]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
include/linux/nodemask.h: create next_node_in() helper
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100
101 #include "internal.h"
102
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
106
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
109
110 /* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112 enum zone_type policy_zone = 0;
113
114 /*
115 * run-time system-wide default policy => local allocation
116 */
117 static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
121 };
122
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124
125 struct mempolicy *get_task_policy(struct task_struct *p)
126 {
127 struct mempolicy *pol = p->mempolicy;
128 int node;
129
130 if (pol)
131 return pol;
132
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
139 }
140
141 return &default_policy;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165 {
166 return pol->flags & MPOL_MODE_FLAGS;
167 }
168
169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
171 {
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
175 }
176
177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
194 }
195
196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197 {
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
202 }
203
204 /*
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
209 *
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
212 */
213 static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
215 {
216 int ret;
217
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
224
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
233
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
239 }
240
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
246 }
247
248 /*
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
251 */
252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
254 {
255 struct mempolicy *policy;
256
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
264 }
265 VM_BUG_ON(!nodes);
266
267 /*
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
271 */
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
277 }
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes))
280 return ERR_PTR(-EINVAL);
281 mode = MPOL_PREFERRED;
282 } else if (nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
285 if (!policy)
286 return ERR_PTR(-ENOMEM);
287 atomic_set(&policy->refcnt, 1);
288 policy->mode = mode;
289 policy->flags = flags;
290
291 return policy;
292 }
293
294 /* Slow path of a mpol destructor. */
295 void __mpol_put(struct mempolicy *p)
296 {
297 if (!atomic_dec_and_test(&p->refcnt))
298 return;
299 kmem_cache_free(policy_cache, p);
300 }
301
302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
304 {
305 }
306
307 /*
308 * step:
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
312 */
313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
314 enum mpol_rebind_step step)
315 {
316 nodemask_t tmp;
317
318 if (pol->flags & MPOL_F_STATIC_NODES)
319 nodes_and(tmp, pol->w.user_nodemask, *nodes);
320 else if (pol->flags & MPOL_F_RELATIVE_NODES)
321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
322 else {
323 /*
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
325 * result
326 */
327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
328 nodes_remap(tmp, pol->v.nodes,
329 pol->w.cpuset_mems_allowed, *nodes);
330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
331 } else if (step == MPOL_REBIND_STEP2) {
332 tmp = pol->w.cpuset_mems_allowed;
333 pol->w.cpuset_mems_allowed = *nodes;
334 } else
335 BUG();
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 if (step == MPOL_REBIND_STEP1)
342 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
344 pol->v.nodes = tmp;
345 else
346 BUG();
347
348 if (!node_isset(current->il_next, tmp)) {
349 current->il_next = next_node_in(current->il_next, tmp);
350 if (current->il_next >= MAX_NUMNODES)
351 current->il_next = numa_node_id();
352 }
353 }
354
355 static void mpol_rebind_preferred(struct mempolicy *pol,
356 const nodemask_t *nodes,
357 enum mpol_rebind_step step)
358 {
359 nodemask_t tmp;
360
361 if (pol->flags & MPOL_F_STATIC_NODES) {
362 int node = first_node(pol->w.user_nodemask);
363
364 if (node_isset(node, *nodes)) {
365 pol->v.preferred_node = node;
366 pol->flags &= ~MPOL_F_LOCAL;
367 } else
368 pol->flags |= MPOL_F_LOCAL;
369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
371 pol->v.preferred_node = first_node(tmp);
372 } else if (!(pol->flags & MPOL_F_LOCAL)) {
373 pol->v.preferred_node = node_remap(pol->v.preferred_node,
374 pol->w.cpuset_mems_allowed,
375 *nodes);
376 pol->w.cpuset_mems_allowed = *nodes;
377 }
378 }
379
380 /*
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
382 *
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
387 * page.
388 * If we have a lock to protect task->mempolicy in read-side, we do
389 * rebind directly.
390 *
391 * step:
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
395 */
396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
397 enum mpol_rebind_step step)
398 {
399 if (!pol)
400 return;
401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
403 return;
404
405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
406 return;
407
408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
409 BUG();
410
411 if (step == MPOL_REBIND_STEP1)
412 pol->flags |= MPOL_F_REBINDING;
413 else if (step == MPOL_REBIND_STEP2)
414 pol->flags &= ~MPOL_F_REBINDING;
415 else if (step >= MPOL_REBIND_NSTEP)
416 BUG();
417
418 mpol_ops[pol->mode].rebind(pol, newmask, step);
419 }
420
421 /*
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
424 *
425 * Called with task's alloc_lock held.
426 */
427
428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
429 enum mpol_rebind_step step)
430 {
431 mpol_rebind_policy(tsk->mempolicy, new, step);
432 }
433
434 /*
435 * Rebind each vma in mm to new nodemask.
436 *
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
438 */
439
440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
441 {
442 struct vm_area_struct *vma;
443
444 down_write(&mm->mmap_sem);
445 for (vma = mm->mmap; vma; vma = vma->vm_next)
446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
447 up_write(&mm->mmap_sem);
448 }
449
450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
451 [MPOL_DEFAULT] = {
452 .rebind = mpol_rebind_default,
453 },
454 [MPOL_INTERLEAVE] = {
455 .create = mpol_new_interleave,
456 .rebind = mpol_rebind_nodemask,
457 },
458 [MPOL_PREFERRED] = {
459 .create = mpol_new_preferred,
460 .rebind = mpol_rebind_preferred,
461 },
462 [MPOL_BIND] = {
463 .create = mpol_new_bind,
464 .rebind = mpol_rebind_nodemask,
465 },
466 };
467
468 static void migrate_page_add(struct page *page, struct list_head *pagelist,
469 unsigned long flags);
470
471 struct queue_pages {
472 struct list_head *pagelist;
473 unsigned long flags;
474 nodemask_t *nmask;
475 struct vm_area_struct *prev;
476 };
477
478 /*
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
481 */
482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
483 unsigned long end, struct mm_walk *walk)
484 {
485 struct vm_area_struct *vma = walk->vma;
486 struct page *page;
487 struct queue_pages *qp = walk->private;
488 unsigned long flags = qp->flags;
489 int nid, ret;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 if (pmd_trans_huge(*pmd)) {
494 ptl = pmd_lock(walk->mm, pmd);
495 if (pmd_trans_huge(*pmd)) {
496 page = pmd_page(*pmd);
497 if (is_huge_zero_page(page)) {
498 spin_unlock(ptl);
499 split_huge_pmd(vma, pmd, addr);
500 } else {
501 get_page(page);
502 spin_unlock(ptl);
503 lock_page(page);
504 ret = split_huge_page(page);
505 unlock_page(page);
506 put_page(page);
507 if (ret)
508 return 0;
509 }
510 } else {
511 spin_unlock(ptl);
512 }
513 }
514
515 retry:
516 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
517 for (; addr != end; pte++, addr += PAGE_SIZE) {
518 if (!pte_present(*pte))
519 continue;
520 page = vm_normal_page(vma, addr, *pte);
521 if (!page)
522 continue;
523 /*
524 * vm_normal_page() filters out zero pages, but there might
525 * still be PageReserved pages to skip, perhaps in a VDSO.
526 */
527 if (PageReserved(page))
528 continue;
529 nid = page_to_nid(page);
530 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
531 continue;
532 if (PageTransCompound(page) && PageAnon(page)) {
533 get_page(page);
534 pte_unmap_unlock(pte, ptl);
535 lock_page(page);
536 ret = split_huge_page(page);
537 unlock_page(page);
538 put_page(page);
539 /* Failed to split -- skip. */
540 if (ret) {
541 pte = pte_offset_map_lock(walk->mm, pmd,
542 addr, &ptl);
543 continue;
544 }
545 goto retry;
546 }
547
548 migrate_page_add(page, qp->pagelist, flags);
549 }
550 pte_unmap_unlock(pte - 1, ptl);
551 cond_resched();
552 return 0;
553 }
554
555 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
556 unsigned long addr, unsigned long end,
557 struct mm_walk *walk)
558 {
559 #ifdef CONFIG_HUGETLB_PAGE
560 struct queue_pages *qp = walk->private;
561 unsigned long flags = qp->flags;
562 int nid;
563 struct page *page;
564 spinlock_t *ptl;
565 pte_t entry;
566
567 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
568 entry = huge_ptep_get(pte);
569 if (!pte_present(entry))
570 goto unlock;
571 page = pte_page(entry);
572 nid = page_to_nid(page);
573 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
574 goto unlock;
575 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
576 if (flags & (MPOL_MF_MOVE_ALL) ||
577 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
578 isolate_huge_page(page, qp->pagelist);
579 unlock:
580 spin_unlock(ptl);
581 #else
582 BUG();
583 #endif
584 return 0;
585 }
586
587 #ifdef CONFIG_NUMA_BALANCING
588 /*
589 * This is used to mark a range of virtual addresses to be inaccessible.
590 * These are later cleared by a NUMA hinting fault. Depending on these
591 * faults, pages may be migrated for better NUMA placement.
592 *
593 * This is assuming that NUMA faults are handled using PROT_NONE. If
594 * an architecture makes a different choice, it will need further
595 * changes to the core.
596 */
597 unsigned long change_prot_numa(struct vm_area_struct *vma,
598 unsigned long addr, unsigned long end)
599 {
600 int nr_updated;
601
602 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
603 if (nr_updated)
604 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
605
606 return nr_updated;
607 }
608 #else
609 static unsigned long change_prot_numa(struct vm_area_struct *vma,
610 unsigned long addr, unsigned long end)
611 {
612 return 0;
613 }
614 #endif /* CONFIG_NUMA_BALANCING */
615
616 static int queue_pages_test_walk(unsigned long start, unsigned long end,
617 struct mm_walk *walk)
618 {
619 struct vm_area_struct *vma = walk->vma;
620 struct queue_pages *qp = walk->private;
621 unsigned long endvma = vma->vm_end;
622 unsigned long flags = qp->flags;
623
624 if (!vma_migratable(vma))
625 return 1;
626
627 if (endvma > end)
628 endvma = end;
629 if (vma->vm_start > start)
630 start = vma->vm_start;
631
632 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
633 if (!vma->vm_next && vma->vm_end < end)
634 return -EFAULT;
635 if (qp->prev && qp->prev->vm_end < vma->vm_start)
636 return -EFAULT;
637 }
638
639 qp->prev = vma;
640
641 if (flags & MPOL_MF_LAZY) {
642 /* Similar to task_numa_work, skip inaccessible VMAs */
643 if (!is_vm_hugetlb_page(vma) &&
644 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
645 !(vma->vm_flags & VM_MIXEDMAP))
646 change_prot_numa(vma, start, endvma);
647 return 1;
648 }
649
650 /* queue pages from current vma */
651 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
652 return 0;
653 return 1;
654 }
655
656 /*
657 * Walk through page tables and collect pages to be migrated.
658 *
659 * If pages found in a given range are on a set of nodes (determined by
660 * @nodes and @flags,) it's isolated and queued to the pagelist which is
661 * passed via @private.)
662 */
663 static int
664 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
665 nodemask_t *nodes, unsigned long flags,
666 struct list_head *pagelist)
667 {
668 struct queue_pages qp = {
669 .pagelist = pagelist,
670 .flags = flags,
671 .nmask = nodes,
672 .prev = NULL,
673 };
674 struct mm_walk queue_pages_walk = {
675 .hugetlb_entry = queue_pages_hugetlb,
676 .pmd_entry = queue_pages_pte_range,
677 .test_walk = queue_pages_test_walk,
678 .mm = mm,
679 .private = &qp,
680 };
681
682 return walk_page_range(start, end, &queue_pages_walk);
683 }
684
685 /*
686 * Apply policy to a single VMA
687 * This must be called with the mmap_sem held for writing.
688 */
689 static int vma_replace_policy(struct vm_area_struct *vma,
690 struct mempolicy *pol)
691 {
692 int err;
693 struct mempolicy *old;
694 struct mempolicy *new;
695
696 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
697 vma->vm_start, vma->vm_end, vma->vm_pgoff,
698 vma->vm_ops, vma->vm_file,
699 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
700
701 new = mpol_dup(pol);
702 if (IS_ERR(new))
703 return PTR_ERR(new);
704
705 if (vma->vm_ops && vma->vm_ops->set_policy) {
706 err = vma->vm_ops->set_policy(vma, new);
707 if (err)
708 goto err_out;
709 }
710
711 old = vma->vm_policy;
712 vma->vm_policy = new; /* protected by mmap_sem */
713 mpol_put(old);
714
715 return 0;
716 err_out:
717 mpol_put(new);
718 return err;
719 }
720
721 /* Step 2: apply policy to a range and do splits. */
722 static int mbind_range(struct mm_struct *mm, unsigned long start,
723 unsigned long end, struct mempolicy *new_pol)
724 {
725 struct vm_area_struct *next;
726 struct vm_area_struct *prev;
727 struct vm_area_struct *vma;
728 int err = 0;
729 pgoff_t pgoff;
730 unsigned long vmstart;
731 unsigned long vmend;
732
733 vma = find_vma(mm, start);
734 if (!vma || vma->vm_start > start)
735 return -EFAULT;
736
737 prev = vma->vm_prev;
738 if (start > vma->vm_start)
739 prev = vma;
740
741 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
742 next = vma->vm_next;
743 vmstart = max(start, vma->vm_start);
744 vmend = min(end, vma->vm_end);
745
746 if (mpol_equal(vma_policy(vma), new_pol))
747 continue;
748
749 pgoff = vma->vm_pgoff +
750 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
751 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
752 vma->anon_vma, vma->vm_file, pgoff,
753 new_pol, vma->vm_userfaultfd_ctx);
754 if (prev) {
755 vma = prev;
756 next = vma->vm_next;
757 if (mpol_equal(vma_policy(vma), new_pol))
758 continue;
759 /* vma_merge() joined vma && vma->next, case 8 */
760 goto replace;
761 }
762 if (vma->vm_start != vmstart) {
763 err = split_vma(vma->vm_mm, vma, vmstart, 1);
764 if (err)
765 goto out;
766 }
767 if (vma->vm_end != vmend) {
768 err = split_vma(vma->vm_mm, vma, vmend, 0);
769 if (err)
770 goto out;
771 }
772 replace:
773 err = vma_replace_policy(vma, new_pol);
774 if (err)
775 goto out;
776 }
777
778 out:
779 return err;
780 }
781
782 /* Set the process memory policy */
783 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
784 nodemask_t *nodes)
785 {
786 struct mempolicy *new, *old;
787 NODEMASK_SCRATCH(scratch);
788 int ret;
789
790 if (!scratch)
791 return -ENOMEM;
792
793 new = mpol_new(mode, flags, nodes);
794 if (IS_ERR(new)) {
795 ret = PTR_ERR(new);
796 goto out;
797 }
798
799 task_lock(current);
800 ret = mpol_set_nodemask(new, nodes, scratch);
801 if (ret) {
802 task_unlock(current);
803 mpol_put(new);
804 goto out;
805 }
806 old = current->mempolicy;
807 current->mempolicy = new;
808 if (new && new->mode == MPOL_INTERLEAVE &&
809 nodes_weight(new->v.nodes))
810 current->il_next = first_node(new->v.nodes);
811 task_unlock(current);
812 mpol_put(old);
813 ret = 0;
814 out:
815 NODEMASK_SCRATCH_FREE(scratch);
816 return ret;
817 }
818
819 /*
820 * Return nodemask for policy for get_mempolicy() query
821 *
822 * Called with task's alloc_lock held
823 */
824 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
825 {
826 nodes_clear(*nodes);
827 if (p == &default_policy)
828 return;
829
830 switch (p->mode) {
831 case MPOL_BIND:
832 /* Fall through */
833 case MPOL_INTERLEAVE:
834 *nodes = p->v.nodes;
835 break;
836 case MPOL_PREFERRED:
837 if (!(p->flags & MPOL_F_LOCAL))
838 node_set(p->v.preferred_node, *nodes);
839 /* else return empty node mask for local allocation */
840 break;
841 default:
842 BUG();
843 }
844 }
845
846 static int lookup_node(unsigned long addr)
847 {
848 struct page *p;
849 int err;
850
851 err = get_user_pages(addr & PAGE_MASK, 1, 0, 0, &p, NULL);
852 if (err >= 0) {
853 err = page_to_nid(p);
854 put_page(p);
855 }
856 return err;
857 }
858
859 /* Retrieve NUMA policy */
860 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
861 unsigned long addr, unsigned long flags)
862 {
863 int err;
864 struct mm_struct *mm = current->mm;
865 struct vm_area_struct *vma = NULL;
866 struct mempolicy *pol = current->mempolicy;
867
868 if (flags &
869 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
870 return -EINVAL;
871
872 if (flags & MPOL_F_MEMS_ALLOWED) {
873 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
874 return -EINVAL;
875 *policy = 0; /* just so it's initialized */
876 task_lock(current);
877 *nmask = cpuset_current_mems_allowed;
878 task_unlock(current);
879 return 0;
880 }
881
882 if (flags & MPOL_F_ADDR) {
883 /*
884 * Do NOT fall back to task policy if the
885 * vma/shared policy at addr is NULL. We
886 * want to return MPOL_DEFAULT in this case.
887 */
888 down_read(&mm->mmap_sem);
889 vma = find_vma_intersection(mm, addr, addr+1);
890 if (!vma) {
891 up_read(&mm->mmap_sem);
892 return -EFAULT;
893 }
894 if (vma->vm_ops && vma->vm_ops->get_policy)
895 pol = vma->vm_ops->get_policy(vma, addr);
896 else
897 pol = vma->vm_policy;
898 } else if (addr)
899 return -EINVAL;
900
901 if (!pol)
902 pol = &default_policy; /* indicates default behavior */
903
904 if (flags & MPOL_F_NODE) {
905 if (flags & MPOL_F_ADDR) {
906 err = lookup_node(addr);
907 if (err < 0)
908 goto out;
909 *policy = err;
910 } else if (pol == current->mempolicy &&
911 pol->mode == MPOL_INTERLEAVE) {
912 *policy = current->il_next;
913 } else {
914 err = -EINVAL;
915 goto out;
916 }
917 } else {
918 *policy = pol == &default_policy ? MPOL_DEFAULT :
919 pol->mode;
920 /*
921 * Internal mempolicy flags must be masked off before exposing
922 * the policy to userspace.
923 */
924 *policy |= (pol->flags & MPOL_MODE_FLAGS);
925 }
926
927 if (vma) {
928 up_read(&current->mm->mmap_sem);
929 vma = NULL;
930 }
931
932 err = 0;
933 if (nmask) {
934 if (mpol_store_user_nodemask(pol)) {
935 *nmask = pol->w.user_nodemask;
936 } else {
937 task_lock(current);
938 get_policy_nodemask(pol, nmask);
939 task_unlock(current);
940 }
941 }
942
943 out:
944 mpol_cond_put(pol);
945 if (vma)
946 up_read(&current->mm->mmap_sem);
947 return err;
948 }
949
950 #ifdef CONFIG_MIGRATION
951 /*
952 * page migration
953 */
954 static void migrate_page_add(struct page *page, struct list_head *pagelist,
955 unsigned long flags)
956 {
957 /*
958 * Avoid migrating a page that is shared with others.
959 */
960 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
961 if (!isolate_lru_page(page)) {
962 list_add_tail(&page->lru, pagelist);
963 inc_zone_page_state(page, NR_ISOLATED_ANON +
964 page_is_file_cache(page));
965 }
966 }
967 }
968
969 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
970 {
971 if (PageHuge(page))
972 return alloc_huge_page_node(page_hstate(compound_head(page)),
973 node);
974 else
975 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
976 __GFP_THISNODE, 0);
977 }
978
979 /*
980 * Migrate pages from one node to a target node.
981 * Returns error or the number of pages not migrated.
982 */
983 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
984 int flags)
985 {
986 nodemask_t nmask;
987 LIST_HEAD(pagelist);
988 int err = 0;
989
990 nodes_clear(nmask);
991 node_set(source, nmask);
992
993 /*
994 * This does not "check" the range but isolates all pages that
995 * need migration. Between passing in the full user address
996 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
997 */
998 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
999 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1000 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1001
1002 if (!list_empty(&pagelist)) {
1003 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1004 MIGRATE_SYNC, MR_SYSCALL);
1005 if (err)
1006 putback_movable_pages(&pagelist);
1007 }
1008
1009 return err;
1010 }
1011
1012 /*
1013 * Move pages between the two nodesets so as to preserve the physical
1014 * layout as much as possible.
1015 *
1016 * Returns the number of page that could not be moved.
1017 */
1018 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1019 const nodemask_t *to, int flags)
1020 {
1021 int busy = 0;
1022 int err;
1023 nodemask_t tmp;
1024
1025 err = migrate_prep();
1026 if (err)
1027 return err;
1028
1029 down_read(&mm->mmap_sem);
1030
1031 /*
1032 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1033 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1034 * bit in 'tmp', and return that <source, dest> pair for migration.
1035 * The pair of nodemasks 'to' and 'from' define the map.
1036 *
1037 * If no pair of bits is found that way, fallback to picking some
1038 * pair of 'source' and 'dest' bits that are not the same. If the
1039 * 'source' and 'dest' bits are the same, this represents a node
1040 * that will be migrating to itself, so no pages need move.
1041 *
1042 * If no bits are left in 'tmp', or if all remaining bits left
1043 * in 'tmp' correspond to the same bit in 'to', return false
1044 * (nothing left to migrate).
1045 *
1046 * This lets us pick a pair of nodes to migrate between, such that
1047 * if possible the dest node is not already occupied by some other
1048 * source node, minimizing the risk of overloading the memory on a
1049 * node that would happen if we migrated incoming memory to a node
1050 * before migrating outgoing memory source that same node.
1051 *
1052 * A single scan of tmp is sufficient. As we go, we remember the
1053 * most recent <s, d> pair that moved (s != d). If we find a pair
1054 * that not only moved, but what's better, moved to an empty slot
1055 * (d is not set in tmp), then we break out then, with that pair.
1056 * Otherwise when we finish scanning from_tmp, we at least have the
1057 * most recent <s, d> pair that moved. If we get all the way through
1058 * the scan of tmp without finding any node that moved, much less
1059 * moved to an empty node, then there is nothing left worth migrating.
1060 */
1061
1062 tmp = *from;
1063 while (!nodes_empty(tmp)) {
1064 int s,d;
1065 int source = NUMA_NO_NODE;
1066 int dest = 0;
1067
1068 for_each_node_mask(s, tmp) {
1069
1070 /*
1071 * do_migrate_pages() tries to maintain the relative
1072 * node relationship of the pages established between
1073 * threads and memory areas.
1074 *
1075 * However if the number of source nodes is not equal to
1076 * the number of destination nodes we can not preserve
1077 * this node relative relationship. In that case, skip
1078 * copying memory from a node that is in the destination
1079 * mask.
1080 *
1081 * Example: [2,3,4] -> [3,4,5] moves everything.
1082 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1083 */
1084
1085 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1086 (node_isset(s, *to)))
1087 continue;
1088
1089 d = node_remap(s, *from, *to);
1090 if (s == d)
1091 continue;
1092
1093 source = s; /* Node moved. Memorize */
1094 dest = d;
1095
1096 /* dest not in remaining from nodes? */
1097 if (!node_isset(dest, tmp))
1098 break;
1099 }
1100 if (source == NUMA_NO_NODE)
1101 break;
1102
1103 node_clear(source, tmp);
1104 err = migrate_to_node(mm, source, dest, flags);
1105 if (err > 0)
1106 busy += err;
1107 if (err < 0)
1108 break;
1109 }
1110 up_read(&mm->mmap_sem);
1111 if (err < 0)
1112 return err;
1113 return busy;
1114
1115 }
1116
1117 /*
1118 * Allocate a new page for page migration based on vma policy.
1119 * Start by assuming the page is mapped by the same vma as contains @start.
1120 * Search forward from there, if not. N.B., this assumes that the
1121 * list of pages handed to migrate_pages()--which is how we get here--
1122 * is in virtual address order.
1123 */
1124 static struct page *new_page(struct page *page, unsigned long start, int **x)
1125 {
1126 struct vm_area_struct *vma;
1127 unsigned long uninitialized_var(address);
1128
1129 vma = find_vma(current->mm, start);
1130 while (vma) {
1131 address = page_address_in_vma(page, vma);
1132 if (address != -EFAULT)
1133 break;
1134 vma = vma->vm_next;
1135 }
1136
1137 if (PageHuge(page)) {
1138 BUG_ON(!vma);
1139 return alloc_huge_page_noerr(vma, address, 1);
1140 }
1141 /*
1142 * if !vma, alloc_page_vma() will use task or system default policy
1143 */
1144 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1145 }
1146 #else
1147
1148 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1149 unsigned long flags)
1150 {
1151 }
1152
1153 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1154 const nodemask_t *to, int flags)
1155 {
1156 return -ENOSYS;
1157 }
1158
1159 static struct page *new_page(struct page *page, unsigned long start, int **x)
1160 {
1161 return NULL;
1162 }
1163 #endif
1164
1165 static long do_mbind(unsigned long start, unsigned long len,
1166 unsigned short mode, unsigned short mode_flags,
1167 nodemask_t *nmask, unsigned long flags)
1168 {
1169 struct mm_struct *mm = current->mm;
1170 struct mempolicy *new;
1171 unsigned long end;
1172 int err;
1173 LIST_HEAD(pagelist);
1174
1175 if (flags & ~(unsigned long)MPOL_MF_VALID)
1176 return -EINVAL;
1177 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1178 return -EPERM;
1179
1180 if (start & ~PAGE_MASK)
1181 return -EINVAL;
1182
1183 if (mode == MPOL_DEFAULT)
1184 flags &= ~MPOL_MF_STRICT;
1185
1186 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1187 end = start + len;
1188
1189 if (end < start)
1190 return -EINVAL;
1191 if (end == start)
1192 return 0;
1193
1194 new = mpol_new(mode, mode_flags, nmask);
1195 if (IS_ERR(new))
1196 return PTR_ERR(new);
1197
1198 if (flags & MPOL_MF_LAZY)
1199 new->flags |= MPOL_F_MOF;
1200
1201 /*
1202 * If we are using the default policy then operation
1203 * on discontinuous address spaces is okay after all
1204 */
1205 if (!new)
1206 flags |= MPOL_MF_DISCONTIG_OK;
1207
1208 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1209 start, start + len, mode, mode_flags,
1210 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1211
1212 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1213
1214 err = migrate_prep();
1215 if (err)
1216 goto mpol_out;
1217 }
1218 {
1219 NODEMASK_SCRATCH(scratch);
1220 if (scratch) {
1221 down_write(&mm->mmap_sem);
1222 task_lock(current);
1223 err = mpol_set_nodemask(new, nmask, scratch);
1224 task_unlock(current);
1225 if (err)
1226 up_write(&mm->mmap_sem);
1227 } else
1228 err = -ENOMEM;
1229 NODEMASK_SCRATCH_FREE(scratch);
1230 }
1231 if (err)
1232 goto mpol_out;
1233
1234 err = queue_pages_range(mm, start, end, nmask,
1235 flags | MPOL_MF_INVERT, &pagelist);
1236 if (!err)
1237 err = mbind_range(mm, start, end, new);
1238
1239 if (!err) {
1240 int nr_failed = 0;
1241
1242 if (!list_empty(&pagelist)) {
1243 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1244 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1245 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1246 if (nr_failed)
1247 putback_movable_pages(&pagelist);
1248 }
1249
1250 if (nr_failed && (flags & MPOL_MF_STRICT))
1251 err = -EIO;
1252 } else
1253 putback_movable_pages(&pagelist);
1254
1255 up_write(&mm->mmap_sem);
1256 mpol_out:
1257 mpol_put(new);
1258 return err;
1259 }
1260
1261 /*
1262 * User space interface with variable sized bitmaps for nodelists.
1263 */
1264
1265 /* Copy a node mask from user space. */
1266 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1267 unsigned long maxnode)
1268 {
1269 unsigned long k;
1270 unsigned long nlongs;
1271 unsigned long endmask;
1272
1273 --maxnode;
1274 nodes_clear(*nodes);
1275 if (maxnode == 0 || !nmask)
1276 return 0;
1277 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1278 return -EINVAL;
1279
1280 nlongs = BITS_TO_LONGS(maxnode);
1281 if ((maxnode % BITS_PER_LONG) == 0)
1282 endmask = ~0UL;
1283 else
1284 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1285
1286 /* When the user specified more nodes than supported just check
1287 if the non supported part is all zero. */
1288 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1289 if (nlongs > PAGE_SIZE/sizeof(long))
1290 return -EINVAL;
1291 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1292 unsigned long t;
1293 if (get_user(t, nmask + k))
1294 return -EFAULT;
1295 if (k == nlongs - 1) {
1296 if (t & endmask)
1297 return -EINVAL;
1298 } else if (t)
1299 return -EINVAL;
1300 }
1301 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1302 endmask = ~0UL;
1303 }
1304
1305 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1306 return -EFAULT;
1307 nodes_addr(*nodes)[nlongs-1] &= endmask;
1308 return 0;
1309 }
1310
1311 /* Copy a kernel node mask to user space */
1312 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1313 nodemask_t *nodes)
1314 {
1315 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1316 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1317
1318 if (copy > nbytes) {
1319 if (copy > PAGE_SIZE)
1320 return -EINVAL;
1321 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1322 return -EFAULT;
1323 copy = nbytes;
1324 }
1325 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1326 }
1327
1328 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1329 unsigned long, mode, const unsigned long __user *, nmask,
1330 unsigned long, maxnode, unsigned, flags)
1331 {
1332 nodemask_t nodes;
1333 int err;
1334 unsigned short mode_flags;
1335
1336 mode_flags = mode & MPOL_MODE_FLAGS;
1337 mode &= ~MPOL_MODE_FLAGS;
1338 if (mode >= MPOL_MAX)
1339 return -EINVAL;
1340 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1341 (mode_flags & MPOL_F_RELATIVE_NODES))
1342 return -EINVAL;
1343 err = get_nodes(&nodes, nmask, maxnode);
1344 if (err)
1345 return err;
1346 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1347 }
1348
1349 /* Set the process memory policy */
1350 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1351 unsigned long, maxnode)
1352 {
1353 int err;
1354 nodemask_t nodes;
1355 unsigned short flags;
1356
1357 flags = mode & MPOL_MODE_FLAGS;
1358 mode &= ~MPOL_MODE_FLAGS;
1359 if ((unsigned int)mode >= MPOL_MAX)
1360 return -EINVAL;
1361 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1362 return -EINVAL;
1363 err = get_nodes(&nodes, nmask, maxnode);
1364 if (err)
1365 return err;
1366 return do_set_mempolicy(mode, flags, &nodes);
1367 }
1368
1369 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1370 const unsigned long __user *, old_nodes,
1371 const unsigned long __user *, new_nodes)
1372 {
1373 const struct cred *cred = current_cred(), *tcred;
1374 struct mm_struct *mm = NULL;
1375 struct task_struct *task;
1376 nodemask_t task_nodes;
1377 int err;
1378 nodemask_t *old;
1379 nodemask_t *new;
1380 NODEMASK_SCRATCH(scratch);
1381
1382 if (!scratch)
1383 return -ENOMEM;
1384
1385 old = &scratch->mask1;
1386 new = &scratch->mask2;
1387
1388 err = get_nodes(old, old_nodes, maxnode);
1389 if (err)
1390 goto out;
1391
1392 err = get_nodes(new, new_nodes, maxnode);
1393 if (err)
1394 goto out;
1395
1396 /* Find the mm_struct */
1397 rcu_read_lock();
1398 task = pid ? find_task_by_vpid(pid) : current;
1399 if (!task) {
1400 rcu_read_unlock();
1401 err = -ESRCH;
1402 goto out;
1403 }
1404 get_task_struct(task);
1405
1406 err = -EINVAL;
1407
1408 /*
1409 * Check if this process has the right to modify the specified
1410 * process. The right exists if the process has administrative
1411 * capabilities, superuser privileges or the same
1412 * userid as the target process.
1413 */
1414 tcred = __task_cred(task);
1415 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1416 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1417 !capable(CAP_SYS_NICE)) {
1418 rcu_read_unlock();
1419 err = -EPERM;
1420 goto out_put;
1421 }
1422 rcu_read_unlock();
1423
1424 task_nodes = cpuset_mems_allowed(task);
1425 /* Is the user allowed to access the target nodes? */
1426 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1427 err = -EPERM;
1428 goto out_put;
1429 }
1430
1431 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1432 err = -EINVAL;
1433 goto out_put;
1434 }
1435
1436 err = security_task_movememory(task);
1437 if (err)
1438 goto out_put;
1439
1440 mm = get_task_mm(task);
1441 put_task_struct(task);
1442
1443 if (!mm) {
1444 err = -EINVAL;
1445 goto out;
1446 }
1447
1448 err = do_migrate_pages(mm, old, new,
1449 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1450
1451 mmput(mm);
1452 out:
1453 NODEMASK_SCRATCH_FREE(scratch);
1454
1455 return err;
1456
1457 out_put:
1458 put_task_struct(task);
1459 goto out;
1460
1461 }
1462
1463
1464 /* Retrieve NUMA policy */
1465 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1466 unsigned long __user *, nmask, unsigned long, maxnode,
1467 unsigned long, addr, unsigned long, flags)
1468 {
1469 int err;
1470 int uninitialized_var(pval);
1471 nodemask_t nodes;
1472
1473 if (nmask != NULL && maxnode < MAX_NUMNODES)
1474 return -EINVAL;
1475
1476 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1477
1478 if (err)
1479 return err;
1480
1481 if (policy && put_user(pval, policy))
1482 return -EFAULT;
1483
1484 if (nmask)
1485 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1486
1487 return err;
1488 }
1489
1490 #ifdef CONFIG_COMPAT
1491
1492 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1493 compat_ulong_t __user *, nmask,
1494 compat_ulong_t, maxnode,
1495 compat_ulong_t, addr, compat_ulong_t, flags)
1496 {
1497 long err;
1498 unsigned long __user *nm = NULL;
1499 unsigned long nr_bits, alloc_size;
1500 DECLARE_BITMAP(bm, MAX_NUMNODES);
1501
1502 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1503 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1504
1505 if (nmask)
1506 nm = compat_alloc_user_space(alloc_size);
1507
1508 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1509
1510 if (!err && nmask) {
1511 unsigned long copy_size;
1512 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1513 err = copy_from_user(bm, nm, copy_size);
1514 /* ensure entire bitmap is zeroed */
1515 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1516 err |= compat_put_bitmap(nmask, bm, nr_bits);
1517 }
1518
1519 return err;
1520 }
1521
1522 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1523 compat_ulong_t, maxnode)
1524 {
1525 long err = 0;
1526 unsigned long __user *nm = NULL;
1527 unsigned long nr_bits, alloc_size;
1528 DECLARE_BITMAP(bm, MAX_NUMNODES);
1529
1530 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1531 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1532
1533 if (nmask) {
1534 err = compat_get_bitmap(bm, nmask, nr_bits);
1535 nm = compat_alloc_user_space(alloc_size);
1536 err |= copy_to_user(nm, bm, alloc_size);
1537 }
1538
1539 if (err)
1540 return -EFAULT;
1541
1542 return sys_set_mempolicy(mode, nm, nr_bits+1);
1543 }
1544
1545 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1546 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1547 compat_ulong_t, maxnode, compat_ulong_t, flags)
1548 {
1549 long err = 0;
1550 unsigned long __user *nm = NULL;
1551 unsigned long nr_bits, alloc_size;
1552 nodemask_t bm;
1553
1554 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1555 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1556
1557 if (nmask) {
1558 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1559 nm = compat_alloc_user_space(alloc_size);
1560 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1561 }
1562
1563 if (err)
1564 return -EFAULT;
1565
1566 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1567 }
1568
1569 #endif
1570
1571 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1572 unsigned long addr)
1573 {
1574 struct mempolicy *pol = NULL;
1575
1576 if (vma) {
1577 if (vma->vm_ops && vma->vm_ops->get_policy) {
1578 pol = vma->vm_ops->get_policy(vma, addr);
1579 } else if (vma->vm_policy) {
1580 pol = vma->vm_policy;
1581
1582 /*
1583 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1584 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1585 * count on these policies which will be dropped by
1586 * mpol_cond_put() later
1587 */
1588 if (mpol_needs_cond_ref(pol))
1589 mpol_get(pol);
1590 }
1591 }
1592
1593 return pol;
1594 }
1595
1596 /*
1597 * get_vma_policy(@vma, @addr)
1598 * @vma: virtual memory area whose policy is sought
1599 * @addr: address in @vma for shared policy lookup
1600 *
1601 * Returns effective policy for a VMA at specified address.
1602 * Falls back to current->mempolicy or system default policy, as necessary.
1603 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1604 * count--added by the get_policy() vm_op, as appropriate--to protect against
1605 * freeing by another task. It is the caller's responsibility to free the
1606 * extra reference for shared policies.
1607 */
1608 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1609 unsigned long addr)
1610 {
1611 struct mempolicy *pol = __get_vma_policy(vma, addr);
1612
1613 if (!pol)
1614 pol = get_task_policy(current);
1615
1616 return pol;
1617 }
1618
1619 bool vma_policy_mof(struct vm_area_struct *vma)
1620 {
1621 struct mempolicy *pol;
1622
1623 if (vma->vm_ops && vma->vm_ops->get_policy) {
1624 bool ret = false;
1625
1626 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1627 if (pol && (pol->flags & MPOL_F_MOF))
1628 ret = true;
1629 mpol_cond_put(pol);
1630
1631 return ret;
1632 }
1633
1634 pol = vma->vm_policy;
1635 if (!pol)
1636 pol = get_task_policy(current);
1637
1638 return pol->flags & MPOL_F_MOF;
1639 }
1640
1641 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1642 {
1643 enum zone_type dynamic_policy_zone = policy_zone;
1644
1645 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1646
1647 /*
1648 * if policy->v.nodes has movable memory only,
1649 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1650 *
1651 * policy->v.nodes is intersect with node_states[N_MEMORY].
1652 * so if the following test faile, it implies
1653 * policy->v.nodes has movable memory only.
1654 */
1655 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1656 dynamic_policy_zone = ZONE_MOVABLE;
1657
1658 return zone >= dynamic_policy_zone;
1659 }
1660
1661 /*
1662 * Return a nodemask representing a mempolicy for filtering nodes for
1663 * page allocation
1664 */
1665 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1666 {
1667 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1668 if (unlikely(policy->mode == MPOL_BIND) &&
1669 apply_policy_zone(policy, gfp_zone(gfp)) &&
1670 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1671 return &policy->v.nodes;
1672
1673 return NULL;
1674 }
1675
1676 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1677 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1678 int nd)
1679 {
1680 switch (policy->mode) {
1681 case MPOL_PREFERRED:
1682 if (!(policy->flags & MPOL_F_LOCAL))
1683 nd = policy->v.preferred_node;
1684 break;
1685 case MPOL_BIND:
1686 /*
1687 * Normally, MPOL_BIND allocations are node-local within the
1688 * allowed nodemask. However, if __GFP_THISNODE is set and the
1689 * current node isn't part of the mask, we use the zonelist for
1690 * the first node in the mask instead.
1691 */
1692 if (unlikely(gfp & __GFP_THISNODE) &&
1693 unlikely(!node_isset(nd, policy->v.nodes)))
1694 nd = first_node(policy->v.nodes);
1695 break;
1696 default:
1697 BUG();
1698 }
1699 return node_zonelist(nd, gfp);
1700 }
1701
1702 /* Do dynamic interleaving for a process */
1703 static unsigned interleave_nodes(struct mempolicy *policy)
1704 {
1705 unsigned nid, next;
1706 struct task_struct *me = current;
1707
1708 nid = me->il_next;
1709 next = next_node_in(nid, policy->v.nodes);
1710 if (next < MAX_NUMNODES)
1711 me->il_next = next;
1712 return nid;
1713 }
1714
1715 /*
1716 * Depending on the memory policy provide a node from which to allocate the
1717 * next slab entry.
1718 */
1719 unsigned int mempolicy_slab_node(void)
1720 {
1721 struct mempolicy *policy;
1722 int node = numa_mem_id();
1723
1724 if (in_interrupt())
1725 return node;
1726
1727 policy = current->mempolicy;
1728 if (!policy || policy->flags & MPOL_F_LOCAL)
1729 return node;
1730
1731 switch (policy->mode) {
1732 case MPOL_PREFERRED:
1733 /*
1734 * handled MPOL_F_LOCAL above
1735 */
1736 return policy->v.preferred_node;
1737
1738 case MPOL_INTERLEAVE:
1739 return interleave_nodes(policy);
1740
1741 case MPOL_BIND: {
1742 /*
1743 * Follow bind policy behavior and start allocation at the
1744 * first node.
1745 */
1746 struct zonelist *zonelist;
1747 struct zone *zone;
1748 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1749 zonelist = &NODE_DATA(node)->node_zonelists[0];
1750 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1751 &policy->v.nodes,
1752 &zone);
1753 return zone ? zone->node : node;
1754 }
1755
1756 default:
1757 BUG();
1758 }
1759 }
1760
1761 /* Do static interleaving for a VMA with known offset. */
1762 static unsigned offset_il_node(struct mempolicy *pol,
1763 struct vm_area_struct *vma, unsigned long off)
1764 {
1765 unsigned nnodes = nodes_weight(pol->v.nodes);
1766 unsigned target;
1767 int c;
1768 int nid = NUMA_NO_NODE;
1769
1770 if (!nnodes)
1771 return numa_node_id();
1772 target = (unsigned int)off % nnodes;
1773 c = 0;
1774 do {
1775 nid = next_node(nid, pol->v.nodes);
1776 c++;
1777 } while (c <= target);
1778 return nid;
1779 }
1780
1781 /* Determine a node number for interleave */
1782 static inline unsigned interleave_nid(struct mempolicy *pol,
1783 struct vm_area_struct *vma, unsigned long addr, int shift)
1784 {
1785 if (vma) {
1786 unsigned long off;
1787
1788 /*
1789 * for small pages, there is no difference between
1790 * shift and PAGE_SHIFT, so the bit-shift is safe.
1791 * for huge pages, since vm_pgoff is in units of small
1792 * pages, we need to shift off the always 0 bits to get
1793 * a useful offset.
1794 */
1795 BUG_ON(shift < PAGE_SHIFT);
1796 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1797 off += (addr - vma->vm_start) >> shift;
1798 return offset_il_node(pol, vma, off);
1799 } else
1800 return interleave_nodes(pol);
1801 }
1802
1803 #ifdef CONFIG_HUGETLBFS
1804 /*
1805 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1806 * @vma: virtual memory area whose policy is sought
1807 * @addr: address in @vma for shared policy lookup and interleave policy
1808 * @gfp_flags: for requested zone
1809 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1810 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1811 *
1812 * Returns a zonelist suitable for a huge page allocation and a pointer
1813 * to the struct mempolicy for conditional unref after allocation.
1814 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1815 * @nodemask for filtering the zonelist.
1816 *
1817 * Must be protected by read_mems_allowed_begin()
1818 */
1819 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1820 gfp_t gfp_flags, struct mempolicy **mpol,
1821 nodemask_t **nodemask)
1822 {
1823 struct zonelist *zl;
1824
1825 *mpol = get_vma_policy(vma, addr);
1826 *nodemask = NULL; /* assume !MPOL_BIND */
1827
1828 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1829 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1830 huge_page_shift(hstate_vma(vma))), gfp_flags);
1831 } else {
1832 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1833 if ((*mpol)->mode == MPOL_BIND)
1834 *nodemask = &(*mpol)->v.nodes;
1835 }
1836 return zl;
1837 }
1838
1839 /*
1840 * init_nodemask_of_mempolicy
1841 *
1842 * If the current task's mempolicy is "default" [NULL], return 'false'
1843 * to indicate default policy. Otherwise, extract the policy nodemask
1844 * for 'bind' or 'interleave' policy into the argument nodemask, or
1845 * initialize the argument nodemask to contain the single node for
1846 * 'preferred' or 'local' policy and return 'true' to indicate presence
1847 * of non-default mempolicy.
1848 *
1849 * We don't bother with reference counting the mempolicy [mpol_get/put]
1850 * because the current task is examining it's own mempolicy and a task's
1851 * mempolicy is only ever changed by the task itself.
1852 *
1853 * N.B., it is the caller's responsibility to free a returned nodemask.
1854 */
1855 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1856 {
1857 struct mempolicy *mempolicy;
1858 int nid;
1859
1860 if (!(mask && current->mempolicy))
1861 return false;
1862
1863 task_lock(current);
1864 mempolicy = current->mempolicy;
1865 switch (mempolicy->mode) {
1866 case MPOL_PREFERRED:
1867 if (mempolicy->flags & MPOL_F_LOCAL)
1868 nid = numa_node_id();
1869 else
1870 nid = mempolicy->v.preferred_node;
1871 init_nodemask_of_node(mask, nid);
1872 break;
1873
1874 case MPOL_BIND:
1875 /* Fall through */
1876 case MPOL_INTERLEAVE:
1877 *mask = mempolicy->v.nodes;
1878 break;
1879
1880 default:
1881 BUG();
1882 }
1883 task_unlock(current);
1884
1885 return true;
1886 }
1887 #endif
1888
1889 /*
1890 * mempolicy_nodemask_intersects
1891 *
1892 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1893 * policy. Otherwise, check for intersection between mask and the policy
1894 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1895 * policy, always return true since it may allocate elsewhere on fallback.
1896 *
1897 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1898 */
1899 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1900 const nodemask_t *mask)
1901 {
1902 struct mempolicy *mempolicy;
1903 bool ret = true;
1904
1905 if (!mask)
1906 return ret;
1907 task_lock(tsk);
1908 mempolicy = tsk->mempolicy;
1909 if (!mempolicy)
1910 goto out;
1911
1912 switch (mempolicy->mode) {
1913 case MPOL_PREFERRED:
1914 /*
1915 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1916 * allocate from, they may fallback to other nodes when oom.
1917 * Thus, it's possible for tsk to have allocated memory from
1918 * nodes in mask.
1919 */
1920 break;
1921 case MPOL_BIND:
1922 case MPOL_INTERLEAVE:
1923 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1924 break;
1925 default:
1926 BUG();
1927 }
1928 out:
1929 task_unlock(tsk);
1930 return ret;
1931 }
1932
1933 /* Allocate a page in interleaved policy.
1934 Own path because it needs to do special accounting. */
1935 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1936 unsigned nid)
1937 {
1938 struct zonelist *zl;
1939 struct page *page;
1940
1941 zl = node_zonelist(nid, gfp);
1942 page = __alloc_pages(gfp, order, zl);
1943 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1944 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1945 return page;
1946 }
1947
1948 /**
1949 * alloc_pages_vma - Allocate a page for a VMA.
1950 *
1951 * @gfp:
1952 * %GFP_USER user allocation.
1953 * %GFP_KERNEL kernel allocations,
1954 * %GFP_HIGHMEM highmem/user allocations,
1955 * %GFP_FS allocation should not call back into a file system.
1956 * %GFP_ATOMIC don't sleep.
1957 *
1958 * @order:Order of the GFP allocation.
1959 * @vma: Pointer to VMA or NULL if not available.
1960 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1961 * @node: Which node to prefer for allocation (modulo policy).
1962 * @hugepage: for hugepages try only the preferred node if possible
1963 *
1964 * This function allocates a page from the kernel page pool and applies
1965 * a NUMA policy associated with the VMA or the current process.
1966 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1967 * mm_struct of the VMA to prevent it from going away. Should be used for
1968 * all allocations for pages that will be mapped into user space. Returns
1969 * NULL when no page can be allocated.
1970 */
1971 struct page *
1972 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1973 unsigned long addr, int node, bool hugepage)
1974 {
1975 struct mempolicy *pol;
1976 struct page *page;
1977 unsigned int cpuset_mems_cookie;
1978 struct zonelist *zl;
1979 nodemask_t *nmask;
1980
1981 retry_cpuset:
1982 pol = get_vma_policy(vma, addr);
1983 cpuset_mems_cookie = read_mems_allowed_begin();
1984
1985 if (pol->mode == MPOL_INTERLEAVE) {
1986 unsigned nid;
1987
1988 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1989 mpol_cond_put(pol);
1990 page = alloc_page_interleave(gfp, order, nid);
1991 goto out;
1992 }
1993
1994 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1995 int hpage_node = node;
1996
1997 /*
1998 * For hugepage allocation and non-interleave policy which
1999 * allows the current node (or other explicitly preferred
2000 * node) we only try to allocate from the current/preferred
2001 * node and don't fall back to other nodes, as the cost of
2002 * remote accesses would likely offset THP benefits.
2003 *
2004 * If the policy is interleave, or does not allow the current
2005 * node in its nodemask, we allocate the standard way.
2006 */
2007 if (pol->mode == MPOL_PREFERRED &&
2008 !(pol->flags & MPOL_F_LOCAL))
2009 hpage_node = pol->v.preferred_node;
2010
2011 nmask = policy_nodemask(gfp, pol);
2012 if (!nmask || node_isset(hpage_node, *nmask)) {
2013 mpol_cond_put(pol);
2014 page = __alloc_pages_node(hpage_node,
2015 gfp | __GFP_THISNODE, order);
2016 goto out;
2017 }
2018 }
2019
2020 nmask = policy_nodemask(gfp, pol);
2021 zl = policy_zonelist(gfp, pol, node);
2022 mpol_cond_put(pol);
2023 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2024 out:
2025 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2026 goto retry_cpuset;
2027 return page;
2028 }
2029
2030 /**
2031 * alloc_pages_current - Allocate pages.
2032 *
2033 * @gfp:
2034 * %GFP_USER user allocation,
2035 * %GFP_KERNEL kernel allocation,
2036 * %GFP_HIGHMEM highmem allocation,
2037 * %GFP_FS don't call back into a file system.
2038 * %GFP_ATOMIC don't sleep.
2039 * @order: Power of two of allocation size in pages. 0 is a single page.
2040 *
2041 * Allocate a page from the kernel page pool. When not in
2042 * interrupt context and apply the current process NUMA policy.
2043 * Returns NULL when no page can be allocated.
2044 *
2045 * Don't call cpuset_update_task_memory_state() unless
2046 * 1) it's ok to take cpuset_sem (can WAIT), and
2047 * 2) allocating for current task (not interrupt).
2048 */
2049 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2050 {
2051 struct mempolicy *pol = &default_policy;
2052 struct page *page;
2053 unsigned int cpuset_mems_cookie;
2054
2055 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2056 pol = get_task_policy(current);
2057
2058 retry_cpuset:
2059 cpuset_mems_cookie = read_mems_allowed_begin();
2060
2061 /*
2062 * No reference counting needed for current->mempolicy
2063 * nor system default_policy
2064 */
2065 if (pol->mode == MPOL_INTERLEAVE)
2066 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2067 else
2068 page = __alloc_pages_nodemask(gfp, order,
2069 policy_zonelist(gfp, pol, numa_node_id()),
2070 policy_nodemask(gfp, pol));
2071
2072 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2073 goto retry_cpuset;
2074
2075 return page;
2076 }
2077 EXPORT_SYMBOL(alloc_pages_current);
2078
2079 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2080 {
2081 struct mempolicy *pol = mpol_dup(vma_policy(src));
2082
2083 if (IS_ERR(pol))
2084 return PTR_ERR(pol);
2085 dst->vm_policy = pol;
2086 return 0;
2087 }
2088
2089 /*
2090 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2091 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2092 * with the mems_allowed returned by cpuset_mems_allowed(). This
2093 * keeps mempolicies cpuset relative after its cpuset moves. See
2094 * further kernel/cpuset.c update_nodemask().
2095 *
2096 * current's mempolicy may be rebinded by the other task(the task that changes
2097 * cpuset's mems), so we needn't do rebind work for current task.
2098 */
2099
2100 /* Slow path of a mempolicy duplicate */
2101 struct mempolicy *__mpol_dup(struct mempolicy *old)
2102 {
2103 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2104
2105 if (!new)
2106 return ERR_PTR(-ENOMEM);
2107
2108 /* task's mempolicy is protected by alloc_lock */
2109 if (old == current->mempolicy) {
2110 task_lock(current);
2111 *new = *old;
2112 task_unlock(current);
2113 } else
2114 *new = *old;
2115
2116 if (current_cpuset_is_being_rebound()) {
2117 nodemask_t mems = cpuset_mems_allowed(current);
2118 if (new->flags & MPOL_F_REBINDING)
2119 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2120 else
2121 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2122 }
2123 atomic_set(&new->refcnt, 1);
2124 return new;
2125 }
2126
2127 /* Slow path of a mempolicy comparison */
2128 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2129 {
2130 if (!a || !b)
2131 return false;
2132 if (a->mode != b->mode)
2133 return false;
2134 if (a->flags != b->flags)
2135 return false;
2136 if (mpol_store_user_nodemask(a))
2137 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2138 return false;
2139
2140 switch (a->mode) {
2141 case MPOL_BIND:
2142 /* Fall through */
2143 case MPOL_INTERLEAVE:
2144 return !!nodes_equal(a->v.nodes, b->v.nodes);
2145 case MPOL_PREFERRED:
2146 return a->v.preferred_node == b->v.preferred_node;
2147 default:
2148 BUG();
2149 return false;
2150 }
2151 }
2152
2153 /*
2154 * Shared memory backing store policy support.
2155 *
2156 * Remember policies even when nobody has shared memory mapped.
2157 * The policies are kept in Red-Black tree linked from the inode.
2158 * They are protected by the sp->lock rwlock, which should be held
2159 * for any accesses to the tree.
2160 */
2161
2162 /*
2163 * lookup first element intersecting start-end. Caller holds sp->lock for
2164 * reading or for writing
2165 */
2166 static struct sp_node *
2167 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2168 {
2169 struct rb_node *n = sp->root.rb_node;
2170
2171 while (n) {
2172 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2173
2174 if (start >= p->end)
2175 n = n->rb_right;
2176 else if (end <= p->start)
2177 n = n->rb_left;
2178 else
2179 break;
2180 }
2181 if (!n)
2182 return NULL;
2183 for (;;) {
2184 struct sp_node *w = NULL;
2185 struct rb_node *prev = rb_prev(n);
2186 if (!prev)
2187 break;
2188 w = rb_entry(prev, struct sp_node, nd);
2189 if (w->end <= start)
2190 break;
2191 n = prev;
2192 }
2193 return rb_entry(n, struct sp_node, nd);
2194 }
2195
2196 /*
2197 * Insert a new shared policy into the list. Caller holds sp->lock for
2198 * writing.
2199 */
2200 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2201 {
2202 struct rb_node **p = &sp->root.rb_node;
2203 struct rb_node *parent = NULL;
2204 struct sp_node *nd;
2205
2206 while (*p) {
2207 parent = *p;
2208 nd = rb_entry(parent, struct sp_node, nd);
2209 if (new->start < nd->start)
2210 p = &(*p)->rb_left;
2211 else if (new->end > nd->end)
2212 p = &(*p)->rb_right;
2213 else
2214 BUG();
2215 }
2216 rb_link_node(&new->nd, parent, p);
2217 rb_insert_color(&new->nd, &sp->root);
2218 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2219 new->policy ? new->policy->mode : 0);
2220 }
2221
2222 /* Find shared policy intersecting idx */
2223 struct mempolicy *
2224 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2225 {
2226 struct mempolicy *pol = NULL;
2227 struct sp_node *sn;
2228
2229 if (!sp->root.rb_node)
2230 return NULL;
2231 read_lock(&sp->lock);
2232 sn = sp_lookup(sp, idx, idx+1);
2233 if (sn) {
2234 mpol_get(sn->policy);
2235 pol = sn->policy;
2236 }
2237 read_unlock(&sp->lock);
2238 return pol;
2239 }
2240
2241 static void sp_free(struct sp_node *n)
2242 {
2243 mpol_put(n->policy);
2244 kmem_cache_free(sn_cache, n);
2245 }
2246
2247 /**
2248 * mpol_misplaced - check whether current page node is valid in policy
2249 *
2250 * @page: page to be checked
2251 * @vma: vm area where page mapped
2252 * @addr: virtual address where page mapped
2253 *
2254 * Lookup current policy node id for vma,addr and "compare to" page's
2255 * node id.
2256 *
2257 * Returns:
2258 * -1 - not misplaced, page is in the right node
2259 * node - node id where the page should be
2260 *
2261 * Policy determination "mimics" alloc_page_vma().
2262 * Called from fault path where we know the vma and faulting address.
2263 */
2264 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2265 {
2266 struct mempolicy *pol;
2267 struct zone *zone;
2268 int curnid = page_to_nid(page);
2269 unsigned long pgoff;
2270 int thiscpu = raw_smp_processor_id();
2271 int thisnid = cpu_to_node(thiscpu);
2272 int polnid = -1;
2273 int ret = -1;
2274
2275 BUG_ON(!vma);
2276
2277 pol = get_vma_policy(vma, addr);
2278 if (!(pol->flags & MPOL_F_MOF))
2279 goto out;
2280
2281 switch (pol->mode) {
2282 case MPOL_INTERLEAVE:
2283 BUG_ON(addr >= vma->vm_end);
2284 BUG_ON(addr < vma->vm_start);
2285
2286 pgoff = vma->vm_pgoff;
2287 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2288 polnid = offset_il_node(pol, vma, pgoff);
2289 break;
2290
2291 case MPOL_PREFERRED:
2292 if (pol->flags & MPOL_F_LOCAL)
2293 polnid = numa_node_id();
2294 else
2295 polnid = pol->v.preferred_node;
2296 break;
2297
2298 case MPOL_BIND:
2299 /*
2300 * allows binding to multiple nodes.
2301 * use current page if in policy nodemask,
2302 * else select nearest allowed node, if any.
2303 * If no allowed nodes, use current [!misplaced].
2304 */
2305 if (node_isset(curnid, pol->v.nodes))
2306 goto out;
2307 (void)first_zones_zonelist(
2308 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2309 gfp_zone(GFP_HIGHUSER),
2310 &pol->v.nodes, &zone);
2311 polnid = zone->node;
2312 break;
2313
2314 default:
2315 BUG();
2316 }
2317
2318 /* Migrate the page towards the node whose CPU is referencing it */
2319 if (pol->flags & MPOL_F_MORON) {
2320 polnid = thisnid;
2321
2322 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2323 goto out;
2324 }
2325
2326 if (curnid != polnid)
2327 ret = polnid;
2328 out:
2329 mpol_cond_put(pol);
2330
2331 return ret;
2332 }
2333
2334 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2335 {
2336 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2337 rb_erase(&n->nd, &sp->root);
2338 sp_free(n);
2339 }
2340
2341 static void sp_node_init(struct sp_node *node, unsigned long start,
2342 unsigned long end, struct mempolicy *pol)
2343 {
2344 node->start = start;
2345 node->end = end;
2346 node->policy = pol;
2347 }
2348
2349 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2350 struct mempolicy *pol)
2351 {
2352 struct sp_node *n;
2353 struct mempolicy *newpol;
2354
2355 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2356 if (!n)
2357 return NULL;
2358
2359 newpol = mpol_dup(pol);
2360 if (IS_ERR(newpol)) {
2361 kmem_cache_free(sn_cache, n);
2362 return NULL;
2363 }
2364 newpol->flags |= MPOL_F_SHARED;
2365 sp_node_init(n, start, end, newpol);
2366
2367 return n;
2368 }
2369
2370 /* Replace a policy range. */
2371 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2372 unsigned long end, struct sp_node *new)
2373 {
2374 struct sp_node *n;
2375 struct sp_node *n_new = NULL;
2376 struct mempolicy *mpol_new = NULL;
2377 int ret = 0;
2378
2379 restart:
2380 write_lock(&sp->lock);
2381 n = sp_lookup(sp, start, end);
2382 /* Take care of old policies in the same range. */
2383 while (n && n->start < end) {
2384 struct rb_node *next = rb_next(&n->nd);
2385 if (n->start >= start) {
2386 if (n->end <= end)
2387 sp_delete(sp, n);
2388 else
2389 n->start = end;
2390 } else {
2391 /* Old policy spanning whole new range. */
2392 if (n->end > end) {
2393 if (!n_new)
2394 goto alloc_new;
2395
2396 *mpol_new = *n->policy;
2397 atomic_set(&mpol_new->refcnt, 1);
2398 sp_node_init(n_new, end, n->end, mpol_new);
2399 n->end = start;
2400 sp_insert(sp, n_new);
2401 n_new = NULL;
2402 mpol_new = NULL;
2403 break;
2404 } else
2405 n->end = start;
2406 }
2407 if (!next)
2408 break;
2409 n = rb_entry(next, struct sp_node, nd);
2410 }
2411 if (new)
2412 sp_insert(sp, new);
2413 write_unlock(&sp->lock);
2414 ret = 0;
2415
2416 err_out:
2417 if (mpol_new)
2418 mpol_put(mpol_new);
2419 if (n_new)
2420 kmem_cache_free(sn_cache, n_new);
2421
2422 return ret;
2423
2424 alloc_new:
2425 write_unlock(&sp->lock);
2426 ret = -ENOMEM;
2427 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2428 if (!n_new)
2429 goto err_out;
2430 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2431 if (!mpol_new)
2432 goto err_out;
2433 goto restart;
2434 }
2435
2436 /**
2437 * mpol_shared_policy_init - initialize shared policy for inode
2438 * @sp: pointer to inode shared policy
2439 * @mpol: struct mempolicy to install
2440 *
2441 * Install non-NULL @mpol in inode's shared policy rb-tree.
2442 * On entry, the current task has a reference on a non-NULL @mpol.
2443 * This must be released on exit.
2444 * This is called at get_inode() calls and we can use GFP_KERNEL.
2445 */
2446 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2447 {
2448 int ret;
2449
2450 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2451 rwlock_init(&sp->lock);
2452
2453 if (mpol) {
2454 struct vm_area_struct pvma;
2455 struct mempolicy *new;
2456 NODEMASK_SCRATCH(scratch);
2457
2458 if (!scratch)
2459 goto put_mpol;
2460 /* contextualize the tmpfs mount point mempolicy */
2461 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2462 if (IS_ERR(new))
2463 goto free_scratch; /* no valid nodemask intersection */
2464
2465 task_lock(current);
2466 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2467 task_unlock(current);
2468 if (ret)
2469 goto put_new;
2470
2471 /* Create pseudo-vma that contains just the policy */
2472 memset(&pvma, 0, sizeof(struct vm_area_struct));
2473 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2474 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2475
2476 put_new:
2477 mpol_put(new); /* drop initial ref */
2478 free_scratch:
2479 NODEMASK_SCRATCH_FREE(scratch);
2480 put_mpol:
2481 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2482 }
2483 }
2484
2485 int mpol_set_shared_policy(struct shared_policy *info,
2486 struct vm_area_struct *vma, struct mempolicy *npol)
2487 {
2488 int err;
2489 struct sp_node *new = NULL;
2490 unsigned long sz = vma_pages(vma);
2491
2492 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2493 vma->vm_pgoff,
2494 sz, npol ? npol->mode : -1,
2495 npol ? npol->flags : -1,
2496 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2497
2498 if (npol) {
2499 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2500 if (!new)
2501 return -ENOMEM;
2502 }
2503 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2504 if (err && new)
2505 sp_free(new);
2506 return err;
2507 }
2508
2509 /* Free a backing policy store on inode delete. */
2510 void mpol_free_shared_policy(struct shared_policy *p)
2511 {
2512 struct sp_node *n;
2513 struct rb_node *next;
2514
2515 if (!p->root.rb_node)
2516 return;
2517 write_lock(&p->lock);
2518 next = rb_first(&p->root);
2519 while (next) {
2520 n = rb_entry(next, struct sp_node, nd);
2521 next = rb_next(&n->nd);
2522 sp_delete(p, n);
2523 }
2524 write_unlock(&p->lock);
2525 }
2526
2527 #ifdef CONFIG_NUMA_BALANCING
2528 static int __initdata numabalancing_override;
2529
2530 static void __init check_numabalancing_enable(void)
2531 {
2532 bool numabalancing_default = false;
2533
2534 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2535 numabalancing_default = true;
2536
2537 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2538 if (numabalancing_override)
2539 set_numabalancing_state(numabalancing_override == 1);
2540
2541 if (num_online_nodes() > 1 && !numabalancing_override) {
2542 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2543 numabalancing_default ? "Enabling" : "Disabling");
2544 set_numabalancing_state(numabalancing_default);
2545 }
2546 }
2547
2548 static int __init setup_numabalancing(char *str)
2549 {
2550 int ret = 0;
2551 if (!str)
2552 goto out;
2553
2554 if (!strcmp(str, "enable")) {
2555 numabalancing_override = 1;
2556 ret = 1;
2557 } else if (!strcmp(str, "disable")) {
2558 numabalancing_override = -1;
2559 ret = 1;
2560 }
2561 out:
2562 if (!ret)
2563 pr_warn("Unable to parse numa_balancing=\n");
2564
2565 return ret;
2566 }
2567 __setup("numa_balancing=", setup_numabalancing);
2568 #else
2569 static inline void __init check_numabalancing_enable(void)
2570 {
2571 }
2572 #endif /* CONFIG_NUMA_BALANCING */
2573
2574 /* assumes fs == KERNEL_DS */
2575 void __init numa_policy_init(void)
2576 {
2577 nodemask_t interleave_nodes;
2578 unsigned long largest = 0;
2579 int nid, prefer = 0;
2580
2581 policy_cache = kmem_cache_create("numa_policy",
2582 sizeof(struct mempolicy),
2583 0, SLAB_PANIC, NULL);
2584
2585 sn_cache = kmem_cache_create("shared_policy_node",
2586 sizeof(struct sp_node),
2587 0, SLAB_PANIC, NULL);
2588
2589 for_each_node(nid) {
2590 preferred_node_policy[nid] = (struct mempolicy) {
2591 .refcnt = ATOMIC_INIT(1),
2592 .mode = MPOL_PREFERRED,
2593 .flags = MPOL_F_MOF | MPOL_F_MORON,
2594 .v = { .preferred_node = nid, },
2595 };
2596 }
2597
2598 /*
2599 * Set interleaving policy for system init. Interleaving is only
2600 * enabled across suitably sized nodes (default is >= 16MB), or
2601 * fall back to the largest node if they're all smaller.
2602 */
2603 nodes_clear(interleave_nodes);
2604 for_each_node_state(nid, N_MEMORY) {
2605 unsigned long total_pages = node_present_pages(nid);
2606
2607 /* Preserve the largest node */
2608 if (largest < total_pages) {
2609 largest = total_pages;
2610 prefer = nid;
2611 }
2612
2613 /* Interleave this node? */
2614 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2615 node_set(nid, interleave_nodes);
2616 }
2617
2618 /* All too small, use the largest */
2619 if (unlikely(nodes_empty(interleave_nodes)))
2620 node_set(prefer, interleave_nodes);
2621
2622 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2623 pr_err("%s: interleaving failed\n", __func__);
2624
2625 check_numabalancing_enable();
2626 }
2627
2628 /* Reset policy of current process to default */
2629 void numa_default_policy(void)
2630 {
2631 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2632 }
2633
2634 /*
2635 * Parse and format mempolicy from/to strings
2636 */
2637
2638 /*
2639 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2640 */
2641 static const char * const policy_modes[] =
2642 {
2643 [MPOL_DEFAULT] = "default",
2644 [MPOL_PREFERRED] = "prefer",
2645 [MPOL_BIND] = "bind",
2646 [MPOL_INTERLEAVE] = "interleave",
2647 [MPOL_LOCAL] = "local",
2648 };
2649
2650
2651 #ifdef CONFIG_TMPFS
2652 /**
2653 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2654 * @str: string containing mempolicy to parse
2655 * @mpol: pointer to struct mempolicy pointer, returned on success.
2656 *
2657 * Format of input:
2658 * <mode>[=<flags>][:<nodelist>]
2659 *
2660 * On success, returns 0, else 1
2661 */
2662 int mpol_parse_str(char *str, struct mempolicy **mpol)
2663 {
2664 struct mempolicy *new = NULL;
2665 unsigned short mode;
2666 unsigned short mode_flags;
2667 nodemask_t nodes;
2668 char *nodelist = strchr(str, ':');
2669 char *flags = strchr(str, '=');
2670 int err = 1;
2671
2672 if (nodelist) {
2673 /* NUL-terminate mode or flags string */
2674 *nodelist++ = '\0';
2675 if (nodelist_parse(nodelist, nodes))
2676 goto out;
2677 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2678 goto out;
2679 } else
2680 nodes_clear(nodes);
2681
2682 if (flags)
2683 *flags++ = '\0'; /* terminate mode string */
2684
2685 for (mode = 0; mode < MPOL_MAX; mode++) {
2686 if (!strcmp(str, policy_modes[mode])) {
2687 break;
2688 }
2689 }
2690 if (mode >= MPOL_MAX)
2691 goto out;
2692
2693 switch (mode) {
2694 case MPOL_PREFERRED:
2695 /*
2696 * Insist on a nodelist of one node only
2697 */
2698 if (nodelist) {
2699 char *rest = nodelist;
2700 while (isdigit(*rest))
2701 rest++;
2702 if (*rest)
2703 goto out;
2704 }
2705 break;
2706 case MPOL_INTERLEAVE:
2707 /*
2708 * Default to online nodes with memory if no nodelist
2709 */
2710 if (!nodelist)
2711 nodes = node_states[N_MEMORY];
2712 break;
2713 case MPOL_LOCAL:
2714 /*
2715 * Don't allow a nodelist; mpol_new() checks flags
2716 */
2717 if (nodelist)
2718 goto out;
2719 mode = MPOL_PREFERRED;
2720 break;
2721 case MPOL_DEFAULT:
2722 /*
2723 * Insist on a empty nodelist
2724 */
2725 if (!nodelist)
2726 err = 0;
2727 goto out;
2728 case MPOL_BIND:
2729 /*
2730 * Insist on a nodelist
2731 */
2732 if (!nodelist)
2733 goto out;
2734 }
2735
2736 mode_flags = 0;
2737 if (flags) {
2738 /*
2739 * Currently, we only support two mutually exclusive
2740 * mode flags.
2741 */
2742 if (!strcmp(flags, "static"))
2743 mode_flags |= MPOL_F_STATIC_NODES;
2744 else if (!strcmp(flags, "relative"))
2745 mode_flags |= MPOL_F_RELATIVE_NODES;
2746 else
2747 goto out;
2748 }
2749
2750 new = mpol_new(mode, mode_flags, &nodes);
2751 if (IS_ERR(new))
2752 goto out;
2753
2754 /*
2755 * Save nodes for mpol_to_str() to show the tmpfs mount options
2756 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2757 */
2758 if (mode != MPOL_PREFERRED)
2759 new->v.nodes = nodes;
2760 else if (nodelist)
2761 new->v.preferred_node = first_node(nodes);
2762 else
2763 new->flags |= MPOL_F_LOCAL;
2764
2765 /*
2766 * Save nodes for contextualization: this will be used to "clone"
2767 * the mempolicy in a specific context [cpuset] at a later time.
2768 */
2769 new->w.user_nodemask = nodes;
2770
2771 err = 0;
2772
2773 out:
2774 /* Restore string for error message */
2775 if (nodelist)
2776 *--nodelist = ':';
2777 if (flags)
2778 *--flags = '=';
2779 if (!err)
2780 *mpol = new;
2781 return err;
2782 }
2783 #endif /* CONFIG_TMPFS */
2784
2785 /**
2786 * mpol_to_str - format a mempolicy structure for printing
2787 * @buffer: to contain formatted mempolicy string
2788 * @maxlen: length of @buffer
2789 * @pol: pointer to mempolicy to be formatted
2790 *
2791 * Convert @pol into a string. If @buffer is too short, truncate the string.
2792 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2793 * longest flag, "relative", and to display at least a few node ids.
2794 */
2795 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2796 {
2797 char *p = buffer;
2798 nodemask_t nodes = NODE_MASK_NONE;
2799 unsigned short mode = MPOL_DEFAULT;
2800 unsigned short flags = 0;
2801
2802 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2803 mode = pol->mode;
2804 flags = pol->flags;
2805 }
2806
2807 switch (mode) {
2808 case MPOL_DEFAULT:
2809 break;
2810 case MPOL_PREFERRED:
2811 if (flags & MPOL_F_LOCAL)
2812 mode = MPOL_LOCAL;
2813 else
2814 node_set(pol->v.preferred_node, nodes);
2815 break;
2816 case MPOL_BIND:
2817 case MPOL_INTERLEAVE:
2818 nodes = pol->v.nodes;
2819 break;
2820 default:
2821 WARN_ON_ONCE(1);
2822 snprintf(p, maxlen, "unknown");
2823 return;
2824 }
2825
2826 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2827
2828 if (flags & MPOL_MODE_FLAGS) {
2829 p += snprintf(p, buffer + maxlen - p, "=");
2830
2831 /*
2832 * Currently, the only defined flags are mutually exclusive
2833 */
2834 if (flags & MPOL_F_STATIC_NODES)
2835 p += snprintf(p, buffer + maxlen - p, "static");
2836 else if (flags & MPOL_F_RELATIVE_NODES)
2837 p += snprintf(p, buffer + maxlen - p, "relative");
2838 }
2839
2840 if (!nodes_empty(nodes))
2841 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2842 nodemask_pr_args(&nodes));
2843 }