]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
PCI: aardvark: Fix support for PME requester on emulated bridge
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108
109 #include "internal.h"
110
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
114
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117
118 /* Highest zone. An specific allocation for a zone below that is not
119 policied. */
120 enum zone_type policy_zone = 0;
121
122 /*
123 * run-time system-wide default policy => local allocation
124 */
125 static struct mempolicy default_policy = {
126 .refcnt = ATOMIC_INIT(1), /* never free it */
127 .mode = MPOL_LOCAL,
128 };
129
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131
132 /**
133 * numa_map_to_online_node - Find closest online node
134 * @node: Node id to start the search
135 *
136 * Lookup the next closest node by distance if @nid is not online.
137 */
138 int numa_map_to_online_node(int node)
139 {
140 int min_dist = INT_MAX, dist, n, min_node;
141
142 if (node == NUMA_NO_NODE || node_online(node))
143 return node;
144
145 min_node = node;
146 for_each_online_node(n) {
147 dist = node_distance(node, n);
148 if (dist < min_dist) {
149 min_dist = dist;
150 min_node = n;
151 }
152 }
153
154 return min_node;
155 }
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
157
158 struct mempolicy *get_task_policy(struct task_struct *p)
159 {
160 struct mempolicy *pol = p->mempolicy;
161 int node;
162
163 if (pol)
164 return pol;
165
166 node = numa_node_id();
167 if (node != NUMA_NO_NODE) {
168 pol = &preferred_node_policy[node];
169 /* preferred_node_policy is not initialised early in boot */
170 if (pol->mode)
171 return pol;
172 }
173
174 return &default_policy;
175 }
176
177 static const struct mempolicy_operations {
178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
181
182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
183 {
184 return pol->flags & MPOL_MODE_FLAGS;
185 }
186
187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 const nodemask_t *rel)
189 {
190 nodemask_t tmp;
191 nodes_fold(tmp, *orig, nodes_weight(*rel));
192 nodes_onto(*ret, tmp, *rel);
193 }
194
195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
196 {
197 if (nodes_empty(*nodes))
198 return -EINVAL;
199 pol->nodes = *nodes;
200 return 0;
201 }
202
203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (nodes_empty(*nodes))
206 return -EINVAL;
207
208 nodes_clear(pol->nodes);
209 node_set(first_node(*nodes), pol->nodes);
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags.
217 *
218 * Must be called holding task's alloc_lock to protect task's mems_allowed
219 * and mempolicy. May also be called holding the mmap_lock for write.
220 */
221 static int mpol_set_nodemask(struct mempolicy *pol,
222 const nodemask_t *nodes, struct nodemask_scratch *nsc)
223 {
224 int ret;
225
226 /*
227 * Default (pol==NULL) resp. local memory policies are not a
228 * subject of any remapping. They also do not need any special
229 * constructor.
230 */
231 if (!pol || pol->mode == MPOL_LOCAL)
232 return 0;
233
234 /* Check N_MEMORY */
235 nodes_and(nsc->mask1,
236 cpuset_current_mems_allowed, node_states[N_MEMORY]);
237
238 VM_BUG_ON(!nodes);
239
240 if (pol->flags & MPOL_F_RELATIVE_NODES)
241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
242 else
243 nodes_and(nsc->mask2, *nodes, nsc->mask1);
244
245 if (mpol_store_user_nodemask(pol))
246 pol->w.user_nodemask = *nodes;
247 else
248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
249
250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283
284 mode = MPOL_LOCAL;
285 }
286 } else if (mode == MPOL_LOCAL) {
287 if (!nodes_empty(*nodes) ||
288 (flags & MPOL_F_STATIC_NODES) ||
289 (flags & MPOL_F_RELATIVE_NODES))
290 return ERR_PTR(-EINVAL);
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
312 {
313 }
314
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328
329 if (nodes_empty(tmp))
330 tmp = *nodes;
331
332 pol->nodes = tmp;
333 }
334
335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 const nodemask_t *nodes)
337 {
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_lock. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_lock during call.
375 */
376
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 mmap_write_lock(mm);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 mmap_write_unlock(mm);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_nodemask,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
402 },
403 [MPOL_LOCAL] = {
404 .rebind = mpol_rebind_default,
405 },
406 [MPOL_PREFERRED_MANY] = {
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_preferred,
409 },
410 };
411
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 unsigned long flags);
414
415 struct queue_pages {
416 struct list_head *pagelist;
417 unsigned long flags;
418 nodemask_t *nmask;
419 unsigned long start;
420 unsigned long end;
421 struct vm_area_struct *first;
422 };
423
424 /*
425 * Check if the page's nid is in qp->nmask.
426 *
427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428 * in the invert of qp->nmask.
429 */
430 static inline bool queue_pages_required(struct page *page,
431 struct queue_pages *qp)
432 {
433 int nid = page_to_nid(page);
434 unsigned long flags = qp->flags;
435
436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
437 }
438
439 /*
440 * queue_pages_pmd() has four possible return values:
441 * 0 - pages are placed on the right node or queued successfully, or
442 * special page is met, i.e. huge zero page.
443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
444 * specified.
445 * 2 - THP was split.
446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447 * existing page was already on a node that does not follow the
448 * policy.
449 */
450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 unsigned long end, struct mm_walk *walk)
452 __releases(ptl)
453 {
454 int ret = 0;
455 struct page *page;
456 struct queue_pages *qp = walk->private;
457 unsigned long flags;
458
459 if (unlikely(is_pmd_migration_entry(*pmd))) {
460 ret = -EIO;
461 goto unlock;
462 }
463 page = pmd_page(*pmd);
464 if (is_huge_zero_page(page)) {
465 spin_unlock(ptl);
466 walk->action = ACTION_CONTINUE;
467 goto out;
468 }
469 if (!queue_pages_required(page, qp))
470 goto unlock;
471
472 flags = qp->flags;
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
477 ret = 1;
478 goto unlock;
479 }
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 *
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully, or
494 * special page is met, i.e. zero page.
495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
496 * specified.
497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498 * on a node that does not follow the policy.
499 */
500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 unsigned long end, struct mm_walk *walk)
502 {
503 struct vm_area_struct *vma = walk->vma;
504 struct page *page;
505 struct queue_pages *qp = walk->private;
506 unsigned long flags = qp->flags;
507 int ret;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
510 spinlock_t *ptl;
511
512 ptl = pmd_trans_huge_lock(pmd, vma);
513 if (ptl) {
514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
515 if (ret != 2)
516 return ret;
517 }
518 /* THP was split, fall through to pte walk */
519
520 if (pmd_trans_unstable(pmd))
521 return 0;
522
523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
526 continue;
527 page = vm_normal_page(vma, addr, *pte);
528 if (!page)
529 continue;
530 /*
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
533 */
534 if (PageReserved(page))
535 continue;
536 if (!queue_pages_required(page, qp))
537 continue;
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 /* MPOL_MF_STRICT must be specified if we get here */
540 if (!vma_migratable(vma)) {
541 has_unmovable = true;
542 break;
543 }
544
545 /*
546 * Do not abort immediately since there may be
547 * temporary off LRU pages in the range. Still
548 * need migrate other LRU pages.
549 */
550 if (migrate_page_add(page, qp->pagelist, flags))
551 has_unmovable = true;
552 } else
553 break;
554 }
555 pte_unmap_unlock(mapped_pte, ptl);
556 cond_resched();
557
558 if (has_unmovable)
559 return 1;
560
561 return addr != end ? -EIO : 0;
562 }
563
564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 unsigned long addr, unsigned long end,
566 struct mm_walk *walk)
567 {
568 int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 struct queue_pages *qp = walk->private;
571 unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 struct page *page;
573 spinlock_t *ptl;
574 pte_t entry;
575
576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 entry = huge_ptep_get(pte);
578 if (!pte_present(entry))
579 goto unlock;
580 page = pte_page(entry);
581 if (!queue_pages_required(page, qp))
582 goto unlock;
583
584 if (flags == MPOL_MF_STRICT) {
585 /*
586 * STRICT alone means only detecting misplaced page and no
587 * need to further check other vma.
588 */
589 ret = -EIO;
590 goto unlock;
591 }
592
593 if (!vma_migratable(walk->vma)) {
594 /*
595 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 * stopped walking current vma.
597 * Detecting misplaced page but allow migrating pages which
598 * have been queued.
599 */
600 ret = 1;
601 goto unlock;
602 }
603
604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 if (flags & (MPOL_MF_MOVE_ALL) ||
606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
607 if (!isolate_huge_page(page, qp->pagelist) &&
608 (flags & MPOL_MF_STRICT))
609 /*
610 * Failed to isolate page but allow migrating pages
611 * which have been queued.
612 */
613 ret = 1;
614 }
615 unlock:
616 spin_unlock(ptl);
617 #else
618 BUG();
619 #endif
620 return ret;
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
628 *
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
632 */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
635 {
636 int nr_updated;
637
638 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
654 {
655 struct vm_area_struct *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
659
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
662
663 if (!qp->first) {
664 qp->first = vma;
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
668 return -EFAULT;
669 }
670 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
671 ((vma->vm_end < qp->end) &&
672 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
673 /* hole at middle or tail of range */
674 return -EFAULT;
675
676 /*
677 * Need check MPOL_MF_STRICT to return -EIO if possible
678 * regardless of vma_migratable
679 */
680 if (!vma_migratable(vma) &&
681 !(flags & MPOL_MF_STRICT))
682 return 1;
683
684 if (endvma > end)
685 endvma = end;
686
687 if (flags & MPOL_MF_LAZY) {
688 /* Similar to task_numa_work, skip inaccessible VMAs */
689 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
690 !(vma->vm_flags & VM_MIXEDMAP))
691 change_prot_numa(vma, start, endvma);
692 return 1;
693 }
694
695 /* queue pages from current vma */
696 if (flags & MPOL_MF_VALID)
697 return 0;
698 return 1;
699 }
700
701 static const struct mm_walk_ops queue_pages_walk_ops = {
702 .hugetlb_entry = queue_pages_hugetlb,
703 .pmd_entry = queue_pages_pte_range,
704 .test_walk = queue_pages_test_walk,
705 };
706
707 /*
708 * Walk through page tables and collect pages to be migrated.
709 *
710 * If pages found in a given range are on a set of nodes (determined by
711 * @nodes and @flags,) it's isolated and queued to the pagelist which is
712 * passed via @private.
713 *
714 * queue_pages_range() has three possible return values:
715 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
716 * specified.
717 * 0 - queue pages successfully or no misplaced page.
718 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
719 * memory range specified by nodemask and maxnode points outside
720 * your accessible address space (-EFAULT)
721 */
722 static int
723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
724 nodemask_t *nodes, unsigned long flags,
725 struct list_head *pagelist)
726 {
727 int err;
728 struct queue_pages qp = {
729 .pagelist = pagelist,
730 .flags = flags,
731 .nmask = nodes,
732 .start = start,
733 .end = end,
734 .first = NULL,
735 };
736
737 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
738
739 if (!qp.first)
740 /* whole range in hole */
741 err = -EFAULT;
742
743 return err;
744 }
745
746 /*
747 * Apply policy to a single VMA
748 * This must be called with the mmap_lock held for writing.
749 */
750 static int vma_replace_policy(struct vm_area_struct *vma,
751 struct mempolicy *pol)
752 {
753 int err;
754 struct mempolicy *old;
755 struct mempolicy *new;
756
757 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
758 vma->vm_start, vma->vm_end, vma->vm_pgoff,
759 vma->vm_ops, vma->vm_file,
760 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
761
762 new = mpol_dup(pol);
763 if (IS_ERR(new))
764 return PTR_ERR(new);
765
766 if (vma->vm_ops && vma->vm_ops->set_policy) {
767 err = vma->vm_ops->set_policy(vma, new);
768 if (err)
769 goto err_out;
770 }
771
772 old = vma->vm_policy;
773 vma->vm_policy = new; /* protected by mmap_lock */
774 mpol_put(old);
775
776 return 0;
777 err_out:
778 mpol_put(new);
779 return err;
780 }
781
782 /* Step 2: apply policy to a range and do splits. */
783 static int mbind_range(struct mm_struct *mm, unsigned long start,
784 unsigned long end, struct mempolicy *new_pol)
785 {
786 struct vm_area_struct *prev;
787 struct vm_area_struct *vma;
788 int err = 0;
789 pgoff_t pgoff;
790 unsigned long vmstart;
791 unsigned long vmend;
792
793 vma = find_vma(mm, start);
794 VM_BUG_ON(!vma);
795
796 prev = vma->vm_prev;
797 if (start > vma->vm_start)
798 prev = vma;
799
800 for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
801 vmstart = max(start, vma->vm_start);
802 vmend = min(end, vma->vm_end);
803
804 if (mpol_equal(vma_policy(vma), new_pol))
805 continue;
806
807 pgoff = vma->vm_pgoff +
808 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
809 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
810 vma->anon_vma, vma->vm_file, pgoff,
811 new_pol, vma->vm_userfaultfd_ctx);
812 if (prev) {
813 vma = prev;
814 goto replace;
815 }
816 if (vma->vm_start != vmstart) {
817 err = split_vma(vma->vm_mm, vma, vmstart, 1);
818 if (err)
819 goto out;
820 }
821 if (vma->vm_end != vmend) {
822 err = split_vma(vma->vm_mm, vma, vmend, 0);
823 if (err)
824 goto out;
825 }
826 replace:
827 err = vma_replace_policy(vma, new_pol);
828 if (err)
829 goto out;
830 }
831
832 out:
833 return err;
834 }
835
836 /* Set the process memory policy */
837 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
838 nodemask_t *nodes)
839 {
840 struct mempolicy *new, *old;
841 NODEMASK_SCRATCH(scratch);
842 int ret;
843
844 if (!scratch)
845 return -ENOMEM;
846
847 new = mpol_new(mode, flags, nodes);
848 if (IS_ERR(new)) {
849 ret = PTR_ERR(new);
850 goto out;
851 }
852
853 ret = mpol_set_nodemask(new, nodes, scratch);
854 if (ret) {
855 mpol_put(new);
856 goto out;
857 }
858 task_lock(current);
859 old = current->mempolicy;
860 current->mempolicy = new;
861 if (new && new->mode == MPOL_INTERLEAVE)
862 current->il_prev = MAX_NUMNODES-1;
863 task_unlock(current);
864 mpol_put(old);
865 ret = 0;
866 out:
867 NODEMASK_SCRATCH_FREE(scratch);
868 return ret;
869 }
870
871 /*
872 * Return nodemask for policy for get_mempolicy() query
873 *
874 * Called with task's alloc_lock held
875 */
876 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
877 {
878 nodes_clear(*nodes);
879 if (p == &default_policy)
880 return;
881
882 switch (p->mode) {
883 case MPOL_BIND:
884 case MPOL_INTERLEAVE:
885 case MPOL_PREFERRED:
886 case MPOL_PREFERRED_MANY:
887 *nodes = p->nodes;
888 break;
889 case MPOL_LOCAL:
890 /* return empty node mask for local allocation */
891 break;
892 default:
893 BUG();
894 }
895 }
896
897 static int lookup_node(struct mm_struct *mm, unsigned long addr)
898 {
899 struct page *p = NULL;
900 int err;
901
902 int locked = 1;
903 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
904 if (err > 0) {
905 err = page_to_nid(p);
906 put_page(p);
907 }
908 if (locked)
909 mmap_read_unlock(mm);
910 return err;
911 }
912
913 /* Retrieve NUMA policy */
914 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
915 unsigned long addr, unsigned long flags)
916 {
917 int err;
918 struct mm_struct *mm = current->mm;
919 struct vm_area_struct *vma = NULL;
920 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
921
922 if (flags &
923 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
924 return -EINVAL;
925
926 if (flags & MPOL_F_MEMS_ALLOWED) {
927 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
928 return -EINVAL;
929 *policy = 0; /* just so it's initialized */
930 task_lock(current);
931 *nmask = cpuset_current_mems_allowed;
932 task_unlock(current);
933 return 0;
934 }
935
936 if (flags & MPOL_F_ADDR) {
937 /*
938 * Do NOT fall back to task policy if the
939 * vma/shared policy at addr is NULL. We
940 * want to return MPOL_DEFAULT in this case.
941 */
942 mmap_read_lock(mm);
943 vma = vma_lookup(mm, addr);
944 if (!vma) {
945 mmap_read_unlock(mm);
946 return -EFAULT;
947 }
948 if (vma->vm_ops && vma->vm_ops->get_policy)
949 pol = vma->vm_ops->get_policy(vma, addr);
950 else
951 pol = vma->vm_policy;
952 } else if (addr)
953 return -EINVAL;
954
955 if (!pol)
956 pol = &default_policy; /* indicates default behavior */
957
958 if (flags & MPOL_F_NODE) {
959 if (flags & MPOL_F_ADDR) {
960 /*
961 * Take a refcount on the mpol, lookup_node()
962 * will drop the mmap_lock, so after calling
963 * lookup_node() only "pol" remains valid, "vma"
964 * is stale.
965 */
966 pol_refcount = pol;
967 vma = NULL;
968 mpol_get(pol);
969 err = lookup_node(mm, addr);
970 if (err < 0)
971 goto out;
972 *policy = err;
973 } else if (pol == current->mempolicy &&
974 pol->mode == MPOL_INTERLEAVE) {
975 *policy = next_node_in(current->il_prev, pol->nodes);
976 } else {
977 err = -EINVAL;
978 goto out;
979 }
980 } else {
981 *policy = pol == &default_policy ? MPOL_DEFAULT :
982 pol->mode;
983 /*
984 * Internal mempolicy flags must be masked off before exposing
985 * the policy to userspace.
986 */
987 *policy |= (pol->flags & MPOL_MODE_FLAGS);
988 }
989
990 err = 0;
991 if (nmask) {
992 if (mpol_store_user_nodemask(pol)) {
993 *nmask = pol->w.user_nodemask;
994 } else {
995 task_lock(current);
996 get_policy_nodemask(pol, nmask);
997 task_unlock(current);
998 }
999 }
1000
1001 out:
1002 mpol_cond_put(pol);
1003 if (vma)
1004 mmap_read_unlock(mm);
1005 if (pol_refcount)
1006 mpol_put(pol_refcount);
1007 return err;
1008 }
1009
1010 #ifdef CONFIG_MIGRATION
1011 /*
1012 * page migration, thp tail pages can be passed.
1013 */
1014 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1015 unsigned long flags)
1016 {
1017 struct page *head = compound_head(page);
1018 /*
1019 * Avoid migrating a page that is shared with others.
1020 */
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1022 if (!isolate_lru_page(head)) {
1023 list_add_tail(&head->lru, pagelist);
1024 mod_node_page_state(page_pgdat(head),
1025 NR_ISOLATED_ANON + page_is_file_lru(head),
1026 thp_nr_pages(head));
1027 } else if (flags & MPOL_MF_STRICT) {
1028 /*
1029 * Non-movable page may reach here. And, there may be
1030 * temporary off LRU pages or non-LRU movable pages.
1031 * Treat them as unmovable pages since they can't be
1032 * isolated, so they can't be moved at the moment. It
1033 * should return -EIO for this case too.
1034 */
1035 return -EIO;
1036 }
1037 }
1038
1039 return 0;
1040 }
1041
1042 /*
1043 * Migrate pages from one node to a target node.
1044 * Returns error or the number of pages not migrated.
1045 */
1046 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1047 int flags)
1048 {
1049 nodemask_t nmask;
1050 LIST_HEAD(pagelist);
1051 int err = 0;
1052 struct migration_target_control mtc = {
1053 .nid = dest,
1054 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1055 };
1056
1057 nodes_clear(nmask);
1058 node_set(source, nmask);
1059
1060 /*
1061 * This does not "check" the range but isolates all pages that
1062 * need migration. Between passing in the full user address
1063 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1064 */
1065 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1066 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1067 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1068
1069 if (!list_empty(&pagelist)) {
1070 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1071 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1072 if (err)
1073 putback_movable_pages(&pagelist);
1074 }
1075
1076 return err;
1077 }
1078
1079 /*
1080 * Move pages between the two nodesets so as to preserve the physical
1081 * layout as much as possible.
1082 *
1083 * Returns the number of page that could not be moved.
1084 */
1085 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1086 const nodemask_t *to, int flags)
1087 {
1088 int busy = 0;
1089 int err = 0;
1090 nodemask_t tmp;
1091
1092 lru_cache_disable();
1093
1094 mmap_read_lock(mm);
1095
1096 /*
1097 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1098 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1099 * bit in 'tmp', and return that <source, dest> pair for migration.
1100 * The pair of nodemasks 'to' and 'from' define the map.
1101 *
1102 * If no pair of bits is found that way, fallback to picking some
1103 * pair of 'source' and 'dest' bits that are not the same. If the
1104 * 'source' and 'dest' bits are the same, this represents a node
1105 * that will be migrating to itself, so no pages need move.
1106 *
1107 * If no bits are left in 'tmp', or if all remaining bits left
1108 * in 'tmp' correspond to the same bit in 'to', return false
1109 * (nothing left to migrate).
1110 *
1111 * This lets us pick a pair of nodes to migrate between, such that
1112 * if possible the dest node is not already occupied by some other
1113 * source node, minimizing the risk of overloading the memory on a
1114 * node that would happen if we migrated incoming memory to a node
1115 * before migrating outgoing memory source that same node.
1116 *
1117 * A single scan of tmp is sufficient. As we go, we remember the
1118 * most recent <s, d> pair that moved (s != d). If we find a pair
1119 * that not only moved, but what's better, moved to an empty slot
1120 * (d is not set in tmp), then we break out then, with that pair.
1121 * Otherwise when we finish scanning from_tmp, we at least have the
1122 * most recent <s, d> pair that moved. If we get all the way through
1123 * the scan of tmp without finding any node that moved, much less
1124 * moved to an empty node, then there is nothing left worth migrating.
1125 */
1126
1127 tmp = *from;
1128 while (!nodes_empty(tmp)) {
1129 int s, d;
1130 int source = NUMA_NO_NODE;
1131 int dest = 0;
1132
1133 for_each_node_mask(s, tmp) {
1134
1135 /*
1136 * do_migrate_pages() tries to maintain the relative
1137 * node relationship of the pages established between
1138 * threads and memory areas.
1139 *
1140 * However if the number of source nodes is not equal to
1141 * the number of destination nodes we can not preserve
1142 * this node relative relationship. In that case, skip
1143 * copying memory from a node that is in the destination
1144 * mask.
1145 *
1146 * Example: [2,3,4] -> [3,4,5] moves everything.
1147 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1148 */
1149
1150 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1151 (node_isset(s, *to)))
1152 continue;
1153
1154 d = node_remap(s, *from, *to);
1155 if (s == d)
1156 continue;
1157
1158 source = s; /* Node moved. Memorize */
1159 dest = d;
1160
1161 /* dest not in remaining from nodes? */
1162 if (!node_isset(dest, tmp))
1163 break;
1164 }
1165 if (source == NUMA_NO_NODE)
1166 break;
1167
1168 node_clear(source, tmp);
1169 err = migrate_to_node(mm, source, dest, flags);
1170 if (err > 0)
1171 busy += err;
1172 if (err < 0)
1173 break;
1174 }
1175 mmap_read_unlock(mm);
1176
1177 lru_cache_enable();
1178 if (err < 0)
1179 return err;
1180 return busy;
1181
1182 }
1183
1184 /*
1185 * Allocate a new page for page migration based on vma policy.
1186 * Start by assuming the page is mapped by the same vma as contains @start.
1187 * Search forward from there, if not. N.B., this assumes that the
1188 * list of pages handed to migrate_pages()--which is how we get here--
1189 * is in virtual address order.
1190 */
1191 static struct page *new_page(struct page *page, unsigned long start)
1192 {
1193 struct vm_area_struct *vma;
1194 unsigned long address;
1195
1196 vma = find_vma(current->mm, start);
1197 while (vma) {
1198 address = page_address_in_vma(page, vma);
1199 if (address != -EFAULT)
1200 break;
1201 vma = vma->vm_next;
1202 }
1203
1204 if (PageHuge(page)) {
1205 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1206 vma, address);
1207 } else if (PageTransHuge(page)) {
1208 struct page *thp;
1209
1210 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1211 HPAGE_PMD_ORDER);
1212 if (!thp)
1213 return NULL;
1214 prep_transhuge_page(thp);
1215 return thp;
1216 }
1217 /*
1218 * if !vma, alloc_page_vma() will use task or system default policy
1219 */
1220 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1221 vma, address);
1222 }
1223 #else
1224
1225 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1226 unsigned long flags)
1227 {
1228 return -EIO;
1229 }
1230
1231 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1232 const nodemask_t *to, int flags)
1233 {
1234 return -ENOSYS;
1235 }
1236
1237 static struct page *new_page(struct page *page, unsigned long start)
1238 {
1239 return NULL;
1240 }
1241 #endif
1242
1243 static long do_mbind(unsigned long start, unsigned long len,
1244 unsigned short mode, unsigned short mode_flags,
1245 nodemask_t *nmask, unsigned long flags)
1246 {
1247 struct mm_struct *mm = current->mm;
1248 struct mempolicy *new;
1249 unsigned long end;
1250 int err;
1251 int ret;
1252 LIST_HEAD(pagelist);
1253
1254 if (flags & ~(unsigned long)MPOL_MF_VALID)
1255 return -EINVAL;
1256 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1257 return -EPERM;
1258
1259 if (start & ~PAGE_MASK)
1260 return -EINVAL;
1261
1262 if (mode == MPOL_DEFAULT)
1263 flags &= ~MPOL_MF_STRICT;
1264
1265 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1266 end = start + len;
1267
1268 if (end < start)
1269 return -EINVAL;
1270 if (end == start)
1271 return 0;
1272
1273 new = mpol_new(mode, mode_flags, nmask);
1274 if (IS_ERR(new))
1275 return PTR_ERR(new);
1276
1277 if (flags & MPOL_MF_LAZY)
1278 new->flags |= MPOL_F_MOF;
1279
1280 /*
1281 * If we are using the default policy then operation
1282 * on discontinuous address spaces is okay after all
1283 */
1284 if (!new)
1285 flags |= MPOL_MF_DISCONTIG_OK;
1286
1287 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1288 start, start + len, mode, mode_flags,
1289 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1290
1291 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1292
1293 lru_cache_disable();
1294 }
1295 {
1296 NODEMASK_SCRATCH(scratch);
1297 if (scratch) {
1298 mmap_write_lock(mm);
1299 err = mpol_set_nodemask(new, nmask, scratch);
1300 if (err)
1301 mmap_write_unlock(mm);
1302 } else
1303 err = -ENOMEM;
1304 NODEMASK_SCRATCH_FREE(scratch);
1305 }
1306 if (err)
1307 goto mpol_out;
1308
1309 ret = queue_pages_range(mm, start, end, nmask,
1310 flags | MPOL_MF_INVERT, &pagelist);
1311
1312 if (ret < 0) {
1313 err = ret;
1314 goto up_out;
1315 }
1316
1317 err = mbind_range(mm, start, end, new);
1318
1319 if (!err) {
1320 int nr_failed = 0;
1321
1322 if (!list_empty(&pagelist)) {
1323 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1324 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1325 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1326 if (nr_failed)
1327 putback_movable_pages(&pagelist);
1328 }
1329
1330 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1331 err = -EIO;
1332 } else {
1333 up_out:
1334 if (!list_empty(&pagelist))
1335 putback_movable_pages(&pagelist);
1336 }
1337
1338 mmap_write_unlock(mm);
1339 mpol_out:
1340 mpol_put(new);
1341 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1342 lru_cache_enable();
1343 return err;
1344 }
1345
1346 /*
1347 * User space interface with variable sized bitmaps for nodelists.
1348 */
1349 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1350 unsigned long maxnode)
1351 {
1352 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1353 int ret;
1354
1355 if (in_compat_syscall())
1356 ret = compat_get_bitmap(mask,
1357 (const compat_ulong_t __user *)nmask,
1358 maxnode);
1359 else
1360 ret = copy_from_user(mask, nmask,
1361 nlongs * sizeof(unsigned long));
1362
1363 if (ret)
1364 return -EFAULT;
1365
1366 if (maxnode % BITS_PER_LONG)
1367 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1368
1369 return 0;
1370 }
1371
1372 /* Copy a node mask from user space. */
1373 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1374 unsigned long maxnode)
1375 {
1376 --maxnode;
1377 nodes_clear(*nodes);
1378 if (maxnode == 0 || !nmask)
1379 return 0;
1380 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1381 return -EINVAL;
1382
1383 /*
1384 * When the user specified more nodes than supported just check
1385 * if the non supported part is all zero, one word at a time,
1386 * starting at the end.
1387 */
1388 while (maxnode > MAX_NUMNODES) {
1389 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1390 unsigned long t;
1391
1392 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1393 return -EFAULT;
1394
1395 if (maxnode - bits >= MAX_NUMNODES) {
1396 maxnode -= bits;
1397 } else {
1398 maxnode = MAX_NUMNODES;
1399 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1400 }
1401 if (t)
1402 return -EINVAL;
1403 }
1404
1405 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1406 }
1407
1408 /* Copy a kernel node mask to user space */
1409 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1410 nodemask_t *nodes)
1411 {
1412 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1413 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1414 bool compat = in_compat_syscall();
1415
1416 if (compat)
1417 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1418
1419 if (copy > nbytes) {
1420 if (copy > PAGE_SIZE)
1421 return -EINVAL;
1422 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1423 return -EFAULT;
1424 copy = nbytes;
1425 maxnode = nr_node_ids;
1426 }
1427
1428 if (compat)
1429 return compat_put_bitmap((compat_ulong_t __user *)mask,
1430 nodes_addr(*nodes), maxnode);
1431
1432 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1433 }
1434
1435 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1436 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1437 {
1438 *flags = *mode & MPOL_MODE_FLAGS;
1439 *mode &= ~MPOL_MODE_FLAGS;
1440
1441 if ((unsigned int)(*mode) >= MPOL_MAX)
1442 return -EINVAL;
1443 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1444 return -EINVAL;
1445 if (*flags & MPOL_F_NUMA_BALANCING) {
1446 if (*mode != MPOL_BIND)
1447 return -EINVAL;
1448 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1449 }
1450 return 0;
1451 }
1452
1453 static long kernel_mbind(unsigned long start, unsigned long len,
1454 unsigned long mode, const unsigned long __user *nmask,
1455 unsigned long maxnode, unsigned int flags)
1456 {
1457 unsigned short mode_flags;
1458 nodemask_t nodes;
1459 int lmode = mode;
1460 int err;
1461
1462 start = untagged_addr(start);
1463 err = sanitize_mpol_flags(&lmode, &mode_flags);
1464 if (err)
1465 return err;
1466
1467 err = get_nodes(&nodes, nmask, maxnode);
1468 if (err)
1469 return err;
1470
1471 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1472 }
1473
1474 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1475 unsigned long, mode, const unsigned long __user *, nmask,
1476 unsigned long, maxnode, unsigned int, flags)
1477 {
1478 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1479 }
1480
1481 /* Set the process memory policy */
1482 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1483 unsigned long maxnode)
1484 {
1485 unsigned short mode_flags;
1486 nodemask_t nodes;
1487 int lmode = mode;
1488 int err;
1489
1490 err = sanitize_mpol_flags(&lmode, &mode_flags);
1491 if (err)
1492 return err;
1493
1494 err = get_nodes(&nodes, nmask, maxnode);
1495 if (err)
1496 return err;
1497
1498 return do_set_mempolicy(lmode, mode_flags, &nodes);
1499 }
1500
1501 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1502 unsigned long, maxnode)
1503 {
1504 return kernel_set_mempolicy(mode, nmask, maxnode);
1505 }
1506
1507 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1508 const unsigned long __user *old_nodes,
1509 const unsigned long __user *new_nodes)
1510 {
1511 struct mm_struct *mm = NULL;
1512 struct task_struct *task;
1513 nodemask_t task_nodes;
1514 int err;
1515 nodemask_t *old;
1516 nodemask_t *new;
1517 NODEMASK_SCRATCH(scratch);
1518
1519 if (!scratch)
1520 return -ENOMEM;
1521
1522 old = &scratch->mask1;
1523 new = &scratch->mask2;
1524
1525 err = get_nodes(old, old_nodes, maxnode);
1526 if (err)
1527 goto out;
1528
1529 err = get_nodes(new, new_nodes, maxnode);
1530 if (err)
1531 goto out;
1532
1533 /* Find the mm_struct */
1534 rcu_read_lock();
1535 task = pid ? find_task_by_vpid(pid) : current;
1536 if (!task) {
1537 rcu_read_unlock();
1538 err = -ESRCH;
1539 goto out;
1540 }
1541 get_task_struct(task);
1542
1543 err = -EINVAL;
1544
1545 /*
1546 * Check if this process has the right to modify the specified process.
1547 * Use the regular "ptrace_may_access()" checks.
1548 */
1549 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1550 rcu_read_unlock();
1551 err = -EPERM;
1552 goto out_put;
1553 }
1554 rcu_read_unlock();
1555
1556 task_nodes = cpuset_mems_allowed(task);
1557 /* Is the user allowed to access the target nodes? */
1558 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1559 err = -EPERM;
1560 goto out_put;
1561 }
1562
1563 task_nodes = cpuset_mems_allowed(current);
1564 nodes_and(*new, *new, task_nodes);
1565 if (nodes_empty(*new))
1566 goto out_put;
1567
1568 err = security_task_movememory(task);
1569 if (err)
1570 goto out_put;
1571
1572 mm = get_task_mm(task);
1573 put_task_struct(task);
1574
1575 if (!mm) {
1576 err = -EINVAL;
1577 goto out;
1578 }
1579
1580 err = do_migrate_pages(mm, old, new,
1581 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1582
1583 mmput(mm);
1584 out:
1585 NODEMASK_SCRATCH_FREE(scratch);
1586
1587 return err;
1588
1589 out_put:
1590 put_task_struct(task);
1591 goto out;
1592
1593 }
1594
1595 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1596 const unsigned long __user *, old_nodes,
1597 const unsigned long __user *, new_nodes)
1598 {
1599 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1600 }
1601
1602
1603 /* Retrieve NUMA policy */
1604 static int kernel_get_mempolicy(int __user *policy,
1605 unsigned long __user *nmask,
1606 unsigned long maxnode,
1607 unsigned long addr,
1608 unsigned long flags)
1609 {
1610 int err;
1611 int pval;
1612 nodemask_t nodes;
1613
1614 if (nmask != NULL && maxnode < nr_node_ids)
1615 return -EINVAL;
1616
1617 addr = untagged_addr(addr);
1618
1619 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1620
1621 if (err)
1622 return err;
1623
1624 if (policy && put_user(pval, policy))
1625 return -EFAULT;
1626
1627 if (nmask)
1628 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1629
1630 return err;
1631 }
1632
1633 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1634 unsigned long __user *, nmask, unsigned long, maxnode,
1635 unsigned long, addr, unsigned long, flags)
1636 {
1637 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1638 }
1639
1640 bool vma_migratable(struct vm_area_struct *vma)
1641 {
1642 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1643 return false;
1644
1645 /*
1646 * DAX device mappings require predictable access latency, so avoid
1647 * incurring periodic faults.
1648 */
1649 if (vma_is_dax(vma))
1650 return false;
1651
1652 if (is_vm_hugetlb_page(vma) &&
1653 !hugepage_migration_supported(hstate_vma(vma)))
1654 return false;
1655
1656 /*
1657 * Migration allocates pages in the highest zone. If we cannot
1658 * do so then migration (at least from node to node) is not
1659 * possible.
1660 */
1661 if (vma->vm_file &&
1662 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1663 < policy_zone)
1664 return false;
1665 return true;
1666 }
1667
1668 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1669 unsigned long addr)
1670 {
1671 struct mempolicy *pol = NULL;
1672
1673 if (vma) {
1674 if (vma->vm_ops && vma->vm_ops->get_policy) {
1675 pol = vma->vm_ops->get_policy(vma, addr);
1676 } else if (vma->vm_policy) {
1677 pol = vma->vm_policy;
1678
1679 /*
1680 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1681 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1682 * count on these policies which will be dropped by
1683 * mpol_cond_put() later
1684 */
1685 if (mpol_needs_cond_ref(pol))
1686 mpol_get(pol);
1687 }
1688 }
1689
1690 return pol;
1691 }
1692
1693 /*
1694 * get_vma_policy(@vma, @addr)
1695 * @vma: virtual memory area whose policy is sought
1696 * @addr: address in @vma for shared policy lookup
1697 *
1698 * Returns effective policy for a VMA at specified address.
1699 * Falls back to current->mempolicy or system default policy, as necessary.
1700 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1701 * count--added by the get_policy() vm_op, as appropriate--to protect against
1702 * freeing by another task. It is the caller's responsibility to free the
1703 * extra reference for shared policies.
1704 */
1705 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1706 unsigned long addr)
1707 {
1708 struct mempolicy *pol = __get_vma_policy(vma, addr);
1709
1710 if (!pol)
1711 pol = get_task_policy(current);
1712
1713 return pol;
1714 }
1715
1716 bool vma_policy_mof(struct vm_area_struct *vma)
1717 {
1718 struct mempolicy *pol;
1719
1720 if (vma->vm_ops && vma->vm_ops->get_policy) {
1721 bool ret = false;
1722
1723 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1724 if (pol && (pol->flags & MPOL_F_MOF))
1725 ret = true;
1726 mpol_cond_put(pol);
1727
1728 return ret;
1729 }
1730
1731 pol = vma->vm_policy;
1732 if (!pol)
1733 pol = get_task_policy(current);
1734
1735 return pol->flags & MPOL_F_MOF;
1736 }
1737
1738 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1739 {
1740 enum zone_type dynamic_policy_zone = policy_zone;
1741
1742 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1743
1744 /*
1745 * if policy->nodes has movable memory only,
1746 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1747 *
1748 * policy->nodes is intersect with node_states[N_MEMORY].
1749 * so if the following test fails, it implies
1750 * policy->nodes has movable memory only.
1751 */
1752 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1753 dynamic_policy_zone = ZONE_MOVABLE;
1754
1755 return zone >= dynamic_policy_zone;
1756 }
1757
1758 /*
1759 * Return a nodemask representing a mempolicy for filtering nodes for
1760 * page allocation
1761 */
1762 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1763 {
1764 int mode = policy->mode;
1765
1766 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1767 if (unlikely(mode == MPOL_BIND) &&
1768 apply_policy_zone(policy, gfp_zone(gfp)) &&
1769 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1770 return &policy->nodes;
1771
1772 if (mode == MPOL_PREFERRED_MANY)
1773 return &policy->nodes;
1774
1775 return NULL;
1776 }
1777
1778 /*
1779 * Return the preferred node id for 'prefer' mempolicy, and return
1780 * the given id for all other policies.
1781 *
1782 * policy_node() is always coupled with policy_nodemask(), which
1783 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1784 */
1785 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1786 {
1787 if (policy->mode == MPOL_PREFERRED) {
1788 nd = first_node(policy->nodes);
1789 } else {
1790 /*
1791 * __GFP_THISNODE shouldn't even be used with the bind policy
1792 * because we might easily break the expectation to stay on the
1793 * requested node and not break the policy.
1794 */
1795 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1796 }
1797
1798 return nd;
1799 }
1800
1801 /* Do dynamic interleaving for a process */
1802 static unsigned interleave_nodes(struct mempolicy *policy)
1803 {
1804 unsigned next;
1805 struct task_struct *me = current;
1806
1807 next = next_node_in(me->il_prev, policy->nodes);
1808 if (next < MAX_NUMNODES)
1809 me->il_prev = next;
1810 return next;
1811 }
1812
1813 /*
1814 * Depending on the memory policy provide a node from which to allocate the
1815 * next slab entry.
1816 */
1817 unsigned int mempolicy_slab_node(void)
1818 {
1819 struct mempolicy *policy;
1820 int node = numa_mem_id();
1821
1822 if (!in_task())
1823 return node;
1824
1825 policy = current->mempolicy;
1826 if (!policy)
1827 return node;
1828
1829 switch (policy->mode) {
1830 case MPOL_PREFERRED:
1831 return first_node(policy->nodes);
1832
1833 case MPOL_INTERLEAVE:
1834 return interleave_nodes(policy);
1835
1836 case MPOL_BIND:
1837 case MPOL_PREFERRED_MANY:
1838 {
1839 struct zoneref *z;
1840
1841 /*
1842 * Follow bind policy behavior and start allocation at the
1843 * first node.
1844 */
1845 struct zonelist *zonelist;
1846 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1847 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1848 z = first_zones_zonelist(zonelist, highest_zoneidx,
1849 &policy->nodes);
1850 return z->zone ? zone_to_nid(z->zone) : node;
1851 }
1852 case MPOL_LOCAL:
1853 return node;
1854
1855 default:
1856 BUG();
1857 }
1858 }
1859
1860 /*
1861 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1862 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1863 * number of present nodes.
1864 */
1865 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1866 {
1867 nodemask_t nodemask = pol->nodes;
1868 unsigned int target, nnodes;
1869 int i;
1870 int nid;
1871 /*
1872 * The barrier will stabilize the nodemask in a register or on
1873 * the stack so that it will stop changing under the code.
1874 *
1875 * Between first_node() and next_node(), pol->nodes could be changed
1876 * by other threads. So we put pol->nodes in a local stack.
1877 */
1878 barrier();
1879
1880 nnodes = nodes_weight(nodemask);
1881 if (!nnodes)
1882 return numa_node_id();
1883 target = (unsigned int)n % nnodes;
1884 nid = first_node(nodemask);
1885 for (i = 0; i < target; i++)
1886 nid = next_node(nid, nodemask);
1887 return nid;
1888 }
1889
1890 /* Determine a node number for interleave */
1891 static inline unsigned interleave_nid(struct mempolicy *pol,
1892 struct vm_area_struct *vma, unsigned long addr, int shift)
1893 {
1894 if (vma) {
1895 unsigned long off;
1896
1897 /*
1898 * for small pages, there is no difference between
1899 * shift and PAGE_SHIFT, so the bit-shift is safe.
1900 * for huge pages, since vm_pgoff is in units of small
1901 * pages, we need to shift off the always 0 bits to get
1902 * a useful offset.
1903 */
1904 BUG_ON(shift < PAGE_SHIFT);
1905 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1906 off += (addr - vma->vm_start) >> shift;
1907 return offset_il_node(pol, off);
1908 } else
1909 return interleave_nodes(pol);
1910 }
1911
1912 #ifdef CONFIG_HUGETLBFS
1913 /*
1914 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1915 * @vma: virtual memory area whose policy is sought
1916 * @addr: address in @vma for shared policy lookup and interleave policy
1917 * @gfp_flags: for requested zone
1918 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1919 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1920 *
1921 * Returns a nid suitable for a huge page allocation and a pointer
1922 * to the struct mempolicy for conditional unref after allocation.
1923 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1924 * to the mempolicy's @nodemask for filtering the zonelist.
1925 *
1926 * Must be protected by read_mems_allowed_begin()
1927 */
1928 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1929 struct mempolicy **mpol, nodemask_t **nodemask)
1930 {
1931 int nid;
1932 int mode;
1933
1934 *mpol = get_vma_policy(vma, addr);
1935 *nodemask = NULL;
1936 mode = (*mpol)->mode;
1937
1938 if (unlikely(mode == MPOL_INTERLEAVE)) {
1939 nid = interleave_nid(*mpol, vma, addr,
1940 huge_page_shift(hstate_vma(vma)));
1941 } else {
1942 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1943 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
1944 *nodemask = &(*mpol)->nodes;
1945 }
1946 return nid;
1947 }
1948
1949 /*
1950 * init_nodemask_of_mempolicy
1951 *
1952 * If the current task's mempolicy is "default" [NULL], return 'false'
1953 * to indicate default policy. Otherwise, extract the policy nodemask
1954 * for 'bind' or 'interleave' policy into the argument nodemask, or
1955 * initialize the argument nodemask to contain the single node for
1956 * 'preferred' or 'local' policy and return 'true' to indicate presence
1957 * of non-default mempolicy.
1958 *
1959 * We don't bother with reference counting the mempolicy [mpol_get/put]
1960 * because the current task is examining it's own mempolicy and a task's
1961 * mempolicy is only ever changed by the task itself.
1962 *
1963 * N.B., it is the caller's responsibility to free a returned nodemask.
1964 */
1965 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1966 {
1967 struct mempolicy *mempolicy;
1968
1969 if (!(mask && current->mempolicy))
1970 return false;
1971
1972 task_lock(current);
1973 mempolicy = current->mempolicy;
1974 switch (mempolicy->mode) {
1975 case MPOL_PREFERRED:
1976 case MPOL_PREFERRED_MANY:
1977 case MPOL_BIND:
1978 case MPOL_INTERLEAVE:
1979 *mask = mempolicy->nodes;
1980 break;
1981
1982 case MPOL_LOCAL:
1983 init_nodemask_of_node(mask, numa_node_id());
1984 break;
1985
1986 default:
1987 BUG();
1988 }
1989 task_unlock(current);
1990
1991 return true;
1992 }
1993 #endif
1994
1995 /*
1996 * mempolicy_in_oom_domain
1997 *
1998 * If tsk's mempolicy is "bind", check for intersection between mask and
1999 * the policy nodemask. Otherwise, return true for all other policies
2000 * including "interleave", as a tsk with "interleave" policy may have
2001 * memory allocated from all nodes in system.
2002 *
2003 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2004 */
2005 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2006 const nodemask_t *mask)
2007 {
2008 struct mempolicy *mempolicy;
2009 bool ret = true;
2010
2011 if (!mask)
2012 return ret;
2013
2014 task_lock(tsk);
2015 mempolicy = tsk->mempolicy;
2016 if (mempolicy && mempolicy->mode == MPOL_BIND)
2017 ret = nodes_intersects(mempolicy->nodes, *mask);
2018 task_unlock(tsk);
2019
2020 return ret;
2021 }
2022
2023 /* Allocate a page in interleaved policy.
2024 Own path because it needs to do special accounting. */
2025 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2026 unsigned nid)
2027 {
2028 struct page *page;
2029
2030 page = __alloc_pages(gfp, order, nid, NULL);
2031 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2032 if (!static_branch_likely(&vm_numa_stat_key))
2033 return page;
2034 if (page && page_to_nid(page) == nid) {
2035 preempt_disable();
2036 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2037 preempt_enable();
2038 }
2039 return page;
2040 }
2041
2042 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2043 int nid, struct mempolicy *pol)
2044 {
2045 struct page *page;
2046 gfp_t preferred_gfp;
2047
2048 /*
2049 * This is a two pass approach. The first pass will only try the
2050 * preferred nodes but skip the direct reclaim and allow the
2051 * allocation to fail, while the second pass will try all the
2052 * nodes in system.
2053 */
2054 preferred_gfp = gfp | __GFP_NOWARN;
2055 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2056 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2057 if (!page)
2058 page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2059
2060 return page;
2061 }
2062
2063 /**
2064 * alloc_pages_vma - Allocate a page for a VMA.
2065 * @gfp: GFP flags.
2066 * @order: Order of the GFP allocation.
2067 * @vma: Pointer to VMA or NULL if not available.
2068 * @addr: Virtual address of the allocation. Must be inside @vma.
2069 * @node: Which node to prefer for allocation (modulo policy).
2070 * @hugepage: For hugepages try only the preferred node if possible.
2071 *
2072 * Allocate a page for a specific address in @vma, using the appropriate
2073 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2074 * of the mm_struct of the VMA to prevent it from going away. Should be
2075 * used for all allocations for pages that will be mapped into user space.
2076 *
2077 * Return: The page on success or NULL if allocation fails.
2078 */
2079 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2080 unsigned long addr, int node, bool hugepage)
2081 {
2082 struct mempolicy *pol;
2083 struct page *page;
2084 int preferred_nid;
2085 nodemask_t *nmask;
2086
2087 pol = get_vma_policy(vma, addr);
2088
2089 if (pol->mode == MPOL_INTERLEAVE) {
2090 unsigned nid;
2091
2092 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2093 mpol_cond_put(pol);
2094 page = alloc_page_interleave(gfp, order, nid);
2095 goto out;
2096 }
2097
2098 if (pol->mode == MPOL_PREFERRED_MANY) {
2099 page = alloc_pages_preferred_many(gfp, order, node, pol);
2100 mpol_cond_put(pol);
2101 goto out;
2102 }
2103
2104 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2105 int hpage_node = node;
2106
2107 /*
2108 * For hugepage allocation and non-interleave policy which
2109 * allows the current node (or other explicitly preferred
2110 * node) we only try to allocate from the current/preferred
2111 * node and don't fall back to other nodes, as the cost of
2112 * remote accesses would likely offset THP benefits.
2113 *
2114 * If the policy is interleave or does not allow the current
2115 * node in its nodemask, we allocate the standard way.
2116 */
2117 if (pol->mode == MPOL_PREFERRED)
2118 hpage_node = first_node(pol->nodes);
2119
2120 nmask = policy_nodemask(gfp, pol);
2121 if (!nmask || node_isset(hpage_node, *nmask)) {
2122 mpol_cond_put(pol);
2123 /*
2124 * First, try to allocate THP only on local node, but
2125 * don't reclaim unnecessarily, just compact.
2126 */
2127 page = __alloc_pages_node(hpage_node,
2128 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2129
2130 /*
2131 * If hugepage allocations are configured to always
2132 * synchronous compact or the vma has been madvised
2133 * to prefer hugepage backing, retry allowing remote
2134 * memory with both reclaim and compact as well.
2135 */
2136 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2137 page = __alloc_pages(gfp, order, hpage_node, nmask);
2138
2139 goto out;
2140 }
2141 }
2142
2143 nmask = policy_nodemask(gfp, pol);
2144 preferred_nid = policy_node(gfp, pol, node);
2145 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2146 mpol_cond_put(pol);
2147 out:
2148 return page;
2149 }
2150 EXPORT_SYMBOL(alloc_pages_vma);
2151
2152 /**
2153 * alloc_pages - Allocate pages.
2154 * @gfp: GFP flags.
2155 * @order: Power of two of number of pages to allocate.
2156 *
2157 * Allocate 1 << @order contiguous pages. The physical address of the
2158 * first page is naturally aligned (eg an order-3 allocation will be aligned
2159 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2160 * process is honoured when in process context.
2161 *
2162 * Context: Can be called from any context, providing the appropriate GFP
2163 * flags are used.
2164 * Return: The page on success or NULL if allocation fails.
2165 */
2166 struct page *alloc_pages(gfp_t gfp, unsigned order)
2167 {
2168 struct mempolicy *pol = &default_policy;
2169 struct page *page;
2170
2171 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2172 pol = get_task_policy(current);
2173
2174 /*
2175 * No reference counting needed for current->mempolicy
2176 * nor system default_policy
2177 */
2178 if (pol->mode == MPOL_INTERLEAVE)
2179 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2180 else if (pol->mode == MPOL_PREFERRED_MANY)
2181 page = alloc_pages_preferred_many(gfp, order,
2182 numa_node_id(), pol);
2183 else
2184 page = __alloc_pages(gfp, order,
2185 policy_node(gfp, pol, numa_node_id()),
2186 policy_nodemask(gfp, pol));
2187
2188 return page;
2189 }
2190 EXPORT_SYMBOL(alloc_pages);
2191
2192 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2193 {
2194 struct mempolicy *pol = mpol_dup(vma_policy(src));
2195
2196 if (IS_ERR(pol))
2197 return PTR_ERR(pol);
2198 dst->vm_policy = pol;
2199 return 0;
2200 }
2201
2202 /*
2203 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2204 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2205 * with the mems_allowed returned by cpuset_mems_allowed(). This
2206 * keeps mempolicies cpuset relative after its cpuset moves. See
2207 * further kernel/cpuset.c update_nodemask().
2208 *
2209 * current's mempolicy may be rebinded by the other task(the task that changes
2210 * cpuset's mems), so we needn't do rebind work for current task.
2211 */
2212
2213 /* Slow path of a mempolicy duplicate */
2214 struct mempolicy *__mpol_dup(struct mempolicy *old)
2215 {
2216 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2217
2218 if (!new)
2219 return ERR_PTR(-ENOMEM);
2220
2221 /* task's mempolicy is protected by alloc_lock */
2222 if (old == current->mempolicy) {
2223 task_lock(current);
2224 *new = *old;
2225 task_unlock(current);
2226 } else
2227 *new = *old;
2228
2229 if (current_cpuset_is_being_rebound()) {
2230 nodemask_t mems = cpuset_mems_allowed(current);
2231 mpol_rebind_policy(new, &mems);
2232 }
2233 atomic_set(&new->refcnt, 1);
2234 return new;
2235 }
2236
2237 /* Slow path of a mempolicy comparison */
2238 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2239 {
2240 if (!a || !b)
2241 return false;
2242 if (a->mode != b->mode)
2243 return false;
2244 if (a->flags != b->flags)
2245 return false;
2246 if (mpol_store_user_nodemask(a))
2247 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2248 return false;
2249
2250 switch (a->mode) {
2251 case MPOL_BIND:
2252 case MPOL_INTERLEAVE:
2253 case MPOL_PREFERRED:
2254 case MPOL_PREFERRED_MANY:
2255 return !!nodes_equal(a->nodes, b->nodes);
2256 case MPOL_LOCAL:
2257 return true;
2258 default:
2259 BUG();
2260 return false;
2261 }
2262 }
2263
2264 /*
2265 * Shared memory backing store policy support.
2266 *
2267 * Remember policies even when nobody has shared memory mapped.
2268 * The policies are kept in Red-Black tree linked from the inode.
2269 * They are protected by the sp->lock rwlock, which should be held
2270 * for any accesses to the tree.
2271 */
2272
2273 /*
2274 * lookup first element intersecting start-end. Caller holds sp->lock for
2275 * reading or for writing
2276 */
2277 static struct sp_node *
2278 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2279 {
2280 struct rb_node *n = sp->root.rb_node;
2281
2282 while (n) {
2283 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2284
2285 if (start >= p->end)
2286 n = n->rb_right;
2287 else if (end <= p->start)
2288 n = n->rb_left;
2289 else
2290 break;
2291 }
2292 if (!n)
2293 return NULL;
2294 for (;;) {
2295 struct sp_node *w = NULL;
2296 struct rb_node *prev = rb_prev(n);
2297 if (!prev)
2298 break;
2299 w = rb_entry(prev, struct sp_node, nd);
2300 if (w->end <= start)
2301 break;
2302 n = prev;
2303 }
2304 return rb_entry(n, struct sp_node, nd);
2305 }
2306
2307 /*
2308 * Insert a new shared policy into the list. Caller holds sp->lock for
2309 * writing.
2310 */
2311 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2312 {
2313 struct rb_node **p = &sp->root.rb_node;
2314 struct rb_node *parent = NULL;
2315 struct sp_node *nd;
2316
2317 while (*p) {
2318 parent = *p;
2319 nd = rb_entry(parent, struct sp_node, nd);
2320 if (new->start < nd->start)
2321 p = &(*p)->rb_left;
2322 else if (new->end > nd->end)
2323 p = &(*p)->rb_right;
2324 else
2325 BUG();
2326 }
2327 rb_link_node(&new->nd, parent, p);
2328 rb_insert_color(&new->nd, &sp->root);
2329 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2330 new->policy ? new->policy->mode : 0);
2331 }
2332
2333 /* Find shared policy intersecting idx */
2334 struct mempolicy *
2335 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2336 {
2337 struct mempolicy *pol = NULL;
2338 struct sp_node *sn;
2339
2340 if (!sp->root.rb_node)
2341 return NULL;
2342 read_lock(&sp->lock);
2343 sn = sp_lookup(sp, idx, idx+1);
2344 if (sn) {
2345 mpol_get(sn->policy);
2346 pol = sn->policy;
2347 }
2348 read_unlock(&sp->lock);
2349 return pol;
2350 }
2351
2352 static void sp_free(struct sp_node *n)
2353 {
2354 mpol_put(n->policy);
2355 kmem_cache_free(sn_cache, n);
2356 }
2357
2358 /**
2359 * mpol_misplaced - check whether current page node is valid in policy
2360 *
2361 * @page: page to be checked
2362 * @vma: vm area where page mapped
2363 * @addr: virtual address where page mapped
2364 *
2365 * Lookup current policy node id for vma,addr and "compare to" page's
2366 * node id. Policy determination "mimics" alloc_page_vma().
2367 * Called from fault path where we know the vma and faulting address.
2368 *
2369 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2370 * policy, or a suitable node ID to allocate a replacement page from.
2371 */
2372 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2373 {
2374 struct mempolicy *pol;
2375 struct zoneref *z;
2376 int curnid = page_to_nid(page);
2377 unsigned long pgoff;
2378 int thiscpu = raw_smp_processor_id();
2379 int thisnid = cpu_to_node(thiscpu);
2380 int polnid = NUMA_NO_NODE;
2381 int ret = NUMA_NO_NODE;
2382
2383 pol = get_vma_policy(vma, addr);
2384 if (!(pol->flags & MPOL_F_MOF))
2385 goto out;
2386
2387 switch (pol->mode) {
2388 case MPOL_INTERLEAVE:
2389 pgoff = vma->vm_pgoff;
2390 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2391 polnid = offset_il_node(pol, pgoff);
2392 break;
2393
2394 case MPOL_PREFERRED:
2395 if (node_isset(curnid, pol->nodes))
2396 goto out;
2397 polnid = first_node(pol->nodes);
2398 break;
2399
2400 case MPOL_LOCAL:
2401 polnid = numa_node_id();
2402 break;
2403
2404 case MPOL_BIND:
2405 /* Optimize placement among multiple nodes via NUMA balancing */
2406 if (pol->flags & MPOL_F_MORON) {
2407 if (node_isset(thisnid, pol->nodes))
2408 break;
2409 goto out;
2410 }
2411 fallthrough;
2412
2413 case MPOL_PREFERRED_MANY:
2414 /*
2415 * use current page if in policy nodemask,
2416 * else select nearest allowed node, if any.
2417 * If no allowed nodes, use current [!misplaced].
2418 */
2419 if (node_isset(curnid, pol->nodes))
2420 goto out;
2421 z = first_zones_zonelist(
2422 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2423 gfp_zone(GFP_HIGHUSER),
2424 &pol->nodes);
2425 polnid = zone_to_nid(z->zone);
2426 break;
2427
2428 default:
2429 BUG();
2430 }
2431
2432 /* Migrate the page towards the node whose CPU is referencing it */
2433 if (pol->flags & MPOL_F_MORON) {
2434 polnid = thisnid;
2435
2436 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2437 goto out;
2438 }
2439
2440 if (curnid != polnid)
2441 ret = polnid;
2442 out:
2443 mpol_cond_put(pol);
2444
2445 return ret;
2446 }
2447
2448 /*
2449 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2450 * dropped after task->mempolicy is set to NULL so that any allocation done as
2451 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2452 * policy.
2453 */
2454 void mpol_put_task_policy(struct task_struct *task)
2455 {
2456 struct mempolicy *pol;
2457
2458 task_lock(task);
2459 pol = task->mempolicy;
2460 task->mempolicy = NULL;
2461 task_unlock(task);
2462 mpol_put(pol);
2463 }
2464
2465 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2466 {
2467 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2468 rb_erase(&n->nd, &sp->root);
2469 sp_free(n);
2470 }
2471
2472 static void sp_node_init(struct sp_node *node, unsigned long start,
2473 unsigned long end, struct mempolicy *pol)
2474 {
2475 node->start = start;
2476 node->end = end;
2477 node->policy = pol;
2478 }
2479
2480 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2481 struct mempolicy *pol)
2482 {
2483 struct sp_node *n;
2484 struct mempolicy *newpol;
2485
2486 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2487 if (!n)
2488 return NULL;
2489
2490 newpol = mpol_dup(pol);
2491 if (IS_ERR(newpol)) {
2492 kmem_cache_free(sn_cache, n);
2493 return NULL;
2494 }
2495 newpol->flags |= MPOL_F_SHARED;
2496 sp_node_init(n, start, end, newpol);
2497
2498 return n;
2499 }
2500
2501 /* Replace a policy range. */
2502 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2503 unsigned long end, struct sp_node *new)
2504 {
2505 struct sp_node *n;
2506 struct sp_node *n_new = NULL;
2507 struct mempolicy *mpol_new = NULL;
2508 int ret = 0;
2509
2510 restart:
2511 write_lock(&sp->lock);
2512 n = sp_lookup(sp, start, end);
2513 /* Take care of old policies in the same range. */
2514 while (n && n->start < end) {
2515 struct rb_node *next = rb_next(&n->nd);
2516 if (n->start >= start) {
2517 if (n->end <= end)
2518 sp_delete(sp, n);
2519 else
2520 n->start = end;
2521 } else {
2522 /* Old policy spanning whole new range. */
2523 if (n->end > end) {
2524 if (!n_new)
2525 goto alloc_new;
2526
2527 *mpol_new = *n->policy;
2528 atomic_set(&mpol_new->refcnt, 1);
2529 sp_node_init(n_new, end, n->end, mpol_new);
2530 n->end = start;
2531 sp_insert(sp, n_new);
2532 n_new = NULL;
2533 mpol_new = NULL;
2534 break;
2535 } else
2536 n->end = start;
2537 }
2538 if (!next)
2539 break;
2540 n = rb_entry(next, struct sp_node, nd);
2541 }
2542 if (new)
2543 sp_insert(sp, new);
2544 write_unlock(&sp->lock);
2545 ret = 0;
2546
2547 err_out:
2548 if (mpol_new)
2549 mpol_put(mpol_new);
2550 if (n_new)
2551 kmem_cache_free(sn_cache, n_new);
2552
2553 return ret;
2554
2555 alloc_new:
2556 write_unlock(&sp->lock);
2557 ret = -ENOMEM;
2558 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2559 if (!n_new)
2560 goto err_out;
2561 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2562 if (!mpol_new)
2563 goto err_out;
2564 atomic_set(&mpol_new->refcnt, 1);
2565 goto restart;
2566 }
2567
2568 /**
2569 * mpol_shared_policy_init - initialize shared policy for inode
2570 * @sp: pointer to inode shared policy
2571 * @mpol: struct mempolicy to install
2572 *
2573 * Install non-NULL @mpol in inode's shared policy rb-tree.
2574 * On entry, the current task has a reference on a non-NULL @mpol.
2575 * This must be released on exit.
2576 * This is called at get_inode() calls and we can use GFP_KERNEL.
2577 */
2578 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2579 {
2580 int ret;
2581
2582 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2583 rwlock_init(&sp->lock);
2584
2585 if (mpol) {
2586 struct vm_area_struct pvma;
2587 struct mempolicy *new;
2588 NODEMASK_SCRATCH(scratch);
2589
2590 if (!scratch)
2591 goto put_mpol;
2592 /* contextualize the tmpfs mount point mempolicy */
2593 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2594 if (IS_ERR(new))
2595 goto free_scratch; /* no valid nodemask intersection */
2596
2597 task_lock(current);
2598 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2599 task_unlock(current);
2600 if (ret)
2601 goto put_new;
2602
2603 /* Create pseudo-vma that contains just the policy */
2604 vma_init(&pvma, NULL);
2605 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2606 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2607
2608 put_new:
2609 mpol_put(new); /* drop initial ref */
2610 free_scratch:
2611 NODEMASK_SCRATCH_FREE(scratch);
2612 put_mpol:
2613 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2614 }
2615 }
2616
2617 int mpol_set_shared_policy(struct shared_policy *info,
2618 struct vm_area_struct *vma, struct mempolicy *npol)
2619 {
2620 int err;
2621 struct sp_node *new = NULL;
2622 unsigned long sz = vma_pages(vma);
2623
2624 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2625 vma->vm_pgoff,
2626 sz, npol ? npol->mode : -1,
2627 npol ? npol->flags : -1,
2628 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2629
2630 if (npol) {
2631 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2632 if (!new)
2633 return -ENOMEM;
2634 }
2635 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2636 if (err && new)
2637 sp_free(new);
2638 return err;
2639 }
2640
2641 /* Free a backing policy store on inode delete. */
2642 void mpol_free_shared_policy(struct shared_policy *p)
2643 {
2644 struct sp_node *n;
2645 struct rb_node *next;
2646
2647 if (!p->root.rb_node)
2648 return;
2649 write_lock(&p->lock);
2650 next = rb_first(&p->root);
2651 while (next) {
2652 n = rb_entry(next, struct sp_node, nd);
2653 next = rb_next(&n->nd);
2654 sp_delete(p, n);
2655 }
2656 write_unlock(&p->lock);
2657 }
2658
2659 #ifdef CONFIG_NUMA_BALANCING
2660 static int __initdata numabalancing_override;
2661
2662 static void __init check_numabalancing_enable(void)
2663 {
2664 bool numabalancing_default = false;
2665
2666 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2667 numabalancing_default = true;
2668
2669 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2670 if (numabalancing_override)
2671 set_numabalancing_state(numabalancing_override == 1);
2672
2673 if (num_online_nodes() > 1 && !numabalancing_override) {
2674 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2675 numabalancing_default ? "Enabling" : "Disabling");
2676 set_numabalancing_state(numabalancing_default);
2677 }
2678 }
2679
2680 static int __init setup_numabalancing(char *str)
2681 {
2682 int ret = 0;
2683 if (!str)
2684 goto out;
2685
2686 if (!strcmp(str, "enable")) {
2687 numabalancing_override = 1;
2688 ret = 1;
2689 } else if (!strcmp(str, "disable")) {
2690 numabalancing_override = -1;
2691 ret = 1;
2692 }
2693 out:
2694 if (!ret)
2695 pr_warn("Unable to parse numa_balancing=\n");
2696
2697 return ret;
2698 }
2699 __setup("numa_balancing=", setup_numabalancing);
2700 #else
2701 static inline void __init check_numabalancing_enable(void)
2702 {
2703 }
2704 #endif /* CONFIG_NUMA_BALANCING */
2705
2706 /* assumes fs == KERNEL_DS */
2707 void __init numa_policy_init(void)
2708 {
2709 nodemask_t interleave_nodes;
2710 unsigned long largest = 0;
2711 int nid, prefer = 0;
2712
2713 policy_cache = kmem_cache_create("numa_policy",
2714 sizeof(struct mempolicy),
2715 0, SLAB_PANIC, NULL);
2716
2717 sn_cache = kmem_cache_create("shared_policy_node",
2718 sizeof(struct sp_node),
2719 0, SLAB_PANIC, NULL);
2720
2721 for_each_node(nid) {
2722 preferred_node_policy[nid] = (struct mempolicy) {
2723 .refcnt = ATOMIC_INIT(1),
2724 .mode = MPOL_PREFERRED,
2725 .flags = MPOL_F_MOF | MPOL_F_MORON,
2726 .nodes = nodemask_of_node(nid),
2727 };
2728 }
2729
2730 /*
2731 * Set interleaving policy for system init. Interleaving is only
2732 * enabled across suitably sized nodes (default is >= 16MB), or
2733 * fall back to the largest node if they're all smaller.
2734 */
2735 nodes_clear(interleave_nodes);
2736 for_each_node_state(nid, N_MEMORY) {
2737 unsigned long total_pages = node_present_pages(nid);
2738
2739 /* Preserve the largest node */
2740 if (largest < total_pages) {
2741 largest = total_pages;
2742 prefer = nid;
2743 }
2744
2745 /* Interleave this node? */
2746 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2747 node_set(nid, interleave_nodes);
2748 }
2749
2750 /* All too small, use the largest */
2751 if (unlikely(nodes_empty(interleave_nodes)))
2752 node_set(prefer, interleave_nodes);
2753
2754 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2755 pr_err("%s: interleaving failed\n", __func__);
2756
2757 check_numabalancing_enable();
2758 }
2759
2760 /* Reset policy of current process to default */
2761 void numa_default_policy(void)
2762 {
2763 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2764 }
2765
2766 /*
2767 * Parse and format mempolicy from/to strings
2768 */
2769
2770 static const char * const policy_modes[] =
2771 {
2772 [MPOL_DEFAULT] = "default",
2773 [MPOL_PREFERRED] = "prefer",
2774 [MPOL_BIND] = "bind",
2775 [MPOL_INTERLEAVE] = "interleave",
2776 [MPOL_LOCAL] = "local",
2777 [MPOL_PREFERRED_MANY] = "prefer (many)",
2778 };
2779
2780
2781 #ifdef CONFIG_TMPFS
2782 /**
2783 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2784 * @str: string containing mempolicy to parse
2785 * @mpol: pointer to struct mempolicy pointer, returned on success.
2786 *
2787 * Format of input:
2788 * <mode>[=<flags>][:<nodelist>]
2789 *
2790 * On success, returns 0, else 1
2791 */
2792 int mpol_parse_str(char *str, struct mempolicy **mpol)
2793 {
2794 struct mempolicy *new = NULL;
2795 unsigned short mode_flags;
2796 nodemask_t nodes;
2797 char *nodelist = strchr(str, ':');
2798 char *flags = strchr(str, '=');
2799 int err = 1, mode;
2800
2801 if (flags)
2802 *flags++ = '\0'; /* terminate mode string */
2803
2804 if (nodelist) {
2805 /* NUL-terminate mode or flags string */
2806 *nodelist++ = '\0';
2807 if (nodelist_parse(nodelist, nodes))
2808 goto out;
2809 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2810 goto out;
2811 } else
2812 nodes_clear(nodes);
2813
2814 mode = match_string(policy_modes, MPOL_MAX, str);
2815 if (mode < 0)
2816 goto out;
2817
2818 switch (mode) {
2819 case MPOL_PREFERRED:
2820 /*
2821 * Insist on a nodelist of one node only, although later
2822 * we use first_node(nodes) to grab a single node, so here
2823 * nodelist (or nodes) cannot be empty.
2824 */
2825 if (nodelist) {
2826 char *rest = nodelist;
2827 while (isdigit(*rest))
2828 rest++;
2829 if (*rest)
2830 goto out;
2831 if (nodes_empty(nodes))
2832 goto out;
2833 }
2834 break;
2835 case MPOL_INTERLEAVE:
2836 /*
2837 * Default to online nodes with memory if no nodelist
2838 */
2839 if (!nodelist)
2840 nodes = node_states[N_MEMORY];
2841 break;
2842 case MPOL_LOCAL:
2843 /*
2844 * Don't allow a nodelist; mpol_new() checks flags
2845 */
2846 if (nodelist)
2847 goto out;
2848 break;
2849 case MPOL_DEFAULT:
2850 /*
2851 * Insist on a empty nodelist
2852 */
2853 if (!nodelist)
2854 err = 0;
2855 goto out;
2856 case MPOL_PREFERRED_MANY:
2857 case MPOL_BIND:
2858 /*
2859 * Insist on a nodelist
2860 */
2861 if (!nodelist)
2862 goto out;
2863 }
2864
2865 mode_flags = 0;
2866 if (flags) {
2867 /*
2868 * Currently, we only support two mutually exclusive
2869 * mode flags.
2870 */
2871 if (!strcmp(flags, "static"))
2872 mode_flags |= MPOL_F_STATIC_NODES;
2873 else if (!strcmp(flags, "relative"))
2874 mode_flags |= MPOL_F_RELATIVE_NODES;
2875 else
2876 goto out;
2877 }
2878
2879 new = mpol_new(mode, mode_flags, &nodes);
2880 if (IS_ERR(new))
2881 goto out;
2882
2883 /*
2884 * Save nodes for mpol_to_str() to show the tmpfs mount options
2885 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2886 */
2887 if (mode != MPOL_PREFERRED) {
2888 new->nodes = nodes;
2889 } else if (nodelist) {
2890 nodes_clear(new->nodes);
2891 node_set(first_node(nodes), new->nodes);
2892 } else {
2893 new->mode = MPOL_LOCAL;
2894 }
2895
2896 /*
2897 * Save nodes for contextualization: this will be used to "clone"
2898 * the mempolicy in a specific context [cpuset] at a later time.
2899 */
2900 new->w.user_nodemask = nodes;
2901
2902 err = 0;
2903
2904 out:
2905 /* Restore string for error message */
2906 if (nodelist)
2907 *--nodelist = ':';
2908 if (flags)
2909 *--flags = '=';
2910 if (!err)
2911 *mpol = new;
2912 return err;
2913 }
2914 #endif /* CONFIG_TMPFS */
2915
2916 /**
2917 * mpol_to_str - format a mempolicy structure for printing
2918 * @buffer: to contain formatted mempolicy string
2919 * @maxlen: length of @buffer
2920 * @pol: pointer to mempolicy to be formatted
2921 *
2922 * Convert @pol into a string. If @buffer is too short, truncate the string.
2923 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2924 * longest flag, "relative", and to display at least a few node ids.
2925 */
2926 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2927 {
2928 char *p = buffer;
2929 nodemask_t nodes = NODE_MASK_NONE;
2930 unsigned short mode = MPOL_DEFAULT;
2931 unsigned short flags = 0;
2932
2933 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2934 mode = pol->mode;
2935 flags = pol->flags;
2936 }
2937
2938 switch (mode) {
2939 case MPOL_DEFAULT:
2940 case MPOL_LOCAL:
2941 break;
2942 case MPOL_PREFERRED:
2943 case MPOL_PREFERRED_MANY:
2944 case MPOL_BIND:
2945 case MPOL_INTERLEAVE:
2946 nodes = pol->nodes;
2947 break;
2948 default:
2949 WARN_ON_ONCE(1);
2950 snprintf(p, maxlen, "unknown");
2951 return;
2952 }
2953
2954 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2955
2956 if (flags & MPOL_MODE_FLAGS) {
2957 p += snprintf(p, buffer + maxlen - p, "=");
2958
2959 /*
2960 * Currently, the only defined flags are mutually exclusive
2961 */
2962 if (flags & MPOL_F_STATIC_NODES)
2963 p += snprintf(p, buffer + maxlen - p, "static");
2964 else if (flags & MPOL_F_RELATIVE_NODES)
2965 p += snprintf(p, buffer + maxlen - p, "relative");
2966 }
2967
2968 if (!nodes_empty(nodes))
2969 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2970 nodemask_pr_args(&nodes));
2971 }
2972
2973 bool numa_demotion_enabled = false;
2974
2975 #ifdef CONFIG_SYSFS
2976 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2977 struct kobj_attribute *attr, char *buf)
2978 {
2979 return sysfs_emit(buf, "%s\n",
2980 numa_demotion_enabled? "true" : "false");
2981 }
2982
2983 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2984 struct kobj_attribute *attr,
2985 const char *buf, size_t count)
2986 {
2987 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2988 numa_demotion_enabled = true;
2989 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2990 numa_demotion_enabled = false;
2991 else
2992 return -EINVAL;
2993
2994 return count;
2995 }
2996
2997 static struct kobj_attribute numa_demotion_enabled_attr =
2998 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2999 numa_demotion_enabled_store);
3000
3001 static struct attribute *numa_attrs[] = {
3002 &numa_demotion_enabled_attr.attr,
3003 NULL,
3004 };
3005
3006 static const struct attribute_group numa_attr_group = {
3007 .attrs = numa_attrs,
3008 };
3009
3010 static int __init numa_init_sysfs(void)
3011 {
3012 int err;
3013 struct kobject *numa_kobj;
3014
3015 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3016 if (!numa_kobj) {
3017 pr_err("failed to create numa kobject\n");
3018 return -ENOMEM;
3019 }
3020 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3021 if (err) {
3022 pr_err("failed to register numa group\n");
3023 goto delete_obj;
3024 }
3025 return 0;
3026
3027 delete_obj:
3028 kobject_put(numa_kobj);
3029 return err;
3030 }
3031 subsys_initcall(numa_init_sysfs);
3032 #endif