]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
x86/tlb: Disable interrupts when changing CR4
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100 #include <linux/swapops.h>
101
102 #include <asm/tlbflush.h>
103 #include <linux/uaccess.h>
104
105 #include "internal.h"
106
107 /* Internal flags */
108 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
109 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
110
111 static struct kmem_cache *policy_cache;
112 static struct kmem_cache *sn_cache;
113
114 /* Highest zone. An specific allocation for a zone below that is not
115 policied. */
116 enum zone_type policy_zone = 0;
117
118 /*
119 * run-time system-wide default policy => local allocation
120 */
121 static struct mempolicy default_policy = {
122 .refcnt = ATOMIC_INIT(1), /* never free it */
123 .mode = MPOL_PREFERRED,
124 .flags = MPOL_F_LOCAL,
125 };
126
127 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
128
129 struct mempolicy *get_task_policy(struct task_struct *p)
130 {
131 struct mempolicy *pol = p->mempolicy;
132 int node;
133
134 if (pol)
135 return pol;
136
137 node = numa_node_id();
138 if (node != NUMA_NO_NODE) {
139 pol = &preferred_node_policy[node];
140 /* preferred_node_policy is not initialised early in boot */
141 if (pol->mode)
142 return pol;
143 }
144
145 return &default_policy;
146 }
147
148 static const struct mempolicy_operations {
149 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
150 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
151 } mpol_ops[MPOL_MAX];
152
153 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
154 {
155 return pol->flags & MPOL_MODE_FLAGS;
156 }
157
158 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
159 const nodemask_t *rel)
160 {
161 nodemask_t tmp;
162 nodes_fold(tmp, *orig, nodes_weight(*rel));
163 nodes_onto(*ret, tmp, *rel);
164 }
165
166 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
167 {
168 if (nodes_empty(*nodes))
169 return -EINVAL;
170 pol->v.nodes = *nodes;
171 return 0;
172 }
173
174 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
175 {
176 if (!nodes)
177 pol->flags |= MPOL_F_LOCAL; /* local allocation */
178 else if (nodes_empty(*nodes))
179 return -EINVAL; /* no allowed nodes */
180 else
181 pol->v.preferred_node = first_node(*nodes);
182 return 0;
183 }
184
185 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 if (nodes_empty(*nodes))
188 return -EINVAL;
189 pol->v.nodes = *nodes;
190 return 0;
191 }
192
193 /*
194 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
195 * any, for the new policy. mpol_new() has already validated the nodes
196 * parameter with respect to the policy mode and flags. But, we need to
197 * handle an empty nodemask with MPOL_PREFERRED here.
198 *
199 * Must be called holding task's alloc_lock to protect task's mems_allowed
200 * and mempolicy. May also be called holding the mmap_semaphore for write.
201 */
202 static int mpol_set_nodemask(struct mempolicy *pol,
203 const nodemask_t *nodes, struct nodemask_scratch *nsc)
204 {
205 int ret;
206
207 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
208 if (pol == NULL)
209 return 0;
210 /* Check N_MEMORY */
211 nodes_and(nsc->mask1,
212 cpuset_current_mems_allowed, node_states[N_MEMORY]);
213
214 VM_BUG_ON(!nodes);
215 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
216 nodes = NULL; /* explicit local allocation */
217 else {
218 if (pol->flags & MPOL_F_RELATIVE_NODES)
219 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
220 else
221 nodes_and(nsc->mask2, *nodes, nsc->mask1);
222
223 if (mpol_store_user_nodemask(pol))
224 pol->w.user_nodemask = *nodes;
225 else
226 pol->w.cpuset_mems_allowed =
227 cpuset_current_mems_allowed;
228 }
229
230 if (nodes)
231 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
232 else
233 ret = mpol_ops[pol->mode].create(pol, NULL);
234 return ret;
235 }
236
237 /*
238 * This function just creates a new policy, does some check and simple
239 * initialization. You must invoke mpol_set_nodemask() to set nodes.
240 */
241 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
242 nodemask_t *nodes)
243 {
244 struct mempolicy *policy;
245
246 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
247 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
248
249 if (mode == MPOL_DEFAULT) {
250 if (nodes && !nodes_empty(*nodes))
251 return ERR_PTR(-EINVAL);
252 return NULL;
253 }
254 VM_BUG_ON(!nodes);
255
256 /*
257 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
258 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
259 * All other modes require a valid pointer to a non-empty nodemask.
260 */
261 if (mode == MPOL_PREFERRED) {
262 if (nodes_empty(*nodes)) {
263 if (((flags & MPOL_F_STATIC_NODES) ||
264 (flags & MPOL_F_RELATIVE_NODES)))
265 return ERR_PTR(-EINVAL);
266 }
267 } else if (mode == MPOL_LOCAL) {
268 if (!nodes_empty(*nodes) ||
269 (flags & MPOL_F_STATIC_NODES) ||
270 (flags & MPOL_F_RELATIVE_NODES))
271 return ERR_PTR(-EINVAL);
272 mode = MPOL_PREFERRED;
273 } else if (nodes_empty(*nodes))
274 return ERR_PTR(-EINVAL);
275 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
276 if (!policy)
277 return ERR_PTR(-ENOMEM);
278 atomic_set(&policy->refcnt, 1);
279 policy->mode = mode;
280 policy->flags = flags;
281
282 return policy;
283 }
284
285 /* Slow path of a mpol destructor. */
286 void __mpol_put(struct mempolicy *p)
287 {
288 if (!atomic_dec_and_test(&p->refcnt))
289 return;
290 kmem_cache_free(policy_cache, p);
291 }
292
293 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
294 {
295 }
296
297 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
298 {
299 nodemask_t tmp;
300
301 if (pol->flags & MPOL_F_STATIC_NODES)
302 nodes_and(tmp, pol->w.user_nodemask, *nodes);
303 else if (pol->flags & MPOL_F_RELATIVE_NODES)
304 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
305 else {
306 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
307 *nodes);
308 pol->w.cpuset_mems_allowed = tmp;
309 }
310
311 if (nodes_empty(tmp))
312 tmp = *nodes;
313
314 pol->v.nodes = tmp;
315 }
316
317 static void mpol_rebind_preferred(struct mempolicy *pol,
318 const nodemask_t *nodes)
319 {
320 nodemask_t tmp;
321
322 if (pol->flags & MPOL_F_STATIC_NODES) {
323 int node = first_node(pol->w.user_nodemask);
324
325 if (node_isset(node, *nodes)) {
326 pol->v.preferred_node = node;
327 pol->flags &= ~MPOL_F_LOCAL;
328 } else
329 pol->flags |= MPOL_F_LOCAL;
330 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
331 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 pol->v.preferred_node = first_node(tmp);
333 } else if (!(pol->flags & MPOL_F_LOCAL)) {
334 pol->v.preferred_node = node_remap(pol->v.preferred_node,
335 pol->w.cpuset_mems_allowed,
336 *nodes);
337 pol->w.cpuset_mems_allowed = *nodes;
338 }
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_sem. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_sem during call.
375 */
376
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 down_write(&mm->mmap_sem);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 up_write(&mm->mmap_sem);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_interleave,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_bind,
401 .rebind = mpol_rebind_nodemask,
402 },
403 };
404
405 static void migrate_page_add(struct page *page, struct list_head *pagelist,
406 unsigned long flags);
407
408 struct queue_pages {
409 struct list_head *pagelist;
410 unsigned long flags;
411 nodemask_t *nmask;
412 struct vm_area_struct *prev;
413 };
414
415 /*
416 * Check if the page's nid is in qp->nmask.
417 *
418 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
419 * in the invert of qp->nmask.
420 */
421 static inline bool queue_pages_required(struct page *page,
422 struct queue_pages *qp)
423 {
424 int nid = page_to_nid(page);
425 unsigned long flags = qp->flags;
426
427 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
428 }
429
430 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
431 unsigned long end, struct mm_walk *walk)
432 {
433 int ret = 0;
434 struct page *page;
435 struct queue_pages *qp = walk->private;
436 unsigned long flags;
437
438 if (unlikely(is_pmd_migration_entry(*pmd))) {
439 ret = 1;
440 goto unlock;
441 }
442 page = pmd_page(*pmd);
443 if (is_huge_zero_page(page)) {
444 spin_unlock(ptl);
445 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
446 goto out;
447 }
448 if (!thp_migration_supported()) {
449 get_page(page);
450 spin_unlock(ptl);
451 lock_page(page);
452 ret = split_huge_page(page);
453 unlock_page(page);
454 put_page(page);
455 goto out;
456 }
457 if (!queue_pages_required(page, qp)) {
458 ret = 1;
459 goto unlock;
460 }
461
462 ret = 1;
463 flags = qp->flags;
464 /* go to thp migration */
465 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
466 migrate_page_add(page, qp->pagelist, flags);
467 unlock:
468 spin_unlock(ptl);
469 out:
470 return ret;
471 }
472
473 /*
474 * Scan through pages checking if pages follow certain conditions,
475 * and move them to the pagelist if they do.
476 */
477 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
478 unsigned long end, struct mm_walk *walk)
479 {
480 struct vm_area_struct *vma = walk->vma;
481 struct page *page;
482 struct queue_pages *qp = walk->private;
483 unsigned long flags = qp->flags;
484 int ret;
485 pte_t *pte;
486 spinlock_t *ptl;
487
488 ptl = pmd_trans_huge_lock(pmd, vma);
489 if (ptl) {
490 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
491 if (ret)
492 return 0;
493 }
494
495 if (pmd_trans_unstable(pmd))
496 return 0;
497 retry:
498 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
499 for (; addr != end; pte++, addr += PAGE_SIZE) {
500 if (!pte_present(*pte))
501 continue;
502 page = vm_normal_page(vma, addr, *pte);
503 if (!page)
504 continue;
505 /*
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
508 */
509 if (PageReserved(page))
510 continue;
511 if (!queue_pages_required(page, qp))
512 continue;
513 if (PageTransCompound(page) && !thp_migration_supported()) {
514 get_page(page);
515 pte_unmap_unlock(pte, ptl);
516 lock_page(page);
517 ret = split_huge_page(page);
518 unlock_page(page);
519 put_page(page);
520 /* Failed to split -- skip. */
521 if (ret) {
522 pte = pte_offset_map_lock(walk->mm, pmd,
523 addr, &ptl);
524 continue;
525 }
526 goto retry;
527 }
528
529 migrate_page_add(page, qp->pagelist, flags);
530 }
531 pte_unmap_unlock(pte - 1, ptl);
532 cond_resched();
533 return 0;
534 }
535
536 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
537 unsigned long addr, unsigned long end,
538 struct mm_walk *walk)
539 {
540 #ifdef CONFIG_HUGETLB_PAGE
541 struct queue_pages *qp = walk->private;
542 unsigned long flags = qp->flags;
543 struct page *page;
544 spinlock_t *ptl;
545 pte_t entry;
546
547 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
548 entry = huge_ptep_get(pte);
549 if (!pte_present(entry))
550 goto unlock;
551 page = pte_page(entry);
552 if (!queue_pages_required(page, qp))
553 goto unlock;
554 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
555 if (flags & (MPOL_MF_MOVE_ALL) ||
556 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
557 isolate_huge_page(page, qp->pagelist);
558 unlock:
559 spin_unlock(ptl);
560 #else
561 BUG();
562 #endif
563 return 0;
564 }
565
566 #ifdef CONFIG_NUMA_BALANCING
567 /*
568 * This is used to mark a range of virtual addresses to be inaccessible.
569 * These are later cleared by a NUMA hinting fault. Depending on these
570 * faults, pages may be migrated for better NUMA placement.
571 *
572 * This is assuming that NUMA faults are handled using PROT_NONE. If
573 * an architecture makes a different choice, it will need further
574 * changes to the core.
575 */
576 unsigned long change_prot_numa(struct vm_area_struct *vma,
577 unsigned long addr, unsigned long end)
578 {
579 int nr_updated;
580
581 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
582 if (nr_updated)
583 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
584
585 return nr_updated;
586 }
587 #else
588 static unsigned long change_prot_numa(struct vm_area_struct *vma,
589 unsigned long addr, unsigned long end)
590 {
591 return 0;
592 }
593 #endif /* CONFIG_NUMA_BALANCING */
594
595 static int queue_pages_test_walk(unsigned long start, unsigned long end,
596 struct mm_walk *walk)
597 {
598 struct vm_area_struct *vma = walk->vma;
599 struct queue_pages *qp = walk->private;
600 unsigned long endvma = vma->vm_end;
601 unsigned long flags = qp->flags;
602
603 if (!vma_migratable(vma))
604 return 1;
605
606 if (endvma > end)
607 endvma = end;
608 if (vma->vm_start > start)
609 start = vma->vm_start;
610
611 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
612 if (!vma->vm_next && vma->vm_end < end)
613 return -EFAULT;
614 if (qp->prev && qp->prev->vm_end < vma->vm_start)
615 return -EFAULT;
616 }
617
618 qp->prev = vma;
619
620 if (flags & MPOL_MF_LAZY) {
621 /* Similar to task_numa_work, skip inaccessible VMAs */
622 if (!is_vm_hugetlb_page(vma) &&
623 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
624 !(vma->vm_flags & VM_MIXEDMAP))
625 change_prot_numa(vma, start, endvma);
626 return 1;
627 }
628
629 /* queue pages from current vma */
630 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
631 return 0;
632 return 1;
633 }
634
635 /*
636 * Walk through page tables and collect pages to be migrated.
637 *
638 * If pages found in a given range are on a set of nodes (determined by
639 * @nodes and @flags,) it's isolated and queued to the pagelist which is
640 * passed via @private.)
641 */
642 static int
643 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
644 nodemask_t *nodes, unsigned long flags,
645 struct list_head *pagelist)
646 {
647 struct queue_pages qp = {
648 .pagelist = pagelist,
649 .flags = flags,
650 .nmask = nodes,
651 .prev = NULL,
652 };
653 struct mm_walk queue_pages_walk = {
654 .hugetlb_entry = queue_pages_hugetlb,
655 .pmd_entry = queue_pages_pte_range,
656 .test_walk = queue_pages_test_walk,
657 .mm = mm,
658 .private = &qp,
659 };
660
661 return walk_page_range(start, end, &queue_pages_walk);
662 }
663
664 /*
665 * Apply policy to a single VMA
666 * This must be called with the mmap_sem held for writing.
667 */
668 static int vma_replace_policy(struct vm_area_struct *vma,
669 struct mempolicy *pol)
670 {
671 int err;
672 struct mempolicy *old;
673 struct mempolicy *new;
674
675 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
676 vma->vm_start, vma->vm_end, vma->vm_pgoff,
677 vma->vm_ops, vma->vm_file,
678 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
679
680 new = mpol_dup(pol);
681 if (IS_ERR(new))
682 return PTR_ERR(new);
683
684 if (vma->vm_ops && vma->vm_ops->set_policy) {
685 err = vma->vm_ops->set_policy(vma, new);
686 if (err)
687 goto err_out;
688 }
689
690 old = vma->vm_policy;
691 vma->vm_policy = new; /* protected by mmap_sem */
692 mpol_put(old);
693
694 return 0;
695 err_out:
696 mpol_put(new);
697 return err;
698 }
699
700 /* Step 2: apply policy to a range and do splits. */
701 static int mbind_range(struct mm_struct *mm, unsigned long start,
702 unsigned long end, struct mempolicy *new_pol)
703 {
704 struct vm_area_struct *next;
705 struct vm_area_struct *prev;
706 struct vm_area_struct *vma;
707 int err = 0;
708 pgoff_t pgoff;
709 unsigned long vmstart;
710 unsigned long vmend;
711
712 vma = find_vma(mm, start);
713 if (!vma || vma->vm_start > start)
714 return -EFAULT;
715
716 prev = vma->vm_prev;
717 if (start > vma->vm_start)
718 prev = vma;
719
720 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
721 next = vma->vm_next;
722 vmstart = max(start, vma->vm_start);
723 vmend = min(end, vma->vm_end);
724
725 if (mpol_equal(vma_policy(vma), new_pol))
726 continue;
727
728 pgoff = vma->vm_pgoff +
729 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
730 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
731 vma->anon_vma, vma->vm_file, pgoff,
732 new_pol, vma->vm_userfaultfd_ctx);
733 if (prev) {
734 vma = prev;
735 next = vma->vm_next;
736 if (mpol_equal(vma_policy(vma), new_pol))
737 continue;
738 /* vma_merge() joined vma && vma->next, case 8 */
739 goto replace;
740 }
741 if (vma->vm_start != vmstart) {
742 err = split_vma(vma->vm_mm, vma, vmstart, 1);
743 if (err)
744 goto out;
745 }
746 if (vma->vm_end != vmend) {
747 err = split_vma(vma->vm_mm, vma, vmend, 0);
748 if (err)
749 goto out;
750 }
751 replace:
752 err = vma_replace_policy(vma, new_pol);
753 if (err)
754 goto out;
755 }
756
757 out:
758 return err;
759 }
760
761 /* Set the process memory policy */
762 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
763 nodemask_t *nodes)
764 {
765 struct mempolicy *new, *old;
766 NODEMASK_SCRATCH(scratch);
767 int ret;
768
769 if (!scratch)
770 return -ENOMEM;
771
772 new = mpol_new(mode, flags, nodes);
773 if (IS_ERR(new)) {
774 ret = PTR_ERR(new);
775 goto out;
776 }
777
778 task_lock(current);
779 ret = mpol_set_nodemask(new, nodes, scratch);
780 if (ret) {
781 task_unlock(current);
782 mpol_put(new);
783 goto out;
784 }
785 old = current->mempolicy;
786 current->mempolicy = new;
787 if (new && new->mode == MPOL_INTERLEAVE)
788 current->il_prev = MAX_NUMNODES-1;
789 task_unlock(current);
790 mpol_put(old);
791 ret = 0;
792 out:
793 NODEMASK_SCRATCH_FREE(scratch);
794 return ret;
795 }
796
797 /*
798 * Return nodemask for policy for get_mempolicy() query
799 *
800 * Called with task's alloc_lock held
801 */
802 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
803 {
804 nodes_clear(*nodes);
805 if (p == &default_policy)
806 return;
807
808 switch (p->mode) {
809 case MPOL_BIND:
810 /* Fall through */
811 case MPOL_INTERLEAVE:
812 *nodes = p->v.nodes;
813 break;
814 case MPOL_PREFERRED:
815 if (!(p->flags & MPOL_F_LOCAL))
816 node_set(p->v.preferred_node, *nodes);
817 /* else return empty node mask for local allocation */
818 break;
819 default:
820 BUG();
821 }
822 }
823
824 static int lookup_node(unsigned long addr)
825 {
826 struct page *p;
827 int err;
828
829 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
830 if (err >= 0) {
831 err = page_to_nid(p);
832 put_page(p);
833 }
834 return err;
835 }
836
837 /* Retrieve NUMA policy */
838 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
839 unsigned long addr, unsigned long flags)
840 {
841 int err;
842 struct mm_struct *mm = current->mm;
843 struct vm_area_struct *vma = NULL;
844 struct mempolicy *pol = current->mempolicy;
845
846 if (flags &
847 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
848 return -EINVAL;
849
850 if (flags & MPOL_F_MEMS_ALLOWED) {
851 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
852 return -EINVAL;
853 *policy = 0; /* just so it's initialized */
854 task_lock(current);
855 *nmask = cpuset_current_mems_allowed;
856 task_unlock(current);
857 return 0;
858 }
859
860 if (flags & MPOL_F_ADDR) {
861 /*
862 * Do NOT fall back to task policy if the
863 * vma/shared policy at addr is NULL. We
864 * want to return MPOL_DEFAULT in this case.
865 */
866 down_read(&mm->mmap_sem);
867 vma = find_vma_intersection(mm, addr, addr+1);
868 if (!vma) {
869 up_read(&mm->mmap_sem);
870 return -EFAULT;
871 }
872 if (vma->vm_ops && vma->vm_ops->get_policy)
873 pol = vma->vm_ops->get_policy(vma, addr);
874 else
875 pol = vma->vm_policy;
876 } else if (addr)
877 return -EINVAL;
878
879 if (!pol)
880 pol = &default_policy; /* indicates default behavior */
881
882 if (flags & MPOL_F_NODE) {
883 if (flags & MPOL_F_ADDR) {
884 err = lookup_node(addr);
885 if (err < 0)
886 goto out;
887 *policy = err;
888 } else if (pol == current->mempolicy &&
889 pol->mode == MPOL_INTERLEAVE) {
890 *policy = next_node_in(current->il_prev, pol->v.nodes);
891 } else {
892 err = -EINVAL;
893 goto out;
894 }
895 } else {
896 *policy = pol == &default_policy ? MPOL_DEFAULT :
897 pol->mode;
898 /*
899 * Internal mempolicy flags must be masked off before exposing
900 * the policy to userspace.
901 */
902 *policy |= (pol->flags & MPOL_MODE_FLAGS);
903 }
904
905 err = 0;
906 if (nmask) {
907 if (mpol_store_user_nodemask(pol)) {
908 *nmask = pol->w.user_nodemask;
909 } else {
910 task_lock(current);
911 get_policy_nodemask(pol, nmask);
912 task_unlock(current);
913 }
914 }
915
916 out:
917 mpol_cond_put(pol);
918 if (vma)
919 up_read(&current->mm->mmap_sem);
920 return err;
921 }
922
923 #ifdef CONFIG_MIGRATION
924 /*
925 * page migration, thp tail pages can be passed.
926 */
927 static void migrate_page_add(struct page *page, struct list_head *pagelist,
928 unsigned long flags)
929 {
930 struct page *head = compound_head(page);
931 /*
932 * Avoid migrating a page that is shared with others.
933 */
934 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
935 if (!isolate_lru_page(head)) {
936 list_add_tail(&head->lru, pagelist);
937 mod_node_page_state(page_pgdat(head),
938 NR_ISOLATED_ANON + page_is_file_cache(head),
939 hpage_nr_pages(head));
940 }
941 }
942 }
943
944 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
945 {
946 if (PageHuge(page))
947 return alloc_huge_page_node(page_hstate(compound_head(page)),
948 node);
949 else if (thp_migration_supported() && PageTransHuge(page)) {
950 struct page *thp;
951
952 thp = alloc_pages_node(node,
953 (GFP_TRANSHUGE | __GFP_THISNODE),
954 HPAGE_PMD_ORDER);
955 if (!thp)
956 return NULL;
957 prep_transhuge_page(thp);
958 return thp;
959 } else
960 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
961 __GFP_THISNODE, 0);
962 }
963
964 /*
965 * Migrate pages from one node to a target node.
966 * Returns error or the number of pages not migrated.
967 */
968 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
969 int flags)
970 {
971 nodemask_t nmask;
972 LIST_HEAD(pagelist);
973 int err = 0;
974
975 nodes_clear(nmask);
976 node_set(source, nmask);
977
978 /*
979 * This does not "check" the range but isolates all pages that
980 * need migration. Between passing in the full user address
981 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
982 */
983 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
984 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
985 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
986
987 if (!list_empty(&pagelist)) {
988 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
989 MIGRATE_SYNC, MR_SYSCALL);
990 if (err)
991 putback_movable_pages(&pagelist);
992 }
993
994 return err;
995 }
996
997 /*
998 * Move pages between the two nodesets so as to preserve the physical
999 * layout as much as possible.
1000 *
1001 * Returns the number of page that could not be moved.
1002 */
1003 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1004 const nodemask_t *to, int flags)
1005 {
1006 int busy = 0;
1007 int err;
1008 nodemask_t tmp;
1009
1010 err = migrate_prep();
1011 if (err)
1012 return err;
1013
1014 down_read(&mm->mmap_sem);
1015
1016 /*
1017 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1018 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1019 * bit in 'tmp', and return that <source, dest> pair for migration.
1020 * The pair of nodemasks 'to' and 'from' define the map.
1021 *
1022 * If no pair of bits is found that way, fallback to picking some
1023 * pair of 'source' and 'dest' bits that are not the same. If the
1024 * 'source' and 'dest' bits are the same, this represents a node
1025 * that will be migrating to itself, so no pages need move.
1026 *
1027 * If no bits are left in 'tmp', or if all remaining bits left
1028 * in 'tmp' correspond to the same bit in 'to', return false
1029 * (nothing left to migrate).
1030 *
1031 * This lets us pick a pair of nodes to migrate between, such that
1032 * if possible the dest node is not already occupied by some other
1033 * source node, minimizing the risk of overloading the memory on a
1034 * node that would happen if we migrated incoming memory to a node
1035 * before migrating outgoing memory source that same node.
1036 *
1037 * A single scan of tmp is sufficient. As we go, we remember the
1038 * most recent <s, d> pair that moved (s != d). If we find a pair
1039 * that not only moved, but what's better, moved to an empty slot
1040 * (d is not set in tmp), then we break out then, with that pair.
1041 * Otherwise when we finish scanning from_tmp, we at least have the
1042 * most recent <s, d> pair that moved. If we get all the way through
1043 * the scan of tmp without finding any node that moved, much less
1044 * moved to an empty node, then there is nothing left worth migrating.
1045 */
1046
1047 tmp = *from;
1048 while (!nodes_empty(tmp)) {
1049 int s,d;
1050 int source = NUMA_NO_NODE;
1051 int dest = 0;
1052
1053 for_each_node_mask(s, tmp) {
1054
1055 /*
1056 * do_migrate_pages() tries to maintain the relative
1057 * node relationship of the pages established between
1058 * threads and memory areas.
1059 *
1060 * However if the number of source nodes is not equal to
1061 * the number of destination nodes we can not preserve
1062 * this node relative relationship. In that case, skip
1063 * copying memory from a node that is in the destination
1064 * mask.
1065 *
1066 * Example: [2,3,4] -> [3,4,5] moves everything.
1067 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1068 */
1069
1070 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1071 (node_isset(s, *to)))
1072 continue;
1073
1074 d = node_remap(s, *from, *to);
1075 if (s == d)
1076 continue;
1077
1078 source = s; /* Node moved. Memorize */
1079 dest = d;
1080
1081 /* dest not in remaining from nodes? */
1082 if (!node_isset(dest, tmp))
1083 break;
1084 }
1085 if (source == NUMA_NO_NODE)
1086 break;
1087
1088 node_clear(source, tmp);
1089 err = migrate_to_node(mm, source, dest, flags);
1090 if (err > 0)
1091 busy += err;
1092 if (err < 0)
1093 break;
1094 }
1095 up_read(&mm->mmap_sem);
1096 if (err < 0)
1097 return err;
1098 return busy;
1099
1100 }
1101
1102 /*
1103 * Allocate a new page for page migration based on vma policy.
1104 * Start by assuming the page is mapped by the same vma as contains @start.
1105 * Search forward from there, if not. N.B., this assumes that the
1106 * list of pages handed to migrate_pages()--which is how we get here--
1107 * is in virtual address order.
1108 */
1109 static struct page *new_page(struct page *page, unsigned long start, int **x)
1110 {
1111 struct vm_area_struct *vma;
1112 unsigned long uninitialized_var(address);
1113
1114 vma = find_vma(current->mm, start);
1115 while (vma) {
1116 address = page_address_in_vma(page, vma);
1117 if (address != -EFAULT)
1118 break;
1119 vma = vma->vm_next;
1120 }
1121
1122 if (PageHuge(page)) {
1123 BUG_ON(!vma);
1124 return alloc_huge_page_noerr(vma, address, 1);
1125 } else if (thp_migration_supported() && PageTransHuge(page)) {
1126 struct page *thp;
1127
1128 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1129 HPAGE_PMD_ORDER);
1130 if (!thp)
1131 return NULL;
1132 prep_transhuge_page(thp);
1133 return thp;
1134 }
1135 /*
1136 * if !vma, alloc_page_vma() will use task or system default policy
1137 */
1138 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1139 vma, address);
1140 }
1141 #else
1142
1143 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1144 unsigned long flags)
1145 {
1146 }
1147
1148 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1149 const nodemask_t *to, int flags)
1150 {
1151 return -ENOSYS;
1152 }
1153
1154 static struct page *new_page(struct page *page, unsigned long start, int **x)
1155 {
1156 return NULL;
1157 }
1158 #endif
1159
1160 static long do_mbind(unsigned long start, unsigned long len,
1161 unsigned short mode, unsigned short mode_flags,
1162 nodemask_t *nmask, unsigned long flags)
1163 {
1164 struct mm_struct *mm = current->mm;
1165 struct mempolicy *new;
1166 unsigned long end;
1167 int err;
1168 LIST_HEAD(pagelist);
1169
1170 if (flags & ~(unsigned long)MPOL_MF_VALID)
1171 return -EINVAL;
1172 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1173 return -EPERM;
1174
1175 if (start & ~PAGE_MASK)
1176 return -EINVAL;
1177
1178 if (mode == MPOL_DEFAULT)
1179 flags &= ~MPOL_MF_STRICT;
1180
1181 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1182 end = start + len;
1183
1184 if (end < start)
1185 return -EINVAL;
1186 if (end == start)
1187 return 0;
1188
1189 new = mpol_new(mode, mode_flags, nmask);
1190 if (IS_ERR(new))
1191 return PTR_ERR(new);
1192
1193 if (flags & MPOL_MF_LAZY)
1194 new->flags |= MPOL_F_MOF;
1195
1196 /*
1197 * If we are using the default policy then operation
1198 * on discontinuous address spaces is okay after all
1199 */
1200 if (!new)
1201 flags |= MPOL_MF_DISCONTIG_OK;
1202
1203 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1204 start, start + len, mode, mode_flags,
1205 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1206
1207 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1208
1209 err = migrate_prep();
1210 if (err)
1211 goto mpol_out;
1212 }
1213 {
1214 NODEMASK_SCRATCH(scratch);
1215 if (scratch) {
1216 down_write(&mm->mmap_sem);
1217 task_lock(current);
1218 err = mpol_set_nodemask(new, nmask, scratch);
1219 task_unlock(current);
1220 if (err)
1221 up_write(&mm->mmap_sem);
1222 } else
1223 err = -ENOMEM;
1224 NODEMASK_SCRATCH_FREE(scratch);
1225 }
1226 if (err)
1227 goto mpol_out;
1228
1229 err = queue_pages_range(mm, start, end, nmask,
1230 flags | MPOL_MF_INVERT, &pagelist);
1231 if (!err)
1232 err = mbind_range(mm, start, end, new);
1233
1234 if (!err) {
1235 int nr_failed = 0;
1236
1237 if (!list_empty(&pagelist)) {
1238 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1239 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1240 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1241 if (nr_failed)
1242 putback_movable_pages(&pagelist);
1243 }
1244
1245 if (nr_failed && (flags & MPOL_MF_STRICT))
1246 err = -EIO;
1247 } else
1248 putback_movable_pages(&pagelist);
1249
1250 up_write(&mm->mmap_sem);
1251 mpol_out:
1252 mpol_put(new);
1253 return err;
1254 }
1255
1256 /*
1257 * User space interface with variable sized bitmaps for nodelists.
1258 */
1259
1260 /* Copy a node mask from user space. */
1261 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1262 unsigned long maxnode)
1263 {
1264 unsigned long k;
1265 unsigned long nlongs;
1266 unsigned long endmask;
1267
1268 --maxnode;
1269 nodes_clear(*nodes);
1270 if (maxnode == 0 || !nmask)
1271 return 0;
1272 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1273 return -EINVAL;
1274
1275 nlongs = BITS_TO_LONGS(maxnode);
1276 if ((maxnode % BITS_PER_LONG) == 0)
1277 endmask = ~0UL;
1278 else
1279 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1280
1281 /* When the user specified more nodes than supported just check
1282 if the non supported part is all zero. */
1283 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1284 if (nlongs > PAGE_SIZE/sizeof(long))
1285 return -EINVAL;
1286 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1287 unsigned long t;
1288 if (get_user(t, nmask + k))
1289 return -EFAULT;
1290 if (k == nlongs - 1) {
1291 if (t & endmask)
1292 return -EINVAL;
1293 } else if (t)
1294 return -EINVAL;
1295 }
1296 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1297 endmask = ~0UL;
1298 }
1299
1300 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1301 return -EFAULT;
1302 nodes_addr(*nodes)[nlongs-1] &= endmask;
1303 return 0;
1304 }
1305
1306 /* Copy a kernel node mask to user space */
1307 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1308 nodemask_t *nodes)
1309 {
1310 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1311 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1312
1313 if (copy > nbytes) {
1314 if (copy > PAGE_SIZE)
1315 return -EINVAL;
1316 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1317 return -EFAULT;
1318 copy = nbytes;
1319 }
1320 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1321 }
1322
1323 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1324 unsigned long, mode, const unsigned long __user *, nmask,
1325 unsigned long, maxnode, unsigned, flags)
1326 {
1327 nodemask_t nodes;
1328 int err;
1329 unsigned short mode_flags;
1330
1331 mode_flags = mode & MPOL_MODE_FLAGS;
1332 mode &= ~MPOL_MODE_FLAGS;
1333 if (mode >= MPOL_MAX)
1334 return -EINVAL;
1335 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1336 (mode_flags & MPOL_F_RELATIVE_NODES))
1337 return -EINVAL;
1338 err = get_nodes(&nodes, nmask, maxnode);
1339 if (err)
1340 return err;
1341 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1342 }
1343
1344 /* Set the process memory policy */
1345 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1346 unsigned long, maxnode)
1347 {
1348 int err;
1349 nodemask_t nodes;
1350 unsigned short flags;
1351
1352 flags = mode & MPOL_MODE_FLAGS;
1353 mode &= ~MPOL_MODE_FLAGS;
1354 if ((unsigned int)mode >= MPOL_MAX)
1355 return -EINVAL;
1356 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1357 return -EINVAL;
1358 err = get_nodes(&nodes, nmask, maxnode);
1359 if (err)
1360 return err;
1361 return do_set_mempolicy(mode, flags, &nodes);
1362 }
1363
1364 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1365 const unsigned long __user *, old_nodes,
1366 const unsigned long __user *, new_nodes)
1367 {
1368 const struct cred *cred = current_cred(), *tcred;
1369 struct mm_struct *mm = NULL;
1370 struct task_struct *task;
1371 nodemask_t task_nodes;
1372 int err;
1373 nodemask_t *old;
1374 nodemask_t *new;
1375 NODEMASK_SCRATCH(scratch);
1376
1377 if (!scratch)
1378 return -ENOMEM;
1379
1380 old = &scratch->mask1;
1381 new = &scratch->mask2;
1382
1383 err = get_nodes(old, old_nodes, maxnode);
1384 if (err)
1385 goto out;
1386
1387 err = get_nodes(new, new_nodes, maxnode);
1388 if (err)
1389 goto out;
1390
1391 /* Find the mm_struct */
1392 rcu_read_lock();
1393 task = pid ? find_task_by_vpid(pid) : current;
1394 if (!task) {
1395 rcu_read_unlock();
1396 err = -ESRCH;
1397 goto out;
1398 }
1399 get_task_struct(task);
1400
1401 err = -EINVAL;
1402
1403 /*
1404 * Check if this process has the right to modify the specified
1405 * process. The right exists if the process has administrative
1406 * capabilities, superuser privileges or the same
1407 * userid as the target process.
1408 */
1409 tcred = __task_cred(task);
1410 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1411 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1412 !capable(CAP_SYS_NICE)) {
1413 rcu_read_unlock();
1414 err = -EPERM;
1415 goto out_put;
1416 }
1417 rcu_read_unlock();
1418
1419 task_nodes = cpuset_mems_allowed(task);
1420 /* Is the user allowed to access the target nodes? */
1421 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1422 err = -EPERM;
1423 goto out_put;
1424 }
1425
1426 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1427 err = -EINVAL;
1428 goto out_put;
1429 }
1430
1431 err = security_task_movememory(task);
1432 if (err)
1433 goto out_put;
1434
1435 mm = get_task_mm(task);
1436 put_task_struct(task);
1437
1438 if (!mm) {
1439 err = -EINVAL;
1440 goto out;
1441 }
1442
1443 err = do_migrate_pages(mm, old, new,
1444 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1445
1446 mmput(mm);
1447 out:
1448 NODEMASK_SCRATCH_FREE(scratch);
1449
1450 return err;
1451
1452 out_put:
1453 put_task_struct(task);
1454 goto out;
1455
1456 }
1457
1458
1459 /* Retrieve NUMA policy */
1460 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1461 unsigned long __user *, nmask, unsigned long, maxnode,
1462 unsigned long, addr, unsigned long, flags)
1463 {
1464 int err;
1465 int uninitialized_var(pval);
1466 nodemask_t nodes;
1467
1468 if (nmask != NULL && maxnode < MAX_NUMNODES)
1469 return -EINVAL;
1470
1471 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1472
1473 if (err)
1474 return err;
1475
1476 if (policy && put_user(pval, policy))
1477 return -EFAULT;
1478
1479 if (nmask)
1480 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1481
1482 return err;
1483 }
1484
1485 #ifdef CONFIG_COMPAT
1486
1487 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1488 compat_ulong_t __user *, nmask,
1489 compat_ulong_t, maxnode,
1490 compat_ulong_t, addr, compat_ulong_t, flags)
1491 {
1492 long err;
1493 unsigned long __user *nm = NULL;
1494 unsigned long nr_bits, alloc_size;
1495 DECLARE_BITMAP(bm, MAX_NUMNODES);
1496
1497 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1498 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1499
1500 if (nmask)
1501 nm = compat_alloc_user_space(alloc_size);
1502
1503 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1504
1505 if (!err && nmask) {
1506 unsigned long copy_size;
1507 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1508 err = copy_from_user(bm, nm, copy_size);
1509 /* ensure entire bitmap is zeroed */
1510 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1511 err |= compat_put_bitmap(nmask, bm, nr_bits);
1512 }
1513
1514 return err;
1515 }
1516
1517 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1518 compat_ulong_t, maxnode)
1519 {
1520 unsigned long __user *nm = NULL;
1521 unsigned long nr_bits, alloc_size;
1522 DECLARE_BITMAP(bm, MAX_NUMNODES);
1523
1524 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1525 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1526
1527 if (nmask) {
1528 if (compat_get_bitmap(bm, nmask, nr_bits))
1529 return -EFAULT;
1530 nm = compat_alloc_user_space(alloc_size);
1531 if (copy_to_user(nm, bm, alloc_size))
1532 return -EFAULT;
1533 }
1534
1535 return sys_set_mempolicy(mode, nm, nr_bits+1);
1536 }
1537
1538 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1539 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1540 compat_ulong_t, maxnode, compat_ulong_t, flags)
1541 {
1542 unsigned long __user *nm = NULL;
1543 unsigned long nr_bits, alloc_size;
1544 nodemask_t bm;
1545
1546 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1547 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1548
1549 if (nmask) {
1550 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1551 return -EFAULT;
1552 nm = compat_alloc_user_space(alloc_size);
1553 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1554 return -EFAULT;
1555 }
1556
1557 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1558 }
1559
1560 #endif
1561
1562 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1563 unsigned long addr)
1564 {
1565 struct mempolicy *pol = NULL;
1566
1567 if (vma) {
1568 if (vma->vm_ops && vma->vm_ops->get_policy) {
1569 pol = vma->vm_ops->get_policy(vma, addr);
1570 } else if (vma->vm_policy) {
1571 pol = vma->vm_policy;
1572
1573 /*
1574 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1575 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1576 * count on these policies which will be dropped by
1577 * mpol_cond_put() later
1578 */
1579 if (mpol_needs_cond_ref(pol))
1580 mpol_get(pol);
1581 }
1582 }
1583
1584 return pol;
1585 }
1586
1587 /*
1588 * get_vma_policy(@vma, @addr)
1589 * @vma: virtual memory area whose policy is sought
1590 * @addr: address in @vma for shared policy lookup
1591 *
1592 * Returns effective policy for a VMA at specified address.
1593 * Falls back to current->mempolicy or system default policy, as necessary.
1594 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1595 * count--added by the get_policy() vm_op, as appropriate--to protect against
1596 * freeing by another task. It is the caller's responsibility to free the
1597 * extra reference for shared policies.
1598 */
1599 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1600 unsigned long addr)
1601 {
1602 struct mempolicy *pol = __get_vma_policy(vma, addr);
1603
1604 if (!pol)
1605 pol = get_task_policy(current);
1606
1607 return pol;
1608 }
1609
1610 bool vma_policy_mof(struct vm_area_struct *vma)
1611 {
1612 struct mempolicy *pol;
1613
1614 if (vma->vm_ops && vma->vm_ops->get_policy) {
1615 bool ret = false;
1616
1617 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1618 if (pol && (pol->flags & MPOL_F_MOF))
1619 ret = true;
1620 mpol_cond_put(pol);
1621
1622 return ret;
1623 }
1624
1625 pol = vma->vm_policy;
1626 if (!pol)
1627 pol = get_task_policy(current);
1628
1629 return pol->flags & MPOL_F_MOF;
1630 }
1631
1632 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1633 {
1634 enum zone_type dynamic_policy_zone = policy_zone;
1635
1636 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1637
1638 /*
1639 * if policy->v.nodes has movable memory only,
1640 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1641 *
1642 * policy->v.nodes is intersect with node_states[N_MEMORY].
1643 * so if the following test faile, it implies
1644 * policy->v.nodes has movable memory only.
1645 */
1646 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1647 dynamic_policy_zone = ZONE_MOVABLE;
1648
1649 return zone >= dynamic_policy_zone;
1650 }
1651
1652 /*
1653 * Return a nodemask representing a mempolicy for filtering nodes for
1654 * page allocation
1655 */
1656 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1657 {
1658 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1659 if (unlikely(policy->mode == MPOL_BIND) &&
1660 apply_policy_zone(policy, gfp_zone(gfp)) &&
1661 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1662 return &policy->v.nodes;
1663
1664 return NULL;
1665 }
1666
1667 /* Return the node id preferred by the given mempolicy, or the given id */
1668 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1669 int nd)
1670 {
1671 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1672 nd = policy->v.preferred_node;
1673 else {
1674 /*
1675 * __GFP_THISNODE shouldn't even be used with the bind policy
1676 * because we might easily break the expectation to stay on the
1677 * requested node and not break the policy.
1678 */
1679 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1680 }
1681
1682 return nd;
1683 }
1684
1685 /* Do dynamic interleaving for a process */
1686 static unsigned interleave_nodes(struct mempolicy *policy)
1687 {
1688 unsigned next;
1689 struct task_struct *me = current;
1690
1691 next = next_node_in(me->il_prev, policy->v.nodes);
1692 if (next < MAX_NUMNODES)
1693 me->il_prev = next;
1694 return next;
1695 }
1696
1697 /*
1698 * Depending on the memory policy provide a node from which to allocate the
1699 * next slab entry.
1700 */
1701 unsigned int mempolicy_slab_node(void)
1702 {
1703 struct mempolicy *policy;
1704 int node = numa_mem_id();
1705
1706 if (in_interrupt())
1707 return node;
1708
1709 policy = current->mempolicy;
1710 if (!policy || policy->flags & MPOL_F_LOCAL)
1711 return node;
1712
1713 switch (policy->mode) {
1714 case MPOL_PREFERRED:
1715 /*
1716 * handled MPOL_F_LOCAL above
1717 */
1718 return policy->v.preferred_node;
1719
1720 case MPOL_INTERLEAVE:
1721 return interleave_nodes(policy);
1722
1723 case MPOL_BIND: {
1724 struct zoneref *z;
1725
1726 /*
1727 * Follow bind policy behavior and start allocation at the
1728 * first node.
1729 */
1730 struct zonelist *zonelist;
1731 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1732 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1733 z = first_zones_zonelist(zonelist, highest_zoneidx,
1734 &policy->v.nodes);
1735 return z->zone ? z->zone->node : node;
1736 }
1737
1738 default:
1739 BUG();
1740 }
1741 }
1742
1743 /*
1744 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1745 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1746 * number of present nodes.
1747 */
1748 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1749 {
1750 unsigned nnodes = nodes_weight(pol->v.nodes);
1751 unsigned target;
1752 int i;
1753 int nid;
1754
1755 if (!nnodes)
1756 return numa_node_id();
1757 target = (unsigned int)n % nnodes;
1758 nid = first_node(pol->v.nodes);
1759 for (i = 0; i < target; i++)
1760 nid = next_node(nid, pol->v.nodes);
1761 return nid;
1762 }
1763
1764 /* Determine a node number for interleave */
1765 static inline unsigned interleave_nid(struct mempolicy *pol,
1766 struct vm_area_struct *vma, unsigned long addr, int shift)
1767 {
1768 if (vma) {
1769 unsigned long off;
1770
1771 /*
1772 * for small pages, there is no difference between
1773 * shift and PAGE_SHIFT, so the bit-shift is safe.
1774 * for huge pages, since vm_pgoff is in units of small
1775 * pages, we need to shift off the always 0 bits to get
1776 * a useful offset.
1777 */
1778 BUG_ON(shift < PAGE_SHIFT);
1779 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1780 off += (addr - vma->vm_start) >> shift;
1781 return offset_il_node(pol, off);
1782 } else
1783 return interleave_nodes(pol);
1784 }
1785
1786 #ifdef CONFIG_HUGETLBFS
1787 /*
1788 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1789 * @vma: virtual memory area whose policy is sought
1790 * @addr: address in @vma for shared policy lookup and interleave policy
1791 * @gfp_flags: for requested zone
1792 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1793 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1794 *
1795 * Returns a nid suitable for a huge page allocation and a pointer
1796 * to the struct mempolicy for conditional unref after allocation.
1797 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1798 * @nodemask for filtering the zonelist.
1799 *
1800 * Must be protected by read_mems_allowed_begin()
1801 */
1802 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1803 struct mempolicy **mpol, nodemask_t **nodemask)
1804 {
1805 int nid;
1806
1807 *mpol = get_vma_policy(vma, addr);
1808 *nodemask = NULL; /* assume !MPOL_BIND */
1809
1810 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1811 nid = interleave_nid(*mpol, vma, addr,
1812 huge_page_shift(hstate_vma(vma)));
1813 } else {
1814 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1815 if ((*mpol)->mode == MPOL_BIND)
1816 *nodemask = &(*mpol)->v.nodes;
1817 }
1818 return nid;
1819 }
1820
1821 /*
1822 * init_nodemask_of_mempolicy
1823 *
1824 * If the current task's mempolicy is "default" [NULL], return 'false'
1825 * to indicate default policy. Otherwise, extract the policy nodemask
1826 * for 'bind' or 'interleave' policy into the argument nodemask, or
1827 * initialize the argument nodemask to contain the single node for
1828 * 'preferred' or 'local' policy and return 'true' to indicate presence
1829 * of non-default mempolicy.
1830 *
1831 * We don't bother with reference counting the mempolicy [mpol_get/put]
1832 * because the current task is examining it's own mempolicy and a task's
1833 * mempolicy is only ever changed by the task itself.
1834 *
1835 * N.B., it is the caller's responsibility to free a returned nodemask.
1836 */
1837 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1838 {
1839 struct mempolicy *mempolicy;
1840 int nid;
1841
1842 if (!(mask && current->mempolicy))
1843 return false;
1844
1845 task_lock(current);
1846 mempolicy = current->mempolicy;
1847 switch (mempolicy->mode) {
1848 case MPOL_PREFERRED:
1849 if (mempolicy->flags & MPOL_F_LOCAL)
1850 nid = numa_node_id();
1851 else
1852 nid = mempolicy->v.preferred_node;
1853 init_nodemask_of_node(mask, nid);
1854 break;
1855
1856 case MPOL_BIND:
1857 /* Fall through */
1858 case MPOL_INTERLEAVE:
1859 *mask = mempolicy->v.nodes;
1860 break;
1861
1862 default:
1863 BUG();
1864 }
1865 task_unlock(current);
1866
1867 return true;
1868 }
1869 #endif
1870
1871 /*
1872 * mempolicy_nodemask_intersects
1873 *
1874 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1875 * policy. Otherwise, check for intersection between mask and the policy
1876 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1877 * policy, always return true since it may allocate elsewhere on fallback.
1878 *
1879 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1880 */
1881 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1882 const nodemask_t *mask)
1883 {
1884 struct mempolicy *mempolicy;
1885 bool ret = true;
1886
1887 if (!mask)
1888 return ret;
1889 task_lock(tsk);
1890 mempolicy = tsk->mempolicy;
1891 if (!mempolicy)
1892 goto out;
1893
1894 switch (mempolicy->mode) {
1895 case MPOL_PREFERRED:
1896 /*
1897 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1898 * allocate from, they may fallback to other nodes when oom.
1899 * Thus, it's possible for tsk to have allocated memory from
1900 * nodes in mask.
1901 */
1902 break;
1903 case MPOL_BIND:
1904 case MPOL_INTERLEAVE:
1905 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1906 break;
1907 default:
1908 BUG();
1909 }
1910 out:
1911 task_unlock(tsk);
1912 return ret;
1913 }
1914
1915 /* Allocate a page in interleaved policy.
1916 Own path because it needs to do special accounting. */
1917 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1918 unsigned nid)
1919 {
1920 struct page *page;
1921
1922 page = __alloc_pages(gfp, order, nid);
1923 if (page && page_to_nid(page) == nid) {
1924 preempt_disable();
1925 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1926 preempt_enable();
1927 }
1928 return page;
1929 }
1930
1931 /**
1932 * alloc_pages_vma - Allocate a page for a VMA.
1933 *
1934 * @gfp:
1935 * %GFP_USER user allocation.
1936 * %GFP_KERNEL kernel allocations,
1937 * %GFP_HIGHMEM highmem/user allocations,
1938 * %GFP_FS allocation should not call back into a file system.
1939 * %GFP_ATOMIC don't sleep.
1940 *
1941 * @order:Order of the GFP allocation.
1942 * @vma: Pointer to VMA or NULL if not available.
1943 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1944 * @node: Which node to prefer for allocation (modulo policy).
1945 * @hugepage: for hugepages try only the preferred node if possible
1946 *
1947 * This function allocates a page from the kernel page pool and applies
1948 * a NUMA policy associated with the VMA or the current process.
1949 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1950 * mm_struct of the VMA to prevent it from going away. Should be used for
1951 * all allocations for pages that will be mapped into user space. Returns
1952 * NULL when no page can be allocated.
1953 */
1954 struct page *
1955 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1956 unsigned long addr, int node, bool hugepage)
1957 {
1958 struct mempolicy *pol;
1959 struct page *page;
1960 int preferred_nid;
1961 nodemask_t *nmask;
1962
1963 pol = get_vma_policy(vma, addr);
1964
1965 if (pol->mode == MPOL_INTERLEAVE) {
1966 unsigned nid;
1967
1968 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1969 mpol_cond_put(pol);
1970 page = alloc_page_interleave(gfp, order, nid);
1971 goto out;
1972 }
1973
1974 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1975 int hpage_node = node;
1976
1977 /*
1978 * For hugepage allocation and non-interleave policy which
1979 * allows the current node (or other explicitly preferred
1980 * node) we only try to allocate from the current/preferred
1981 * node and don't fall back to other nodes, as the cost of
1982 * remote accesses would likely offset THP benefits.
1983 *
1984 * If the policy is interleave, or does not allow the current
1985 * node in its nodemask, we allocate the standard way.
1986 */
1987 if (pol->mode == MPOL_PREFERRED &&
1988 !(pol->flags & MPOL_F_LOCAL))
1989 hpage_node = pol->v.preferred_node;
1990
1991 nmask = policy_nodemask(gfp, pol);
1992 if (!nmask || node_isset(hpage_node, *nmask)) {
1993 mpol_cond_put(pol);
1994 page = __alloc_pages_node(hpage_node,
1995 gfp | __GFP_THISNODE, order);
1996 goto out;
1997 }
1998 }
1999
2000 nmask = policy_nodemask(gfp, pol);
2001 preferred_nid = policy_node(gfp, pol, node);
2002 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2003 mpol_cond_put(pol);
2004 out:
2005 return page;
2006 }
2007
2008 /**
2009 * alloc_pages_current - Allocate pages.
2010 *
2011 * @gfp:
2012 * %GFP_USER user allocation,
2013 * %GFP_KERNEL kernel allocation,
2014 * %GFP_HIGHMEM highmem allocation,
2015 * %GFP_FS don't call back into a file system.
2016 * %GFP_ATOMIC don't sleep.
2017 * @order: Power of two of allocation size in pages. 0 is a single page.
2018 *
2019 * Allocate a page from the kernel page pool. When not in
2020 * interrupt context and apply the current process NUMA policy.
2021 * Returns NULL when no page can be allocated.
2022 */
2023 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2024 {
2025 struct mempolicy *pol = &default_policy;
2026 struct page *page;
2027
2028 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2029 pol = get_task_policy(current);
2030
2031 /*
2032 * No reference counting needed for current->mempolicy
2033 * nor system default_policy
2034 */
2035 if (pol->mode == MPOL_INTERLEAVE)
2036 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2037 else
2038 page = __alloc_pages_nodemask(gfp, order,
2039 policy_node(gfp, pol, numa_node_id()),
2040 policy_nodemask(gfp, pol));
2041
2042 return page;
2043 }
2044 EXPORT_SYMBOL(alloc_pages_current);
2045
2046 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2047 {
2048 struct mempolicy *pol = mpol_dup(vma_policy(src));
2049
2050 if (IS_ERR(pol))
2051 return PTR_ERR(pol);
2052 dst->vm_policy = pol;
2053 return 0;
2054 }
2055
2056 /*
2057 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2058 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2059 * with the mems_allowed returned by cpuset_mems_allowed(). This
2060 * keeps mempolicies cpuset relative after its cpuset moves. See
2061 * further kernel/cpuset.c update_nodemask().
2062 *
2063 * current's mempolicy may be rebinded by the other task(the task that changes
2064 * cpuset's mems), so we needn't do rebind work for current task.
2065 */
2066
2067 /* Slow path of a mempolicy duplicate */
2068 struct mempolicy *__mpol_dup(struct mempolicy *old)
2069 {
2070 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2071
2072 if (!new)
2073 return ERR_PTR(-ENOMEM);
2074
2075 /* task's mempolicy is protected by alloc_lock */
2076 if (old == current->mempolicy) {
2077 task_lock(current);
2078 *new = *old;
2079 task_unlock(current);
2080 } else
2081 *new = *old;
2082
2083 if (current_cpuset_is_being_rebound()) {
2084 nodemask_t mems = cpuset_mems_allowed(current);
2085 mpol_rebind_policy(new, &mems);
2086 }
2087 atomic_set(&new->refcnt, 1);
2088 return new;
2089 }
2090
2091 /* Slow path of a mempolicy comparison */
2092 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2093 {
2094 if (!a || !b)
2095 return false;
2096 if (a->mode != b->mode)
2097 return false;
2098 if (a->flags != b->flags)
2099 return false;
2100 if (mpol_store_user_nodemask(a))
2101 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2102 return false;
2103
2104 switch (a->mode) {
2105 case MPOL_BIND:
2106 /* Fall through */
2107 case MPOL_INTERLEAVE:
2108 return !!nodes_equal(a->v.nodes, b->v.nodes);
2109 case MPOL_PREFERRED:
2110 return a->v.preferred_node == b->v.preferred_node;
2111 default:
2112 BUG();
2113 return false;
2114 }
2115 }
2116
2117 /*
2118 * Shared memory backing store policy support.
2119 *
2120 * Remember policies even when nobody has shared memory mapped.
2121 * The policies are kept in Red-Black tree linked from the inode.
2122 * They are protected by the sp->lock rwlock, which should be held
2123 * for any accesses to the tree.
2124 */
2125
2126 /*
2127 * lookup first element intersecting start-end. Caller holds sp->lock for
2128 * reading or for writing
2129 */
2130 static struct sp_node *
2131 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2132 {
2133 struct rb_node *n = sp->root.rb_node;
2134
2135 while (n) {
2136 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2137
2138 if (start >= p->end)
2139 n = n->rb_right;
2140 else if (end <= p->start)
2141 n = n->rb_left;
2142 else
2143 break;
2144 }
2145 if (!n)
2146 return NULL;
2147 for (;;) {
2148 struct sp_node *w = NULL;
2149 struct rb_node *prev = rb_prev(n);
2150 if (!prev)
2151 break;
2152 w = rb_entry(prev, struct sp_node, nd);
2153 if (w->end <= start)
2154 break;
2155 n = prev;
2156 }
2157 return rb_entry(n, struct sp_node, nd);
2158 }
2159
2160 /*
2161 * Insert a new shared policy into the list. Caller holds sp->lock for
2162 * writing.
2163 */
2164 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2165 {
2166 struct rb_node **p = &sp->root.rb_node;
2167 struct rb_node *parent = NULL;
2168 struct sp_node *nd;
2169
2170 while (*p) {
2171 parent = *p;
2172 nd = rb_entry(parent, struct sp_node, nd);
2173 if (new->start < nd->start)
2174 p = &(*p)->rb_left;
2175 else if (new->end > nd->end)
2176 p = &(*p)->rb_right;
2177 else
2178 BUG();
2179 }
2180 rb_link_node(&new->nd, parent, p);
2181 rb_insert_color(&new->nd, &sp->root);
2182 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2183 new->policy ? new->policy->mode : 0);
2184 }
2185
2186 /* Find shared policy intersecting idx */
2187 struct mempolicy *
2188 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2189 {
2190 struct mempolicy *pol = NULL;
2191 struct sp_node *sn;
2192
2193 if (!sp->root.rb_node)
2194 return NULL;
2195 read_lock(&sp->lock);
2196 sn = sp_lookup(sp, idx, idx+1);
2197 if (sn) {
2198 mpol_get(sn->policy);
2199 pol = sn->policy;
2200 }
2201 read_unlock(&sp->lock);
2202 return pol;
2203 }
2204
2205 static void sp_free(struct sp_node *n)
2206 {
2207 mpol_put(n->policy);
2208 kmem_cache_free(sn_cache, n);
2209 }
2210
2211 /**
2212 * mpol_misplaced - check whether current page node is valid in policy
2213 *
2214 * @page: page to be checked
2215 * @vma: vm area where page mapped
2216 * @addr: virtual address where page mapped
2217 *
2218 * Lookup current policy node id for vma,addr and "compare to" page's
2219 * node id.
2220 *
2221 * Returns:
2222 * -1 - not misplaced, page is in the right node
2223 * node - node id where the page should be
2224 *
2225 * Policy determination "mimics" alloc_page_vma().
2226 * Called from fault path where we know the vma and faulting address.
2227 */
2228 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2229 {
2230 struct mempolicy *pol;
2231 struct zoneref *z;
2232 int curnid = page_to_nid(page);
2233 unsigned long pgoff;
2234 int thiscpu = raw_smp_processor_id();
2235 int thisnid = cpu_to_node(thiscpu);
2236 int polnid = -1;
2237 int ret = -1;
2238
2239 pol = get_vma_policy(vma, addr);
2240 if (!(pol->flags & MPOL_F_MOF))
2241 goto out;
2242
2243 switch (pol->mode) {
2244 case MPOL_INTERLEAVE:
2245 pgoff = vma->vm_pgoff;
2246 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2247 polnid = offset_il_node(pol, pgoff);
2248 break;
2249
2250 case MPOL_PREFERRED:
2251 if (pol->flags & MPOL_F_LOCAL)
2252 polnid = numa_node_id();
2253 else
2254 polnid = pol->v.preferred_node;
2255 break;
2256
2257 case MPOL_BIND:
2258
2259 /*
2260 * allows binding to multiple nodes.
2261 * use current page if in policy nodemask,
2262 * else select nearest allowed node, if any.
2263 * If no allowed nodes, use current [!misplaced].
2264 */
2265 if (node_isset(curnid, pol->v.nodes))
2266 goto out;
2267 z = first_zones_zonelist(
2268 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2269 gfp_zone(GFP_HIGHUSER),
2270 &pol->v.nodes);
2271 polnid = z->zone->node;
2272 break;
2273
2274 default:
2275 BUG();
2276 }
2277
2278 /* Migrate the page towards the node whose CPU is referencing it */
2279 if (pol->flags & MPOL_F_MORON) {
2280 polnid = thisnid;
2281
2282 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2283 goto out;
2284 }
2285
2286 if (curnid != polnid)
2287 ret = polnid;
2288 out:
2289 mpol_cond_put(pol);
2290
2291 return ret;
2292 }
2293
2294 /*
2295 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2296 * dropped after task->mempolicy is set to NULL so that any allocation done as
2297 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2298 * policy.
2299 */
2300 void mpol_put_task_policy(struct task_struct *task)
2301 {
2302 struct mempolicy *pol;
2303
2304 task_lock(task);
2305 pol = task->mempolicy;
2306 task->mempolicy = NULL;
2307 task_unlock(task);
2308 mpol_put(pol);
2309 }
2310
2311 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2312 {
2313 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2314 rb_erase(&n->nd, &sp->root);
2315 sp_free(n);
2316 }
2317
2318 static void sp_node_init(struct sp_node *node, unsigned long start,
2319 unsigned long end, struct mempolicy *pol)
2320 {
2321 node->start = start;
2322 node->end = end;
2323 node->policy = pol;
2324 }
2325
2326 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2327 struct mempolicy *pol)
2328 {
2329 struct sp_node *n;
2330 struct mempolicy *newpol;
2331
2332 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2333 if (!n)
2334 return NULL;
2335
2336 newpol = mpol_dup(pol);
2337 if (IS_ERR(newpol)) {
2338 kmem_cache_free(sn_cache, n);
2339 return NULL;
2340 }
2341 newpol->flags |= MPOL_F_SHARED;
2342 sp_node_init(n, start, end, newpol);
2343
2344 return n;
2345 }
2346
2347 /* Replace a policy range. */
2348 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2349 unsigned long end, struct sp_node *new)
2350 {
2351 struct sp_node *n;
2352 struct sp_node *n_new = NULL;
2353 struct mempolicy *mpol_new = NULL;
2354 int ret = 0;
2355
2356 restart:
2357 write_lock(&sp->lock);
2358 n = sp_lookup(sp, start, end);
2359 /* Take care of old policies in the same range. */
2360 while (n && n->start < end) {
2361 struct rb_node *next = rb_next(&n->nd);
2362 if (n->start >= start) {
2363 if (n->end <= end)
2364 sp_delete(sp, n);
2365 else
2366 n->start = end;
2367 } else {
2368 /* Old policy spanning whole new range. */
2369 if (n->end > end) {
2370 if (!n_new)
2371 goto alloc_new;
2372
2373 *mpol_new = *n->policy;
2374 atomic_set(&mpol_new->refcnt, 1);
2375 sp_node_init(n_new, end, n->end, mpol_new);
2376 n->end = start;
2377 sp_insert(sp, n_new);
2378 n_new = NULL;
2379 mpol_new = NULL;
2380 break;
2381 } else
2382 n->end = start;
2383 }
2384 if (!next)
2385 break;
2386 n = rb_entry(next, struct sp_node, nd);
2387 }
2388 if (new)
2389 sp_insert(sp, new);
2390 write_unlock(&sp->lock);
2391 ret = 0;
2392
2393 err_out:
2394 if (mpol_new)
2395 mpol_put(mpol_new);
2396 if (n_new)
2397 kmem_cache_free(sn_cache, n_new);
2398
2399 return ret;
2400
2401 alloc_new:
2402 write_unlock(&sp->lock);
2403 ret = -ENOMEM;
2404 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2405 if (!n_new)
2406 goto err_out;
2407 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2408 if (!mpol_new)
2409 goto err_out;
2410 goto restart;
2411 }
2412
2413 /**
2414 * mpol_shared_policy_init - initialize shared policy for inode
2415 * @sp: pointer to inode shared policy
2416 * @mpol: struct mempolicy to install
2417 *
2418 * Install non-NULL @mpol in inode's shared policy rb-tree.
2419 * On entry, the current task has a reference on a non-NULL @mpol.
2420 * This must be released on exit.
2421 * This is called at get_inode() calls and we can use GFP_KERNEL.
2422 */
2423 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2424 {
2425 int ret;
2426
2427 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2428 rwlock_init(&sp->lock);
2429
2430 if (mpol) {
2431 struct vm_area_struct pvma;
2432 struct mempolicy *new;
2433 NODEMASK_SCRATCH(scratch);
2434
2435 if (!scratch)
2436 goto put_mpol;
2437 /* contextualize the tmpfs mount point mempolicy */
2438 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2439 if (IS_ERR(new))
2440 goto free_scratch; /* no valid nodemask intersection */
2441
2442 task_lock(current);
2443 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2444 task_unlock(current);
2445 if (ret)
2446 goto put_new;
2447
2448 /* Create pseudo-vma that contains just the policy */
2449 memset(&pvma, 0, sizeof(struct vm_area_struct));
2450 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2451 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2452
2453 put_new:
2454 mpol_put(new); /* drop initial ref */
2455 free_scratch:
2456 NODEMASK_SCRATCH_FREE(scratch);
2457 put_mpol:
2458 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2459 }
2460 }
2461
2462 int mpol_set_shared_policy(struct shared_policy *info,
2463 struct vm_area_struct *vma, struct mempolicy *npol)
2464 {
2465 int err;
2466 struct sp_node *new = NULL;
2467 unsigned long sz = vma_pages(vma);
2468
2469 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2470 vma->vm_pgoff,
2471 sz, npol ? npol->mode : -1,
2472 npol ? npol->flags : -1,
2473 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2474
2475 if (npol) {
2476 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2477 if (!new)
2478 return -ENOMEM;
2479 }
2480 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2481 if (err && new)
2482 sp_free(new);
2483 return err;
2484 }
2485
2486 /* Free a backing policy store on inode delete. */
2487 void mpol_free_shared_policy(struct shared_policy *p)
2488 {
2489 struct sp_node *n;
2490 struct rb_node *next;
2491
2492 if (!p->root.rb_node)
2493 return;
2494 write_lock(&p->lock);
2495 next = rb_first(&p->root);
2496 while (next) {
2497 n = rb_entry(next, struct sp_node, nd);
2498 next = rb_next(&n->nd);
2499 sp_delete(p, n);
2500 }
2501 write_unlock(&p->lock);
2502 }
2503
2504 #ifdef CONFIG_NUMA_BALANCING
2505 static int __initdata numabalancing_override;
2506
2507 static void __init check_numabalancing_enable(void)
2508 {
2509 bool numabalancing_default = false;
2510
2511 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2512 numabalancing_default = true;
2513
2514 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2515 if (numabalancing_override)
2516 set_numabalancing_state(numabalancing_override == 1);
2517
2518 if (num_online_nodes() > 1 && !numabalancing_override) {
2519 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2520 numabalancing_default ? "Enabling" : "Disabling");
2521 set_numabalancing_state(numabalancing_default);
2522 }
2523 }
2524
2525 static int __init setup_numabalancing(char *str)
2526 {
2527 int ret = 0;
2528 if (!str)
2529 goto out;
2530
2531 if (!strcmp(str, "enable")) {
2532 numabalancing_override = 1;
2533 ret = 1;
2534 } else if (!strcmp(str, "disable")) {
2535 numabalancing_override = -1;
2536 ret = 1;
2537 }
2538 out:
2539 if (!ret)
2540 pr_warn("Unable to parse numa_balancing=\n");
2541
2542 return ret;
2543 }
2544 __setup("numa_balancing=", setup_numabalancing);
2545 #else
2546 static inline void __init check_numabalancing_enable(void)
2547 {
2548 }
2549 #endif /* CONFIG_NUMA_BALANCING */
2550
2551 /* assumes fs == KERNEL_DS */
2552 void __init numa_policy_init(void)
2553 {
2554 nodemask_t interleave_nodes;
2555 unsigned long largest = 0;
2556 int nid, prefer = 0;
2557
2558 policy_cache = kmem_cache_create("numa_policy",
2559 sizeof(struct mempolicy),
2560 0, SLAB_PANIC, NULL);
2561
2562 sn_cache = kmem_cache_create("shared_policy_node",
2563 sizeof(struct sp_node),
2564 0, SLAB_PANIC, NULL);
2565
2566 for_each_node(nid) {
2567 preferred_node_policy[nid] = (struct mempolicy) {
2568 .refcnt = ATOMIC_INIT(1),
2569 .mode = MPOL_PREFERRED,
2570 .flags = MPOL_F_MOF | MPOL_F_MORON,
2571 .v = { .preferred_node = nid, },
2572 };
2573 }
2574
2575 /*
2576 * Set interleaving policy for system init. Interleaving is only
2577 * enabled across suitably sized nodes (default is >= 16MB), or
2578 * fall back to the largest node if they're all smaller.
2579 */
2580 nodes_clear(interleave_nodes);
2581 for_each_node_state(nid, N_MEMORY) {
2582 unsigned long total_pages = node_present_pages(nid);
2583
2584 /* Preserve the largest node */
2585 if (largest < total_pages) {
2586 largest = total_pages;
2587 prefer = nid;
2588 }
2589
2590 /* Interleave this node? */
2591 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2592 node_set(nid, interleave_nodes);
2593 }
2594
2595 /* All too small, use the largest */
2596 if (unlikely(nodes_empty(interleave_nodes)))
2597 node_set(prefer, interleave_nodes);
2598
2599 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2600 pr_err("%s: interleaving failed\n", __func__);
2601
2602 check_numabalancing_enable();
2603 }
2604
2605 /* Reset policy of current process to default */
2606 void numa_default_policy(void)
2607 {
2608 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2609 }
2610
2611 /*
2612 * Parse and format mempolicy from/to strings
2613 */
2614
2615 /*
2616 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2617 */
2618 static const char * const policy_modes[] =
2619 {
2620 [MPOL_DEFAULT] = "default",
2621 [MPOL_PREFERRED] = "prefer",
2622 [MPOL_BIND] = "bind",
2623 [MPOL_INTERLEAVE] = "interleave",
2624 [MPOL_LOCAL] = "local",
2625 };
2626
2627
2628 #ifdef CONFIG_TMPFS
2629 /**
2630 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2631 * @str: string containing mempolicy to parse
2632 * @mpol: pointer to struct mempolicy pointer, returned on success.
2633 *
2634 * Format of input:
2635 * <mode>[=<flags>][:<nodelist>]
2636 *
2637 * On success, returns 0, else 1
2638 */
2639 int mpol_parse_str(char *str, struct mempolicy **mpol)
2640 {
2641 struct mempolicy *new = NULL;
2642 unsigned short mode;
2643 unsigned short mode_flags;
2644 nodemask_t nodes;
2645 char *nodelist = strchr(str, ':');
2646 char *flags = strchr(str, '=');
2647 int err = 1;
2648
2649 if (nodelist) {
2650 /* NUL-terminate mode or flags string */
2651 *nodelist++ = '\0';
2652 if (nodelist_parse(nodelist, nodes))
2653 goto out;
2654 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2655 goto out;
2656 } else
2657 nodes_clear(nodes);
2658
2659 if (flags)
2660 *flags++ = '\0'; /* terminate mode string */
2661
2662 for (mode = 0; mode < MPOL_MAX; mode++) {
2663 if (!strcmp(str, policy_modes[mode])) {
2664 break;
2665 }
2666 }
2667 if (mode >= MPOL_MAX)
2668 goto out;
2669
2670 switch (mode) {
2671 case MPOL_PREFERRED:
2672 /*
2673 * Insist on a nodelist of one node only
2674 */
2675 if (nodelist) {
2676 char *rest = nodelist;
2677 while (isdigit(*rest))
2678 rest++;
2679 if (*rest)
2680 goto out;
2681 }
2682 break;
2683 case MPOL_INTERLEAVE:
2684 /*
2685 * Default to online nodes with memory if no nodelist
2686 */
2687 if (!nodelist)
2688 nodes = node_states[N_MEMORY];
2689 break;
2690 case MPOL_LOCAL:
2691 /*
2692 * Don't allow a nodelist; mpol_new() checks flags
2693 */
2694 if (nodelist)
2695 goto out;
2696 mode = MPOL_PREFERRED;
2697 break;
2698 case MPOL_DEFAULT:
2699 /*
2700 * Insist on a empty nodelist
2701 */
2702 if (!nodelist)
2703 err = 0;
2704 goto out;
2705 case MPOL_BIND:
2706 /*
2707 * Insist on a nodelist
2708 */
2709 if (!nodelist)
2710 goto out;
2711 }
2712
2713 mode_flags = 0;
2714 if (flags) {
2715 /*
2716 * Currently, we only support two mutually exclusive
2717 * mode flags.
2718 */
2719 if (!strcmp(flags, "static"))
2720 mode_flags |= MPOL_F_STATIC_NODES;
2721 else if (!strcmp(flags, "relative"))
2722 mode_flags |= MPOL_F_RELATIVE_NODES;
2723 else
2724 goto out;
2725 }
2726
2727 new = mpol_new(mode, mode_flags, &nodes);
2728 if (IS_ERR(new))
2729 goto out;
2730
2731 /*
2732 * Save nodes for mpol_to_str() to show the tmpfs mount options
2733 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2734 */
2735 if (mode != MPOL_PREFERRED)
2736 new->v.nodes = nodes;
2737 else if (nodelist)
2738 new->v.preferred_node = first_node(nodes);
2739 else
2740 new->flags |= MPOL_F_LOCAL;
2741
2742 /*
2743 * Save nodes for contextualization: this will be used to "clone"
2744 * the mempolicy in a specific context [cpuset] at a later time.
2745 */
2746 new->w.user_nodemask = nodes;
2747
2748 err = 0;
2749
2750 out:
2751 /* Restore string for error message */
2752 if (nodelist)
2753 *--nodelist = ':';
2754 if (flags)
2755 *--flags = '=';
2756 if (!err)
2757 *mpol = new;
2758 return err;
2759 }
2760 #endif /* CONFIG_TMPFS */
2761
2762 /**
2763 * mpol_to_str - format a mempolicy structure for printing
2764 * @buffer: to contain formatted mempolicy string
2765 * @maxlen: length of @buffer
2766 * @pol: pointer to mempolicy to be formatted
2767 *
2768 * Convert @pol into a string. If @buffer is too short, truncate the string.
2769 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2770 * longest flag, "relative", and to display at least a few node ids.
2771 */
2772 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2773 {
2774 char *p = buffer;
2775 nodemask_t nodes = NODE_MASK_NONE;
2776 unsigned short mode = MPOL_DEFAULT;
2777 unsigned short flags = 0;
2778
2779 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2780 mode = pol->mode;
2781 flags = pol->flags;
2782 }
2783
2784 switch (mode) {
2785 case MPOL_DEFAULT:
2786 break;
2787 case MPOL_PREFERRED:
2788 if (flags & MPOL_F_LOCAL)
2789 mode = MPOL_LOCAL;
2790 else
2791 node_set(pol->v.preferred_node, nodes);
2792 break;
2793 case MPOL_BIND:
2794 case MPOL_INTERLEAVE:
2795 nodes = pol->v.nodes;
2796 break;
2797 default:
2798 WARN_ON_ONCE(1);
2799 snprintf(p, maxlen, "unknown");
2800 return;
2801 }
2802
2803 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2804
2805 if (flags & MPOL_MODE_FLAGS) {
2806 p += snprintf(p, buffer + maxlen - p, "=");
2807
2808 /*
2809 * Currently, the only defined flags are mutually exclusive
2810 */
2811 if (flags & MPOL_F_STATIC_NODES)
2812 p += snprintf(p, buffer + maxlen - p, "static");
2813 else if (flags & MPOL_F_RELATIVE_NODES)
2814 p += snprintf(p, buffer + maxlen - p, "relative");
2815 }
2816
2817 if (!nodes_empty(nodes))
2818 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2819 nodemask_pr_args(&nodes));
2820 }