]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
brcmfmac: get rid of extern keyword in wl_cfg80211.h
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97
98 #include "internal.h"
99
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156 }
157
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 return pol->flags & MPOL_MODE_FLAGS;
161 }
162
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165 {
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169 }
170
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177 }
178
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188 }
189
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196 }
197
198 /*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240 }
241
242 /*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248 {
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294 {
295 }
296
297 /*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345 }
346
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350 {
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370 }
371
372 /*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390 {
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412
413 /*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422 {
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425
426 /*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440 }
441
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458 };
459
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468 {
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501 }
502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507 {
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522 }
523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528 {
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542 }
543
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548 {
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562 }
563
564 /*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608 }
609
610 /* Step 2: apply policy to a range and do splits. */
611 static int mbind_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, struct mempolicy *new_pol)
613 {
614 struct vm_area_struct *next;
615 struct vm_area_struct *prev;
616 struct vm_area_struct *vma;
617 int err = 0;
618 pgoff_t pgoff;
619 unsigned long vmstart;
620 unsigned long vmend;
621
622 vma = find_vma(mm, start);
623 if (!vma || vma->vm_start > start)
624 return -EFAULT;
625
626 prev = vma->vm_prev;
627 if (start > vma->vm_start)
628 prev = vma;
629
630 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
631 next = vma->vm_next;
632 vmstart = max(start, vma->vm_start);
633 vmend = min(end, vma->vm_end);
634
635 if (mpol_equal(vma_policy(vma), new_pol))
636 continue;
637
638 pgoff = vma->vm_pgoff +
639 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
640 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
641 vma->anon_vma, vma->vm_file, pgoff,
642 new_pol);
643 if (prev) {
644 vma = prev;
645 next = vma->vm_next;
646 continue;
647 }
648 if (vma->vm_start != vmstart) {
649 err = split_vma(vma->vm_mm, vma, vmstart, 1);
650 if (err)
651 goto out;
652 }
653 if (vma->vm_end != vmend) {
654 err = split_vma(vma->vm_mm, vma, vmend, 0);
655 if (err)
656 goto out;
657 }
658
659 /*
660 * Apply policy to a single VMA. The reference counting of
661 * policy for vma_policy linkages has already been handled by
662 * vma_merge and split_vma as necessary. If this is a shared
663 * policy then ->set_policy will increment the reference count
664 * for an sp node.
665 */
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670 if (vma->vm_ops && vma->vm_ops->set_policy) {
671 err = vma->vm_ops->set_policy(vma, new_pol);
672 if (err)
673 goto out;
674 }
675 }
676
677 out:
678 return err;
679 }
680
681 /*
682 * Update task->flags PF_MEMPOLICY bit: set iff non-default
683 * mempolicy. Allows more rapid checking of this (combined perhaps
684 * with other PF_* flag bits) on memory allocation hot code paths.
685 *
686 * If called from outside this file, the task 'p' should -only- be
687 * a newly forked child not yet visible on the task list, because
688 * manipulating the task flags of a visible task is not safe.
689 *
690 * The above limitation is why this routine has the funny name
691 * mpol_fix_fork_child_flag().
692 *
693 * It is also safe to call this with a task pointer of current,
694 * which the static wrapper mpol_set_task_struct_flag() does,
695 * for use within this file.
696 */
697
698 void mpol_fix_fork_child_flag(struct task_struct *p)
699 {
700 if (p->mempolicy)
701 p->flags |= PF_MEMPOLICY;
702 else
703 p->flags &= ~PF_MEMPOLICY;
704 }
705
706 static void mpol_set_task_struct_flag(void)
707 {
708 mpol_fix_fork_child_flag(current);
709 }
710
711 /* Set the process memory policy */
712 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
713 nodemask_t *nodes)
714 {
715 struct mempolicy *new, *old;
716 struct mm_struct *mm = current->mm;
717 NODEMASK_SCRATCH(scratch);
718 int ret;
719
720 if (!scratch)
721 return -ENOMEM;
722
723 new = mpol_new(mode, flags, nodes);
724 if (IS_ERR(new)) {
725 ret = PTR_ERR(new);
726 goto out;
727 }
728 /*
729 * prevent changing our mempolicy while show_numa_maps()
730 * is using it.
731 * Note: do_set_mempolicy() can be called at init time
732 * with no 'mm'.
733 */
734 if (mm)
735 down_write(&mm->mmap_sem);
736 task_lock(current);
737 ret = mpol_set_nodemask(new, nodes, scratch);
738 if (ret) {
739 task_unlock(current);
740 if (mm)
741 up_write(&mm->mmap_sem);
742 mpol_put(new);
743 goto out;
744 }
745 old = current->mempolicy;
746 current->mempolicy = new;
747 mpol_set_task_struct_flag();
748 if (new && new->mode == MPOL_INTERLEAVE &&
749 nodes_weight(new->v.nodes))
750 current->il_next = first_node(new->v.nodes);
751 task_unlock(current);
752 if (mm)
753 up_write(&mm->mmap_sem);
754
755 mpol_put(old);
756 ret = 0;
757 out:
758 NODEMASK_SCRATCH_FREE(scratch);
759 return ret;
760 }
761
762 /*
763 * Return nodemask for policy for get_mempolicy() query
764 *
765 * Called with task's alloc_lock held
766 */
767 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
768 {
769 nodes_clear(*nodes);
770 if (p == &default_policy)
771 return;
772
773 switch (p->mode) {
774 case MPOL_BIND:
775 /* Fall through */
776 case MPOL_INTERLEAVE:
777 *nodes = p->v.nodes;
778 break;
779 case MPOL_PREFERRED:
780 if (!(p->flags & MPOL_F_LOCAL))
781 node_set(p->v.preferred_node, *nodes);
782 /* else return empty node mask for local allocation */
783 break;
784 default:
785 BUG();
786 }
787 }
788
789 static int lookup_node(struct mm_struct *mm, unsigned long addr)
790 {
791 struct page *p;
792 int err;
793
794 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
795 if (err >= 0) {
796 err = page_to_nid(p);
797 put_page(p);
798 }
799 return err;
800 }
801
802 /* Retrieve NUMA policy */
803 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
804 unsigned long addr, unsigned long flags)
805 {
806 int err;
807 struct mm_struct *mm = current->mm;
808 struct vm_area_struct *vma = NULL;
809 struct mempolicy *pol = current->mempolicy;
810
811 if (flags &
812 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
813 return -EINVAL;
814
815 if (flags & MPOL_F_MEMS_ALLOWED) {
816 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
817 return -EINVAL;
818 *policy = 0; /* just so it's initialized */
819 task_lock(current);
820 *nmask = cpuset_current_mems_allowed;
821 task_unlock(current);
822 return 0;
823 }
824
825 if (flags & MPOL_F_ADDR) {
826 /*
827 * Do NOT fall back to task policy if the
828 * vma/shared policy at addr is NULL. We
829 * want to return MPOL_DEFAULT in this case.
830 */
831 down_read(&mm->mmap_sem);
832 vma = find_vma_intersection(mm, addr, addr+1);
833 if (!vma) {
834 up_read(&mm->mmap_sem);
835 return -EFAULT;
836 }
837 if (vma->vm_ops && vma->vm_ops->get_policy)
838 pol = vma->vm_ops->get_policy(vma, addr);
839 else
840 pol = vma->vm_policy;
841 } else if (addr)
842 return -EINVAL;
843
844 if (!pol)
845 pol = &default_policy; /* indicates default behavior */
846
847 if (flags & MPOL_F_NODE) {
848 if (flags & MPOL_F_ADDR) {
849 err = lookup_node(mm, addr);
850 if (err < 0)
851 goto out;
852 *policy = err;
853 } else if (pol == current->mempolicy &&
854 pol->mode == MPOL_INTERLEAVE) {
855 *policy = current->il_next;
856 } else {
857 err = -EINVAL;
858 goto out;
859 }
860 } else {
861 *policy = pol == &default_policy ? MPOL_DEFAULT :
862 pol->mode;
863 /*
864 * Internal mempolicy flags must be masked off before exposing
865 * the policy to userspace.
866 */
867 *policy |= (pol->flags & MPOL_MODE_FLAGS);
868 }
869
870 if (vma) {
871 up_read(&current->mm->mmap_sem);
872 vma = NULL;
873 }
874
875 err = 0;
876 if (nmask) {
877 if (mpol_store_user_nodemask(pol)) {
878 *nmask = pol->w.user_nodemask;
879 } else {
880 task_lock(current);
881 get_policy_nodemask(pol, nmask);
882 task_unlock(current);
883 }
884 }
885
886 out:
887 mpol_cond_put(pol);
888 if (vma)
889 up_read(&current->mm->mmap_sem);
890 return err;
891 }
892
893 #ifdef CONFIG_MIGRATION
894 /*
895 * page migration
896 */
897 static void migrate_page_add(struct page *page, struct list_head *pagelist,
898 unsigned long flags)
899 {
900 /*
901 * Avoid migrating a page that is shared with others.
902 */
903 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
904 if (!isolate_lru_page(page)) {
905 list_add_tail(&page->lru, pagelist);
906 inc_zone_page_state(page, NR_ISOLATED_ANON +
907 page_is_file_cache(page));
908 }
909 }
910 }
911
912 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
913 {
914 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
915 }
916
917 /*
918 * Migrate pages from one node to a target node.
919 * Returns error or the number of pages not migrated.
920 */
921 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
922 int flags)
923 {
924 nodemask_t nmask;
925 LIST_HEAD(pagelist);
926 int err = 0;
927 struct vm_area_struct *vma;
928
929 nodes_clear(nmask);
930 node_set(source, nmask);
931
932 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
933 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
934 if (IS_ERR(vma))
935 return PTR_ERR(vma);
936
937 if (!list_empty(&pagelist)) {
938 err = migrate_pages(&pagelist, new_node_page, dest,
939 false, MIGRATE_SYNC);
940 if (err)
941 putback_lru_pages(&pagelist);
942 }
943
944 return err;
945 }
946
947 /*
948 * Move pages between the two nodesets so as to preserve the physical
949 * layout as much as possible.
950 *
951 * Returns the number of page that could not be moved.
952 */
953 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
954 const nodemask_t *to, int flags)
955 {
956 int busy = 0;
957 int err;
958 nodemask_t tmp;
959
960 err = migrate_prep();
961 if (err)
962 return err;
963
964 down_read(&mm->mmap_sem);
965
966 err = migrate_vmas(mm, from, to, flags);
967 if (err)
968 goto out;
969
970 /*
971 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
972 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
973 * bit in 'tmp', and return that <source, dest> pair for migration.
974 * The pair of nodemasks 'to' and 'from' define the map.
975 *
976 * If no pair of bits is found that way, fallback to picking some
977 * pair of 'source' and 'dest' bits that are not the same. If the
978 * 'source' and 'dest' bits are the same, this represents a node
979 * that will be migrating to itself, so no pages need move.
980 *
981 * If no bits are left in 'tmp', or if all remaining bits left
982 * in 'tmp' correspond to the same bit in 'to', return false
983 * (nothing left to migrate).
984 *
985 * This lets us pick a pair of nodes to migrate between, such that
986 * if possible the dest node is not already occupied by some other
987 * source node, minimizing the risk of overloading the memory on a
988 * node that would happen if we migrated incoming memory to a node
989 * before migrating outgoing memory source that same node.
990 *
991 * A single scan of tmp is sufficient. As we go, we remember the
992 * most recent <s, d> pair that moved (s != d). If we find a pair
993 * that not only moved, but what's better, moved to an empty slot
994 * (d is not set in tmp), then we break out then, with that pair.
995 * Otherwise when we finish scanning from_tmp, we at least have the
996 * most recent <s, d> pair that moved. If we get all the way through
997 * the scan of tmp without finding any node that moved, much less
998 * moved to an empty node, then there is nothing left worth migrating.
999 */
1000
1001 tmp = *from;
1002 while (!nodes_empty(tmp)) {
1003 int s,d;
1004 int source = -1;
1005 int dest = 0;
1006
1007 for_each_node_mask(s, tmp) {
1008
1009 /*
1010 * do_migrate_pages() tries to maintain the relative
1011 * node relationship of the pages established between
1012 * threads and memory areas.
1013 *
1014 * However if the number of source nodes is not equal to
1015 * the number of destination nodes we can not preserve
1016 * this node relative relationship. In that case, skip
1017 * copying memory from a node that is in the destination
1018 * mask.
1019 *
1020 * Example: [2,3,4] -> [3,4,5] moves everything.
1021 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022 */
1023
1024 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1025 (node_isset(s, *to)))
1026 continue;
1027
1028 d = node_remap(s, *from, *to);
1029 if (s == d)
1030 continue;
1031
1032 source = s; /* Node moved. Memorize */
1033 dest = d;
1034
1035 /* dest not in remaining from nodes? */
1036 if (!node_isset(dest, tmp))
1037 break;
1038 }
1039 if (source == -1)
1040 break;
1041
1042 node_clear(source, tmp);
1043 err = migrate_to_node(mm, source, dest, flags);
1044 if (err > 0)
1045 busy += err;
1046 if (err < 0)
1047 break;
1048 }
1049 out:
1050 up_read(&mm->mmap_sem);
1051 if (err < 0)
1052 return err;
1053 return busy;
1054
1055 }
1056
1057 /*
1058 * Allocate a new page for page migration based on vma policy.
1059 * Start assuming that page is mapped by vma pointed to by @private.
1060 * Search forward from there, if not. N.B., this assumes that the
1061 * list of pages handed to migrate_pages()--which is how we get here--
1062 * is in virtual address order.
1063 */
1064 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1065 {
1066 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1067 unsigned long uninitialized_var(address);
1068
1069 while (vma) {
1070 address = page_address_in_vma(page, vma);
1071 if (address != -EFAULT)
1072 break;
1073 vma = vma->vm_next;
1074 }
1075
1076 /*
1077 * if !vma, alloc_page_vma() will use task or system default policy
1078 */
1079 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1080 }
1081 #else
1082
1083 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1084 unsigned long flags)
1085 {
1086 }
1087
1088 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1089 const nodemask_t *to, int flags)
1090 {
1091 return -ENOSYS;
1092 }
1093
1094 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1095 {
1096 return NULL;
1097 }
1098 #endif
1099
1100 static long do_mbind(unsigned long start, unsigned long len,
1101 unsigned short mode, unsigned short mode_flags,
1102 nodemask_t *nmask, unsigned long flags)
1103 {
1104 struct vm_area_struct *vma;
1105 struct mm_struct *mm = current->mm;
1106 struct mempolicy *new;
1107 unsigned long end;
1108 int err;
1109 LIST_HEAD(pagelist);
1110
1111 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1112 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1113 return -EINVAL;
1114 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1115 return -EPERM;
1116
1117 if (start & ~PAGE_MASK)
1118 return -EINVAL;
1119
1120 if (mode == MPOL_DEFAULT)
1121 flags &= ~MPOL_MF_STRICT;
1122
1123 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1124 end = start + len;
1125
1126 if (end < start)
1127 return -EINVAL;
1128 if (end == start)
1129 return 0;
1130
1131 new = mpol_new(mode, mode_flags, nmask);
1132 if (IS_ERR(new))
1133 return PTR_ERR(new);
1134
1135 /*
1136 * If we are using the default policy then operation
1137 * on discontinuous address spaces is okay after all
1138 */
1139 if (!new)
1140 flags |= MPOL_MF_DISCONTIG_OK;
1141
1142 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1143 start, start + len, mode, mode_flags,
1144 nmask ? nodes_addr(*nmask)[0] : -1);
1145
1146 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1147
1148 err = migrate_prep();
1149 if (err)
1150 goto mpol_out;
1151 }
1152 {
1153 NODEMASK_SCRATCH(scratch);
1154 if (scratch) {
1155 down_write(&mm->mmap_sem);
1156 task_lock(current);
1157 err = mpol_set_nodemask(new, nmask, scratch);
1158 task_unlock(current);
1159 if (err)
1160 up_write(&mm->mmap_sem);
1161 } else
1162 err = -ENOMEM;
1163 NODEMASK_SCRATCH_FREE(scratch);
1164 }
1165 if (err)
1166 goto mpol_out;
1167
1168 vma = check_range(mm, start, end, nmask,
1169 flags | MPOL_MF_INVERT, &pagelist);
1170
1171 err = PTR_ERR(vma);
1172 if (!IS_ERR(vma)) {
1173 int nr_failed = 0;
1174
1175 err = mbind_range(mm, start, end, new);
1176
1177 if (!list_empty(&pagelist)) {
1178 nr_failed = migrate_pages(&pagelist, new_vma_page,
1179 (unsigned long)vma,
1180 false, MIGRATE_SYNC);
1181 if (nr_failed)
1182 putback_lru_pages(&pagelist);
1183 }
1184
1185 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1186 err = -EIO;
1187 } else
1188 putback_lru_pages(&pagelist);
1189
1190 up_write(&mm->mmap_sem);
1191 mpol_out:
1192 mpol_put(new);
1193 return err;
1194 }
1195
1196 /*
1197 * User space interface with variable sized bitmaps for nodelists.
1198 */
1199
1200 /* Copy a node mask from user space. */
1201 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1202 unsigned long maxnode)
1203 {
1204 unsigned long k;
1205 unsigned long nlongs;
1206 unsigned long endmask;
1207
1208 --maxnode;
1209 nodes_clear(*nodes);
1210 if (maxnode == 0 || !nmask)
1211 return 0;
1212 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1213 return -EINVAL;
1214
1215 nlongs = BITS_TO_LONGS(maxnode);
1216 if ((maxnode % BITS_PER_LONG) == 0)
1217 endmask = ~0UL;
1218 else
1219 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1220
1221 /* When the user specified more nodes than supported just check
1222 if the non supported part is all zero. */
1223 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1224 if (nlongs > PAGE_SIZE/sizeof(long))
1225 return -EINVAL;
1226 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1227 unsigned long t;
1228 if (get_user(t, nmask + k))
1229 return -EFAULT;
1230 if (k == nlongs - 1) {
1231 if (t & endmask)
1232 return -EINVAL;
1233 } else if (t)
1234 return -EINVAL;
1235 }
1236 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1237 endmask = ~0UL;
1238 }
1239
1240 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1241 return -EFAULT;
1242 nodes_addr(*nodes)[nlongs-1] &= endmask;
1243 return 0;
1244 }
1245
1246 /* Copy a kernel node mask to user space */
1247 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1248 nodemask_t *nodes)
1249 {
1250 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1251 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1252
1253 if (copy > nbytes) {
1254 if (copy > PAGE_SIZE)
1255 return -EINVAL;
1256 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1257 return -EFAULT;
1258 copy = nbytes;
1259 }
1260 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1261 }
1262
1263 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1264 unsigned long, mode, unsigned long __user *, nmask,
1265 unsigned long, maxnode, unsigned, flags)
1266 {
1267 nodemask_t nodes;
1268 int err;
1269 unsigned short mode_flags;
1270
1271 mode_flags = mode & MPOL_MODE_FLAGS;
1272 mode &= ~MPOL_MODE_FLAGS;
1273 if (mode >= MPOL_MAX)
1274 return -EINVAL;
1275 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1276 (mode_flags & MPOL_F_RELATIVE_NODES))
1277 return -EINVAL;
1278 err = get_nodes(&nodes, nmask, maxnode);
1279 if (err)
1280 return err;
1281 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1282 }
1283
1284 /* Set the process memory policy */
1285 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1286 unsigned long, maxnode)
1287 {
1288 int err;
1289 nodemask_t nodes;
1290 unsigned short flags;
1291
1292 flags = mode & MPOL_MODE_FLAGS;
1293 mode &= ~MPOL_MODE_FLAGS;
1294 if ((unsigned int)mode >= MPOL_MAX)
1295 return -EINVAL;
1296 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1297 return -EINVAL;
1298 err = get_nodes(&nodes, nmask, maxnode);
1299 if (err)
1300 return err;
1301 return do_set_mempolicy(mode, flags, &nodes);
1302 }
1303
1304 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1305 const unsigned long __user *, old_nodes,
1306 const unsigned long __user *, new_nodes)
1307 {
1308 const struct cred *cred = current_cred(), *tcred;
1309 struct mm_struct *mm = NULL;
1310 struct task_struct *task;
1311 nodemask_t task_nodes;
1312 int err;
1313 nodemask_t *old;
1314 nodemask_t *new;
1315 NODEMASK_SCRATCH(scratch);
1316
1317 if (!scratch)
1318 return -ENOMEM;
1319
1320 old = &scratch->mask1;
1321 new = &scratch->mask2;
1322
1323 err = get_nodes(old, old_nodes, maxnode);
1324 if (err)
1325 goto out;
1326
1327 err = get_nodes(new, new_nodes, maxnode);
1328 if (err)
1329 goto out;
1330
1331 /* Find the mm_struct */
1332 rcu_read_lock();
1333 task = pid ? find_task_by_vpid(pid) : current;
1334 if (!task) {
1335 rcu_read_unlock();
1336 err = -ESRCH;
1337 goto out;
1338 }
1339 get_task_struct(task);
1340
1341 err = -EINVAL;
1342
1343 /*
1344 * Check if this process has the right to modify the specified
1345 * process. The right exists if the process has administrative
1346 * capabilities, superuser privileges or the same
1347 * userid as the target process.
1348 */
1349 tcred = __task_cred(task);
1350 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1351 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1352 !capable(CAP_SYS_NICE)) {
1353 rcu_read_unlock();
1354 err = -EPERM;
1355 goto out_put;
1356 }
1357 rcu_read_unlock();
1358
1359 task_nodes = cpuset_mems_allowed(task);
1360 /* Is the user allowed to access the target nodes? */
1361 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1362 err = -EPERM;
1363 goto out_put;
1364 }
1365
1366 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1367 err = -EINVAL;
1368 goto out_put;
1369 }
1370
1371 err = security_task_movememory(task);
1372 if (err)
1373 goto out_put;
1374
1375 mm = get_task_mm(task);
1376 put_task_struct(task);
1377
1378 if (!mm) {
1379 err = -EINVAL;
1380 goto out;
1381 }
1382
1383 err = do_migrate_pages(mm, old, new,
1384 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1385
1386 mmput(mm);
1387 out:
1388 NODEMASK_SCRATCH_FREE(scratch);
1389
1390 return err;
1391
1392 out_put:
1393 put_task_struct(task);
1394 goto out;
1395
1396 }
1397
1398
1399 /* Retrieve NUMA policy */
1400 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1401 unsigned long __user *, nmask, unsigned long, maxnode,
1402 unsigned long, addr, unsigned long, flags)
1403 {
1404 int err;
1405 int uninitialized_var(pval);
1406 nodemask_t nodes;
1407
1408 if (nmask != NULL && maxnode < MAX_NUMNODES)
1409 return -EINVAL;
1410
1411 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1412
1413 if (err)
1414 return err;
1415
1416 if (policy && put_user(pval, policy))
1417 return -EFAULT;
1418
1419 if (nmask)
1420 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1421
1422 return err;
1423 }
1424
1425 #ifdef CONFIG_COMPAT
1426
1427 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1428 compat_ulong_t __user *nmask,
1429 compat_ulong_t maxnode,
1430 compat_ulong_t addr, compat_ulong_t flags)
1431 {
1432 long err;
1433 unsigned long __user *nm = NULL;
1434 unsigned long nr_bits, alloc_size;
1435 DECLARE_BITMAP(bm, MAX_NUMNODES);
1436
1437 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1438 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1439
1440 if (nmask)
1441 nm = compat_alloc_user_space(alloc_size);
1442
1443 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1444
1445 if (!err && nmask) {
1446 unsigned long copy_size;
1447 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1448 err = copy_from_user(bm, nm, copy_size);
1449 /* ensure entire bitmap is zeroed */
1450 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1451 err |= compat_put_bitmap(nmask, bm, nr_bits);
1452 }
1453
1454 return err;
1455 }
1456
1457 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1458 compat_ulong_t maxnode)
1459 {
1460 long err = 0;
1461 unsigned long __user *nm = NULL;
1462 unsigned long nr_bits, alloc_size;
1463 DECLARE_BITMAP(bm, MAX_NUMNODES);
1464
1465 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1466 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1467
1468 if (nmask) {
1469 err = compat_get_bitmap(bm, nmask, nr_bits);
1470 nm = compat_alloc_user_space(alloc_size);
1471 err |= copy_to_user(nm, bm, alloc_size);
1472 }
1473
1474 if (err)
1475 return -EFAULT;
1476
1477 return sys_set_mempolicy(mode, nm, nr_bits+1);
1478 }
1479
1480 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1481 compat_ulong_t mode, compat_ulong_t __user *nmask,
1482 compat_ulong_t maxnode, compat_ulong_t flags)
1483 {
1484 long err = 0;
1485 unsigned long __user *nm = NULL;
1486 unsigned long nr_bits, alloc_size;
1487 nodemask_t bm;
1488
1489 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1490 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1491
1492 if (nmask) {
1493 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1494 nm = compat_alloc_user_space(alloc_size);
1495 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1496 }
1497
1498 if (err)
1499 return -EFAULT;
1500
1501 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1502 }
1503
1504 #endif
1505
1506 /*
1507 * get_vma_policy(@task, @vma, @addr)
1508 * @task - task for fallback if vma policy == default
1509 * @vma - virtual memory area whose policy is sought
1510 * @addr - address in @vma for shared policy lookup
1511 *
1512 * Returns effective policy for a VMA at specified address.
1513 * Falls back to @task or system default policy, as necessary.
1514 * Current or other task's task mempolicy and non-shared vma policies
1515 * are protected by the task's mmap_sem, which must be held for read by
1516 * the caller.
1517 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1518 * count--added by the get_policy() vm_op, as appropriate--to protect against
1519 * freeing by another task. It is the caller's responsibility to free the
1520 * extra reference for shared policies.
1521 */
1522 struct mempolicy *get_vma_policy(struct task_struct *task,
1523 struct vm_area_struct *vma, unsigned long addr)
1524 {
1525 struct mempolicy *pol = task->mempolicy;
1526
1527 if (vma) {
1528 if (vma->vm_ops && vma->vm_ops->get_policy) {
1529 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1530 addr);
1531 if (vpol)
1532 pol = vpol;
1533 } else if (vma->vm_policy)
1534 pol = vma->vm_policy;
1535 }
1536 if (!pol)
1537 pol = &default_policy;
1538 return pol;
1539 }
1540
1541 /*
1542 * Return a nodemask representing a mempolicy for filtering nodes for
1543 * page allocation
1544 */
1545 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1546 {
1547 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1548 if (unlikely(policy->mode == MPOL_BIND) &&
1549 gfp_zone(gfp) >= policy_zone &&
1550 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1551 return &policy->v.nodes;
1552
1553 return NULL;
1554 }
1555
1556 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1557 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1558 int nd)
1559 {
1560 switch (policy->mode) {
1561 case MPOL_PREFERRED:
1562 if (!(policy->flags & MPOL_F_LOCAL))
1563 nd = policy->v.preferred_node;
1564 break;
1565 case MPOL_BIND:
1566 /*
1567 * Normally, MPOL_BIND allocations are node-local within the
1568 * allowed nodemask. However, if __GFP_THISNODE is set and the
1569 * current node isn't part of the mask, we use the zonelist for
1570 * the first node in the mask instead.
1571 */
1572 if (unlikely(gfp & __GFP_THISNODE) &&
1573 unlikely(!node_isset(nd, policy->v.nodes)))
1574 nd = first_node(policy->v.nodes);
1575 break;
1576 default:
1577 BUG();
1578 }
1579 return node_zonelist(nd, gfp);
1580 }
1581
1582 /* Do dynamic interleaving for a process */
1583 static unsigned interleave_nodes(struct mempolicy *policy)
1584 {
1585 unsigned nid, next;
1586 struct task_struct *me = current;
1587
1588 nid = me->il_next;
1589 next = next_node(nid, policy->v.nodes);
1590 if (next >= MAX_NUMNODES)
1591 next = first_node(policy->v.nodes);
1592 if (next < MAX_NUMNODES)
1593 me->il_next = next;
1594 return nid;
1595 }
1596
1597 /*
1598 * Depending on the memory policy provide a node from which to allocate the
1599 * next slab entry.
1600 * @policy must be protected by freeing by the caller. If @policy is
1601 * the current task's mempolicy, this protection is implicit, as only the
1602 * task can change it's policy. The system default policy requires no
1603 * such protection.
1604 */
1605 unsigned slab_node(void)
1606 {
1607 struct mempolicy *policy;
1608
1609 if (in_interrupt())
1610 return numa_node_id();
1611
1612 policy = current->mempolicy;
1613 if (!policy || policy->flags & MPOL_F_LOCAL)
1614 return numa_node_id();
1615
1616 switch (policy->mode) {
1617 case MPOL_PREFERRED:
1618 /*
1619 * handled MPOL_F_LOCAL above
1620 */
1621 return policy->v.preferred_node;
1622
1623 case MPOL_INTERLEAVE:
1624 return interleave_nodes(policy);
1625
1626 case MPOL_BIND: {
1627 /*
1628 * Follow bind policy behavior and start allocation at the
1629 * first node.
1630 */
1631 struct zonelist *zonelist;
1632 struct zone *zone;
1633 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1634 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1635 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1636 &policy->v.nodes,
1637 &zone);
1638 return zone ? zone->node : numa_node_id();
1639 }
1640
1641 default:
1642 BUG();
1643 }
1644 }
1645
1646 /* Do static interleaving for a VMA with known offset. */
1647 static unsigned offset_il_node(struct mempolicy *pol,
1648 struct vm_area_struct *vma, unsigned long off)
1649 {
1650 unsigned nnodes = nodes_weight(pol->v.nodes);
1651 unsigned target;
1652 int c;
1653 int nid = -1;
1654
1655 if (!nnodes)
1656 return numa_node_id();
1657 target = (unsigned int)off % nnodes;
1658 c = 0;
1659 do {
1660 nid = next_node(nid, pol->v.nodes);
1661 c++;
1662 } while (c <= target);
1663 return nid;
1664 }
1665
1666 /* Determine a node number for interleave */
1667 static inline unsigned interleave_nid(struct mempolicy *pol,
1668 struct vm_area_struct *vma, unsigned long addr, int shift)
1669 {
1670 if (vma) {
1671 unsigned long off;
1672
1673 /*
1674 * for small pages, there is no difference between
1675 * shift and PAGE_SHIFT, so the bit-shift is safe.
1676 * for huge pages, since vm_pgoff is in units of small
1677 * pages, we need to shift off the always 0 bits to get
1678 * a useful offset.
1679 */
1680 BUG_ON(shift < PAGE_SHIFT);
1681 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1682 off += (addr - vma->vm_start) >> shift;
1683 return offset_il_node(pol, vma, off);
1684 } else
1685 return interleave_nodes(pol);
1686 }
1687
1688 /*
1689 * Return the bit number of a random bit set in the nodemask.
1690 * (returns -1 if nodemask is empty)
1691 */
1692 int node_random(const nodemask_t *maskp)
1693 {
1694 int w, bit = -1;
1695
1696 w = nodes_weight(*maskp);
1697 if (w)
1698 bit = bitmap_ord_to_pos(maskp->bits,
1699 get_random_int() % w, MAX_NUMNODES);
1700 return bit;
1701 }
1702
1703 #ifdef CONFIG_HUGETLBFS
1704 /*
1705 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1706 * @vma = virtual memory area whose policy is sought
1707 * @addr = address in @vma for shared policy lookup and interleave policy
1708 * @gfp_flags = for requested zone
1709 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1710 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1711 *
1712 * Returns a zonelist suitable for a huge page allocation and a pointer
1713 * to the struct mempolicy for conditional unref after allocation.
1714 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1715 * @nodemask for filtering the zonelist.
1716 *
1717 * Must be protected by get_mems_allowed()
1718 */
1719 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1720 gfp_t gfp_flags, struct mempolicy **mpol,
1721 nodemask_t **nodemask)
1722 {
1723 struct zonelist *zl;
1724
1725 *mpol = get_vma_policy(current, vma, addr);
1726 *nodemask = NULL; /* assume !MPOL_BIND */
1727
1728 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1729 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1730 huge_page_shift(hstate_vma(vma))), gfp_flags);
1731 } else {
1732 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1733 if ((*mpol)->mode == MPOL_BIND)
1734 *nodemask = &(*mpol)->v.nodes;
1735 }
1736 return zl;
1737 }
1738
1739 /*
1740 * init_nodemask_of_mempolicy
1741 *
1742 * If the current task's mempolicy is "default" [NULL], return 'false'
1743 * to indicate default policy. Otherwise, extract the policy nodemask
1744 * for 'bind' or 'interleave' policy into the argument nodemask, or
1745 * initialize the argument nodemask to contain the single node for
1746 * 'preferred' or 'local' policy and return 'true' to indicate presence
1747 * of non-default mempolicy.
1748 *
1749 * We don't bother with reference counting the mempolicy [mpol_get/put]
1750 * because the current task is examining it's own mempolicy and a task's
1751 * mempolicy is only ever changed by the task itself.
1752 *
1753 * N.B., it is the caller's responsibility to free a returned nodemask.
1754 */
1755 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1756 {
1757 struct mempolicy *mempolicy;
1758 int nid;
1759
1760 if (!(mask && current->mempolicy))
1761 return false;
1762
1763 task_lock(current);
1764 mempolicy = current->mempolicy;
1765 switch (mempolicy->mode) {
1766 case MPOL_PREFERRED:
1767 if (mempolicy->flags & MPOL_F_LOCAL)
1768 nid = numa_node_id();
1769 else
1770 nid = mempolicy->v.preferred_node;
1771 init_nodemask_of_node(mask, nid);
1772 break;
1773
1774 case MPOL_BIND:
1775 /* Fall through */
1776 case MPOL_INTERLEAVE:
1777 *mask = mempolicy->v.nodes;
1778 break;
1779
1780 default:
1781 BUG();
1782 }
1783 task_unlock(current);
1784
1785 return true;
1786 }
1787 #endif
1788
1789 /*
1790 * mempolicy_nodemask_intersects
1791 *
1792 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1793 * policy. Otherwise, check for intersection between mask and the policy
1794 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1795 * policy, always return true since it may allocate elsewhere on fallback.
1796 *
1797 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1798 */
1799 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1800 const nodemask_t *mask)
1801 {
1802 struct mempolicy *mempolicy;
1803 bool ret = true;
1804
1805 if (!mask)
1806 return ret;
1807 task_lock(tsk);
1808 mempolicy = tsk->mempolicy;
1809 if (!mempolicy)
1810 goto out;
1811
1812 switch (mempolicy->mode) {
1813 case MPOL_PREFERRED:
1814 /*
1815 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1816 * allocate from, they may fallback to other nodes when oom.
1817 * Thus, it's possible for tsk to have allocated memory from
1818 * nodes in mask.
1819 */
1820 break;
1821 case MPOL_BIND:
1822 case MPOL_INTERLEAVE:
1823 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1824 break;
1825 default:
1826 BUG();
1827 }
1828 out:
1829 task_unlock(tsk);
1830 return ret;
1831 }
1832
1833 /* Allocate a page in interleaved policy.
1834 Own path because it needs to do special accounting. */
1835 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1836 unsigned nid)
1837 {
1838 struct zonelist *zl;
1839 struct page *page;
1840
1841 zl = node_zonelist(nid, gfp);
1842 page = __alloc_pages(gfp, order, zl);
1843 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1844 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1845 return page;
1846 }
1847
1848 /**
1849 * alloc_pages_vma - Allocate a page for a VMA.
1850 *
1851 * @gfp:
1852 * %GFP_USER user allocation.
1853 * %GFP_KERNEL kernel allocations,
1854 * %GFP_HIGHMEM highmem/user allocations,
1855 * %GFP_FS allocation should not call back into a file system.
1856 * %GFP_ATOMIC don't sleep.
1857 *
1858 * @order:Order of the GFP allocation.
1859 * @vma: Pointer to VMA or NULL if not available.
1860 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1861 *
1862 * This function allocates a page from the kernel page pool and applies
1863 * a NUMA policy associated with the VMA or the current process.
1864 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1865 * mm_struct of the VMA to prevent it from going away. Should be used for
1866 * all allocations for pages that will be mapped into
1867 * user space. Returns NULL when no page can be allocated.
1868 *
1869 * Should be called with the mm_sem of the vma hold.
1870 */
1871 struct page *
1872 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1873 unsigned long addr, int node)
1874 {
1875 struct mempolicy *pol;
1876 struct zonelist *zl;
1877 struct page *page;
1878 unsigned int cpuset_mems_cookie;
1879
1880 retry_cpuset:
1881 pol = get_vma_policy(current, vma, addr);
1882 cpuset_mems_cookie = get_mems_allowed();
1883
1884 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1885 unsigned nid;
1886
1887 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1888 mpol_cond_put(pol);
1889 page = alloc_page_interleave(gfp, order, nid);
1890 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1891 goto retry_cpuset;
1892
1893 return page;
1894 }
1895 zl = policy_zonelist(gfp, pol, node);
1896 if (unlikely(mpol_needs_cond_ref(pol))) {
1897 /*
1898 * slow path: ref counted shared policy
1899 */
1900 struct page *page = __alloc_pages_nodemask(gfp, order,
1901 zl, policy_nodemask(gfp, pol));
1902 __mpol_put(pol);
1903 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1904 goto retry_cpuset;
1905 return page;
1906 }
1907 /*
1908 * fast path: default or task policy
1909 */
1910 page = __alloc_pages_nodemask(gfp, order, zl,
1911 policy_nodemask(gfp, pol));
1912 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1913 goto retry_cpuset;
1914 return page;
1915 }
1916
1917 /**
1918 * alloc_pages_current - Allocate pages.
1919 *
1920 * @gfp:
1921 * %GFP_USER user allocation,
1922 * %GFP_KERNEL kernel allocation,
1923 * %GFP_HIGHMEM highmem allocation,
1924 * %GFP_FS don't call back into a file system.
1925 * %GFP_ATOMIC don't sleep.
1926 * @order: Power of two of allocation size in pages. 0 is a single page.
1927 *
1928 * Allocate a page from the kernel page pool. When not in
1929 * interrupt context and apply the current process NUMA policy.
1930 * Returns NULL when no page can be allocated.
1931 *
1932 * Don't call cpuset_update_task_memory_state() unless
1933 * 1) it's ok to take cpuset_sem (can WAIT), and
1934 * 2) allocating for current task (not interrupt).
1935 */
1936 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1937 {
1938 struct mempolicy *pol = current->mempolicy;
1939 struct page *page;
1940 unsigned int cpuset_mems_cookie;
1941
1942 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1943 pol = &default_policy;
1944
1945 retry_cpuset:
1946 cpuset_mems_cookie = get_mems_allowed();
1947
1948 /*
1949 * No reference counting needed for current->mempolicy
1950 * nor system default_policy
1951 */
1952 if (pol->mode == MPOL_INTERLEAVE)
1953 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1954 else
1955 page = __alloc_pages_nodemask(gfp, order,
1956 policy_zonelist(gfp, pol, numa_node_id()),
1957 policy_nodemask(gfp, pol));
1958
1959 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1960 goto retry_cpuset;
1961
1962 return page;
1963 }
1964 EXPORT_SYMBOL(alloc_pages_current);
1965
1966 /*
1967 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1968 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1969 * with the mems_allowed returned by cpuset_mems_allowed(). This
1970 * keeps mempolicies cpuset relative after its cpuset moves. See
1971 * further kernel/cpuset.c update_nodemask().
1972 *
1973 * current's mempolicy may be rebinded by the other task(the task that changes
1974 * cpuset's mems), so we needn't do rebind work for current task.
1975 */
1976
1977 /* Slow path of a mempolicy duplicate */
1978 struct mempolicy *__mpol_dup(struct mempolicy *old)
1979 {
1980 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1981
1982 if (!new)
1983 return ERR_PTR(-ENOMEM);
1984
1985 /* task's mempolicy is protected by alloc_lock */
1986 if (old == current->mempolicy) {
1987 task_lock(current);
1988 *new = *old;
1989 task_unlock(current);
1990 } else
1991 *new = *old;
1992
1993 rcu_read_lock();
1994 if (current_cpuset_is_being_rebound()) {
1995 nodemask_t mems = cpuset_mems_allowed(current);
1996 if (new->flags & MPOL_F_REBINDING)
1997 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
1998 else
1999 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2000 }
2001 rcu_read_unlock();
2002 atomic_set(&new->refcnt, 1);
2003 return new;
2004 }
2005
2006 /*
2007 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2008 * eliminate the * MPOL_F_* flags that require conditional ref and
2009 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2010 * after return. Use the returned value.
2011 *
2012 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2013 * policy lookup, even if the policy needs/has extra ref on lookup.
2014 * shmem_readahead needs this.
2015 */
2016 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2017 struct mempolicy *frompol)
2018 {
2019 if (!mpol_needs_cond_ref(frompol))
2020 return frompol;
2021
2022 *tompol = *frompol;
2023 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2024 __mpol_put(frompol);
2025 return tompol;
2026 }
2027
2028 /* Slow path of a mempolicy comparison */
2029 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2030 {
2031 if (!a || !b)
2032 return false;
2033 if (a->mode != b->mode)
2034 return false;
2035 if (a->flags != b->flags)
2036 return false;
2037 if (mpol_store_user_nodemask(a))
2038 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2039 return false;
2040
2041 switch (a->mode) {
2042 case MPOL_BIND:
2043 /* Fall through */
2044 case MPOL_INTERLEAVE:
2045 return !!nodes_equal(a->v.nodes, b->v.nodes);
2046 case MPOL_PREFERRED:
2047 return a->v.preferred_node == b->v.preferred_node;
2048 default:
2049 BUG();
2050 return false;
2051 }
2052 }
2053
2054 /*
2055 * Shared memory backing store policy support.
2056 *
2057 * Remember policies even when nobody has shared memory mapped.
2058 * The policies are kept in Red-Black tree linked from the inode.
2059 * They are protected by the sp->lock spinlock, which should be held
2060 * for any accesses to the tree.
2061 */
2062
2063 /* lookup first element intersecting start-end */
2064 /* Caller holds sp->lock */
2065 static struct sp_node *
2066 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2067 {
2068 struct rb_node *n = sp->root.rb_node;
2069
2070 while (n) {
2071 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2072
2073 if (start >= p->end)
2074 n = n->rb_right;
2075 else if (end <= p->start)
2076 n = n->rb_left;
2077 else
2078 break;
2079 }
2080 if (!n)
2081 return NULL;
2082 for (;;) {
2083 struct sp_node *w = NULL;
2084 struct rb_node *prev = rb_prev(n);
2085 if (!prev)
2086 break;
2087 w = rb_entry(prev, struct sp_node, nd);
2088 if (w->end <= start)
2089 break;
2090 n = prev;
2091 }
2092 return rb_entry(n, struct sp_node, nd);
2093 }
2094
2095 /* Insert a new shared policy into the list. */
2096 /* Caller holds sp->lock */
2097 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2098 {
2099 struct rb_node **p = &sp->root.rb_node;
2100 struct rb_node *parent = NULL;
2101 struct sp_node *nd;
2102
2103 while (*p) {
2104 parent = *p;
2105 nd = rb_entry(parent, struct sp_node, nd);
2106 if (new->start < nd->start)
2107 p = &(*p)->rb_left;
2108 else if (new->end > nd->end)
2109 p = &(*p)->rb_right;
2110 else
2111 BUG();
2112 }
2113 rb_link_node(&new->nd, parent, p);
2114 rb_insert_color(&new->nd, &sp->root);
2115 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2116 new->policy ? new->policy->mode : 0);
2117 }
2118
2119 /* Find shared policy intersecting idx */
2120 struct mempolicy *
2121 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2122 {
2123 struct mempolicy *pol = NULL;
2124 struct sp_node *sn;
2125
2126 if (!sp->root.rb_node)
2127 return NULL;
2128 spin_lock(&sp->lock);
2129 sn = sp_lookup(sp, idx, idx+1);
2130 if (sn) {
2131 mpol_get(sn->policy);
2132 pol = sn->policy;
2133 }
2134 spin_unlock(&sp->lock);
2135 return pol;
2136 }
2137
2138 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2139 {
2140 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2141 rb_erase(&n->nd, &sp->root);
2142 mpol_put(n->policy);
2143 kmem_cache_free(sn_cache, n);
2144 }
2145
2146 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2147 struct mempolicy *pol)
2148 {
2149 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2150
2151 if (!n)
2152 return NULL;
2153 n->start = start;
2154 n->end = end;
2155 mpol_get(pol);
2156 pol->flags |= MPOL_F_SHARED; /* for unref */
2157 n->policy = pol;
2158 return n;
2159 }
2160
2161 /* Replace a policy range. */
2162 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2163 unsigned long end, struct sp_node *new)
2164 {
2165 struct sp_node *n, *new2 = NULL;
2166
2167 restart:
2168 spin_lock(&sp->lock);
2169 n = sp_lookup(sp, start, end);
2170 /* Take care of old policies in the same range. */
2171 while (n && n->start < end) {
2172 struct rb_node *next = rb_next(&n->nd);
2173 if (n->start >= start) {
2174 if (n->end <= end)
2175 sp_delete(sp, n);
2176 else
2177 n->start = end;
2178 } else {
2179 /* Old policy spanning whole new range. */
2180 if (n->end > end) {
2181 if (!new2) {
2182 spin_unlock(&sp->lock);
2183 new2 = sp_alloc(end, n->end, n->policy);
2184 if (!new2)
2185 return -ENOMEM;
2186 goto restart;
2187 }
2188 n->end = start;
2189 sp_insert(sp, new2);
2190 new2 = NULL;
2191 break;
2192 } else
2193 n->end = start;
2194 }
2195 if (!next)
2196 break;
2197 n = rb_entry(next, struct sp_node, nd);
2198 }
2199 if (new)
2200 sp_insert(sp, new);
2201 spin_unlock(&sp->lock);
2202 if (new2) {
2203 mpol_put(new2->policy);
2204 kmem_cache_free(sn_cache, new2);
2205 }
2206 return 0;
2207 }
2208
2209 /**
2210 * mpol_shared_policy_init - initialize shared policy for inode
2211 * @sp: pointer to inode shared policy
2212 * @mpol: struct mempolicy to install
2213 *
2214 * Install non-NULL @mpol in inode's shared policy rb-tree.
2215 * On entry, the current task has a reference on a non-NULL @mpol.
2216 * This must be released on exit.
2217 * This is called at get_inode() calls and we can use GFP_KERNEL.
2218 */
2219 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2220 {
2221 int ret;
2222
2223 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2224 spin_lock_init(&sp->lock);
2225
2226 if (mpol) {
2227 struct vm_area_struct pvma;
2228 struct mempolicy *new;
2229 NODEMASK_SCRATCH(scratch);
2230
2231 if (!scratch)
2232 goto put_mpol;
2233 /* contextualize the tmpfs mount point mempolicy */
2234 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2235 if (IS_ERR(new))
2236 goto free_scratch; /* no valid nodemask intersection */
2237
2238 task_lock(current);
2239 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2240 task_unlock(current);
2241 if (ret)
2242 goto put_new;
2243
2244 /* Create pseudo-vma that contains just the policy */
2245 memset(&pvma, 0, sizeof(struct vm_area_struct));
2246 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2247 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2248
2249 put_new:
2250 mpol_put(new); /* drop initial ref */
2251 free_scratch:
2252 NODEMASK_SCRATCH_FREE(scratch);
2253 put_mpol:
2254 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2255 }
2256 }
2257
2258 int mpol_set_shared_policy(struct shared_policy *info,
2259 struct vm_area_struct *vma, struct mempolicy *npol)
2260 {
2261 int err;
2262 struct sp_node *new = NULL;
2263 unsigned long sz = vma_pages(vma);
2264
2265 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2266 vma->vm_pgoff,
2267 sz, npol ? npol->mode : -1,
2268 npol ? npol->flags : -1,
2269 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2270
2271 if (npol) {
2272 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2273 if (!new)
2274 return -ENOMEM;
2275 }
2276 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2277 if (err && new)
2278 kmem_cache_free(sn_cache, new);
2279 return err;
2280 }
2281
2282 /* Free a backing policy store on inode delete. */
2283 void mpol_free_shared_policy(struct shared_policy *p)
2284 {
2285 struct sp_node *n;
2286 struct rb_node *next;
2287
2288 if (!p->root.rb_node)
2289 return;
2290 spin_lock(&p->lock);
2291 next = rb_first(&p->root);
2292 while (next) {
2293 n = rb_entry(next, struct sp_node, nd);
2294 next = rb_next(&n->nd);
2295 rb_erase(&n->nd, &p->root);
2296 mpol_put(n->policy);
2297 kmem_cache_free(sn_cache, n);
2298 }
2299 spin_unlock(&p->lock);
2300 }
2301
2302 /* assumes fs == KERNEL_DS */
2303 void __init numa_policy_init(void)
2304 {
2305 nodemask_t interleave_nodes;
2306 unsigned long largest = 0;
2307 int nid, prefer = 0;
2308
2309 policy_cache = kmem_cache_create("numa_policy",
2310 sizeof(struct mempolicy),
2311 0, SLAB_PANIC, NULL);
2312
2313 sn_cache = kmem_cache_create("shared_policy_node",
2314 sizeof(struct sp_node),
2315 0, SLAB_PANIC, NULL);
2316
2317 /*
2318 * Set interleaving policy for system init. Interleaving is only
2319 * enabled across suitably sized nodes (default is >= 16MB), or
2320 * fall back to the largest node if they're all smaller.
2321 */
2322 nodes_clear(interleave_nodes);
2323 for_each_node_state(nid, N_HIGH_MEMORY) {
2324 unsigned long total_pages = node_present_pages(nid);
2325
2326 /* Preserve the largest node */
2327 if (largest < total_pages) {
2328 largest = total_pages;
2329 prefer = nid;
2330 }
2331
2332 /* Interleave this node? */
2333 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2334 node_set(nid, interleave_nodes);
2335 }
2336
2337 /* All too small, use the largest */
2338 if (unlikely(nodes_empty(interleave_nodes)))
2339 node_set(prefer, interleave_nodes);
2340
2341 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2342 printk("numa_policy_init: interleaving failed\n");
2343 }
2344
2345 /* Reset policy of current process to default */
2346 void numa_default_policy(void)
2347 {
2348 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2349 }
2350
2351 /*
2352 * Parse and format mempolicy from/to strings
2353 */
2354
2355 /*
2356 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2357 * Used only for mpol_parse_str() and mpol_to_str()
2358 */
2359 #define MPOL_LOCAL MPOL_MAX
2360 static const char * const policy_modes[] =
2361 {
2362 [MPOL_DEFAULT] = "default",
2363 [MPOL_PREFERRED] = "prefer",
2364 [MPOL_BIND] = "bind",
2365 [MPOL_INTERLEAVE] = "interleave",
2366 [MPOL_LOCAL] = "local"
2367 };
2368
2369
2370 #ifdef CONFIG_TMPFS
2371 /**
2372 * mpol_parse_str - parse string to mempolicy
2373 * @str: string containing mempolicy to parse
2374 * @mpol: pointer to struct mempolicy pointer, returned on success.
2375 * @no_context: flag whether to "contextualize" the mempolicy
2376 *
2377 * Format of input:
2378 * <mode>[=<flags>][:<nodelist>]
2379 *
2380 * if @no_context is true, save the input nodemask in w.user_nodemask in
2381 * the returned mempolicy. This will be used to "clone" the mempolicy in
2382 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2383 * mount option. Note that if 'static' or 'relative' mode flags were
2384 * specified, the input nodemask will already have been saved. Saving
2385 * it again is redundant, but safe.
2386 *
2387 * On success, returns 0, else 1
2388 */
2389 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2390 {
2391 struct mempolicy *new = NULL;
2392 unsigned short mode;
2393 unsigned short uninitialized_var(mode_flags);
2394 nodemask_t nodes;
2395 char *nodelist = strchr(str, ':');
2396 char *flags = strchr(str, '=');
2397 int err = 1;
2398
2399 if (nodelist) {
2400 /* NUL-terminate mode or flags string */
2401 *nodelist++ = '\0';
2402 if (nodelist_parse(nodelist, nodes))
2403 goto out;
2404 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2405 goto out;
2406 } else
2407 nodes_clear(nodes);
2408
2409 if (flags)
2410 *flags++ = '\0'; /* terminate mode string */
2411
2412 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2413 if (!strcmp(str, policy_modes[mode])) {
2414 break;
2415 }
2416 }
2417 if (mode > MPOL_LOCAL)
2418 goto out;
2419
2420 switch (mode) {
2421 case MPOL_PREFERRED:
2422 /*
2423 * Insist on a nodelist of one node only
2424 */
2425 if (nodelist) {
2426 char *rest = nodelist;
2427 while (isdigit(*rest))
2428 rest++;
2429 if (*rest)
2430 goto out;
2431 }
2432 break;
2433 case MPOL_INTERLEAVE:
2434 /*
2435 * Default to online nodes with memory if no nodelist
2436 */
2437 if (!nodelist)
2438 nodes = node_states[N_HIGH_MEMORY];
2439 break;
2440 case MPOL_LOCAL:
2441 /*
2442 * Don't allow a nodelist; mpol_new() checks flags
2443 */
2444 if (nodelist)
2445 goto out;
2446 mode = MPOL_PREFERRED;
2447 break;
2448 case MPOL_DEFAULT:
2449 /*
2450 * Insist on a empty nodelist
2451 */
2452 if (!nodelist)
2453 err = 0;
2454 goto out;
2455 case MPOL_BIND:
2456 /*
2457 * Insist on a nodelist
2458 */
2459 if (!nodelist)
2460 goto out;
2461 }
2462
2463 mode_flags = 0;
2464 if (flags) {
2465 /*
2466 * Currently, we only support two mutually exclusive
2467 * mode flags.
2468 */
2469 if (!strcmp(flags, "static"))
2470 mode_flags |= MPOL_F_STATIC_NODES;
2471 else if (!strcmp(flags, "relative"))
2472 mode_flags |= MPOL_F_RELATIVE_NODES;
2473 else
2474 goto out;
2475 }
2476
2477 new = mpol_new(mode, mode_flags, &nodes);
2478 if (IS_ERR(new))
2479 goto out;
2480
2481 if (no_context) {
2482 /* save for contextualization */
2483 new->w.user_nodemask = nodes;
2484 } else {
2485 int ret;
2486 NODEMASK_SCRATCH(scratch);
2487 if (scratch) {
2488 task_lock(current);
2489 ret = mpol_set_nodemask(new, &nodes, scratch);
2490 task_unlock(current);
2491 } else
2492 ret = -ENOMEM;
2493 NODEMASK_SCRATCH_FREE(scratch);
2494 if (ret) {
2495 mpol_put(new);
2496 goto out;
2497 }
2498 }
2499 err = 0;
2500
2501 out:
2502 /* Restore string for error message */
2503 if (nodelist)
2504 *--nodelist = ':';
2505 if (flags)
2506 *--flags = '=';
2507 if (!err)
2508 *mpol = new;
2509 return err;
2510 }
2511 #endif /* CONFIG_TMPFS */
2512
2513 /**
2514 * mpol_to_str - format a mempolicy structure for printing
2515 * @buffer: to contain formatted mempolicy string
2516 * @maxlen: length of @buffer
2517 * @pol: pointer to mempolicy to be formatted
2518 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2519 *
2520 * Convert a mempolicy into a string.
2521 * Returns the number of characters in buffer (if positive)
2522 * or an error (negative)
2523 */
2524 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2525 {
2526 char *p = buffer;
2527 int l;
2528 nodemask_t nodes;
2529 unsigned short mode;
2530 unsigned short flags = pol ? pol->flags : 0;
2531
2532 /*
2533 * Sanity check: room for longest mode, flag and some nodes
2534 */
2535 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2536
2537 if (!pol || pol == &default_policy)
2538 mode = MPOL_DEFAULT;
2539 else
2540 mode = pol->mode;
2541
2542 switch (mode) {
2543 case MPOL_DEFAULT:
2544 nodes_clear(nodes);
2545 break;
2546
2547 case MPOL_PREFERRED:
2548 nodes_clear(nodes);
2549 if (flags & MPOL_F_LOCAL)
2550 mode = MPOL_LOCAL; /* pseudo-policy */
2551 else
2552 node_set(pol->v.preferred_node, nodes);
2553 break;
2554
2555 case MPOL_BIND:
2556 /* Fall through */
2557 case MPOL_INTERLEAVE:
2558 if (no_context)
2559 nodes = pol->w.user_nodemask;
2560 else
2561 nodes = pol->v.nodes;
2562 break;
2563
2564 default:
2565 BUG();
2566 }
2567
2568 l = strlen(policy_modes[mode]);
2569 if (buffer + maxlen < p + l + 1)
2570 return -ENOSPC;
2571
2572 strcpy(p, policy_modes[mode]);
2573 p += l;
2574
2575 if (flags & MPOL_MODE_FLAGS) {
2576 if (buffer + maxlen < p + 2)
2577 return -ENOSPC;
2578 *p++ = '=';
2579
2580 /*
2581 * Currently, the only defined flags are mutually exclusive
2582 */
2583 if (flags & MPOL_F_STATIC_NODES)
2584 p += snprintf(p, buffer + maxlen - p, "static");
2585 else if (flags & MPOL_F_RELATIVE_NODES)
2586 p += snprintf(p, buffer + maxlen - p, "relative");
2587 }
2588
2589 if (!nodes_empty(nodes)) {
2590 if (buffer + maxlen < p + 2)
2591 return -ENOSPC;
2592 *p++ = ':';
2593 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2594 }
2595 return p - buffer;
2596 }