]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mempolicy.c
e9fc1c1ae66c6a328700720d1151118188b9aa79
[mirror_ubuntu-artful-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91
92 #include <asm/tlbflush.h>
93 #include <asm/uaccess.h>
94
95 /* Internal flags */
96 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
97 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
98 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
99
100 static struct kmem_cache *policy_cache;
101 static struct kmem_cache *sn_cache;
102
103 /* Highest zone. An specific allocation for a zone below that is not
104 policied. */
105 enum zone_type policy_zone = 0;
106
107 struct mempolicy default_policy = {
108 .refcnt = ATOMIC_INIT(1), /* never free it */
109 .policy = MPOL_DEFAULT,
110 };
111
112 static const struct mempolicy_operations {
113 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
114 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
115 } mpol_ops[MPOL_MAX];
116
117 /* Check that the nodemask contains at least one populated zone */
118 static int is_valid_nodemask(const nodemask_t *nodemask)
119 {
120 int nd, k;
121
122 /* Check that there is something useful in this mask */
123 k = policy_zone;
124
125 for_each_node_mask(nd, *nodemask) {
126 struct zone *z;
127
128 for (k = 0; k <= policy_zone; k++) {
129 z = &NODE_DATA(nd)->node_zones[k];
130 if (z->present_pages > 0)
131 return 1;
132 }
133 }
134
135 return 0;
136 }
137
138 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
139 {
140 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
141 }
142
143 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
144 const nodemask_t *rel)
145 {
146 nodemask_t tmp;
147 nodes_fold(tmp, *orig, nodes_weight(*rel));
148 nodes_onto(*ret, tmp, *rel);
149 }
150
151 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
152 {
153 if (nodes_empty(*nodes))
154 return -EINVAL;
155 pol->v.nodes = *nodes;
156 return 0;
157 }
158
159 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
160 {
161 if (!nodes)
162 pol->v.preferred_node = -1; /* local allocation */
163 else if (nodes_empty(*nodes))
164 return -EINVAL; /* no allowed nodes */
165 else
166 pol->v.preferred_node = first_node(*nodes);
167 return 0;
168 }
169
170 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
171 {
172 if (!is_valid_nodemask(nodes))
173 return -EINVAL;
174 pol->v.nodes = *nodes;
175 return 0;
176 }
177
178 /* Create a new policy */
179 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
180 nodemask_t *nodes)
181 {
182 struct mempolicy *policy;
183 nodemask_t cpuset_context_nmask;
184 int ret;
185
186 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
187 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
188
189 if (mode == MPOL_DEFAULT) {
190 if (nodes && !nodes_empty(*nodes))
191 return ERR_PTR(-EINVAL);
192 return NULL;
193 }
194 VM_BUG_ON(!nodes);
195
196 /*
197 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
198 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
199 * All other modes require a valid pointer to a non-empty nodemask.
200 */
201 if (mode == MPOL_PREFERRED) {
202 if (nodes_empty(*nodes)) {
203 if (((flags & MPOL_F_STATIC_NODES) ||
204 (flags & MPOL_F_RELATIVE_NODES)))
205 return ERR_PTR(-EINVAL);
206 nodes = NULL; /* flag local alloc */
207 }
208 } else if (nodes_empty(*nodes))
209 return ERR_PTR(-EINVAL);
210 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
211 if (!policy)
212 return ERR_PTR(-ENOMEM);
213 atomic_set(&policy->refcnt, 1);
214 policy->policy = mode;
215 policy->flags = flags;
216
217 if (nodes) {
218 /*
219 * cpuset related setup doesn't apply to local allocation
220 */
221 cpuset_update_task_memory_state();
222 if (flags & MPOL_F_RELATIVE_NODES)
223 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
224 &cpuset_current_mems_allowed);
225 else
226 nodes_and(cpuset_context_nmask, *nodes,
227 cpuset_current_mems_allowed);
228 if (mpol_store_user_nodemask(policy))
229 policy->w.user_nodemask = *nodes;
230 else
231 policy->w.cpuset_mems_allowed =
232 cpuset_mems_allowed(current);
233 }
234
235 ret = mpol_ops[mode].create(policy,
236 nodes ? &cpuset_context_nmask : NULL);
237 if (ret < 0) {
238 kmem_cache_free(policy_cache, policy);
239 return ERR_PTR(ret);
240 }
241 return policy;
242 }
243
244 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 }
247
248 static void mpol_rebind_nodemask(struct mempolicy *pol,
249 const nodemask_t *nodes)
250 {
251 nodemask_t tmp;
252
253 if (pol->flags & MPOL_F_STATIC_NODES)
254 nodes_and(tmp, pol->w.user_nodemask, *nodes);
255 else if (pol->flags & MPOL_F_RELATIVE_NODES)
256 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
257 else {
258 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
259 *nodes);
260 pol->w.cpuset_mems_allowed = *nodes;
261 }
262
263 pol->v.nodes = tmp;
264 if (!node_isset(current->il_next, tmp)) {
265 current->il_next = next_node(current->il_next, tmp);
266 if (current->il_next >= MAX_NUMNODES)
267 current->il_next = first_node(tmp);
268 if (current->il_next >= MAX_NUMNODES)
269 current->il_next = numa_node_id();
270 }
271 }
272
273 static void mpol_rebind_preferred(struct mempolicy *pol,
274 const nodemask_t *nodes)
275 {
276 nodemask_t tmp;
277
278 if (pol->flags & MPOL_F_STATIC_NODES) {
279 int node = first_node(pol->w.user_nodemask);
280
281 if (node_isset(node, *nodes))
282 pol->v.preferred_node = node;
283 else
284 pol->v.preferred_node = -1;
285 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
286 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
287 pol->v.preferred_node = first_node(tmp);
288 } else if (pol->v.preferred_node != -1) {
289 pol->v.preferred_node = node_remap(pol->v.preferred_node,
290 pol->w.cpuset_mems_allowed,
291 *nodes);
292 pol->w.cpuset_mems_allowed = *nodes;
293 }
294 }
295
296 /* Migrate a policy to a different set of nodes */
297 static void mpol_rebind_policy(struct mempolicy *pol,
298 const nodemask_t *newmask)
299 {
300 if (!pol)
301 return;
302 if (!mpol_store_user_nodemask(pol) &&
303 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
304 return;
305 mpol_ops[pol->policy].rebind(pol, newmask);
306 }
307
308 /*
309 * Wrapper for mpol_rebind_policy() that just requires task
310 * pointer, and updates task mempolicy.
311 */
312
313 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
314 {
315 mpol_rebind_policy(tsk->mempolicy, new);
316 }
317
318 /*
319 * Rebind each vma in mm to new nodemask.
320 *
321 * Call holding a reference to mm. Takes mm->mmap_sem during call.
322 */
323
324 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
325 {
326 struct vm_area_struct *vma;
327
328 down_write(&mm->mmap_sem);
329 for (vma = mm->mmap; vma; vma = vma->vm_next)
330 mpol_rebind_policy(vma->vm_policy, new);
331 up_write(&mm->mmap_sem);
332 }
333
334 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
335 [MPOL_DEFAULT] = {
336 .rebind = mpol_rebind_default,
337 },
338 [MPOL_INTERLEAVE] = {
339 .create = mpol_new_interleave,
340 .rebind = mpol_rebind_nodemask,
341 },
342 [MPOL_PREFERRED] = {
343 .create = mpol_new_preferred,
344 .rebind = mpol_rebind_preferred,
345 },
346 [MPOL_BIND] = {
347 .create = mpol_new_bind,
348 .rebind = mpol_rebind_nodemask,
349 },
350 };
351
352 static void gather_stats(struct page *, void *, int pte_dirty);
353 static void migrate_page_add(struct page *page, struct list_head *pagelist,
354 unsigned long flags);
355
356 /* Scan through pages checking if pages follow certain conditions. */
357 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
358 unsigned long addr, unsigned long end,
359 const nodemask_t *nodes, unsigned long flags,
360 void *private)
361 {
362 pte_t *orig_pte;
363 pte_t *pte;
364 spinlock_t *ptl;
365
366 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
367 do {
368 struct page *page;
369 int nid;
370
371 if (!pte_present(*pte))
372 continue;
373 page = vm_normal_page(vma, addr, *pte);
374 if (!page)
375 continue;
376 /*
377 * The check for PageReserved here is important to avoid
378 * handling zero pages and other pages that may have been
379 * marked special by the system.
380 *
381 * If the PageReserved would not be checked here then f.e.
382 * the location of the zero page could have an influence
383 * on MPOL_MF_STRICT, zero pages would be counted for
384 * the per node stats, and there would be useless attempts
385 * to put zero pages on the migration list.
386 */
387 if (PageReserved(page))
388 continue;
389 nid = page_to_nid(page);
390 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
391 continue;
392
393 if (flags & MPOL_MF_STATS)
394 gather_stats(page, private, pte_dirty(*pte));
395 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
396 migrate_page_add(page, private, flags);
397 else
398 break;
399 } while (pte++, addr += PAGE_SIZE, addr != end);
400 pte_unmap_unlock(orig_pte, ptl);
401 return addr != end;
402 }
403
404 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
405 unsigned long addr, unsigned long end,
406 const nodemask_t *nodes, unsigned long flags,
407 void *private)
408 {
409 pmd_t *pmd;
410 unsigned long next;
411
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 if (check_pte_range(vma, pmd, addr, next, nodes,
418 flags, private))
419 return -EIO;
420 } while (pmd++, addr = next, addr != end);
421 return 0;
422 }
423
424 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
425 unsigned long addr, unsigned long end,
426 const nodemask_t *nodes, unsigned long flags,
427 void *private)
428 {
429 pud_t *pud;
430 unsigned long next;
431
432 pud = pud_offset(pgd, addr);
433 do {
434 next = pud_addr_end(addr, end);
435 if (pud_none_or_clear_bad(pud))
436 continue;
437 if (check_pmd_range(vma, pud, addr, next, nodes,
438 flags, private))
439 return -EIO;
440 } while (pud++, addr = next, addr != end);
441 return 0;
442 }
443
444 static inline int check_pgd_range(struct vm_area_struct *vma,
445 unsigned long addr, unsigned long end,
446 const nodemask_t *nodes, unsigned long flags,
447 void *private)
448 {
449 pgd_t *pgd;
450 unsigned long next;
451
452 pgd = pgd_offset(vma->vm_mm, addr);
453 do {
454 next = pgd_addr_end(addr, end);
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
457 if (check_pud_range(vma, pgd, addr, next, nodes,
458 flags, private))
459 return -EIO;
460 } while (pgd++, addr = next, addr != end);
461 return 0;
462 }
463
464 /*
465 * Check if all pages in a range are on a set of nodes.
466 * If pagelist != NULL then isolate pages from the LRU and
467 * put them on the pagelist.
468 */
469 static struct vm_area_struct *
470 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
471 const nodemask_t *nodes, unsigned long flags, void *private)
472 {
473 int err;
474 struct vm_area_struct *first, *vma, *prev;
475
476 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
477
478 err = migrate_prep();
479 if (err)
480 return ERR_PTR(err);
481 }
482
483 first = find_vma(mm, start);
484 if (!first)
485 return ERR_PTR(-EFAULT);
486 prev = NULL;
487 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
488 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
489 if (!vma->vm_next && vma->vm_end < end)
490 return ERR_PTR(-EFAULT);
491 if (prev && prev->vm_end < vma->vm_start)
492 return ERR_PTR(-EFAULT);
493 }
494 if (!is_vm_hugetlb_page(vma) &&
495 ((flags & MPOL_MF_STRICT) ||
496 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
497 vma_migratable(vma)))) {
498 unsigned long endvma = vma->vm_end;
499
500 if (endvma > end)
501 endvma = end;
502 if (vma->vm_start > start)
503 start = vma->vm_start;
504 err = check_pgd_range(vma, start, endvma, nodes,
505 flags, private);
506 if (err) {
507 first = ERR_PTR(err);
508 break;
509 }
510 }
511 prev = vma;
512 }
513 return first;
514 }
515
516 /* Apply policy to a single VMA */
517 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
518 {
519 int err = 0;
520 struct mempolicy *old = vma->vm_policy;
521
522 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
523 vma->vm_start, vma->vm_end, vma->vm_pgoff,
524 vma->vm_ops, vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
526
527 if (vma->vm_ops && vma->vm_ops->set_policy)
528 err = vma->vm_ops->set_policy(vma, new);
529 if (!err) {
530 mpol_get(new);
531 vma->vm_policy = new;
532 mpol_put(old);
533 }
534 return err;
535 }
536
537 /* Step 2: apply policy to a range and do splits. */
538 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
539 unsigned long end, struct mempolicy *new)
540 {
541 struct vm_area_struct *next;
542 int err;
543
544 err = 0;
545 for (; vma && vma->vm_start < end; vma = next) {
546 next = vma->vm_next;
547 if (vma->vm_start < start)
548 err = split_vma(vma->vm_mm, vma, start, 1);
549 if (!err && vma->vm_end > end)
550 err = split_vma(vma->vm_mm, vma, end, 0);
551 if (!err)
552 err = policy_vma(vma, new);
553 if (err)
554 break;
555 }
556 return err;
557 }
558
559 /*
560 * Update task->flags PF_MEMPOLICY bit: set iff non-default
561 * mempolicy. Allows more rapid checking of this (combined perhaps
562 * with other PF_* flag bits) on memory allocation hot code paths.
563 *
564 * If called from outside this file, the task 'p' should -only- be
565 * a newly forked child not yet visible on the task list, because
566 * manipulating the task flags of a visible task is not safe.
567 *
568 * The above limitation is why this routine has the funny name
569 * mpol_fix_fork_child_flag().
570 *
571 * It is also safe to call this with a task pointer of current,
572 * which the static wrapper mpol_set_task_struct_flag() does,
573 * for use within this file.
574 */
575
576 void mpol_fix_fork_child_flag(struct task_struct *p)
577 {
578 if (p->mempolicy)
579 p->flags |= PF_MEMPOLICY;
580 else
581 p->flags &= ~PF_MEMPOLICY;
582 }
583
584 static void mpol_set_task_struct_flag(void)
585 {
586 mpol_fix_fork_child_flag(current);
587 }
588
589 /* Set the process memory policy */
590 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
591 nodemask_t *nodes)
592 {
593 struct mempolicy *new;
594
595 new = mpol_new(mode, flags, nodes);
596 if (IS_ERR(new))
597 return PTR_ERR(new);
598 mpol_put(current->mempolicy);
599 current->mempolicy = new;
600 mpol_set_task_struct_flag();
601 if (new && new->policy == MPOL_INTERLEAVE &&
602 nodes_weight(new->v.nodes))
603 current->il_next = first_node(new->v.nodes);
604 return 0;
605 }
606
607 /* Fill a zone bitmap for a policy */
608 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
609 {
610 nodes_clear(*nodes);
611 switch (p->policy) {
612 case MPOL_DEFAULT:
613 break;
614 case MPOL_BIND:
615 /* Fall through */
616 case MPOL_INTERLEAVE:
617 *nodes = p->v.nodes;
618 break;
619 case MPOL_PREFERRED:
620 /* or use current node instead of memory_map? */
621 if (p->v.preferred_node < 0)
622 *nodes = node_states[N_HIGH_MEMORY];
623 else
624 node_set(p->v.preferred_node, *nodes);
625 break;
626 default:
627 BUG();
628 }
629 }
630
631 static int lookup_node(struct mm_struct *mm, unsigned long addr)
632 {
633 struct page *p;
634 int err;
635
636 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
637 if (err >= 0) {
638 err = page_to_nid(p);
639 put_page(p);
640 }
641 return err;
642 }
643
644 /* Retrieve NUMA policy */
645 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
646 unsigned long addr, unsigned long flags)
647 {
648 int err;
649 struct mm_struct *mm = current->mm;
650 struct vm_area_struct *vma = NULL;
651 struct mempolicy *pol = current->mempolicy;
652
653 cpuset_update_task_memory_state();
654 if (flags &
655 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
656 return -EINVAL;
657
658 if (flags & MPOL_F_MEMS_ALLOWED) {
659 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
660 return -EINVAL;
661 *policy = 0; /* just so it's initialized */
662 *nmask = cpuset_current_mems_allowed;
663 return 0;
664 }
665
666 if (flags & MPOL_F_ADDR) {
667 down_read(&mm->mmap_sem);
668 vma = find_vma_intersection(mm, addr, addr+1);
669 if (!vma) {
670 up_read(&mm->mmap_sem);
671 return -EFAULT;
672 }
673 if (vma->vm_ops && vma->vm_ops->get_policy)
674 pol = vma->vm_ops->get_policy(vma, addr);
675 else
676 pol = vma->vm_policy;
677 } else if (addr)
678 return -EINVAL;
679
680 if (!pol)
681 pol = &default_policy;
682
683 if (flags & MPOL_F_NODE) {
684 if (flags & MPOL_F_ADDR) {
685 err = lookup_node(mm, addr);
686 if (err < 0)
687 goto out;
688 *policy = err;
689 } else if (pol == current->mempolicy &&
690 pol->policy == MPOL_INTERLEAVE) {
691 *policy = current->il_next;
692 } else {
693 err = -EINVAL;
694 goto out;
695 }
696 } else
697 *policy = pol->policy | pol->flags;
698
699 if (vma) {
700 up_read(&current->mm->mmap_sem);
701 vma = NULL;
702 }
703
704 err = 0;
705 if (nmask)
706 get_zonemask(pol, nmask);
707
708 out:
709 if (vma)
710 up_read(&current->mm->mmap_sem);
711 return err;
712 }
713
714 #ifdef CONFIG_MIGRATION
715 /*
716 * page migration
717 */
718 static void migrate_page_add(struct page *page, struct list_head *pagelist,
719 unsigned long flags)
720 {
721 /*
722 * Avoid migrating a page that is shared with others.
723 */
724 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
725 isolate_lru_page(page, pagelist);
726 }
727
728 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
729 {
730 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
731 }
732
733 /*
734 * Migrate pages from one node to a target node.
735 * Returns error or the number of pages not migrated.
736 */
737 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
738 int flags)
739 {
740 nodemask_t nmask;
741 LIST_HEAD(pagelist);
742 int err = 0;
743
744 nodes_clear(nmask);
745 node_set(source, nmask);
746
747 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
748 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
749
750 if (!list_empty(&pagelist))
751 err = migrate_pages(&pagelist, new_node_page, dest);
752
753 return err;
754 }
755
756 /*
757 * Move pages between the two nodesets so as to preserve the physical
758 * layout as much as possible.
759 *
760 * Returns the number of page that could not be moved.
761 */
762 int do_migrate_pages(struct mm_struct *mm,
763 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
764 {
765 LIST_HEAD(pagelist);
766 int busy = 0;
767 int err = 0;
768 nodemask_t tmp;
769
770 down_read(&mm->mmap_sem);
771
772 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
773 if (err)
774 goto out;
775
776 /*
777 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
778 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
779 * bit in 'tmp', and return that <source, dest> pair for migration.
780 * The pair of nodemasks 'to' and 'from' define the map.
781 *
782 * If no pair of bits is found that way, fallback to picking some
783 * pair of 'source' and 'dest' bits that are not the same. If the
784 * 'source' and 'dest' bits are the same, this represents a node
785 * that will be migrating to itself, so no pages need move.
786 *
787 * If no bits are left in 'tmp', or if all remaining bits left
788 * in 'tmp' correspond to the same bit in 'to', return false
789 * (nothing left to migrate).
790 *
791 * This lets us pick a pair of nodes to migrate between, such that
792 * if possible the dest node is not already occupied by some other
793 * source node, minimizing the risk of overloading the memory on a
794 * node that would happen if we migrated incoming memory to a node
795 * before migrating outgoing memory source that same node.
796 *
797 * A single scan of tmp is sufficient. As we go, we remember the
798 * most recent <s, d> pair that moved (s != d). If we find a pair
799 * that not only moved, but what's better, moved to an empty slot
800 * (d is not set in tmp), then we break out then, with that pair.
801 * Otherwise when we finish scannng from_tmp, we at least have the
802 * most recent <s, d> pair that moved. If we get all the way through
803 * the scan of tmp without finding any node that moved, much less
804 * moved to an empty node, then there is nothing left worth migrating.
805 */
806
807 tmp = *from_nodes;
808 while (!nodes_empty(tmp)) {
809 int s,d;
810 int source = -1;
811 int dest = 0;
812
813 for_each_node_mask(s, tmp) {
814 d = node_remap(s, *from_nodes, *to_nodes);
815 if (s == d)
816 continue;
817
818 source = s; /* Node moved. Memorize */
819 dest = d;
820
821 /* dest not in remaining from nodes? */
822 if (!node_isset(dest, tmp))
823 break;
824 }
825 if (source == -1)
826 break;
827
828 node_clear(source, tmp);
829 err = migrate_to_node(mm, source, dest, flags);
830 if (err > 0)
831 busy += err;
832 if (err < 0)
833 break;
834 }
835 out:
836 up_read(&mm->mmap_sem);
837 if (err < 0)
838 return err;
839 return busy;
840
841 }
842
843 /*
844 * Allocate a new page for page migration based on vma policy.
845 * Start assuming that page is mapped by vma pointed to by @private.
846 * Search forward from there, if not. N.B., this assumes that the
847 * list of pages handed to migrate_pages()--which is how we get here--
848 * is in virtual address order.
849 */
850 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
851 {
852 struct vm_area_struct *vma = (struct vm_area_struct *)private;
853 unsigned long uninitialized_var(address);
854
855 while (vma) {
856 address = page_address_in_vma(page, vma);
857 if (address != -EFAULT)
858 break;
859 vma = vma->vm_next;
860 }
861
862 /*
863 * if !vma, alloc_page_vma() will use task or system default policy
864 */
865 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
866 }
867 #else
868
869 static void migrate_page_add(struct page *page, struct list_head *pagelist,
870 unsigned long flags)
871 {
872 }
873
874 int do_migrate_pages(struct mm_struct *mm,
875 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
876 {
877 return -ENOSYS;
878 }
879
880 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
881 {
882 return NULL;
883 }
884 #endif
885
886 static long do_mbind(unsigned long start, unsigned long len,
887 unsigned short mode, unsigned short mode_flags,
888 nodemask_t *nmask, unsigned long flags)
889 {
890 struct vm_area_struct *vma;
891 struct mm_struct *mm = current->mm;
892 struct mempolicy *new;
893 unsigned long end;
894 int err;
895 LIST_HEAD(pagelist);
896
897 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
898 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
899 return -EINVAL;
900 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
901 return -EPERM;
902
903 if (start & ~PAGE_MASK)
904 return -EINVAL;
905
906 if (mode == MPOL_DEFAULT)
907 flags &= ~MPOL_MF_STRICT;
908
909 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
910 end = start + len;
911
912 if (end < start)
913 return -EINVAL;
914 if (end == start)
915 return 0;
916
917 new = mpol_new(mode, mode_flags, nmask);
918 if (IS_ERR(new))
919 return PTR_ERR(new);
920
921 /*
922 * If we are using the default policy then operation
923 * on discontinuous address spaces is okay after all
924 */
925 if (!new)
926 flags |= MPOL_MF_DISCONTIG_OK;
927
928 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
929 start, start + len, mode, mode_flags,
930 nmask ? nodes_addr(*nmask)[0] : -1);
931
932 down_write(&mm->mmap_sem);
933 vma = check_range(mm, start, end, nmask,
934 flags | MPOL_MF_INVERT, &pagelist);
935
936 err = PTR_ERR(vma);
937 if (!IS_ERR(vma)) {
938 int nr_failed = 0;
939
940 err = mbind_range(vma, start, end, new);
941
942 if (!list_empty(&pagelist))
943 nr_failed = migrate_pages(&pagelist, new_vma_page,
944 (unsigned long)vma);
945
946 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
947 err = -EIO;
948 }
949
950 up_write(&mm->mmap_sem);
951 mpol_put(new);
952 return err;
953 }
954
955 /*
956 * User space interface with variable sized bitmaps for nodelists.
957 */
958
959 /* Copy a node mask from user space. */
960 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
961 unsigned long maxnode)
962 {
963 unsigned long k;
964 unsigned long nlongs;
965 unsigned long endmask;
966
967 --maxnode;
968 nodes_clear(*nodes);
969 if (maxnode == 0 || !nmask)
970 return 0;
971 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
972 return -EINVAL;
973
974 nlongs = BITS_TO_LONGS(maxnode);
975 if ((maxnode % BITS_PER_LONG) == 0)
976 endmask = ~0UL;
977 else
978 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
979
980 /* When the user specified more nodes than supported just check
981 if the non supported part is all zero. */
982 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
983 if (nlongs > PAGE_SIZE/sizeof(long))
984 return -EINVAL;
985 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
986 unsigned long t;
987 if (get_user(t, nmask + k))
988 return -EFAULT;
989 if (k == nlongs - 1) {
990 if (t & endmask)
991 return -EINVAL;
992 } else if (t)
993 return -EINVAL;
994 }
995 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
996 endmask = ~0UL;
997 }
998
999 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1000 return -EFAULT;
1001 nodes_addr(*nodes)[nlongs-1] &= endmask;
1002 return 0;
1003 }
1004
1005 /* Copy a kernel node mask to user space */
1006 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1007 nodemask_t *nodes)
1008 {
1009 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1010 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1011
1012 if (copy > nbytes) {
1013 if (copy > PAGE_SIZE)
1014 return -EINVAL;
1015 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1016 return -EFAULT;
1017 copy = nbytes;
1018 }
1019 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1020 }
1021
1022 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1023 unsigned long mode,
1024 unsigned long __user *nmask, unsigned long maxnode,
1025 unsigned flags)
1026 {
1027 nodemask_t nodes;
1028 int err;
1029 unsigned short mode_flags;
1030
1031 mode_flags = mode & MPOL_MODE_FLAGS;
1032 mode &= ~MPOL_MODE_FLAGS;
1033 if (mode >= MPOL_MAX)
1034 return -EINVAL;
1035 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1036 (mode_flags & MPOL_F_RELATIVE_NODES))
1037 return -EINVAL;
1038 err = get_nodes(&nodes, nmask, maxnode);
1039 if (err)
1040 return err;
1041 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1042 }
1043
1044 /* Set the process memory policy */
1045 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1046 unsigned long maxnode)
1047 {
1048 int err;
1049 nodemask_t nodes;
1050 unsigned short flags;
1051
1052 flags = mode & MPOL_MODE_FLAGS;
1053 mode &= ~MPOL_MODE_FLAGS;
1054 if ((unsigned int)mode >= MPOL_MAX)
1055 return -EINVAL;
1056 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1057 return -EINVAL;
1058 err = get_nodes(&nodes, nmask, maxnode);
1059 if (err)
1060 return err;
1061 return do_set_mempolicy(mode, flags, &nodes);
1062 }
1063
1064 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1065 const unsigned long __user *old_nodes,
1066 const unsigned long __user *new_nodes)
1067 {
1068 struct mm_struct *mm;
1069 struct task_struct *task;
1070 nodemask_t old;
1071 nodemask_t new;
1072 nodemask_t task_nodes;
1073 int err;
1074
1075 err = get_nodes(&old, old_nodes, maxnode);
1076 if (err)
1077 return err;
1078
1079 err = get_nodes(&new, new_nodes, maxnode);
1080 if (err)
1081 return err;
1082
1083 /* Find the mm_struct */
1084 read_lock(&tasklist_lock);
1085 task = pid ? find_task_by_vpid(pid) : current;
1086 if (!task) {
1087 read_unlock(&tasklist_lock);
1088 return -ESRCH;
1089 }
1090 mm = get_task_mm(task);
1091 read_unlock(&tasklist_lock);
1092
1093 if (!mm)
1094 return -EINVAL;
1095
1096 /*
1097 * Check if this process has the right to modify the specified
1098 * process. The right exists if the process has administrative
1099 * capabilities, superuser privileges or the same
1100 * userid as the target process.
1101 */
1102 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1103 (current->uid != task->suid) && (current->uid != task->uid) &&
1104 !capable(CAP_SYS_NICE)) {
1105 err = -EPERM;
1106 goto out;
1107 }
1108
1109 task_nodes = cpuset_mems_allowed(task);
1110 /* Is the user allowed to access the target nodes? */
1111 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1112 err = -EPERM;
1113 goto out;
1114 }
1115
1116 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1117 err = -EINVAL;
1118 goto out;
1119 }
1120
1121 err = security_task_movememory(task);
1122 if (err)
1123 goto out;
1124
1125 err = do_migrate_pages(mm, &old, &new,
1126 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1127 out:
1128 mmput(mm);
1129 return err;
1130 }
1131
1132
1133 /* Retrieve NUMA policy */
1134 asmlinkage long sys_get_mempolicy(int __user *policy,
1135 unsigned long __user *nmask,
1136 unsigned long maxnode,
1137 unsigned long addr, unsigned long flags)
1138 {
1139 int err;
1140 int uninitialized_var(pval);
1141 nodemask_t nodes;
1142
1143 if (nmask != NULL && maxnode < MAX_NUMNODES)
1144 return -EINVAL;
1145
1146 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1147
1148 if (err)
1149 return err;
1150
1151 if (policy && put_user(pval, policy))
1152 return -EFAULT;
1153
1154 if (nmask)
1155 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1156
1157 return err;
1158 }
1159
1160 #ifdef CONFIG_COMPAT
1161
1162 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1163 compat_ulong_t __user *nmask,
1164 compat_ulong_t maxnode,
1165 compat_ulong_t addr, compat_ulong_t flags)
1166 {
1167 long err;
1168 unsigned long __user *nm = NULL;
1169 unsigned long nr_bits, alloc_size;
1170 DECLARE_BITMAP(bm, MAX_NUMNODES);
1171
1172 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1173 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1174
1175 if (nmask)
1176 nm = compat_alloc_user_space(alloc_size);
1177
1178 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1179
1180 if (!err && nmask) {
1181 err = copy_from_user(bm, nm, alloc_size);
1182 /* ensure entire bitmap is zeroed */
1183 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1184 err |= compat_put_bitmap(nmask, bm, nr_bits);
1185 }
1186
1187 return err;
1188 }
1189
1190 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1191 compat_ulong_t maxnode)
1192 {
1193 long err = 0;
1194 unsigned long __user *nm = NULL;
1195 unsigned long nr_bits, alloc_size;
1196 DECLARE_BITMAP(bm, MAX_NUMNODES);
1197
1198 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1199 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1200
1201 if (nmask) {
1202 err = compat_get_bitmap(bm, nmask, nr_bits);
1203 nm = compat_alloc_user_space(alloc_size);
1204 err |= copy_to_user(nm, bm, alloc_size);
1205 }
1206
1207 if (err)
1208 return -EFAULT;
1209
1210 return sys_set_mempolicy(mode, nm, nr_bits+1);
1211 }
1212
1213 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1214 compat_ulong_t mode, compat_ulong_t __user *nmask,
1215 compat_ulong_t maxnode, compat_ulong_t flags)
1216 {
1217 long err = 0;
1218 unsigned long __user *nm = NULL;
1219 unsigned long nr_bits, alloc_size;
1220 nodemask_t bm;
1221
1222 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1223 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1224
1225 if (nmask) {
1226 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1227 nm = compat_alloc_user_space(alloc_size);
1228 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1229 }
1230
1231 if (err)
1232 return -EFAULT;
1233
1234 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1235 }
1236
1237 #endif
1238
1239 /*
1240 * get_vma_policy(@task, @vma, @addr)
1241 * @task - task for fallback if vma policy == default
1242 * @vma - virtual memory area whose policy is sought
1243 * @addr - address in @vma for shared policy lookup
1244 *
1245 * Returns effective policy for a VMA at specified address.
1246 * Falls back to @task or system default policy, as necessary.
1247 * Returned policy has extra reference count if shared, vma,
1248 * or some other task's policy [show_numa_maps() can pass
1249 * @task != current]. It is the caller's responsibility to
1250 * free the reference in these cases.
1251 */
1252 static struct mempolicy * get_vma_policy(struct task_struct *task,
1253 struct vm_area_struct *vma, unsigned long addr)
1254 {
1255 struct mempolicy *pol = task->mempolicy;
1256 int shared_pol = 0;
1257
1258 if (vma) {
1259 if (vma->vm_ops && vma->vm_ops->get_policy) {
1260 pol = vma->vm_ops->get_policy(vma, addr);
1261 shared_pol = 1; /* if pol non-NULL, add ref below */
1262 } else if (vma->vm_policy &&
1263 vma->vm_policy->policy != MPOL_DEFAULT)
1264 pol = vma->vm_policy;
1265 }
1266 if (!pol)
1267 pol = &default_policy;
1268 else if (!shared_pol && pol != current->mempolicy)
1269 mpol_get(pol); /* vma or other task's policy */
1270 return pol;
1271 }
1272
1273 /* Return a nodemask representing a mempolicy */
1274 static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1275 {
1276 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1277 if (unlikely(policy->policy == MPOL_BIND) &&
1278 gfp_zone(gfp) >= policy_zone &&
1279 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1280 return &policy->v.nodes;
1281
1282 return NULL;
1283 }
1284
1285 /* Return a zonelist representing a mempolicy */
1286 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1287 {
1288 int nd;
1289
1290 switch (policy->policy) {
1291 case MPOL_PREFERRED:
1292 nd = policy->v.preferred_node;
1293 if (nd < 0)
1294 nd = numa_node_id();
1295 break;
1296 case MPOL_BIND:
1297 /*
1298 * Normally, MPOL_BIND allocations node-local are node-local
1299 * within the allowed nodemask. However, if __GFP_THISNODE is
1300 * set and the current node is part of the mask, we use the
1301 * the zonelist for the first node in the mask instead.
1302 */
1303 nd = numa_node_id();
1304 if (unlikely(gfp & __GFP_THISNODE) &&
1305 unlikely(!node_isset(nd, policy->v.nodes)))
1306 nd = first_node(policy->v.nodes);
1307 break;
1308 case MPOL_INTERLEAVE: /* should not happen */
1309 case MPOL_DEFAULT:
1310 nd = numa_node_id();
1311 break;
1312 default:
1313 nd = 0;
1314 BUG();
1315 }
1316 return node_zonelist(nd, gfp);
1317 }
1318
1319 /* Do dynamic interleaving for a process */
1320 static unsigned interleave_nodes(struct mempolicy *policy)
1321 {
1322 unsigned nid, next;
1323 struct task_struct *me = current;
1324
1325 nid = me->il_next;
1326 next = next_node(nid, policy->v.nodes);
1327 if (next >= MAX_NUMNODES)
1328 next = first_node(policy->v.nodes);
1329 if (next < MAX_NUMNODES)
1330 me->il_next = next;
1331 return nid;
1332 }
1333
1334 /*
1335 * Depending on the memory policy provide a node from which to allocate the
1336 * next slab entry.
1337 */
1338 unsigned slab_node(struct mempolicy *policy)
1339 {
1340 unsigned short pol = policy ? policy->policy : MPOL_DEFAULT;
1341
1342 switch (pol) {
1343 case MPOL_INTERLEAVE:
1344 return interleave_nodes(policy);
1345
1346 case MPOL_BIND: {
1347 /*
1348 * Follow bind policy behavior and start allocation at the
1349 * first node.
1350 */
1351 struct zonelist *zonelist;
1352 struct zone *zone;
1353 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1354 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1355 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1356 &policy->v.nodes,
1357 &zone);
1358 return zone->node;
1359 }
1360
1361 case MPOL_PREFERRED:
1362 if (policy->v.preferred_node >= 0)
1363 return policy->v.preferred_node;
1364 /* Fall through */
1365
1366 default:
1367 return numa_node_id();
1368 }
1369 }
1370
1371 /* Do static interleaving for a VMA with known offset. */
1372 static unsigned offset_il_node(struct mempolicy *pol,
1373 struct vm_area_struct *vma, unsigned long off)
1374 {
1375 unsigned nnodes = nodes_weight(pol->v.nodes);
1376 unsigned target;
1377 int c;
1378 int nid = -1;
1379
1380 if (!nnodes)
1381 return numa_node_id();
1382 target = (unsigned int)off % nnodes;
1383 c = 0;
1384 do {
1385 nid = next_node(nid, pol->v.nodes);
1386 c++;
1387 } while (c <= target);
1388 return nid;
1389 }
1390
1391 /* Determine a node number for interleave */
1392 static inline unsigned interleave_nid(struct mempolicy *pol,
1393 struct vm_area_struct *vma, unsigned long addr, int shift)
1394 {
1395 if (vma) {
1396 unsigned long off;
1397
1398 /*
1399 * for small pages, there is no difference between
1400 * shift and PAGE_SHIFT, so the bit-shift is safe.
1401 * for huge pages, since vm_pgoff is in units of small
1402 * pages, we need to shift off the always 0 bits to get
1403 * a useful offset.
1404 */
1405 BUG_ON(shift < PAGE_SHIFT);
1406 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1407 off += (addr - vma->vm_start) >> shift;
1408 return offset_il_node(pol, vma, off);
1409 } else
1410 return interleave_nodes(pol);
1411 }
1412
1413 #ifdef CONFIG_HUGETLBFS
1414 /*
1415 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1416 * @vma = virtual memory area whose policy is sought
1417 * @addr = address in @vma for shared policy lookup and interleave policy
1418 * @gfp_flags = for requested zone
1419 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1420 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1421 *
1422 * Returns a zonelist suitable for a huge page allocation.
1423 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1424 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1425 * If it is also a policy for which get_vma_policy() returns an extra
1426 * reference, we must hold that reference until after the allocation.
1427 * In that case, return policy via @mpol so hugetlb allocation can drop
1428 * the reference. For non-'BIND referenced policies, we can/do drop the
1429 * reference here, so the caller doesn't need to know about the special case
1430 * for default and current task policy.
1431 */
1432 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1433 gfp_t gfp_flags, struct mempolicy **mpol,
1434 nodemask_t **nodemask)
1435 {
1436 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1437 struct zonelist *zl;
1438
1439 *mpol = NULL; /* probably no unref needed */
1440 *nodemask = NULL; /* assume !MPOL_BIND */
1441 if (pol->policy == MPOL_BIND) {
1442 *nodemask = &pol->v.nodes;
1443 } else if (pol->policy == MPOL_INTERLEAVE) {
1444 unsigned nid;
1445
1446 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1447 if (unlikely(pol != &default_policy &&
1448 pol != current->mempolicy))
1449 __mpol_put(pol); /* finished with pol */
1450 return node_zonelist(nid, gfp_flags);
1451 }
1452
1453 zl = zonelist_policy(GFP_HIGHUSER, pol);
1454 if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1455 if (pol->policy != MPOL_BIND)
1456 __mpol_put(pol); /* finished with pol */
1457 else
1458 *mpol = pol; /* unref needed after allocation */
1459 }
1460 return zl;
1461 }
1462 #endif
1463
1464 /* Allocate a page in interleaved policy.
1465 Own path because it needs to do special accounting. */
1466 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1467 unsigned nid)
1468 {
1469 struct zonelist *zl;
1470 struct page *page;
1471
1472 zl = node_zonelist(nid, gfp);
1473 page = __alloc_pages(gfp, order, zl);
1474 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1475 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1476 return page;
1477 }
1478
1479 /**
1480 * alloc_page_vma - Allocate a page for a VMA.
1481 *
1482 * @gfp:
1483 * %GFP_USER user allocation.
1484 * %GFP_KERNEL kernel allocations,
1485 * %GFP_HIGHMEM highmem/user allocations,
1486 * %GFP_FS allocation should not call back into a file system.
1487 * %GFP_ATOMIC don't sleep.
1488 *
1489 * @vma: Pointer to VMA or NULL if not available.
1490 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1491 *
1492 * This function allocates a page from the kernel page pool and applies
1493 * a NUMA policy associated with the VMA or the current process.
1494 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1495 * mm_struct of the VMA to prevent it from going away. Should be used for
1496 * all allocations for pages that will be mapped into
1497 * user space. Returns NULL when no page can be allocated.
1498 *
1499 * Should be called with the mm_sem of the vma hold.
1500 */
1501 struct page *
1502 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1503 {
1504 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1505 struct zonelist *zl;
1506
1507 cpuset_update_task_memory_state();
1508
1509 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1510 unsigned nid;
1511
1512 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1513 if (unlikely(pol != &default_policy &&
1514 pol != current->mempolicy))
1515 __mpol_put(pol); /* finished with pol */
1516 return alloc_page_interleave(gfp, 0, nid);
1517 }
1518 zl = zonelist_policy(gfp, pol);
1519 if (pol != &default_policy && pol != current->mempolicy) {
1520 /*
1521 * slow path: ref counted policy -- shared or vma
1522 */
1523 struct page *page = __alloc_pages_nodemask(gfp, 0,
1524 zl, nodemask_policy(gfp, pol));
1525 __mpol_put(pol);
1526 return page;
1527 }
1528 /*
1529 * fast path: default or task policy
1530 */
1531 return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1532 }
1533
1534 /**
1535 * alloc_pages_current - Allocate pages.
1536 *
1537 * @gfp:
1538 * %GFP_USER user allocation,
1539 * %GFP_KERNEL kernel allocation,
1540 * %GFP_HIGHMEM highmem allocation,
1541 * %GFP_FS don't call back into a file system.
1542 * %GFP_ATOMIC don't sleep.
1543 * @order: Power of two of allocation size in pages. 0 is a single page.
1544 *
1545 * Allocate a page from the kernel page pool. When not in
1546 * interrupt context and apply the current process NUMA policy.
1547 * Returns NULL when no page can be allocated.
1548 *
1549 * Don't call cpuset_update_task_memory_state() unless
1550 * 1) it's ok to take cpuset_sem (can WAIT), and
1551 * 2) allocating for current task (not interrupt).
1552 */
1553 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1554 {
1555 struct mempolicy *pol = current->mempolicy;
1556
1557 if ((gfp & __GFP_WAIT) && !in_interrupt())
1558 cpuset_update_task_memory_state();
1559 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1560 pol = &default_policy;
1561 if (pol->policy == MPOL_INTERLEAVE)
1562 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1563 return __alloc_pages_nodemask(gfp, order,
1564 zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1565 }
1566 EXPORT_SYMBOL(alloc_pages_current);
1567
1568 /*
1569 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1570 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1571 * with the mems_allowed returned by cpuset_mems_allowed(). This
1572 * keeps mempolicies cpuset relative after its cpuset moves. See
1573 * further kernel/cpuset.c update_nodemask().
1574 */
1575
1576 /* Slow path of a mempolicy duplicate */
1577 struct mempolicy *__mpol_dup(struct mempolicy *old)
1578 {
1579 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1580
1581 if (!new)
1582 return ERR_PTR(-ENOMEM);
1583 if (current_cpuset_is_being_rebound()) {
1584 nodemask_t mems = cpuset_mems_allowed(current);
1585 mpol_rebind_policy(old, &mems);
1586 }
1587 *new = *old;
1588 atomic_set(&new->refcnt, 1);
1589 return new;
1590 }
1591
1592 static int mpol_match_intent(const struct mempolicy *a,
1593 const struct mempolicy *b)
1594 {
1595 if (a->flags != b->flags)
1596 return 0;
1597 if (!mpol_store_user_nodemask(a))
1598 return 1;
1599 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1600 }
1601
1602 /* Slow path of a mempolicy comparison */
1603 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1604 {
1605 if (!a || !b)
1606 return 0;
1607 if (a->policy != b->policy)
1608 return 0;
1609 if (a->policy != MPOL_DEFAULT && !mpol_match_intent(a, b))
1610 return 0;
1611 switch (a->policy) {
1612 case MPOL_DEFAULT:
1613 return 1;
1614 case MPOL_BIND:
1615 /* Fall through */
1616 case MPOL_INTERLEAVE:
1617 return nodes_equal(a->v.nodes, b->v.nodes);
1618 case MPOL_PREFERRED:
1619 return a->v.preferred_node == b->v.preferred_node;
1620 default:
1621 BUG();
1622 return 0;
1623 }
1624 }
1625
1626 /* Slow path of a mpol destructor. */
1627 void __mpol_put(struct mempolicy *p)
1628 {
1629 if (!atomic_dec_and_test(&p->refcnt))
1630 return;
1631 p->policy = MPOL_DEFAULT;
1632 kmem_cache_free(policy_cache, p);
1633 }
1634
1635 /*
1636 * Shared memory backing store policy support.
1637 *
1638 * Remember policies even when nobody has shared memory mapped.
1639 * The policies are kept in Red-Black tree linked from the inode.
1640 * They are protected by the sp->lock spinlock, which should be held
1641 * for any accesses to the tree.
1642 */
1643
1644 /* lookup first element intersecting start-end */
1645 /* Caller holds sp->lock */
1646 static struct sp_node *
1647 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1648 {
1649 struct rb_node *n = sp->root.rb_node;
1650
1651 while (n) {
1652 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1653
1654 if (start >= p->end)
1655 n = n->rb_right;
1656 else if (end <= p->start)
1657 n = n->rb_left;
1658 else
1659 break;
1660 }
1661 if (!n)
1662 return NULL;
1663 for (;;) {
1664 struct sp_node *w = NULL;
1665 struct rb_node *prev = rb_prev(n);
1666 if (!prev)
1667 break;
1668 w = rb_entry(prev, struct sp_node, nd);
1669 if (w->end <= start)
1670 break;
1671 n = prev;
1672 }
1673 return rb_entry(n, struct sp_node, nd);
1674 }
1675
1676 /* Insert a new shared policy into the list. */
1677 /* Caller holds sp->lock */
1678 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1679 {
1680 struct rb_node **p = &sp->root.rb_node;
1681 struct rb_node *parent = NULL;
1682 struct sp_node *nd;
1683
1684 while (*p) {
1685 parent = *p;
1686 nd = rb_entry(parent, struct sp_node, nd);
1687 if (new->start < nd->start)
1688 p = &(*p)->rb_left;
1689 else if (new->end > nd->end)
1690 p = &(*p)->rb_right;
1691 else
1692 BUG();
1693 }
1694 rb_link_node(&new->nd, parent, p);
1695 rb_insert_color(&new->nd, &sp->root);
1696 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1697 new->policy ? new->policy->policy : 0);
1698 }
1699
1700 /* Find shared policy intersecting idx */
1701 struct mempolicy *
1702 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1703 {
1704 struct mempolicy *pol = NULL;
1705 struct sp_node *sn;
1706
1707 if (!sp->root.rb_node)
1708 return NULL;
1709 spin_lock(&sp->lock);
1710 sn = sp_lookup(sp, idx, idx+1);
1711 if (sn) {
1712 mpol_get(sn->policy);
1713 pol = sn->policy;
1714 }
1715 spin_unlock(&sp->lock);
1716 return pol;
1717 }
1718
1719 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1720 {
1721 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1722 rb_erase(&n->nd, &sp->root);
1723 mpol_put(n->policy);
1724 kmem_cache_free(sn_cache, n);
1725 }
1726
1727 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1728 struct mempolicy *pol)
1729 {
1730 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1731
1732 if (!n)
1733 return NULL;
1734 n->start = start;
1735 n->end = end;
1736 mpol_get(pol);
1737 n->policy = pol;
1738 return n;
1739 }
1740
1741 /* Replace a policy range. */
1742 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1743 unsigned long end, struct sp_node *new)
1744 {
1745 struct sp_node *n, *new2 = NULL;
1746
1747 restart:
1748 spin_lock(&sp->lock);
1749 n = sp_lookup(sp, start, end);
1750 /* Take care of old policies in the same range. */
1751 while (n && n->start < end) {
1752 struct rb_node *next = rb_next(&n->nd);
1753 if (n->start >= start) {
1754 if (n->end <= end)
1755 sp_delete(sp, n);
1756 else
1757 n->start = end;
1758 } else {
1759 /* Old policy spanning whole new range. */
1760 if (n->end > end) {
1761 if (!new2) {
1762 spin_unlock(&sp->lock);
1763 new2 = sp_alloc(end, n->end, n->policy);
1764 if (!new2)
1765 return -ENOMEM;
1766 goto restart;
1767 }
1768 n->end = start;
1769 sp_insert(sp, new2);
1770 new2 = NULL;
1771 break;
1772 } else
1773 n->end = start;
1774 }
1775 if (!next)
1776 break;
1777 n = rb_entry(next, struct sp_node, nd);
1778 }
1779 if (new)
1780 sp_insert(sp, new);
1781 spin_unlock(&sp->lock);
1782 if (new2) {
1783 mpol_put(new2->policy);
1784 kmem_cache_free(sn_cache, new2);
1785 }
1786 return 0;
1787 }
1788
1789 void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1790 unsigned short flags, nodemask_t *policy_nodes)
1791 {
1792 info->root = RB_ROOT;
1793 spin_lock_init(&info->lock);
1794
1795 if (policy != MPOL_DEFAULT) {
1796 struct mempolicy *newpol;
1797
1798 /* Falls back to MPOL_DEFAULT on any error */
1799 newpol = mpol_new(policy, flags, policy_nodes);
1800 if (!IS_ERR(newpol)) {
1801 /* Create pseudo-vma that contains just the policy */
1802 struct vm_area_struct pvma;
1803
1804 memset(&pvma, 0, sizeof(struct vm_area_struct));
1805 /* Policy covers entire file */
1806 pvma.vm_end = TASK_SIZE;
1807 mpol_set_shared_policy(info, &pvma, newpol);
1808 mpol_put(newpol);
1809 }
1810 }
1811 }
1812
1813 int mpol_set_shared_policy(struct shared_policy *info,
1814 struct vm_area_struct *vma, struct mempolicy *npol)
1815 {
1816 int err;
1817 struct sp_node *new = NULL;
1818 unsigned long sz = vma_pages(vma);
1819
1820 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1821 vma->vm_pgoff,
1822 sz, npol ? npol->policy : -1,
1823 npol ? npol->flags : -1,
1824 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1825
1826 if (npol) {
1827 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1828 if (!new)
1829 return -ENOMEM;
1830 }
1831 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1832 if (err && new)
1833 kmem_cache_free(sn_cache, new);
1834 return err;
1835 }
1836
1837 /* Free a backing policy store on inode delete. */
1838 void mpol_free_shared_policy(struct shared_policy *p)
1839 {
1840 struct sp_node *n;
1841 struct rb_node *next;
1842
1843 if (!p->root.rb_node)
1844 return;
1845 spin_lock(&p->lock);
1846 next = rb_first(&p->root);
1847 while (next) {
1848 n = rb_entry(next, struct sp_node, nd);
1849 next = rb_next(&n->nd);
1850 rb_erase(&n->nd, &p->root);
1851 mpol_put(n->policy);
1852 kmem_cache_free(sn_cache, n);
1853 }
1854 spin_unlock(&p->lock);
1855 }
1856
1857 /* assumes fs == KERNEL_DS */
1858 void __init numa_policy_init(void)
1859 {
1860 nodemask_t interleave_nodes;
1861 unsigned long largest = 0;
1862 int nid, prefer = 0;
1863
1864 policy_cache = kmem_cache_create("numa_policy",
1865 sizeof(struct mempolicy),
1866 0, SLAB_PANIC, NULL);
1867
1868 sn_cache = kmem_cache_create("shared_policy_node",
1869 sizeof(struct sp_node),
1870 0, SLAB_PANIC, NULL);
1871
1872 /*
1873 * Set interleaving policy for system init. Interleaving is only
1874 * enabled across suitably sized nodes (default is >= 16MB), or
1875 * fall back to the largest node if they're all smaller.
1876 */
1877 nodes_clear(interleave_nodes);
1878 for_each_node_state(nid, N_HIGH_MEMORY) {
1879 unsigned long total_pages = node_present_pages(nid);
1880
1881 /* Preserve the largest node */
1882 if (largest < total_pages) {
1883 largest = total_pages;
1884 prefer = nid;
1885 }
1886
1887 /* Interleave this node? */
1888 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1889 node_set(nid, interleave_nodes);
1890 }
1891
1892 /* All too small, use the largest */
1893 if (unlikely(nodes_empty(interleave_nodes)))
1894 node_set(prefer, interleave_nodes);
1895
1896 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1897 printk("numa_policy_init: interleaving failed\n");
1898 }
1899
1900 /* Reset policy of current process to default */
1901 void numa_default_policy(void)
1902 {
1903 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1904 }
1905
1906 /*
1907 * Display pages allocated per node and memory policy via /proc.
1908 */
1909 static const char * const policy_types[] =
1910 { "default", "prefer", "bind", "interleave" };
1911
1912 /*
1913 * Convert a mempolicy into a string.
1914 * Returns the number of characters in buffer (if positive)
1915 * or an error (negative)
1916 */
1917 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1918 {
1919 char *p = buffer;
1920 int l;
1921 nodemask_t nodes;
1922 unsigned short mode = pol ? pol->policy : MPOL_DEFAULT;
1923 unsigned short flags = pol ? pol->flags : 0;
1924
1925 switch (mode) {
1926 case MPOL_DEFAULT:
1927 nodes_clear(nodes);
1928 break;
1929
1930 case MPOL_PREFERRED:
1931 nodes_clear(nodes);
1932 node_set(pol->v.preferred_node, nodes);
1933 break;
1934
1935 case MPOL_BIND:
1936 /* Fall through */
1937 case MPOL_INTERLEAVE:
1938 nodes = pol->v.nodes;
1939 break;
1940
1941 default:
1942 BUG();
1943 return -EFAULT;
1944 }
1945
1946 l = strlen(policy_types[mode]);
1947 if (buffer + maxlen < p + l + 1)
1948 return -ENOSPC;
1949
1950 strcpy(p, policy_types[mode]);
1951 p += l;
1952
1953 if (flags) {
1954 int need_bar = 0;
1955
1956 if (buffer + maxlen < p + 2)
1957 return -ENOSPC;
1958 *p++ = '=';
1959
1960 if (flags & MPOL_F_STATIC_NODES)
1961 p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
1962 if (flags & MPOL_F_RELATIVE_NODES)
1963 p += sprintf(p, "%srelative", need_bar++ ? "|" : "");
1964 }
1965
1966 if (!nodes_empty(nodes)) {
1967 if (buffer + maxlen < p + 2)
1968 return -ENOSPC;
1969 *p++ = '=';
1970 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1971 }
1972 return p - buffer;
1973 }
1974
1975 struct numa_maps {
1976 unsigned long pages;
1977 unsigned long anon;
1978 unsigned long active;
1979 unsigned long writeback;
1980 unsigned long mapcount_max;
1981 unsigned long dirty;
1982 unsigned long swapcache;
1983 unsigned long node[MAX_NUMNODES];
1984 };
1985
1986 static void gather_stats(struct page *page, void *private, int pte_dirty)
1987 {
1988 struct numa_maps *md = private;
1989 int count = page_mapcount(page);
1990
1991 md->pages++;
1992 if (pte_dirty || PageDirty(page))
1993 md->dirty++;
1994
1995 if (PageSwapCache(page))
1996 md->swapcache++;
1997
1998 if (PageActive(page))
1999 md->active++;
2000
2001 if (PageWriteback(page))
2002 md->writeback++;
2003
2004 if (PageAnon(page))
2005 md->anon++;
2006
2007 if (count > md->mapcount_max)
2008 md->mapcount_max = count;
2009
2010 md->node[page_to_nid(page)]++;
2011 }
2012
2013 #ifdef CONFIG_HUGETLB_PAGE
2014 static void check_huge_range(struct vm_area_struct *vma,
2015 unsigned long start, unsigned long end,
2016 struct numa_maps *md)
2017 {
2018 unsigned long addr;
2019 struct page *page;
2020
2021 for (addr = start; addr < end; addr += HPAGE_SIZE) {
2022 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2023 pte_t pte;
2024
2025 if (!ptep)
2026 continue;
2027
2028 pte = *ptep;
2029 if (pte_none(pte))
2030 continue;
2031
2032 page = pte_page(pte);
2033 if (!page)
2034 continue;
2035
2036 gather_stats(page, md, pte_dirty(*ptep));
2037 }
2038 }
2039 #else
2040 static inline void check_huge_range(struct vm_area_struct *vma,
2041 unsigned long start, unsigned long end,
2042 struct numa_maps *md)
2043 {
2044 }
2045 #endif
2046
2047 int show_numa_map(struct seq_file *m, void *v)
2048 {
2049 struct proc_maps_private *priv = m->private;
2050 struct vm_area_struct *vma = v;
2051 struct numa_maps *md;
2052 struct file *file = vma->vm_file;
2053 struct mm_struct *mm = vma->vm_mm;
2054 struct mempolicy *pol;
2055 int n;
2056 char buffer[50];
2057
2058 if (!mm)
2059 return 0;
2060
2061 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2062 if (!md)
2063 return 0;
2064
2065 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2066 mpol_to_str(buffer, sizeof(buffer), pol);
2067 /*
2068 * unref shared or other task's mempolicy
2069 */
2070 if (pol != &default_policy && pol != current->mempolicy)
2071 __mpol_put(pol);
2072
2073 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2074
2075 if (file) {
2076 seq_printf(m, " file=");
2077 seq_path(m, &file->f_path, "\n\t= ");
2078 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2079 seq_printf(m, " heap");
2080 } else if (vma->vm_start <= mm->start_stack &&
2081 vma->vm_end >= mm->start_stack) {
2082 seq_printf(m, " stack");
2083 }
2084
2085 if (is_vm_hugetlb_page(vma)) {
2086 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2087 seq_printf(m, " huge");
2088 } else {
2089 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2090 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2091 }
2092
2093 if (!md->pages)
2094 goto out;
2095
2096 if (md->anon)
2097 seq_printf(m," anon=%lu",md->anon);
2098
2099 if (md->dirty)
2100 seq_printf(m," dirty=%lu",md->dirty);
2101
2102 if (md->pages != md->anon && md->pages != md->dirty)
2103 seq_printf(m, " mapped=%lu", md->pages);
2104
2105 if (md->mapcount_max > 1)
2106 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2107
2108 if (md->swapcache)
2109 seq_printf(m," swapcache=%lu", md->swapcache);
2110
2111 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2112 seq_printf(m," active=%lu", md->active);
2113
2114 if (md->writeback)
2115 seq_printf(m," writeback=%lu", md->writeback);
2116
2117 for_each_node_state(n, N_HIGH_MEMORY)
2118 if (md->node[n])
2119 seq_printf(m, " N%d=%lu", n, md->node[n]);
2120 out:
2121 seq_putc(m, '\n');
2122 kfree(md);
2123
2124 if (m->count < m->size)
2125 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2126 return 0;
2127 }