]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
mm: filter based on a nodemask as well as a gfp_mask
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/nodemask.h>
76 #include <linux/cpuset.h>
77 #include <linux/gfp.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/module.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/rmap.h>
90 #include <linux/security.h>
91 #include <linux/syscalls.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
100
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103
104 /* Highest zone. An specific allocation for a zone below that is not
105 policied. */
106 enum zone_type policy_zone = 0;
107
108 struct mempolicy default_policy = {
109 .refcnt = ATOMIC_INIT(1), /* never free it */
110 .policy = MPOL_DEFAULT,
111 };
112
113 static void mpol_rebind_policy(struct mempolicy *pol,
114 const nodemask_t *newmask);
115
116 /* Do sanity checking on a policy */
117 static int mpol_check_policy(int mode, nodemask_t *nodes)
118 {
119 int was_empty, is_empty;
120
121 if (!nodes)
122 return 0;
123
124 /*
125 * "Contextualize" the in-coming nodemast for cpusets:
126 * Remember whether in-coming nodemask was empty, If not,
127 * restrict the nodes to the allowed nodes in the cpuset.
128 * This is guaranteed to be a subset of nodes with memory.
129 */
130 cpuset_update_task_memory_state();
131 is_empty = was_empty = nodes_empty(*nodes);
132 if (!was_empty) {
133 nodes_and(*nodes, *nodes, cpuset_current_mems_allowed);
134 is_empty = nodes_empty(*nodes); /* after "contextualization" */
135 }
136
137 switch (mode) {
138 case MPOL_DEFAULT:
139 /*
140 * require caller to specify an empty nodemask
141 * before "contextualization"
142 */
143 if (!was_empty)
144 return -EINVAL;
145 break;
146 case MPOL_BIND:
147 case MPOL_INTERLEAVE:
148 /*
149 * require at least 1 valid node after "contextualization"
150 */
151 if (is_empty)
152 return -EINVAL;
153 break;
154 case MPOL_PREFERRED:
155 /*
156 * Did caller specify invalid nodes?
157 * Don't silently accept this as "local allocation".
158 */
159 if (!was_empty && is_empty)
160 return -EINVAL;
161 break;
162 }
163 return 0;
164 }
165
166 /* Check that the nodemask contains at least one populated zone */
167 static int is_valid_nodemask(nodemask_t *nodemask)
168 {
169 int nd, k;
170
171 /* Check that there is something useful in this mask */
172 k = policy_zone;
173
174 for_each_node_mask(nd, *nodemask) {
175 struct zone *z;
176
177 for (k = 0; k <= policy_zone; k++) {
178 z = &NODE_DATA(nd)->node_zones[k];
179 if (z->present_pages > 0)
180 return 1;
181 }
182 }
183
184 return 0;
185 }
186
187 /* Create a new policy */
188 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
189 {
190 struct mempolicy *policy;
191
192 pr_debug("setting mode %d nodes[0] %lx\n",
193 mode, nodes ? nodes_addr(*nodes)[0] : -1);
194
195 if (mode == MPOL_DEFAULT)
196 return NULL;
197 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
198 if (!policy)
199 return ERR_PTR(-ENOMEM);
200 atomic_set(&policy->refcnt, 1);
201 switch (mode) {
202 case MPOL_INTERLEAVE:
203 policy->v.nodes = *nodes;
204 if (nodes_weight(policy->v.nodes) == 0) {
205 kmem_cache_free(policy_cache, policy);
206 return ERR_PTR(-EINVAL);
207 }
208 break;
209 case MPOL_PREFERRED:
210 policy->v.preferred_node = first_node(*nodes);
211 if (policy->v.preferred_node >= MAX_NUMNODES)
212 policy->v.preferred_node = -1;
213 break;
214 case MPOL_BIND:
215 if (!is_valid_nodemask(nodes)) {
216 kmem_cache_free(policy_cache, policy);
217 return ERR_PTR(-EINVAL);
218 }
219 policy->v.nodes = *nodes;
220 break;
221 }
222 policy->policy = mode;
223 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
224 return policy;
225 }
226
227 static void gather_stats(struct page *, void *, int pte_dirty);
228 static void migrate_page_add(struct page *page, struct list_head *pagelist,
229 unsigned long flags);
230
231 /* Scan through pages checking if pages follow certain conditions. */
232 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
233 unsigned long addr, unsigned long end,
234 const nodemask_t *nodes, unsigned long flags,
235 void *private)
236 {
237 pte_t *orig_pte;
238 pte_t *pte;
239 spinlock_t *ptl;
240
241 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
242 do {
243 struct page *page;
244 int nid;
245
246 if (!pte_present(*pte))
247 continue;
248 page = vm_normal_page(vma, addr, *pte);
249 if (!page)
250 continue;
251 /*
252 * The check for PageReserved here is important to avoid
253 * handling zero pages and other pages that may have been
254 * marked special by the system.
255 *
256 * If the PageReserved would not be checked here then f.e.
257 * the location of the zero page could have an influence
258 * on MPOL_MF_STRICT, zero pages would be counted for
259 * the per node stats, and there would be useless attempts
260 * to put zero pages on the migration list.
261 */
262 if (PageReserved(page))
263 continue;
264 nid = page_to_nid(page);
265 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
266 continue;
267
268 if (flags & MPOL_MF_STATS)
269 gather_stats(page, private, pte_dirty(*pte));
270 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
271 migrate_page_add(page, private, flags);
272 else
273 break;
274 } while (pte++, addr += PAGE_SIZE, addr != end);
275 pte_unmap_unlock(orig_pte, ptl);
276 return addr != end;
277 }
278
279 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
280 unsigned long addr, unsigned long end,
281 const nodemask_t *nodes, unsigned long flags,
282 void *private)
283 {
284 pmd_t *pmd;
285 unsigned long next;
286
287 pmd = pmd_offset(pud, addr);
288 do {
289 next = pmd_addr_end(addr, end);
290 if (pmd_none_or_clear_bad(pmd))
291 continue;
292 if (check_pte_range(vma, pmd, addr, next, nodes,
293 flags, private))
294 return -EIO;
295 } while (pmd++, addr = next, addr != end);
296 return 0;
297 }
298
299 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
300 unsigned long addr, unsigned long end,
301 const nodemask_t *nodes, unsigned long flags,
302 void *private)
303 {
304 pud_t *pud;
305 unsigned long next;
306
307 pud = pud_offset(pgd, addr);
308 do {
309 next = pud_addr_end(addr, end);
310 if (pud_none_or_clear_bad(pud))
311 continue;
312 if (check_pmd_range(vma, pud, addr, next, nodes,
313 flags, private))
314 return -EIO;
315 } while (pud++, addr = next, addr != end);
316 return 0;
317 }
318
319 static inline int check_pgd_range(struct vm_area_struct *vma,
320 unsigned long addr, unsigned long end,
321 const nodemask_t *nodes, unsigned long flags,
322 void *private)
323 {
324 pgd_t *pgd;
325 unsigned long next;
326
327 pgd = pgd_offset(vma->vm_mm, addr);
328 do {
329 next = pgd_addr_end(addr, end);
330 if (pgd_none_or_clear_bad(pgd))
331 continue;
332 if (check_pud_range(vma, pgd, addr, next, nodes,
333 flags, private))
334 return -EIO;
335 } while (pgd++, addr = next, addr != end);
336 return 0;
337 }
338
339 /*
340 * Check if all pages in a range are on a set of nodes.
341 * If pagelist != NULL then isolate pages from the LRU and
342 * put them on the pagelist.
343 */
344 static struct vm_area_struct *
345 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
346 const nodemask_t *nodes, unsigned long flags, void *private)
347 {
348 int err;
349 struct vm_area_struct *first, *vma, *prev;
350
351 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
352
353 err = migrate_prep();
354 if (err)
355 return ERR_PTR(err);
356 }
357
358 first = find_vma(mm, start);
359 if (!first)
360 return ERR_PTR(-EFAULT);
361 prev = NULL;
362 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
363 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
364 if (!vma->vm_next && vma->vm_end < end)
365 return ERR_PTR(-EFAULT);
366 if (prev && prev->vm_end < vma->vm_start)
367 return ERR_PTR(-EFAULT);
368 }
369 if (!is_vm_hugetlb_page(vma) &&
370 ((flags & MPOL_MF_STRICT) ||
371 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
372 vma_migratable(vma)))) {
373 unsigned long endvma = vma->vm_end;
374
375 if (endvma > end)
376 endvma = end;
377 if (vma->vm_start > start)
378 start = vma->vm_start;
379 err = check_pgd_range(vma, start, endvma, nodes,
380 flags, private);
381 if (err) {
382 first = ERR_PTR(err);
383 break;
384 }
385 }
386 prev = vma;
387 }
388 return first;
389 }
390
391 /* Apply policy to a single VMA */
392 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
393 {
394 int err = 0;
395 struct mempolicy *old = vma->vm_policy;
396
397 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
398 vma->vm_start, vma->vm_end, vma->vm_pgoff,
399 vma->vm_ops, vma->vm_file,
400 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
401
402 if (vma->vm_ops && vma->vm_ops->set_policy)
403 err = vma->vm_ops->set_policy(vma, new);
404 if (!err) {
405 mpol_get(new);
406 vma->vm_policy = new;
407 mpol_free(old);
408 }
409 return err;
410 }
411
412 /* Step 2: apply policy to a range and do splits. */
413 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
414 unsigned long end, struct mempolicy *new)
415 {
416 struct vm_area_struct *next;
417 int err;
418
419 err = 0;
420 for (; vma && vma->vm_start < end; vma = next) {
421 next = vma->vm_next;
422 if (vma->vm_start < start)
423 err = split_vma(vma->vm_mm, vma, start, 1);
424 if (!err && vma->vm_end > end)
425 err = split_vma(vma->vm_mm, vma, end, 0);
426 if (!err)
427 err = policy_vma(vma, new);
428 if (err)
429 break;
430 }
431 return err;
432 }
433
434 /*
435 * Update task->flags PF_MEMPOLICY bit: set iff non-default
436 * mempolicy. Allows more rapid checking of this (combined perhaps
437 * with other PF_* flag bits) on memory allocation hot code paths.
438 *
439 * If called from outside this file, the task 'p' should -only- be
440 * a newly forked child not yet visible on the task list, because
441 * manipulating the task flags of a visible task is not safe.
442 *
443 * The above limitation is why this routine has the funny name
444 * mpol_fix_fork_child_flag().
445 *
446 * It is also safe to call this with a task pointer of current,
447 * which the static wrapper mpol_set_task_struct_flag() does,
448 * for use within this file.
449 */
450
451 void mpol_fix_fork_child_flag(struct task_struct *p)
452 {
453 if (p->mempolicy)
454 p->flags |= PF_MEMPOLICY;
455 else
456 p->flags &= ~PF_MEMPOLICY;
457 }
458
459 static void mpol_set_task_struct_flag(void)
460 {
461 mpol_fix_fork_child_flag(current);
462 }
463
464 /* Set the process memory policy */
465 static long do_set_mempolicy(int mode, nodemask_t *nodes)
466 {
467 struct mempolicy *new;
468
469 if (mpol_check_policy(mode, nodes))
470 return -EINVAL;
471 new = mpol_new(mode, nodes);
472 if (IS_ERR(new))
473 return PTR_ERR(new);
474 mpol_free(current->mempolicy);
475 current->mempolicy = new;
476 mpol_set_task_struct_flag();
477 if (new && new->policy == MPOL_INTERLEAVE)
478 current->il_next = first_node(new->v.nodes);
479 return 0;
480 }
481
482 /* Fill a zone bitmap for a policy */
483 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
484 {
485 nodes_clear(*nodes);
486 switch (p->policy) {
487 case MPOL_DEFAULT:
488 break;
489 case MPOL_BIND:
490 /* Fall through */
491 case MPOL_INTERLEAVE:
492 *nodes = p->v.nodes;
493 break;
494 case MPOL_PREFERRED:
495 /* or use current node instead of memory_map? */
496 if (p->v.preferred_node < 0)
497 *nodes = node_states[N_HIGH_MEMORY];
498 else
499 node_set(p->v.preferred_node, *nodes);
500 break;
501 default:
502 BUG();
503 }
504 }
505
506 static int lookup_node(struct mm_struct *mm, unsigned long addr)
507 {
508 struct page *p;
509 int err;
510
511 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
512 if (err >= 0) {
513 err = page_to_nid(p);
514 put_page(p);
515 }
516 return err;
517 }
518
519 /* Retrieve NUMA policy */
520 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
521 unsigned long addr, unsigned long flags)
522 {
523 int err;
524 struct mm_struct *mm = current->mm;
525 struct vm_area_struct *vma = NULL;
526 struct mempolicy *pol = current->mempolicy;
527
528 cpuset_update_task_memory_state();
529 if (flags &
530 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
531 return -EINVAL;
532
533 if (flags & MPOL_F_MEMS_ALLOWED) {
534 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
535 return -EINVAL;
536 *policy = 0; /* just so it's initialized */
537 *nmask = cpuset_current_mems_allowed;
538 return 0;
539 }
540
541 if (flags & MPOL_F_ADDR) {
542 down_read(&mm->mmap_sem);
543 vma = find_vma_intersection(mm, addr, addr+1);
544 if (!vma) {
545 up_read(&mm->mmap_sem);
546 return -EFAULT;
547 }
548 if (vma->vm_ops && vma->vm_ops->get_policy)
549 pol = vma->vm_ops->get_policy(vma, addr);
550 else
551 pol = vma->vm_policy;
552 } else if (addr)
553 return -EINVAL;
554
555 if (!pol)
556 pol = &default_policy;
557
558 if (flags & MPOL_F_NODE) {
559 if (flags & MPOL_F_ADDR) {
560 err = lookup_node(mm, addr);
561 if (err < 0)
562 goto out;
563 *policy = err;
564 } else if (pol == current->mempolicy &&
565 pol->policy == MPOL_INTERLEAVE) {
566 *policy = current->il_next;
567 } else {
568 err = -EINVAL;
569 goto out;
570 }
571 } else
572 *policy = pol->policy;
573
574 if (vma) {
575 up_read(&current->mm->mmap_sem);
576 vma = NULL;
577 }
578
579 err = 0;
580 if (nmask)
581 get_zonemask(pol, nmask);
582
583 out:
584 if (vma)
585 up_read(&current->mm->mmap_sem);
586 return err;
587 }
588
589 #ifdef CONFIG_MIGRATION
590 /*
591 * page migration
592 */
593 static void migrate_page_add(struct page *page, struct list_head *pagelist,
594 unsigned long flags)
595 {
596 /*
597 * Avoid migrating a page that is shared with others.
598 */
599 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
600 isolate_lru_page(page, pagelist);
601 }
602
603 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
604 {
605 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
606 }
607
608 /*
609 * Migrate pages from one node to a target node.
610 * Returns error or the number of pages not migrated.
611 */
612 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
613 int flags)
614 {
615 nodemask_t nmask;
616 LIST_HEAD(pagelist);
617 int err = 0;
618
619 nodes_clear(nmask);
620 node_set(source, nmask);
621
622 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
623 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
624
625 if (!list_empty(&pagelist))
626 err = migrate_pages(&pagelist, new_node_page, dest);
627
628 return err;
629 }
630
631 /*
632 * Move pages between the two nodesets so as to preserve the physical
633 * layout as much as possible.
634 *
635 * Returns the number of page that could not be moved.
636 */
637 int do_migrate_pages(struct mm_struct *mm,
638 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
639 {
640 LIST_HEAD(pagelist);
641 int busy = 0;
642 int err = 0;
643 nodemask_t tmp;
644
645 down_read(&mm->mmap_sem);
646
647 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
648 if (err)
649 goto out;
650
651 /*
652 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
653 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
654 * bit in 'tmp', and return that <source, dest> pair for migration.
655 * The pair of nodemasks 'to' and 'from' define the map.
656 *
657 * If no pair of bits is found that way, fallback to picking some
658 * pair of 'source' and 'dest' bits that are not the same. If the
659 * 'source' and 'dest' bits are the same, this represents a node
660 * that will be migrating to itself, so no pages need move.
661 *
662 * If no bits are left in 'tmp', or if all remaining bits left
663 * in 'tmp' correspond to the same bit in 'to', return false
664 * (nothing left to migrate).
665 *
666 * This lets us pick a pair of nodes to migrate between, such that
667 * if possible the dest node is not already occupied by some other
668 * source node, minimizing the risk of overloading the memory on a
669 * node that would happen if we migrated incoming memory to a node
670 * before migrating outgoing memory source that same node.
671 *
672 * A single scan of tmp is sufficient. As we go, we remember the
673 * most recent <s, d> pair that moved (s != d). If we find a pair
674 * that not only moved, but what's better, moved to an empty slot
675 * (d is not set in tmp), then we break out then, with that pair.
676 * Otherwise when we finish scannng from_tmp, we at least have the
677 * most recent <s, d> pair that moved. If we get all the way through
678 * the scan of tmp without finding any node that moved, much less
679 * moved to an empty node, then there is nothing left worth migrating.
680 */
681
682 tmp = *from_nodes;
683 while (!nodes_empty(tmp)) {
684 int s,d;
685 int source = -1;
686 int dest = 0;
687
688 for_each_node_mask(s, tmp) {
689 d = node_remap(s, *from_nodes, *to_nodes);
690 if (s == d)
691 continue;
692
693 source = s; /* Node moved. Memorize */
694 dest = d;
695
696 /* dest not in remaining from nodes? */
697 if (!node_isset(dest, tmp))
698 break;
699 }
700 if (source == -1)
701 break;
702
703 node_clear(source, tmp);
704 err = migrate_to_node(mm, source, dest, flags);
705 if (err > 0)
706 busy += err;
707 if (err < 0)
708 break;
709 }
710 out:
711 up_read(&mm->mmap_sem);
712 if (err < 0)
713 return err;
714 return busy;
715
716 }
717
718 /*
719 * Allocate a new page for page migration based on vma policy.
720 * Start assuming that page is mapped by vma pointed to by @private.
721 * Search forward from there, if not. N.B., this assumes that the
722 * list of pages handed to migrate_pages()--which is how we get here--
723 * is in virtual address order.
724 */
725 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
726 {
727 struct vm_area_struct *vma = (struct vm_area_struct *)private;
728 unsigned long uninitialized_var(address);
729
730 while (vma) {
731 address = page_address_in_vma(page, vma);
732 if (address != -EFAULT)
733 break;
734 vma = vma->vm_next;
735 }
736
737 /*
738 * if !vma, alloc_page_vma() will use task or system default policy
739 */
740 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
741 }
742 #else
743
744 static void migrate_page_add(struct page *page, struct list_head *pagelist,
745 unsigned long flags)
746 {
747 }
748
749 int do_migrate_pages(struct mm_struct *mm,
750 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
751 {
752 return -ENOSYS;
753 }
754
755 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
756 {
757 return NULL;
758 }
759 #endif
760
761 static long do_mbind(unsigned long start, unsigned long len,
762 unsigned long mode, nodemask_t *nmask,
763 unsigned long flags)
764 {
765 struct vm_area_struct *vma;
766 struct mm_struct *mm = current->mm;
767 struct mempolicy *new;
768 unsigned long end;
769 int err;
770 LIST_HEAD(pagelist);
771
772 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
773 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
774 || mode > MPOL_MAX)
775 return -EINVAL;
776 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
777 return -EPERM;
778
779 if (start & ~PAGE_MASK)
780 return -EINVAL;
781
782 if (mode == MPOL_DEFAULT)
783 flags &= ~MPOL_MF_STRICT;
784
785 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
786 end = start + len;
787
788 if (end < start)
789 return -EINVAL;
790 if (end == start)
791 return 0;
792
793 if (mpol_check_policy(mode, nmask))
794 return -EINVAL;
795
796 new = mpol_new(mode, nmask);
797 if (IS_ERR(new))
798 return PTR_ERR(new);
799
800 /*
801 * If we are using the default policy then operation
802 * on discontinuous address spaces is okay after all
803 */
804 if (!new)
805 flags |= MPOL_MF_DISCONTIG_OK;
806
807 pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
808 mode, nmask ? nodes_addr(*nmask)[0] : -1);
809
810 down_write(&mm->mmap_sem);
811 vma = check_range(mm, start, end, nmask,
812 flags | MPOL_MF_INVERT, &pagelist);
813
814 err = PTR_ERR(vma);
815 if (!IS_ERR(vma)) {
816 int nr_failed = 0;
817
818 err = mbind_range(vma, start, end, new);
819
820 if (!list_empty(&pagelist))
821 nr_failed = migrate_pages(&pagelist, new_vma_page,
822 (unsigned long)vma);
823
824 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
825 err = -EIO;
826 }
827
828 up_write(&mm->mmap_sem);
829 mpol_free(new);
830 return err;
831 }
832
833 /*
834 * User space interface with variable sized bitmaps for nodelists.
835 */
836
837 /* Copy a node mask from user space. */
838 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
839 unsigned long maxnode)
840 {
841 unsigned long k;
842 unsigned long nlongs;
843 unsigned long endmask;
844
845 --maxnode;
846 nodes_clear(*nodes);
847 if (maxnode == 0 || !nmask)
848 return 0;
849 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
850 return -EINVAL;
851
852 nlongs = BITS_TO_LONGS(maxnode);
853 if ((maxnode % BITS_PER_LONG) == 0)
854 endmask = ~0UL;
855 else
856 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
857
858 /* When the user specified more nodes than supported just check
859 if the non supported part is all zero. */
860 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
861 if (nlongs > PAGE_SIZE/sizeof(long))
862 return -EINVAL;
863 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
864 unsigned long t;
865 if (get_user(t, nmask + k))
866 return -EFAULT;
867 if (k == nlongs - 1) {
868 if (t & endmask)
869 return -EINVAL;
870 } else if (t)
871 return -EINVAL;
872 }
873 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
874 endmask = ~0UL;
875 }
876
877 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
878 return -EFAULT;
879 nodes_addr(*nodes)[nlongs-1] &= endmask;
880 return 0;
881 }
882
883 /* Copy a kernel node mask to user space */
884 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
885 nodemask_t *nodes)
886 {
887 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
888 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
889
890 if (copy > nbytes) {
891 if (copy > PAGE_SIZE)
892 return -EINVAL;
893 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
894 return -EFAULT;
895 copy = nbytes;
896 }
897 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
898 }
899
900 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
901 unsigned long mode,
902 unsigned long __user *nmask, unsigned long maxnode,
903 unsigned flags)
904 {
905 nodemask_t nodes;
906 int err;
907
908 err = get_nodes(&nodes, nmask, maxnode);
909 if (err)
910 return err;
911 return do_mbind(start, len, mode, &nodes, flags);
912 }
913
914 /* Set the process memory policy */
915 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
916 unsigned long maxnode)
917 {
918 int err;
919 nodemask_t nodes;
920
921 if (mode < 0 || mode > MPOL_MAX)
922 return -EINVAL;
923 err = get_nodes(&nodes, nmask, maxnode);
924 if (err)
925 return err;
926 return do_set_mempolicy(mode, &nodes);
927 }
928
929 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
930 const unsigned long __user *old_nodes,
931 const unsigned long __user *new_nodes)
932 {
933 struct mm_struct *mm;
934 struct task_struct *task;
935 nodemask_t old;
936 nodemask_t new;
937 nodemask_t task_nodes;
938 int err;
939
940 err = get_nodes(&old, old_nodes, maxnode);
941 if (err)
942 return err;
943
944 err = get_nodes(&new, new_nodes, maxnode);
945 if (err)
946 return err;
947
948 /* Find the mm_struct */
949 read_lock(&tasklist_lock);
950 task = pid ? find_task_by_vpid(pid) : current;
951 if (!task) {
952 read_unlock(&tasklist_lock);
953 return -ESRCH;
954 }
955 mm = get_task_mm(task);
956 read_unlock(&tasklist_lock);
957
958 if (!mm)
959 return -EINVAL;
960
961 /*
962 * Check if this process has the right to modify the specified
963 * process. The right exists if the process has administrative
964 * capabilities, superuser privileges or the same
965 * userid as the target process.
966 */
967 if ((current->euid != task->suid) && (current->euid != task->uid) &&
968 (current->uid != task->suid) && (current->uid != task->uid) &&
969 !capable(CAP_SYS_NICE)) {
970 err = -EPERM;
971 goto out;
972 }
973
974 task_nodes = cpuset_mems_allowed(task);
975 /* Is the user allowed to access the target nodes? */
976 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
977 err = -EPERM;
978 goto out;
979 }
980
981 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
982 err = -EINVAL;
983 goto out;
984 }
985
986 err = security_task_movememory(task);
987 if (err)
988 goto out;
989
990 err = do_migrate_pages(mm, &old, &new,
991 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
992 out:
993 mmput(mm);
994 return err;
995 }
996
997
998 /* Retrieve NUMA policy */
999 asmlinkage long sys_get_mempolicy(int __user *policy,
1000 unsigned long __user *nmask,
1001 unsigned long maxnode,
1002 unsigned long addr, unsigned long flags)
1003 {
1004 int err;
1005 int uninitialized_var(pval);
1006 nodemask_t nodes;
1007
1008 if (nmask != NULL && maxnode < MAX_NUMNODES)
1009 return -EINVAL;
1010
1011 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1012
1013 if (err)
1014 return err;
1015
1016 if (policy && put_user(pval, policy))
1017 return -EFAULT;
1018
1019 if (nmask)
1020 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1021
1022 return err;
1023 }
1024
1025 #ifdef CONFIG_COMPAT
1026
1027 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1028 compat_ulong_t __user *nmask,
1029 compat_ulong_t maxnode,
1030 compat_ulong_t addr, compat_ulong_t flags)
1031 {
1032 long err;
1033 unsigned long __user *nm = NULL;
1034 unsigned long nr_bits, alloc_size;
1035 DECLARE_BITMAP(bm, MAX_NUMNODES);
1036
1037 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1038 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1039
1040 if (nmask)
1041 nm = compat_alloc_user_space(alloc_size);
1042
1043 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1044
1045 if (!err && nmask) {
1046 err = copy_from_user(bm, nm, alloc_size);
1047 /* ensure entire bitmap is zeroed */
1048 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1049 err |= compat_put_bitmap(nmask, bm, nr_bits);
1050 }
1051
1052 return err;
1053 }
1054
1055 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1056 compat_ulong_t maxnode)
1057 {
1058 long err = 0;
1059 unsigned long __user *nm = NULL;
1060 unsigned long nr_bits, alloc_size;
1061 DECLARE_BITMAP(bm, MAX_NUMNODES);
1062
1063 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1064 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1065
1066 if (nmask) {
1067 err = compat_get_bitmap(bm, nmask, nr_bits);
1068 nm = compat_alloc_user_space(alloc_size);
1069 err |= copy_to_user(nm, bm, alloc_size);
1070 }
1071
1072 if (err)
1073 return -EFAULT;
1074
1075 return sys_set_mempolicy(mode, nm, nr_bits+1);
1076 }
1077
1078 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1079 compat_ulong_t mode, compat_ulong_t __user *nmask,
1080 compat_ulong_t maxnode, compat_ulong_t flags)
1081 {
1082 long err = 0;
1083 unsigned long __user *nm = NULL;
1084 unsigned long nr_bits, alloc_size;
1085 nodemask_t bm;
1086
1087 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1088 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1089
1090 if (nmask) {
1091 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1092 nm = compat_alloc_user_space(alloc_size);
1093 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1094 }
1095
1096 if (err)
1097 return -EFAULT;
1098
1099 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1100 }
1101
1102 #endif
1103
1104 /*
1105 * get_vma_policy(@task, @vma, @addr)
1106 * @task - task for fallback if vma policy == default
1107 * @vma - virtual memory area whose policy is sought
1108 * @addr - address in @vma for shared policy lookup
1109 *
1110 * Returns effective policy for a VMA at specified address.
1111 * Falls back to @task or system default policy, as necessary.
1112 * Returned policy has extra reference count if shared, vma,
1113 * or some other task's policy [show_numa_maps() can pass
1114 * @task != current]. It is the caller's responsibility to
1115 * free the reference in these cases.
1116 */
1117 static struct mempolicy * get_vma_policy(struct task_struct *task,
1118 struct vm_area_struct *vma, unsigned long addr)
1119 {
1120 struct mempolicy *pol = task->mempolicy;
1121 int shared_pol = 0;
1122
1123 if (vma) {
1124 if (vma->vm_ops && vma->vm_ops->get_policy) {
1125 pol = vma->vm_ops->get_policy(vma, addr);
1126 shared_pol = 1; /* if pol non-NULL, add ref below */
1127 } else if (vma->vm_policy &&
1128 vma->vm_policy->policy != MPOL_DEFAULT)
1129 pol = vma->vm_policy;
1130 }
1131 if (!pol)
1132 pol = &default_policy;
1133 else if (!shared_pol && pol != current->mempolicy)
1134 mpol_get(pol); /* vma or other task's policy */
1135 return pol;
1136 }
1137
1138 /* Return a nodemask representing a mempolicy */
1139 static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1140 {
1141 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1142 if (unlikely(policy->policy == MPOL_BIND) &&
1143 gfp_zone(gfp) >= policy_zone &&
1144 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1145 return &policy->v.nodes;
1146
1147 return NULL;
1148 }
1149
1150 /* Return a zonelist representing a mempolicy */
1151 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1152 {
1153 int nd;
1154
1155 switch (policy->policy) {
1156 case MPOL_PREFERRED:
1157 nd = policy->v.preferred_node;
1158 if (nd < 0)
1159 nd = numa_node_id();
1160 break;
1161 case MPOL_BIND:
1162 /*
1163 * Normally, MPOL_BIND allocations node-local are node-local
1164 * within the allowed nodemask. However, if __GFP_THISNODE is
1165 * set and the current node is part of the mask, we use the
1166 * the zonelist for the first node in the mask instead.
1167 */
1168 nd = numa_node_id();
1169 if (unlikely(gfp & __GFP_THISNODE) &&
1170 unlikely(!node_isset(nd, policy->v.nodes)))
1171 nd = first_node(policy->v.nodes);
1172 break;
1173 case MPOL_INTERLEAVE: /* should not happen */
1174 case MPOL_DEFAULT:
1175 nd = numa_node_id();
1176 break;
1177 default:
1178 nd = 0;
1179 BUG();
1180 }
1181 return node_zonelist(nd, gfp);
1182 }
1183
1184 /* Do dynamic interleaving for a process */
1185 static unsigned interleave_nodes(struct mempolicy *policy)
1186 {
1187 unsigned nid, next;
1188 struct task_struct *me = current;
1189
1190 nid = me->il_next;
1191 next = next_node(nid, policy->v.nodes);
1192 if (next >= MAX_NUMNODES)
1193 next = first_node(policy->v.nodes);
1194 me->il_next = next;
1195 return nid;
1196 }
1197
1198 /*
1199 * Depending on the memory policy provide a node from which to allocate the
1200 * next slab entry.
1201 */
1202 unsigned slab_node(struct mempolicy *policy)
1203 {
1204 int pol = policy ? policy->policy : MPOL_DEFAULT;
1205
1206 switch (pol) {
1207 case MPOL_INTERLEAVE:
1208 return interleave_nodes(policy);
1209
1210 case MPOL_BIND: {
1211 /*
1212 * Follow bind policy behavior and start allocation at the
1213 * first node.
1214 */
1215 struct zonelist *zonelist;
1216 struct zone *zone;
1217 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1218 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1219 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1220 &policy->v.nodes,
1221 &zone);
1222 return zone->node;
1223 }
1224
1225 case MPOL_PREFERRED:
1226 if (policy->v.preferred_node >= 0)
1227 return policy->v.preferred_node;
1228 /* Fall through */
1229
1230 default:
1231 return numa_node_id();
1232 }
1233 }
1234
1235 /* Do static interleaving for a VMA with known offset. */
1236 static unsigned offset_il_node(struct mempolicy *pol,
1237 struct vm_area_struct *vma, unsigned long off)
1238 {
1239 unsigned nnodes = nodes_weight(pol->v.nodes);
1240 unsigned target = (unsigned)off % nnodes;
1241 int c;
1242 int nid = -1;
1243
1244 c = 0;
1245 do {
1246 nid = next_node(nid, pol->v.nodes);
1247 c++;
1248 } while (c <= target);
1249 return nid;
1250 }
1251
1252 /* Determine a node number for interleave */
1253 static inline unsigned interleave_nid(struct mempolicy *pol,
1254 struct vm_area_struct *vma, unsigned long addr, int shift)
1255 {
1256 if (vma) {
1257 unsigned long off;
1258
1259 /*
1260 * for small pages, there is no difference between
1261 * shift and PAGE_SHIFT, so the bit-shift is safe.
1262 * for huge pages, since vm_pgoff is in units of small
1263 * pages, we need to shift off the always 0 bits to get
1264 * a useful offset.
1265 */
1266 BUG_ON(shift < PAGE_SHIFT);
1267 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1268 off += (addr - vma->vm_start) >> shift;
1269 return offset_il_node(pol, vma, off);
1270 } else
1271 return interleave_nodes(pol);
1272 }
1273
1274 #ifdef CONFIG_HUGETLBFS
1275 /*
1276 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1277 * @vma = virtual memory area whose policy is sought
1278 * @addr = address in @vma for shared policy lookup and interleave policy
1279 * @gfp_flags = for requested zone
1280 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1281 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1282 *
1283 * Returns a zonelist suitable for a huge page allocation.
1284 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1285 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1286 * If it is also a policy for which get_vma_policy() returns an extra
1287 * reference, we must hold that reference until after the allocation.
1288 * In that case, return policy via @mpol so hugetlb allocation can drop
1289 * the reference. For non-'BIND referenced policies, we can/do drop the
1290 * reference here, so the caller doesn't need to know about the special case
1291 * for default and current task policy.
1292 */
1293 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1294 gfp_t gfp_flags, struct mempolicy **mpol,
1295 nodemask_t **nodemask)
1296 {
1297 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1298 struct zonelist *zl;
1299
1300 *mpol = NULL; /* probably no unref needed */
1301 *nodemask = NULL; /* assume !MPOL_BIND */
1302 if (pol->policy == MPOL_BIND) {
1303 *nodemask = &pol->v.nodes;
1304 } else if (pol->policy == MPOL_INTERLEAVE) {
1305 unsigned nid;
1306
1307 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1308 if (unlikely(pol != &default_policy &&
1309 pol != current->mempolicy))
1310 __mpol_free(pol); /* finished with pol */
1311 return node_zonelist(nid, gfp_flags);
1312 }
1313
1314 zl = zonelist_policy(GFP_HIGHUSER, pol);
1315 if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1316 if (pol->policy != MPOL_BIND)
1317 __mpol_free(pol); /* finished with pol */
1318 else
1319 *mpol = pol; /* unref needed after allocation */
1320 }
1321 return zl;
1322 }
1323 #endif
1324
1325 /* Allocate a page in interleaved policy.
1326 Own path because it needs to do special accounting. */
1327 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1328 unsigned nid)
1329 {
1330 struct zonelist *zl;
1331 struct page *page;
1332
1333 zl = node_zonelist(nid, gfp);
1334 page = __alloc_pages(gfp, order, zl);
1335 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1336 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1337 return page;
1338 }
1339
1340 /**
1341 * alloc_page_vma - Allocate a page for a VMA.
1342 *
1343 * @gfp:
1344 * %GFP_USER user allocation.
1345 * %GFP_KERNEL kernel allocations,
1346 * %GFP_HIGHMEM highmem/user allocations,
1347 * %GFP_FS allocation should not call back into a file system.
1348 * %GFP_ATOMIC don't sleep.
1349 *
1350 * @vma: Pointer to VMA or NULL if not available.
1351 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1352 *
1353 * This function allocates a page from the kernel page pool and applies
1354 * a NUMA policy associated with the VMA or the current process.
1355 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1356 * mm_struct of the VMA to prevent it from going away. Should be used for
1357 * all allocations for pages that will be mapped into
1358 * user space. Returns NULL when no page can be allocated.
1359 *
1360 * Should be called with the mm_sem of the vma hold.
1361 */
1362 struct page *
1363 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1364 {
1365 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1366 struct zonelist *zl;
1367
1368 cpuset_update_task_memory_state();
1369
1370 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1371 unsigned nid;
1372
1373 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1374 if (unlikely(pol != &default_policy &&
1375 pol != current->mempolicy))
1376 __mpol_free(pol); /* finished with pol */
1377 return alloc_page_interleave(gfp, 0, nid);
1378 }
1379 zl = zonelist_policy(gfp, pol);
1380 if (pol != &default_policy && pol != current->mempolicy) {
1381 /*
1382 * slow path: ref counted policy -- shared or vma
1383 */
1384 struct page *page = __alloc_pages_nodemask(gfp, 0,
1385 zl, nodemask_policy(gfp, pol));
1386 __mpol_free(pol);
1387 return page;
1388 }
1389 /*
1390 * fast path: default or task policy
1391 */
1392 return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1393 }
1394
1395 /**
1396 * alloc_pages_current - Allocate pages.
1397 *
1398 * @gfp:
1399 * %GFP_USER user allocation,
1400 * %GFP_KERNEL kernel allocation,
1401 * %GFP_HIGHMEM highmem allocation,
1402 * %GFP_FS don't call back into a file system.
1403 * %GFP_ATOMIC don't sleep.
1404 * @order: Power of two of allocation size in pages. 0 is a single page.
1405 *
1406 * Allocate a page from the kernel page pool. When not in
1407 * interrupt context and apply the current process NUMA policy.
1408 * Returns NULL when no page can be allocated.
1409 *
1410 * Don't call cpuset_update_task_memory_state() unless
1411 * 1) it's ok to take cpuset_sem (can WAIT), and
1412 * 2) allocating for current task (not interrupt).
1413 */
1414 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1415 {
1416 struct mempolicy *pol = current->mempolicy;
1417
1418 if ((gfp & __GFP_WAIT) && !in_interrupt())
1419 cpuset_update_task_memory_state();
1420 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1421 pol = &default_policy;
1422 if (pol->policy == MPOL_INTERLEAVE)
1423 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1424 return __alloc_pages_nodemask(gfp, order,
1425 zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1426 }
1427 EXPORT_SYMBOL(alloc_pages_current);
1428
1429 /*
1430 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1431 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1432 * with the mems_allowed returned by cpuset_mems_allowed(). This
1433 * keeps mempolicies cpuset relative after its cpuset moves. See
1434 * further kernel/cpuset.c update_nodemask().
1435 */
1436
1437 /* Slow path of a mempolicy copy */
1438 struct mempolicy *__mpol_copy(struct mempolicy *old)
1439 {
1440 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1441
1442 if (!new)
1443 return ERR_PTR(-ENOMEM);
1444 if (current_cpuset_is_being_rebound()) {
1445 nodemask_t mems = cpuset_mems_allowed(current);
1446 mpol_rebind_policy(old, &mems);
1447 }
1448 *new = *old;
1449 atomic_set(&new->refcnt, 1);
1450 return new;
1451 }
1452
1453 /* Slow path of a mempolicy comparison */
1454 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1455 {
1456 if (!a || !b)
1457 return 0;
1458 if (a->policy != b->policy)
1459 return 0;
1460 switch (a->policy) {
1461 case MPOL_DEFAULT:
1462 return 1;
1463 case MPOL_BIND:
1464 /* Fall through */
1465 case MPOL_INTERLEAVE:
1466 return nodes_equal(a->v.nodes, b->v.nodes);
1467 case MPOL_PREFERRED:
1468 return a->v.preferred_node == b->v.preferred_node;
1469 default:
1470 BUG();
1471 return 0;
1472 }
1473 }
1474
1475 /* Slow path of a mpol destructor. */
1476 void __mpol_free(struct mempolicy *p)
1477 {
1478 if (!atomic_dec_and_test(&p->refcnt))
1479 return;
1480 p->policy = MPOL_DEFAULT;
1481 kmem_cache_free(policy_cache, p);
1482 }
1483
1484 /*
1485 * Shared memory backing store policy support.
1486 *
1487 * Remember policies even when nobody has shared memory mapped.
1488 * The policies are kept in Red-Black tree linked from the inode.
1489 * They are protected by the sp->lock spinlock, which should be held
1490 * for any accesses to the tree.
1491 */
1492
1493 /* lookup first element intersecting start-end */
1494 /* Caller holds sp->lock */
1495 static struct sp_node *
1496 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1497 {
1498 struct rb_node *n = sp->root.rb_node;
1499
1500 while (n) {
1501 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1502
1503 if (start >= p->end)
1504 n = n->rb_right;
1505 else if (end <= p->start)
1506 n = n->rb_left;
1507 else
1508 break;
1509 }
1510 if (!n)
1511 return NULL;
1512 for (;;) {
1513 struct sp_node *w = NULL;
1514 struct rb_node *prev = rb_prev(n);
1515 if (!prev)
1516 break;
1517 w = rb_entry(prev, struct sp_node, nd);
1518 if (w->end <= start)
1519 break;
1520 n = prev;
1521 }
1522 return rb_entry(n, struct sp_node, nd);
1523 }
1524
1525 /* Insert a new shared policy into the list. */
1526 /* Caller holds sp->lock */
1527 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1528 {
1529 struct rb_node **p = &sp->root.rb_node;
1530 struct rb_node *parent = NULL;
1531 struct sp_node *nd;
1532
1533 while (*p) {
1534 parent = *p;
1535 nd = rb_entry(parent, struct sp_node, nd);
1536 if (new->start < nd->start)
1537 p = &(*p)->rb_left;
1538 else if (new->end > nd->end)
1539 p = &(*p)->rb_right;
1540 else
1541 BUG();
1542 }
1543 rb_link_node(&new->nd, parent, p);
1544 rb_insert_color(&new->nd, &sp->root);
1545 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1546 new->policy ? new->policy->policy : 0);
1547 }
1548
1549 /* Find shared policy intersecting idx */
1550 struct mempolicy *
1551 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1552 {
1553 struct mempolicy *pol = NULL;
1554 struct sp_node *sn;
1555
1556 if (!sp->root.rb_node)
1557 return NULL;
1558 spin_lock(&sp->lock);
1559 sn = sp_lookup(sp, idx, idx+1);
1560 if (sn) {
1561 mpol_get(sn->policy);
1562 pol = sn->policy;
1563 }
1564 spin_unlock(&sp->lock);
1565 return pol;
1566 }
1567
1568 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1569 {
1570 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1571 rb_erase(&n->nd, &sp->root);
1572 mpol_free(n->policy);
1573 kmem_cache_free(sn_cache, n);
1574 }
1575
1576 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1577 struct mempolicy *pol)
1578 {
1579 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1580
1581 if (!n)
1582 return NULL;
1583 n->start = start;
1584 n->end = end;
1585 mpol_get(pol);
1586 n->policy = pol;
1587 return n;
1588 }
1589
1590 /* Replace a policy range. */
1591 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1592 unsigned long end, struct sp_node *new)
1593 {
1594 struct sp_node *n, *new2 = NULL;
1595
1596 restart:
1597 spin_lock(&sp->lock);
1598 n = sp_lookup(sp, start, end);
1599 /* Take care of old policies in the same range. */
1600 while (n && n->start < end) {
1601 struct rb_node *next = rb_next(&n->nd);
1602 if (n->start >= start) {
1603 if (n->end <= end)
1604 sp_delete(sp, n);
1605 else
1606 n->start = end;
1607 } else {
1608 /* Old policy spanning whole new range. */
1609 if (n->end > end) {
1610 if (!new2) {
1611 spin_unlock(&sp->lock);
1612 new2 = sp_alloc(end, n->end, n->policy);
1613 if (!new2)
1614 return -ENOMEM;
1615 goto restart;
1616 }
1617 n->end = start;
1618 sp_insert(sp, new2);
1619 new2 = NULL;
1620 break;
1621 } else
1622 n->end = start;
1623 }
1624 if (!next)
1625 break;
1626 n = rb_entry(next, struct sp_node, nd);
1627 }
1628 if (new)
1629 sp_insert(sp, new);
1630 spin_unlock(&sp->lock);
1631 if (new2) {
1632 mpol_free(new2->policy);
1633 kmem_cache_free(sn_cache, new2);
1634 }
1635 return 0;
1636 }
1637
1638 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1639 nodemask_t *policy_nodes)
1640 {
1641 info->root = RB_ROOT;
1642 spin_lock_init(&info->lock);
1643
1644 if (policy != MPOL_DEFAULT) {
1645 struct mempolicy *newpol;
1646
1647 /* Falls back to MPOL_DEFAULT on any error */
1648 newpol = mpol_new(policy, policy_nodes);
1649 if (!IS_ERR(newpol)) {
1650 /* Create pseudo-vma that contains just the policy */
1651 struct vm_area_struct pvma;
1652
1653 memset(&pvma, 0, sizeof(struct vm_area_struct));
1654 /* Policy covers entire file */
1655 pvma.vm_end = TASK_SIZE;
1656 mpol_set_shared_policy(info, &pvma, newpol);
1657 mpol_free(newpol);
1658 }
1659 }
1660 }
1661
1662 int mpol_set_shared_policy(struct shared_policy *info,
1663 struct vm_area_struct *vma, struct mempolicy *npol)
1664 {
1665 int err;
1666 struct sp_node *new = NULL;
1667 unsigned long sz = vma_pages(vma);
1668
1669 pr_debug("set_shared_policy %lx sz %lu %d %lx\n",
1670 vma->vm_pgoff,
1671 sz, npol? npol->policy : -1,
1672 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1673
1674 if (npol) {
1675 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1676 if (!new)
1677 return -ENOMEM;
1678 }
1679 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1680 if (err && new)
1681 kmem_cache_free(sn_cache, new);
1682 return err;
1683 }
1684
1685 /* Free a backing policy store on inode delete. */
1686 void mpol_free_shared_policy(struct shared_policy *p)
1687 {
1688 struct sp_node *n;
1689 struct rb_node *next;
1690
1691 if (!p->root.rb_node)
1692 return;
1693 spin_lock(&p->lock);
1694 next = rb_first(&p->root);
1695 while (next) {
1696 n = rb_entry(next, struct sp_node, nd);
1697 next = rb_next(&n->nd);
1698 rb_erase(&n->nd, &p->root);
1699 mpol_free(n->policy);
1700 kmem_cache_free(sn_cache, n);
1701 }
1702 spin_unlock(&p->lock);
1703 }
1704
1705 /* assumes fs == KERNEL_DS */
1706 void __init numa_policy_init(void)
1707 {
1708 nodemask_t interleave_nodes;
1709 unsigned long largest = 0;
1710 int nid, prefer = 0;
1711
1712 policy_cache = kmem_cache_create("numa_policy",
1713 sizeof(struct mempolicy),
1714 0, SLAB_PANIC, NULL);
1715
1716 sn_cache = kmem_cache_create("shared_policy_node",
1717 sizeof(struct sp_node),
1718 0, SLAB_PANIC, NULL);
1719
1720 /*
1721 * Set interleaving policy for system init. Interleaving is only
1722 * enabled across suitably sized nodes (default is >= 16MB), or
1723 * fall back to the largest node if they're all smaller.
1724 */
1725 nodes_clear(interleave_nodes);
1726 for_each_node_state(nid, N_HIGH_MEMORY) {
1727 unsigned long total_pages = node_present_pages(nid);
1728
1729 /* Preserve the largest node */
1730 if (largest < total_pages) {
1731 largest = total_pages;
1732 prefer = nid;
1733 }
1734
1735 /* Interleave this node? */
1736 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1737 node_set(nid, interleave_nodes);
1738 }
1739
1740 /* All too small, use the largest */
1741 if (unlikely(nodes_empty(interleave_nodes)))
1742 node_set(prefer, interleave_nodes);
1743
1744 if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes))
1745 printk("numa_policy_init: interleaving failed\n");
1746 }
1747
1748 /* Reset policy of current process to default */
1749 void numa_default_policy(void)
1750 {
1751 do_set_mempolicy(MPOL_DEFAULT, NULL);
1752 }
1753
1754 /* Migrate a policy to a different set of nodes */
1755 static void mpol_rebind_policy(struct mempolicy *pol,
1756 const nodemask_t *newmask)
1757 {
1758 nodemask_t *mpolmask;
1759 nodemask_t tmp;
1760
1761 if (!pol)
1762 return;
1763 mpolmask = &pol->cpuset_mems_allowed;
1764 if (nodes_equal(*mpolmask, *newmask))
1765 return;
1766
1767 switch (pol->policy) {
1768 case MPOL_DEFAULT:
1769 break;
1770 case MPOL_BIND:
1771 /* Fall through */
1772 case MPOL_INTERLEAVE:
1773 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1774 pol->v.nodes = tmp;
1775 *mpolmask = *newmask;
1776 current->il_next = node_remap(current->il_next,
1777 *mpolmask, *newmask);
1778 break;
1779 case MPOL_PREFERRED:
1780 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1781 *mpolmask, *newmask);
1782 *mpolmask = *newmask;
1783 break;
1784 default:
1785 BUG();
1786 break;
1787 }
1788 }
1789
1790 /*
1791 * Wrapper for mpol_rebind_policy() that just requires task
1792 * pointer, and updates task mempolicy.
1793 */
1794
1795 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1796 {
1797 mpol_rebind_policy(tsk->mempolicy, new);
1798 }
1799
1800 /*
1801 * Rebind each vma in mm to new nodemask.
1802 *
1803 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1804 */
1805
1806 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1807 {
1808 struct vm_area_struct *vma;
1809
1810 down_write(&mm->mmap_sem);
1811 for (vma = mm->mmap; vma; vma = vma->vm_next)
1812 mpol_rebind_policy(vma->vm_policy, new);
1813 up_write(&mm->mmap_sem);
1814 }
1815
1816 /*
1817 * Display pages allocated per node and memory policy via /proc.
1818 */
1819
1820 static const char * const policy_types[] =
1821 { "default", "prefer", "bind", "interleave" };
1822
1823 /*
1824 * Convert a mempolicy into a string.
1825 * Returns the number of characters in buffer (if positive)
1826 * or an error (negative)
1827 */
1828 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1829 {
1830 char *p = buffer;
1831 int l;
1832 nodemask_t nodes;
1833 int mode = pol ? pol->policy : MPOL_DEFAULT;
1834
1835 switch (mode) {
1836 case MPOL_DEFAULT:
1837 nodes_clear(nodes);
1838 break;
1839
1840 case MPOL_PREFERRED:
1841 nodes_clear(nodes);
1842 node_set(pol->v.preferred_node, nodes);
1843 break;
1844
1845 case MPOL_BIND:
1846 /* Fall through */
1847 case MPOL_INTERLEAVE:
1848 nodes = pol->v.nodes;
1849 break;
1850
1851 default:
1852 BUG();
1853 return -EFAULT;
1854 }
1855
1856 l = strlen(policy_types[mode]);
1857 if (buffer + maxlen < p + l + 1)
1858 return -ENOSPC;
1859
1860 strcpy(p, policy_types[mode]);
1861 p += l;
1862
1863 if (!nodes_empty(nodes)) {
1864 if (buffer + maxlen < p + 2)
1865 return -ENOSPC;
1866 *p++ = '=';
1867 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1868 }
1869 return p - buffer;
1870 }
1871
1872 struct numa_maps {
1873 unsigned long pages;
1874 unsigned long anon;
1875 unsigned long active;
1876 unsigned long writeback;
1877 unsigned long mapcount_max;
1878 unsigned long dirty;
1879 unsigned long swapcache;
1880 unsigned long node[MAX_NUMNODES];
1881 };
1882
1883 static void gather_stats(struct page *page, void *private, int pte_dirty)
1884 {
1885 struct numa_maps *md = private;
1886 int count = page_mapcount(page);
1887
1888 md->pages++;
1889 if (pte_dirty || PageDirty(page))
1890 md->dirty++;
1891
1892 if (PageSwapCache(page))
1893 md->swapcache++;
1894
1895 if (PageActive(page))
1896 md->active++;
1897
1898 if (PageWriteback(page))
1899 md->writeback++;
1900
1901 if (PageAnon(page))
1902 md->anon++;
1903
1904 if (count > md->mapcount_max)
1905 md->mapcount_max = count;
1906
1907 md->node[page_to_nid(page)]++;
1908 }
1909
1910 #ifdef CONFIG_HUGETLB_PAGE
1911 static void check_huge_range(struct vm_area_struct *vma,
1912 unsigned long start, unsigned long end,
1913 struct numa_maps *md)
1914 {
1915 unsigned long addr;
1916 struct page *page;
1917
1918 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1919 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1920 pte_t pte;
1921
1922 if (!ptep)
1923 continue;
1924
1925 pte = *ptep;
1926 if (pte_none(pte))
1927 continue;
1928
1929 page = pte_page(pte);
1930 if (!page)
1931 continue;
1932
1933 gather_stats(page, md, pte_dirty(*ptep));
1934 }
1935 }
1936 #else
1937 static inline void check_huge_range(struct vm_area_struct *vma,
1938 unsigned long start, unsigned long end,
1939 struct numa_maps *md)
1940 {
1941 }
1942 #endif
1943
1944 int show_numa_map(struct seq_file *m, void *v)
1945 {
1946 struct proc_maps_private *priv = m->private;
1947 struct vm_area_struct *vma = v;
1948 struct numa_maps *md;
1949 struct file *file = vma->vm_file;
1950 struct mm_struct *mm = vma->vm_mm;
1951 struct mempolicy *pol;
1952 int n;
1953 char buffer[50];
1954
1955 if (!mm)
1956 return 0;
1957
1958 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1959 if (!md)
1960 return 0;
1961
1962 pol = get_vma_policy(priv->task, vma, vma->vm_start);
1963 mpol_to_str(buffer, sizeof(buffer), pol);
1964 /*
1965 * unref shared or other task's mempolicy
1966 */
1967 if (pol != &default_policy && pol != current->mempolicy)
1968 __mpol_free(pol);
1969
1970 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1971
1972 if (file) {
1973 seq_printf(m, " file=");
1974 seq_path(m, &file->f_path, "\n\t= ");
1975 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1976 seq_printf(m, " heap");
1977 } else if (vma->vm_start <= mm->start_stack &&
1978 vma->vm_end >= mm->start_stack) {
1979 seq_printf(m, " stack");
1980 }
1981
1982 if (is_vm_hugetlb_page(vma)) {
1983 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1984 seq_printf(m, " huge");
1985 } else {
1986 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1987 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
1988 }
1989
1990 if (!md->pages)
1991 goto out;
1992
1993 if (md->anon)
1994 seq_printf(m," anon=%lu",md->anon);
1995
1996 if (md->dirty)
1997 seq_printf(m," dirty=%lu",md->dirty);
1998
1999 if (md->pages != md->anon && md->pages != md->dirty)
2000 seq_printf(m, " mapped=%lu", md->pages);
2001
2002 if (md->mapcount_max > 1)
2003 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2004
2005 if (md->swapcache)
2006 seq_printf(m," swapcache=%lu", md->swapcache);
2007
2008 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2009 seq_printf(m," active=%lu", md->active);
2010
2011 if (md->writeback)
2012 seq_printf(m," writeback=%lu", md->writeback);
2013
2014 for_each_node_state(n, N_HIGH_MEMORY)
2015 if (md->node[n])
2016 seq_printf(m, " N%d=%lu", n, md->node[n]);
2017 out:
2018 seq_putc(m, '\n');
2019 kfree(md);
2020
2021 if (m->count < m->size)
2022 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2023 return 0;
2024 }