]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
mm/migrate.c: check pagelist in move_pages_and_store_status()
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 unsigned long start;
414 unsigned long end;
415 struct vm_area_struct *first;
416 };
417
418 /*
419 * Check if the page's nid is in qp->nmask.
420 *
421 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
422 * in the invert of qp->nmask.
423 */
424 static inline bool queue_pages_required(struct page *page,
425 struct queue_pages *qp)
426 {
427 int nid = page_to_nid(page);
428 unsigned long flags = qp->flags;
429
430 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
431 }
432
433 /*
434 * queue_pages_pmd() has four possible return values:
435 * 0 - pages are placed on the right node or queued successfully.
436 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
437 * specified.
438 * 2 - THP was split.
439 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
440 * existing page was already on a node that does not follow the
441 * policy.
442 */
443 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
444 unsigned long end, struct mm_walk *walk)
445 {
446 int ret = 0;
447 struct page *page;
448 struct queue_pages *qp = walk->private;
449 unsigned long flags;
450
451 if (unlikely(is_pmd_migration_entry(*pmd))) {
452 ret = -EIO;
453 goto unlock;
454 }
455 page = pmd_page(*pmd);
456 if (is_huge_zero_page(page)) {
457 spin_unlock(ptl);
458 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
459 ret = 2;
460 goto out;
461 }
462 if (!queue_pages_required(page, qp))
463 goto unlock;
464
465 flags = qp->flags;
466 /* go to thp migration */
467 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
468 if (!vma_migratable(walk->vma) ||
469 migrate_page_add(page, qp->pagelist, flags)) {
470 ret = 1;
471 goto unlock;
472 }
473 } else
474 ret = -EIO;
475 unlock:
476 spin_unlock(ptl);
477 out:
478 return ret;
479 }
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 *
485 * queue_pages_pte_range() has three possible return values:
486 * 0 - pages are placed on the right node or queued successfully.
487 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
488 * specified.
489 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
490 * on a node that does not follow the policy.
491 */
492 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
493 unsigned long end, struct mm_walk *walk)
494 {
495 struct vm_area_struct *vma = walk->vma;
496 struct page *page;
497 struct queue_pages *qp = walk->private;
498 unsigned long flags = qp->flags;
499 int ret;
500 bool has_unmovable = false;
501 pte_t *pte;
502 spinlock_t *ptl;
503
504 ptl = pmd_trans_huge_lock(pmd, vma);
505 if (ptl) {
506 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
507 if (ret != 2)
508 return ret;
509 }
510 /* THP was split, fall through to pte walk */
511
512 if (pmd_trans_unstable(pmd))
513 return 0;
514
515 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
516 for (; addr != end; pte++, addr += PAGE_SIZE) {
517 if (!pte_present(*pte))
518 continue;
519 page = vm_normal_page(vma, addr, *pte);
520 if (!page)
521 continue;
522 /*
523 * vm_normal_page() filters out zero pages, but there might
524 * still be PageReserved pages to skip, perhaps in a VDSO.
525 */
526 if (PageReserved(page))
527 continue;
528 if (!queue_pages_required(page, qp))
529 continue;
530 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
531 /* MPOL_MF_STRICT must be specified if we get here */
532 if (!vma_migratable(vma)) {
533 has_unmovable = true;
534 break;
535 }
536
537 /*
538 * Do not abort immediately since there may be
539 * temporary off LRU pages in the range. Still
540 * need migrate other LRU pages.
541 */
542 if (migrate_page_add(page, qp->pagelist, flags))
543 has_unmovable = true;
544 } else
545 break;
546 }
547 pte_unmap_unlock(pte - 1, ptl);
548 cond_resched();
549
550 if (has_unmovable)
551 return 1;
552
553 return addr != end ? -EIO : 0;
554 }
555
556 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
557 unsigned long addr, unsigned long end,
558 struct mm_walk *walk)
559 {
560 int ret = 0;
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = (qp->flags & MPOL_MF_VALID);
564 struct page *page;
565 spinlock_t *ptl;
566 pte_t entry;
567
568 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
569 entry = huge_ptep_get(pte);
570 if (!pte_present(entry))
571 goto unlock;
572 page = pte_page(entry);
573 if (!queue_pages_required(page, qp))
574 goto unlock;
575
576 if (flags == MPOL_MF_STRICT) {
577 /*
578 * STRICT alone means only detecting misplaced page and no
579 * need to further check other vma.
580 */
581 ret = -EIO;
582 goto unlock;
583 }
584
585 if (!vma_migratable(walk->vma)) {
586 /*
587 * Must be STRICT with MOVE*, otherwise .test_walk() have
588 * stopped walking current vma.
589 * Detecting misplaced page but allow migrating pages which
590 * have been queued.
591 */
592 ret = 1;
593 goto unlock;
594 }
595
596 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
597 if (flags & (MPOL_MF_MOVE_ALL) ||
598 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
599 if (!isolate_huge_page(page, qp->pagelist) &&
600 (flags & MPOL_MF_STRICT))
601 /*
602 * Failed to isolate page but allow migrating pages
603 * which have been queued.
604 */
605 ret = 1;
606 }
607 unlock:
608 spin_unlock(ptl);
609 #else
610 BUG();
611 #endif
612 return ret;
613 }
614
615 #ifdef CONFIG_NUMA_BALANCING
616 /*
617 * This is used to mark a range of virtual addresses to be inaccessible.
618 * These are later cleared by a NUMA hinting fault. Depending on these
619 * faults, pages may be migrated for better NUMA placement.
620 *
621 * This is assuming that NUMA faults are handled using PROT_NONE. If
622 * an architecture makes a different choice, it will need further
623 * changes to the core.
624 */
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 unsigned long addr, unsigned long end)
627 {
628 int nr_updated;
629
630 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
631 if (nr_updated)
632 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
633
634 return nr_updated;
635 }
636 #else
637 static unsigned long change_prot_numa(struct vm_area_struct *vma,
638 unsigned long addr, unsigned long end)
639 {
640 return 0;
641 }
642 #endif /* CONFIG_NUMA_BALANCING */
643
644 static int queue_pages_test_walk(unsigned long start, unsigned long end,
645 struct mm_walk *walk)
646 {
647 struct vm_area_struct *vma = walk->vma;
648 struct queue_pages *qp = walk->private;
649 unsigned long endvma = vma->vm_end;
650 unsigned long flags = qp->flags;
651
652 /* range check first */
653 VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
654
655 if (!qp->first) {
656 qp->first = vma;
657 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
658 (qp->start < vma->vm_start))
659 /* hole at head side of range */
660 return -EFAULT;
661 }
662 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
663 ((vma->vm_end < qp->end) &&
664 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
665 /* hole at middle or tail of range */
666 return -EFAULT;
667
668 /*
669 * Need check MPOL_MF_STRICT to return -EIO if possible
670 * regardless of vma_migratable
671 */
672 if (!vma_migratable(vma) &&
673 !(flags & MPOL_MF_STRICT))
674 return 1;
675
676 if (endvma > end)
677 endvma = end;
678
679 if (flags & MPOL_MF_LAZY) {
680 /* Similar to task_numa_work, skip inaccessible VMAs */
681 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
682 !(vma->vm_flags & VM_MIXEDMAP))
683 change_prot_numa(vma, start, endvma);
684 return 1;
685 }
686
687 /* queue pages from current vma */
688 if (flags & MPOL_MF_VALID)
689 return 0;
690 return 1;
691 }
692
693 static const struct mm_walk_ops queue_pages_walk_ops = {
694 .hugetlb_entry = queue_pages_hugetlb,
695 .pmd_entry = queue_pages_pte_range,
696 .test_walk = queue_pages_test_walk,
697 };
698
699 /*
700 * Walk through page tables and collect pages to be migrated.
701 *
702 * If pages found in a given range are on a set of nodes (determined by
703 * @nodes and @flags,) it's isolated and queued to the pagelist which is
704 * passed via @private.
705 *
706 * queue_pages_range() has three possible return values:
707 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
708 * specified.
709 * 0 - queue pages successfully or no misplaced page.
710 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
711 * memory range specified by nodemask and maxnode points outside
712 * your accessible address space (-EFAULT)
713 */
714 static int
715 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
716 nodemask_t *nodes, unsigned long flags,
717 struct list_head *pagelist)
718 {
719 int err;
720 struct queue_pages qp = {
721 .pagelist = pagelist,
722 .flags = flags,
723 .nmask = nodes,
724 .start = start,
725 .end = end,
726 .first = NULL,
727 };
728
729 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
730
731 if (!qp.first)
732 /* whole range in hole */
733 err = -EFAULT;
734
735 return err;
736 }
737
738 /*
739 * Apply policy to a single VMA
740 * This must be called with the mmap_sem held for writing.
741 */
742 static int vma_replace_policy(struct vm_area_struct *vma,
743 struct mempolicy *pol)
744 {
745 int err;
746 struct mempolicy *old;
747 struct mempolicy *new;
748
749 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
750 vma->vm_start, vma->vm_end, vma->vm_pgoff,
751 vma->vm_ops, vma->vm_file,
752 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
753
754 new = mpol_dup(pol);
755 if (IS_ERR(new))
756 return PTR_ERR(new);
757
758 if (vma->vm_ops && vma->vm_ops->set_policy) {
759 err = vma->vm_ops->set_policy(vma, new);
760 if (err)
761 goto err_out;
762 }
763
764 old = vma->vm_policy;
765 vma->vm_policy = new; /* protected by mmap_sem */
766 mpol_put(old);
767
768 return 0;
769 err_out:
770 mpol_put(new);
771 return err;
772 }
773
774 /* Step 2: apply policy to a range and do splits. */
775 static int mbind_range(struct mm_struct *mm, unsigned long start,
776 unsigned long end, struct mempolicy *new_pol)
777 {
778 struct vm_area_struct *next;
779 struct vm_area_struct *prev;
780 struct vm_area_struct *vma;
781 int err = 0;
782 pgoff_t pgoff;
783 unsigned long vmstart;
784 unsigned long vmend;
785
786 vma = find_vma(mm, start);
787 VM_BUG_ON(!vma);
788
789 prev = vma->vm_prev;
790 if (start > vma->vm_start)
791 prev = vma;
792
793 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
794 next = vma->vm_next;
795 vmstart = max(start, vma->vm_start);
796 vmend = min(end, vma->vm_end);
797
798 if (mpol_equal(vma_policy(vma), new_pol))
799 continue;
800
801 pgoff = vma->vm_pgoff +
802 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
803 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
804 vma->anon_vma, vma->vm_file, pgoff,
805 new_pol, vma->vm_userfaultfd_ctx);
806 if (prev) {
807 vma = prev;
808 next = vma->vm_next;
809 if (mpol_equal(vma_policy(vma), new_pol))
810 continue;
811 /* vma_merge() joined vma && vma->next, case 8 */
812 goto replace;
813 }
814 if (vma->vm_start != vmstart) {
815 err = split_vma(vma->vm_mm, vma, vmstart, 1);
816 if (err)
817 goto out;
818 }
819 if (vma->vm_end != vmend) {
820 err = split_vma(vma->vm_mm, vma, vmend, 0);
821 if (err)
822 goto out;
823 }
824 replace:
825 err = vma_replace_policy(vma, new_pol);
826 if (err)
827 goto out;
828 }
829
830 out:
831 return err;
832 }
833
834 /* Set the process memory policy */
835 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
836 nodemask_t *nodes)
837 {
838 struct mempolicy *new, *old;
839 NODEMASK_SCRATCH(scratch);
840 int ret;
841
842 if (!scratch)
843 return -ENOMEM;
844
845 new = mpol_new(mode, flags, nodes);
846 if (IS_ERR(new)) {
847 ret = PTR_ERR(new);
848 goto out;
849 }
850
851 task_lock(current);
852 ret = mpol_set_nodemask(new, nodes, scratch);
853 if (ret) {
854 task_unlock(current);
855 mpol_put(new);
856 goto out;
857 }
858 old = current->mempolicy;
859 current->mempolicy = new;
860 if (new && new->mode == MPOL_INTERLEAVE)
861 current->il_prev = MAX_NUMNODES-1;
862 task_unlock(current);
863 mpol_put(old);
864 ret = 0;
865 out:
866 NODEMASK_SCRATCH_FREE(scratch);
867 return ret;
868 }
869
870 /*
871 * Return nodemask for policy for get_mempolicy() query
872 *
873 * Called with task's alloc_lock held
874 */
875 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
876 {
877 nodes_clear(*nodes);
878 if (p == &default_policy)
879 return;
880
881 switch (p->mode) {
882 case MPOL_BIND:
883 /* Fall through */
884 case MPOL_INTERLEAVE:
885 *nodes = p->v.nodes;
886 break;
887 case MPOL_PREFERRED:
888 if (!(p->flags & MPOL_F_LOCAL))
889 node_set(p->v.preferred_node, *nodes);
890 /* else return empty node mask for local allocation */
891 break;
892 default:
893 BUG();
894 }
895 }
896
897 static int lookup_node(struct mm_struct *mm, unsigned long addr)
898 {
899 struct page *p;
900 int err;
901
902 int locked = 1;
903 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
904 if (err >= 0) {
905 err = page_to_nid(p);
906 put_page(p);
907 }
908 if (locked)
909 up_read(&mm->mmap_sem);
910 return err;
911 }
912
913 /* Retrieve NUMA policy */
914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
915 unsigned long addr, unsigned long flags)
916 {
917 int err;
918 struct mm_struct *mm = current->mm;
919 struct vm_area_struct *vma = NULL;
920 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
921
922 if (flags &
923 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
924 return -EINVAL;
925
926 if (flags & MPOL_F_MEMS_ALLOWED) {
927 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
928 return -EINVAL;
929 *policy = 0; /* just so it's initialized */
930 task_lock(current);
931 *nmask = cpuset_current_mems_allowed;
932 task_unlock(current);
933 return 0;
934 }
935
936 if (flags & MPOL_F_ADDR) {
937 /*
938 * Do NOT fall back to task policy if the
939 * vma/shared policy at addr is NULL. We
940 * want to return MPOL_DEFAULT in this case.
941 */
942 down_read(&mm->mmap_sem);
943 vma = find_vma_intersection(mm, addr, addr+1);
944 if (!vma) {
945 up_read(&mm->mmap_sem);
946 return -EFAULT;
947 }
948 if (vma->vm_ops && vma->vm_ops->get_policy)
949 pol = vma->vm_ops->get_policy(vma, addr);
950 else
951 pol = vma->vm_policy;
952 } else if (addr)
953 return -EINVAL;
954
955 if (!pol)
956 pol = &default_policy; /* indicates default behavior */
957
958 if (flags & MPOL_F_NODE) {
959 if (flags & MPOL_F_ADDR) {
960 /*
961 * Take a refcount on the mpol, lookup_node()
962 * wil drop the mmap_sem, so after calling
963 * lookup_node() only "pol" remains valid, "vma"
964 * is stale.
965 */
966 pol_refcount = pol;
967 vma = NULL;
968 mpol_get(pol);
969 err = lookup_node(mm, addr);
970 if (err < 0)
971 goto out;
972 *policy = err;
973 } else if (pol == current->mempolicy &&
974 pol->mode == MPOL_INTERLEAVE) {
975 *policy = next_node_in(current->il_prev, pol->v.nodes);
976 } else {
977 err = -EINVAL;
978 goto out;
979 }
980 } else {
981 *policy = pol == &default_policy ? MPOL_DEFAULT :
982 pol->mode;
983 /*
984 * Internal mempolicy flags must be masked off before exposing
985 * the policy to userspace.
986 */
987 *policy |= (pol->flags & MPOL_MODE_FLAGS);
988 }
989
990 err = 0;
991 if (nmask) {
992 if (mpol_store_user_nodemask(pol)) {
993 *nmask = pol->w.user_nodemask;
994 } else {
995 task_lock(current);
996 get_policy_nodemask(pol, nmask);
997 task_unlock(current);
998 }
999 }
1000
1001 out:
1002 mpol_cond_put(pol);
1003 if (vma)
1004 up_read(&mm->mmap_sem);
1005 if (pol_refcount)
1006 mpol_put(pol_refcount);
1007 return err;
1008 }
1009
1010 #ifdef CONFIG_MIGRATION
1011 /*
1012 * page migration, thp tail pages can be passed.
1013 */
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1016 {
1017 struct page *head = compound_head(page);
1018 /*
1019 * Avoid migrating a page that is shared with others.
1020 */
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022 if (!isolate_lru_page(head)) {
1023 list_add_tail(&head->lru, pagelist);
1024 mod_node_page_state(page_pgdat(head),
1025 NR_ISOLATED_ANON + page_is_file_cache(head),
1026 hpage_nr_pages(head));
1027 } else if (flags & MPOL_MF_STRICT) {
1028 /*
1029 * Non-movable page may reach here. And, there may be
1030 * temporary off LRU pages or non-LRU movable pages.
1031 * Treat them as unmovable pages since they can't be
1032 * isolated, so they can't be moved at the moment. It
1033 * should return -EIO for this case too.
1034 */
1035 return -EIO;
1036 }
1037 }
1038
1039 return 0;
1040 }
1041
1042 /* page allocation callback for NUMA node migration */
1043 struct page *alloc_new_node_page(struct page *page, unsigned long node)
1044 {
1045 if (PageHuge(page))
1046 return alloc_huge_page_node(page_hstate(compound_head(page)),
1047 node);
1048 else if (PageTransHuge(page)) {
1049 struct page *thp;
1050
1051 thp = alloc_pages_node(node,
1052 (GFP_TRANSHUGE | __GFP_THISNODE),
1053 HPAGE_PMD_ORDER);
1054 if (!thp)
1055 return NULL;
1056 prep_transhuge_page(thp);
1057 return thp;
1058 } else
1059 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1060 __GFP_THISNODE, 0);
1061 }
1062
1063 /*
1064 * Migrate pages from one node to a target node.
1065 * Returns error or the number of pages not migrated.
1066 */
1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1068 int flags)
1069 {
1070 nodemask_t nmask;
1071 LIST_HEAD(pagelist);
1072 int err = 0;
1073
1074 nodes_clear(nmask);
1075 node_set(source, nmask);
1076
1077 /*
1078 * This does not "check" the range but isolates all pages that
1079 * need migration. Between passing in the full user address
1080 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1081 */
1082 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1083 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1084 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1085
1086 if (!list_empty(&pagelist)) {
1087 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1088 MIGRATE_SYNC, MR_SYSCALL);
1089 if (err)
1090 putback_movable_pages(&pagelist);
1091 }
1092
1093 return err;
1094 }
1095
1096 /*
1097 * Move pages between the two nodesets so as to preserve the physical
1098 * layout as much as possible.
1099 *
1100 * Returns the number of page that could not be moved.
1101 */
1102 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1103 const nodemask_t *to, int flags)
1104 {
1105 int busy = 0;
1106 int err;
1107 nodemask_t tmp;
1108
1109 err = migrate_prep();
1110 if (err)
1111 return err;
1112
1113 down_read(&mm->mmap_sem);
1114
1115 /*
1116 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1117 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1118 * bit in 'tmp', and return that <source, dest> pair for migration.
1119 * The pair of nodemasks 'to' and 'from' define the map.
1120 *
1121 * If no pair of bits is found that way, fallback to picking some
1122 * pair of 'source' and 'dest' bits that are not the same. If the
1123 * 'source' and 'dest' bits are the same, this represents a node
1124 * that will be migrating to itself, so no pages need move.
1125 *
1126 * If no bits are left in 'tmp', or if all remaining bits left
1127 * in 'tmp' correspond to the same bit in 'to', return false
1128 * (nothing left to migrate).
1129 *
1130 * This lets us pick a pair of nodes to migrate between, such that
1131 * if possible the dest node is not already occupied by some other
1132 * source node, minimizing the risk of overloading the memory on a
1133 * node that would happen if we migrated incoming memory to a node
1134 * before migrating outgoing memory source that same node.
1135 *
1136 * A single scan of tmp is sufficient. As we go, we remember the
1137 * most recent <s, d> pair that moved (s != d). If we find a pair
1138 * that not only moved, but what's better, moved to an empty slot
1139 * (d is not set in tmp), then we break out then, with that pair.
1140 * Otherwise when we finish scanning from_tmp, we at least have the
1141 * most recent <s, d> pair that moved. If we get all the way through
1142 * the scan of tmp without finding any node that moved, much less
1143 * moved to an empty node, then there is nothing left worth migrating.
1144 */
1145
1146 tmp = *from;
1147 while (!nodes_empty(tmp)) {
1148 int s,d;
1149 int source = NUMA_NO_NODE;
1150 int dest = 0;
1151
1152 for_each_node_mask(s, tmp) {
1153
1154 /*
1155 * do_migrate_pages() tries to maintain the relative
1156 * node relationship of the pages established between
1157 * threads and memory areas.
1158 *
1159 * However if the number of source nodes is not equal to
1160 * the number of destination nodes we can not preserve
1161 * this node relative relationship. In that case, skip
1162 * copying memory from a node that is in the destination
1163 * mask.
1164 *
1165 * Example: [2,3,4] -> [3,4,5] moves everything.
1166 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1167 */
1168
1169 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1170 (node_isset(s, *to)))
1171 continue;
1172
1173 d = node_remap(s, *from, *to);
1174 if (s == d)
1175 continue;
1176
1177 source = s; /* Node moved. Memorize */
1178 dest = d;
1179
1180 /* dest not in remaining from nodes? */
1181 if (!node_isset(dest, tmp))
1182 break;
1183 }
1184 if (source == NUMA_NO_NODE)
1185 break;
1186
1187 node_clear(source, tmp);
1188 err = migrate_to_node(mm, source, dest, flags);
1189 if (err > 0)
1190 busy += err;
1191 if (err < 0)
1192 break;
1193 }
1194 up_read(&mm->mmap_sem);
1195 if (err < 0)
1196 return err;
1197 return busy;
1198
1199 }
1200
1201 /*
1202 * Allocate a new page for page migration based on vma policy.
1203 * Start by assuming the page is mapped by the same vma as contains @start.
1204 * Search forward from there, if not. N.B., this assumes that the
1205 * list of pages handed to migrate_pages()--which is how we get here--
1206 * is in virtual address order.
1207 */
1208 static struct page *new_page(struct page *page, unsigned long start)
1209 {
1210 struct vm_area_struct *vma;
1211 unsigned long uninitialized_var(address);
1212
1213 vma = find_vma(current->mm, start);
1214 while (vma) {
1215 address = page_address_in_vma(page, vma);
1216 if (address != -EFAULT)
1217 break;
1218 vma = vma->vm_next;
1219 }
1220
1221 if (PageHuge(page)) {
1222 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1223 vma, address);
1224 } else if (PageTransHuge(page)) {
1225 struct page *thp;
1226
1227 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1228 HPAGE_PMD_ORDER);
1229 if (!thp)
1230 return NULL;
1231 prep_transhuge_page(thp);
1232 return thp;
1233 }
1234 /*
1235 * if !vma, alloc_page_vma() will use task or system default policy
1236 */
1237 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1238 vma, address);
1239 }
1240 #else
1241
1242 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1243 unsigned long flags)
1244 {
1245 return -EIO;
1246 }
1247
1248 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1249 const nodemask_t *to, int flags)
1250 {
1251 return -ENOSYS;
1252 }
1253
1254 static struct page *new_page(struct page *page, unsigned long start)
1255 {
1256 return NULL;
1257 }
1258 #endif
1259
1260 static long do_mbind(unsigned long start, unsigned long len,
1261 unsigned short mode, unsigned short mode_flags,
1262 nodemask_t *nmask, unsigned long flags)
1263 {
1264 struct mm_struct *mm = current->mm;
1265 struct mempolicy *new;
1266 unsigned long end;
1267 int err;
1268 int ret;
1269 LIST_HEAD(pagelist);
1270
1271 if (flags & ~(unsigned long)MPOL_MF_VALID)
1272 return -EINVAL;
1273 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1274 return -EPERM;
1275
1276 if (start & ~PAGE_MASK)
1277 return -EINVAL;
1278
1279 if (mode == MPOL_DEFAULT)
1280 flags &= ~MPOL_MF_STRICT;
1281
1282 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1283 end = start + len;
1284
1285 if (end < start)
1286 return -EINVAL;
1287 if (end == start)
1288 return 0;
1289
1290 new = mpol_new(mode, mode_flags, nmask);
1291 if (IS_ERR(new))
1292 return PTR_ERR(new);
1293
1294 if (flags & MPOL_MF_LAZY)
1295 new->flags |= MPOL_F_MOF;
1296
1297 /*
1298 * If we are using the default policy then operation
1299 * on discontinuous address spaces is okay after all
1300 */
1301 if (!new)
1302 flags |= MPOL_MF_DISCONTIG_OK;
1303
1304 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1305 start, start + len, mode, mode_flags,
1306 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1307
1308 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1309
1310 err = migrate_prep();
1311 if (err)
1312 goto mpol_out;
1313 }
1314 {
1315 NODEMASK_SCRATCH(scratch);
1316 if (scratch) {
1317 down_write(&mm->mmap_sem);
1318 task_lock(current);
1319 err = mpol_set_nodemask(new, nmask, scratch);
1320 task_unlock(current);
1321 if (err)
1322 up_write(&mm->mmap_sem);
1323 } else
1324 err = -ENOMEM;
1325 NODEMASK_SCRATCH_FREE(scratch);
1326 }
1327 if (err)
1328 goto mpol_out;
1329
1330 ret = queue_pages_range(mm, start, end, nmask,
1331 flags | MPOL_MF_INVERT, &pagelist);
1332
1333 if (ret < 0) {
1334 err = ret;
1335 goto up_out;
1336 }
1337
1338 err = mbind_range(mm, start, end, new);
1339
1340 if (!err) {
1341 int nr_failed = 0;
1342
1343 if (!list_empty(&pagelist)) {
1344 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1345 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1346 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1347 if (nr_failed)
1348 putback_movable_pages(&pagelist);
1349 }
1350
1351 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1352 err = -EIO;
1353 } else {
1354 up_out:
1355 if (!list_empty(&pagelist))
1356 putback_movable_pages(&pagelist);
1357 }
1358
1359 up_write(&mm->mmap_sem);
1360 mpol_out:
1361 mpol_put(new);
1362 return err;
1363 }
1364
1365 /*
1366 * User space interface with variable sized bitmaps for nodelists.
1367 */
1368
1369 /* Copy a node mask from user space. */
1370 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1371 unsigned long maxnode)
1372 {
1373 unsigned long k;
1374 unsigned long t;
1375 unsigned long nlongs;
1376 unsigned long endmask;
1377
1378 --maxnode;
1379 nodes_clear(*nodes);
1380 if (maxnode == 0 || !nmask)
1381 return 0;
1382 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1383 return -EINVAL;
1384
1385 nlongs = BITS_TO_LONGS(maxnode);
1386 if ((maxnode % BITS_PER_LONG) == 0)
1387 endmask = ~0UL;
1388 else
1389 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1390
1391 /*
1392 * When the user specified more nodes than supported just check
1393 * if the non supported part is all zero.
1394 *
1395 * If maxnode have more longs than MAX_NUMNODES, check
1396 * the bits in that area first. And then go through to
1397 * check the rest bits which equal or bigger than MAX_NUMNODES.
1398 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1399 */
1400 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1401 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1402 if (get_user(t, nmask + k))
1403 return -EFAULT;
1404 if (k == nlongs - 1) {
1405 if (t & endmask)
1406 return -EINVAL;
1407 } else if (t)
1408 return -EINVAL;
1409 }
1410 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1411 endmask = ~0UL;
1412 }
1413
1414 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1415 unsigned long valid_mask = endmask;
1416
1417 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1418 if (get_user(t, nmask + nlongs - 1))
1419 return -EFAULT;
1420 if (t & valid_mask)
1421 return -EINVAL;
1422 }
1423
1424 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1425 return -EFAULT;
1426 nodes_addr(*nodes)[nlongs-1] &= endmask;
1427 return 0;
1428 }
1429
1430 /* Copy a kernel node mask to user space */
1431 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1432 nodemask_t *nodes)
1433 {
1434 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1435 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1436
1437 if (copy > nbytes) {
1438 if (copy > PAGE_SIZE)
1439 return -EINVAL;
1440 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1441 return -EFAULT;
1442 copy = nbytes;
1443 }
1444 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1445 }
1446
1447 static long kernel_mbind(unsigned long start, unsigned long len,
1448 unsigned long mode, const unsigned long __user *nmask,
1449 unsigned long maxnode, unsigned int flags)
1450 {
1451 nodemask_t nodes;
1452 int err;
1453 unsigned short mode_flags;
1454
1455 start = untagged_addr(start);
1456 mode_flags = mode & MPOL_MODE_FLAGS;
1457 mode &= ~MPOL_MODE_FLAGS;
1458 if (mode >= MPOL_MAX)
1459 return -EINVAL;
1460 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1461 (mode_flags & MPOL_F_RELATIVE_NODES))
1462 return -EINVAL;
1463 err = get_nodes(&nodes, nmask, maxnode);
1464 if (err)
1465 return err;
1466 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1467 }
1468
1469 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1470 unsigned long, mode, const unsigned long __user *, nmask,
1471 unsigned long, maxnode, unsigned int, flags)
1472 {
1473 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1474 }
1475
1476 /* Set the process memory policy */
1477 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1478 unsigned long maxnode)
1479 {
1480 int err;
1481 nodemask_t nodes;
1482 unsigned short flags;
1483
1484 flags = mode & MPOL_MODE_FLAGS;
1485 mode &= ~MPOL_MODE_FLAGS;
1486 if ((unsigned int)mode >= MPOL_MAX)
1487 return -EINVAL;
1488 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1489 return -EINVAL;
1490 err = get_nodes(&nodes, nmask, maxnode);
1491 if (err)
1492 return err;
1493 return do_set_mempolicy(mode, flags, &nodes);
1494 }
1495
1496 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1497 unsigned long, maxnode)
1498 {
1499 return kernel_set_mempolicy(mode, nmask, maxnode);
1500 }
1501
1502 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1503 const unsigned long __user *old_nodes,
1504 const unsigned long __user *new_nodes)
1505 {
1506 struct mm_struct *mm = NULL;
1507 struct task_struct *task;
1508 nodemask_t task_nodes;
1509 int err;
1510 nodemask_t *old;
1511 nodemask_t *new;
1512 NODEMASK_SCRATCH(scratch);
1513
1514 if (!scratch)
1515 return -ENOMEM;
1516
1517 old = &scratch->mask1;
1518 new = &scratch->mask2;
1519
1520 err = get_nodes(old, old_nodes, maxnode);
1521 if (err)
1522 goto out;
1523
1524 err = get_nodes(new, new_nodes, maxnode);
1525 if (err)
1526 goto out;
1527
1528 /* Find the mm_struct */
1529 rcu_read_lock();
1530 task = pid ? find_task_by_vpid(pid) : current;
1531 if (!task) {
1532 rcu_read_unlock();
1533 err = -ESRCH;
1534 goto out;
1535 }
1536 get_task_struct(task);
1537
1538 err = -EINVAL;
1539
1540 /*
1541 * Check if this process has the right to modify the specified process.
1542 * Use the regular "ptrace_may_access()" checks.
1543 */
1544 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1545 rcu_read_unlock();
1546 err = -EPERM;
1547 goto out_put;
1548 }
1549 rcu_read_unlock();
1550
1551 task_nodes = cpuset_mems_allowed(task);
1552 /* Is the user allowed to access the target nodes? */
1553 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1554 err = -EPERM;
1555 goto out_put;
1556 }
1557
1558 task_nodes = cpuset_mems_allowed(current);
1559 nodes_and(*new, *new, task_nodes);
1560 if (nodes_empty(*new))
1561 goto out_put;
1562
1563 err = security_task_movememory(task);
1564 if (err)
1565 goto out_put;
1566
1567 mm = get_task_mm(task);
1568 put_task_struct(task);
1569
1570 if (!mm) {
1571 err = -EINVAL;
1572 goto out;
1573 }
1574
1575 err = do_migrate_pages(mm, old, new,
1576 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1577
1578 mmput(mm);
1579 out:
1580 NODEMASK_SCRATCH_FREE(scratch);
1581
1582 return err;
1583
1584 out_put:
1585 put_task_struct(task);
1586 goto out;
1587
1588 }
1589
1590 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1591 const unsigned long __user *, old_nodes,
1592 const unsigned long __user *, new_nodes)
1593 {
1594 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1595 }
1596
1597
1598 /* Retrieve NUMA policy */
1599 static int kernel_get_mempolicy(int __user *policy,
1600 unsigned long __user *nmask,
1601 unsigned long maxnode,
1602 unsigned long addr,
1603 unsigned long flags)
1604 {
1605 int err;
1606 int uninitialized_var(pval);
1607 nodemask_t nodes;
1608
1609 addr = untagged_addr(addr);
1610
1611 if (nmask != NULL && maxnode < nr_node_ids)
1612 return -EINVAL;
1613
1614 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1615
1616 if (err)
1617 return err;
1618
1619 if (policy && put_user(pval, policy))
1620 return -EFAULT;
1621
1622 if (nmask)
1623 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1624
1625 return err;
1626 }
1627
1628 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1629 unsigned long __user *, nmask, unsigned long, maxnode,
1630 unsigned long, addr, unsigned long, flags)
1631 {
1632 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1633 }
1634
1635 #ifdef CONFIG_COMPAT
1636
1637 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1638 compat_ulong_t __user *, nmask,
1639 compat_ulong_t, maxnode,
1640 compat_ulong_t, addr, compat_ulong_t, flags)
1641 {
1642 long err;
1643 unsigned long __user *nm = NULL;
1644 unsigned long nr_bits, alloc_size;
1645 DECLARE_BITMAP(bm, MAX_NUMNODES);
1646
1647 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1648 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1649
1650 if (nmask)
1651 nm = compat_alloc_user_space(alloc_size);
1652
1653 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1654
1655 if (!err && nmask) {
1656 unsigned long copy_size;
1657 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1658 err = copy_from_user(bm, nm, copy_size);
1659 /* ensure entire bitmap is zeroed */
1660 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1661 err |= compat_put_bitmap(nmask, bm, nr_bits);
1662 }
1663
1664 return err;
1665 }
1666
1667 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1668 compat_ulong_t, maxnode)
1669 {
1670 unsigned long __user *nm = NULL;
1671 unsigned long nr_bits, alloc_size;
1672 DECLARE_BITMAP(bm, MAX_NUMNODES);
1673
1674 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1675 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1676
1677 if (nmask) {
1678 if (compat_get_bitmap(bm, nmask, nr_bits))
1679 return -EFAULT;
1680 nm = compat_alloc_user_space(alloc_size);
1681 if (copy_to_user(nm, bm, alloc_size))
1682 return -EFAULT;
1683 }
1684
1685 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1686 }
1687
1688 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1689 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1690 compat_ulong_t, maxnode, compat_ulong_t, flags)
1691 {
1692 unsigned long __user *nm = NULL;
1693 unsigned long nr_bits, alloc_size;
1694 nodemask_t bm;
1695
1696 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1697 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1698
1699 if (nmask) {
1700 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1701 return -EFAULT;
1702 nm = compat_alloc_user_space(alloc_size);
1703 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1704 return -EFAULT;
1705 }
1706
1707 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1708 }
1709
1710 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1711 compat_ulong_t, maxnode,
1712 const compat_ulong_t __user *, old_nodes,
1713 const compat_ulong_t __user *, new_nodes)
1714 {
1715 unsigned long __user *old = NULL;
1716 unsigned long __user *new = NULL;
1717 nodemask_t tmp_mask;
1718 unsigned long nr_bits;
1719 unsigned long size;
1720
1721 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1722 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1723 if (old_nodes) {
1724 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1725 return -EFAULT;
1726 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1727 if (new_nodes)
1728 new = old + size / sizeof(unsigned long);
1729 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1730 return -EFAULT;
1731 }
1732 if (new_nodes) {
1733 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1734 return -EFAULT;
1735 if (new == NULL)
1736 new = compat_alloc_user_space(size);
1737 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1738 return -EFAULT;
1739 }
1740 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1741 }
1742
1743 #endif /* CONFIG_COMPAT */
1744
1745 bool vma_migratable(struct vm_area_struct *vma)
1746 {
1747 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1748 return false;
1749
1750 /*
1751 * DAX device mappings require predictable access latency, so avoid
1752 * incurring periodic faults.
1753 */
1754 if (vma_is_dax(vma))
1755 return false;
1756
1757 if (is_vm_hugetlb_page(vma) &&
1758 !hugepage_migration_supported(hstate_vma(vma)))
1759 return false;
1760
1761 /*
1762 * Migration allocates pages in the highest zone. If we cannot
1763 * do so then migration (at least from node to node) is not
1764 * possible.
1765 */
1766 if (vma->vm_file &&
1767 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1768 < policy_zone)
1769 return false;
1770 return true;
1771 }
1772
1773 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1774 unsigned long addr)
1775 {
1776 struct mempolicy *pol = NULL;
1777
1778 if (vma) {
1779 if (vma->vm_ops && vma->vm_ops->get_policy) {
1780 pol = vma->vm_ops->get_policy(vma, addr);
1781 } else if (vma->vm_policy) {
1782 pol = vma->vm_policy;
1783
1784 /*
1785 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1786 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1787 * count on these policies which will be dropped by
1788 * mpol_cond_put() later
1789 */
1790 if (mpol_needs_cond_ref(pol))
1791 mpol_get(pol);
1792 }
1793 }
1794
1795 return pol;
1796 }
1797
1798 /*
1799 * get_vma_policy(@vma, @addr)
1800 * @vma: virtual memory area whose policy is sought
1801 * @addr: address in @vma for shared policy lookup
1802 *
1803 * Returns effective policy for a VMA at specified address.
1804 * Falls back to current->mempolicy or system default policy, as necessary.
1805 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1806 * count--added by the get_policy() vm_op, as appropriate--to protect against
1807 * freeing by another task. It is the caller's responsibility to free the
1808 * extra reference for shared policies.
1809 */
1810 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1811 unsigned long addr)
1812 {
1813 struct mempolicy *pol = __get_vma_policy(vma, addr);
1814
1815 if (!pol)
1816 pol = get_task_policy(current);
1817
1818 return pol;
1819 }
1820
1821 bool vma_policy_mof(struct vm_area_struct *vma)
1822 {
1823 struct mempolicy *pol;
1824
1825 if (vma->vm_ops && vma->vm_ops->get_policy) {
1826 bool ret = false;
1827
1828 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1829 if (pol && (pol->flags & MPOL_F_MOF))
1830 ret = true;
1831 mpol_cond_put(pol);
1832
1833 return ret;
1834 }
1835
1836 pol = vma->vm_policy;
1837 if (!pol)
1838 pol = get_task_policy(current);
1839
1840 return pol->flags & MPOL_F_MOF;
1841 }
1842
1843 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1844 {
1845 enum zone_type dynamic_policy_zone = policy_zone;
1846
1847 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1848
1849 /*
1850 * if policy->v.nodes has movable memory only,
1851 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1852 *
1853 * policy->v.nodes is intersect with node_states[N_MEMORY].
1854 * so if the following test faile, it implies
1855 * policy->v.nodes has movable memory only.
1856 */
1857 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1858 dynamic_policy_zone = ZONE_MOVABLE;
1859
1860 return zone >= dynamic_policy_zone;
1861 }
1862
1863 /*
1864 * Return a nodemask representing a mempolicy for filtering nodes for
1865 * page allocation
1866 */
1867 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1868 {
1869 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1870 if (unlikely(policy->mode == MPOL_BIND) &&
1871 apply_policy_zone(policy, gfp_zone(gfp)) &&
1872 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1873 return &policy->v.nodes;
1874
1875 return NULL;
1876 }
1877
1878 /* Return the node id preferred by the given mempolicy, or the given id */
1879 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1880 int nd)
1881 {
1882 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1883 nd = policy->v.preferred_node;
1884 else {
1885 /*
1886 * __GFP_THISNODE shouldn't even be used with the bind policy
1887 * because we might easily break the expectation to stay on the
1888 * requested node and not break the policy.
1889 */
1890 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1891 }
1892
1893 return nd;
1894 }
1895
1896 /* Do dynamic interleaving for a process */
1897 static unsigned interleave_nodes(struct mempolicy *policy)
1898 {
1899 unsigned next;
1900 struct task_struct *me = current;
1901
1902 next = next_node_in(me->il_prev, policy->v.nodes);
1903 if (next < MAX_NUMNODES)
1904 me->il_prev = next;
1905 return next;
1906 }
1907
1908 /*
1909 * Depending on the memory policy provide a node from which to allocate the
1910 * next slab entry.
1911 */
1912 unsigned int mempolicy_slab_node(void)
1913 {
1914 struct mempolicy *policy;
1915 int node = numa_mem_id();
1916
1917 if (in_interrupt())
1918 return node;
1919
1920 policy = current->mempolicy;
1921 if (!policy || policy->flags & MPOL_F_LOCAL)
1922 return node;
1923
1924 switch (policy->mode) {
1925 case MPOL_PREFERRED:
1926 /*
1927 * handled MPOL_F_LOCAL above
1928 */
1929 return policy->v.preferred_node;
1930
1931 case MPOL_INTERLEAVE:
1932 return interleave_nodes(policy);
1933
1934 case MPOL_BIND: {
1935 struct zoneref *z;
1936
1937 /*
1938 * Follow bind policy behavior and start allocation at the
1939 * first node.
1940 */
1941 struct zonelist *zonelist;
1942 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1943 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1944 z = first_zones_zonelist(zonelist, highest_zoneidx,
1945 &policy->v.nodes);
1946 return z->zone ? zone_to_nid(z->zone) : node;
1947 }
1948
1949 default:
1950 BUG();
1951 }
1952 }
1953
1954 /*
1955 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1956 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1957 * number of present nodes.
1958 */
1959 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1960 {
1961 unsigned nnodes = nodes_weight(pol->v.nodes);
1962 unsigned target;
1963 int i;
1964 int nid;
1965
1966 if (!nnodes)
1967 return numa_node_id();
1968 target = (unsigned int)n % nnodes;
1969 nid = first_node(pol->v.nodes);
1970 for (i = 0; i < target; i++)
1971 nid = next_node(nid, pol->v.nodes);
1972 return nid;
1973 }
1974
1975 /* Determine a node number for interleave */
1976 static inline unsigned interleave_nid(struct mempolicy *pol,
1977 struct vm_area_struct *vma, unsigned long addr, int shift)
1978 {
1979 if (vma) {
1980 unsigned long off;
1981
1982 /*
1983 * for small pages, there is no difference between
1984 * shift and PAGE_SHIFT, so the bit-shift is safe.
1985 * for huge pages, since vm_pgoff is in units of small
1986 * pages, we need to shift off the always 0 bits to get
1987 * a useful offset.
1988 */
1989 BUG_ON(shift < PAGE_SHIFT);
1990 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1991 off += (addr - vma->vm_start) >> shift;
1992 return offset_il_node(pol, off);
1993 } else
1994 return interleave_nodes(pol);
1995 }
1996
1997 #ifdef CONFIG_HUGETLBFS
1998 /*
1999 * huge_node(@vma, @addr, @gfp_flags, @mpol)
2000 * @vma: virtual memory area whose policy is sought
2001 * @addr: address in @vma for shared policy lookup and interleave policy
2002 * @gfp_flags: for requested zone
2003 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2004 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2005 *
2006 * Returns a nid suitable for a huge page allocation and a pointer
2007 * to the struct mempolicy for conditional unref after allocation.
2008 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2009 * @nodemask for filtering the zonelist.
2010 *
2011 * Must be protected by read_mems_allowed_begin()
2012 */
2013 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2014 struct mempolicy **mpol, nodemask_t **nodemask)
2015 {
2016 int nid;
2017
2018 *mpol = get_vma_policy(vma, addr);
2019 *nodemask = NULL; /* assume !MPOL_BIND */
2020
2021 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2022 nid = interleave_nid(*mpol, vma, addr,
2023 huge_page_shift(hstate_vma(vma)));
2024 } else {
2025 nid = policy_node(gfp_flags, *mpol, numa_node_id());
2026 if ((*mpol)->mode == MPOL_BIND)
2027 *nodemask = &(*mpol)->v.nodes;
2028 }
2029 return nid;
2030 }
2031
2032 /*
2033 * init_nodemask_of_mempolicy
2034 *
2035 * If the current task's mempolicy is "default" [NULL], return 'false'
2036 * to indicate default policy. Otherwise, extract the policy nodemask
2037 * for 'bind' or 'interleave' policy into the argument nodemask, or
2038 * initialize the argument nodemask to contain the single node for
2039 * 'preferred' or 'local' policy and return 'true' to indicate presence
2040 * of non-default mempolicy.
2041 *
2042 * We don't bother with reference counting the mempolicy [mpol_get/put]
2043 * because the current task is examining it's own mempolicy and a task's
2044 * mempolicy is only ever changed by the task itself.
2045 *
2046 * N.B., it is the caller's responsibility to free a returned nodemask.
2047 */
2048 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2049 {
2050 struct mempolicy *mempolicy;
2051 int nid;
2052
2053 if (!(mask && current->mempolicy))
2054 return false;
2055
2056 task_lock(current);
2057 mempolicy = current->mempolicy;
2058 switch (mempolicy->mode) {
2059 case MPOL_PREFERRED:
2060 if (mempolicy->flags & MPOL_F_LOCAL)
2061 nid = numa_node_id();
2062 else
2063 nid = mempolicy->v.preferred_node;
2064 init_nodemask_of_node(mask, nid);
2065 break;
2066
2067 case MPOL_BIND:
2068 /* Fall through */
2069 case MPOL_INTERLEAVE:
2070 *mask = mempolicy->v.nodes;
2071 break;
2072
2073 default:
2074 BUG();
2075 }
2076 task_unlock(current);
2077
2078 return true;
2079 }
2080 #endif
2081
2082 /*
2083 * mempolicy_nodemask_intersects
2084 *
2085 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086 * policy. Otherwise, check for intersection between mask and the policy
2087 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
2088 * policy, always return true since it may allocate elsewhere on fallback.
2089 *
2090 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2091 */
2092 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2093 const nodemask_t *mask)
2094 {
2095 struct mempolicy *mempolicy;
2096 bool ret = true;
2097
2098 if (!mask)
2099 return ret;
2100 task_lock(tsk);
2101 mempolicy = tsk->mempolicy;
2102 if (!mempolicy)
2103 goto out;
2104
2105 switch (mempolicy->mode) {
2106 case MPOL_PREFERRED:
2107 /*
2108 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 * allocate from, they may fallback to other nodes when oom.
2110 * Thus, it's possible for tsk to have allocated memory from
2111 * nodes in mask.
2112 */
2113 break;
2114 case MPOL_BIND:
2115 case MPOL_INTERLEAVE:
2116 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2117 break;
2118 default:
2119 BUG();
2120 }
2121 out:
2122 task_unlock(tsk);
2123 return ret;
2124 }
2125
2126 /* Allocate a page in interleaved policy.
2127 Own path because it needs to do special accounting. */
2128 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2129 unsigned nid)
2130 {
2131 struct page *page;
2132
2133 page = __alloc_pages(gfp, order, nid);
2134 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 if (!static_branch_likely(&vm_numa_stat_key))
2136 return page;
2137 if (page && page_to_nid(page) == nid) {
2138 preempt_disable();
2139 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2140 preempt_enable();
2141 }
2142 return page;
2143 }
2144
2145 /**
2146 * alloc_pages_vma - Allocate a page for a VMA.
2147 *
2148 * @gfp:
2149 * %GFP_USER user allocation.
2150 * %GFP_KERNEL kernel allocations,
2151 * %GFP_HIGHMEM highmem/user allocations,
2152 * %GFP_FS allocation should not call back into a file system.
2153 * %GFP_ATOMIC don't sleep.
2154 *
2155 * @order:Order of the GFP allocation.
2156 * @vma: Pointer to VMA or NULL if not available.
2157 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2158 * @node: Which node to prefer for allocation (modulo policy).
2159 * @hugepage: for hugepages try only the preferred node if possible
2160 *
2161 * This function allocates a page from the kernel page pool and applies
2162 * a NUMA policy associated with the VMA or the current process.
2163 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2164 * mm_struct of the VMA to prevent it from going away. Should be used for
2165 * all allocations for pages that will be mapped into user space. Returns
2166 * NULL when no page can be allocated.
2167 */
2168 struct page *
2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 unsigned long addr, int node, bool hugepage)
2171 {
2172 struct mempolicy *pol;
2173 struct page *page;
2174 int preferred_nid;
2175 nodemask_t *nmask;
2176
2177 pol = get_vma_policy(vma, addr);
2178
2179 if (pol->mode == MPOL_INTERLEAVE) {
2180 unsigned nid;
2181
2182 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2183 mpol_cond_put(pol);
2184 page = alloc_page_interleave(gfp, order, nid);
2185 goto out;
2186 }
2187
2188 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2189 int hpage_node = node;
2190
2191 /*
2192 * For hugepage allocation and non-interleave policy which
2193 * allows the current node (or other explicitly preferred
2194 * node) we only try to allocate from the current/preferred
2195 * node and don't fall back to other nodes, as the cost of
2196 * remote accesses would likely offset THP benefits.
2197 *
2198 * If the policy is interleave, or does not allow the current
2199 * node in its nodemask, we allocate the standard way.
2200 */
2201 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2202 hpage_node = pol->v.preferred_node;
2203
2204 nmask = policy_nodemask(gfp, pol);
2205 if (!nmask || node_isset(hpage_node, *nmask)) {
2206 mpol_cond_put(pol);
2207 /*
2208 * First, try to allocate THP only on local node, but
2209 * don't reclaim unnecessarily, just compact.
2210 */
2211 page = __alloc_pages_node(hpage_node,
2212 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2213
2214 /*
2215 * If hugepage allocations are configured to always
2216 * synchronous compact or the vma has been madvised
2217 * to prefer hugepage backing, retry allowing remote
2218 * memory with both reclaim and compact as well.
2219 */
2220 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2221 page = __alloc_pages_node(hpage_node,
2222 gfp, order);
2223
2224 goto out;
2225 }
2226 }
2227
2228 nmask = policy_nodemask(gfp, pol);
2229 preferred_nid = policy_node(gfp, pol, node);
2230 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2231 mpol_cond_put(pol);
2232 out:
2233 return page;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_vma);
2236
2237 /**
2238 * alloc_pages_current - Allocate pages.
2239 *
2240 * @gfp:
2241 * %GFP_USER user allocation,
2242 * %GFP_KERNEL kernel allocation,
2243 * %GFP_HIGHMEM highmem allocation,
2244 * %GFP_FS don't call back into a file system.
2245 * %GFP_ATOMIC don't sleep.
2246 * @order: Power of two of allocation size in pages. 0 is a single page.
2247 *
2248 * Allocate a page from the kernel page pool. When not in
2249 * interrupt context and apply the current process NUMA policy.
2250 * Returns NULL when no page can be allocated.
2251 */
2252 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2253 {
2254 struct mempolicy *pol = &default_policy;
2255 struct page *page;
2256
2257 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 pol = get_task_policy(current);
2259
2260 /*
2261 * No reference counting needed for current->mempolicy
2262 * nor system default_policy
2263 */
2264 if (pol->mode == MPOL_INTERLEAVE)
2265 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 else
2267 page = __alloc_pages_nodemask(gfp, order,
2268 policy_node(gfp, pol, numa_node_id()),
2269 policy_nodemask(gfp, pol));
2270
2271 return page;
2272 }
2273 EXPORT_SYMBOL(alloc_pages_current);
2274
2275 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2276 {
2277 struct mempolicy *pol = mpol_dup(vma_policy(src));
2278
2279 if (IS_ERR(pol))
2280 return PTR_ERR(pol);
2281 dst->vm_policy = pol;
2282 return 0;
2283 }
2284
2285 /*
2286 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288 * with the mems_allowed returned by cpuset_mems_allowed(). This
2289 * keeps mempolicies cpuset relative after its cpuset moves. See
2290 * further kernel/cpuset.c update_nodemask().
2291 *
2292 * current's mempolicy may be rebinded by the other task(the task that changes
2293 * cpuset's mems), so we needn't do rebind work for current task.
2294 */
2295
2296 /* Slow path of a mempolicy duplicate */
2297 struct mempolicy *__mpol_dup(struct mempolicy *old)
2298 {
2299 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2300
2301 if (!new)
2302 return ERR_PTR(-ENOMEM);
2303
2304 /* task's mempolicy is protected by alloc_lock */
2305 if (old == current->mempolicy) {
2306 task_lock(current);
2307 *new = *old;
2308 task_unlock(current);
2309 } else
2310 *new = *old;
2311
2312 if (current_cpuset_is_being_rebound()) {
2313 nodemask_t mems = cpuset_mems_allowed(current);
2314 mpol_rebind_policy(new, &mems);
2315 }
2316 atomic_set(&new->refcnt, 1);
2317 return new;
2318 }
2319
2320 /* Slow path of a mempolicy comparison */
2321 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2322 {
2323 if (!a || !b)
2324 return false;
2325 if (a->mode != b->mode)
2326 return false;
2327 if (a->flags != b->flags)
2328 return false;
2329 if (mpol_store_user_nodemask(a))
2330 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2331 return false;
2332
2333 switch (a->mode) {
2334 case MPOL_BIND:
2335 /* Fall through */
2336 case MPOL_INTERLEAVE:
2337 return !!nodes_equal(a->v.nodes, b->v.nodes);
2338 case MPOL_PREFERRED:
2339 /* a's ->flags is the same as b's */
2340 if (a->flags & MPOL_F_LOCAL)
2341 return true;
2342 return a->v.preferred_node == b->v.preferred_node;
2343 default:
2344 BUG();
2345 return false;
2346 }
2347 }
2348
2349 /*
2350 * Shared memory backing store policy support.
2351 *
2352 * Remember policies even when nobody has shared memory mapped.
2353 * The policies are kept in Red-Black tree linked from the inode.
2354 * They are protected by the sp->lock rwlock, which should be held
2355 * for any accesses to the tree.
2356 */
2357
2358 /*
2359 * lookup first element intersecting start-end. Caller holds sp->lock for
2360 * reading or for writing
2361 */
2362 static struct sp_node *
2363 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2364 {
2365 struct rb_node *n = sp->root.rb_node;
2366
2367 while (n) {
2368 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2369
2370 if (start >= p->end)
2371 n = n->rb_right;
2372 else if (end <= p->start)
2373 n = n->rb_left;
2374 else
2375 break;
2376 }
2377 if (!n)
2378 return NULL;
2379 for (;;) {
2380 struct sp_node *w = NULL;
2381 struct rb_node *prev = rb_prev(n);
2382 if (!prev)
2383 break;
2384 w = rb_entry(prev, struct sp_node, nd);
2385 if (w->end <= start)
2386 break;
2387 n = prev;
2388 }
2389 return rb_entry(n, struct sp_node, nd);
2390 }
2391
2392 /*
2393 * Insert a new shared policy into the list. Caller holds sp->lock for
2394 * writing.
2395 */
2396 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2397 {
2398 struct rb_node **p = &sp->root.rb_node;
2399 struct rb_node *parent = NULL;
2400 struct sp_node *nd;
2401
2402 while (*p) {
2403 parent = *p;
2404 nd = rb_entry(parent, struct sp_node, nd);
2405 if (new->start < nd->start)
2406 p = &(*p)->rb_left;
2407 else if (new->end > nd->end)
2408 p = &(*p)->rb_right;
2409 else
2410 BUG();
2411 }
2412 rb_link_node(&new->nd, parent, p);
2413 rb_insert_color(&new->nd, &sp->root);
2414 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2415 new->policy ? new->policy->mode : 0);
2416 }
2417
2418 /* Find shared policy intersecting idx */
2419 struct mempolicy *
2420 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2421 {
2422 struct mempolicy *pol = NULL;
2423 struct sp_node *sn;
2424
2425 if (!sp->root.rb_node)
2426 return NULL;
2427 read_lock(&sp->lock);
2428 sn = sp_lookup(sp, idx, idx+1);
2429 if (sn) {
2430 mpol_get(sn->policy);
2431 pol = sn->policy;
2432 }
2433 read_unlock(&sp->lock);
2434 return pol;
2435 }
2436
2437 static void sp_free(struct sp_node *n)
2438 {
2439 mpol_put(n->policy);
2440 kmem_cache_free(sn_cache, n);
2441 }
2442
2443 /**
2444 * mpol_misplaced - check whether current page node is valid in policy
2445 *
2446 * @page: page to be checked
2447 * @vma: vm area where page mapped
2448 * @addr: virtual address where page mapped
2449 *
2450 * Lookup current policy node id for vma,addr and "compare to" page's
2451 * node id.
2452 *
2453 * Returns:
2454 * -1 - not misplaced, page is in the right node
2455 * node - node id where the page should be
2456 *
2457 * Policy determination "mimics" alloc_page_vma().
2458 * Called from fault path where we know the vma and faulting address.
2459 */
2460 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2461 {
2462 struct mempolicy *pol;
2463 struct zoneref *z;
2464 int curnid = page_to_nid(page);
2465 unsigned long pgoff;
2466 int thiscpu = raw_smp_processor_id();
2467 int thisnid = cpu_to_node(thiscpu);
2468 int polnid = NUMA_NO_NODE;
2469 int ret = -1;
2470
2471 pol = get_vma_policy(vma, addr);
2472 if (!(pol->flags & MPOL_F_MOF))
2473 goto out;
2474
2475 switch (pol->mode) {
2476 case MPOL_INTERLEAVE:
2477 pgoff = vma->vm_pgoff;
2478 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2479 polnid = offset_il_node(pol, pgoff);
2480 break;
2481
2482 case MPOL_PREFERRED:
2483 if (pol->flags & MPOL_F_LOCAL)
2484 polnid = numa_node_id();
2485 else
2486 polnid = pol->v.preferred_node;
2487 break;
2488
2489 case MPOL_BIND:
2490
2491 /*
2492 * allows binding to multiple nodes.
2493 * use current page if in policy nodemask,
2494 * else select nearest allowed node, if any.
2495 * If no allowed nodes, use current [!misplaced].
2496 */
2497 if (node_isset(curnid, pol->v.nodes))
2498 goto out;
2499 z = first_zones_zonelist(
2500 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2501 gfp_zone(GFP_HIGHUSER),
2502 &pol->v.nodes);
2503 polnid = zone_to_nid(z->zone);
2504 break;
2505
2506 default:
2507 BUG();
2508 }
2509
2510 /* Migrate the page towards the node whose CPU is referencing it */
2511 if (pol->flags & MPOL_F_MORON) {
2512 polnid = thisnid;
2513
2514 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2515 goto out;
2516 }
2517
2518 if (curnid != polnid)
2519 ret = polnid;
2520 out:
2521 mpol_cond_put(pol);
2522
2523 return ret;
2524 }
2525
2526 /*
2527 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2528 * dropped after task->mempolicy is set to NULL so that any allocation done as
2529 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2530 * policy.
2531 */
2532 void mpol_put_task_policy(struct task_struct *task)
2533 {
2534 struct mempolicy *pol;
2535
2536 task_lock(task);
2537 pol = task->mempolicy;
2538 task->mempolicy = NULL;
2539 task_unlock(task);
2540 mpol_put(pol);
2541 }
2542
2543 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2544 {
2545 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2546 rb_erase(&n->nd, &sp->root);
2547 sp_free(n);
2548 }
2549
2550 static void sp_node_init(struct sp_node *node, unsigned long start,
2551 unsigned long end, struct mempolicy *pol)
2552 {
2553 node->start = start;
2554 node->end = end;
2555 node->policy = pol;
2556 }
2557
2558 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2559 struct mempolicy *pol)
2560 {
2561 struct sp_node *n;
2562 struct mempolicy *newpol;
2563
2564 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2565 if (!n)
2566 return NULL;
2567
2568 newpol = mpol_dup(pol);
2569 if (IS_ERR(newpol)) {
2570 kmem_cache_free(sn_cache, n);
2571 return NULL;
2572 }
2573 newpol->flags |= MPOL_F_SHARED;
2574 sp_node_init(n, start, end, newpol);
2575
2576 return n;
2577 }
2578
2579 /* Replace a policy range. */
2580 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2581 unsigned long end, struct sp_node *new)
2582 {
2583 struct sp_node *n;
2584 struct sp_node *n_new = NULL;
2585 struct mempolicy *mpol_new = NULL;
2586 int ret = 0;
2587
2588 restart:
2589 write_lock(&sp->lock);
2590 n = sp_lookup(sp, start, end);
2591 /* Take care of old policies in the same range. */
2592 while (n && n->start < end) {
2593 struct rb_node *next = rb_next(&n->nd);
2594 if (n->start >= start) {
2595 if (n->end <= end)
2596 sp_delete(sp, n);
2597 else
2598 n->start = end;
2599 } else {
2600 /* Old policy spanning whole new range. */
2601 if (n->end > end) {
2602 if (!n_new)
2603 goto alloc_new;
2604
2605 *mpol_new = *n->policy;
2606 atomic_set(&mpol_new->refcnt, 1);
2607 sp_node_init(n_new, end, n->end, mpol_new);
2608 n->end = start;
2609 sp_insert(sp, n_new);
2610 n_new = NULL;
2611 mpol_new = NULL;
2612 break;
2613 } else
2614 n->end = start;
2615 }
2616 if (!next)
2617 break;
2618 n = rb_entry(next, struct sp_node, nd);
2619 }
2620 if (new)
2621 sp_insert(sp, new);
2622 write_unlock(&sp->lock);
2623 ret = 0;
2624
2625 err_out:
2626 if (mpol_new)
2627 mpol_put(mpol_new);
2628 if (n_new)
2629 kmem_cache_free(sn_cache, n_new);
2630
2631 return ret;
2632
2633 alloc_new:
2634 write_unlock(&sp->lock);
2635 ret = -ENOMEM;
2636 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2637 if (!n_new)
2638 goto err_out;
2639 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2640 if (!mpol_new)
2641 goto err_out;
2642 goto restart;
2643 }
2644
2645 /**
2646 * mpol_shared_policy_init - initialize shared policy for inode
2647 * @sp: pointer to inode shared policy
2648 * @mpol: struct mempolicy to install
2649 *
2650 * Install non-NULL @mpol in inode's shared policy rb-tree.
2651 * On entry, the current task has a reference on a non-NULL @mpol.
2652 * This must be released on exit.
2653 * This is called at get_inode() calls and we can use GFP_KERNEL.
2654 */
2655 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2656 {
2657 int ret;
2658
2659 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2660 rwlock_init(&sp->lock);
2661
2662 if (mpol) {
2663 struct vm_area_struct pvma;
2664 struct mempolicy *new;
2665 NODEMASK_SCRATCH(scratch);
2666
2667 if (!scratch)
2668 goto put_mpol;
2669 /* contextualize the tmpfs mount point mempolicy */
2670 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2671 if (IS_ERR(new))
2672 goto free_scratch; /* no valid nodemask intersection */
2673
2674 task_lock(current);
2675 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2676 task_unlock(current);
2677 if (ret)
2678 goto put_new;
2679
2680 /* Create pseudo-vma that contains just the policy */
2681 vma_init(&pvma, NULL);
2682 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2683 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2684
2685 put_new:
2686 mpol_put(new); /* drop initial ref */
2687 free_scratch:
2688 NODEMASK_SCRATCH_FREE(scratch);
2689 put_mpol:
2690 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2691 }
2692 }
2693
2694 int mpol_set_shared_policy(struct shared_policy *info,
2695 struct vm_area_struct *vma, struct mempolicy *npol)
2696 {
2697 int err;
2698 struct sp_node *new = NULL;
2699 unsigned long sz = vma_pages(vma);
2700
2701 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2702 vma->vm_pgoff,
2703 sz, npol ? npol->mode : -1,
2704 npol ? npol->flags : -1,
2705 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2706
2707 if (npol) {
2708 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2709 if (!new)
2710 return -ENOMEM;
2711 }
2712 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2713 if (err && new)
2714 sp_free(new);
2715 return err;
2716 }
2717
2718 /* Free a backing policy store on inode delete. */
2719 void mpol_free_shared_policy(struct shared_policy *p)
2720 {
2721 struct sp_node *n;
2722 struct rb_node *next;
2723
2724 if (!p->root.rb_node)
2725 return;
2726 write_lock(&p->lock);
2727 next = rb_first(&p->root);
2728 while (next) {
2729 n = rb_entry(next, struct sp_node, nd);
2730 next = rb_next(&n->nd);
2731 sp_delete(p, n);
2732 }
2733 write_unlock(&p->lock);
2734 }
2735
2736 #ifdef CONFIG_NUMA_BALANCING
2737 static int __initdata numabalancing_override;
2738
2739 static void __init check_numabalancing_enable(void)
2740 {
2741 bool numabalancing_default = false;
2742
2743 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2744 numabalancing_default = true;
2745
2746 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2747 if (numabalancing_override)
2748 set_numabalancing_state(numabalancing_override == 1);
2749
2750 if (num_online_nodes() > 1 && !numabalancing_override) {
2751 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2752 numabalancing_default ? "Enabling" : "Disabling");
2753 set_numabalancing_state(numabalancing_default);
2754 }
2755 }
2756
2757 static int __init setup_numabalancing(char *str)
2758 {
2759 int ret = 0;
2760 if (!str)
2761 goto out;
2762
2763 if (!strcmp(str, "enable")) {
2764 numabalancing_override = 1;
2765 ret = 1;
2766 } else if (!strcmp(str, "disable")) {
2767 numabalancing_override = -1;
2768 ret = 1;
2769 }
2770 out:
2771 if (!ret)
2772 pr_warn("Unable to parse numa_balancing=\n");
2773
2774 return ret;
2775 }
2776 __setup("numa_balancing=", setup_numabalancing);
2777 #else
2778 static inline void __init check_numabalancing_enable(void)
2779 {
2780 }
2781 #endif /* CONFIG_NUMA_BALANCING */
2782
2783 /* assumes fs == KERNEL_DS */
2784 void __init numa_policy_init(void)
2785 {
2786 nodemask_t interleave_nodes;
2787 unsigned long largest = 0;
2788 int nid, prefer = 0;
2789
2790 policy_cache = kmem_cache_create("numa_policy",
2791 sizeof(struct mempolicy),
2792 0, SLAB_PANIC, NULL);
2793
2794 sn_cache = kmem_cache_create("shared_policy_node",
2795 sizeof(struct sp_node),
2796 0, SLAB_PANIC, NULL);
2797
2798 for_each_node(nid) {
2799 preferred_node_policy[nid] = (struct mempolicy) {
2800 .refcnt = ATOMIC_INIT(1),
2801 .mode = MPOL_PREFERRED,
2802 .flags = MPOL_F_MOF | MPOL_F_MORON,
2803 .v = { .preferred_node = nid, },
2804 };
2805 }
2806
2807 /*
2808 * Set interleaving policy for system init. Interleaving is only
2809 * enabled across suitably sized nodes (default is >= 16MB), or
2810 * fall back to the largest node if they're all smaller.
2811 */
2812 nodes_clear(interleave_nodes);
2813 for_each_node_state(nid, N_MEMORY) {
2814 unsigned long total_pages = node_present_pages(nid);
2815
2816 /* Preserve the largest node */
2817 if (largest < total_pages) {
2818 largest = total_pages;
2819 prefer = nid;
2820 }
2821
2822 /* Interleave this node? */
2823 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2824 node_set(nid, interleave_nodes);
2825 }
2826
2827 /* All too small, use the largest */
2828 if (unlikely(nodes_empty(interleave_nodes)))
2829 node_set(prefer, interleave_nodes);
2830
2831 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2832 pr_err("%s: interleaving failed\n", __func__);
2833
2834 check_numabalancing_enable();
2835 }
2836
2837 /* Reset policy of current process to default */
2838 void numa_default_policy(void)
2839 {
2840 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2841 }
2842
2843 /*
2844 * Parse and format mempolicy from/to strings
2845 */
2846
2847 /*
2848 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2849 */
2850 static const char * const policy_modes[] =
2851 {
2852 [MPOL_DEFAULT] = "default",
2853 [MPOL_PREFERRED] = "prefer",
2854 [MPOL_BIND] = "bind",
2855 [MPOL_INTERLEAVE] = "interleave",
2856 [MPOL_LOCAL] = "local",
2857 };
2858
2859
2860 #ifdef CONFIG_TMPFS
2861 /**
2862 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2863 * @str: string containing mempolicy to parse
2864 * @mpol: pointer to struct mempolicy pointer, returned on success.
2865 *
2866 * Format of input:
2867 * <mode>[=<flags>][:<nodelist>]
2868 *
2869 * On success, returns 0, else 1
2870 */
2871 int mpol_parse_str(char *str, struct mempolicy **mpol)
2872 {
2873 struct mempolicy *new = NULL;
2874 unsigned short mode_flags;
2875 nodemask_t nodes;
2876 char *nodelist = strchr(str, ':');
2877 char *flags = strchr(str, '=');
2878 int err = 1, mode;
2879
2880 if (flags)
2881 *flags++ = '\0'; /* terminate mode string */
2882
2883 if (nodelist) {
2884 /* NUL-terminate mode or flags string */
2885 *nodelist++ = '\0';
2886 if (nodelist_parse(nodelist, nodes))
2887 goto out;
2888 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2889 goto out;
2890 } else
2891 nodes_clear(nodes);
2892
2893 mode = match_string(policy_modes, MPOL_MAX, str);
2894 if (mode < 0)
2895 goto out;
2896
2897 switch (mode) {
2898 case MPOL_PREFERRED:
2899 /*
2900 * Insist on a nodelist of one node only, although later
2901 * we use first_node(nodes) to grab a single node, so here
2902 * nodelist (or nodes) cannot be empty.
2903 */
2904 if (nodelist) {
2905 char *rest = nodelist;
2906 while (isdigit(*rest))
2907 rest++;
2908 if (*rest)
2909 goto out;
2910 if (nodes_empty(nodes))
2911 goto out;
2912 }
2913 break;
2914 case MPOL_INTERLEAVE:
2915 /*
2916 * Default to online nodes with memory if no nodelist
2917 */
2918 if (!nodelist)
2919 nodes = node_states[N_MEMORY];
2920 break;
2921 case MPOL_LOCAL:
2922 /*
2923 * Don't allow a nodelist; mpol_new() checks flags
2924 */
2925 if (nodelist)
2926 goto out;
2927 mode = MPOL_PREFERRED;
2928 break;
2929 case MPOL_DEFAULT:
2930 /*
2931 * Insist on a empty nodelist
2932 */
2933 if (!nodelist)
2934 err = 0;
2935 goto out;
2936 case MPOL_BIND:
2937 /*
2938 * Insist on a nodelist
2939 */
2940 if (!nodelist)
2941 goto out;
2942 }
2943
2944 mode_flags = 0;
2945 if (flags) {
2946 /*
2947 * Currently, we only support two mutually exclusive
2948 * mode flags.
2949 */
2950 if (!strcmp(flags, "static"))
2951 mode_flags |= MPOL_F_STATIC_NODES;
2952 else if (!strcmp(flags, "relative"))
2953 mode_flags |= MPOL_F_RELATIVE_NODES;
2954 else
2955 goto out;
2956 }
2957
2958 new = mpol_new(mode, mode_flags, &nodes);
2959 if (IS_ERR(new))
2960 goto out;
2961
2962 /*
2963 * Save nodes for mpol_to_str() to show the tmpfs mount options
2964 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2965 */
2966 if (mode != MPOL_PREFERRED)
2967 new->v.nodes = nodes;
2968 else if (nodelist)
2969 new->v.preferred_node = first_node(nodes);
2970 else
2971 new->flags |= MPOL_F_LOCAL;
2972
2973 /*
2974 * Save nodes for contextualization: this will be used to "clone"
2975 * the mempolicy in a specific context [cpuset] at a later time.
2976 */
2977 new->w.user_nodemask = nodes;
2978
2979 err = 0;
2980
2981 out:
2982 /* Restore string for error message */
2983 if (nodelist)
2984 *--nodelist = ':';
2985 if (flags)
2986 *--flags = '=';
2987 if (!err)
2988 *mpol = new;
2989 return err;
2990 }
2991 #endif /* CONFIG_TMPFS */
2992
2993 /**
2994 * mpol_to_str - format a mempolicy structure for printing
2995 * @buffer: to contain formatted mempolicy string
2996 * @maxlen: length of @buffer
2997 * @pol: pointer to mempolicy to be formatted
2998 *
2999 * Convert @pol into a string. If @buffer is too short, truncate the string.
3000 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3001 * longest flag, "relative", and to display at least a few node ids.
3002 */
3003 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3004 {
3005 char *p = buffer;
3006 nodemask_t nodes = NODE_MASK_NONE;
3007 unsigned short mode = MPOL_DEFAULT;
3008 unsigned short flags = 0;
3009
3010 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3011 mode = pol->mode;
3012 flags = pol->flags;
3013 }
3014
3015 switch (mode) {
3016 case MPOL_DEFAULT:
3017 break;
3018 case MPOL_PREFERRED:
3019 if (flags & MPOL_F_LOCAL)
3020 mode = MPOL_LOCAL;
3021 else
3022 node_set(pol->v.preferred_node, nodes);
3023 break;
3024 case MPOL_BIND:
3025 case MPOL_INTERLEAVE:
3026 nodes = pol->v.nodes;
3027 break;
3028 default:
3029 WARN_ON_ONCE(1);
3030 snprintf(p, maxlen, "unknown");
3031 return;
3032 }
3033
3034 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3035
3036 if (flags & MPOL_MODE_FLAGS) {
3037 p += snprintf(p, buffer + maxlen - p, "=");
3038
3039 /*
3040 * Currently, the only defined flags are mutually exclusive
3041 */
3042 if (flags & MPOL_F_STATIC_NODES)
3043 p += snprintf(p, buffer + maxlen - p, "static");
3044 else if (flags & MPOL_F_RELATIVE_NODES)
3045 p += snprintf(p, buffer + maxlen - p, "relative");
3046 }
3047
3048 if (!nodes_empty(nodes))
3049 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3050 nodemask_pr_args(&nodes));
3051 }