]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mempolicy.c
Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
103
104 #include "internal.h"
105
106 /* Internal flags */
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
109
110 static struct kmem_cache *policy_cache;
111 static struct kmem_cache *sn_cache;
112
113 /* Highest zone. An specific allocation for a zone below that is not
114 policied. */
115 enum zone_type policy_zone = 0;
116
117 /*
118 * run-time system-wide default policy => local allocation
119 */
120 static struct mempolicy default_policy = {
121 .refcnt = ATOMIC_INIT(1), /* never free it */
122 .mode = MPOL_PREFERRED,
123 .flags = MPOL_F_LOCAL,
124 };
125
126 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
127
128 struct mempolicy *get_task_policy(struct task_struct *p)
129 {
130 struct mempolicy *pol = p->mempolicy;
131 int node;
132
133 if (pol)
134 return pol;
135
136 node = numa_node_id();
137 if (node != NUMA_NO_NODE) {
138 pol = &preferred_node_policy[node];
139 /* preferred_node_policy is not initialised early in boot */
140 if (pol->mode)
141 return pol;
142 }
143
144 return &default_policy;
145 }
146
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
150 } mpol_ops[MPOL_MAX];
151
152 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
153 {
154 return pol->flags & MPOL_MODE_FLAGS;
155 }
156
157 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
158 const nodemask_t *rel)
159 {
160 nodemask_t tmp;
161 nodes_fold(tmp, *orig, nodes_weight(*rel));
162 nodes_onto(*ret, tmp, *rel);
163 }
164
165 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
166 {
167 if (nodes_empty(*nodes))
168 return -EINVAL;
169 pol->v.nodes = *nodes;
170 return 0;
171 }
172
173 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
174 {
175 if (!nodes)
176 pol->flags |= MPOL_F_LOCAL; /* local allocation */
177 else if (nodes_empty(*nodes))
178 return -EINVAL; /* no allowed nodes */
179 else
180 pol->v.preferred_node = first_node(*nodes);
181 return 0;
182 }
183
184 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190 }
191
192 /*
193 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
194 * any, for the new policy. mpol_new() has already validated the nodes
195 * parameter with respect to the policy mode and flags. But, we need to
196 * handle an empty nodemask with MPOL_PREFERRED here.
197 *
198 * Must be called holding task's alloc_lock to protect task's mems_allowed
199 * and mempolicy. May also be called holding the mmap_semaphore for write.
200 */
201 static int mpol_set_nodemask(struct mempolicy *pol,
202 const nodemask_t *nodes, struct nodemask_scratch *nsc)
203 {
204 int ret;
205
206 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
207 if (pol == NULL)
208 return 0;
209 /* Check N_MEMORY */
210 nodes_and(nsc->mask1,
211 cpuset_current_mems_allowed, node_states[N_MEMORY]);
212
213 VM_BUG_ON(!nodes);
214 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
215 nodes = NULL; /* explicit local allocation */
216 else {
217 if (pol->flags & MPOL_F_RELATIVE_NODES)
218 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
219 else
220 nodes_and(nsc->mask2, *nodes, nsc->mask1);
221
222 if (mpol_store_user_nodemask(pol))
223 pol->w.user_nodemask = *nodes;
224 else
225 pol->w.cpuset_mems_allowed =
226 cpuset_current_mems_allowed;
227 }
228
229 if (nodes)
230 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
231 else
232 ret = mpol_ops[pol->mode].create(pol, NULL);
233 return ret;
234 }
235
236 /*
237 * This function just creates a new policy, does some check and simple
238 * initialization. You must invoke mpol_set_nodemask() to set nodes.
239 */
240 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
241 nodemask_t *nodes)
242 {
243 struct mempolicy *policy;
244
245 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
246 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
247
248 if (mode == MPOL_DEFAULT) {
249 if (nodes && !nodes_empty(*nodes))
250 return ERR_PTR(-EINVAL);
251 return NULL;
252 }
253 VM_BUG_ON(!nodes);
254
255 /*
256 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
257 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
258 * All other modes require a valid pointer to a non-empty nodemask.
259 */
260 if (mode == MPOL_PREFERRED) {
261 if (nodes_empty(*nodes)) {
262 if (((flags & MPOL_F_STATIC_NODES) ||
263 (flags & MPOL_F_RELATIVE_NODES)))
264 return ERR_PTR(-EINVAL);
265 }
266 } else if (mode == MPOL_LOCAL) {
267 if (!nodes_empty(*nodes) ||
268 (flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES))
270 return ERR_PTR(-EINVAL);
271 mode = MPOL_PREFERRED;
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
293 {
294 }
295
296 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
297 {
298 nodemask_t tmp;
299
300 if (pol->flags & MPOL_F_STATIC_NODES)
301 nodes_and(tmp, pol->w.user_nodemask, *nodes);
302 else if (pol->flags & MPOL_F_RELATIVE_NODES)
303 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
304 else {
305 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
306 *nodes);
307 pol->w.cpuset_mems_allowed = tmp;
308 }
309
310 if (nodes_empty(tmp))
311 tmp = *nodes;
312
313 pol->v.nodes = tmp;
314 }
315
316 static void mpol_rebind_preferred(struct mempolicy *pol,
317 const nodemask_t *nodes)
318 {
319 nodemask_t tmp;
320
321 if (pol->flags & MPOL_F_STATIC_NODES) {
322 int node = first_node(pol->w.user_nodemask);
323
324 if (node_isset(node, *nodes)) {
325 pol->v.preferred_node = node;
326 pol->flags &= ~MPOL_F_LOCAL;
327 } else
328 pol->flags |= MPOL_F_LOCAL;
329 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 pol->v.preferred_node = first_node(tmp);
332 } else if (!(pol->flags & MPOL_F_LOCAL)) {
333 pol->v.preferred_node = node_remap(pol->v.preferred_node,
334 pol->w.cpuset_mems_allowed,
335 *nodes);
336 pol->w.cpuset_mems_allowed = *nodes;
337 }
338 }
339
340 /*
341 * mpol_rebind_policy - Migrate a policy to a different set of nodes
342 *
343 * Per-vma policies are protected by mmap_sem. Allocations using per-task
344 * policies are protected by task->mems_allowed_seq to prevent a premature
345 * OOM/allocation failure due to parallel nodemask modification.
346 */
347 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
348 {
349 if (!pol)
350 return;
351 if (!mpol_store_user_nodemask(pol) &&
352 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
353 return;
354
355 mpol_ops[pol->mode].rebind(pol, newmask);
356 }
357
358 /*
359 * Wrapper for mpol_rebind_policy() that just requires task
360 * pointer, and updates task mempolicy.
361 *
362 * Called with task's alloc_lock held.
363 */
364
365 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
366 {
367 mpol_rebind_policy(tsk->mempolicy, new);
368 }
369
370 /*
371 * Rebind each vma in mm to new nodemask.
372 *
373 * Call holding a reference to mm. Takes mm->mmap_sem during call.
374 */
375
376 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
377 {
378 struct vm_area_struct *vma;
379
380 down_write(&mm->mmap_sem);
381 for (vma = mm->mmap; vma; vma = vma->vm_next)
382 mpol_rebind_policy(vma->vm_policy, new);
383 up_write(&mm->mmap_sem);
384 }
385
386 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
387 [MPOL_DEFAULT] = {
388 .rebind = mpol_rebind_default,
389 },
390 [MPOL_INTERLEAVE] = {
391 .create = mpol_new_interleave,
392 .rebind = mpol_rebind_nodemask,
393 },
394 [MPOL_PREFERRED] = {
395 .create = mpol_new_preferred,
396 .rebind = mpol_rebind_preferred,
397 },
398 [MPOL_BIND] = {
399 .create = mpol_new_bind,
400 .rebind = mpol_rebind_nodemask,
401 },
402 };
403
404 static void migrate_page_add(struct page *page, struct list_head *pagelist,
405 unsigned long flags);
406
407 struct queue_pages {
408 struct list_head *pagelist;
409 unsigned long flags;
410 nodemask_t *nmask;
411 struct vm_area_struct *prev;
412 };
413
414 /*
415 * Scan through pages checking if pages follow certain conditions,
416 * and move them to the pagelist if they do.
417 */
418 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
419 unsigned long end, struct mm_walk *walk)
420 {
421 struct vm_area_struct *vma = walk->vma;
422 struct page *page;
423 struct queue_pages *qp = walk->private;
424 unsigned long flags = qp->flags;
425 int nid, ret;
426 pte_t *pte;
427 spinlock_t *ptl;
428
429 if (pmd_trans_huge(*pmd)) {
430 ptl = pmd_lock(walk->mm, pmd);
431 if (pmd_trans_huge(*pmd)) {
432 page = pmd_page(*pmd);
433 if (is_huge_zero_page(page)) {
434 spin_unlock(ptl);
435 __split_huge_pmd(vma, pmd, addr, false, NULL);
436 } else {
437 get_page(page);
438 spin_unlock(ptl);
439 lock_page(page);
440 ret = split_huge_page(page);
441 unlock_page(page);
442 put_page(page);
443 if (ret)
444 return 0;
445 }
446 } else {
447 spin_unlock(ptl);
448 }
449 }
450
451 if (pmd_trans_unstable(pmd))
452 return 0;
453 retry:
454 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
455 for (; addr != end; pte++, addr += PAGE_SIZE) {
456 if (!pte_present(*pte))
457 continue;
458 page = vm_normal_page(vma, addr, *pte);
459 if (!page)
460 continue;
461 /*
462 * vm_normal_page() filters out zero pages, but there might
463 * still be PageReserved pages to skip, perhaps in a VDSO.
464 */
465 if (PageReserved(page))
466 continue;
467 nid = page_to_nid(page);
468 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
469 continue;
470 if (PageTransCompound(page)) {
471 get_page(page);
472 pte_unmap_unlock(pte, ptl);
473 lock_page(page);
474 ret = split_huge_page(page);
475 unlock_page(page);
476 put_page(page);
477 /* Failed to split -- skip. */
478 if (ret) {
479 pte = pte_offset_map_lock(walk->mm, pmd,
480 addr, &ptl);
481 continue;
482 }
483 goto retry;
484 }
485
486 migrate_page_add(page, qp->pagelist, flags);
487 }
488 pte_unmap_unlock(pte - 1, ptl);
489 cond_resched();
490 return 0;
491 }
492
493 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
494 unsigned long addr, unsigned long end,
495 struct mm_walk *walk)
496 {
497 #ifdef CONFIG_HUGETLB_PAGE
498 struct queue_pages *qp = walk->private;
499 unsigned long flags = qp->flags;
500 int nid;
501 struct page *page;
502 spinlock_t *ptl;
503 pte_t entry;
504
505 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
506 entry = huge_ptep_get(pte);
507 if (!pte_present(entry))
508 goto unlock;
509 page = pte_page(entry);
510 nid = page_to_nid(page);
511 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
512 goto unlock;
513 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
514 if (flags & (MPOL_MF_MOVE_ALL) ||
515 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
516 isolate_huge_page(page, qp->pagelist);
517 unlock:
518 spin_unlock(ptl);
519 #else
520 BUG();
521 #endif
522 return 0;
523 }
524
525 #ifdef CONFIG_NUMA_BALANCING
526 /*
527 * This is used to mark a range of virtual addresses to be inaccessible.
528 * These are later cleared by a NUMA hinting fault. Depending on these
529 * faults, pages may be migrated for better NUMA placement.
530 *
531 * This is assuming that NUMA faults are handled using PROT_NONE. If
532 * an architecture makes a different choice, it will need further
533 * changes to the core.
534 */
535 unsigned long change_prot_numa(struct vm_area_struct *vma,
536 unsigned long addr, unsigned long end)
537 {
538 int nr_updated;
539
540 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
541 if (nr_updated)
542 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
543
544 return nr_updated;
545 }
546 #else
547 static unsigned long change_prot_numa(struct vm_area_struct *vma,
548 unsigned long addr, unsigned long end)
549 {
550 return 0;
551 }
552 #endif /* CONFIG_NUMA_BALANCING */
553
554 static int queue_pages_test_walk(unsigned long start, unsigned long end,
555 struct mm_walk *walk)
556 {
557 struct vm_area_struct *vma = walk->vma;
558 struct queue_pages *qp = walk->private;
559 unsigned long endvma = vma->vm_end;
560 unsigned long flags = qp->flags;
561
562 if (!vma_migratable(vma))
563 return 1;
564
565 if (endvma > end)
566 endvma = end;
567 if (vma->vm_start > start)
568 start = vma->vm_start;
569
570 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
571 if (!vma->vm_next && vma->vm_end < end)
572 return -EFAULT;
573 if (qp->prev && qp->prev->vm_end < vma->vm_start)
574 return -EFAULT;
575 }
576
577 qp->prev = vma;
578
579 if (flags & MPOL_MF_LAZY) {
580 /* Similar to task_numa_work, skip inaccessible VMAs */
581 if (!is_vm_hugetlb_page(vma) &&
582 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
583 !(vma->vm_flags & VM_MIXEDMAP))
584 change_prot_numa(vma, start, endvma);
585 return 1;
586 }
587
588 /* queue pages from current vma */
589 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
590 return 0;
591 return 1;
592 }
593
594 /*
595 * Walk through page tables and collect pages to be migrated.
596 *
597 * If pages found in a given range are on a set of nodes (determined by
598 * @nodes and @flags,) it's isolated and queued to the pagelist which is
599 * passed via @private.)
600 */
601 static int
602 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
603 nodemask_t *nodes, unsigned long flags,
604 struct list_head *pagelist)
605 {
606 struct queue_pages qp = {
607 .pagelist = pagelist,
608 .flags = flags,
609 .nmask = nodes,
610 .prev = NULL,
611 };
612 struct mm_walk queue_pages_walk = {
613 .hugetlb_entry = queue_pages_hugetlb,
614 .pmd_entry = queue_pages_pte_range,
615 .test_walk = queue_pages_test_walk,
616 .mm = mm,
617 .private = &qp,
618 };
619
620 return walk_page_range(start, end, &queue_pages_walk);
621 }
622
623 /*
624 * Apply policy to a single VMA
625 * This must be called with the mmap_sem held for writing.
626 */
627 static int vma_replace_policy(struct vm_area_struct *vma,
628 struct mempolicy *pol)
629 {
630 int err;
631 struct mempolicy *old;
632 struct mempolicy *new;
633
634 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
635 vma->vm_start, vma->vm_end, vma->vm_pgoff,
636 vma->vm_ops, vma->vm_file,
637 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
638
639 new = mpol_dup(pol);
640 if (IS_ERR(new))
641 return PTR_ERR(new);
642
643 if (vma->vm_ops && vma->vm_ops->set_policy) {
644 err = vma->vm_ops->set_policy(vma, new);
645 if (err)
646 goto err_out;
647 }
648
649 old = vma->vm_policy;
650 vma->vm_policy = new; /* protected by mmap_sem */
651 mpol_put(old);
652
653 return 0;
654 err_out:
655 mpol_put(new);
656 return err;
657 }
658
659 /* Step 2: apply policy to a range and do splits. */
660 static int mbind_range(struct mm_struct *mm, unsigned long start,
661 unsigned long end, struct mempolicy *new_pol)
662 {
663 struct vm_area_struct *next;
664 struct vm_area_struct *prev;
665 struct vm_area_struct *vma;
666 int err = 0;
667 pgoff_t pgoff;
668 unsigned long vmstart;
669 unsigned long vmend;
670
671 vma = find_vma(mm, start);
672 if (!vma || vma->vm_start > start)
673 return -EFAULT;
674
675 prev = vma->vm_prev;
676 if (start > vma->vm_start)
677 prev = vma;
678
679 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
680 next = vma->vm_next;
681 vmstart = max(start, vma->vm_start);
682 vmend = min(end, vma->vm_end);
683
684 if (mpol_equal(vma_policy(vma), new_pol))
685 continue;
686
687 pgoff = vma->vm_pgoff +
688 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
689 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
690 vma->anon_vma, vma->vm_file, pgoff,
691 new_pol, vma->vm_userfaultfd_ctx);
692 if (prev) {
693 vma = prev;
694 next = vma->vm_next;
695 if (mpol_equal(vma_policy(vma), new_pol))
696 continue;
697 /* vma_merge() joined vma && vma->next, case 8 */
698 goto replace;
699 }
700 if (vma->vm_start != vmstart) {
701 err = split_vma(vma->vm_mm, vma, vmstart, 1);
702 if (err)
703 goto out;
704 }
705 if (vma->vm_end != vmend) {
706 err = split_vma(vma->vm_mm, vma, vmend, 0);
707 if (err)
708 goto out;
709 }
710 replace:
711 err = vma_replace_policy(vma, new_pol);
712 if (err)
713 goto out;
714 }
715
716 out:
717 return err;
718 }
719
720 /* Set the process memory policy */
721 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
722 nodemask_t *nodes)
723 {
724 struct mempolicy *new, *old;
725 NODEMASK_SCRATCH(scratch);
726 int ret;
727
728 if (!scratch)
729 return -ENOMEM;
730
731 new = mpol_new(mode, flags, nodes);
732 if (IS_ERR(new)) {
733 ret = PTR_ERR(new);
734 goto out;
735 }
736
737 task_lock(current);
738 ret = mpol_set_nodemask(new, nodes, scratch);
739 if (ret) {
740 task_unlock(current);
741 mpol_put(new);
742 goto out;
743 }
744 old = current->mempolicy;
745 current->mempolicy = new;
746 if (new && new->mode == MPOL_INTERLEAVE)
747 current->il_prev = MAX_NUMNODES-1;
748 task_unlock(current);
749 mpol_put(old);
750 ret = 0;
751 out:
752 NODEMASK_SCRATCH_FREE(scratch);
753 return ret;
754 }
755
756 /*
757 * Return nodemask for policy for get_mempolicy() query
758 *
759 * Called with task's alloc_lock held
760 */
761 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
762 {
763 nodes_clear(*nodes);
764 if (p == &default_policy)
765 return;
766
767 switch (p->mode) {
768 case MPOL_BIND:
769 /* Fall through */
770 case MPOL_INTERLEAVE:
771 *nodes = p->v.nodes;
772 break;
773 case MPOL_PREFERRED:
774 if (!(p->flags & MPOL_F_LOCAL))
775 node_set(p->v.preferred_node, *nodes);
776 /* else return empty node mask for local allocation */
777 break;
778 default:
779 BUG();
780 }
781 }
782
783 static int lookup_node(unsigned long addr)
784 {
785 struct page *p;
786 int err;
787
788 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
789 if (err >= 0) {
790 err = page_to_nid(p);
791 put_page(p);
792 }
793 return err;
794 }
795
796 /* Retrieve NUMA policy */
797 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
798 unsigned long addr, unsigned long flags)
799 {
800 int err;
801 struct mm_struct *mm = current->mm;
802 struct vm_area_struct *vma = NULL;
803 struct mempolicy *pol = current->mempolicy;
804
805 if (flags &
806 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
807 return -EINVAL;
808
809 if (flags & MPOL_F_MEMS_ALLOWED) {
810 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
811 return -EINVAL;
812 *policy = 0; /* just so it's initialized */
813 task_lock(current);
814 *nmask = cpuset_current_mems_allowed;
815 task_unlock(current);
816 return 0;
817 }
818
819 if (flags & MPOL_F_ADDR) {
820 /*
821 * Do NOT fall back to task policy if the
822 * vma/shared policy at addr is NULL. We
823 * want to return MPOL_DEFAULT in this case.
824 */
825 down_read(&mm->mmap_sem);
826 vma = find_vma_intersection(mm, addr, addr+1);
827 if (!vma) {
828 up_read(&mm->mmap_sem);
829 return -EFAULT;
830 }
831 if (vma->vm_ops && vma->vm_ops->get_policy)
832 pol = vma->vm_ops->get_policy(vma, addr);
833 else
834 pol = vma->vm_policy;
835 } else if (addr)
836 return -EINVAL;
837
838 if (!pol)
839 pol = &default_policy; /* indicates default behavior */
840
841 if (flags & MPOL_F_NODE) {
842 if (flags & MPOL_F_ADDR) {
843 err = lookup_node(addr);
844 if (err < 0)
845 goto out;
846 *policy = err;
847 } else if (pol == current->mempolicy &&
848 pol->mode == MPOL_INTERLEAVE) {
849 *policy = next_node_in(current->il_prev, pol->v.nodes);
850 } else {
851 err = -EINVAL;
852 goto out;
853 }
854 } else {
855 *policy = pol == &default_policy ? MPOL_DEFAULT :
856 pol->mode;
857 /*
858 * Internal mempolicy flags must be masked off before exposing
859 * the policy to userspace.
860 */
861 *policy |= (pol->flags & MPOL_MODE_FLAGS);
862 }
863
864 if (vma) {
865 up_read(&current->mm->mmap_sem);
866 vma = NULL;
867 }
868
869 err = 0;
870 if (nmask) {
871 if (mpol_store_user_nodemask(pol)) {
872 *nmask = pol->w.user_nodemask;
873 } else {
874 task_lock(current);
875 get_policy_nodemask(pol, nmask);
876 task_unlock(current);
877 }
878 }
879
880 out:
881 mpol_cond_put(pol);
882 if (vma)
883 up_read(&current->mm->mmap_sem);
884 return err;
885 }
886
887 #ifdef CONFIG_MIGRATION
888 /*
889 * page migration
890 */
891 static void migrate_page_add(struct page *page, struct list_head *pagelist,
892 unsigned long flags)
893 {
894 /*
895 * Avoid migrating a page that is shared with others.
896 */
897 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
898 if (!isolate_lru_page(page)) {
899 list_add_tail(&page->lru, pagelist);
900 inc_node_page_state(page, NR_ISOLATED_ANON +
901 page_is_file_cache(page));
902 }
903 }
904 }
905
906 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
907 {
908 if (PageHuge(page))
909 return alloc_huge_page_node(page_hstate(compound_head(page)),
910 node);
911 else
912 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
913 __GFP_THISNODE, 0);
914 }
915
916 /*
917 * Migrate pages from one node to a target node.
918 * Returns error or the number of pages not migrated.
919 */
920 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
921 int flags)
922 {
923 nodemask_t nmask;
924 LIST_HEAD(pagelist);
925 int err = 0;
926
927 nodes_clear(nmask);
928 node_set(source, nmask);
929
930 /*
931 * This does not "check" the range but isolates all pages that
932 * need migration. Between passing in the full user address
933 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
934 */
935 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
936 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
937 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
938
939 if (!list_empty(&pagelist)) {
940 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
941 MIGRATE_SYNC, MR_SYSCALL);
942 if (err)
943 putback_movable_pages(&pagelist);
944 }
945
946 return err;
947 }
948
949 /*
950 * Move pages between the two nodesets so as to preserve the physical
951 * layout as much as possible.
952 *
953 * Returns the number of page that could not be moved.
954 */
955 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
956 const nodemask_t *to, int flags)
957 {
958 int busy = 0;
959 int err;
960 nodemask_t tmp;
961
962 err = migrate_prep();
963 if (err)
964 return err;
965
966 down_read(&mm->mmap_sem);
967
968 /*
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
973 *
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
978 *
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
982 *
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
988 *
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
997 */
998
999 tmp = *from;
1000 while (!nodes_empty(tmp)) {
1001 int s,d;
1002 int source = NUMA_NO_NODE;
1003 int dest = 0;
1004
1005 for_each_node_mask(s, tmp) {
1006
1007 /*
1008 * do_migrate_pages() tries to maintain the relative
1009 * node relationship of the pages established between
1010 * threads and memory areas.
1011 *
1012 * However if the number of source nodes is not equal to
1013 * the number of destination nodes we can not preserve
1014 * this node relative relationship. In that case, skip
1015 * copying memory from a node that is in the destination
1016 * mask.
1017 *
1018 * Example: [2,3,4] -> [3,4,5] moves everything.
1019 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1020 */
1021
1022 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1023 (node_isset(s, *to)))
1024 continue;
1025
1026 d = node_remap(s, *from, *to);
1027 if (s == d)
1028 continue;
1029
1030 source = s; /* Node moved. Memorize */
1031 dest = d;
1032
1033 /* dest not in remaining from nodes? */
1034 if (!node_isset(dest, tmp))
1035 break;
1036 }
1037 if (source == NUMA_NO_NODE)
1038 break;
1039
1040 node_clear(source, tmp);
1041 err = migrate_to_node(mm, source, dest, flags);
1042 if (err > 0)
1043 busy += err;
1044 if (err < 0)
1045 break;
1046 }
1047 up_read(&mm->mmap_sem);
1048 if (err < 0)
1049 return err;
1050 return busy;
1051
1052 }
1053
1054 /*
1055 * Allocate a new page for page migration based on vma policy.
1056 * Start by assuming the page is mapped by the same vma as contains @start.
1057 * Search forward from there, if not. N.B., this assumes that the
1058 * list of pages handed to migrate_pages()--which is how we get here--
1059 * is in virtual address order.
1060 */
1061 static struct page *new_page(struct page *page, unsigned long start, int **x)
1062 {
1063 struct vm_area_struct *vma;
1064 unsigned long uninitialized_var(address);
1065
1066 vma = find_vma(current->mm, start);
1067 while (vma) {
1068 address = page_address_in_vma(page, vma);
1069 if (address != -EFAULT)
1070 break;
1071 vma = vma->vm_next;
1072 }
1073
1074 if (PageHuge(page)) {
1075 BUG_ON(!vma);
1076 return alloc_huge_page_noerr(vma, address, 1);
1077 }
1078 /*
1079 * if !vma, alloc_page_vma() will use task or system default policy
1080 */
1081 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1082 }
1083 #else
1084
1085 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1086 unsigned long flags)
1087 {
1088 }
1089
1090 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1091 const nodemask_t *to, int flags)
1092 {
1093 return -ENOSYS;
1094 }
1095
1096 static struct page *new_page(struct page *page, unsigned long start, int **x)
1097 {
1098 return NULL;
1099 }
1100 #endif
1101
1102 static long do_mbind(unsigned long start, unsigned long len,
1103 unsigned short mode, unsigned short mode_flags,
1104 nodemask_t *nmask, unsigned long flags)
1105 {
1106 struct mm_struct *mm = current->mm;
1107 struct mempolicy *new;
1108 unsigned long end;
1109 int err;
1110 LIST_HEAD(pagelist);
1111
1112 if (flags & ~(unsigned long)MPOL_MF_VALID)
1113 return -EINVAL;
1114 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1115 return -EPERM;
1116
1117 if (start & ~PAGE_MASK)
1118 return -EINVAL;
1119
1120 if (mode == MPOL_DEFAULT)
1121 flags &= ~MPOL_MF_STRICT;
1122
1123 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1124 end = start + len;
1125
1126 if (end < start)
1127 return -EINVAL;
1128 if (end == start)
1129 return 0;
1130
1131 new = mpol_new(mode, mode_flags, nmask);
1132 if (IS_ERR(new))
1133 return PTR_ERR(new);
1134
1135 if (flags & MPOL_MF_LAZY)
1136 new->flags |= MPOL_F_MOF;
1137
1138 /*
1139 * If we are using the default policy then operation
1140 * on discontinuous address spaces is okay after all
1141 */
1142 if (!new)
1143 flags |= MPOL_MF_DISCONTIG_OK;
1144
1145 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1146 start, start + len, mode, mode_flags,
1147 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1148
1149 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1150
1151 err = migrate_prep();
1152 if (err)
1153 goto mpol_out;
1154 }
1155 {
1156 NODEMASK_SCRATCH(scratch);
1157 if (scratch) {
1158 down_write(&mm->mmap_sem);
1159 task_lock(current);
1160 err = mpol_set_nodemask(new, nmask, scratch);
1161 task_unlock(current);
1162 if (err)
1163 up_write(&mm->mmap_sem);
1164 } else
1165 err = -ENOMEM;
1166 NODEMASK_SCRATCH_FREE(scratch);
1167 }
1168 if (err)
1169 goto mpol_out;
1170
1171 err = queue_pages_range(mm, start, end, nmask,
1172 flags | MPOL_MF_INVERT, &pagelist);
1173 if (!err)
1174 err = mbind_range(mm, start, end, new);
1175
1176 if (!err) {
1177 int nr_failed = 0;
1178
1179 if (!list_empty(&pagelist)) {
1180 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1181 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1182 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1183 if (nr_failed)
1184 putback_movable_pages(&pagelist);
1185 }
1186
1187 if (nr_failed && (flags & MPOL_MF_STRICT))
1188 err = -EIO;
1189 } else
1190 putback_movable_pages(&pagelist);
1191
1192 up_write(&mm->mmap_sem);
1193 mpol_out:
1194 mpol_put(new);
1195 return err;
1196 }
1197
1198 /*
1199 * User space interface with variable sized bitmaps for nodelists.
1200 */
1201
1202 /* Copy a node mask from user space. */
1203 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1204 unsigned long maxnode)
1205 {
1206 unsigned long k;
1207 unsigned long nlongs;
1208 unsigned long endmask;
1209
1210 --maxnode;
1211 nodes_clear(*nodes);
1212 if (maxnode == 0 || !nmask)
1213 return 0;
1214 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1215 return -EINVAL;
1216
1217 nlongs = BITS_TO_LONGS(maxnode);
1218 if ((maxnode % BITS_PER_LONG) == 0)
1219 endmask = ~0UL;
1220 else
1221 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1222
1223 /* When the user specified more nodes than supported just check
1224 if the non supported part is all zero. */
1225 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1226 if (nlongs > PAGE_SIZE/sizeof(long))
1227 return -EINVAL;
1228 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1229 unsigned long t;
1230 if (get_user(t, nmask + k))
1231 return -EFAULT;
1232 if (k == nlongs - 1) {
1233 if (t & endmask)
1234 return -EINVAL;
1235 } else if (t)
1236 return -EINVAL;
1237 }
1238 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1239 endmask = ~0UL;
1240 }
1241
1242 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1243 return -EFAULT;
1244 nodes_addr(*nodes)[nlongs-1] &= endmask;
1245 return 0;
1246 }
1247
1248 /* Copy a kernel node mask to user space */
1249 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1250 nodemask_t *nodes)
1251 {
1252 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1253 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1254
1255 if (copy > nbytes) {
1256 if (copy > PAGE_SIZE)
1257 return -EINVAL;
1258 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1259 return -EFAULT;
1260 copy = nbytes;
1261 }
1262 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1263 }
1264
1265 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1266 unsigned long, mode, const unsigned long __user *, nmask,
1267 unsigned long, maxnode, unsigned, flags)
1268 {
1269 nodemask_t nodes;
1270 int err;
1271 unsigned short mode_flags;
1272
1273 mode_flags = mode & MPOL_MODE_FLAGS;
1274 mode &= ~MPOL_MODE_FLAGS;
1275 if (mode >= MPOL_MAX)
1276 return -EINVAL;
1277 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1278 (mode_flags & MPOL_F_RELATIVE_NODES))
1279 return -EINVAL;
1280 err = get_nodes(&nodes, nmask, maxnode);
1281 if (err)
1282 return err;
1283 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1284 }
1285
1286 /* Set the process memory policy */
1287 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1288 unsigned long, maxnode)
1289 {
1290 int err;
1291 nodemask_t nodes;
1292 unsigned short flags;
1293
1294 flags = mode & MPOL_MODE_FLAGS;
1295 mode &= ~MPOL_MODE_FLAGS;
1296 if ((unsigned int)mode >= MPOL_MAX)
1297 return -EINVAL;
1298 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1299 return -EINVAL;
1300 err = get_nodes(&nodes, nmask, maxnode);
1301 if (err)
1302 return err;
1303 return do_set_mempolicy(mode, flags, &nodes);
1304 }
1305
1306 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1307 const unsigned long __user *, old_nodes,
1308 const unsigned long __user *, new_nodes)
1309 {
1310 const struct cred *cred = current_cred(), *tcred;
1311 struct mm_struct *mm = NULL;
1312 struct task_struct *task;
1313 nodemask_t task_nodes;
1314 int err;
1315 nodemask_t *old;
1316 nodemask_t *new;
1317 NODEMASK_SCRATCH(scratch);
1318
1319 if (!scratch)
1320 return -ENOMEM;
1321
1322 old = &scratch->mask1;
1323 new = &scratch->mask2;
1324
1325 err = get_nodes(old, old_nodes, maxnode);
1326 if (err)
1327 goto out;
1328
1329 err = get_nodes(new, new_nodes, maxnode);
1330 if (err)
1331 goto out;
1332
1333 /* Find the mm_struct */
1334 rcu_read_lock();
1335 task = pid ? find_task_by_vpid(pid) : current;
1336 if (!task) {
1337 rcu_read_unlock();
1338 err = -ESRCH;
1339 goto out;
1340 }
1341 get_task_struct(task);
1342
1343 err = -EINVAL;
1344
1345 /*
1346 * Check if this process has the right to modify the specified
1347 * process. The right exists if the process has administrative
1348 * capabilities, superuser privileges or the same
1349 * userid as the target process.
1350 */
1351 tcred = __task_cred(task);
1352 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1353 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1354 !capable(CAP_SYS_NICE)) {
1355 rcu_read_unlock();
1356 err = -EPERM;
1357 goto out_put;
1358 }
1359 rcu_read_unlock();
1360
1361 task_nodes = cpuset_mems_allowed(task);
1362 /* Is the user allowed to access the target nodes? */
1363 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1364 err = -EPERM;
1365 goto out_put;
1366 }
1367
1368 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1369 err = -EINVAL;
1370 goto out_put;
1371 }
1372
1373 err = security_task_movememory(task);
1374 if (err)
1375 goto out_put;
1376
1377 mm = get_task_mm(task);
1378 put_task_struct(task);
1379
1380 if (!mm) {
1381 err = -EINVAL;
1382 goto out;
1383 }
1384
1385 err = do_migrate_pages(mm, old, new,
1386 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1387
1388 mmput(mm);
1389 out:
1390 NODEMASK_SCRATCH_FREE(scratch);
1391
1392 return err;
1393
1394 out_put:
1395 put_task_struct(task);
1396 goto out;
1397
1398 }
1399
1400
1401 /* Retrieve NUMA policy */
1402 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1403 unsigned long __user *, nmask, unsigned long, maxnode,
1404 unsigned long, addr, unsigned long, flags)
1405 {
1406 int err;
1407 int uninitialized_var(pval);
1408 nodemask_t nodes;
1409
1410 if (nmask != NULL && maxnode < MAX_NUMNODES)
1411 return -EINVAL;
1412
1413 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1414
1415 if (err)
1416 return err;
1417
1418 if (policy && put_user(pval, policy))
1419 return -EFAULT;
1420
1421 if (nmask)
1422 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1423
1424 return err;
1425 }
1426
1427 #ifdef CONFIG_COMPAT
1428
1429 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1430 compat_ulong_t __user *, nmask,
1431 compat_ulong_t, maxnode,
1432 compat_ulong_t, addr, compat_ulong_t, flags)
1433 {
1434 long err;
1435 unsigned long __user *nm = NULL;
1436 unsigned long nr_bits, alloc_size;
1437 DECLARE_BITMAP(bm, MAX_NUMNODES);
1438
1439 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1440 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1441
1442 if (nmask)
1443 nm = compat_alloc_user_space(alloc_size);
1444
1445 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1446
1447 if (!err && nmask) {
1448 unsigned long copy_size;
1449 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1450 err = copy_from_user(bm, nm, copy_size);
1451 /* ensure entire bitmap is zeroed */
1452 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1453 err |= compat_put_bitmap(nmask, bm, nr_bits);
1454 }
1455
1456 return err;
1457 }
1458
1459 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1460 compat_ulong_t, maxnode)
1461 {
1462 unsigned long __user *nm = NULL;
1463 unsigned long nr_bits, alloc_size;
1464 DECLARE_BITMAP(bm, MAX_NUMNODES);
1465
1466 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1467 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1468
1469 if (nmask) {
1470 if (compat_get_bitmap(bm, nmask, nr_bits))
1471 return -EFAULT;
1472 nm = compat_alloc_user_space(alloc_size);
1473 if (copy_to_user(nm, bm, alloc_size))
1474 return -EFAULT;
1475 }
1476
1477 return sys_set_mempolicy(mode, nm, nr_bits+1);
1478 }
1479
1480 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1481 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1482 compat_ulong_t, maxnode, compat_ulong_t, flags)
1483 {
1484 unsigned long __user *nm = NULL;
1485 unsigned long nr_bits, alloc_size;
1486 nodemask_t bm;
1487
1488 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1489 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1490
1491 if (nmask) {
1492 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1493 return -EFAULT;
1494 nm = compat_alloc_user_space(alloc_size);
1495 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1496 return -EFAULT;
1497 }
1498
1499 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1500 }
1501
1502 #endif
1503
1504 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1505 unsigned long addr)
1506 {
1507 struct mempolicy *pol = NULL;
1508
1509 if (vma) {
1510 if (vma->vm_ops && vma->vm_ops->get_policy) {
1511 pol = vma->vm_ops->get_policy(vma, addr);
1512 } else if (vma->vm_policy) {
1513 pol = vma->vm_policy;
1514
1515 /*
1516 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1517 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1518 * count on these policies which will be dropped by
1519 * mpol_cond_put() later
1520 */
1521 if (mpol_needs_cond_ref(pol))
1522 mpol_get(pol);
1523 }
1524 }
1525
1526 return pol;
1527 }
1528
1529 /*
1530 * get_vma_policy(@vma, @addr)
1531 * @vma: virtual memory area whose policy is sought
1532 * @addr: address in @vma for shared policy lookup
1533 *
1534 * Returns effective policy for a VMA at specified address.
1535 * Falls back to current->mempolicy or system default policy, as necessary.
1536 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1537 * count--added by the get_policy() vm_op, as appropriate--to protect against
1538 * freeing by another task. It is the caller's responsibility to free the
1539 * extra reference for shared policies.
1540 */
1541 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1542 unsigned long addr)
1543 {
1544 struct mempolicy *pol = __get_vma_policy(vma, addr);
1545
1546 if (!pol)
1547 pol = get_task_policy(current);
1548
1549 return pol;
1550 }
1551
1552 bool vma_policy_mof(struct vm_area_struct *vma)
1553 {
1554 struct mempolicy *pol;
1555
1556 if (vma->vm_ops && vma->vm_ops->get_policy) {
1557 bool ret = false;
1558
1559 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1560 if (pol && (pol->flags & MPOL_F_MOF))
1561 ret = true;
1562 mpol_cond_put(pol);
1563
1564 return ret;
1565 }
1566
1567 pol = vma->vm_policy;
1568 if (!pol)
1569 pol = get_task_policy(current);
1570
1571 return pol->flags & MPOL_F_MOF;
1572 }
1573
1574 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1575 {
1576 enum zone_type dynamic_policy_zone = policy_zone;
1577
1578 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1579
1580 /*
1581 * if policy->v.nodes has movable memory only,
1582 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1583 *
1584 * policy->v.nodes is intersect with node_states[N_MEMORY].
1585 * so if the following test faile, it implies
1586 * policy->v.nodes has movable memory only.
1587 */
1588 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1589 dynamic_policy_zone = ZONE_MOVABLE;
1590
1591 return zone >= dynamic_policy_zone;
1592 }
1593
1594 /*
1595 * Return a nodemask representing a mempolicy for filtering nodes for
1596 * page allocation
1597 */
1598 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1599 {
1600 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1601 if (unlikely(policy->mode == MPOL_BIND) &&
1602 apply_policy_zone(policy, gfp_zone(gfp)) &&
1603 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1604 return &policy->v.nodes;
1605
1606 return NULL;
1607 }
1608
1609 /* Return the node id preferred by the given mempolicy, or the given id */
1610 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1611 int nd)
1612 {
1613 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1614 nd = policy->v.preferred_node;
1615 else {
1616 /*
1617 * __GFP_THISNODE shouldn't even be used with the bind policy
1618 * because we might easily break the expectation to stay on the
1619 * requested node and not break the policy.
1620 */
1621 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1622 }
1623
1624 return nd;
1625 }
1626
1627 /* Do dynamic interleaving for a process */
1628 static unsigned interleave_nodes(struct mempolicy *policy)
1629 {
1630 unsigned next;
1631 struct task_struct *me = current;
1632
1633 next = next_node_in(me->il_prev, policy->v.nodes);
1634 if (next < MAX_NUMNODES)
1635 me->il_prev = next;
1636 return next;
1637 }
1638
1639 /*
1640 * Depending on the memory policy provide a node from which to allocate the
1641 * next slab entry.
1642 */
1643 unsigned int mempolicy_slab_node(void)
1644 {
1645 struct mempolicy *policy;
1646 int node = numa_mem_id();
1647
1648 if (in_interrupt())
1649 return node;
1650
1651 policy = current->mempolicy;
1652 if (!policy || policy->flags & MPOL_F_LOCAL)
1653 return node;
1654
1655 switch (policy->mode) {
1656 case MPOL_PREFERRED:
1657 /*
1658 * handled MPOL_F_LOCAL above
1659 */
1660 return policy->v.preferred_node;
1661
1662 case MPOL_INTERLEAVE:
1663 return interleave_nodes(policy);
1664
1665 case MPOL_BIND: {
1666 struct zoneref *z;
1667
1668 /*
1669 * Follow bind policy behavior and start allocation at the
1670 * first node.
1671 */
1672 struct zonelist *zonelist;
1673 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1674 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1675 z = first_zones_zonelist(zonelist, highest_zoneidx,
1676 &policy->v.nodes);
1677 return z->zone ? z->zone->node : node;
1678 }
1679
1680 default:
1681 BUG();
1682 }
1683 }
1684
1685 /*
1686 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1687 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1688 * number of present nodes.
1689 */
1690 static unsigned offset_il_node(struct mempolicy *pol,
1691 struct vm_area_struct *vma, unsigned long n)
1692 {
1693 unsigned nnodes = nodes_weight(pol->v.nodes);
1694 unsigned target;
1695 int i;
1696 int nid;
1697
1698 if (!nnodes)
1699 return numa_node_id();
1700 target = (unsigned int)n % nnodes;
1701 nid = first_node(pol->v.nodes);
1702 for (i = 0; i < target; i++)
1703 nid = next_node(nid, pol->v.nodes);
1704 return nid;
1705 }
1706
1707 /* Determine a node number for interleave */
1708 static inline unsigned interleave_nid(struct mempolicy *pol,
1709 struct vm_area_struct *vma, unsigned long addr, int shift)
1710 {
1711 if (vma) {
1712 unsigned long off;
1713
1714 /*
1715 * for small pages, there is no difference between
1716 * shift and PAGE_SHIFT, so the bit-shift is safe.
1717 * for huge pages, since vm_pgoff is in units of small
1718 * pages, we need to shift off the always 0 bits to get
1719 * a useful offset.
1720 */
1721 BUG_ON(shift < PAGE_SHIFT);
1722 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1723 off += (addr - vma->vm_start) >> shift;
1724 return offset_il_node(pol, vma, off);
1725 } else
1726 return interleave_nodes(pol);
1727 }
1728
1729 #ifdef CONFIG_HUGETLBFS
1730 /*
1731 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1732 * @vma: virtual memory area whose policy is sought
1733 * @addr: address in @vma for shared policy lookup and interleave policy
1734 * @gfp_flags: for requested zone
1735 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1736 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1737 *
1738 * Returns a nid suitable for a huge page allocation and a pointer
1739 * to the struct mempolicy for conditional unref after allocation.
1740 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1741 * @nodemask for filtering the zonelist.
1742 *
1743 * Must be protected by read_mems_allowed_begin()
1744 */
1745 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1746 struct mempolicy **mpol, nodemask_t **nodemask)
1747 {
1748 int nid;
1749
1750 *mpol = get_vma_policy(vma, addr);
1751 *nodemask = NULL; /* assume !MPOL_BIND */
1752
1753 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1754 nid = interleave_nid(*mpol, vma, addr,
1755 huge_page_shift(hstate_vma(vma)));
1756 } else {
1757 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1758 if ((*mpol)->mode == MPOL_BIND)
1759 *nodemask = &(*mpol)->v.nodes;
1760 }
1761 return nid;
1762 }
1763
1764 /*
1765 * init_nodemask_of_mempolicy
1766 *
1767 * If the current task's mempolicy is "default" [NULL], return 'false'
1768 * to indicate default policy. Otherwise, extract the policy nodemask
1769 * for 'bind' or 'interleave' policy into the argument nodemask, or
1770 * initialize the argument nodemask to contain the single node for
1771 * 'preferred' or 'local' policy and return 'true' to indicate presence
1772 * of non-default mempolicy.
1773 *
1774 * We don't bother with reference counting the mempolicy [mpol_get/put]
1775 * because the current task is examining it's own mempolicy and a task's
1776 * mempolicy is only ever changed by the task itself.
1777 *
1778 * N.B., it is the caller's responsibility to free a returned nodemask.
1779 */
1780 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1781 {
1782 struct mempolicy *mempolicy;
1783 int nid;
1784
1785 if (!(mask && current->mempolicy))
1786 return false;
1787
1788 task_lock(current);
1789 mempolicy = current->mempolicy;
1790 switch (mempolicy->mode) {
1791 case MPOL_PREFERRED:
1792 if (mempolicy->flags & MPOL_F_LOCAL)
1793 nid = numa_node_id();
1794 else
1795 nid = mempolicy->v.preferred_node;
1796 init_nodemask_of_node(mask, nid);
1797 break;
1798
1799 case MPOL_BIND:
1800 /* Fall through */
1801 case MPOL_INTERLEAVE:
1802 *mask = mempolicy->v.nodes;
1803 break;
1804
1805 default:
1806 BUG();
1807 }
1808 task_unlock(current);
1809
1810 return true;
1811 }
1812 #endif
1813
1814 /*
1815 * mempolicy_nodemask_intersects
1816 *
1817 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1818 * policy. Otherwise, check for intersection between mask and the policy
1819 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1820 * policy, always return true since it may allocate elsewhere on fallback.
1821 *
1822 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1823 */
1824 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1825 const nodemask_t *mask)
1826 {
1827 struct mempolicy *mempolicy;
1828 bool ret = true;
1829
1830 if (!mask)
1831 return ret;
1832 task_lock(tsk);
1833 mempolicy = tsk->mempolicy;
1834 if (!mempolicy)
1835 goto out;
1836
1837 switch (mempolicy->mode) {
1838 case MPOL_PREFERRED:
1839 /*
1840 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1841 * allocate from, they may fallback to other nodes when oom.
1842 * Thus, it's possible for tsk to have allocated memory from
1843 * nodes in mask.
1844 */
1845 break;
1846 case MPOL_BIND:
1847 case MPOL_INTERLEAVE:
1848 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1849 break;
1850 default:
1851 BUG();
1852 }
1853 out:
1854 task_unlock(tsk);
1855 return ret;
1856 }
1857
1858 /* Allocate a page in interleaved policy.
1859 Own path because it needs to do special accounting. */
1860 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1861 unsigned nid)
1862 {
1863 struct page *page;
1864
1865 page = __alloc_pages(gfp, order, nid);
1866 if (page && page_to_nid(page) == nid)
1867 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1868 return page;
1869 }
1870
1871 /**
1872 * alloc_pages_vma - Allocate a page for a VMA.
1873 *
1874 * @gfp:
1875 * %GFP_USER user allocation.
1876 * %GFP_KERNEL kernel allocations,
1877 * %GFP_HIGHMEM highmem/user allocations,
1878 * %GFP_FS allocation should not call back into a file system.
1879 * %GFP_ATOMIC don't sleep.
1880 *
1881 * @order:Order of the GFP allocation.
1882 * @vma: Pointer to VMA or NULL if not available.
1883 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1884 * @node: Which node to prefer for allocation (modulo policy).
1885 * @hugepage: for hugepages try only the preferred node if possible
1886 *
1887 * This function allocates a page from the kernel page pool and applies
1888 * a NUMA policy associated with the VMA or the current process.
1889 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1890 * mm_struct of the VMA to prevent it from going away. Should be used for
1891 * all allocations for pages that will be mapped into user space. Returns
1892 * NULL when no page can be allocated.
1893 */
1894 struct page *
1895 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1896 unsigned long addr, int node, bool hugepage)
1897 {
1898 struct mempolicy *pol;
1899 struct page *page;
1900 int preferred_nid;
1901 nodemask_t *nmask;
1902
1903 pol = get_vma_policy(vma, addr);
1904
1905 if (pol->mode == MPOL_INTERLEAVE) {
1906 unsigned nid;
1907
1908 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1909 mpol_cond_put(pol);
1910 page = alloc_page_interleave(gfp, order, nid);
1911 goto out;
1912 }
1913
1914 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1915 int hpage_node = node;
1916
1917 /*
1918 * For hugepage allocation and non-interleave policy which
1919 * allows the current node (or other explicitly preferred
1920 * node) we only try to allocate from the current/preferred
1921 * node and don't fall back to other nodes, as the cost of
1922 * remote accesses would likely offset THP benefits.
1923 *
1924 * If the policy is interleave, or does not allow the current
1925 * node in its nodemask, we allocate the standard way.
1926 */
1927 if (pol->mode == MPOL_PREFERRED &&
1928 !(pol->flags & MPOL_F_LOCAL))
1929 hpage_node = pol->v.preferred_node;
1930
1931 nmask = policy_nodemask(gfp, pol);
1932 if (!nmask || node_isset(hpage_node, *nmask)) {
1933 mpol_cond_put(pol);
1934 page = __alloc_pages_node(hpage_node,
1935 gfp | __GFP_THISNODE, order);
1936 goto out;
1937 }
1938 }
1939
1940 nmask = policy_nodemask(gfp, pol);
1941 preferred_nid = policy_node(gfp, pol, node);
1942 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
1943 mpol_cond_put(pol);
1944 out:
1945 return page;
1946 }
1947
1948 /**
1949 * alloc_pages_current - Allocate pages.
1950 *
1951 * @gfp:
1952 * %GFP_USER user allocation,
1953 * %GFP_KERNEL kernel allocation,
1954 * %GFP_HIGHMEM highmem allocation,
1955 * %GFP_FS don't call back into a file system.
1956 * %GFP_ATOMIC don't sleep.
1957 * @order: Power of two of allocation size in pages. 0 is a single page.
1958 *
1959 * Allocate a page from the kernel page pool. When not in
1960 * interrupt context and apply the current process NUMA policy.
1961 * Returns NULL when no page can be allocated.
1962 */
1963 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1964 {
1965 struct mempolicy *pol = &default_policy;
1966 struct page *page;
1967
1968 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
1969 pol = get_task_policy(current);
1970
1971 /*
1972 * No reference counting needed for current->mempolicy
1973 * nor system default_policy
1974 */
1975 if (pol->mode == MPOL_INTERLEAVE)
1976 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1977 else
1978 page = __alloc_pages_nodemask(gfp, order,
1979 policy_node(gfp, pol, numa_node_id()),
1980 policy_nodemask(gfp, pol));
1981
1982 return page;
1983 }
1984 EXPORT_SYMBOL(alloc_pages_current);
1985
1986 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
1987 {
1988 struct mempolicy *pol = mpol_dup(vma_policy(src));
1989
1990 if (IS_ERR(pol))
1991 return PTR_ERR(pol);
1992 dst->vm_policy = pol;
1993 return 0;
1994 }
1995
1996 /*
1997 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1998 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1999 * with the mems_allowed returned by cpuset_mems_allowed(). This
2000 * keeps mempolicies cpuset relative after its cpuset moves. See
2001 * further kernel/cpuset.c update_nodemask().
2002 *
2003 * current's mempolicy may be rebinded by the other task(the task that changes
2004 * cpuset's mems), so we needn't do rebind work for current task.
2005 */
2006
2007 /* Slow path of a mempolicy duplicate */
2008 struct mempolicy *__mpol_dup(struct mempolicy *old)
2009 {
2010 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2011
2012 if (!new)
2013 return ERR_PTR(-ENOMEM);
2014
2015 /* task's mempolicy is protected by alloc_lock */
2016 if (old == current->mempolicy) {
2017 task_lock(current);
2018 *new = *old;
2019 task_unlock(current);
2020 } else
2021 *new = *old;
2022
2023 if (current_cpuset_is_being_rebound()) {
2024 nodemask_t mems = cpuset_mems_allowed(current);
2025 mpol_rebind_policy(new, &mems);
2026 }
2027 atomic_set(&new->refcnt, 1);
2028 return new;
2029 }
2030
2031 /* Slow path of a mempolicy comparison */
2032 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2033 {
2034 if (!a || !b)
2035 return false;
2036 if (a->mode != b->mode)
2037 return false;
2038 if (a->flags != b->flags)
2039 return false;
2040 if (mpol_store_user_nodemask(a))
2041 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2042 return false;
2043
2044 switch (a->mode) {
2045 case MPOL_BIND:
2046 /* Fall through */
2047 case MPOL_INTERLEAVE:
2048 return !!nodes_equal(a->v.nodes, b->v.nodes);
2049 case MPOL_PREFERRED:
2050 return a->v.preferred_node == b->v.preferred_node;
2051 default:
2052 BUG();
2053 return false;
2054 }
2055 }
2056
2057 /*
2058 * Shared memory backing store policy support.
2059 *
2060 * Remember policies even when nobody has shared memory mapped.
2061 * The policies are kept in Red-Black tree linked from the inode.
2062 * They are protected by the sp->lock rwlock, which should be held
2063 * for any accesses to the tree.
2064 */
2065
2066 /*
2067 * lookup first element intersecting start-end. Caller holds sp->lock for
2068 * reading or for writing
2069 */
2070 static struct sp_node *
2071 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2072 {
2073 struct rb_node *n = sp->root.rb_node;
2074
2075 while (n) {
2076 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2077
2078 if (start >= p->end)
2079 n = n->rb_right;
2080 else if (end <= p->start)
2081 n = n->rb_left;
2082 else
2083 break;
2084 }
2085 if (!n)
2086 return NULL;
2087 for (;;) {
2088 struct sp_node *w = NULL;
2089 struct rb_node *prev = rb_prev(n);
2090 if (!prev)
2091 break;
2092 w = rb_entry(prev, struct sp_node, nd);
2093 if (w->end <= start)
2094 break;
2095 n = prev;
2096 }
2097 return rb_entry(n, struct sp_node, nd);
2098 }
2099
2100 /*
2101 * Insert a new shared policy into the list. Caller holds sp->lock for
2102 * writing.
2103 */
2104 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2105 {
2106 struct rb_node **p = &sp->root.rb_node;
2107 struct rb_node *parent = NULL;
2108 struct sp_node *nd;
2109
2110 while (*p) {
2111 parent = *p;
2112 nd = rb_entry(parent, struct sp_node, nd);
2113 if (new->start < nd->start)
2114 p = &(*p)->rb_left;
2115 else if (new->end > nd->end)
2116 p = &(*p)->rb_right;
2117 else
2118 BUG();
2119 }
2120 rb_link_node(&new->nd, parent, p);
2121 rb_insert_color(&new->nd, &sp->root);
2122 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2123 new->policy ? new->policy->mode : 0);
2124 }
2125
2126 /* Find shared policy intersecting idx */
2127 struct mempolicy *
2128 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2129 {
2130 struct mempolicy *pol = NULL;
2131 struct sp_node *sn;
2132
2133 if (!sp->root.rb_node)
2134 return NULL;
2135 read_lock(&sp->lock);
2136 sn = sp_lookup(sp, idx, idx+1);
2137 if (sn) {
2138 mpol_get(sn->policy);
2139 pol = sn->policy;
2140 }
2141 read_unlock(&sp->lock);
2142 return pol;
2143 }
2144
2145 static void sp_free(struct sp_node *n)
2146 {
2147 mpol_put(n->policy);
2148 kmem_cache_free(sn_cache, n);
2149 }
2150
2151 /**
2152 * mpol_misplaced - check whether current page node is valid in policy
2153 *
2154 * @page: page to be checked
2155 * @vma: vm area where page mapped
2156 * @addr: virtual address where page mapped
2157 *
2158 * Lookup current policy node id for vma,addr and "compare to" page's
2159 * node id.
2160 *
2161 * Returns:
2162 * -1 - not misplaced, page is in the right node
2163 * node - node id where the page should be
2164 *
2165 * Policy determination "mimics" alloc_page_vma().
2166 * Called from fault path where we know the vma and faulting address.
2167 */
2168 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2169 {
2170 struct mempolicy *pol;
2171 struct zoneref *z;
2172 int curnid = page_to_nid(page);
2173 unsigned long pgoff;
2174 int thiscpu = raw_smp_processor_id();
2175 int thisnid = cpu_to_node(thiscpu);
2176 int polnid = -1;
2177 int ret = -1;
2178
2179 BUG_ON(!vma);
2180
2181 pol = get_vma_policy(vma, addr);
2182 if (!(pol->flags & MPOL_F_MOF))
2183 goto out;
2184
2185 switch (pol->mode) {
2186 case MPOL_INTERLEAVE:
2187 BUG_ON(addr >= vma->vm_end);
2188 BUG_ON(addr < vma->vm_start);
2189
2190 pgoff = vma->vm_pgoff;
2191 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2192 polnid = offset_il_node(pol, vma, pgoff);
2193 break;
2194
2195 case MPOL_PREFERRED:
2196 if (pol->flags & MPOL_F_LOCAL)
2197 polnid = numa_node_id();
2198 else
2199 polnid = pol->v.preferred_node;
2200 break;
2201
2202 case MPOL_BIND:
2203
2204 /*
2205 * allows binding to multiple nodes.
2206 * use current page if in policy nodemask,
2207 * else select nearest allowed node, if any.
2208 * If no allowed nodes, use current [!misplaced].
2209 */
2210 if (node_isset(curnid, pol->v.nodes))
2211 goto out;
2212 z = first_zones_zonelist(
2213 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2214 gfp_zone(GFP_HIGHUSER),
2215 &pol->v.nodes);
2216 polnid = z->zone->node;
2217 break;
2218
2219 default:
2220 BUG();
2221 }
2222
2223 /* Migrate the page towards the node whose CPU is referencing it */
2224 if (pol->flags & MPOL_F_MORON) {
2225 polnid = thisnid;
2226
2227 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2228 goto out;
2229 }
2230
2231 if (curnid != polnid)
2232 ret = polnid;
2233 out:
2234 mpol_cond_put(pol);
2235
2236 return ret;
2237 }
2238
2239 /*
2240 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2241 * dropped after task->mempolicy is set to NULL so that any allocation done as
2242 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2243 * policy.
2244 */
2245 void mpol_put_task_policy(struct task_struct *task)
2246 {
2247 struct mempolicy *pol;
2248
2249 task_lock(task);
2250 pol = task->mempolicy;
2251 task->mempolicy = NULL;
2252 task_unlock(task);
2253 mpol_put(pol);
2254 }
2255
2256 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2257 {
2258 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2259 rb_erase(&n->nd, &sp->root);
2260 sp_free(n);
2261 }
2262
2263 static void sp_node_init(struct sp_node *node, unsigned long start,
2264 unsigned long end, struct mempolicy *pol)
2265 {
2266 node->start = start;
2267 node->end = end;
2268 node->policy = pol;
2269 }
2270
2271 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2272 struct mempolicy *pol)
2273 {
2274 struct sp_node *n;
2275 struct mempolicy *newpol;
2276
2277 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2278 if (!n)
2279 return NULL;
2280
2281 newpol = mpol_dup(pol);
2282 if (IS_ERR(newpol)) {
2283 kmem_cache_free(sn_cache, n);
2284 return NULL;
2285 }
2286 newpol->flags |= MPOL_F_SHARED;
2287 sp_node_init(n, start, end, newpol);
2288
2289 return n;
2290 }
2291
2292 /* Replace a policy range. */
2293 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2294 unsigned long end, struct sp_node *new)
2295 {
2296 struct sp_node *n;
2297 struct sp_node *n_new = NULL;
2298 struct mempolicy *mpol_new = NULL;
2299 int ret = 0;
2300
2301 restart:
2302 write_lock(&sp->lock);
2303 n = sp_lookup(sp, start, end);
2304 /* Take care of old policies in the same range. */
2305 while (n && n->start < end) {
2306 struct rb_node *next = rb_next(&n->nd);
2307 if (n->start >= start) {
2308 if (n->end <= end)
2309 sp_delete(sp, n);
2310 else
2311 n->start = end;
2312 } else {
2313 /* Old policy spanning whole new range. */
2314 if (n->end > end) {
2315 if (!n_new)
2316 goto alloc_new;
2317
2318 *mpol_new = *n->policy;
2319 atomic_set(&mpol_new->refcnt, 1);
2320 sp_node_init(n_new, end, n->end, mpol_new);
2321 n->end = start;
2322 sp_insert(sp, n_new);
2323 n_new = NULL;
2324 mpol_new = NULL;
2325 break;
2326 } else
2327 n->end = start;
2328 }
2329 if (!next)
2330 break;
2331 n = rb_entry(next, struct sp_node, nd);
2332 }
2333 if (new)
2334 sp_insert(sp, new);
2335 write_unlock(&sp->lock);
2336 ret = 0;
2337
2338 err_out:
2339 if (mpol_new)
2340 mpol_put(mpol_new);
2341 if (n_new)
2342 kmem_cache_free(sn_cache, n_new);
2343
2344 return ret;
2345
2346 alloc_new:
2347 write_unlock(&sp->lock);
2348 ret = -ENOMEM;
2349 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2350 if (!n_new)
2351 goto err_out;
2352 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2353 if (!mpol_new)
2354 goto err_out;
2355 goto restart;
2356 }
2357
2358 /**
2359 * mpol_shared_policy_init - initialize shared policy for inode
2360 * @sp: pointer to inode shared policy
2361 * @mpol: struct mempolicy to install
2362 *
2363 * Install non-NULL @mpol in inode's shared policy rb-tree.
2364 * On entry, the current task has a reference on a non-NULL @mpol.
2365 * This must be released on exit.
2366 * This is called at get_inode() calls and we can use GFP_KERNEL.
2367 */
2368 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2369 {
2370 int ret;
2371
2372 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2373 rwlock_init(&sp->lock);
2374
2375 if (mpol) {
2376 struct vm_area_struct pvma;
2377 struct mempolicy *new;
2378 NODEMASK_SCRATCH(scratch);
2379
2380 if (!scratch)
2381 goto put_mpol;
2382 /* contextualize the tmpfs mount point mempolicy */
2383 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2384 if (IS_ERR(new))
2385 goto free_scratch; /* no valid nodemask intersection */
2386
2387 task_lock(current);
2388 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2389 task_unlock(current);
2390 if (ret)
2391 goto put_new;
2392
2393 /* Create pseudo-vma that contains just the policy */
2394 memset(&pvma, 0, sizeof(struct vm_area_struct));
2395 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2396 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2397
2398 put_new:
2399 mpol_put(new); /* drop initial ref */
2400 free_scratch:
2401 NODEMASK_SCRATCH_FREE(scratch);
2402 put_mpol:
2403 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2404 }
2405 }
2406
2407 int mpol_set_shared_policy(struct shared_policy *info,
2408 struct vm_area_struct *vma, struct mempolicy *npol)
2409 {
2410 int err;
2411 struct sp_node *new = NULL;
2412 unsigned long sz = vma_pages(vma);
2413
2414 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2415 vma->vm_pgoff,
2416 sz, npol ? npol->mode : -1,
2417 npol ? npol->flags : -1,
2418 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2419
2420 if (npol) {
2421 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2422 if (!new)
2423 return -ENOMEM;
2424 }
2425 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2426 if (err && new)
2427 sp_free(new);
2428 return err;
2429 }
2430
2431 /* Free a backing policy store on inode delete. */
2432 void mpol_free_shared_policy(struct shared_policy *p)
2433 {
2434 struct sp_node *n;
2435 struct rb_node *next;
2436
2437 if (!p->root.rb_node)
2438 return;
2439 write_lock(&p->lock);
2440 next = rb_first(&p->root);
2441 while (next) {
2442 n = rb_entry(next, struct sp_node, nd);
2443 next = rb_next(&n->nd);
2444 sp_delete(p, n);
2445 }
2446 write_unlock(&p->lock);
2447 }
2448
2449 #ifdef CONFIG_NUMA_BALANCING
2450 static int __initdata numabalancing_override;
2451
2452 static void __init check_numabalancing_enable(void)
2453 {
2454 bool numabalancing_default = false;
2455
2456 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2457 numabalancing_default = true;
2458
2459 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2460 if (numabalancing_override)
2461 set_numabalancing_state(numabalancing_override == 1);
2462
2463 if (num_online_nodes() > 1 && !numabalancing_override) {
2464 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2465 numabalancing_default ? "Enabling" : "Disabling");
2466 set_numabalancing_state(numabalancing_default);
2467 }
2468 }
2469
2470 static int __init setup_numabalancing(char *str)
2471 {
2472 int ret = 0;
2473 if (!str)
2474 goto out;
2475
2476 if (!strcmp(str, "enable")) {
2477 numabalancing_override = 1;
2478 ret = 1;
2479 } else if (!strcmp(str, "disable")) {
2480 numabalancing_override = -1;
2481 ret = 1;
2482 }
2483 out:
2484 if (!ret)
2485 pr_warn("Unable to parse numa_balancing=\n");
2486
2487 return ret;
2488 }
2489 __setup("numa_balancing=", setup_numabalancing);
2490 #else
2491 static inline void __init check_numabalancing_enable(void)
2492 {
2493 }
2494 #endif /* CONFIG_NUMA_BALANCING */
2495
2496 /* assumes fs == KERNEL_DS */
2497 void __init numa_policy_init(void)
2498 {
2499 nodemask_t interleave_nodes;
2500 unsigned long largest = 0;
2501 int nid, prefer = 0;
2502
2503 policy_cache = kmem_cache_create("numa_policy",
2504 sizeof(struct mempolicy),
2505 0, SLAB_PANIC, NULL);
2506
2507 sn_cache = kmem_cache_create("shared_policy_node",
2508 sizeof(struct sp_node),
2509 0, SLAB_PANIC, NULL);
2510
2511 for_each_node(nid) {
2512 preferred_node_policy[nid] = (struct mempolicy) {
2513 .refcnt = ATOMIC_INIT(1),
2514 .mode = MPOL_PREFERRED,
2515 .flags = MPOL_F_MOF | MPOL_F_MORON,
2516 .v = { .preferred_node = nid, },
2517 };
2518 }
2519
2520 /*
2521 * Set interleaving policy for system init. Interleaving is only
2522 * enabled across suitably sized nodes (default is >= 16MB), or
2523 * fall back to the largest node if they're all smaller.
2524 */
2525 nodes_clear(interleave_nodes);
2526 for_each_node_state(nid, N_MEMORY) {
2527 unsigned long total_pages = node_present_pages(nid);
2528
2529 /* Preserve the largest node */
2530 if (largest < total_pages) {
2531 largest = total_pages;
2532 prefer = nid;
2533 }
2534
2535 /* Interleave this node? */
2536 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2537 node_set(nid, interleave_nodes);
2538 }
2539
2540 /* All too small, use the largest */
2541 if (unlikely(nodes_empty(interleave_nodes)))
2542 node_set(prefer, interleave_nodes);
2543
2544 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2545 pr_err("%s: interleaving failed\n", __func__);
2546
2547 check_numabalancing_enable();
2548 }
2549
2550 /* Reset policy of current process to default */
2551 void numa_default_policy(void)
2552 {
2553 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2554 }
2555
2556 /*
2557 * Parse and format mempolicy from/to strings
2558 */
2559
2560 /*
2561 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2562 */
2563 static const char * const policy_modes[] =
2564 {
2565 [MPOL_DEFAULT] = "default",
2566 [MPOL_PREFERRED] = "prefer",
2567 [MPOL_BIND] = "bind",
2568 [MPOL_INTERLEAVE] = "interleave",
2569 [MPOL_LOCAL] = "local",
2570 };
2571
2572
2573 #ifdef CONFIG_TMPFS
2574 /**
2575 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2576 * @str: string containing mempolicy to parse
2577 * @mpol: pointer to struct mempolicy pointer, returned on success.
2578 *
2579 * Format of input:
2580 * <mode>[=<flags>][:<nodelist>]
2581 *
2582 * On success, returns 0, else 1
2583 */
2584 int mpol_parse_str(char *str, struct mempolicy **mpol)
2585 {
2586 struct mempolicy *new = NULL;
2587 unsigned short mode;
2588 unsigned short mode_flags;
2589 nodemask_t nodes;
2590 char *nodelist = strchr(str, ':');
2591 char *flags = strchr(str, '=');
2592 int err = 1;
2593
2594 if (nodelist) {
2595 /* NUL-terminate mode or flags string */
2596 *nodelist++ = '\0';
2597 if (nodelist_parse(nodelist, nodes))
2598 goto out;
2599 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2600 goto out;
2601 } else
2602 nodes_clear(nodes);
2603
2604 if (flags)
2605 *flags++ = '\0'; /* terminate mode string */
2606
2607 for (mode = 0; mode < MPOL_MAX; mode++) {
2608 if (!strcmp(str, policy_modes[mode])) {
2609 break;
2610 }
2611 }
2612 if (mode >= MPOL_MAX)
2613 goto out;
2614
2615 switch (mode) {
2616 case MPOL_PREFERRED:
2617 /*
2618 * Insist on a nodelist of one node only
2619 */
2620 if (nodelist) {
2621 char *rest = nodelist;
2622 while (isdigit(*rest))
2623 rest++;
2624 if (*rest)
2625 goto out;
2626 }
2627 break;
2628 case MPOL_INTERLEAVE:
2629 /*
2630 * Default to online nodes with memory if no nodelist
2631 */
2632 if (!nodelist)
2633 nodes = node_states[N_MEMORY];
2634 break;
2635 case MPOL_LOCAL:
2636 /*
2637 * Don't allow a nodelist; mpol_new() checks flags
2638 */
2639 if (nodelist)
2640 goto out;
2641 mode = MPOL_PREFERRED;
2642 break;
2643 case MPOL_DEFAULT:
2644 /*
2645 * Insist on a empty nodelist
2646 */
2647 if (!nodelist)
2648 err = 0;
2649 goto out;
2650 case MPOL_BIND:
2651 /*
2652 * Insist on a nodelist
2653 */
2654 if (!nodelist)
2655 goto out;
2656 }
2657
2658 mode_flags = 0;
2659 if (flags) {
2660 /*
2661 * Currently, we only support two mutually exclusive
2662 * mode flags.
2663 */
2664 if (!strcmp(flags, "static"))
2665 mode_flags |= MPOL_F_STATIC_NODES;
2666 else if (!strcmp(flags, "relative"))
2667 mode_flags |= MPOL_F_RELATIVE_NODES;
2668 else
2669 goto out;
2670 }
2671
2672 new = mpol_new(mode, mode_flags, &nodes);
2673 if (IS_ERR(new))
2674 goto out;
2675
2676 /*
2677 * Save nodes for mpol_to_str() to show the tmpfs mount options
2678 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2679 */
2680 if (mode != MPOL_PREFERRED)
2681 new->v.nodes = nodes;
2682 else if (nodelist)
2683 new->v.preferred_node = first_node(nodes);
2684 else
2685 new->flags |= MPOL_F_LOCAL;
2686
2687 /*
2688 * Save nodes for contextualization: this will be used to "clone"
2689 * the mempolicy in a specific context [cpuset] at a later time.
2690 */
2691 new->w.user_nodemask = nodes;
2692
2693 err = 0;
2694
2695 out:
2696 /* Restore string for error message */
2697 if (nodelist)
2698 *--nodelist = ':';
2699 if (flags)
2700 *--flags = '=';
2701 if (!err)
2702 *mpol = new;
2703 return err;
2704 }
2705 #endif /* CONFIG_TMPFS */
2706
2707 /**
2708 * mpol_to_str - format a mempolicy structure for printing
2709 * @buffer: to contain formatted mempolicy string
2710 * @maxlen: length of @buffer
2711 * @pol: pointer to mempolicy to be formatted
2712 *
2713 * Convert @pol into a string. If @buffer is too short, truncate the string.
2714 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2715 * longest flag, "relative", and to display at least a few node ids.
2716 */
2717 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2718 {
2719 char *p = buffer;
2720 nodemask_t nodes = NODE_MASK_NONE;
2721 unsigned short mode = MPOL_DEFAULT;
2722 unsigned short flags = 0;
2723
2724 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2725 mode = pol->mode;
2726 flags = pol->flags;
2727 }
2728
2729 switch (mode) {
2730 case MPOL_DEFAULT:
2731 break;
2732 case MPOL_PREFERRED:
2733 if (flags & MPOL_F_LOCAL)
2734 mode = MPOL_LOCAL;
2735 else
2736 node_set(pol->v.preferred_node, nodes);
2737 break;
2738 case MPOL_BIND:
2739 case MPOL_INTERLEAVE:
2740 nodes = pol->v.nodes;
2741 break;
2742 default:
2743 WARN_ON_ONCE(1);
2744 snprintf(p, maxlen, "unknown");
2745 return;
2746 }
2747
2748 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2749
2750 if (flags & MPOL_MODE_FLAGS) {
2751 p += snprintf(p, buffer + maxlen - p, "=");
2752
2753 /*
2754 * Currently, the only defined flags are mutually exclusive
2755 */
2756 if (flags & MPOL_F_STATIC_NODES)
2757 p += snprintf(p, buffer + maxlen - p, "static");
2758 else if (flags & MPOL_F_RELATIVE_NODES)
2759 p += snprintf(p, buffer + maxlen - p, "relative");
2760 }
2761
2762 if (!nodes_empty(nodes))
2763 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2764 nodemask_pr_args(&nodes));
2765 }