]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
block,bfq: refactor device-idling logic
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
100
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
103
104 #include "internal.h"
105
106 /* Internal flags */
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
109
110 static struct kmem_cache *policy_cache;
111 static struct kmem_cache *sn_cache;
112
113 /* Highest zone. An specific allocation for a zone below that is not
114 policied. */
115 enum zone_type policy_zone = 0;
116
117 /*
118 * run-time system-wide default policy => local allocation
119 */
120 static struct mempolicy default_policy = {
121 .refcnt = ATOMIC_INIT(1), /* never free it */
122 .mode = MPOL_PREFERRED,
123 .flags = MPOL_F_LOCAL,
124 };
125
126 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
127
128 struct mempolicy *get_task_policy(struct task_struct *p)
129 {
130 struct mempolicy *pol = p->mempolicy;
131 int node;
132
133 if (pol)
134 return pol;
135
136 node = numa_node_id();
137 if (node != NUMA_NO_NODE) {
138 pol = &preferred_node_policy[node];
139 /* preferred_node_policy is not initialised early in boot */
140 if (pol->mode)
141 return pol;
142 }
143
144 return &default_policy;
145 }
146
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
150 } mpol_ops[MPOL_MAX];
151
152 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
153 {
154 return pol->flags & MPOL_MODE_FLAGS;
155 }
156
157 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
158 const nodemask_t *rel)
159 {
160 nodemask_t tmp;
161 nodes_fold(tmp, *orig, nodes_weight(*rel));
162 nodes_onto(*ret, tmp, *rel);
163 }
164
165 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
166 {
167 if (nodes_empty(*nodes))
168 return -EINVAL;
169 pol->v.nodes = *nodes;
170 return 0;
171 }
172
173 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
174 {
175 if (!nodes)
176 pol->flags |= MPOL_F_LOCAL; /* local allocation */
177 else if (nodes_empty(*nodes))
178 return -EINVAL; /* no allowed nodes */
179 else
180 pol->v.preferred_node = first_node(*nodes);
181 return 0;
182 }
183
184 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190 }
191
192 /*
193 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
194 * any, for the new policy. mpol_new() has already validated the nodes
195 * parameter with respect to the policy mode and flags. But, we need to
196 * handle an empty nodemask with MPOL_PREFERRED here.
197 *
198 * Must be called holding task's alloc_lock to protect task's mems_allowed
199 * and mempolicy. May also be called holding the mmap_semaphore for write.
200 */
201 static int mpol_set_nodemask(struct mempolicy *pol,
202 const nodemask_t *nodes, struct nodemask_scratch *nsc)
203 {
204 int ret;
205
206 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
207 if (pol == NULL)
208 return 0;
209 /* Check N_MEMORY */
210 nodes_and(nsc->mask1,
211 cpuset_current_mems_allowed, node_states[N_MEMORY]);
212
213 VM_BUG_ON(!nodes);
214 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
215 nodes = NULL; /* explicit local allocation */
216 else {
217 if (pol->flags & MPOL_F_RELATIVE_NODES)
218 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
219 else
220 nodes_and(nsc->mask2, *nodes, nsc->mask1);
221
222 if (mpol_store_user_nodemask(pol))
223 pol->w.user_nodemask = *nodes;
224 else
225 pol->w.cpuset_mems_allowed =
226 cpuset_current_mems_allowed;
227 }
228
229 if (nodes)
230 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
231 else
232 ret = mpol_ops[pol->mode].create(pol, NULL);
233 return ret;
234 }
235
236 /*
237 * This function just creates a new policy, does some check and simple
238 * initialization. You must invoke mpol_set_nodemask() to set nodes.
239 */
240 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
241 nodemask_t *nodes)
242 {
243 struct mempolicy *policy;
244
245 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
246 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
247
248 if (mode == MPOL_DEFAULT) {
249 if (nodes && !nodes_empty(*nodes))
250 return ERR_PTR(-EINVAL);
251 return NULL;
252 }
253 VM_BUG_ON(!nodes);
254
255 /*
256 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
257 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
258 * All other modes require a valid pointer to a non-empty nodemask.
259 */
260 if (mode == MPOL_PREFERRED) {
261 if (nodes_empty(*nodes)) {
262 if (((flags & MPOL_F_STATIC_NODES) ||
263 (flags & MPOL_F_RELATIVE_NODES)))
264 return ERR_PTR(-EINVAL);
265 }
266 } else if (mode == MPOL_LOCAL) {
267 if (!nodes_empty(*nodes) ||
268 (flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES))
270 return ERR_PTR(-EINVAL);
271 mode = MPOL_PREFERRED;
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
293 {
294 }
295
296 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
297 {
298 nodemask_t tmp;
299
300 if (pol->flags & MPOL_F_STATIC_NODES)
301 nodes_and(tmp, pol->w.user_nodemask, *nodes);
302 else if (pol->flags & MPOL_F_RELATIVE_NODES)
303 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
304 else {
305 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
306 *nodes);
307 pol->w.cpuset_mems_allowed = tmp;
308 }
309
310 if (nodes_empty(tmp))
311 tmp = *nodes;
312
313 pol->v.nodes = tmp;
314 }
315
316 static void mpol_rebind_preferred(struct mempolicy *pol,
317 const nodemask_t *nodes)
318 {
319 nodemask_t tmp;
320
321 if (pol->flags & MPOL_F_STATIC_NODES) {
322 int node = first_node(pol->w.user_nodemask);
323
324 if (node_isset(node, *nodes)) {
325 pol->v.preferred_node = node;
326 pol->flags &= ~MPOL_F_LOCAL;
327 } else
328 pol->flags |= MPOL_F_LOCAL;
329 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 pol->v.preferred_node = first_node(tmp);
332 } else if (!(pol->flags & MPOL_F_LOCAL)) {
333 pol->v.preferred_node = node_remap(pol->v.preferred_node,
334 pol->w.cpuset_mems_allowed,
335 *nodes);
336 pol->w.cpuset_mems_allowed = *nodes;
337 }
338 }
339
340 /*
341 * mpol_rebind_policy - Migrate a policy to a different set of nodes
342 *
343 * Per-vma policies are protected by mmap_sem. Allocations using per-task
344 * policies are protected by task->mems_allowed_seq to prevent a premature
345 * OOM/allocation failure due to parallel nodemask modification.
346 */
347 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
348 {
349 if (!pol)
350 return;
351 if (!mpol_store_user_nodemask(pol) &&
352 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
353 return;
354
355 mpol_ops[pol->mode].rebind(pol, newmask);
356 }
357
358 /*
359 * Wrapper for mpol_rebind_policy() that just requires task
360 * pointer, and updates task mempolicy.
361 *
362 * Called with task's alloc_lock held.
363 */
364
365 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
366 {
367 mpol_rebind_policy(tsk->mempolicy, new);
368 }
369
370 /*
371 * Rebind each vma in mm to new nodemask.
372 *
373 * Call holding a reference to mm. Takes mm->mmap_sem during call.
374 */
375
376 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
377 {
378 struct vm_area_struct *vma;
379
380 down_write(&mm->mmap_sem);
381 for (vma = mm->mmap; vma; vma = vma->vm_next)
382 mpol_rebind_policy(vma->vm_policy, new);
383 up_write(&mm->mmap_sem);
384 }
385
386 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
387 [MPOL_DEFAULT] = {
388 .rebind = mpol_rebind_default,
389 },
390 [MPOL_INTERLEAVE] = {
391 .create = mpol_new_interleave,
392 .rebind = mpol_rebind_nodemask,
393 },
394 [MPOL_PREFERRED] = {
395 .create = mpol_new_preferred,
396 .rebind = mpol_rebind_preferred,
397 },
398 [MPOL_BIND] = {
399 .create = mpol_new_bind,
400 .rebind = mpol_rebind_nodemask,
401 },
402 };
403
404 static void migrate_page_add(struct page *page, struct list_head *pagelist,
405 unsigned long flags);
406
407 struct queue_pages {
408 struct list_head *pagelist;
409 unsigned long flags;
410 nodemask_t *nmask;
411 struct vm_area_struct *prev;
412 };
413
414 /*
415 * Scan through pages checking if pages follow certain conditions,
416 * and move them to the pagelist if they do.
417 */
418 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
419 unsigned long end, struct mm_walk *walk)
420 {
421 struct vm_area_struct *vma = walk->vma;
422 struct page *page;
423 struct queue_pages *qp = walk->private;
424 unsigned long flags = qp->flags;
425 int nid, ret;
426 pte_t *pte;
427 spinlock_t *ptl;
428
429 if (pmd_trans_huge(*pmd)) {
430 ptl = pmd_lock(walk->mm, pmd);
431 if (pmd_trans_huge(*pmd)) {
432 page = pmd_page(*pmd);
433 if (is_huge_zero_page(page)) {
434 spin_unlock(ptl);
435 __split_huge_pmd(vma, pmd, addr, false, NULL);
436 } else {
437 get_page(page);
438 spin_unlock(ptl);
439 lock_page(page);
440 ret = split_huge_page(page);
441 unlock_page(page);
442 put_page(page);
443 if (ret)
444 return 0;
445 }
446 } else {
447 spin_unlock(ptl);
448 }
449 }
450
451 if (pmd_trans_unstable(pmd))
452 return 0;
453 retry:
454 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
455 for (; addr != end; pte++, addr += PAGE_SIZE) {
456 if (!pte_present(*pte))
457 continue;
458 page = vm_normal_page(vma, addr, *pte);
459 if (!page)
460 continue;
461 /*
462 * vm_normal_page() filters out zero pages, but there might
463 * still be PageReserved pages to skip, perhaps in a VDSO.
464 */
465 if (PageReserved(page))
466 continue;
467 nid = page_to_nid(page);
468 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
469 continue;
470 if (PageTransCompound(page)) {
471 get_page(page);
472 pte_unmap_unlock(pte, ptl);
473 lock_page(page);
474 ret = split_huge_page(page);
475 unlock_page(page);
476 put_page(page);
477 /* Failed to split -- skip. */
478 if (ret) {
479 pte = pte_offset_map_lock(walk->mm, pmd,
480 addr, &ptl);
481 continue;
482 }
483 goto retry;
484 }
485
486 migrate_page_add(page, qp->pagelist, flags);
487 }
488 pte_unmap_unlock(pte - 1, ptl);
489 cond_resched();
490 return 0;
491 }
492
493 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
494 unsigned long addr, unsigned long end,
495 struct mm_walk *walk)
496 {
497 #ifdef CONFIG_HUGETLB_PAGE
498 struct queue_pages *qp = walk->private;
499 unsigned long flags = qp->flags;
500 int nid;
501 struct page *page;
502 spinlock_t *ptl;
503 pte_t entry;
504
505 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
506 entry = huge_ptep_get(pte);
507 if (!pte_present(entry))
508 goto unlock;
509 page = pte_page(entry);
510 nid = page_to_nid(page);
511 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
512 goto unlock;
513 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
514 if (flags & (MPOL_MF_MOVE_ALL) ||
515 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
516 isolate_huge_page(page, qp->pagelist);
517 unlock:
518 spin_unlock(ptl);
519 #else
520 BUG();
521 #endif
522 return 0;
523 }
524
525 #ifdef CONFIG_NUMA_BALANCING
526 /*
527 * This is used to mark a range of virtual addresses to be inaccessible.
528 * These are later cleared by a NUMA hinting fault. Depending on these
529 * faults, pages may be migrated for better NUMA placement.
530 *
531 * This is assuming that NUMA faults are handled using PROT_NONE. If
532 * an architecture makes a different choice, it will need further
533 * changes to the core.
534 */
535 unsigned long change_prot_numa(struct vm_area_struct *vma,
536 unsigned long addr, unsigned long end)
537 {
538 int nr_updated;
539
540 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
541 if (nr_updated)
542 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
543
544 return nr_updated;
545 }
546 #else
547 static unsigned long change_prot_numa(struct vm_area_struct *vma,
548 unsigned long addr, unsigned long end)
549 {
550 return 0;
551 }
552 #endif /* CONFIG_NUMA_BALANCING */
553
554 static int queue_pages_test_walk(unsigned long start, unsigned long end,
555 struct mm_walk *walk)
556 {
557 struct vm_area_struct *vma = walk->vma;
558 struct queue_pages *qp = walk->private;
559 unsigned long endvma = vma->vm_end;
560 unsigned long flags = qp->flags;
561
562 if (!vma_migratable(vma))
563 return 1;
564
565 if (endvma > end)
566 endvma = end;
567 if (vma->vm_start > start)
568 start = vma->vm_start;
569
570 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
571 if (!vma->vm_next && vma->vm_end < end)
572 return -EFAULT;
573 if (qp->prev && qp->prev->vm_end < vma->vm_start)
574 return -EFAULT;
575 }
576
577 qp->prev = vma;
578
579 if (flags & MPOL_MF_LAZY) {
580 /* Similar to task_numa_work, skip inaccessible VMAs */
581 if (!is_vm_hugetlb_page(vma) &&
582 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
583 !(vma->vm_flags & VM_MIXEDMAP))
584 change_prot_numa(vma, start, endvma);
585 return 1;
586 }
587
588 /* queue pages from current vma */
589 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
590 return 0;
591 return 1;
592 }
593
594 /*
595 * Walk through page tables and collect pages to be migrated.
596 *
597 * If pages found in a given range are on a set of nodes (determined by
598 * @nodes and @flags,) it's isolated and queued to the pagelist which is
599 * passed via @private.)
600 */
601 static int
602 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
603 nodemask_t *nodes, unsigned long flags,
604 struct list_head *pagelist)
605 {
606 struct queue_pages qp = {
607 .pagelist = pagelist,
608 .flags = flags,
609 .nmask = nodes,
610 .prev = NULL,
611 };
612 struct mm_walk queue_pages_walk = {
613 .hugetlb_entry = queue_pages_hugetlb,
614 .pmd_entry = queue_pages_pte_range,
615 .test_walk = queue_pages_test_walk,
616 .mm = mm,
617 .private = &qp,
618 };
619
620 return walk_page_range(start, end, &queue_pages_walk);
621 }
622
623 /*
624 * Apply policy to a single VMA
625 * This must be called with the mmap_sem held for writing.
626 */
627 static int vma_replace_policy(struct vm_area_struct *vma,
628 struct mempolicy *pol)
629 {
630 int err;
631 struct mempolicy *old;
632 struct mempolicy *new;
633
634 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
635 vma->vm_start, vma->vm_end, vma->vm_pgoff,
636 vma->vm_ops, vma->vm_file,
637 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
638
639 new = mpol_dup(pol);
640 if (IS_ERR(new))
641 return PTR_ERR(new);
642
643 if (vma->vm_ops && vma->vm_ops->set_policy) {
644 err = vma->vm_ops->set_policy(vma, new);
645 if (err)
646 goto err_out;
647 }
648
649 old = vma->vm_policy;
650 vma->vm_policy = new; /* protected by mmap_sem */
651 mpol_put(old);
652
653 return 0;
654 err_out:
655 mpol_put(new);
656 return err;
657 }
658
659 /* Step 2: apply policy to a range and do splits. */
660 static int mbind_range(struct mm_struct *mm, unsigned long start,
661 unsigned long end, struct mempolicy *new_pol)
662 {
663 struct vm_area_struct *next;
664 struct vm_area_struct *prev;
665 struct vm_area_struct *vma;
666 int err = 0;
667 pgoff_t pgoff;
668 unsigned long vmstart;
669 unsigned long vmend;
670
671 vma = find_vma(mm, start);
672 if (!vma || vma->vm_start > start)
673 return -EFAULT;
674
675 prev = vma->vm_prev;
676 if (start > vma->vm_start)
677 prev = vma;
678
679 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
680 next = vma->vm_next;
681 vmstart = max(start, vma->vm_start);
682 vmend = min(end, vma->vm_end);
683
684 if (mpol_equal(vma_policy(vma), new_pol))
685 continue;
686
687 pgoff = vma->vm_pgoff +
688 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
689 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
690 vma->anon_vma, vma->vm_file, pgoff,
691 new_pol, vma->vm_userfaultfd_ctx);
692 if (prev) {
693 vma = prev;
694 next = vma->vm_next;
695 if (mpol_equal(vma_policy(vma), new_pol))
696 continue;
697 /* vma_merge() joined vma && vma->next, case 8 */
698 goto replace;
699 }
700 if (vma->vm_start != vmstart) {
701 err = split_vma(vma->vm_mm, vma, vmstart, 1);
702 if (err)
703 goto out;
704 }
705 if (vma->vm_end != vmend) {
706 err = split_vma(vma->vm_mm, vma, vmend, 0);
707 if (err)
708 goto out;
709 }
710 replace:
711 err = vma_replace_policy(vma, new_pol);
712 if (err)
713 goto out;
714 }
715
716 out:
717 return err;
718 }
719
720 /* Set the process memory policy */
721 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
722 nodemask_t *nodes)
723 {
724 struct mempolicy *new, *old;
725 NODEMASK_SCRATCH(scratch);
726 int ret;
727
728 if (!scratch)
729 return -ENOMEM;
730
731 new = mpol_new(mode, flags, nodes);
732 if (IS_ERR(new)) {
733 ret = PTR_ERR(new);
734 goto out;
735 }
736
737 task_lock(current);
738 ret = mpol_set_nodemask(new, nodes, scratch);
739 if (ret) {
740 task_unlock(current);
741 mpol_put(new);
742 goto out;
743 }
744 old = current->mempolicy;
745 current->mempolicy = new;
746 if (new && new->mode == MPOL_INTERLEAVE)
747 current->il_prev = MAX_NUMNODES-1;
748 task_unlock(current);
749 mpol_put(old);
750 ret = 0;
751 out:
752 NODEMASK_SCRATCH_FREE(scratch);
753 return ret;
754 }
755
756 /*
757 * Return nodemask for policy for get_mempolicy() query
758 *
759 * Called with task's alloc_lock held
760 */
761 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
762 {
763 nodes_clear(*nodes);
764 if (p == &default_policy)
765 return;
766
767 switch (p->mode) {
768 case MPOL_BIND:
769 /* Fall through */
770 case MPOL_INTERLEAVE:
771 *nodes = p->v.nodes;
772 break;
773 case MPOL_PREFERRED:
774 if (!(p->flags & MPOL_F_LOCAL))
775 node_set(p->v.preferred_node, *nodes);
776 /* else return empty node mask for local allocation */
777 break;
778 default:
779 BUG();
780 }
781 }
782
783 static int lookup_node(unsigned long addr)
784 {
785 struct page *p;
786 int err;
787
788 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
789 if (err >= 0) {
790 err = page_to_nid(p);
791 put_page(p);
792 }
793 return err;
794 }
795
796 /* Retrieve NUMA policy */
797 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
798 unsigned long addr, unsigned long flags)
799 {
800 int err;
801 struct mm_struct *mm = current->mm;
802 struct vm_area_struct *vma = NULL;
803 struct mempolicy *pol = current->mempolicy;
804
805 if (flags &
806 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
807 return -EINVAL;
808
809 if (flags & MPOL_F_MEMS_ALLOWED) {
810 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
811 return -EINVAL;
812 *policy = 0; /* just so it's initialized */
813 task_lock(current);
814 *nmask = cpuset_current_mems_allowed;
815 task_unlock(current);
816 return 0;
817 }
818
819 if (flags & MPOL_F_ADDR) {
820 /*
821 * Do NOT fall back to task policy if the
822 * vma/shared policy at addr is NULL. We
823 * want to return MPOL_DEFAULT in this case.
824 */
825 down_read(&mm->mmap_sem);
826 vma = find_vma_intersection(mm, addr, addr+1);
827 if (!vma) {
828 up_read(&mm->mmap_sem);
829 return -EFAULT;
830 }
831 if (vma->vm_ops && vma->vm_ops->get_policy)
832 pol = vma->vm_ops->get_policy(vma, addr);
833 else
834 pol = vma->vm_policy;
835 } else if (addr)
836 return -EINVAL;
837
838 if (!pol)
839 pol = &default_policy; /* indicates default behavior */
840
841 if (flags & MPOL_F_NODE) {
842 if (flags & MPOL_F_ADDR) {
843 err = lookup_node(addr);
844 if (err < 0)
845 goto out;
846 *policy = err;
847 } else if (pol == current->mempolicy &&
848 pol->mode == MPOL_INTERLEAVE) {
849 *policy = next_node_in(current->il_prev, pol->v.nodes);
850 } else {
851 err = -EINVAL;
852 goto out;
853 }
854 } else {
855 *policy = pol == &default_policy ? MPOL_DEFAULT :
856 pol->mode;
857 /*
858 * Internal mempolicy flags must be masked off before exposing
859 * the policy to userspace.
860 */
861 *policy |= (pol->flags & MPOL_MODE_FLAGS);
862 }
863
864 if (vma) {
865 up_read(&current->mm->mmap_sem);
866 vma = NULL;
867 }
868
869 err = 0;
870 if (nmask) {
871 if (mpol_store_user_nodemask(pol)) {
872 *nmask = pol->w.user_nodemask;
873 } else {
874 task_lock(current);
875 get_policy_nodemask(pol, nmask);
876 task_unlock(current);
877 }
878 }
879
880 out:
881 mpol_cond_put(pol);
882 if (vma)
883 up_read(&current->mm->mmap_sem);
884 return err;
885 }
886
887 #ifdef CONFIG_MIGRATION
888 /*
889 * page migration
890 */
891 static void migrate_page_add(struct page *page, struct list_head *pagelist,
892 unsigned long flags)
893 {
894 /*
895 * Avoid migrating a page that is shared with others.
896 */
897 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
898 if (!isolate_lru_page(page)) {
899 list_add_tail(&page->lru, pagelist);
900 inc_node_page_state(page, NR_ISOLATED_ANON +
901 page_is_file_cache(page));
902 }
903 }
904 }
905
906 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
907 {
908 if (PageHuge(page))
909 return alloc_huge_page_node(page_hstate(compound_head(page)),
910 node);
911 else
912 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
913 __GFP_THISNODE, 0);
914 }
915
916 /*
917 * Migrate pages from one node to a target node.
918 * Returns error or the number of pages not migrated.
919 */
920 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
921 int flags)
922 {
923 nodemask_t nmask;
924 LIST_HEAD(pagelist);
925 int err = 0;
926
927 nodes_clear(nmask);
928 node_set(source, nmask);
929
930 /*
931 * This does not "check" the range but isolates all pages that
932 * need migration. Between passing in the full user address
933 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
934 */
935 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
936 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
937 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
938
939 if (!list_empty(&pagelist)) {
940 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
941 MIGRATE_SYNC, MR_SYSCALL);
942 if (err)
943 putback_movable_pages(&pagelist);
944 }
945
946 return err;
947 }
948
949 /*
950 * Move pages between the two nodesets so as to preserve the physical
951 * layout as much as possible.
952 *
953 * Returns the number of page that could not be moved.
954 */
955 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
956 const nodemask_t *to, int flags)
957 {
958 int busy = 0;
959 int err;
960 nodemask_t tmp;
961
962 err = migrate_prep();
963 if (err)
964 return err;
965
966 down_read(&mm->mmap_sem);
967
968 /*
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
973 *
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
978 *
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
982 *
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
988 *
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
997 */
998
999 tmp = *from;
1000 while (!nodes_empty(tmp)) {
1001 int s,d;
1002 int source = NUMA_NO_NODE;
1003 int dest = 0;
1004
1005 for_each_node_mask(s, tmp) {
1006
1007 /*
1008 * do_migrate_pages() tries to maintain the relative
1009 * node relationship of the pages established between
1010 * threads and memory areas.
1011 *
1012 * However if the number of source nodes is not equal to
1013 * the number of destination nodes we can not preserve
1014 * this node relative relationship. In that case, skip
1015 * copying memory from a node that is in the destination
1016 * mask.
1017 *
1018 * Example: [2,3,4] -> [3,4,5] moves everything.
1019 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1020 */
1021
1022 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1023 (node_isset(s, *to)))
1024 continue;
1025
1026 d = node_remap(s, *from, *to);
1027 if (s == d)
1028 continue;
1029
1030 source = s; /* Node moved. Memorize */
1031 dest = d;
1032
1033 /* dest not in remaining from nodes? */
1034 if (!node_isset(dest, tmp))
1035 break;
1036 }
1037 if (source == NUMA_NO_NODE)
1038 break;
1039
1040 node_clear(source, tmp);
1041 err = migrate_to_node(mm, source, dest, flags);
1042 if (err > 0)
1043 busy += err;
1044 if (err < 0)
1045 break;
1046 }
1047 up_read(&mm->mmap_sem);
1048 if (err < 0)
1049 return err;
1050 return busy;
1051
1052 }
1053
1054 /*
1055 * Allocate a new page for page migration based on vma policy.
1056 * Start by assuming the page is mapped by the same vma as contains @start.
1057 * Search forward from there, if not. N.B., this assumes that the
1058 * list of pages handed to migrate_pages()--which is how we get here--
1059 * is in virtual address order.
1060 */
1061 static struct page *new_page(struct page *page, unsigned long start, int **x)
1062 {
1063 struct vm_area_struct *vma;
1064 unsigned long uninitialized_var(address);
1065
1066 vma = find_vma(current->mm, start);
1067 while (vma) {
1068 address = page_address_in_vma(page, vma);
1069 if (address != -EFAULT)
1070 break;
1071 vma = vma->vm_next;
1072 }
1073
1074 if (PageHuge(page)) {
1075 BUG_ON(!vma);
1076 return alloc_huge_page_noerr(vma, address, 1);
1077 }
1078 /*
1079 * if !vma, alloc_page_vma() will use task or system default policy
1080 */
1081 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1082 vma, address);
1083 }
1084 #else
1085
1086 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1087 unsigned long flags)
1088 {
1089 }
1090
1091 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092 const nodemask_t *to, int flags)
1093 {
1094 return -ENOSYS;
1095 }
1096
1097 static struct page *new_page(struct page *page, unsigned long start, int **x)
1098 {
1099 return NULL;
1100 }
1101 #endif
1102
1103 static long do_mbind(unsigned long start, unsigned long len,
1104 unsigned short mode, unsigned short mode_flags,
1105 nodemask_t *nmask, unsigned long flags)
1106 {
1107 struct mm_struct *mm = current->mm;
1108 struct mempolicy *new;
1109 unsigned long end;
1110 int err;
1111 LIST_HEAD(pagelist);
1112
1113 if (flags & ~(unsigned long)MPOL_MF_VALID)
1114 return -EINVAL;
1115 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1116 return -EPERM;
1117
1118 if (start & ~PAGE_MASK)
1119 return -EINVAL;
1120
1121 if (mode == MPOL_DEFAULT)
1122 flags &= ~MPOL_MF_STRICT;
1123
1124 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1125 end = start + len;
1126
1127 if (end < start)
1128 return -EINVAL;
1129 if (end == start)
1130 return 0;
1131
1132 new = mpol_new(mode, mode_flags, nmask);
1133 if (IS_ERR(new))
1134 return PTR_ERR(new);
1135
1136 if (flags & MPOL_MF_LAZY)
1137 new->flags |= MPOL_F_MOF;
1138
1139 /*
1140 * If we are using the default policy then operation
1141 * on discontinuous address spaces is okay after all
1142 */
1143 if (!new)
1144 flags |= MPOL_MF_DISCONTIG_OK;
1145
1146 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1147 start, start + len, mode, mode_flags,
1148 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1149
1150 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1151
1152 err = migrate_prep();
1153 if (err)
1154 goto mpol_out;
1155 }
1156 {
1157 NODEMASK_SCRATCH(scratch);
1158 if (scratch) {
1159 down_write(&mm->mmap_sem);
1160 task_lock(current);
1161 err = mpol_set_nodemask(new, nmask, scratch);
1162 task_unlock(current);
1163 if (err)
1164 up_write(&mm->mmap_sem);
1165 } else
1166 err = -ENOMEM;
1167 NODEMASK_SCRATCH_FREE(scratch);
1168 }
1169 if (err)
1170 goto mpol_out;
1171
1172 err = queue_pages_range(mm, start, end, nmask,
1173 flags | MPOL_MF_INVERT, &pagelist);
1174 if (!err)
1175 err = mbind_range(mm, start, end, new);
1176
1177 if (!err) {
1178 int nr_failed = 0;
1179
1180 if (!list_empty(&pagelist)) {
1181 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1182 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1183 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1184 if (nr_failed)
1185 putback_movable_pages(&pagelist);
1186 }
1187
1188 if (nr_failed && (flags & MPOL_MF_STRICT))
1189 err = -EIO;
1190 } else
1191 putback_movable_pages(&pagelist);
1192
1193 up_write(&mm->mmap_sem);
1194 mpol_out:
1195 mpol_put(new);
1196 return err;
1197 }
1198
1199 /*
1200 * User space interface with variable sized bitmaps for nodelists.
1201 */
1202
1203 /* Copy a node mask from user space. */
1204 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1205 unsigned long maxnode)
1206 {
1207 unsigned long k;
1208 unsigned long nlongs;
1209 unsigned long endmask;
1210
1211 --maxnode;
1212 nodes_clear(*nodes);
1213 if (maxnode == 0 || !nmask)
1214 return 0;
1215 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1216 return -EINVAL;
1217
1218 nlongs = BITS_TO_LONGS(maxnode);
1219 if ((maxnode % BITS_PER_LONG) == 0)
1220 endmask = ~0UL;
1221 else
1222 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1223
1224 /* When the user specified more nodes than supported just check
1225 if the non supported part is all zero. */
1226 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1227 if (nlongs > PAGE_SIZE/sizeof(long))
1228 return -EINVAL;
1229 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1230 unsigned long t;
1231 if (get_user(t, nmask + k))
1232 return -EFAULT;
1233 if (k == nlongs - 1) {
1234 if (t & endmask)
1235 return -EINVAL;
1236 } else if (t)
1237 return -EINVAL;
1238 }
1239 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1240 endmask = ~0UL;
1241 }
1242
1243 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1244 return -EFAULT;
1245 nodes_addr(*nodes)[nlongs-1] &= endmask;
1246 return 0;
1247 }
1248
1249 /* Copy a kernel node mask to user space */
1250 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1251 nodemask_t *nodes)
1252 {
1253 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1254 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1255
1256 if (copy > nbytes) {
1257 if (copy > PAGE_SIZE)
1258 return -EINVAL;
1259 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1260 return -EFAULT;
1261 copy = nbytes;
1262 }
1263 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1264 }
1265
1266 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1267 unsigned long, mode, const unsigned long __user *, nmask,
1268 unsigned long, maxnode, unsigned, flags)
1269 {
1270 nodemask_t nodes;
1271 int err;
1272 unsigned short mode_flags;
1273
1274 mode_flags = mode & MPOL_MODE_FLAGS;
1275 mode &= ~MPOL_MODE_FLAGS;
1276 if (mode >= MPOL_MAX)
1277 return -EINVAL;
1278 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1279 (mode_flags & MPOL_F_RELATIVE_NODES))
1280 return -EINVAL;
1281 err = get_nodes(&nodes, nmask, maxnode);
1282 if (err)
1283 return err;
1284 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1285 }
1286
1287 /* Set the process memory policy */
1288 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1289 unsigned long, maxnode)
1290 {
1291 int err;
1292 nodemask_t nodes;
1293 unsigned short flags;
1294
1295 flags = mode & MPOL_MODE_FLAGS;
1296 mode &= ~MPOL_MODE_FLAGS;
1297 if ((unsigned int)mode >= MPOL_MAX)
1298 return -EINVAL;
1299 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1300 return -EINVAL;
1301 err = get_nodes(&nodes, nmask, maxnode);
1302 if (err)
1303 return err;
1304 return do_set_mempolicy(mode, flags, &nodes);
1305 }
1306
1307 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1308 const unsigned long __user *, old_nodes,
1309 const unsigned long __user *, new_nodes)
1310 {
1311 const struct cred *cred = current_cred(), *tcred;
1312 struct mm_struct *mm = NULL;
1313 struct task_struct *task;
1314 nodemask_t task_nodes;
1315 int err;
1316 nodemask_t *old;
1317 nodemask_t *new;
1318 NODEMASK_SCRATCH(scratch);
1319
1320 if (!scratch)
1321 return -ENOMEM;
1322
1323 old = &scratch->mask1;
1324 new = &scratch->mask2;
1325
1326 err = get_nodes(old, old_nodes, maxnode);
1327 if (err)
1328 goto out;
1329
1330 err = get_nodes(new, new_nodes, maxnode);
1331 if (err)
1332 goto out;
1333
1334 /* Find the mm_struct */
1335 rcu_read_lock();
1336 task = pid ? find_task_by_vpid(pid) : current;
1337 if (!task) {
1338 rcu_read_unlock();
1339 err = -ESRCH;
1340 goto out;
1341 }
1342 get_task_struct(task);
1343
1344 err = -EINVAL;
1345
1346 /*
1347 * Check if this process has the right to modify the specified
1348 * process. The right exists if the process has administrative
1349 * capabilities, superuser privileges or the same
1350 * userid as the target process.
1351 */
1352 tcred = __task_cred(task);
1353 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1354 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1355 !capable(CAP_SYS_NICE)) {
1356 rcu_read_unlock();
1357 err = -EPERM;
1358 goto out_put;
1359 }
1360 rcu_read_unlock();
1361
1362 task_nodes = cpuset_mems_allowed(task);
1363 /* Is the user allowed to access the target nodes? */
1364 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1365 err = -EPERM;
1366 goto out_put;
1367 }
1368
1369 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1370 err = -EINVAL;
1371 goto out_put;
1372 }
1373
1374 err = security_task_movememory(task);
1375 if (err)
1376 goto out_put;
1377
1378 mm = get_task_mm(task);
1379 put_task_struct(task);
1380
1381 if (!mm) {
1382 err = -EINVAL;
1383 goto out;
1384 }
1385
1386 err = do_migrate_pages(mm, old, new,
1387 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1388
1389 mmput(mm);
1390 out:
1391 NODEMASK_SCRATCH_FREE(scratch);
1392
1393 return err;
1394
1395 out_put:
1396 put_task_struct(task);
1397 goto out;
1398
1399 }
1400
1401
1402 /* Retrieve NUMA policy */
1403 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1404 unsigned long __user *, nmask, unsigned long, maxnode,
1405 unsigned long, addr, unsigned long, flags)
1406 {
1407 int err;
1408 int uninitialized_var(pval);
1409 nodemask_t nodes;
1410
1411 if (nmask != NULL && maxnode < MAX_NUMNODES)
1412 return -EINVAL;
1413
1414 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1415
1416 if (err)
1417 return err;
1418
1419 if (policy && put_user(pval, policy))
1420 return -EFAULT;
1421
1422 if (nmask)
1423 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1424
1425 return err;
1426 }
1427
1428 #ifdef CONFIG_COMPAT
1429
1430 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1431 compat_ulong_t __user *, nmask,
1432 compat_ulong_t, maxnode,
1433 compat_ulong_t, addr, compat_ulong_t, flags)
1434 {
1435 long err;
1436 unsigned long __user *nm = NULL;
1437 unsigned long nr_bits, alloc_size;
1438 DECLARE_BITMAP(bm, MAX_NUMNODES);
1439
1440 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1441 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1442
1443 if (nmask)
1444 nm = compat_alloc_user_space(alloc_size);
1445
1446 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1447
1448 if (!err && nmask) {
1449 unsigned long copy_size;
1450 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1451 err = copy_from_user(bm, nm, copy_size);
1452 /* ensure entire bitmap is zeroed */
1453 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1454 err |= compat_put_bitmap(nmask, bm, nr_bits);
1455 }
1456
1457 return err;
1458 }
1459
1460 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1461 compat_ulong_t, maxnode)
1462 {
1463 unsigned long __user *nm = NULL;
1464 unsigned long nr_bits, alloc_size;
1465 DECLARE_BITMAP(bm, MAX_NUMNODES);
1466
1467 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1468 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1469
1470 if (nmask) {
1471 if (compat_get_bitmap(bm, nmask, nr_bits))
1472 return -EFAULT;
1473 nm = compat_alloc_user_space(alloc_size);
1474 if (copy_to_user(nm, bm, alloc_size))
1475 return -EFAULT;
1476 }
1477
1478 return sys_set_mempolicy(mode, nm, nr_bits+1);
1479 }
1480
1481 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1482 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1483 compat_ulong_t, maxnode, compat_ulong_t, flags)
1484 {
1485 unsigned long __user *nm = NULL;
1486 unsigned long nr_bits, alloc_size;
1487 nodemask_t bm;
1488
1489 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1490 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1491
1492 if (nmask) {
1493 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1494 return -EFAULT;
1495 nm = compat_alloc_user_space(alloc_size);
1496 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1497 return -EFAULT;
1498 }
1499
1500 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1501 }
1502
1503 #endif
1504
1505 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1506 unsigned long addr)
1507 {
1508 struct mempolicy *pol = NULL;
1509
1510 if (vma) {
1511 if (vma->vm_ops && vma->vm_ops->get_policy) {
1512 pol = vma->vm_ops->get_policy(vma, addr);
1513 } else if (vma->vm_policy) {
1514 pol = vma->vm_policy;
1515
1516 /*
1517 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1518 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1519 * count on these policies which will be dropped by
1520 * mpol_cond_put() later
1521 */
1522 if (mpol_needs_cond_ref(pol))
1523 mpol_get(pol);
1524 }
1525 }
1526
1527 return pol;
1528 }
1529
1530 /*
1531 * get_vma_policy(@vma, @addr)
1532 * @vma: virtual memory area whose policy is sought
1533 * @addr: address in @vma for shared policy lookup
1534 *
1535 * Returns effective policy for a VMA at specified address.
1536 * Falls back to current->mempolicy or system default policy, as necessary.
1537 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1538 * count--added by the get_policy() vm_op, as appropriate--to protect against
1539 * freeing by another task. It is the caller's responsibility to free the
1540 * extra reference for shared policies.
1541 */
1542 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1543 unsigned long addr)
1544 {
1545 struct mempolicy *pol = __get_vma_policy(vma, addr);
1546
1547 if (!pol)
1548 pol = get_task_policy(current);
1549
1550 return pol;
1551 }
1552
1553 bool vma_policy_mof(struct vm_area_struct *vma)
1554 {
1555 struct mempolicy *pol;
1556
1557 if (vma->vm_ops && vma->vm_ops->get_policy) {
1558 bool ret = false;
1559
1560 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1561 if (pol && (pol->flags & MPOL_F_MOF))
1562 ret = true;
1563 mpol_cond_put(pol);
1564
1565 return ret;
1566 }
1567
1568 pol = vma->vm_policy;
1569 if (!pol)
1570 pol = get_task_policy(current);
1571
1572 return pol->flags & MPOL_F_MOF;
1573 }
1574
1575 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1576 {
1577 enum zone_type dynamic_policy_zone = policy_zone;
1578
1579 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1580
1581 /*
1582 * if policy->v.nodes has movable memory only,
1583 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1584 *
1585 * policy->v.nodes is intersect with node_states[N_MEMORY].
1586 * so if the following test faile, it implies
1587 * policy->v.nodes has movable memory only.
1588 */
1589 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1590 dynamic_policy_zone = ZONE_MOVABLE;
1591
1592 return zone >= dynamic_policy_zone;
1593 }
1594
1595 /*
1596 * Return a nodemask representing a mempolicy for filtering nodes for
1597 * page allocation
1598 */
1599 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1600 {
1601 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1602 if (unlikely(policy->mode == MPOL_BIND) &&
1603 apply_policy_zone(policy, gfp_zone(gfp)) &&
1604 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1605 return &policy->v.nodes;
1606
1607 return NULL;
1608 }
1609
1610 /* Return the node id preferred by the given mempolicy, or the given id */
1611 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1612 int nd)
1613 {
1614 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1615 nd = policy->v.preferred_node;
1616 else {
1617 /*
1618 * __GFP_THISNODE shouldn't even be used with the bind policy
1619 * because we might easily break the expectation to stay on the
1620 * requested node and not break the policy.
1621 */
1622 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1623 }
1624
1625 return nd;
1626 }
1627
1628 /* Do dynamic interleaving for a process */
1629 static unsigned interleave_nodes(struct mempolicy *policy)
1630 {
1631 unsigned next;
1632 struct task_struct *me = current;
1633
1634 next = next_node_in(me->il_prev, policy->v.nodes);
1635 if (next < MAX_NUMNODES)
1636 me->il_prev = next;
1637 return next;
1638 }
1639
1640 /*
1641 * Depending on the memory policy provide a node from which to allocate the
1642 * next slab entry.
1643 */
1644 unsigned int mempolicy_slab_node(void)
1645 {
1646 struct mempolicy *policy;
1647 int node = numa_mem_id();
1648
1649 if (in_interrupt())
1650 return node;
1651
1652 policy = current->mempolicy;
1653 if (!policy || policy->flags & MPOL_F_LOCAL)
1654 return node;
1655
1656 switch (policy->mode) {
1657 case MPOL_PREFERRED:
1658 /*
1659 * handled MPOL_F_LOCAL above
1660 */
1661 return policy->v.preferred_node;
1662
1663 case MPOL_INTERLEAVE:
1664 return interleave_nodes(policy);
1665
1666 case MPOL_BIND: {
1667 struct zoneref *z;
1668
1669 /*
1670 * Follow bind policy behavior and start allocation at the
1671 * first node.
1672 */
1673 struct zonelist *zonelist;
1674 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1675 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1676 z = first_zones_zonelist(zonelist, highest_zoneidx,
1677 &policy->v.nodes);
1678 return z->zone ? z->zone->node : node;
1679 }
1680
1681 default:
1682 BUG();
1683 }
1684 }
1685
1686 /*
1687 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1688 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1689 * number of present nodes.
1690 */
1691 static unsigned offset_il_node(struct mempolicy *pol,
1692 struct vm_area_struct *vma, unsigned long n)
1693 {
1694 unsigned nnodes = nodes_weight(pol->v.nodes);
1695 unsigned target;
1696 int i;
1697 int nid;
1698
1699 if (!nnodes)
1700 return numa_node_id();
1701 target = (unsigned int)n % nnodes;
1702 nid = first_node(pol->v.nodes);
1703 for (i = 0; i < target; i++)
1704 nid = next_node(nid, pol->v.nodes);
1705 return nid;
1706 }
1707
1708 /* Determine a node number for interleave */
1709 static inline unsigned interleave_nid(struct mempolicy *pol,
1710 struct vm_area_struct *vma, unsigned long addr, int shift)
1711 {
1712 if (vma) {
1713 unsigned long off;
1714
1715 /*
1716 * for small pages, there is no difference between
1717 * shift and PAGE_SHIFT, so the bit-shift is safe.
1718 * for huge pages, since vm_pgoff is in units of small
1719 * pages, we need to shift off the always 0 bits to get
1720 * a useful offset.
1721 */
1722 BUG_ON(shift < PAGE_SHIFT);
1723 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1724 off += (addr - vma->vm_start) >> shift;
1725 return offset_il_node(pol, vma, off);
1726 } else
1727 return interleave_nodes(pol);
1728 }
1729
1730 #ifdef CONFIG_HUGETLBFS
1731 /*
1732 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1733 * @vma: virtual memory area whose policy is sought
1734 * @addr: address in @vma for shared policy lookup and interleave policy
1735 * @gfp_flags: for requested zone
1736 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1737 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1738 *
1739 * Returns a nid suitable for a huge page allocation and a pointer
1740 * to the struct mempolicy for conditional unref after allocation.
1741 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1742 * @nodemask for filtering the zonelist.
1743 *
1744 * Must be protected by read_mems_allowed_begin()
1745 */
1746 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1747 struct mempolicy **mpol, nodemask_t **nodemask)
1748 {
1749 int nid;
1750
1751 *mpol = get_vma_policy(vma, addr);
1752 *nodemask = NULL; /* assume !MPOL_BIND */
1753
1754 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1755 nid = interleave_nid(*mpol, vma, addr,
1756 huge_page_shift(hstate_vma(vma)));
1757 } else {
1758 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1759 if ((*mpol)->mode == MPOL_BIND)
1760 *nodemask = &(*mpol)->v.nodes;
1761 }
1762 return nid;
1763 }
1764
1765 /*
1766 * init_nodemask_of_mempolicy
1767 *
1768 * If the current task's mempolicy is "default" [NULL], return 'false'
1769 * to indicate default policy. Otherwise, extract the policy nodemask
1770 * for 'bind' or 'interleave' policy into the argument nodemask, or
1771 * initialize the argument nodemask to contain the single node for
1772 * 'preferred' or 'local' policy and return 'true' to indicate presence
1773 * of non-default mempolicy.
1774 *
1775 * We don't bother with reference counting the mempolicy [mpol_get/put]
1776 * because the current task is examining it's own mempolicy and a task's
1777 * mempolicy is only ever changed by the task itself.
1778 *
1779 * N.B., it is the caller's responsibility to free a returned nodemask.
1780 */
1781 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1782 {
1783 struct mempolicy *mempolicy;
1784 int nid;
1785
1786 if (!(mask && current->mempolicy))
1787 return false;
1788
1789 task_lock(current);
1790 mempolicy = current->mempolicy;
1791 switch (mempolicy->mode) {
1792 case MPOL_PREFERRED:
1793 if (mempolicy->flags & MPOL_F_LOCAL)
1794 nid = numa_node_id();
1795 else
1796 nid = mempolicy->v.preferred_node;
1797 init_nodemask_of_node(mask, nid);
1798 break;
1799
1800 case MPOL_BIND:
1801 /* Fall through */
1802 case MPOL_INTERLEAVE:
1803 *mask = mempolicy->v.nodes;
1804 break;
1805
1806 default:
1807 BUG();
1808 }
1809 task_unlock(current);
1810
1811 return true;
1812 }
1813 #endif
1814
1815 /*
1816 * mempolicy_nodemask_intersects
1817 *
1818 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1819 * policy. Otherwise, check for intersection between mask and the policy
1820 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1821 * policy, always return true since it may allocate elsewhere on fallback.
1822 *
1823 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1824 */
1825 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1826 const nodemask_t *mask)
1827 {
1828 struct mempolicy *mempolicy;
1829 bool ret = true;
1830
1831 if (!mask)
1832 return ret;
1833 task_lock(tsk);
1834 mempolicy = tsk->mempolicy;
1835 if (!mempolicy)
1836 goto out;
1837
1838 switch (mempolicy->mode) {
1839 case MPOL_PREFERRED:
1840 /*
1841 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1842 * allocate from, they may fallback to other nodes when oom.
1843 * Thus, it's possible for tsk to have allocated memory from
1844 * nodes in mask.
1845 */
1846 break;
1847 case MPOL_BIND:
1848 case MPOL_INTERLEAVE:
1849 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1850 break;
1851 default:
1852 BUG();
1853 }
1854 out:
1855 task_unlock(tsk);
1856 return ret;
1857 }
1858
1859 /* Allocate a page in interleaved policy.
1860 Own path because it needs to do special accounting. */
1861 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1862 unsigned nid)
1863 {
1864 struct page *page;
1865
1866 page = __alloc_pages(gfp, order, nid);
1867 if (page && page_to_nid(page) == nid)
1868 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1869 return page;
1870 }
1871
1872 /**
1873 * alloc_pages_vma - Allocate a page for a VMA.
1874 *
1875 * @gfp:
1876 * %GFP_USER user allocation.
1877 * %GFP_KERNEL kernel allocations,
1878 * %GFP_HIGHMEM highmem/user allocations,
1879 * %GFP_FS allocation should not call back into a file system.
1880 * %GFP_ATOMIC don't sleep.
1881 *
1882 * @order:Order of the GFP allocation.
1883 * @vma: Pointer to VMA or NULL if not available.
1884 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1885 * @node: Which node to prefer for allocation (modulo policy).
1886 * @hugepage: for hugepages try only the preferred node if possible
1887 *
1888 * This function allocates a page from the kernel page pool and applies
1889 * a NUMA policy associated with the VMA or the current process.
1890 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1891 * mm_struct of the VMA to prevent it from going away. Should be used for
1892 * all allocations for pages that will be mapped into user space. Returns
1893 * NULL when no page can be allocated.
1894 */
1895 struct page *
1896 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1897 unsigned long addr, int node, bool hugepage)
1898 {
1899 struct mempolicy *pol;
1900 struct page *page;
1901 int preferred_nid;
1902 nodemask_t *nmask;
1903
1904 pol = get_vma_policy(vma, addr);
1905
1906 if (pol->mode == MPOL_INTERLEAVE) {
1907 unsigned nid;
1908
1909 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1910 mpol_cond_put(pol);
1911 page = alloc_page_interleave(gfp, order, nid);
1912 goto out;
1913 }
1914
1915 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1916 int hpage_node = node;
1917
1918 /*
1919 * For hugepage allocation and non-interleave policy which
1920 * allows the current node (or other explicitly preferred
1921 * node) we only try to allocate from the current/preferred
1922 * node and don't fall back to other nodes, as the cost of
1923 * remote accesses would likely offset THP benefits.
1924 *
1925 * If the policy is interleave, or does not allow the current
1926 * node in its nodemask, we allocate the standard way.
1927 */
1928 if (pol->mode == MPOL_PREFERRED &&
1929 !(pol->flags & MPOL_F_LOCAL))
1930 hpage_node = pol->v.preferred_node;
1931
1932 nmask = policy_nodemask(gfp, pol);
1933 if (!nmask || node_isset(hpage_node, *nmask)) {
1934 mpol_cond_put(pol);
1935 page = __alloc_pages_node(hpage_node,
1936 gfp | __GFP_THISNODE, order);
1937 goto out;
1938 }
1939 }
1940
1941 nmask = policy_nodemask(gfp, pol);
1942 preferred_nid = policy_node(gfp, pol, node);
1943 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
1944 mpol_cond_put(pol);
1945 out:
1946 return page;
1947 }
1948
1949 /**
1950 * alloc_pages_current - Allocate pages.
1951 *
1952 * @gfp:
1953 * %GFP_USER user allocation,
1954 * %GFP_KERNEL kernel allocation,
1955 * %GFP_HIGHMEM highmem allocation,
1956 * %GFP_FS don't call back into a file system.
1957 * %GFP_ATOMIC don't sleep.
1958 * @order: Power of two of allocation size in pages. 0 is a single page.
1959 *
1960 * Allocate a page from the kernel page pool. When not in
1961 * interrupt context and apply the current process NUMA policy.
1962 * Returns NULL when no page can be allocated.
1963 */
1964 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1965 {
1966 struct mempolicy *pol = &default_policy;
1967 struct page *page;
1968
1969 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
1970 pol = get_task_policy(current);
1971
1972 /*
1973 * No reference counting needed for current->mempolicy
1974 * nor system default_policy
1975 */
1976 if (pol->mode == MPOL_INTERLEAVE)
1977 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1978 else
1979 page = __alloc_pages_nodemask(gfp, order,
1980 policy_node(gfp, pol, numa_node_id()),
1981 policy_nodemask(gfp, pol));
1982
1983 return page;
1984 }
1985 EXPORT_SYMBOL(alloc_pages_current);
1986
1987 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
1988 {
1989 struct mempolicy *pol = mpol_dup(vma_policy(src));
1990
1991 if (IS_ERR(pol))
1992 return PTR_ERR(pol);
1993 dst->vm_policy = pol;
1994 return 0;
1995 }
1996
1997 /*
1998 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1999 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2000 * with the mems_allowed returned by cpuset_mems_allowed(). This
2001 * keeps mempolicies cpuset relative after its cpuset moves. See
2002 * further kernel/cpuset.c update_nodemask().
2003 *
2004 * current's mempolicy may be rebinded by the other task(the task that changes
2005 * cpuset's mems), so we needn't do rebind work for current task.
2006 */
2007
2008 /* Slow path of a mempolicy duplicate */
2009 struct mempolicy *__mpol_dup(struct mempolicy *old)
2010 {
2011 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2012
2013 if (!new)
2014 return ERR_PTR(-ENOMEM);
2015
2016 /* task's mempolicy is protected by alloc_lock */
2017 if (old == current->mempolicy) {
2018 task_lock(current);
2019 *new = *old;
2020 task_unlock(current);
2021 } else
2022 *new = *old;
2023
2024 if (current_cpuset_is_being_rebound()) {
2025 nodemask_t mems = cpuset_mems_allowed(current);
2026 mpol_rebind_policy(new, &mems);
2027 }
2028 atomic_set(&new->refcnt, 1);
2029 return new;
2030 }
2031
2032 /* Slow path of a mempolicy comparison */
2033 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2034 {
2035 if (!a || !b)
2036 return false;
2037 if (a->mode != b->mode)
2038 return false;
2039 if (a->flags != b->flags)
2040 return false;
2041 if (mpol_store_user_nodemask(a))
2042 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2043 return false;
2044
2045 switch (a->mode) {
2046 case MPOL_BIND:
2047 /* Fall through */
2048 case MPOL_INTERLEAVE:
2049 return !!nodes_equal(a->v.nodes, b->v.nodes);
2050 case MPOL_PREFERRED:
2051 return a->v.preferred_node == b->v.preferred_node;
2052 default:
2053 BUG();
2054 return false;
2055 }
2056 }
2057
2058 /*
2059 * Shared memory backing store policy support.
2060 *
2061 * Remember policies even when nobody has shared memory mapped.
2062 * The policies are kept in Red-Black tree linked from the inode.
2063 * They are protected by the sp->lock rwlock, which should be held
2064 * for any accesses to the tree.
2065 */
2066
2067 /*
2068 * lookup first element intersecting start-end. Caller holds sp->lock for
2069 * reading or for writing
2070 */
2071 static struct sp_node *
2072 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2073 {
2074 struct rb_node *n = sp->root.rb_node;
2075
2076 while (n) {
2077 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2078
2079 if (start >= p->end)
2080 n = n->rb_right;
2081 else if (end <= p->start)
2082 n = n->rb_left;
2083 else
2084 break;
2085 }
2086 if (!n)
2087 return NULL;
2088 for (;;) {
2089 struct sp_node *w = NULL;
2090 struct rb_node *prev = rb_prev(n);
2091 if (!prev)
2092 break;
2093 w = rb_entry(prev, struct sp_node, nd);
2094 if (w->end <= start)
2095 break;
2096 n = prev;
2097 }
2098 return rb_entry(n, struct sp_node, nd);
2099 }
2100
2101 /*
2102 * Insert a new shared policy into the list. Caller holds sp->lock for
2103 * writing.
2104 */
2105 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2106 {
2107 struct rb_node **p = &sp->root.rb_node;
2108 struct rb_node *parent = NULL;
2109 struct sp_node *nd;
2110
2111 while (*p) {
2112 parent = *p;
2113 nd = rb_entry(parent, struct sp_node, nd);
2114 if (new->start < nd->start)
2115 p = &(*p)->rb_left;
2116 else if (new->end > nd->end)
2117 p = &(*p)->rb_right;
2118 else
2119 BUG();
2120 }
2121 rb_link_node(&new->nd, parent, p);
2122 rb_insert_color(&new->nd, &sp->root);
2123 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2124 new->policy ? new->policy->mode : 0);
2125 }
2126
2127 /* Find shared policy intersecting idx */
2128 struct mempolicy *
2129 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2130 {
2131 struct mempolicy *pol = NULL;
2132 struct sp_node *sn;
2133
2134 if (!sp->root.rb_node)
2135 return NULL;
2136 read_lock(&sp->lock);
2137 sn = sp_lookup(sp, idx, idx+1);
2138 if (sn) {
2139 mpol_get(sn->policy);
2140 pol = sn->policy;
2141 }
2142 read_unlock(&sp->lock);
2143 return pol;
2144 }
2145
2146 static void sp_free(struct sp_node *n)
2147 {
2148 mpol_put(n->policy);
2149 kmem_cache_free(sn_cache, n);
2150 }
2151
2152 /**
2153 * mpol_misplaced - check whether current page node is valid in policy
2154 *
2155 * @page: page to be checked
2156 * @vma: vm area where page mapped
2157 * @addr: virtual address where page mapped
2158 *
2159 * Lookup current policy node id for vma,addr and "compare to" page's
2160 * node id.
2161 *
2162 * Returns:
2163 * -1 - not misplaced, page is in the right node
2164 * node - node id where the page should be
2165 *
2166 * Policy determination "mimics" alloc_page_vma().
2167 * Called from fault path where we know the vma and faulting address.
2168 */
2169 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2170 {
2171 struct mempolicy *pol;
2172 struct zoneref *z;
2173 int curnid = page_to_nid(page);
2174 unsigned long pgoff;
2175 int thiscpu = raw_smp_processor_id();
2176 int thisnid = cpu_to_node(thiscpu);
2177 int polnid = -1;
2178 int ret = -1;
2179
2180 BUG_ON(!vma);
2181
2182 pol = get_vma_policy(vma, addr);
2183 if (!(pol->flags & MPOL_F_MOF))
2184 goto out;
2185
2186 switch (pol->mode) {
2187 case MPOL_INTERLEAVE:
2188 BUG_ON(addr >= vma->vm_end);
2189 BUG_ON(addr < vma->vm_start);
2190
2191 pgoff = vma->vm_pgoff;
2192 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2193 polnid = offset_il_node(pol, vma, pgoff);
2194 break;
2195
2196 case MPOL_PREFERRED:
2197 if (pol->flags & MPOL_F_LOCAL)
2198 polnid = numa_node_id();
2199 else
2200 polnid = pol->v.preferred_node;
2201 break;
2202
2203 case MPOL_BIND:
2204
2205 /*
2206 * allows binding to multiple nodes.
2207 * use current page if in policy nodemask,
2208 * else select nearest allowed node, if any.
2209 * If no allowed nodes, use current [!misplaced].
2210 */
2211 if (node_isset(curnid, pol->v.nodes))
2212 goto out;
2213 z = first_zones_zonelist(
2214 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2215 gfp_zone(GFP_HIGHUSER),
2216 &pol->v.nodes);
2217 polnid = z->zone->node;
2218 break;
2219
2220 default:
2221 BUG();
2222 }
2223
2224 /* Migrate the page towards the node whose CPU is referencing it */
2225 if (pol->flags & MPOL_F_MORON) {
2226 polnid = thisnid;
2227
2228 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2229 goto out;
2230 }
2231
2232 if (curnid != polnid)
2233 ret = polnid;
2234 out:
2235 mpol_cond_put(pol);
2236
2237 return ret;
2238 }
2239
2240 /*
2241 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2242 * dropped after task->mempolicy is set to NULL so that any allocation done as
2243 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2244 * policy.
2245 */
2246 void mpol_put_task_policy(struct task_struct *task)
2247 {
2248 struct mempolicy *pol;
2249
2250 task_lock(task);
2251 pol = task->mempolicy;
2252 task->mempolicy = NULL;
2253 task_unlock(task);
2254 mpol_put(pol);
2255 }
2256
2257 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2258 {
2259 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2260 rb_erase(&n->nd, &sp->root);
2261 sp_free(n);
2262 }
2263
2264 static void sp_node_init(struct sp_node *node, unsigned long start,
2265 unsigned long end, struct mempolicy *pol)
2266 {
2267 node->start = start;
2268 node->end = end;
2269 node->policy = pol;
2270 }
2271
2272 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2273 struct mempolicy *pol)
2274 {
2275 struct sp_node *n;
2276 struct mempolicy *newpol;
2277
2278 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2279 if (!n)
2280 return NULL;
2281
2282 newpol = mpol_dup(pol);
2283 if (IS_ERR(newpol)) {
2284 kmem_cache_free(sn_cache, n);
2285 return NULL;
2286 }
2287 newpol->flags |= MPOL_F_SHARED;
2288 sp_node_init(n, start, end, newpol);
2289
2290 return n;
2291 }
2292
2293 /* Replace a policy range. */
2294 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2295 unsigned long end, struct sp_node *new)
2296 {
2297 struct sp_node *n;
2298 struct sp_node *n_new = NULL;
2299 struct mempolicy *mpol_new = NULL;
2300 int ret = 0;
2301
2302 restart:
2303 write_lock(&sp->lock);
2304 n = sp_lookup(sp, start, end);
2305 /* Take care of old policies in the same range. */
2306 while (n && n->start < end) {
2307 struct rb_node *next = rb_next(&n->nd);
2308 if (n->start >= start) {
2309 if (n->end <= end)
2310 sp_delete(sp, n);
2311 else
2312 n->start = end;
2313 } else {
2314 /* Old policy spanning whole new range. */
2315 if (n->end > end) {
2316 if (!n_new)
2317 goto alloc_new;
2318
2319 *mpol_new = *n->policy;
2320 atomic_set(&mpol_new->refcnt, 1);
2321 sp_node_init(n_new, end, n->end, mpol_new);
2322 n->end = start;
2323 sp_insert(sp, n_new);
2324 n_new = NULL;
2325 mpol_new = NULL;
2326 break;
2327 } else
2328 n->end = start;
2329 }
2330 if (!next)
2331 break;
2332 n = rb_entry(next, struct sp_node, nd);
2333 }
2334 if (new)
2335 sp_insert(sp, new);
2336 write_unlock(&sp->lock);
2337 ret = 0;
2338
2339 err_out:
2340 if (mpol_new)
2341 mpol_put(mpol_new);
2342 if (n_new)
2343 kmem_cache_free(sn_cache, n_new);
2344
2345 return ret;
2346
2347 alloc_new:
2348 write_unlock(&sp->lock);
2349 ret = -ENOMEM;
2350 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2351 if (!n_new)
2352 goto err_out;
2353 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2354 if (!mpol_new)
2355 goto err_out;
2356 goto restart;
2357 }
2358
2359 /**
2360 * mpol_shared_policy_init - initialize shared policy for inode
2361 * @sp: pointer to inode shared policy
2362 * @mpol: struct mempolicy to install
2363 *
2364 * Install non-NULL @mpol in inode's shared policy rb-tree.
2365 * On entry, the current task has a reference on a non-NULL @mpol.
2366 * This must be released on exit.
2367 * This is called at get_inode() calls and we can use GFP_KERNEL.
2368 */
2369 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2370 {
2371 int ret;
2372
2373 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2374 rwlock_init(&sp->lock);
2375
2376 if (mpol) {
2377 struct vm_area_struct pvma;
2378 struct mempolicy *new;
2379 NODEMASK_SCRATCH(scratch);
2380
2381 if (!scratch)
2382 goto put_mpol;
2383 /* contextualize the tmpfs mount point mempolicy */
2384 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2385 if (IS_ERR(new))
2386 goto free_scratch; /* no valid nodemask intersection */
2387
2388 task_lock(current);
2389 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2390 task_unlock(current);
2391 if (ret)
2392 goto put_new;
2393
2394 /* Create pseudo-vma that contains just the policy */
2395 memset(&pvma, 0, sizeof(struct vm_area_struct));
2396 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2397 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2398
2399 put_new:
2400 mpol_put(new); /* drop initial ref */
2401 free_scratch:
2402 NODEMASK_SCRATCH_FREE(scratch);
2403 put_mpol:
2404 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2405 }
2406 }
2407
2408 int mpol_set_shared_policy(struct shared_policy *info,
2409 struct vm_area_struct *vma, struct mempolicy *npol)
2410 {
2411 int err;
2412 struct sp_node *new = NULL;
2413 unsigned long sz = vma_pages(vma);
2414
2415 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2416 vma->vm_pgoff,
2417 sz, npol ? npol->mode : -1,
2418 npol ? npol->flags : -1,
2419 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2420
2421 if (npol) {
2422 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2423 if (!new)
2424 return -ENOMEM;
2425 }
2426 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2427 if (err && new)
2428 sp_free(new);
2429 return err;
2430 }
2431
2432 /* Free a backing policy store on inode delete. */
2433 void mpol_free_shared_policy(struct shared_policy *p)
2434 {
2435 struct sp_node *n;
2436 struct rb_node *next;
2437
2438 if (!p->root.rb_node)
2439 return;
2440 write_lock(&p->lock);
2441 next = rb_first(&p->root);
2442 while (next) {
2443 n = rb_entry(next, struct sp_node, nd);
2444 next = rb_next(&n->nd);
2445 sp_delete(p, n);
2446 }
2447 write_unlock(&p->lock);
2448 }
2449
2450 #ifdef CONFIG_NUMA_BALANCING
2451 static int __initdata numabalancing_override;
2452
2453 static void __init check_numabalancing_enable(void)
2454 {
2455 bool numabalancing_default = false;
2456
2457 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2458 numabalancing_default = true;
2459
2460 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2461 if (numabalancing_override)
2462 set_numabalancing_state(numabalancing_override == 1);
2463
2464 if (num_online_nodes() > 1 && !numabalancing_override) {
2465 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2466 numabalancing_default ? "Enabling" : "Disabling");
2467 set_numabalancing_state(numabalancing_default);
2468 }
2469 }
2470
2471 static int __init setup_numabalancing(char *str)
2472 {
2473 int ret = 0;
2474 if (!str)
2475 goto out;
2476
2477 if (!strcmp(str, "enable")) {
2478 numabalancing_override = 1;
2479 ret = 1;
2480 } else if (!strcmp(str, "disable")) {
2481 numabalancing_override = -1;
2482 ret = 1;
2483 }
2484 out:
2485 if (!ret)
2486 pr_warn("Unable to parse numa_balancing=\n");
2487
2488 return ret;
2489 }
2490 __setup("numa_balancing=", setup_numabalancing);
2491 #else
2492 static inline void __init check_numabalancing_enable(void)
2493 {
2494 }
2495 #endif /* CONFIG_NUMA_BALANCING */
2496
2497 /* assumes fs == KERNEL_DS */
2498 void __init numa_policy_init(void)
2499 {
2500 nodemask_t interleave_nodes;
2501 unsigned long largest = 0;
2502 int nid, prefer = 0;
2503
2504 policy_cache = kmem_cache_create("numa_policy",
2505 sizeof(struct mempolicy),
2506 0, SLAB_PANIC, NULL);
2507
2508 sn_cache = kmem_cache_create("shared_policy_node",
2509 sizeof(struct sp_node),
2510 0, SLAB_PANIC, NULL);
2511
2512 for_each_node(nid) {
2513 preferred_node_policy[nid] = (struct mempolicy) {
2514 .refcnt = ATOMIC_INIT(1),
2515 .mode = MPOL_PREFERRED,
2516 .flags = MPOL_F_MOF | MPOL_F_MORON,
2517 .v = { .preferred_node = nid, },
2518 };
2519 }
2520
2521 /*
2522 * Set interleaving policy for system init. Interleaving is only
2523 * enabled across suitably sized nodes (default is >= 16MB), or
2524 * fall back to the largest node if they're all smaller.
2525 */
2526 nodes_clear(interleave_nodes);
2527 for_each_node_state(nid, N_MEMORY) {
2528 unsigned long total_pages = node_present_pages(nid);
2529
2530 /* Preserve the largest node */
2531 if (largest < total_pages) {
2532 largest = total_pages;
2533 prefer = nid;
2534 }
2535
2536 /* Interleave this node? */
2537 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2538 node_set(nid, interleave_nodes);
2539 }
2540
2541 /* All too small, use the largest */
2542 if (unlikely(nodes_empty(interleave_nodes)))
2543 node_set(prefer, interleave_nodes);
2544
2545 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2546 pr_err("%s: interleaving failed\n", __func__);
2547
2548 check_numabalancing_enable();
2549 }
2550
2551 /* Reset policy of current process to default */
2552 void numa_default_policy(void)
2553 {
2554 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2555 }
2556
2557 /*
2558 * Parse and format mempolicy from/to strings
2559 */
2560
2561 /*
2562 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2563 */
2564 static const char * const policy_modes[] =
2565 {
2566 [MPOL_DEFAULT] = "default",
2567 [MPOL_PREFERRED] = "prefer",
2568 [MPOL_BIND] = "bind",
2569 [MPOL_INTERLEAVE] = "interleave",
2570 [MPOL_LOCAL] = "local",
2571 };
2572
2573
2574 #ifdef CONFIG_TMPFS
2575 /**
2576 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2577 * @str: string containing mempolicy to parse
2578 * @mpol: pointer to struct mempolicy pointer, returned on success.
2579 *
2580 * Format of input:
2581 * <mode>[=<flags>][:<nodelist>]
2582 *
2583 * On success, returns 0, else 1
2584 */
2585 int mpol_parse_str(char *str, struct mempolicy **mpol)
2586 {
2587 struct mempolicy *new = NULL;
2588 unsigned short mode;
2589 unsigned short mode_flags;
2590 nodemask_t nodes;
2591 char *nodelist = strchr(str, ':');
2592 char *flags = strchr(str, '=');
2593 int err = 1;
2594
2595 if (nodelist) {
2596 /* NUL-terminate mode or flags string */
2597 *nodelist++ = '\0';
2598 if (nodelist_parse(nodelist, nodes))
2599 goto out;
2600 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2601 goto out;
2602 } else
2603 nodes_clear(nodes);
2604
2605 if (flags)
2606 *flags++ = '\0'; /* terminate mode string */
2607
2608 for (mode = 0; mode < MPOL_MAX; mode++) {
2609 if (!strcmp(str, policy_modes[mode])) {
2610 break;
2611 }
2612 }
2613 if (mode >= MPOL_MAX)
2614 goto out;
2615
2616 switch (mode) {
2617 case MPOL_PREFERRED:
2618 /*
2619 * Insist on a nodelist of one node only
2620 */
2621 if (nodelist) {
2622 char *rest = nodelist;
2623 while (isdigit(*rest))
2624 rest++;
2625 if (*rest)
2626 goto out;
2627 }
2628 break;
2629 case MPOL_INTERLEAVE:
2630 /*
2631 * Default to online nodes with memory if no nodelist
2632 */
2633 if (!nodelist)
2634 nodes = node_states[N_MEMORY];
2635 break;
2636 case MPOL_LOCAL:
2637 /*
2638 * Don't allow a nodelist; mpol_new() checks flags
2639 */
2640 if (nodelist)
2641 goto out;
2642 mode = MPOL_PREFERRED;
2643 break;
2644 case MPOL_DEFAULT:
2645 /*
2646 * Insist on a empty nodelist
2647 */
2648 if (!nodelist)
2649 err = 0;
2650 goto out;
2651 case MPOL_BIND:
2652 /*
2653 * Insist on a nodelist
2654 */
2655 if (!nodelist)
2656 goto out;
2657 }
2658
2659 mode_flags = 0;
2660 if (flags) {
2661 /*
2662 * Currently, we only support two mutually exclusive
2663 * mode flags.
2664 */
2665 if (!strcmp(flags, "static"))
2666 mode_flags |= MPOL_F_STATIC_NODES;
2667 else if (!strcmp(flags, "relative"))
2668 mode_flags |= MPOL_F_RELATIVE_NODES;
2669 else
2670 goto out;
2671 }
2672
2673 new = mpol_new(mode, mode_flags, &nodes);
2674 if (IS_ERR(new))
2675 goto out;
2676
2677 /*
2678 * Save nodes for mpol_to_str() to show the tmpfs mount options
2679 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2680 */
2681 if (mode != MPOL_PREFERRED)
2682 new->v.nodes = nodes;
2683 else if (nodelist)
2684 new->v.preferred_node = first_node(nodes);
2685 else
2686 new->flags |= MPOL_F_LOCAL;
2687
2688 /*
2689 * Save nodes for contextualization: this will be used to "clone"
2690 * the mempolicy in a specific context [cpuset] at a later time.
2691 */
2692 new->w.user_nodemask = nodes;
2693
2694 err = 0;
2695
2696 out:
2697 /* Restore string for error message */
2698 if (nodelist)
2699 *--nodelist = ':';
2700 if (flags)
2701 *--flags = '=';
2702 if (!err)
2703 *mpol = new;
2704 return err;
2705 }
2706 #endif /* CONFIG_TMPFS */
2707
2708 /**
2709 * mpol_to_str - format a mempolicy structure for printing
2710 * @buffer: to contain formatted mempolicy string
2711 * @maxlen: length of @buffer
2712 * @pol: pointer to mempolicy to be formatted
2713 *
2714 * Convert @pol into a string. If @buffer is too short, truncate the string.
2715 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2716 * longest flag, "relative", and to display at least a few node ids.
2717 */
2718 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2719 {
2720 char *p = buffer;
2721 nodemask_t nodes = NODE_MASK_NONE;
2722 unsigned short mode = MPOL_DEFAULT;
2723 unsigned short flags = 0;
2724
2725 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2726 mode = pol->mode;
2727 flags = pol->flags;
2728 }
2729
2730 switch (mode) {
2731 case MPOL_DEFAULT:
2732 break;
2733 case MPOL_PREFERRED:
2734 if (flags & MPOL_F_LOCAL)
2735 mode = MPOL_LOCAL;
2736 else
2737 node_set(pol->v.preferred_node, nodes);
2738 break;
2739 case MPOL_BIND:
2740 case MPOL_INTERLEAVE:
2741 nodes = pol->v.nodes;
2742 break;
2743 default:
2744 WARN_ON_ONCE(1);
2745 snprintf(p, maxlen, "unknown");
2746 return;
2747 }
2748
2749 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2750
2751 if (flags & MPOL_MODE_FLAGS) {
2752 p += snprintf(p, buffer + maxlen - p, "=");
2753
2754 /*
2755 * Currently, the only defined flags are mutually exclusive
2756 */
2757 if (flags & MPOL_F_STATIC_NODES)
2758 p += snprintf(p, buffer + maxlen - p, "static");
2759 else if (flags & MPOL_F_RELATIVE_NODES)
2760 p += snprintf(p, buffer + maxlen - p, "relative");
2761 }
2762
2763 if (!nodes_empty(nodes))
2764 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2765 nodemask_pr_args(&nodes));
2766 }