]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
spi: allow registering empty spi_board_info lists
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
103
104 #include "internal.h"
105
106 /* Internal flags */
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
109
110 static struct kmem_cache *policy_cache;
111 static struct kmem_cache *sn_cache;
112
113 /* Highest zone. An specific allocation for a zone below that is not
114 policied. */
115 enum zone_type policy_zone = 0;
116
117 /*
118 * run-time system-wide default policy => local allocation
119 */
120 static struct mempolicy default_policy = {
121 .refcnt = ATOMIC_INIT(1), /* never free it */
122 .mode = MPOL_PREFERRED,
123 .flags = MPOL_F_LOCAL,
124 };
125
126 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
127
128 struct mempolicy *get_task_policy(struct task_struct *p)
129 {
130 struct mempolicy *pol = p->mempolicy;
131 int node;
132
133 if (pol)
134 return pol;
135
136 node = numa_node_id();
137 if (node != NUMA_NO_NODE) {
138 pol = &preferred_node_policy[node];
139 /* preferred_node_policy is not initialised early in boot */
140 if (pol->mode)
141 return pol;
142 }
143
144 return &default_policy;
145 }
146
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 /*
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
154 * page.
155 * If we have a lock to protect task->mempolicy in read-side, we do
156 * rebind directly.
157 *
158 * step:
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
162 */
163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
166
167 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
168 {
169 return pol->flags & MPOL_MODE_FLAGS;
170 }
171
172 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
173 const nodemask_t *rel)
174 {
175 nodemask_t tmp;
176 nodes_fold(tmp, *orig, nodes_weight(*rel));
177 nodes_onto(*ret, tmp, *rel);
178 }
179
180 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
181 {
182 if (nodes_empty(*nodes))
183 return -EINVAL;
184 pol->v.nodes = *nodes;
185 return 0;
186 }
187
188 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
189 {
190 if (!nodes)
191 pol->flags |= MPOL_F_LOCAL; /* local allocation */
192 else if (nodes_empty(*nodes))
193 return -EINVAL; /* no allowed nodes */
194 else
195 pol->v.preferred_node = first_node(*nodes);
196 return 0;
197 }
198
199 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
200 {
201 if (nodes_empty(*nodes))
202 return -EINVAL;
203 pol->v.nodes = *nodes;
204 return 0;
205 }
206
207 /*
208 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
209 * any, for the new policy. mpol_new() has already validated the nodes
210 * parameter with respect to the policy mode and flags. But, we need to
211 * handle an empty nodemask with MPOL_PREFERRED here.
212 *
213 * Must be called holding task's alloc_lock to protect task's mems_allowed
214 * and mempolicy. May also be called holding the mmap_semaphore for write.
215 */
216 static int mpol_set_nodemask(struct mempolicy *pol,
217 const nodemask_t *nodes, struct nodemask_scratch *nsc)
218 {
219 int ret;
220
221 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
222 if (pol == NULL)
223 return 0;
224 /* Check N_MEMORY */
225 nodes_and(nsc->mask1,
226 cpuset_current_mems_allowed, node_states[N_MEMORY]);
227
228 VM_BUG_ON(!nodes);
229 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
230 nodes = NULL; /* explicit local allocation */
231 else {
232 if (pol->flags & MPOL_F_RELATIVE_NODES)
233 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
234 else
235 nodes_and(nsc->mask2, *nodes, nsc->mask1);
236
237 if (mpol_store_user_nodemask(pol))
238 pol->w.user_nodemask = *nodes;
239 else
240 pol->w.cpuset_mems_allowed =
241 cpuset_current_mems_allowed;
242 }
243
244 if (nodes)
245 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
246 else
247 ret = mpol_ops[pol->mode].create(pol, NULL);
248 return ret;
249 }
250
251 /*
252 * This function just creates a new policy, does some check and simple
253 * initialization. You must invoke mpol_set_nodemask() to set nodes.
254 */
255 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
256 nodemask_t *nodes)
257 {
258 struct mempolicy *policy;
259
260 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
261 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
262
263 if (mode == MPOL_DEFAULT) {
264 if (nodes && !nodes_empty(*nodes))
265 return ERR_PTR(-EINVAL);
266 return NULL;
267 }
268 VM_BUG_ON(!nodes);
269
270 /*
271 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
272 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
273 * All other modes require a valid pointer to a non-empty nodemask.
274 */
275 if (mode == MPOL_PREFERRED) {
276 if (nodes_empty(*nodes)) {
277 if (((flags & MPOL_F_STATIC_NODES) ||
278 (flags & MPOL_F_RELATIVE_NODES)))
279 return ERR_PTR(-EINVAL);
280 }
281 } else if (mode == MPOL_LOCAL) {
282 if (!nodes_empty(*nodes) ||
283 (flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES))
285 return ERR_PTR(-EINVAL);
286 mode = MPOL_PREFERRED;
287 } else if (nodes_empty(*nodes))
288 return ERR_PTR(-EINVAL);
289 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
290 if (!policy)
291 return ERR_PTR(-ENOMEM);
292 atomic_set(&policy->refcnt, 1);
293 policy->mode = mode;
294 policy->flags = flags;
295
296 return policy;
297 }
298
299 /* Slow path of a mpol destructor. */
300 void __mpol_put(struct mempolicy *p)
301 {
302 if (!atomic_dec_and_test(&p->refcnt))
303 return;
304 kmem_cache_free(policy_cache, p);
305 }
306
307 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
308 enum mpol_rebind_step step)
309 {
310 }
311
312 /*
313 * step:
314 * MPOL_REBIND_ONCE - do rebind work at once
315 * MPOL_REBIND_STEP1 - set all the newly nodes
316 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
317 */
318 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
319 enum mpol_rebind_step step)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES)
324 nodes_and(tmp, pol->w.user_nodemask, *nodes);
325 else if (pol->flags & MPOL_F_RELATIVE_NODES)
326 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
327 else {
328 /*
329 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
330 * result
331 */
332 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
333 nodes_remap(tmp, pol->v.nodes,
334 pol->w.cpuset_mems_allowed, *nodes);
335 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
336 } else if (step == MPOL_REBIND_STEP2) {
337 tmp = pol->w.cpuset_mems_allowed;
338 pol->w.cpuset_mems_allowed = *nodes;
339 } else
340 BUG();
341 }
342
343 if (nodes_empty(tmp))
344 tmp = *nodes;
345
346 if (step == MPOL_REBIND_STEP1)
347 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
348 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
349 pol->v.nodes = tmp;
350 else
351 BUG();
352
353 if (!node_isset(current->il_next, tmp)) {
354 current->il_next = next_node_in(current->il_next, tmp);
355 if (current->il_next >= MAX_NUMNODES)
356 current->il_next = numa_node_id();
357 }
358 }
359
360 static void mpol_rebind_preferred(struct mempolicy *pol,
361 const nodemask_t *nodes,
362 enum mpol_rebind_step step)
363 {
364 nodemask_t tmp;
365
366 if (pol->flags & MPOL_F_STATIC_NODES) {
367 int node = first_node(pol->w.user_nodemask);
368
369 if (node_isset(node, *nodes)) {
370 pol->v.preferred_node = node;
371 pol->flags &= ~MPOL_F_LOCAL;
372 } else
373 pol->flags |= MPOL_F_LOCAL;
374 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
375 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
376 pol->v.preferred_node = first_node(tmp);
377 } else if (!(pol->flags & MPOL_F_LOCAL)) {
378 pol->v.preferred_node = node_remap(pol->v.preferred_node,
379 pol->w.cpuset_mems_allowed,
380 *nodes);
381 pol->w.cpuset_mems_allowed = *nodes;
382 }
383 }
384
385 /*
386 * mpol_rebind_policy - Migrate a policy to a different set of nodes
387 *
388 * If read-side task has no lock to protect task->mempolicy, write-side
389 * task will rebind the task->mempolicy by two step. The first step is
390 * setting all the newly nodes, and the second step is cleaning all the
391 * disallowed nodes. In this way, we can avoid finding no node to alloc
392 * page.
393 * If we have a lock to protect task->mempolicy in read-side, we do
394 * rebind directly.
395 *
396 * step:
397 * MPOL_REBIND_ONCE - do rebind work at once
398 * MPOL_REBIND_STEP1 - set all the newly nodes
399 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
400 */
401 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
402 enum mpol_rebind_step step)
403 {
404 if (!pol)
405 return;
406 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
407 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
408 return;
409
410 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
411 return;
412
413 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
414 BUG();
415
416 if (step == MPOL_REBIND_STEP1)
417 pol->flags |= MPOL_F_REBINDING;
418 else if (step == MPOL_REBIND_STEP2)
419 pol->flags &= ~MPOL_F_REBINDING;
420 else if (step >= MPOL_REBIND_NSTEP)
421 BUG();
422
423 mpol_ops[pol->mode].rebind(pol, newmask, step);
424 }
425
426 /*
427 * Wrapper for mpol_rebind_policy() that just requires task
428 * pointer, and updates task mempolicy.
429 *
430 * Called with task's alloc_lock held.
431 */
432
433 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
434 enum mpol_rebind_step step)
435 {
436 mpol_rebind_policy(tsk->mempolicy, new, step);
437 }
438
439 /*
440 * Rebind each vma in mm to new nodemask.
441 *
442 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 */
444
445 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
446 {
447 struct vm_area_struct *vma;
448
449 down_write(&mm->mmap_sem);
450 for (vma = mm->mmap; vma; vma = vma->vm_next)
451 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
452 up_write(&mm->mmap_sem);
453 }
454
455 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
456 [MPOL_DEFAULT] = {
457 .rebind = mpol_rebind_default,
458 },
459 [MPOL_INTERLEAVE] = {
460 .create = mpol_new_interleave,
461 .rebind = mpol_rebind_nodemask,
462 },
463 [MPOL_PREFERRED] = {
464 .create = mpol_new_preferred,
465 .rebind = mpol_rebind_preferred,
466 },
467 [MPOL_BIND] = {
468 .create = mpol_new_bind,
469 .rebind = mpol_rebind_nodemask,
470 },
471 };
472
473 static void migrate_page_add(struct page *page, struct list_head *pagelist,
474 unsigned long flags);
475
476 struct queue_pages {
477 struct list_head *pagelist;
478 unsigned long flags;
479 nodemask_t *nmask;
480 struct vm_area_struct *prev;
481 };
482
483 /*
484 * Scan through pages checking if pages follow certain conditions,
485 * and move them to the pagelist if they do.
486 */
487 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
488 unsigned long end, struct mm_walk *walk)
489 {
490 struct vm_area_struct *vma = walk->vma;
491 struct page *page;
492 struct queue_pages *qp = walk->private;
493 unsigned long flags = qp->flags;
494 int nid, ret;
495 pte_t *pte;
496 spinlock_t *ptl;
497
498 if (pmd_trans_huge(*pmd)) {
499 ptl = pmd_lock(walk->mm, pmd);
500 if (pmd_trans_huge(*pmd)) {
501 page = pmd_page(*pmd);
502 if (is_huge_zero_page(page)) {
503 spin_unlock(ptl);
504 __split_huge_pmd(vma, pmd, addr, false, NULL);
505 } else {
506 get_page(page);
507 spin_unlock(ptl);
508 lock_page(page);
509 ret = split_huge_page(page);
510 unlock_page(page);
511 put_page(page);
512 if (ret)
513 return 0;
514 }
515 } else {
516 spin_unlock(ptl);
517 }
518 }
519
520 if (pmd_trans_unstable(pmd))
521 return 0;
522 retry:
523 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
526 continue;
527 page = vm_normal_page(vma, addr, *pte);
528 if (!page)
529 continue;
530 /*
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
533 */
534 if (PageReserved(page))
535 continue;
536 nid = page_to_nid(page);
537 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
538 continue;
539 if (PageTransCompound(page)) {
540 get_page(page);
541 pte_unmap_unlock(pte, ptl);
542 lock_page(page);
543 ret = split_huge_page(page);
544 unlock_page(page);
545 put_page(page);
546 /* Failed to split -- skip. */
547 if (ret) {
548 pte = pte_offset_map_lock(walk->mm, pmd,
549 addr, &ptl);
550 continue;
551 }
552 goto retry;
553 }
554
555 migrate_page_add(page, qp->pagelist, flags);
556 }
557 pte_unmap_unlock(pte - 1, ptl);
558 cond_resched();
559 return 0;
560 }
561
562 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
563 unsigned long addr, unsigned long end,
564 struct mm_walk *walk)
565 {
566 #ifdef CONFIG_HUGETLB_PAGE
567 struct queue_pages *qp = walk->private;
568 unsigned long flags = qp->flags;
569 int nid;
570 struct page *page;
571 spinlock_t *ptl;
572 pte_t entry;
573
574 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
575 entry = huge_ptep_get(pte);
576 if (!pte_present(entry))
577 goto unlock;
578 page = pte_page(entry);
579 nid = page_to_nid(page);
580 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
581 goto unlock;
582 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
583 if (flags & (MPOL_MF_MOVE_ALL) ||
584 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
585 isolate_huge_page(page, qp->pagelist);
586 unlock:
587 spin_unlock(ptl);
588 #else
589 BUG();
590 #endif
591 return 0;
592 }
593
594 #ifdef CONFIG_NUMA_BALANCING
595 /*
596 * This is used to mark a range of virtual addresses to be inaccessible.
597 * These are later cleared by a NUMA hinting fault. Depending on these
598 * faults, pages may be migrated for better NUMA placement.
599 *
600 * This is assuming that NUMA faults are handled using PROT_NONE. If
601 * an architecture makes a different choice, it will need further
602 * changes to the core.
603 */
604 unsigned long change_prot_numa(struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
606 {
607 int nr_updated;
608
609 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
610 if (nr_updated)
611 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
612
613 return nr_updated;
614 }
615 #else
616 static unsigned long change_prot_numa(struct vm_area_struct *vma,
617 unsigned long addr, unsigned long end)
618 {
619 return 0;
620 }
621 #endif /* CONFIG_NUMA_BALANCING */
622
623 static int queue_pages_test_walk(unsigned long start, unsigned long end,
624 struct mm_walk *walk)
625 {
626 struct vm_area_struct *vma = walk->vma;
627 struct queue_pages *qp = walk->private;
628 unsigned long endvma = vma->vm_end;
629 unsigned long flags = qp->flags;
630
631 if (!vma_migratable(vma))
632 return 1;
633
634 if (endvma > end)
635 endvma = end;
636 if (vma->vm_start > start)
637 start = vma->vm_start;
638
639 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
640 if (!vma->vm_next && vma->vm_end < end)
641 return -EFAULT;
642 if (qp->prev && qp->prev->vm_end < vma->vm_start)
643 return -EFAULT;
644 }
645
646 qp->prev = vma;
647
648 if (flags & MPOL_MF_LAZY) {
649 /* Similar to task_numa_work, skip inaccessible VMAs */
650 if (!is_vm_hugetlb_page(vma) &&
651 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
652 !(vma->vm_flags & VM_MIXEDMAP))
653 change_prot_numa(vma, start, endvma);
654 return 1;
655 }
656
657 /* queue pages from current vma */
658 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
659 return 0;
660 return 1;
661 }
662
663 /*
664 * Walk through page tables and collect pages to be migrated.
665 *
666 * If pages found in a given range are on a set of nodes (determined by
667 * @nodes and @flags,) it's isolated and queued to the pagelist which is
668 * passed via @private.)
669 */
670 static int
671 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
672 nodemask_t *nodes, unsigned long flags,
673 struct list_head *pagelist)
674 {
675 struct queue_pages qp = {
676 .pagelist = pagelist,
677 .flags = flags,
678 .nmask = nodes,
679 .prev = NULL,
680 };
681 struct mm_walk queue_pages_walk = {
682 .hugetlb_entry = queue_pages_hugetlb,
683 .pmd_entry = queue_pages_pte_range,
684 .test_walk = queue_pages_test_walk,
685 .mm = mm,
686 .private = &qp,
687 };
688
689 return walk_page_range(start, end, &queue_pages_walk);
690 }
691
692 /*
693 * Apply policy to a single VMA
694 * This must be called with the mmap_sem held for writing.
695 */
696 static int vma_replace_policy(struct vm_area_struct *vma,
697 struct mempolicy *pol)
698 {
699 int err;
700 struct mempolicy *old;
701 struct mempolicy *new;
702
703 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
704 vma->vm_start, vma->vm_end, vma->vm_pgoff,
705 vma->vm_ops, vma->vm_file,
706 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
707
708 new = mpol_dup(pol);
709 if (IS_ERR(new))
710 return PTR_ERR(new);
711
712 if (vma->vm_ops && vma->vm_ops->set_policy) {
713 err = vma->vm_ops->set_policy(vma, new);
714 if (err)
715 goto err_out;
716 }
717
718 old = vma->vm_policy;
719 vma->vm_policy = new; /* protected by mmap_sem */
720 mpol_put(old);
721
722 return 0;
723 err_out:
724 mpol_put(new);
725 return err;
726 }
727
728 /* Step 2: apply policy to a range and do splits. */
729 static int mbind_range(struct mm_struct *mm, unsigned long start,
730 unsigned long end, struct mempolicy *new_pol)
731 {
732 struct vm_area_struct *next;
733 struct vm_area_struct *prev;
734 struct vm_area_struct *vma;
735 int err = 0;
736 pgoff_t pgoff;
737 unsigned long vmstart;
738 unsigned long vmend;
739
740 vma = find_vma(mm, start);
741 if (!vma || vma->vm_start > start)
742 return -EFAULT;
743
744 prev = vma->vm_prev;
745 if (start > vma->vm_start)
746 prev = vma;
747
748 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
749 next = vma->vm_next;
750 vmstart = max(start, vma->vm_start);
751 vmend = min(end, vma->vm_end);
752
753 if (mpol_equal(vma_policy(vma), new_pol))
754 continue;
755
756 pgoff = vma->vm_pgoff +
757 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
758 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
759 vma->anon_vma, vma->vm_file, pgoff,
760 new_pol, vma->vm_userfaultfd_ctx);
761 if (prev) {
762 vma = prev;
763 next = vma->vm_next;
764 if (mpol_equal(vma_policy(vma), new_pol))
765 continue;
766 /* vma_merge() joined vma && vma->next, case 8 */
767 goto replace;
768 }
769 if (vma->vm_start != vmstart) {
770 err = split_vma(vma->vm_mm, vma, vmstart, 1);
771 if (err)
772 goto out;
773 }
774 if (vma->vm_end != vmend) {
775 err = split_vma(vma->vm_mm, vma, vmend, 0);
776 if (err)
777 goto out;
778 }
779 replace:
780 err = vma_replace_policy(vma, new_pol);
781 if (err)
782 goto out;
783 }
784
785 out:
786 return err;
787 }
788
789 /* Set the process memory policy */
790 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
791 nodemask_t *nodes)
792 {
793 struct mempolicy *new, *old;
794 NODEMASK_SCRATCH(scratch);
795 int ret;
796
797 if (!scratch)
798 return -ENOMEM;
799
800 new = mpol_new(mode, flags, nodes);
801 if (IS_ERR(new)) {
802 ret = PTR_ERR(new);
803 goto out;
804 }
805
806 task_lock(current);
807 ret = mpol_set_nodemask(new, nodes, scratch);
808 if (ret) {
809 task_unlock(current);
810 mpol_put(new);
811 goto out;
812 }
813 old = current->mempolicy;
814 current->mempolicy = new;
815 if (new && new->mode == MPOL_INTERLEAVE &&
816 nodes_weight(new->v.nodes))
817 current->il_next = first_node(new->v.nodes);
818 task_unlock(current);
819 mpol_put(old);
820 ret = 0;
821 out:
822 NODEMASK_SCRATCH_FREE(scratch);
823 return ret;
824 }
825
826 /*
827 * Return nodemask for policy for get_mempolicy() query
828 *
829 * Called with task's alloc_lock held
830 */
831 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
832 {
833 nodes_clear(*nodes);
834 if (p == &default_policy)
835 return;
836
837 switch (p->mode) {
838 case MPOL_BIND:
839 /* Fall through */
840 case MPOL_INTERLEAVE:
841 *nodes = p->v.nodes;
842 break;
843 case MPOL_PREFERRED:
844 if (!(p->flags & MPOL_F_LOCAL))
845 node_set(p->v.preferred_node, *nodes);
846 /* else return empty node mask for local allocation */
847 break;
848 default:
849 BUG();
850 }
851 }
852
853 static int lookup_node(unsigned long addr)
854 {
855 struct page *p;
856 int err;
857
858 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
859 if (err >= 0) {
860 err = page_to_nid(p);
861 put_page(p);
862 }
863 return err;
864 }
865
866 /* Retrieve NUMA policy */
867 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
868 unsigned long addr, unsigned long flags)
869 {
870 int err;
871 struct mm_struct *mm = current->mm;
872 struct vm_area_struct *vma = NULL;
873 struct mempolicy *pol = current->mempolicy;
874
875 if (flags &
876 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
877 return -EINVAL;
878
879 if (flags & MPOL_F_MEMS_ALLOWED) {
880 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
881 return -EINVAL;
882 *policy = 0; /* just so it's initialized */
883 task_lock(current);
884 *nmask = cpuset_current_mems_allowed;
885 task_unlock(current);
886 return 0;
887 }
888
889 if (flags & MPOL_F_ADDR) {
890 /*
891 * Do NOT fall back to task policy if the
892 * vma/shared policy at addr is NULL. We
893 * want to return MPOL_DEFAULT in this case.
894 */
895 down_read(&mm->mmap_sem);
896 vma = find_vma_intersection(mm, addr, addr+1);
897 if (!vma) {
898 up_read(&mm->mmap_sem);
899 return -EFAULT;
900 }
901 if (vma->vm_ops && vma->vm_ops->get_policy)
902 pol = vma->vm_ops->get_policy(vma, addr);
903 else
904 pol = vma->vm_policy;
905 } else if (addr)
906 return -EINVAL;
907
908 if (!pol)
909 pol = &default_policy; /* indicates default behavior */
910
911 if (flags & MPOL_F_NODE) {
912 if (flags & MPOL_F_ADDR) {
913 err = lookup_node(addr);
914 if (err < 0)
915 goto out;
916 *policy = err;
917 } else if (pol == current->mempolicy &&
918 pol->mode == MPOL_INTERLEAVE) {
919 *policy = current->il_next;
920 } else {
921 err = -EINVAL;
922 goto out;
923 }
924 } else {
925 *policy = pol == &default_policy ? MPOL_DEFAULT :
926 pol->mode;
927 /*
928 * Internal mempolicy flags must be masked off before exposing
929 * the policy to userspace.
930 */
931 *policy |= (pol->flags & MPOL_MODE_FLAGS);
932 }
933
934 if (vma) {
935 up_read(&current->mm->mmap_sem);
936 vma = NULL;
937 }
938
939 err = 0;
940 if (nmask) {
941 if (mpol_store_user_nodemask(pol)) {
942 *nmask = pol->w.user_nodemask;
943 } else {
944 task_lock(current);
945 get_policy_nodemask(pol, nmask);
946 task_unlock(current);
947 }
948 }
949
950 out:
951 mpol_cond_put(pol);
952 if (vma)
953 up_read(&current->mm->mmap_sem);
954 return err;
955 }
956
957 #ifdef CONFIG_MIGRATION
958 /*
959 * page migration
960 */
961 static void migrate_page_add(struct page *page, struct list_head *pagelist,
962 unsigned long flags)
963 {
964 /*
965 * Avoid migrating a page that is shared with others.
966 */
967 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
968 if (!isolate_lru_page(page)) {
969 list_add_tail(&page->lru, pagelist);
970 inc_node_page_state(page, NR_ISOLATED_ANON +
971 page_is_file_cache(page));
972 }
973 }
974 }
975
976 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
977 {
978 if (PageHuge(page))
979 return alloc_huge_page_node(page_hstate(compound_head(page)),
980 node);
981 else
982 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
983 __GFP_THISNODE, 0);
984 }
985
986 /*
987 * Migrate pages from one node to a target node.
988 * Returns error or the number of pages not migrated.
989 */
990 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
991 int flags)
992 {
993 nodemask_t nmask;
994 LIST_HEAD(pagelist);
995 int err = 0;
996
997 nodes_clear(nmask);
998 node_set(source, nmask);
999
1000 /*
1001 * This does not "check" the range but isolates all pages that
1002 * need migration. Between passing in the full user address
1003 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1004 */
1005 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1006 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1007 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1008
1009 if (!list_empty(&pagelist)) {
1010 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1011 MIGRATE_SYNC, MR_SYSCALL);
1012 if (err)
1013 putback_movable_pages(&pagelist);
1014 }
1015
1016 return err;
1017 }
1018
1019 /*
1020 * Move pages between the two nodesets so as to preserve the physical
1021 * layout as much as possible.
1022 *
1023 * Returns the number of page that could not be moved.
1024 */
1025 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1026 const nodemask_t *to, int flags)
1027 {
1028 int busy = 0;
1029 int err;
1030 nodemask_t tmp;
1031
1032 err = migrate_prep();
1033 if (err)
1034 return err;
1035
1036 down_read(&mm->mmap_sem);
1037
1038 /*
1039 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1040 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1041 * bit in 'tmp', and return that <source, dest> pair for migration.
1042 * The pair of nodemasks 'to' and 'from' define the map.
1043 *
1044 * If no pair of bits is found that way, fallback to picking some
1045 * pair of 'source' and 'dest' bits that are not the same. If the
1046 * 'source' and 'dest' bits are the same, this represents a node
1047 * that will be migrating to itself, so no pages need move.
1048 *
1049 * If no bits are left in 'tmp', or if all remaining bits left
1050 * in 'tmp' correspond to the same bit in 'to', return false
1051 * (nothing left to migrate).
1052 *
1053 * This lets us pick a pair of nodes to migrate between, such that
1054 * if possible the dest node is not already occupied by some other
1055 * source node, minimizing the risk of overloading the memory on a
1056 * node that would happen if we migrated incoming memory to a node
1057 * before migrating outgoing memory source that same node.
1058 *
1059 * A single scan of tmp is sufficient. As we go, we remember the
1060 * most recent <s, d> pair that moved (s != d). If we find a pair
1061 * that not only moved, but what's better, moved to an empty slot
1062 * (d is not set in tmp), then we break out then, with that pair.
1063 * Otherwise when we finish scanning from_tmp, we at least have the
1064 * most recent <s, d> pair that moved. If we get all the way through
1065 * the scan of tmp without finding any node that moved, much less
1066 * moved to an empty node, then there is nothing left worth migrating.
1067 */
1068
1069 tmp = *from;
1070 while (!nodes_empty(tmp)) {
1071 int s,d;
1072 int source = NUMA_NO_NODE;
1073 int dest = 0;
1074
1075 for_each_node_mask(s, tmp) {
1076
1077 /*
1078 * do_migrate_pages() tries to maintain the relative
1079 * node relationship of the pages established between
1080 * threads and memory areas.
1081 *
1082 * However if the number of source nodes is not equal to
1083 * the number of destination nodes we can not preserve
1084 * this node relative relationship. In that case, skip
1085 * copying memory from a node that is in the destination
1086 * mask.
1087 *
1088 * Example: [2,3,4] -> [3,4,5] moves everything.
1089 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1090 */
1091
1092 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1093 (node_isset(s, *to)))
1094 continue;
1095
1096 d = node_remap(s, *from, *to);
1097 if (s == d)
1098 continue;
1099
1100 source = s; /* Node moved. Memorize */
1101 dest = d;
1102
1103 /* dest not in remaining from nodes? */
1104 if (!node_isset(dest, tmp))
1105 break;
1106 }
1107 if (source == NUMA_NO_NODE)
1108 break;
1109
1110 node_clear(source, tmp);
1111 err = migrate_to_node(mm, source, dest, flags);
1112 if (err > 0)
1113 busy += err;
1114 if (err < 0)
1115 break;
1116 }
1117 up_read(&mm->mmap_sem);
1118 if (err < 0)
1119 return err;
1120 return busy;
1121
1122 }
1123
1124 /*
1125 * Allocate a new page for page migration based on vma policy.
1126 * Start by assuming the page is mapped by the same vma as contains @start.
1127 * Search forward from there, if not. N.B., this assumes that the
1128 * list of pages handed to migrate_pages()--which is how we get here--
1129 * is in virtual address order.
1130 */
1131 static struct page *new_page(struct page *page, unsigned long start, int **x)
1132 {
1133 struct vm_area_struct *vma;
1134 unsigned long uninitialized_var(address);
1135
1136 vma = find_vma(current->mm, start);
1137 while (vma) {
1138 address = page_address_in_vma(page, vma);
1139 if (address != -EFAULT)
1140 break;
1141 vma = vma->vm_next;
1142 }
1143
1144 if (PageHuge(page)) {
1145 BUG_ON(!vma);
1146 return alloc_huge_page_noerr(vma, address, 1);
1147 }
1148 /*
1149 * if !vma, alloc_page_vma() will use task or system default policy
1150 */
1151 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1152 }
1153 #else
1154
1155 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1156 unsigned long flags)
1157 {
1158 }
1159
1160 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1161 const nodemask_t *to, int flags)
1162 {
1163 return -ENOSYS;
1164 }
1165
1166 static struct page *new_page(struct page *page, unsigned long start, int **x)
1167 {
1168 return NULL;
1169 }
1170 #endif
1171
1172 static long do_mbind(unsigned long start, unsigned long len,
1173 unsigned short mode, unsigned short mode_flags,
1174 nodemask_t *nmask, unsigned long flags)
1175 {
1176 struct mm_struct *mm = current->mm;
1177 struct mempolicy *new;
1178 unsigned long end;
1179 int err;
1180 LIST_HEAD(pagelist);
1181
1182 if (flags & ~(unsigned long)MPOL_MF_VALID)
1183 return -EINVAL;
1184 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1185 return -EPERM;
1186
1187 if (start & ~PAGE_MASK)
1188 return -EINVAL;
1189
1190 if (mode == MPOL_DEFAULT)
1191 flags &= ~MPOL_MF_STRICT;
1192
1193 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1194 end = start + len;
1195
1196 if (end < start)
1197 return -EINVAL;
1198 if (end == start)
1199 return 0;
1200
1201 new = mpol_new(mode, mode_flags, nmask);
1202 if (IS_ERR(new))
1203 return PTR_ERR(new);
1204
1205 if (flags & MPOL_MF_LAZY)
1206 new->flags |= MPOL_F_MOF;
1207
1208 /*
1209 * If we are using the default policy then operation
1210 * on discontinuous address spaces is okay after all
1211 */
1212 if (!new)
1213 flags |= MPOL_MF_DISCONTIG_OK;
1214
1215 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1216 start, start + len, mode, mode_flags,
1217 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1218
1219 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1220
1221 err = migrate_prep();
1222 if (err)
1223 goto mpol_out;
1224 }
1225 {
1226 NODEMASK_SCRATCH(scratch);
1227 if (scratch) {
1228 down_write(&mm->mmap_sem);
1229 task_lock(current);
1230 err = mpol_set_nodemask(new, nmask, scratch);
1231 task_unlock(current);
1232 if (err)
1233 up_write(&mm->mmap_sem);
1234 } else
1235 err = -ENOMEM;
1236 NODEMASK_SCRATCH_FREE(scratch);
1237 }
1238 if (err)
1239 goto mpol_out;
1240
1241 err = queue_pages_range(mm, start, end, nmask,
1242 flags | MPOL_MF_INVERT, &pagelist);
1243 if (!err)
1244 err = mbind_range(mm, start, end, new);
1245
1246 if (!err) {
1247 int nr_failed = 0;
1248
1249 if (!list_empty(&pagelist)) {
1250 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1251 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1252 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1253 if (nr_failed)
1254 putback_movable_pages(&pagelist);
1255 }
1256
1257 if (nr_failed && (flags & MPOL_MF_STRICT))
1258 err = -EIO;
1259 } else
1260 putback_movable_pages(&pagelist);
1261
1262 up_write(&mm->mmap_sem);
1263 mpol_out:
1264 mpol_put(new);
1265 return err;
1266 }
1267
1268 /*
1269 * User space interface with variable sized bitmaps for nodelists.
1270 */
1271
1272 /* Copy a node mask from user space. */
1273 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1274 unsigned long maxnode)
1275 {
1276 unsigned long k;
1277 unsigned long nlongs;
1278 unsigned long endmask;
1279
1280 --maxnode;
1281 nodes_clear(*nodes);
1282 if (maxnode == 0 || !nmask)
1283 return 0;
1284 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1285 return -EINVAL;
1286
1287 nlongs = BITS_TO_LONGS(maxnode);
1288 if ((maxnode % BITS_PER_LONG) == 0)
1289 endmask = ~0UL;
1290 else
1291 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1292
1293 /* When the user specified more nodes than supported just check
1294 if the non supported part is all zero. */
1295 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1296 if (nlongs > PAGE_SIZE/sizeof(long))
1297 return -EINVAL;
1298 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1299 unsigned long t;
1300 if (get_user(t, nmask + k))
1301 return -EFAULT;
1302 if (k == nlongs - 1) {
1303 if (t & endmask)
1304 return -EINVAL;
1305 } else if (t)
1306 return -EINVAL;
1307 }
1308 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1309 endmask = ~0UL;
1310 }
1311
1312 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1313 return -EFAULT;
1314 nodes_addr(*nodes)[nlongs-1] &= endmask;
1315 return 0;
1316 }
1317
1318 /* Copy a kernel node mask to user space */
1319 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1320 nodemask_t *nodes)
1321 {
1322 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1323 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1324
1325 if (copy > nbytes) {
1326 if (copy > PAGE_SIZE)
1327 return -EINVAL;
1328 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1329 return -EFAULT;
1330 copy = nbytes;
1331 }
1332 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1333 }
1334
1335 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1336 unsigned long, mode, const unsigned long __user *, nmask,
1337 unsigned long, maxnode, unsigned, flags)
1338 {
1339 nodemask_t nodes;
1340 int err;
1341 unsigned short mode_flags;
1342
1343 mode_flags = mode & MPOL_MODE_FLAGS;
1344 mode &= ~MPOL_MODE_FLAGS;
1345 if (mode >= MPOL_MAX)
1346 return -EINVAL;
1347 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1348 (mode_flags & MPOL_F_RELATIVE_NODES))
1349 return -EINVAL;
1350 err = get_nodes(&nodes, nmask, maxnode);
1351 if (err)
1352 return err;
1353 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1354 }
1355
1356 /* Set the process memory policy */
1357 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1358 unsigned long, maxnode)
1359 {
1360 int err;
1361 nodemask_t nodes;
1362 unsigned short flags;
1363
1364 flags = mode & MPOL_MODE_FLAGS;
1365 mode &= ~MPOL_MODE_FLAGS;
1366 if ((unsigned int)mode >= MPOL_MAX)
1367 return -EINVAL;
1368 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1369 return -EINVAL;
1370 err = get_nodes(&nodes, nmask, maxnode);
1371 if (err)
1372 return err;
1373 return do_set_mempolicy(mode, flags, &nodes);
1374 }
1375
1376 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1377 const unsigned long __user *, old_nodes,
1378 const unsigned long __user *, new_nodes)
1379 {
1380 const struct cred *cred = current_cred(), *tcred;
1381 struct mm_struct *mm = NULL;
1382 struct task_struct *task;
1383 nodemask_t task_nodes;
1384 int err;
1385 nodemask_t *old;
1386 nodemask_t *new;
1387 NODEMASK_SCRATCH(scratch);
1388
1389 if (!scratch)
1390 return -ENOMEM;
1391
1392 old = &scratch->mask1;
1393 new = &scratch->mask2;
1394
1395 err = get_nodes(old, old_nodes, maxnode);
1396 if (err)
1397 goto out;
1398
1399 err = get_nodes(new, new_nodes, maxnode);
1400 if (err)
1401 goto out;
1402
1403 /* Find the mm_struct */
1404 rcu_read_lock();
1405 task = pid ? find_task_by_vpid(pid) : current;
1406 if (!task) {
1407 rcu_read_unlock();
1408 err = -ESRCH;
1409 goto out;
1410 }
1411 get_task_struct(task);
1412
1413 err = -EINVAL;
1414
1415 /*
1416 * Check if this process has the right to modify the specified
1417 * process. The right exists if the process has administrative
1418 * capabilities, superuser privileges or the same
1419 * userid as the target process.
1420 */
1421 tcred = __task_cred(task);
1422 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1423 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1424 !capable(CAP_SYS_NICE)) {
1425 rcu_read_unlock();
1426 err = -EPERM;
1427 goto out_put;
1428 }
1429 rcu_read_unlock();
1430
1431 task_nodes = cpuset_mems_allowed(task);
1432 /* Is the user allowed to access the target nodes? */
1433 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1434 err = -EPERM;
1435 goto out_put;
1436 }
1437
1438 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1439 err = -EINVAL;
1440 goto out_put;
1441 }
1442
1443 err = security_task_movememory(task);
1444 if (err)
1445 goto out_put;
1446
1447 mm = get_task_mm(task);
1448 put_task_struct(task);
1449
1450 if (!mm) {
1451 err = -EINVAL;
1452 goto out;
1453 }
1454
1455 err = do_migrate_pages(mm, old, new,
1456 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1457
1458 mmput(mm);
1459 out:
1460 NODEMASK_SCRATCH_FREE(scratch);
1461
1462 return err;
1463
1464 out_put:
1465 put_task_struct(task);
1466 goto out;
1467
1468 }
1469
1470
1471 /* Retrieve NUMA policy */
1472 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1473 unsigned long __user *, nmask, unsigned long, maxnode,
1474 unsigned long, addr, unsigned long, flags)
1475 {
1476 int err;
1477 int uninitialized_var(pval);
1478 nodemask_t nodes;
1479
1480 if (nmask != NULL && maxnode < MAX_NUMNODES)
1481 return -EINVAL;
1482
1483 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484
1485 if (err)
1486 return err;
1487
1488 if (policy && put_user(pval, policy))
1489 return -EFAULT;
1490
1491 if (nmask)
1492 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493
1494 return err;
1495 }
1496
1497 #ifdef CONFIG_COMPAT
1498
1499 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1500 compat_ulong_t __user *, nmask,
1501 compat_ulong_t, maxnode,
1502 compat_ulong_t, addr, compat_ulong_t, flags)
1503 {
1504 long err;
1505 unsigned long __user *nm = NULL;
1506 unsigned long nr_bits, alloc_size;
1507 DECLARE_BITMAP(bm, MAX_NUMNODES);
1508
1509 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1510 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1511
1512 if (nmask)
1513 nm = compat_alloc_user_space(alloc_size);
1514
1515 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1516
1517 if (!err && nmask) {
1518 unsigned long copy_size;
1519 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1520 err = copy_from_user(bm, nm, copy_size);
1521 /* ensure entire bitmap is zeroed */
1522 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1523 err |= compat_put_bitmap(nmask, bm, nr_bits);
1524 }
1525
1526 return err;
1527 }
1528
1529 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1530 compat_ulong_t, maxnode)
1531 {
1532 long err = 0;
1533 unsigned long __user *nm = NULL;
1534 unsigned long nr_bits, alloc_size;
1535 DECLARE_BITMAP(bm, MAX_NUMNODES);
1536
1537 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1538 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1539
1540 if (nmask) {
1541 err = compat_get_bitmap(bm, nmask, nr_bits);
1542 nm = compat_alloc_user_space(alloc_size);
1543 err |= copy_to_user(nm, bm, alloc_size);
1544 }
1545
1546 if (err)
1547 return -EFAULT;
1548
1549 return sys_set_mempolicy(mode, nm, nr_bits+1);
1550 }
1551
1552 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1553 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1554 compat_ulong_t, maxnode, compat_ulong_t, flags)
1555 {
1556 long err = 0;
1557 unsigned long __user *nm = NULL;
1558 unsigned long nr_bits, alloc_size;
1559 nodemask_t bm;
1560
1561 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1562 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1563
1564 if (nmask) {
1565 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1566 nm = compat_alloc_user_space(alloc_size);
1567 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1568 }
1569
1570 if (err)
1571 return -EFAULT;
1572
1573 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1574 }
1575
1576 #endif
1577
1578 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1579 unsigned long addr)
1580 {
1581 struct mempolicy *pol = NULL;
1582
1583 if (vma) {
1584 if (vma->vm_ops && vma->vm_ops->get_policy) {
1585 pol = vma->vm_ops->get_policy(vma, addr);
1586 } else if (vma->vm_policy) {
1587 pol = vma->vm_policy;
1588
1589 /*
1590 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1591 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1592 * count on these policies which will be dropped by
1593 * mpol_cond_put() later
1594 */
1595 if (mpol_needs_cond_ref(pol))
1596 mpol_get(pol);
1597 }
1598 }
1599
1600 return pol;
1601 }
1602
1603 /*
1604 * get_vma_policy(@vma, @addr)
1605 * @vma: virtual memory area whose policy is sought
1606 * @addr: address in @vma for shared policy lookup
1607 *
1608 * Returns effective policy for a VMA at specified address.
1609 * Falls back to current->mempolicy or system default policy, as necessary.
1610 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1611 * count--added by the get_policy() vm_op, as appropriate--to protect against
1612 * freeing by another task. It is the caller's responsibility to free the
1613 * extra reference for shared policies.
1614 */
1615 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1616 unsigned long addr)
1617 {
1618 struct mempolicy *pol = __get_vma_policy(vma, addr);
1619
1620 if (!pol)
1621 pol = get_task_policy(current);
1622
1623 return pol;
1624 }
1625
1626 bool vma_policy_mof(struct vm_area_struct *vma)
1627 {
1628 struct mempolicy *pol;
1629
1630 if (vma->vm_ops && vma->vm_ops->get_policy) {
1631 bool ret = false;
1632
1633 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1634 if (pol && (pol->flags & MPOL_F_MOF))
1635 ret = true;
1636 mpol_cond_put(pol);
1637
1638 return ret;
1639 }
1640
1641 pol = vma->vm_policy;
1642 if (!pol)
1643 pol = get_task_policy(current);
1644
1645 return pol->flags & MPOL_F_MOF;
1646 }
1647
1648 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1649 {
1650 enum zone_type dynamic_policy_zone = policy_zone;
1651
1652 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1653
1654 /*
1655 * if policy->v.nodes has movable memory only,
1656 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1657 *
1658 * policy->v.nodes is intersect with node_states[N_MEMORY].
1659 * so if the following test faile, it implies
1660 * policy->v.nodes has movable memory only.
1661 */
1662 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1663 dynamic_policy_zone = ZONE_MOVABLE;
1664
1665 return zone >= dynamic_policy_zone;
1666 }
1667
1668 /*
1669 * Return a nodemask representing a mempolicy for filtering nodes for
1670 * page allocation
1671 */
1672 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1673 {
1674 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1675 if (unlikely(policy->mode == MPOL_BIND) &&
1676 apply_policy_zone(policy, gfp_zone(gfp)) &&
1677 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1678 return &policy->v.nodes;
1679
1680 return NULL;
1681 }
1682
1683 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1684 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1685 int nd)
1686 {
1687 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1688 nd = policy->v.preferred_node;
1689 else {
1690 /*
1691 * __GFP_THISNODE shouldn't even be used with the bind policy
1692 * because we might easily break the expectation to stay on the
1693 * requested node and not break the policy.
1694 */
1695 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1696 }
1697
1698 return node_zonelist(nd, gfp);
1699 }
1700
1701 /* Do dynamic interleaving for a process */
1702 static unsigned interleave_nodes(struct mempolicy *policy)
1703 {
1704 unsigned nid, next;
1705 struct task_struct *me = current;
1706
1707 nid = me->il_next;
1708 next = next_node_in(nid, policy->v.nodes);
1709 if (next < MAX_NUMNODES)
1710 me->il_next = next;
1711 return nid;
1712 }
1713
1714 /*
1715 * Depending on the memory policy provide a node from which to allocate the
1716 * next slab entry.
1717 */
1718 unsigned int mempolicy_slab_node(void)
1719 {
1720 struct mempolicy *policy;
1721 int node = numa_mem_id();
1722
1723 if (in_interrupt())
1724 return node;
1725
1726 policy = current->mempolicy;
1727 if (!policy || policy->flags & MPOL_F_LOCAL)
1728 return node;
1729
1730 switch (policy->mode) {
1731 case MPOL_PREFERRED:
1732 /*
1733 * handled MPOL_F_LOCAL above
1734 */
1735 return policy->v.preferred_node;
1736
1737 case MPOL_INTERLEAVE:
1738 return interleave_nodes(policy);
1739
1740 case MPOL_BIND: {
1741 struct zoneref *z;
1742
1743 /*
1744 * Follow bind policy behavior and start allocation at the
1745 * first node.
1746 */
1747 struct zonelist *zonelist;
1748 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1749 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1750 z = first_zones_zonelist(zonelist, highest_zoneidx,
1751 &policy->v.nodes);
1752 return z->zone ? z->zone->node : node;
1753 }
1754
1755 default:
1756 BUG();
1757 }
1758 }
1759
1760 /*
1761 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1762 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1763 * number of present nodes.
1764 */
1765 static unsigned offset_il_node(struct mempolicy *pol,
1766 struct vm_area_struct *vma, unsigned long n)
1767 {
1768 unsigned nnodes = nodes_weight(pol->v.nodes);
1769 unsigned target;
1770 int i;
1771 int nid;
1772
1773 if (!nnodes)
1774 return numa_node_id();
1775 target = (unsigned int)n % nnodes;
1776 nid = first_node(pol->v.nodes);
1777 for (i = 0; i < target; i++)
1778 nid = next_node(nid, pol->v.nodes);
1779 return nid;
1780 }
1781
1782 /* Determine a node number for interleave */
1783 static inline unsigned interleave_nid(struct mempolicy *pol,
1784 struct vm_area_struct *vma, unsigned long addr, int shift)
1785 {
1786 if (vma) {
1787 unsigned long off;
1788
1789 /*
1790 * for small pages, there is no difference between
1791 * shift and PAGE_SHIFT, so the bit-shift is safe.
1792 * for huge pages, since vm_pgoff is in units of small
1793 * pages, we need to shift off the always 0 bits to get
1794 * a useful offset.
1795 */
1796 BUG_ON(shift < PAGE_SHIFT);
1797 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1798 off += (addr - vma->vm_start) >> shift;
1799 return offset_il_node(pol, vma, off);
1800 } else
1801 return interleave_nodes(pol);
1802 }
1803
1804 #ifdef CONFIG_HUGETLBFS
1805 /*
1806 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1807 * @vma: virtual memory area whose policy is sought
1808 * @addr: address in @vma for shared policy lookup and interleave policy
1809 * @gfp_flags: for requested zone
1810 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1811 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1812 *
1813 * Returns a zonelist suitable for a huge page allocation and a pointer
1814 * to the struct mempolicy for conditional unref after allocation.
1815 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1816 * @nodemask for filtering the zonelist.
1817 *
1818 * Must be protected by read_mems_allowed_begin()
1819 */
1820 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1821 gfp_t gfp_flags, struct mempolicy **mpol,
1822 nodemask_t **nodemask)
1823 {
1824 struct zonelist *zl;
1825
1826 *mpol = get_vma_policy(vma, addr);
1827 *nodemask = NULL; /* assume !MPOL_BIND */
1828
1829 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1830 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1831 huge_page_shift(hstate_vma(vma))), gfp_flags);
1832 } else {
1833 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1834 if ((*mpol)->mode == MPOL_BIND)
1835 *nodemask = &(*mpol)->v.nodes;
1836 }
1837 return zl;
1838 }
1839
1840 /*
1841 * init_nodemask_of_mempolicy
1842 *
1843 * If the current task's mempolicy is "default" [NULL], return 'false'
1844 * to indicate default policy. Otherwise, extract the policy nodemask
1845 * for 'bind' or 'interleave' policy into the argument nodemask, or
1846 * initialize the argument nodemask to contain the single node for
1847 * 'preferred' or 'local' policy and return 'true' to indicate presence
1848 * of non-default mempolicy.
1849 *
1850 * We don't bother with reference counting the mempolicy [mpol_get/put]
1851 * because the current task is examining it's own mempolicy and a task's
1852 * mempolicy is only ever changed by the task itself.
1853 *
1854 * N.B., it is the caller's responsibility to free a returned nodemask.
1855 */
1856 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1857 {
1858 struct mempolicy *mempolicy;
1859 int nid;
1860
1861 if (!(mask && current->mempolicy))
1862 return false;
1863
1864 task_lock(current);
1865 mempolicy = current->mempolicy;
1866 switch (mempolicy->mode) {
1867 case MPOL_PREFERRED:
1868 if (mempolicy->flags & MPOL_F_LOCAL)
1869 nid = numa_node_id();
1870 else
1871 nid = mempolicy->v.preferred_node;
1872 init_nodemask_of_node(mask, nid);
1873 break;
1874
1875 case MPOL_BIND:
1876 /* Fall through */
1877 case MPOL_INTERLEAVE:
1878 *mask = mempolicy->v.nodes;
1879 break;
1880
1881 default:
1882 BUG();
1883 }
1884 task_unlock(current);
1885
1886 return true;
1887 }
1888 #endif
1889
1890 /*
1891 * mempolicy_nodemask_intersects
1892 *
1893 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1894 * policy. Otherwise, check for intersection between mask and the policy
1895 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1896 * policy, always return true since it may allocate elsewhere on fallback.
1897 *
1898 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1899 */
1900 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1901 const nodemask_t *mask)
1902 {
1903 struct mempolicy *mempolicy;
1904 bool ret = true;
1905
1906 if (!mask)
1907 return ret;
1908 task_lock(tsk);
1909 mempolicy = tsk->mempolicy;
1910 if (!mempolicy)
1911 goto out;
1912
1913 switch (mempolicy->mode) {
1914 case MPOL_PREFERRED:
1915 /*
1916 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1917 * allocate from, they may fallback to other nodes when oom.
1918 * Thus, it's possible for tsk to have allocated memory from
1919 * nodes in mask.
1920 */
1921 break;
1922 case MPOL_BIND:
1923 case MPOL_INTERLEAVE:
1924 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1925 break;
1926 default:
1927 BUG();
1928 }
1929 out:
1930 task_unlock(tsk);
1931 return ret;
1932 }
1933
1934 /* Allocate a page in interleaved policy.
1935 Own path because it needs to do special accounting. */
1936 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1937 unsigned nid)
1938 {
1939 struct zonelist *zl;
1940 struct page *page;
1941
1942 zl = node_zonelist(nid, gfp);
1943 page = __alloc_pages(gfp, order, zl);
1944 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1945 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1946 return page;
1947 }
1948
1949 /**
1950 * alloc_pages_vma - Allocate a page for a VMA.
1951 *
1952 * @gfp:
1953 * %GFP_USER user allocation.
1954 * %GFP_KERNEL kernel allocations,
1955 * %GFP_HIGHMEM highmem/user allocations,
1956 * %GFP_FS allocation should not call back into a file system.
1957 * %GFP_ATOMIC don't sleep.
1958 *
1959 * @order:Order of the GFP allocation.
1960 * @vma: Pointer to VMA or NULL if not available.
1961 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1962 * @node: Which node to prefer for allocation (modulo policy).
1963 * @hugepage: for hugepages try only the preferred node if possible
1964 *
1965 * This function allocates a page from the kernel page pool and applies
1966 * a NUMA policy associated with the VMA or the current process.
1967 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1968 * mm_struct of the VMA to prevent it from going away. Should be used for
1969 * all allocations for pages that will be mapped into user space. Returns
1970 * NULL when no page can be allocated.
1971 */
1972 struct page *
1973 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1974 unsigned long addr, int node, bool hugepage)
1975 {
1976 struct mempolicy *pol;
1977 struct page *page;
1978 unsigned int cpuset_mems_cookie;
1979 struct zonelist *zl;
1980 nodemask_t *nmask;
1981
1982 retry_cpuset:
1983 pol = get_vma_policy(vma, addr);
1984 cpuset_mems_cookie = read_mems_allowed_begin();
1985
1986 if (pol->mode == MPOL_INTERLEAVE) {
1987 unsigned nid;
1988
1989 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1990 mpol_cond_put(pol);
1991 page = alloc_page_interleave(gfp, order, nid);
1992 goto out;
1993 }
1994
1995 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1996 int hpage_node = node;
1997
1998 /*
1999 * For hugepage allocation and non-interleave policy which
2000 * allows the current node (or other explicitly preferred
2001 * node) we only try to allocate from the current/preferred
2002 * node and don't fall back to other nodes, as the cost of
2003 * remote accesses would likely offset THP benefits.
2004 *
2005 * If the policy is interleave, or does not allow the current
2006 * node in its nodemask, we allocate the standard way.
2007 */
2008 if (pol->mode == MPOL_PREFERRED &&
2009 !(pol->flags & MPOL_F_LOCAL))
2010 hpage_node = pol->v.preferred_node;
2011
2012 nmask = policy_nodemask(gfp, pol);
2013 if (!nmask || node_isset(hpage_node, *nmask)) {
2014 mpol_cond_put(pol);
2015 page = __alloc_pages_node(hpage_node,
2016 gfp | __GFP_THISNODE, order);
2017 goto out;
2018 }
2019 }
2020
2021 nmask = policy_nodemask(gfp, pol);
2022 zl = policy_zonelist(gfp, pol, node);
2023 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2024 mpol_cond_put(pol);
2025 out:
2026 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2027 goto retry_cpuset;
2028 return page;
2029 }
2030
2031 /**
2032 * alloc_pages_current - Allocate pages.
2033 *
2034 * @gfp:
2035 * %GFP_USER user allocation,
2036 * %GFP_KERNEL kernel allocation,
2037 * %GFP_HIGHMEM highmem allocation,
2038 * %GFP_FS don't call back into a file system.
2039 * %GFP_ATOMIC don't sleep.
2040 * @order: Power of two of allocation size in pages. 0 is a single page.
2041 *
2042 * Allocate a page from the kernel page pool. When not in
2043 * interrupt context and apply the current process NUMA policy.
2044 * Returns NULL when no page can be allocated.
2045 *
2046 * Don't call cpuset_update_task_memory_state() unless
2047 * 1) it's ok to take cpuset_sem (can WAIT), and
2048 * 2) allocating for current task (not interrupt).
2049 */
2050 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2051 {
2052 struct mempolicy *pol = &default_policy;
2053 struct page *page;
2054 unsigned int cpuset_mems_cookie;
2055
2056 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2057 pol = get_task_policy(current);
2058
2059 retry_cpuset:
2060 cpuset_mems_cookie = read_mems_allowed_begin();
2061
2062 /*
2063 * No reference counting needed for current->mempolicy
2064 * nor system default_policy
2065 */
2066 if (pol->mode == MPOL_INTERLEAVE)
2067 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2068 else
2069 page = __alloc_pages_nodemask(gfp, order,
2070 policy_zonelist(gfp, pol, numa_node_id()),
2071 policy_nodemask(gfp, pol));
2072
2073 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2074 goto retry_cpuset;
2075
2076 return page;
2077 }
2078 EXPORT_SYMBOL(alloc_pages_current);
2079
2080 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2081 {
2082 struct mempolicy *pol = mpol_dup(vma_policy(src));
2083
2084 if (IS_ERR(pol))
2085 return PTR_ERR(pol);
2086 dst->vm_policy = pol;
2087 return 0;
2088 }
2089
2090 /*
2091 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2092 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2093 * with the mems_allowed returned by cpuset_mems_allowed(). This
2094 * keeps mempolicies cpuset relative after its cpuset moves. See
2095 * further kernel/cpuset.c update_nodemask().
2096 *
2097 * current's mempolicy may be rebinded by the other task(the task that changes
2098 * cpuset's mems), so we needn't do rebind work for current task.
2099 */
2100
2101 /* Slow path of a mempolicy duplicate */
2102 struct mempolicy *__mpol_dup(struct mempolicy *old)
2103 {
2104 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2105
2106 if (!new)
2107 return ERR_PTR(-ENOMEM);
2108
2109 /* task's mempolicy is protected by alloc_lock */
2110 if (old == current->mempolicy) {
2111 task_lock(current);
2112 *new = *old;
2113 task_unlock(current);
2114 } else
2115 *new = *old;
2116
2117 if (current_cpuset_is_being_rebound()) {
2118 nodemask_t mems = cpuset_mems_allowed(current);
2119 if (new->flags & MPOL_F_REBINDING)
2120 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2121 else
2122 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2123 }
2124 atomic_set(&new->refcnt, 1);
2125 return new;
2126 }
2127
2128 /* Slow path of a mempolicy comparison */
2129 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2130 {
2131 if (!a || !b)
2132 return false;
2133 if (a->mode != b->mode)
2134 return false;
2135 if (a->flags != b->flags)
2136 return false;
2137 if (mpol_store_user_nodemask(a))
2138 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2139 return false;
2140
2141 switch (a->mode) {
2142 case MPOL_BIND:
2143 /* Fall through */
2144 case MPOL_INTERLEAVE:
2145 return !!nodes_equal(a->v.nodes, b->v.nodes);
2146 case MPOL_PREFERRED:
2147 return a->v.preferred_node == b->v.preferred_node;
2148 default:
2149 BUG();
2150 return false;
2151 }
2152 }
2153
2154 /*
2155 * Shared memory backing store policy support.
2156 *
2157 * Remember policies even when nobody has shared memory mapped.
2158 * The policies are kept in Red-Black tree linked from the inode.
2159 * They are protected by the sp->lock rwlock, which should be held
2160 * for any accesses to the tree.
2161 */
2162
2163 /*
2164 * lookup first element intersecting start-end. Caller holds sp->lock for
2165 * reading or for writing
2166 */
2167 static struct sp_node *
2168 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2169 {
2170 struct rb_node *n = sp->root.rb_node;
2171
2172 while (n) {
2173 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2174
2175 if (start >= p->end)
2176 n = n->rb_right;
2177 else if (end <= p->start)
2178 n = n->rb_left;
2179 else
2180 break;
2181 }
2182 if (!n)
2183 return NULL;
2184 for (;;) {
2185 struct sp_node *w = NULL;
2186 struct rb_node *prev = rb_prev(n);
2187 if (!prev)
2188 break;
2189 w = rb_entry(prev, struct sp_node, nd);
2190 if (w->end <= start)
2191 break;
2192 n = prev;
2193 }
2194 return rb_entry(n, struct sp_node, nd);
2195 }
2196
2197 /*
2198 * Insert a new shared policy into the list. Caller holds sp->lock for
2199 * writing.
2200 */
2201 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2202 {
2203 struct rb_node **p = &sp->root.rb_node;
2204 struct rb_node *parent = NULL;
2205 struct sp_node *nd;
2206
2207 while (*p) {
2208 parent = *p;
2209 nd = rb_entry(parent, struct sp_node, nd);
2210 if (new->start < nd->start)
2211 p = &(*p)->rb_left;
2212 else if (new->end > nd->end)
2213 p = &(*p)->rb_right;
2214 else
2215 BUG();
2216 }
2217 rb_link_node(&new->nd, parent, p);
2218 rb_insert_color(&new->nd, &sp->root);
2219 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2220 new->policy ? new->policy->mode : 0);
2221 }
2222
2223 /* Find shared policy intersecting idx */
2224 struct mempolicy *
2225 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2226 {
2227 struct mempolicy *pol = NULL;
2228 struct sp_node *sn;
2229
2230 if (!sp->root.rb_node)
2231 return NULL;
2232 read_lock(&sp->lock);
2233 sn = sp_lookup(sp, idx, idx+1);
2234 if (sn) {
2235 mpol_get(sn->policy);
2236 pol = sn->policy;
2237 }
2238 read_unlock(&sp->lock);
2239 return pol;
2240 }
2241
2242 static void sp_free(struct sp_node *n)
2243 {
2244 mpol_put(n->policy);
2245 kmem_cache_free(sn_cache, n);
2246 }
2247
2248 /**
2249 * mpol_misplaced - check whether current page node is valid in policy
2250 *
2251 * @page: page to be checked
2252 * @vma: vm area where page mapped
2253 * @addr: virtual address where page mapped
2254 *
2255 * Lookup current policy node id for vma,addr and "compare to" page's
2256 * node id.
2257 *
2258 * Returns:
2259 * -1 - not misplaced, page is in the right node
2260 * node - node id where the page should be
2261 *
2262 * Policy determination "mimics" alloc_page_vma().
2263 * Called from fault path where we know the vma and faulting address.
2264 */
2265 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2266 {
2267 struct mempolicy *pol;
2268 struct zoneref *z;
2269 int curnid = page_to_nid(page);
2270 unsigned long pgoff;
2271 int thiscpu = raw_smp_processor_id();
2272 int thisnid = cpu_to_node(thiscpu);
2273 int polnid = -1;
2274 int ret = -1;
2275
2276 BUG_ON(!vma);
2277
2278 pol = get_vma_policy(vma, addr);
2279 if (!(pol->flags & MPOL_F_MOF))
2280 goto out;
2281
2282 switch (pol->mode) {
2283 case MPOL_INTERLEAVE:
2284 BUG_ON(addr >= vma->vm_end);
2285 BUG_ON(addr < vma->vm_start);
2286
2287 pgoff = vma->vm_pgoff;
2288 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2289 polnid = offset_il_node(pol, vma, pgoff);
2290 break;
2291
2292 case MPOL_PREFERRED:
2293 if (pol->flags & MPOL_F_LOCAL)
2294 polnid = numa_node_id();
2295 else
2296 polnid = pol->v.preferred_node;
2297 break;
2298
2299 case MPOL_BIND:
2300
2301 /*
2302 * allows binding to multiple nodes.
2303 * use current page if in policy nodemask,
2304 * else select nearest allowed node, if any.
2305 * If no allowed nodes, use current [!misplaced].
2306 */
2307 if (node_isset(curnid, pol->v.nodes))
2308 goto out;
2309 z = first_zones_zonelist(
2310 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2311 gfp_zone(GFP_HIGHUSER),
2312 &pol->v.nodes);
2313 polnid = z->zone->node;
2314 break;
2315
2316 default:
2317 BUG();
2318 }
2319
2320 /* Migrate the page towards the node whose CPU is referencing it */
2321 if (pol->flags & MPOL_F_MORON) {
2322 polnid = thisnid;
2323
2324 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2325 goto out;
2326 }
2327
2328 if (curnid != polnid)
2329 ret = polnid;
2330 out:
2331 mpol_cond_put(pol);
2332
2333 return ret;
2334 }
2335
2336 /*
2337 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2338 * dropped after task->mempolicy is set to NULL so that any allocation done as
2339 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2340 * policy.
2341 */
2342 void mpol_put_task_policy(struct task_struct *task)
2343 {
2344 struct mempolicy *pol;
2345
2346 task_lock(task);
2347 pol = task->mempolicy;
2348 task->mempolicy = NULL;
2349 task_unlock(task);
2350 mpol_put(pol);
2351 }
2352
2353 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2354 {
2355 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2356 rb_erase(&n->nd, &sp->root);
2357 sp_free(n);
2358 }
2359
2360 static void sp_node_init(struct sp_node *node, unsigned long start,
2361 unsigned long end, struct mempolicy *pol)
2362 {
2363 node->start = start;
2364 node->end = end;
2365 node->policy = pol;
2366 }
2367
2368 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2369 struct mempolicy *pol)
2370 {
2371 struct sp_node *n;
2372 struct mempolicy *newpol;
2373
2374 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2375 if (!n)
2376 return NULL;
2377
2378 newpol = mpol_dup(pol);
2379 if (IS_ERR(newpol)) {
2380 kmem_cache_free(sn_cache, n);
2381 return NULL;
2382 }
2383 newpol->flags |= MPOL_F_SHARED;
2384 sp_node_init(n, start, end, newpol);
2385
2386 return n;
2387 }
2388
2389 /* Replace a policy range. */
2390 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2391 unsigned long end, struct sp_node *new)
2392 {
2393 struct sp_node *n;
2394 struct sp_node *n_new = NULL;
2395 struct mempolicy *mpol_new = NULL;
2396 int ret = 0;
2397
2398 restart:
2399 write_lock(&sp->lock);
2400 n = sp_lookup(sp, start, end);
2401 /* Take care of old policies in the same range. */
2402 while (n && n->start < end) {
2403 struct rb_node *next = rb_next(&n->nd);
2404 if (n->start >= start) {
2405 if (n->end <= end)
2406 sp_delete(sp, n);
2407 else
2408 n->start = end;
2409 } else {
2410 /* Old policy spanning whole new range. */
2411 if (n->end > end) {
2412 if (!n_new)
2413 goto alloc_new;
2414
2415 *mpol_new = *n->policy;
2416 atomic_set(&mpol_new->refcnt, 1);
2417 sp_node_init(n_new, end, n->end, mpol_new);
2418 n->end = start;
2419 sp_insert(sp, n_new);
2420 n_new = NULL;
2421 mpol_new = NULL;
2422 break;
2423 } else
2424 n->end = start;
2425 }
2426 if (!next)
2427 break;
2428 n = rb_entry(next, struct sp_node, nd);
2429 }
2430 if (new)
2431 sp_insert(sp, new);
2432 write_unlock(&sp->lock);
2433 ret = 0;
2434
2435 err_out:
2436 if (mpol_new)
2437 mpol_put(mpol_new);
2438 if (n_new)
2439 kmem_cache_free(sn_cache, n_new);
2440
2441 return ret;
2442
2443 alloc_new:
2444 write_unlock(&sp->lock);
2445 ret = -ENOMEM;
2446 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2447 if (!n_new)
2448 goto err_out;
2449 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2450 if (!mpol_new)
2451 goto err_out;
2452 goto restart;
2453 }
2454
2455 /**
2456 * mpol_shared_policy_init - initialize shared policy for inode
2457 * @sp: pointer to inode shared policy
2458 * @mpol: struct mempolicy to install
2459 *
2460 * Install non-NULL @mpol in inode's shared policy rb-tree.
2461 * On entry, the current task has a reference on a non-NULL @mpol.
2462 * This must be released on exit.
2463 * This is called at get_inode() calls and we can use GFP_KERNEL.
2464 */
2465 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2466 {
2467 int ret;
2468
2469 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2470 rwlock_init(&sp->lock);
2471
2472 if (mpol) {
2473 struct vm_area_struct pvma;
2474 struct mempolicy *new;
2475 NODEMASK_SCRATCH(scratch);
2476
2477 if (!scratch)
2478 goto put_mpol;
2479 /* contextualize the tmpfs mount point mempolicy */
2480 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2481 if (IS_ERR(new))
2482 goto free_scratch; /* no valid nodemask intersection */
2483
2484 task_lock(current);
2485 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2486 task_unlock(current);
2487 if (ret)
2488 goto put_new;
2489
2490 /* Create pseudo-vma that contains just the policy */
2491 memset(&pvma, 0, sizeof(struct vm_area_struct));
2492 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2493 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2494
2495 put_new:
2496 mpol_put(new); /* drop initial ref */
2497 free_scratch:
2498 NODEMASK_SCRATCH_FREE(scratch);
2499 put_mpol:
2500 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2501 }
2502 }
2503
2504 int mpol_set_shared_policy(struct shared_policy *info,
2505 struct vm_area_struct *vma, struct mempolicy *npol)
2506 {
2507 int err;
2508 struct sp_node *new = NULL;
2509 unsigned long sz = vma_pages(vma);
2510
2511 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2512 vma->vm_pgoff,
2513 sz, npol ? npol->mode : -1,
2514 npol ? npol->flags : -1,
2515 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2516
2517 if (npol) {
2518 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2519 if (!new)
2520 return -ENOMEM;
2521 }
2522 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2523 if (err && new)
2524 sp_free(new);
2525 return err;
2526 }
2527
2528 /* Free a backing policy store on inode delete. */
2529 void mpol_free_shared_policy(struct shared_policy *p)
2530 {
2531 struct sp_node *n;
2532 struct rb_node *next;
2533
2534 if (!p->root.rb_node)
2535 return;
2536 write_lock(&p->lock);
2537 next = rb_first(&p->root);
2538 while (next) {
2539 n = rb_entry(next, struct sp_node, nd);
2540 next = rb_next(&n->nd);
2541 sp_delete(p, n);
2542 }
2543 write_unlock(&p->lock);
2544 }
2545
2546 #ifdef CONFIG_NUMA_BALANCING
2547 static int __initdata numabalancing_override;
2548
2549 static void __init check_numabalancing_enable(void)
2550 {
2551 bool numabalancing_default = false;
2552
2553 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2554 numabalancing_default = true;
2555
2556 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2557 if (numabalancing_override)
2558 set_numabalancing_state(numabalancing_override == 1);
2559
2560 if (num_online_nodes() > 1 && !numabalancing_override) {
2561 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2562 numabalancing_default ? "Enabling" : "Disabling");
2563 set_numabalancing_state(numabalancing_default);
2564 }
2565 }
2566
2567 static int __init setup_numabalancing(char *str)
2568 {
2569 int ret = 0;
2570 if (!str)
2571 goto out;
2572
2573 if (!strcmp(str, "enable")) {
2574 numabalancing_override = 1;
2575 ret = 1;
2576 } else if (!strcmp(str, "disable")) {
2577 numabalancing_override = -1;
2578 ret = 1;
2579 }
2580 out:
2581 if (!ret)
2582 pr_warn("Unable to parse numa_balancing=\n");
2583
2584 return ret;
2585 }
2586 __setup("numa_balancing=", setup_numabalancing);
2587 #else
2588 static inline void __init check_numabalancing_enable(void)
2589 {
2590 }
2591 #endif /* CONFIG_NUMA_BALANCING */
2592
2593 /* assumes fs == KERNEL_DS */
2594 void __init numa_policy_init(void)
2595 {
2596 nodemask_t interleave_nodes;
2597 unsigned long largest = 0;
2598 int nid, prefer = 0;
2599
2600 policy_cache = kmem_cache_create("numa_policy",
2601 sizeof(struct mempolicy),
2602 0, SLAB_PANIC, NULL);
2603
2604 sn_cache = kmem_cache_create("shared_policy_node",
2605 sizeof(struct sp_node),
2606 0, SLAB_PANIC, NULL);
2607
2608 for_each_node(nid) {
2609 preferred_node_policy[nid] = (struct mempolicy) {
2610 .refcnt = ATOMIC_INIT(1),
2611 .mode = MPOL_PREFERRED,
2612 .flags = MPOL_F_MOF | MPOL_F_MORON,
2613 .v = { .preferred_node = nid, },
2614 };
2615 }
2616
2617 /*
2618 * Set interleaving policy for system init. Interleaving is only
2619 * enabled across suitably sized nodes (default is >= 16MB), or
2620 * fall back to the largest node if they're all smaller.
2621 */
2622 nodes_clear(interleave_nodes);
2623 for_each_node_state(nid, N_MEMORY) {
2624 unsigned long total_pages = node_present_pages(nid);
2625
2626 /* Preserve the largest node */
2627 if (largest < total_pages) {
2628 largest = total_pages;
2629 prefer = nid;
2630 }
2631
2632 /* Interleave this node? */
2633 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2634 node_set(nid, interleave_nodes);
2635 }
2636
2637 /* All too small, use the largest */
2638 if (unlikely(nodes_empty(interleave_nodes)))
2639 node_set(prefer, interleave_nodes);
2640
2641 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2642 pr_err("%s: interleaving failed\n", __func__);
2643
2644 check_numabalancing_enable();
2645 }
2646
2647 /* Reset policy of current process to default */
2648 void numa_default_policy(void)
2649 {
2650 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2651 }
2652
2653 /*
2654 * Parse and format mempolicy from/to strings
2655 */
2656
2657 /*
2658 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2659 */
2660 static const char * const policy_modes[] =
2661 {
2662 [MPOL_DEFAULT] = "default",
2663 [MPOL_PREFERRED] = "prefer",
2664 [MPOL_BIND] = "bind",
2665 [MPOL_INTERLEAVE] = "interleave",
2666 [MPOL_LOCAL] = "local",
2667 };
2668
2669
2670 #ifdef CONFIG_TMPFS
2671 /**
2672 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2673 * @str: string containing mempolicy to parse
2674 * @mpol: pointer to struct mempolicy pointer, returned on success.
2675 *
2676 * Format of input:
2677 * <mode>[=<flags>][:<nodelist>]
2678 *
2679 * On success, returns 0, else 1
2680 */
2681 int mpol_parse_str(char *str, struct mempolicy **mpol)
2682 {
2683 struct mempolicy *new = NULL;
2684 unsigned short mode;
2685 unsigned short mode_flags;
2686 nodemask_t nodes;
2687 char *nodelist = strchr(str, ':');
2688 char *flags = strchr(str, '=');
2689 int err = 1;
2690
2691 if (nodelist) {
2692 /* NUL-terminate mode or flags string */
2693 *nodelist++ = '\0';
2694 if (nodelist_parse(nodelist, nodes))
2695 goto out;
2696 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2697 goto out;
2698 } else
2699 nodes_clear(nodes);
2700
2701 if (flags)
2702 *flags++ = '\0'; /* terminate mode string */
2703
2704 for (mode = 0; mode < MPOL_MAX; mode++) {
2705 if (!strcmp(str, policy_modes[mode])) {
2706 break;
2707 }
2708 }
2709 if (mode >= MPOL_MAX)
2710 goto out;
2711
2712 switch (mode) {
2713 case MPOL_PREFERRED:
2714 /*
2715 * Insist on a nodelist of one node only
2716 */
2717 if (nodelist) {
2718 char *rest = nodelist;
2719 while (isdigit(*rest))
2720 rest++;
2721 if (*rest)
2722 goto out;
2723 }
2724 break;
2725 case MPOL_INTERLEAVE:
2726 /*
2727 * Default to online nodes with memory if no nodelist
2728 */
2729 if (!nodelist)
2730 nodes = node_states[N_MEMORY];
2731 break;
2732 case MPOL_LOCAL:
2733 /*
2734 * Don't allow a nodelist; mpol_new() checks flags
2735 */
2736 if (nodelist)
2737 goto out;
2738 mode = MPOL_PREFERRED;
2739 break;
2740 case MPOL_DEFAULT:
2741 /*
2742 * Insist on a empty nodelist
2743 */
2744 if (!nodelist)
2745 err = 0;
2746 goto out;
2747 case MPOL_BIND:
2748 /*
2749 * Insist on a nodelist
2750 */
2751 if (!nodelist)
2752 goto out;
2753 }
2754
2755 mode_flags = 0;
2756 if (flags) {
2757 /*
2758 * Currently, we only support two mutually exclusive
2759 * mode flags.
2760 */
2761 if (!strcmp(flags, "static"))
2762 mode_flags |= MPOL_F_STATIC_NODES;
2763 else if (!strcmp(flags, "relative"))
2764 mode_flags |= MPOL_F_RELATIVE_NODES;
2765 else
2766 goto out;
2767 }
2768
2769 new = mpol_new(mode, mode_flags, &nodes);
2770 if (IS_ERR(new))
2771 goto out;
2772
2773 /*
2774 * Save nodes for mpol_to_str() to show the tmpfs mount options
2775 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2776 */
2777 if (mode != MPOL_PREFERRED)
2778 new->v.nodes = nodes;
2779 else if (nodelist)
2780 new->v.preferred_node = first_node(nodes);
2781 else
2782 new->flags |= MPOL_F_LOCAL;
2783
2784 /*
2785 * Save nodes for contextualization: this will be used to "clone"
2786 * the mempolicy in a specific context [cpuset] at a later time.
2787 */
2788 new->w.user_nodemask = nodes;
2789
2790 err = 0;
2791
2792 out:
2793 /* Restore string for error message */
2794 if (nodelist)
2795 *--nodelist = ':';
2796 if (flags)
2797 *--flags = '=';
2798 if (!err)
2799 *mpol = new;
2800 return err;
2801 }
2802 #endif /* CONFIG_TMPFS */
2803
2804 /**
2805 * mpol_to_str - format a mempolicy structure for printing
2806 * @buffer: to contain formatted mempolicy string
2807 * @maxlen: length of @buffer
2808 * @pol: pointer to mempolicy to be formatted
2809 *
2810 * Convert @pol into a string. If @buffer is too short, truncate the string.
2811 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2812 * longest flag, "relative", and to display at least a few node ids.
2813 */
2814 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2815 {
2816 char *p = buffer;
2817 nodemask_t nodes = NODE_MASK_NONE;
2818 unsigned short mode = MPOL_DEFAULT;
2819 unsigned short flags = 0;
2820
2821 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2822 mode = pol->mode;
2823 flags = pol->flags;
2824 }
2825
2826 switch (mode) {
2827 case MPOL_DEFAULT:
2828 break;
2829 case MPOL_PREFERRED:
2830 if (flags & MPOL_F_LOCAL)
2831 mode = MPOL_LOCAL;
2832 else
2833 node_set(pol->v.preferred_node, nodes);
2834 break;
2835 case MPOL_BIND:
2836 case MPOL_INTERLEAVE:
2837 nodes = pol->v.nodes;
2838 break;
2839 default:
2840 WARN_ON_ONCE(1);
2841 snprintf(p, maxlen, "unknown");
2842 return;
2843 }
2844
2845 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2846
2847 if (flags & MPOL_MODE_FLAGS) {
2848 p += snprintf(p, buffer + maxlen - p, "=");
2849
2850 /*
2851 * Currently, the only defined flags are mutually exclusive
2852 */
2853 if (flags & MPOL_F_STATIC_NODES)
2854 p += snprintf(p, buffer + maxlen - p, "static");
2855 else if (flags & MPOL_F_RELATIVE_NODES)
2856 p += snprintf(p, buffer + maxlen - p, "relative");
2857 }
2858
2859 if (!nodes_empty(nodes))
2860 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2861 nodemask_pr_args(&nodes));
2862 }