer[50];
2270
2271 if (!mm)
2272 return 0;
2273
2274 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2275 if (!md)
2276 return 0;
2277
2278 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2279 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2280 mpol_cond_put(pol);
2281
2282 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2283
2284 if (file) {
2285 seq_printf(m, " file=");
2286 seq_path(m, &file->f_path, "\n\t= ");
2287 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2288 seq_printf(m, " heap");
2289 } else if (vma->vm_start <= mm->start_stack &&
2290 vma->vm_end >= mm->start_stack) {
2291 seq_printf(m, " stack");
2292 }
2293
2294 if (is_vm_hugetlb_page(vma)) {
2295 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2296 seq_printf(m, " huge");
2297 } else {
2298 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2299 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2300 }
2301
2302 if (!md->pages)
2303 goto out;
2304
2305 if (md->anon)
2306 seq_printf(m," anon=%lu",md->anon);
2307
2308 if (md->dirty)
2309 seq_printf(m," dirty=%lu",md->dirty);
2310
2311 if (md->pages != md->anon && md->pages != md->dirty)
2312 seq_printf(m, " mapped=%lu", md->pages);
2313
2314 if (md->mapcount_max > 1)
2315 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2316
2317 if (md->swapcache)
2318 seq_printf(m," swapcache=%lu", md->swapcache);
2319
2320 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2321 seq_printf(m," active=%lu", md->active);
2322
2323 if (md->writeback)
2324 seq_printf(m," writeback=%lu", md->writeback);
2325
2326 for_each_node_state(n, N_HIGH_MEMORY)
2327 if (md->node[n])
2328 seq_printf(m, " N%d=%lu", n, md->node[n]);
2329 out:
2330 seq_putc(m, '\n');
2331 kfree(md);
2332
2333 if (m->count < m->size)
2334 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2335 return 0;
2336 }