]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mempolicy.c
UBUNTU: [Config] Sync config with master
[mirror_ubuntu-artful-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 struct queue_pages {
475 struct list_head *pagelist;
476 unsigned long flags;
477 nodemask_t *nmask;
478 struct vm_area_struct *prev;
479 };
480
481 /*
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
484 */
485 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
486 unsigned long end, struct mm_walk *walk)
487 {
488 struct vm_area_struct *vma = walk->vma;
489 struct page *page;
490 struct queue_pages *qp = walk->private;
491 unsigned long flags = qp->flags;
492 int nid;
493 pte_t *pte;
494 spinlock_t *ptl;
495
496 split_huge_page_pmd(vma, addr, pmd);
497 if (pmd_trans_unstable(pmd))
498 return 0;
499
500 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
501 for (; addr != end; pte++, addr += PAGE_SIZE) {
502 if (!pte_present(*pte))
503 continue;
504 page = vm_normal_page(vma, addr, *pte);
505 if (!page)
506 continue;
507 /*
508 * vm_normal_page() filters out zero pages, but there might
509 * still be PageReserved pages to skip, perhaps in a VDSO.
510 */
511 if (PageReserved(page))
512 continue;
513 nid = page_to_nid(page);
514 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
515 continue;
516
517 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
518 migrate_page_add(page, qp->pagelist, flags);
519 }
520 pte_unmap_unlock(pte - 1, ptl);
521 cond_resched();
522 return 0;
523 }
524
525 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
526 unsigned long addr, unsigned long end,
527 struct mm_walk *walk)
528 {
529 #ifdef CONFIG_HUGETLB_PAGE
530 struct queue_pages *qp = walk->private;
531 unsigned long flags = qp->flags;
532 int nid;
533 struct page *page;
534 spinlock_t *ptl;
535 pte_t entry;
536
537 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
538 entry = huge_ptep_get(pte);
539 if (!pte_present(entry))
540 goto unlock;
541 page = pte_page(entry);
542 nid = page_to_nid(page);
543 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
544 goto unlock;
545 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
546 if (flags & (MPOL_MF_MOVE_ALL) ||
547 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
548 isolate_huge_page(page, qp->pagelist);
549 unlock:
550 spin_unlock(ptl);
551 #else
552 BUG();
553 #endif
554 return 0;
555 }
556
557 #ifdef CONFIG_NUMA_BALANCING
558 /*
559 * This is used to mark a range of virtual addresses to be inaccessible.
560 * These are later cleared by a NUMA hinting fault. Depending on these
561 * faults, pages may be migrated for better NUMA placement.
562 *
563 * This is assuming that NUMA faults are handled using PROT_NONE. If
564 * an architecture makes a different choice, it will need further
565 * changes to the core.
566 */
567 unsigned long change_prot_numa(struct vm_area_struct *vma,
568 unsigned long addr, unsigned long end)
569 {
570 int nr_updated;
571
572 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
573 if (nr_updated)
574 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
575
576 return nr_updated;
577 }
578 #else
579 static unsigned long change_prot_numa(struct vm_area_struct *vma,
580 unsigned long addr, unsigned long end)
581 {
582 return 0;
583 }
584 #endif /* CONFIG_NUMA_BALANCING */
585
586 static int queue_pages_test_walk(unsigned long start, unsigned long end,
587 struct mm_walk *walk)
588 {
589 struct vm_area_struct *vma = walk->vma;
590 struct queue_pages *qp = walk->private;
591 unsigned long endvma = vma->vm_end;
592 unsigned long flags = qp->flags;
593
594 if (vma->vm_flags & VM_PFNMAP)
595 return 1;
596
597 if (endvma > end)
598 endvma = end;
599 if (vma->vm_start > start)
600 start = vma->vm_start;
601
602 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
603 if (!vma->vm_next && vma->vm_end < end)
604 return -EFAULT;
605 if (qp->prev && qp->prev->vm_end < vma->vm_start)
606 return -EFAULT;
607 }
608
609 qp->prev = vma;
610
611 if (flags & MPOL_MF_LAZY) {
612 /* Similar to task_numa_work, skip inaccessible VMAs */
613 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
614 change_prot_numa(vma, start, endvma);
615 return 1;
616 }
617
618 if ((flags & MPOL_MF_STRICT) ||
619 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
620 vma_migratable(vma)))
621 /* queue pages from current vma */
622 return 0;
623 return 1;
624 }
625
626 /*
627 * Walk through page tables and collect pages to be migrated.
628 *
629 * If pages found in a given range are on a set of nodes (determined by
630 * @nodes and @flags,) it's isolated and queued to the pagelist which is
631 * passed via @private.)
632 */
633 static int
634 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
635 nodemask_t *nodes, unsigned long flags,
636 struct list_head *pagelist)
637 {
638 struct queue_pages qp = {
639 .pagelist = pagelist,
640 .flags = flags,
641 .nmask = nodes,
642 .prev = NULL,
643 };
644 struct mm_walk queue_pages_walk = {
645 .hugetlb_entry = queue_pages_hugetlb,
646 .pmd_entry = queue_pages_pte_range,
647 .test_walk = queue_pages_test_walk,
648 .mm = mm,
649 .private = &qp,
650 };
651
652 return walk_page_range(start, end, &queue_pages_walk);
653 }
654
655 /*
656 * Apply policy to a single VMA
657 * This must be called with the mmap_sem held for writing.
658 */
659 static int vma_replace_policy(struct vm_area_struct *vma,
660 struct mempolicy *pol)
661 {
662 int err;
663 struct mempolicy *old;
664 struct mempolicy *new;
665
666 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
667 vma->vm_start, vma->vm_end, vma->vm_pgoff,
668 vma->vm_ops, vma->vm_file,
669 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
670
671 new = mpol_dup(pol);
672 if (IS_ERR(new))
673 return PTR_ERR(new);
674
675 if (vma->vm_ops && vma->vm_ops->set_policy) {
676 err = vma->vm_ops->set_policy(vma, new);
677 if (err)
678 goto err_out;
679 }
680
681 old = vma->vm_policy;
682 vma->vm_policy = new; /* protected by mmap_sem */
683 mpol_put(old);
684
685 return 0;
686 err_out:
687 mpol_put(new);
688 return err;
689 }
690
691 /* Step 2: apply policy to a range and do splits. */
692 static int mbind_range(struct mm_struct *mm, unsigned long start,
693 unsigned long end, struct mempolicy *new_pol)
694 {
695 struct vm_area_struct *next;
696 struct vm_area_struct *prev;
697 struct vm_area_struct *vma;
698 int err = 0;
699 pgoff_t pgoff;
700 unsigned long vmstart;
701 unsigned long vmend;
702
703 vma = find_vma(mm, start);
704 if (!vma || vma->vm_start > start)
705 return -EFAULT;
706
707 prev = vma->vm_prev;
708 if (start > vma->vm_start)
709 prev = vma;
710
711 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
712 next = vma->vm_next;
713 vmstart = max(start, vma->vm_start);
714 vmend = min(end, vma->vm_end);
715
716 if (mpol_equal(vma_policy(vma), new_pol))
717 continue;
718
719 pgoff = vma->vm_pgoff +
720 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
721 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
722 vma->anon_vma, vma->vm_file, pgoff,
723 new_pol, vma->vm_userfaultfd_ctx);
724 if (prev) {
725 vma = prev;
726 next = vma->vm_next;
727 if (mpol_equal(vma_policy(vma), new_pol))
728 continue;
729 /* vma_merge() joined vma && vma->next, case 8 */
730 goto replace;
731 }
732 if (vma->vm_start != vmstart) {
733 err = split_vma(vma->vm_mm, vma, vmstart, 1);
734 if (err)
735 goto out;
736 }
737 if (vma->vm_end != vmend) {
738 err = split_vma(vma->vm_mm, vma, vmend, 0);
739 if (err)
740 goto out;
741 }
742 replace:
743 err = vma_replace_policy(vma, new_pol);
744 if (err)
745 goto out;
746 }
747
748 out:
749 return err;
750 }
751
752 /* Set the process memory policy */
753 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
754 nodemask_t *nodes)
755 {
756 struct mempolicy *new, *old;
757 NODEMASK_SCRATCH(scratch);
758 int ret;
759
760 if (!scratch)
761 return -ENOMEM;
762
763 new = mpol_new(mode, flags, nodes);
764 if (IS_ERR(new)) {
765 ret = PTR_ERR(new);
766 goto out;
767 }
768
769 task_lock(current);
770 ret = mpol_set_nodemask(new, nodes, scratch);
771 if (ret) {
772 task_unlock(current);
773 mpol_put(new);
774 goto out;
775 }
776 old = current->mempolicy;
777 current->mempolicy = new;
778 if (new && new->mode == MPOL_INTERLEAVE &&
779 nodes_weight(new->v.nodes))
780 current->il_next = first_node(new->v.nodes);
781 task_unlock(current);
782 mpol_put(old);
783 ret = 0;
784 out:
785 NODEMASK_SCRATCH_FREE(scratch);
786 return ret;
787 }
788
789 /*
790 * Return nodemask for policy for get_mempolicy() query
791 *
792 * Called with task's alloc_lock held
793 */
794 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
795 {
796 nodes_clear(*nodes);
797 if (p == &default_policy)
798 return;
799
800 switch (p->mode) {
801 case MPOL_BIND:
802 /* Fall through */
803 case MPOL_INTERLEAVE:
804 *nodes = p->v.nodes;
805 break;
806 case MPOL_PREFERRED:
807 if (!(p->flags & MPOL_F_LOCAL))
808 node_set(p->v.preferred_node, *nodes);
809 /* else return empty node mask for local allocation */
810 break;
811 default:
812 BUG();
813 }
814 }
815
816 static int lookup_node(struct mm_struct *mm, unsigned long addr)
817 {
818 struct page *p;
819 int err;
820
821 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
822 if (err >= 0) {
823 err = page_to_nid(p);
824 put_page(p);
825 }
826 return err;
827 }
828
829 /* Retrieve NUMA policy */
830 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
831 unsigned long addr, unsigned long flags)
832 {
833 int err;
834 struct mm_struct *mm = current->mm;
835 struct vm_area_struct *vma = NULL;
836 struct mempolicy *pol = current->mempolicy;
837
838 if (flags &
839 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
840 return -EINVAL;
841
842 if (flags & MPOL_F_MEMS_ALLOWED) {
843 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
844 return -EINVAL;
845 *policy = 0; /* just so it's initialized */
846 task_lock(current);
847 *nmask = cpuset_current_mems_allowed;
848 task_unlock(current);
849 return 0;
850 }
851
852 if (flags & MPOL_F_ADDR) {
853 /*
854 * Do NOT fall back to task policy if the
855 * vma/shared policy at addr is NULL. We
856 * want to return MPOL_DEFAULT in this case.
857 */
858 down_read(&mm->mmap_sem);
859 vma = find_vma_intersection(mm, addr, addr+1);
860 if (!vma) {
861 up_read(&mm->mmap_sem);
862 return -EFAULT;
863 }
864 if (vma->vm_ops && vma->vm_ops->get_policy)
865 pol = vma->vm_ops->get_policy(vma, addr);
866 else
867 pol = vma->vm_policy;
868 } else if (addr)
869 return -EINVAL;
870
871 if (!pol)
872 pol = &default_policy; /* indicates default behavior */
873
874 if (flags & MPOL_F_NODE) {
875 if (flags & MPOL_F_ADDR) {
876 err = lookup_node(mm, addr);
877 if (err < 0)
878 goto out;
879 *policy = err;
880 } else if (pol == current->mempolicy &&
881 pol->mode == MPOL_INTERLEAVE) {
882 *policy = current->il_next;
883 } else {
884 err = -EINVAL;
885 goto out;
886 }
887 } else {
888 *policy = pol == &default_policy ? MPOL_DEFAULT :
889 pol->mode;
890 /*
891 * Internal mempolicy flags must be masked off before exposing
892 * the policy to userspace.
893 */
894 *policy |= (pol->flags & MPOL_MODE_FLAGS);
895 }
896
897 err = 0;
898 if (nmask) {
899 if (mpol_store_user_nodemask(pol)) {
900 *nmask = pol->w.user_nodemask;
901 } else {
902 task_lock(current);
903 get_policy_nodemask(pol, nmask);
904 task_unlock(current);
905 }
906 }
907
908 out:
909 mpol_cond_put(pol);
910 if (vma)
911 up_read(&current->mm->mmap_sem);
912 return err;
913 }
914
915 #ifdef CONFIG_MIGRATION
916 /*
917 * page migration
918 */
919 static void migrate_page_add(struct page *page, struct list_head *pagelist,
920 unsigned long flags)
921 {
922 /*
923 * Avoid migrating a page that is shared with others.
924 */
925 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926 if (!isolate_lru_page(page)) {
927 list_add_tail(&page->lru, pagelist);
928 inc_zone_page_state(page, NR_ISOLATED_ANON +
929 page_is_file_cache(page));
930 }
931 }
932 }
933
934 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935 {
936 if (PageHuge(page))
937 return alloc_huge_page_node(page_hstate(compound_head(page)),
938 node);
939 else
940 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
941 __GFP_THISNODE, 0);
942 }
943
944 /*
945 * Migrate pages from one node to a target node.
946 * Returns error or the number of pages not migrated.
947 */
948 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
949 int flags)
950 {
951 nodemask_t nmask;
952 LIST_HEAD(pagelist);
953 int err = 0;
954
955 nodes_clear(nmask);
956 node_set(source, nmask);
957
958 /*
959 * This does not "check" the range but isolates all pages that
960 * need migration. Between passing in the full user address
961 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
962 */
963 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
964 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
965 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
966
967 if (!list_empty(&pagelist)) {
968 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
969 MIGRATE_SYNC, MR_SYSCALL);
970 if (err)
971 putback_movable_pages(&pagelist);
972 }
973
974 return err;
975 }
976
977 /*
978 * Move pages between the two nodesets so as to preserve the physical
979 * layout as much as possible.
980 *
981 * Returns the number of page that could not be moved.
982 */
983 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
984 const nodemask_t *to, int flags)
985 {
986 int busy = 0;
987 int err;
988 nodemask_t tmp;
989
990 err = migrate_prep();
991 if (err)
992 return err;
993
994 down_read(&mm->mmap_sem);
995
996 /*
997 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
998 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
999 * bit in 'tmp', and return that <source, dest> pair for migration.
1000 * The pair of nodemasks 'to' and 'from' define the map.
1001 *
1002 * If no pair of bits is found that way, fallback to picking some
1003 * pair of 'source' and 'dest' bits that are not the same. If the
1004 * 'source' and 'dest' bits are the same, this represents a node
1005 * that will be migrating to itself, so no pages need move.
1006 *
1007 * If no bits are left in 'tmp', or if all remaining bits left
1008 * in 'tmp' correspond to the same bit in 'to', return false
1009 * (nothing left to migrate).
1010 *
1011 * This lets us pick a pair of nodes to migrate between, such that
1012 * if possible the dest node is not already occupied by some other
1013 * source node, minimizing the risk of overloading the memory on a
1014 * node that would happen if we migrated incoming memory to a node
1015 * before migrating outgoing memory source that same node.
1016 *
1017 * A single scan of tmp is sufficient. As we go, we remember the
1018 * most recent <s, d> pair that moved (s != d). If we find a pair
1019 * that not only moved, but what's better, moved to an empty slot
1020 * (d is not set in tmp), then we break out then, with that pair.
1021 * Otherwise when we finish scanning from_tmp, we at least have the
1022 * most recent <s, d> pair that moved. If we get all the way through
1023 * the scan of tmp without finding any node that moved, much less
1024 * moved to an empty node, then there is nothing left worth migrating.
1025 */
1026
1027 tmp = *from;
1028 while (!nodes_empty(tmp)) {
1029 int s,d;
1030 int source = NUMA_NO_NODE;
1031 int dest = 0;
1032
1033 for_each_node_mask(s, tmp) {
1034
1035 /*
1036 * do_migrate_pages() tries to maintain the relative
1037 * node relationship of the pages established between
1038 * threads and memory areas.
1039 *
1040 * However if the number of source nodes is not equal to
1041 * the number of destination nodes we can not preserve
1042 * this node relative relationship. In that case, skip
1043 * copying memory from a node that is in the destination
1044 * mask.
1045 *
1046 * Example: [2,3,4] -> [3,4,5] moves everything.
1047 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1048 */
1049
1050 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1051 (node_isset(s, *to)))
1052 continue;
1053
1054 d = node_remap(s, *from, *to);
1055 if (s == d)
1056 continue;
1057
1058 source = s; /* Node moved. Memorize */
1059 dest = d;
1060
1061 /* dest not in remaining from nodes? */
1062 if (!node_isset(dest, tmp))
1063 break;
1064 }
1065 if (source == NUMA_NO_NODE)
1066 break;
1067
1068 node_clear(source, tmp);
1069 err = migrate_to_node(mm, source, dest, flags);
1070 if (err > 0)
1071 busy += err;
1072 if (err < 0)
1073 break;
1074 }
1075 up_read(&mm->mmap_sem);
1076 if (err < 0)
1077 return err;
1078 return busy;
1079
1080 }
1081
1082 /*
1083 * Allocate a new page for page migration based on vma policy.
1084 * Start by assuming the page is mapped by the same vma as contains @start.
1085 * Search forward from there, if not. N.B., this assumes that the
1086 * list of pages handed to migrate_pages()--which is how we get here--
1087 * is in virtual address order.
1088 */
1089 static struct page *new_page(struct page *page, unsigned long start, int **x)
1090 {
1091 struct vm_area_struct *vma;
1092 unsigned long uninitialized_var(address);
1093
1094 vma = find_vma(current->mm, start);
1095 while (vma) {
1096 address = page_address_in_vma(page, vma);
1097 if (address != -EFAULT)
1098 break;
1099 vma = vma->vm_next;
1100 }
1101
1102 if (PageHuge(page)) {
1103 BUG_ON(!vma);
1104 return alloc_huge_page_noerr(vma, address, 1);
1105 }
1106 /*
1107 * if !vma, alloc_page_vma() will use task or system default policy
1108 */
1109 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1110 }
1111 #else
1112
1113 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1114 unsigned long flags)
1115 {
1116 }
1117
1118 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1119 const nodemask_t *to, int flags)
1120 {
1121 return -ENOSYS;
1122 }
1123
1124 static struct page *new_page(struct page *page, unsigned long start, int **x)
1125 {
1126 return NULL;
1127 }
1128 #endif
1129
1130 static long do_mbind(unsigned long start, unsigned long len,
1131 unsigned short mode, unsigned short mode_flags,
1132 nodemask_t *nmask, unsigned long flags)
1133 {
1134 struct mm_struct *mm = current->mm;
1135 struct mempolicy *new;
1136 unsigned long end;
1137 int err;
1138 LIST_HEAD(pagelist);
1139
1140 if (flags & ~(unsigned long)MPOL_MF_VALID)
1141 return -EINVAL;
1142 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1143 return -EPERM;
1144
1145 if (start & ~PAGE_MASK)
1146 return -EINVAL;
1147
1148 if (mode == MPOL_DEFAULT)
1149 flags &= ~MPOL_MF_STRICT;
1150
1151 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1152 end = start + len;
1153
1154 if (end < start)
1155 return -EINVAL;
1156 if (end == start)
1157 return 0;
1158
1159 new = mpol_new(mode, mode_flags, nmask);
1160 if (IS_ERR(new))
1161 return PTR_ERR(new);
1162
1163 if (flags & MPOL_MF_LAZY)
1164 new->flags |= MPOL_F_MOF;
1165
1166 /*
1167 * If we are using the default policy then operation
1168 * on discontinuous address spaces is okay after all
1169 */
1170 if (!new)
1171 flags |= MPOL_MF_DISCONTIG_OK;
1172
1173 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1174 start, start + len, mode, mode_flags,
1175 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1176
1177 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1178
1179 err = migrate_prep();
1180 if (err)
1181 goto mpol_out;
1182 }
1183 {
1184 NODEMASK_SCRATCH(scratch);
1185 if (scratch) {
1186 down_write(&mm->mmap_sem);
1187 task_lock(current);
1188 err = mpol_set_nodemask(new, nmask, scratch);
1189 task_unlock(current);
1190 if (err)
1191 up_write(&mm->mmap_sem);
1192 } else
1193 err = -ENOMEM;
1194 NODEMASK_SCRATCH_FREE(scratch);
1195 }
1196 if (err)
1197 goto mpol_out;
1198
1199 err = queue_pages_range(mm, start, end, nmask,
1200 flags | MPOL_MF_INVERT, &pagelist);
1201 if (!err)
1202 err = mbind_range(mm, start, end, new);
1203
1204 if (!err) {
1205 int nr_failed = 0;
1206
1207 if (!list_empty(&pagelist)) {
1208 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1209 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1210 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1211 if (nr_failed)
1212 putback_movable_pages(&pagelist);
1213 }
1214
1215 if (nr_failed && (flags & MPOL_MF_STRICT))
1216 err = -EIO;
1217 } else
1218 putback_movable_pages(&pagelist);
1219
1220 up_write(&mm->mmap_sem);
1221 mpol_out:
1222 mpol_put(new);
1223 return err;
1224 }
1225
1226 /*
1227 * User space interface with variable sized bitmaps for nodelists.
1228 */
1229
1230 /* Copy a node mask from user space. */
1231 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1232 unsigned long maxnode)
1233 {
1234 unsigned long k;
1235 unsigned long nlongs;
1236 unsigned long endmask;
1237
1238 --maxnode;
1239 nodes_clear(*nodes);
1240 if (maxnode == 0 || !nmask)
1241 return 0;
1242 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1243 return -EINVAL;
1244
1245 nlongs = BITS_TO_LONGS(maxnode);
1246 if ((maxnode % BITS_PER_LONG) == 0)
1247 endmask = ~0UL;
1248 else
1249 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1250
1251 /* When the user specified more nodes than supported just check
1252 if the non supported part is all zero. */
1253 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1254 if (nlongs > PAGE_SIZE/sizeof(long))
1255 return -EINVAL;
1256 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1257 unsigned long t;
1258 if (get_user(t, nmask + k))
1259 return -EFAULT;
1260 if (k == nlongs - 1) {
1261 if (t & endmask)
1262 return -EINVAL;
1263 } else if (t)
1264 return -EINVAL;
1265 }
1266 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1267 endmask = ~0UL;
1268 }
1269
1270 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1271 return -EFAULT;
1272 nodes_addr(*nodes)[nlongs-1] &= endmask;
1273 return 0;
1274 }
1275
1276 /* Copy a kernel node mask to user space */
1277 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1278 nodemask_t *nodes)
1279 {
1280 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1281 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1282
1283 if (copy > nbytes) {
1284 if (copy > PAGE_SIZE)
1285 return -EINVAL;
1286 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1287 return -EFAULT;
1288 copy = nbytes;
1289 }
1290 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1291 }
1292
1293 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1294 unsigned long, mode, const unsigned long __user *, nmask,
1295 unsigned long, maxnode, unsigned, flags)
1296 {
1297 nodemask_t nodes;
1298 int err;
1299 unsigned short mode_flags;
1300
1301 mode_flags = mode & MPOL_MODE_FLAGS;
1302 mode &= ~MPOL_MODE_FLAGS;
1303 if (mode >= MPOL_MAX)
1304 return -EINVAL;
1305 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1306 (mode_flags & MPOL_F_RELATIVE_NODES))
1307 return -EINVAL;
1308 err = get_nodes(&nodes, nmask, maxnode);
1309 if (err)
1310 return err;
1311 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1312 }
1313
1314 /* Set the process memory policy */
1315 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1316 unsigned long, maxnode)
1317 {
1318 int err;
1319 nodemask_t nodes;
1320 unsigned short flags;
1321
1322 flags = mode & MPOL_MODE_FLAGS;
1323 mode &= ~MPOL_MODE_FLAGS;
1324 if ((unsigned int)mode >= MPOL_MAX)
1325 return -EINVAL;
1326 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1327 return -EINVAL;
1328 err = get_nodes(&nodes, nmask, maxnode);
1329 if (err)
1330 return err;
1331 return do_set_mempolicy(mode, flags, &nodes);
1332 }
1333
1334 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1335 const unsigned long __user *, old_nodes,
1336 const unsigned long __user *, new_nodes)
1337 {
1338 const struct cred *cred = current_cred(), *tcred;
1339 struct mm_struct *mm = NULL;
1340 struct task_struct *task;
1341 nodemask_t task_nodes;
1342 int err;
1343 nodemask_t *old;
1344 nodemask_t *new;
1345 NODEMASK_SCRATCH(scratch);
1346
1347 if (!scratch)
1348 return -ENOMEM;
1349
1350 old = &scratch->mask1;
1351 new = &scratch->mask2;
1352
1353 err = get_nodes(old, old_nodes, maxnode);
1354 if (err)
1355 goto out;
1356
1357 err = get_nodes(new, new_nodes, maxnode);
1358 if (err)
1359 goto out;
1360
1361 /* Find the mm_struct */
1362 rcu_read_lock();
1363 task = pid ? find_task_by_vpid(pid) : current;
1364 if (!task) {
1365 rcu_read_unlock();
1366 err = -ESRCH;
1367 goto out;
1368 }
1369 get_task_struct(task);
1370
1371 err = -EINVAL;
1372
1373 /*
1374 * Check if this process has the right to modify the specified
1375 * process. The right exists if the process has administrative
1376 * capabilities, superuser privileges or the same
1377 * userid as the target process.
1378 */
1379 tcred = __task_cred(task);
1380 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1381 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1382 !capable(CAP_SYS_NICE)) {
1383 rcu_read_unlock();
1384 err = -EPERM;
1385 goto out_put;
1386 }
1387 rcu_read_unlock();
1388
1389 task_nodes = cpuset_mems_allowed(task);
1390 /* Is the user allowed to access the target nodes? */
1391 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1392 err = -EPERM;
1393 goto out_put;
1394 }
1395
1396 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1397 err = -EINVAL;
1398 goto out_put;
1399 }
1400
1401 err = security_task_movememory(task);
1402 if (err)
1403 goto out_put;
1404
1405 mm = get_task_mm(task);
1406 put_task_struct(task);
1407
1408 if (!mm) {
1409 err = -EINVAL;
1410 goto out;
1411 }
1412
1413 err = do_migrate_pages(mm, old, new,
1414 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1415
1416 mmput(mm);
1417 out:
1418 NODEMASK_SCRATCH_FREE(scratch);
1419
1420 return err;
1421
1422 out_put:
1423 put_task_struct(task);
1424 goto out;
1425
1426 }
1427
1428
1429 /* Retrieve NUMA policy */
1430 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1431 unsigned long __user *, nmask, unsigned long, maxnode,
1432 unsigned long, addr, unsigned long, flags)
1433 {
1434 int err;
1435 int uninitialized_var(pval);
1436 nodemask_t nodes;
1437
1438 if (nmask != NULL && maxnode < MAX_NUMNODES)
1439 return -EINVAL;
1440
1441 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1442
1443 if (err)
1444 return err;
1445
1446 if (policy && put_user(pval, policy))
1447 return -EFAULT;
1448
1449 if (nmask)
1450 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1451
1452 return err;
1453 }
1454
1455 #ifdef CONFIG_COMPAT
1456
1457 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1458 compat_ulong_t __user *, nmask,
1459 compat_ulong_t, maxnode,
1460 compat_ulong_t, addr, compat_ulong_t, flags)
1461 {
1462 long err;
1463 unsigned long __user *nm = NULL;
1464 unsigned long nr_bits, alloc_size;
1465 DECLARE_BITMAP(bm, MAX_NUMNODES);
1466
1467 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1468 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1469
1470 if (nmask)
1471 nm = compat_alloc_user_space(alloc_size);
1472
1473 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1474
1475 if (!err && nmask) {
1476 unsigned long copy_size;
1477 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1478 err = copy_from_user(bm, nm, copy_size);
1479 /* ensure entire bitmap is zeroed */
1480 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1481 err |= compat_put_bitmap(nmask, bm, nr_bits);
1482 }
1483
1484 return err;
1485 }
1486
1487 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1488 compat_ulong_t, maxnode)
1489 {
1490 unsigned long __user *nm = NULL;
1491 unsigned long nr_bits, alloc_size;
1492 DECLARE_BITMAP(bm, MAX_NUMNODES);
1493
1494 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1495 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1496
1497 if (nmask) {
1498 if (compat_get_bitmap(bm, nmask, nr_bits))
1499 return -EFAULT;
1500 nm = compat_alloc_user_space(alloc_size);
1501 if (copy_to_user(nm, bm, alloc_size))
1502 return -EFAULT;
1503 }
1504
1505 return sys_set_mempolicy(mode, nm, nr_bits+1);
1506 }
1507
1508 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1509 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1510 compat_ulong_t, maxnode, compat_ulong_t, flags)
1511 {
1512 unsigned long __user *nm = NULL;
1513 unsigned long nr_bits, alloc_size;
1514 nodemask_t bm;
1515
1516 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518
1519 if (nmask) {
1520 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1521 return -EFAULT;
1522 nm = compat_alloc_user_space(alloc_size);
1523 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1524 return -EFAULT;
1525 }
1526
1527 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1528 }
1529
1530 #endif
1531
1532 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1533 unsigned long addr)
1534 {
1535 struct mempolicy *pol = NULL;
1536
1537 if (vma) {
1538 if (vma->vm_ops && vma->vm_ops->get_policy) {
1539 pol = vma->vm_ops->get_policy(vma, addr);
1540 } else if (vma->vm_policy) {
1541 pol = vma->vm_policy;
1542
1543 /*
1544 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1545 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1546 * count on these policies which will be dropped by
1547 * mpol_cond_put() later
1548 */
1549 if (mpol_needs_cond_ref(pol))
1550 mpol_get(pol);
1551 }
1552 }
1553
1554 return pol;
1555 }
1556
1557 /*
1558 * get_vma_policy(@vma, @addr)
1559 * @vma: virtual memory area whose policy is sought
1560 * @addr: address in @vma for shared policy lookup
1561 *
1562 * Returns effective policy for a VMA at specified address.
1563 * Falls back to current->mempolicy or system default policy, as necessary.
1564 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1565 * count--added by the get_policy() vm_op, as appropriate--to protect against
1566 * freeing by another task. It is the caller's responsibility to free the
1567 * extra reference for shared policies.
1568 */
1569 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1570 unsigned long addr)
1571 {
1572 struct mempolicy *pol = __get_vma_policy(vma, addr);
1573
1574 if (!pol)
1575 pol = get_task_policy(current);
1576
1577 return pol;
1578 }
1579
1580 bool vma_policy_mof(struct vm_area_struct *vma)
1581 {
1582 struct mempolicy *pol;
1583
1584 if (vma->vm_ops && vma->vm_ops->get_policy) {
1585 bool ret = false;
1586
1587 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1588 if (pol && (pol->flags & MPOL_F_MOF))
1589 ret = true;
1590 mpol_cond_put(pol);
1591
1592 return ret;
1593 }
1594
1595 pol = vma->vm_policy;
1596 if (!pol)
1597 pol = get_task_policy(current);
1598
1599 return pol->flags & MPOL_F_MOF;
1600 }
1601
1602 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1603 {
1604 enum zone_type dynamic_policy_zone = policy_zone;
1605
1606 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1607
1608 /*
1609 * if policy->v.nodes has movable memory only,
1610 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1611 *
1612 * policy->v.nodes is intersect with node_states[N_MEMORY].
1613 * so if the following test faile, it implies
1614 * policy->v.nodes has movable memory only.
1615 */
1616 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1617 dynamic_policy_zone = ZONE_MOVABLE;
1618
1619 return zone >= dynamic_policy_zone;
1620 }
1621
1622 /*
1623 * Return a nodemask representing a mempolicy for filtering nodes for
1624 * page allocation
1625 */
1626 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1627 {
1628 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1629 if (unlikely(policy->mode == MPOL_BIND) &&
1630 apply_policy_zone(policy, gfp_zone(gfp)) &&
1631 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1632 return &policy->v.nodes;
1633
1634 return NULL;
1635 }
1636
1637 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1638 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1639 int nd)
1640 {
1641 switch (policy->mode) {
1642 case MPOL_PREFERRED:
1643 if (!(policy->flags & MPOL_F_LOCAL))
1644 nd = policy->v.preferred_node;
1645 break;
1646 case MPOL_BIND:
1647 /*
1648 * Normally, MPOL_BIND allocations are node-local within the
1649 * allowed nodemask. However, if __GFP_THISNODE is set and the
1650 * current node isn't part of the mask, we use the zonelist for
1651 * the first node in the mask instead.
1652 */
1653 if (unlikely(gfp & __GFP_THISNODE) &&
1654 unlikely(!node_isset(nd, policy->v.nodes)))
1655 nd = first_node(policy->v.nodes);
1656 break;
1657 default:
1658 BUG();
1659 }
1660 return node_zonelist(nd, gfp);
1661 }
1662
1663 /* Do dynamic interleaving for a process */
1664 static unsigned interleave_nodes(struct mempolicy *policy)
1665 {
1666 unsigned nid, next;
1667 struct task_struct *me = current;
1668
1669 nid = me->il_next;
1670 next = next_node(nid, policy->v.nodes);
1671 if (next >= MAX_NUMNODES)
1672 next = first_node(policy->v.nodes);
1673 if (next < MAX_NUMNODES)
1674 me->il_next = next;
1675 return nid;
1676 }
1677
1678 /*
1679 * Depending on the memory policy provide a node from which to allocate the
1680 * next slab entry.
1681 */
1682 unsigned int mempolicy_slab_node(void)
1683 {
1684 struct mempolicy *policy;
1685 int node = numa_mem_id();
1686
1687 if (in_interrupt())
1688 return node;
1689
1690 policy = current->mempolicy;
1691 if (!policy || policy->flags & MPOL_F_LOCAL)
1692 return node;
1693
1694 switch (policy->mode) {
1695 case MPOL_PREFERRED:
1696 /*
1697 * handled MPOL_F_LOCAL above
1698 */
1699 return policy->v.preferred_node;
1700
1701 case MPOL_INTERLEAVE:
1702 return interleave_nodes(policy);
1703
1704 case MPOL_BIND: {
1705 /*
1706 * Follow bind policy behavior and start allocation at the
1707 * first node.
1708 */
1709 struct zonelist *zonelist;
1710 struct zone *zone;
1711 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1712 zonelist = &NODE_DATA(node)->node_zonelists[0];
1713 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1714 &policy->v.nodes,
1715 &zone);
1716 return zone ? zone->node : node;
1717 }
1718
1719 default:
1720 BUG();
1721 }
1722 }
1723
1724 /* Do static interleaving for a VMA with known offset. */
1725 static unsigned offset_il_node(struct mempolicy *pol,
1726 struct vm_area_struct *vma, unsigned long off)
1727 {
1728 unsigned nnodes = nodes_weight(pol->v.nodes);
1729 unsigned target;
1730 int c;
1731 int nid = NUMA_NO_NODE;
1732
1733 if (!nnodes)
1734 return numa_node_id();
1735 target = (unsigned int)off % nnodes;
1736 c = 0;
1737 do {
1738 nid = next_node(nid, pol->v.nodes);
1739 c++;
1740 } while (c <= target);
1741 return nid;
1742 }
1743
1744 /* Determine a node number for interleave */
1745 static inline unsigned interleave_nid(struct mempolicy *pol,
1746 struct vm_area_struct *vma, unsigned long addr, int shift)
1747 {
1748 if (vma) {
1749 unsigned long off;
1750
1751 /*
1752 * for small pages, there is no difference between
1753 * shift and PAGE_SHIFT, so the bit-shift is safe.
1754 * for huge pages, since vm_pgoff is in units of small
1755 * pages, we need to shift off the always 0 bits to get
1756 * a useful offset.
1757 */
1758 BUG_ON(shift < PAGE_SHIFT);
1759 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1760 off += (addr - vma->vm_start) >> shift;
1761 return offset_il_node(pol, vma, off);
1762 } else
1763 return interleave_nodes(pol);
1764 }
1765
1766 /*
1767 * Return the bit number of a random bit set in the nodemask.
1768 * (returns NUMA_NO_NODE if nodemask is empty)
1769 */
1770 int node_random(const nodemask_t *maskp)
1771 {
1772 int w, bit = NUMA_NO_NODE;
1773
1774 w = nodes_weight(*maskp);
1775 if (w)
1776 bit = bitmap_ord_to_pos(maskp->bits,
1777 get_random_int() % w, MAX_NUMNODES);
1778 return bit;
1779 }
1780
1781 #ifdef CONFIG_HUGETLBFS
1782 /*
1783 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1784 * @vma: virtual memory area whose policy is sought
1785 * @addr: address in @vma for shared policy lookup and interleave policy
1786 * @gfp_flags: for requested zone
1787 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1788 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1789 *
1790 * Returns a zonelist suitable for a huge page allocation and a pointer
1791 * to the struct mempolicy for conditional unref after allocation.
1792 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1793 * @nodemask for filtering the zonelist.
1794 *
1795 * Must be protected by read_mems_allowed_begin()
1796 */
1797 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1798 gfp_t gfp_flags, struct mempolicy **mpol,
1799 nodemask_t **nodemask)
1800 {
1801 struct zonelist *zl;
1802
1803 *mpol = get_vma_policy(vma, addr);
1804 *nodemask = NULL; /* assume !MPOL_BIND */
1805
1806 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1807 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1808 huge_page_shift(hstate_vma(vma))), gfp_flags);
1809 } else {
1810 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1811 if ((*mpol)->mode == MPOL_BIND)
1812 *nodemask = &(*mpol)->v.nodes;
1813 }
1814 return zl;
1815 }
1816
1817 /*
1818 * init_nodemask_of_mempolicy
1819 *
1820 * If the current task's mempolicy is "default" [NULL], return 'false'
1821 * to indicate default policy. Otherwise, extract the policy nodemask
1822 * for 'bind' or 'interleave' policy into the argument nodemask, or
1823 * initialize the argument nodemask to contain the single node for
1824 * 'preferred' or 'local' policy and return 'true' to indicate presence
1825 * of non-default mempolicy.
1826 *
1827 * We don't bother with reference counting the mempolicy [mpol_get/put]
1828 * because the current task is examining it's own mempolicy and a task's
1829 * mempolicy is only ever changed by the task itself.
1830 *
1831 * N.B., it is the caller's responsibility to free a returned nodemask.
1832 */
1833 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1834 {
1835 struct mempolicy *mempolicy;
1836 int nid;
1837
1838 if (!(mask && current->mempolicy))
1839 return false;
1840
1841 task_lock(current);
1842 mempolicy = current->mempolicy;
1843 switch (mempolicy->mode) {
1844 case MPOL_PREFERRED:
1845 if (mempolicy->flags & MPOL_F_LOCAL)
1846 nid = numa_node_id();
1847 else
1848 nid = mempolicy->v.preferred_node;
1849 init_nodemask_of_node(mask, nid);
1850 break;
1851
1852 case MPOL_BIND:
1853 /* Fall through */
1854 case MPOL_INTERLEAVE:
1855 *mask = mempolicy->v.nodes;
1856 break;
1857
1858 default:
1859 BUG();
1860 }
1861 task_unlock(current);
1862
1863 return true;
1864 }
1865 #endif
1866
1867 /*
1868 * mempolicy_nodemask_intersects
1869 *
1870 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1871 * policy. Otherwise, check for intersection between mask and the policy
1872 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1873 * policy, always return true since it may allocate elsewhere on fallback.
1874 *
1875 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1876 */
1877 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1878 const nodemask_t *mask)
1879 {
1880 struct mempolicy *mempolicy;
1881 bool ret = true;
1882
1883 if (!mask)
1884 return ret;
1885 task_lock(tsk);
1886 mempolicy = tsk->mempolicy;
1887 if (!mempolicy)
1888 goto out;
1889
1890 switch (mempolicy->mode) {
1891 case MPOL_PREFERRED:
1892 /*
1893 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1894 * allocate from, they may fallback to other nodes when oom.
1895 * Thus, it's possible for tsk to have allocated memory from
1896 * nodes in mask.
1897 */
1898 break;
1899 case MPOL_BIND:
1900 case MPOL_INTERLEAVE:
1901 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1902 break;
1903 default:
1904 BUG();
1905 }
1906 out:
1907 task_unlock(tsk);
1908 return ret;
1909 }
1910
1911 /* Allocate a page in interleaved policy.
1912 Own path because it needs to do special accounting. */
1913 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1914 unsigned nid)
1915 {
1916 struct zonelist *zl;
1917 struct page *page;
1918
1919 zl = node_zonelist(nid, gfp);
1920 page = __alloc_pages(gfp, order, zl);
1921 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1922 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1923 return page;
1924 }
1925
1926 /**
1927 * alloc_pages_vma - Allocate a page for a VMA.
1928 *
1929 * @gfp:
1930 * %GFP_USER user allocation.
1931 * %GFP_KERNEL kernel allocations,
1932 * %GFP_HIGHMEM highmem/user allocations,
1933 * %GFP_FS allocation should not call back into a file system.
1934 * %GFP_ATOMIC don't sleep.
1935 *
1936 * @order:Order of the GFP allocation.
1937 * @vma: Pointer to VMA or NULL if not available.
1938 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1939 * @node: Which node to prefer for allocation (modulo policy).
1940 * @hugepage: for hugepages try only the preferred node if possible
1941 *
1942 * This function allocates a page from the kernel page pool and applies
1943 * a NUMA policy associated with the VMA or the current process.
1944 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1945 * mm_struct of the VMA to prevent it from going away. Should be used for
1946 * all allocations for pages that will be mapped into user space. Returns
1947 * NULL when no page can be allocated.
1948 */
1949 struct page *
1950 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1951 unsigned long addr, int node, bool hugepage)
1952 {
1953 struct mempolicy *pol;
1954 struct page *page;
1955 unsigned int cpuset_mems_cookie;
1956 struct zonelist *zl;
1957 nodemask_t *nmask;
1958
1959 retry_cpuset:
1960 pol = get_vma_policy(vma, addr);
1961 cpuset_mems_cookie = read_mems_allowed_begin();
1962
1963 if (pol->mode == MPOL_INTERLEAVE) {
1964 unsigned nid;
1965
1966 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1967 mpol_cond_put(pol);
1968 page = alloc_page_interleave(gfp, order, nid);
1969 goto out;
1970 }
1971
1972 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1973 int hpage_node = node;
1974
1975 /*
1976 * For hugepage allocation and non-interleave policy which
1977 * allows the current node (or other explicitly preferred
1978 * node) we only try to allocate from the current/preferred
1979 * node and don't fall back to other nodes, as the cost of
1980 * remote accesses would likely offset THP benefits.
1981 *
1982 * If the policy is interleave, or does not allow the current
1983 * node in its nodemask, we allocate the standard way.
1984 */
1985 if (pol->mode == MPOL_PREFERRED &&
1986 !(pol->flags & MPOL_F_LOCAL))
1987 hpage_node = pol->v.preferred_node;
1988
1989 nmask = policy_nodemask(gfp, pol);
1990 if (!nmask || node_isset(hpage_node, *nmask)) {
1991 mpol_cond_put(pol);
1992 page = __alloc_pages_node(hpage_node,
1993 gfp | __GFP_THISNODE, order);
1994 goto out;
1995 }
1996 }
1997
1998 nmask = policy_nodemask(gfp, pol);
1999 zl = policy_zonelist(gfp, pol, node);
2000 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2001 mpol_cond_put(pol);
2002 out:
2003 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2004 goto retry_cpuset;
2005 return page;
2006 }
2007
2008 /**
2009 * alloc_pages_current - Allocate pages.
2010 *
2011 * @gfp:
2012 * %GFP_USER user allocation,
2013 * %GFP_KERNEL kernel allocation,
2014 * %GFP_HIGHMEM highmem allocation,
2015 * %GFP_FS don't call back into a file system.
2016 * %GFP_ATOMIC don't sleep.
2017 * @order: Power of two of allocation size in pages. 0 is a single page.
2018 *
2019 * Allocate a page from the kernel page pool. When not in
2020 * interrupt context and apply the current process NUMA policy.
2021 * Returns NULL when no page can be allocated.
2022 *
2023 * Don't call cpuset_update_task_memory_state() unless
2024 * 1) it's ok to take cpuset_sem (can WAIT), and
2025 * 2) allocating for current task (not interrupt).
2026 */
2027 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2028 {
2029 struct mempolicy *pol = &default_policy;
2030 struct page *page;
2031 unsigned int cpuset_mems_cookie;
2032
2033 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2034 pol = get_task_policy(current);
2035
2036 retry_cpuset:
2037 cpuset_mems_cookie = read_mems_allowed_begin();
2038
2039 /*
2040 * No reference counting needed for current->mempolicy
2041 * nor system default_policy
2042 */
2043 if (pol->mode == MPOL_INTERLEAVE)
2044 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2045 else
2046 page = __alloc_pages_nodemask(gfp, order,
2047 policy_zonelist(gfp, pol, numa_node_id()),
2048 policy_nodemask(gfp, pol));
2049
2050 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2051 goto retry_cpuset;
2052
2053 return page;
2054 }
2055 EXPORT_SYMBOL(alloc_pages_current);
2056
2057 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2058 {
2059 struct mempolicy *pol = mpol_dup(vma_policy(src));
2060
2061 if (IS_ERR(pol))
2062 return PTR_ERR(pol);
2063 dst->vm_policy = pol;
2064 return 0;
2065 }
2066
2067 /*
2068 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2069 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2070 * with the mems_allowed returned by cpuset_mems_allowed(). This
2071 * keeps mempolicies cpuset relative after its cpuset moves. See
2072 * further kernel/cpuset.c update_nodemask().
2073 *
2074 * current's mempolicy may be rebinded by the other task(the task that changes
2075 * cpuset's mems), so we needn't do rebind work for current task.
2076 */
2077
2078 /* Slow path of a mempolicy duplicate */
2079 struct mempolicy *__mpol_dup(struct mempolicy *old)
2080 {
2081 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2082
2083 if (!new)
2084 return ERR_PTR(-ENOMEM);
2085
2086 /* task's mempolicy is protected by alloc_lock */
2087 if (old == current->mempolicy) {
2088 task_lock(current);
2089 *new = *old;
2090 task_unlock(current);
2091 } else
2092 *new = *old;
2093
2094 if (current_cpuset_is_being_rebound()) {
2095 nodemask_t mems = cpuset_mems_allowed(current);
2096 if (new->flags & MPOL_F_REBINDING)
2097 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2098 else
2099 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2100 }
2101 atomic_set(&new->refcnt, 1);
2102 return new;
2103 }
2104
2105 /* Slow path of a mempolicy comparison */
2106 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2107 {
2108 if (!a || !b)
2109 return false;
2110 if (a->mode != b->mode)
2111 return false;
2112 if (a->flags != b->flags)
2113 return false;
2114 if (mpol_store_user_nodemask(a))
2115 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2116 return false;
2117
2118 switch (a->mode) {
2119 case MPOL_BIND:
2120 /* Fall through */
2121 case MPOL_INTERLEAVE:
2122 return !!nodes_equal(a->v.nodes, b->v.nodes);
2123 case MPOL_PREFERRED:
2124 return a->v.preferred_node == b->v.preferred_node;
2125 default:
2126 BUG();
2127 return false;
2128 }
2129 }
2130
2131 /*
2132 * Shared memory backing store policy support.
2133 *
2134 * Remember policies even when nobody has shared memory mapped.
2135 * The policies are kept in Red-Black tree linked from the inode.
2136 * They are protected by the sp->lock spinlock, which should be held
2137 * for any accesses to the tree.
2138 */
2139
2140 /* lookup first element intersecting start-end */
2141 /* Caller holds sp->lock */
2142 static struct sp_node *
2143 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2144 {
2145 struct rb_node *n = sp->root.rb_node;
2146
2147 while (n) {
2148 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2149
2150 if (start >= p->end)
2151 n = n->rb_right;
2152 else if (end <= p->start)
2153 n = n->rb_left;
2154 else
2155 break;
2156 }
2157 if (!n)
2158 return NULL;
2159 for (;;) {
2160 struct sp_node *w = NULL;
2161 struct rb_node *prev = rb_prev(n);
2162 if (!prev)
2163 break;
2164 w = rb_entry(prev, struct sp_node, nd);
2165 if (w->end <= start)
2166 break;
2167 n = prev;
2168 }
2169 return rb_entry(n, struct sp_node, nd);
2170 }
2171
2172 /* Insert a new shared policy into the list. */
2173 /* Caller holds sp->lock */
2174 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2175 {
2176 struct rb_node **p = &sp->root.rb_node;
2177 struct rb_node *parent = NULL;
2178 struct sp_node *nd;
2179
2180 while (*p) {
2181 parent = *p;
2182 nd = rb_entry(parent, struct sp_node, nd);
2183 if (new->start < nd->start)
2184 p = &(*p)->rb_left;
2185 else if (new->end > nd->end)
2186 p = &(*p)->rb_right;
2187 else
2188 BUG();
2189 }
2190 rb_link_node(&new->nd, parent, p);
2191 rb_insert_color(&new->nd, &sp->root);
2192 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2193 new->policy ? new->policy->mode : 0);
2194 }
2195
2196 /* Find shared policy intersecting idx */
2197 struct mempolicy *
2198 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2199 {
2200 struct mempolicy *pol = NULL;
2201 struct sp_node *sn;
2202
2203 if (!sp->root.rb_node)
2204 return NULL;
2205 spin_lock(&sp->lock);
2206 sn = sp_lookup(sp, idx, idx+1);
2207 if (sn) {
2208 mpol_get(sn->policy);
2209 pol = sn->policy;
2210 }
2211 spin_unlock(&sp->lock);
2212 return pol;
2213 }
2214
2215 static void sp_free(struct sp_node *n)
2216 {
2217 mpol_put(n->policy);
2218 kmem_cache_free(sn_cache, n);
2219 }
2220
2221 /**
2222 * mpol_misplaced - check whether current page node is valid in policy
2223 *
2224 * @page: page to be checked
2225 * @vma: vm area where page mapped
2226 * @addr: virtual address where page mapped
2227 *
2228 * Lookup current policy node id for vma,addr and "compare to" page's
2229 * node id.
2230 *
2231 * Returns:
2232 * -1 - not misplaced, page is in the right node
2233 * node - node id where the page should be
2234 *
2235 * Policy determination "mimics" alloc_page_vma().
2236 * Called from fault path where we know the vma and faulting address.
2237 */
2238 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2239 {
2240 struct mempolicy *pol;
2241 struct zone *zone;
2242 int curnid = page_to_nid(page);
2243 unsigned long pgoff;
2244 int thiscpu = raw_smp_processor_id();
2245 int thisnid = cpu_to_node(thiscpu);
2246 int polnid = -1;
2247 int ret = -1;
2248
2249 BUG_ON(!vma);
2250
2251 pol = get_vma_policy(vma, addr);
2252 if (!(pol->flags & MPOL_F_MOF))
2253 goto out;
2254
2255 switch (pol->mode) {
2256 case MPOL_INTERLEAVE:
2257 BUG_ON(addr >= vma->vm_end);
2258 BUG_ON(addr < vma->vm_start);
2259
2260 pgoff = vma->vm_pgoff;
2261 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2262 polnid = offset_il_node(pol, vma, pgoff);
2263 break;
2264
2265 case MPOL_PREFERRED:
2266 if (pol->flags & MPOL_F_LOCAL)
2267 polnid = numa_node_id();
2268 else
2269 polnid = pol->v.preferred_node;
2270 break;
2271
2272 case MPOL_BIND:
2273 /*
2274 * allows binding to multiple nodes.
2275 * use current page if in policy nodemask,
2276 * else select nearest allowed node, if any.
2277 * If no allowed nodes, use current [!misplaced].
2278 */
2279 if (node_isset(curnid, pol->v.nodes))
2280 goto out;
2281 (void)first_zones_zonelist(
2282 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2283 gfp_zone(GFP_HIGHUSER),
2284 &pol->v.nodes, &zone);
2285 polnid = zone->node;
2286 break;
2287
2288 default:
2289 BUG();
2290 }
2291
2292 /* Migrate the page towards the node whose CPU is referencing it */
2293 if (pol->flags & MPOL_F_MORON) {
2294 polnid = thisnid;
2295
2296 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2297 goto out;
2298 }
2299
2300 if (curnid != polnid)
2301 ret = polnid;
2302 out:
2303 mpol_cond_put(pol);
2304
2305 return ret;
2306 }
2307
2308 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2309 {
2310 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2311 rb_erase(&n->nd, &sp->root);
2312 sp_free(n);
2313 }
2314
2315 static void sp_node_init(struct sp_node *node, unsigned long start,
2316 unsigned long end, struct mempolicy *pol)
2317 {
2318 node->start = start;
2319 node->end = end;
2320 node->policy = pol;
2321 }
2322
2323 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2324 struct mempolicy *pol)
2325 {
2326 struct sp_node *n;
2327 struct mempolicy *newpol;
2328
2329 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2330 if (!n)
2331 return NULL;
2332
2333 newpol = mpol_dup(pol);
2334 if (IS_ERR(newpol)) {
2335 kmem_cache_free(sn_cache, n);
2336 return NULL;
2337 }
2338 newpol->flags |= MPOL_F_SHARED;
2339 sp_node_init(n, start, end, newpol);
2340
2341 return n;
2342 }
2343
2344 /* Replace a policy range. */
2345 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2346 unsigned long end, struct sp_node *new)
2347 {
2348 struct sp_node *n;
2349 struct sp_node *n_new = NULL;
2350 struct mempolicy *mpol_new = NULL;
2351 int ret = 0;
2352
2353 restart:
2354 spin_lock(&sp->lock);
2355 n = sp_lookup(sp, start, end);
2356 /* Take care of old policies in the same range. */
2357 while (n && n->start < end) {
2358 struct rb_node *next = rb_next(&n->nd);
2359 if (n->start >= start) {
2360 if (n->end <= end)
2361 sp_delete(sp, n);
2362 else
2363 n->start = end;
2364 } else {
2365 /* Old policy spanning whole new range. */
2366 if (n->end > end) {
2367 if (!n_new)
2368 goto alloc_new;
2369
2370 *mpol_new = *n->policy;
2371 atomic_set(&mpol_new->refcnt, 1);
2372 sp_node_init(n_new, end, n->end, mpol_new);
2373 n->end = start;
2374 sp_insert(sp, n_new);
2375 n_new = NULL;
2376 mpol_new = NULL;
2377 break;
2378 } else
2379 n->end = start;
2380 }
2381 if (!next)
2382 break;
2383 n = rb_entry(next, struct sp_node, nd);
2384 }
2385 if (new)
2386 sp_insert(sp, new);
2387 spin_unlock(&sp->lock);
2388 ret = 0;
2389
2390 err_out:
2391 if (mpol_new)
2392 mpol_put(mpol_new);
2393 if (n_new)
2394 kmem_cache_free(sn_cache, n_new);
2395
2396 return ret;
2397
2398 alloc_new:
2399 spin_unlock(&sp->lock);
2400 ret = -ENOMEM;
2401 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2402 if (!n_new)
2403 goto err_out;
2404 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2405 if (!mpol_new)
2406 goto err_out;
2407 goto restart;
2408 }
2409
2410 /**
2411 * mpol_shared_policy_init - initialize shared policy for inode
2412 * @sp: pointer to inode shared policy
2413 * @mpol: struct mempolicy to install
2414 *
2415 * Install non-NULL @mpol in inode's shared policy rb-tree.
2416 * On entry, the current task has a reference on a non-NULL @mpol.
2417 * This must be released on exit.
2418 * This is called at get_inode() calls and we can use GFP_KERNEL.
2419 */
2420 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2421 {
2422 int ret;
2423
2424 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2425 spin_lock_init(&sp->lock);
2426
2427 if (mpol) {
2428 struct vm_area_struct pvma;
2429 struct mempolicy *new;
2430 NODEMASK_SCRATCH(scratch);
2431
2432 if (!scratch)
2433 goto put_mpol;
2434 /* contextualize the tmpfs mount point mempolicy */
2435 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2436 if (IS_ERR(new))
2437 goto free_scratch; /* no valid nodemask intersection */
2438
2439 task_lock(current);
2440 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2441 task_unlock(current);
2442 if (ret)
2443 goto put_new;
2444
2445 /* Create pseudo-vma that contains just the policy */
2446 memset(&pvma, 0, sizeof(struct vm_area_struct));
2447 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2448 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2449
2450 put_new:
2451 mpol_put(new); /* drop initial ref */
2452 free_scratch:
2453 NODEMASK_SCRATCH_FREE(scratch);
2454 put_mpol:
2455 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2456 }
2457 }
2458
2459 int mpol_set_shared_policy(struct shared_policy *info,
2460 struct vm_area_struct *vma, struct mempolicy *npol)
2461 {
2462 int err;
2463 struct sp_node *new = NULL;
2464 unsigned long sz = vma_pages(vma);
2465
2466 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2467 vma->vm_pgoff,
2468 sz, npol ? npol->mode : -1,
2469 npol ? npol->flags : -1,
2470 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2471
2472 if (npol) {
2473 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2474 if (!new)
2475 return -ENOMEM;
2476 }
2477 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2478 if (err && new)
2479 sp_free(new);
2480 return err;
2481 }
2482
2483 /* Free a backing policy store on inode delete. */
2484 void mpol_free_shared_policy(struct shared_policy *p)
2485 {
2486 struct sp_node *n;
2487 struct rb_node *next;
2488
2489 if (!p->root.rb_node)
2490 return;
2491 spin_lock(&p->lock);
2492 next = rb_first(&p->root);
2493 while (next) {
2494 n = rb_entry(next, struct sp_node, nd);
2495 next = rb_next(&n->nd);
2496 sp_delete(p, n);
2497 }
2498 spin_unlock(&p->lock);
2499 }
2500
2501 #ifdef CONFIG_NUMA_BALANCING
2502 static int __initdata numabalancing_override;
2503
2504 static void __init check_numabalancing_enable(void)
2505 {
2506 bool numabalancing_default = false;
2507
2508 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2509 numabalancing_default = true;
2510
2511 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2512 if (numabalancing_override)
2513 set_numabalancing_state(numabalancing_override == 1);
2514
2515 if (num_online_nodes() > 1 && !numabalancing_override) {
2516 pr_info("%s automatic NUMA balancing. "
2517 "Configure with numa_balancing= or the "
2518 "kernel.numa_balancing sysctl",
2519 numabalancing_default ? "Enabling" : "Disabling");
2520 set_numabalancing_state(numabalancing_default);
2521 }
2522 }
2523
2524 static int __init setup_numabalancing(char *str)
2525 {
2526 int ret = 0;
2527 if (!str)
2528 goto out;
2529
2530 if (!strcmp(str, "enable")) {
2531 numabalancing_override = 1;
2532 ret = 1;
2533 } else if (!strcmp(str, "disable")) {
2534 numabalancing_override = -1;
2535 ret = 1;
2536 }
2537 out:
2538 if (!ret)
2539 pr_warn("Unable to parse numa_balancing=\n");
2540
2541 return ret;
2542 }
2543 __setup("numa_balancing=", setup_numabalancing);
2544 #else
2545 static inline void __init check_numabalancing_enable(void)
2546 {
2547 }
2548 #endif /* CONFIG_NUMA_BALANCING */
2549
2550 /* assumes fs == KERNEL_DS */
2551 void __init numa_policy_init(void)
2552 {
2553 nodemask_t interleave_nodes;
2554 unsigned long largest = 0;
2555 int nid, prefer = 0;
2556
2557 policy_cache = kmem_cache_create("numa_policy",
2558 sizeof(struct mempolicy),
2559 0, SLAB_PANIC, NULL);
2560
2561 sn_cache = kmem_cache_create("shared_policy_node",
2562 sizeof(struct sp_node),
2563 0, SLAB_PANIC, NULL);
2564
2565 for_each_node(nid) {
2566 preferred_node_policy[nid] = (struct mempolicy) {
2567 .refcnt = ATOMIC_INIT(1),
2568 .mode = MPOL_PREFERRED,
2569 .flags = MPOL_F_MOF | MPOL_F_MORON,
2570 .v = { .preferred_node = nid, },
2571 };
2572 }
2573
2574 /*
2575 * Set interleaving policy for system init. Interleaving is only
2576 * enabled across suitably sized nodes (default is >= 16MB), or
2577 * fall back to the largest node if they're all smaller.
2578 */
2579 nodes_clear(interleave_nodes);
2580 for_each_node_state(nid, N_MEMORY) {
2581 unsigned long total_pages = node_present_pages(nid);
2582
2583 /* Preserve the largest node */
2584 if (largest < total_pages) {
2585 largest = total_pages;
2586 prefer = nid;
2587 }
2588
2589 /* Interleave this node? */
2590 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2591 node_set(nid, interleave_nodes);
2592 }
2593
2594 /* All too small, use the largest */
2595 if (unlikely(nodes_empty(interleave_nodes)))
2596 node_set(prefer, interleave_nodes);
2597
2598 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2599 pr_err("%s: interleaving failed\n", __func__);
2600
2601 check_numabalancing_enable();
2602 }
2603
2604 /* Reset policy of current process to default */
2605 void numa_default_policy(void)
2606 {
2607 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2608 }
2609
2610 /*
2611 * Parse and format mempolicy from/to strings
2612 */
2613
2614 /*
2615 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2616 */
2617 static const char * const policy_modes[] =
2618 {
2619 [MPOL_DEFAULT] = "default",
2620 [MPOL_PREFERRED] = "prefer",
2621 [MPOL_BIND] = "bind",
2622 [MPOL_INTERLEAVE] = "interleave",
2623 [MPOL_LOCAL] = "local",
2624 };
2625
2626
2627 #ifdef CONFIG_TMPFS
2628 /**
2629 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2630 * @str: string containing mempolicy to parse
2631 * @mpol: pointer to struct mempolicy pointer, returned on success.
2632 *
2633 * Format of input:
2634 * <mode>[=<flags>][:<nodelist>]
2635 *
2636 * On success, returns 0, else 1
2637 */
2638 int mpol_parse_str(char *str, struct mempolicy **mpol)
2639 {
2640 struct mempolicy *new = NULL;
2641 unsigned short mode;
2642 unsigned short mode_flags;
2643 nodemask_t nodes;
2644 char *nodelist = strchr(str, ':');
2645 char *flags = strchr(str, '=');
2646 int err = 1;
2647
2648 if (nodelist) {
2649 /* NUL-terminate mode or flags string */
2650 *nodelist++ = '\0';
2651 if (nodelist_parse(nodelist, nodes))
2652 goto out;
2653 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2654 goto out;
2655 } else
2656 nodes_clear(nodes);
2657
2658 if (flags)
2659 *flags++ = '\0'; /* terminate mode string */
2660
2661 for (mode = 0; mode < MPOL_MAX; mode++) {
2662 if (!strcmp(str, policy_modes[mode])) {
2663 break;
2664 }
2665 }
2666 if (mode >= MPOL_MAX)
2667 goto out;
2668
2669 switch (mode) {
2670 case MPOL_PREFERRED:
2671 /*
2672 * Insist on a nodelist of one node only
2673 */
2674 if (nodelist) {
2675 char *rest = nodelist;
2676 while (isdigit(*rest))
2677 rest++;
2678 if (*rest)
2679 goto out;
2680 }
2681 break;
2682 case MPOL_INTERLEAVE:
2683 /*
2684 * Default to online nodes with memory if no nodelist
2685 */
2686 if (!nodelist)
2687 nodes = node_states[N_MEMORY];
2688 break;
2689 case MPOL_LOCAL:
2690 /*
2691 * Don't allow a nodelist; mpol_new() checks flags
2692 */
2693 if (nodelist)
2694 goto out;
2695 mode = MPOL_PREFERRED;
2696 break;
2697 case MPOL_DEFAULT:
2698 /*
2699 * Insist on a empty nodelist
2700 */
2701 if (!nodelist)
2702 err = 0;
2703 goto out;
2704 case MPOL_BIND:
2705 /*
2706 * Insist on a nodelist
2707 */
2708 if (!nodelist)
2709 goto out;
2710 }
2711
2712 mode_flags = 0;
2713 if (flags) {
2714 /*
2715 * Currently, we only support two mutually exclusive
2716 * mode flags.
2717 */
2718 if (!strcmp(flags, "static"))
2719 mode_flags |= MPOL_F_STATIC_NODES;
2720 else if (!strcmp(flags, "relative"))
2721 mode_flags |= MPOL_F_RELATIVE_NODES;
2722 else
2723 goto out;
2724 }
2725
2726 new = mpol_new(mode, mode_flags, &nodes);
2727 if (IS_ERR(new))
2728 goto out;
2729
2730 /*
2731 * Save nodes for mpol_to_str() to show the tmpfs mount options
2732 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2733 */
2734 if (mode != MPOL_PREFERRED)
2735 new->v.nodes = nodes;
2736 else if (nodelist)
2737 new->v.preferred_node = first_node(nodes);
2738 else
2739 new->flags |= MPOL_F_LOCAL;
2740
2741 /*
2742 * Save nodes for contextualization: this will be used to "clone"
2743 * the mempolicy in a specific context [cpuset] at a later time.
2744 */
2745 new->w.user_nodemask = nodes;
2746
2747 err = 0;
2748
2749 out:
2750 /* Restore string for error message */
2751 if (nodelist)
2752 *--nodelist = ':';
2753 if (flags)
2754 *--flags = '=';
2755 if (!err)
2756 *mpol = new;
2757 return err;
2758 }
2759 #endif /* CONFIG_TMPFS */
2760
2761 /**
2762 * mpol_to_str - format a mempolicy structure for printing
2763 * @buffer: to contain formatted mempolicy string
2764 * @maxlen: length of @buffer
2765 * @pol: pointer to mempolicy to be formatted
2766 *
2767 * Convert @pol into a string. If @buffer is too short, truncate the string.
2768 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2769 * longest flag, "relative", and to display at least a few node ids.
2770 */
2771 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2772 {
2773 char *p = buffer;
2774 nodemask_t nodes = NODE_MASK_NONE;
2775 unsigned short mode = MPOL_DEFAULT;
2776 unsigned short flags = 0;
2777
2778 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2779 mode = pol->mode;
2780 flags = pol->flags;
2781 }
2782
2783 switch (mode) {
2784 case MPOL_DEFAULT:
2785 break;
2786 case MPOL_PREFERRED:
2787 if (flags & MPOL_F_LOCAL)
2788 mode = MPOL_LOCAL;
2789 else
2790 node_set(pol->v.preferred_node, nodes);
2791 break;
2792 case MPOL_BIND:
2793 case MPOL_INTERLEAVE:
2794 nodes = pol->v.nodes;
2795 break;
2796 default:
2797 WARN_ON_ONCE(1);
2798 snprintf(p, maxlen, "unknown");
2799 return;
2800 }
2801
2802 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2803
2804 if (flags & MPOL_MODE_FLAGS) {
2805 p += snprintf(p, buffer + maxlen - p, "=");
2806
2807 /*
2808 * Currently, the only defined flags are mutually exclusive
2809 */
2810 if (flags & MPOL_F_STATIC_NODES)
2811 p += snprintf(p, buffer + maxlen - p, "static");
2812 else if (flags & MPOL_F_RELATIVE_NODES)
2813 p += snprintf(p, buffer + maxlen - p, "relative");
2814 }
2815
2816 if (!nodes_empty(nodes))
2817 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2818 nodemask_pr_args(&nodes));
2819 }