]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mempolicy.c
ALSA: hda/realtek - Fix silent output on MSI-GL73
[mirror_ubuntu-bionic-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = *nodes;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static int migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 /*
432 * queue_pages_pmd() has four possible return values:
433 * 0 - pages are placed on the right node or queued successfully.
434 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
435 * specified.
436 * 2 - THP was split.
437 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
438 * existing page was already on a node that does not follow the
439 * policy.
440 */
441 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
442 unsigned long end, struct mm_walk *walk)
443 {
444 int ret = 0;
445 struct page *page;
446 struct queue_pages *qp = walk->private;
447 unsigned long flags;
448
449 if (unlikely(is_pmd_migration_entry(*pmd))) {
450 ret = -EIO;
451 goto unlock;
452 }
453 page = pmd_page(*pmd);
454 if (is_huge_zero_page(page)) {
455 spin_unlock(ptl);
456 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
457 ret = 2;
458 goto out;
459 }
460 if (!thp_migration_supported()) {
461 get_page(page);
462 spin_unlock(ptl);
463 lock_page(page);
464 ret = split_huge_page(page);
465 unlock_page(page);
466 put_page(page);
467 goto out;
468 }
469 if (!queue_pages_required(page, qp))
470 goto unlock;
471
472 flags = qp->flags;
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
477 ret = 1;
478 goto unlock;
479 }
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 *
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully.
494 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
495 * specified.
496 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
497 * on a node that does not follow the policy.
498 */
499 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
500 unsigned long end, struct mm_walk *walk)
501 {
502 struct vm_area_struct *vma = walk->vma;
503 struct page *page;
504 struct queue_pages *qp = walk->private;
505 unsigned long flags = qp->flags;
506 int ret;
507 bool has_unmovable = false;
508 pte_t *pte;
509 spinlock_t *ptl;
510
511 ptl = pmd_trans_huge_lock(pmd, vma);
512 if (ptl) {
513 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
514 if (ret != 2)
515 return ret;
516 }
517 /* THP was split, fall through to pte walk */
518
519 if (pmd_trans_unstable(pmd))
520 return 0;
521 retry:
522 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE) {
524 if (!pte_present(*pte))
525 continue;
526 page = vm_normal_page(vma, addr, *pte);
527 if (!page)
528 continue;
529 /*
530 * vm_normal_page() filters out zero pages, but there might
531 * still be PageReserved pages to skip, perhaps in a VDSO.
532 */
533 if (PageReserved(page))
534 continue;
535 if (!queue_pages_required(page, qp))
536 continue;
537 if (PageTransCompound(page) && !thp_migration_supported()) {
538 get_page(page);
539 pte_unmap_unlock(pte, ptl);
540 lock_page(page);
541 ret = split_huge_page(page);
542 unlock_page(page);
543 put_page(page);
544 /* Failed to split -- skip. */
545 if (ret) {
546 pte = pte_offset_map_lock(walk->mm, pmd,
547 addr, &ptl);
548 continue;
549 }
550 goto retry;
551 }
552
553 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
554 /* MPOL_MF_STRICT must be specified if we get here */
555 if (!vma_migratable(vma)) {
556 has_unmovable = true;
557 break;
558 }
559
560 /*
561 * Do not abort immediately since there may be
562 * temporary off LRU pages in the range. Still
563 * need migrate other LRU pages.
564 */
565 if (migrate_page_add(page, qp->pagelist, flags))
566 has_unmovable = true;
567 } else
568 break;
569 }
570 pte_unmap_unlock(pte - 1, ptl);
571 cond_resched();
572
573 if (has_unmovable)
574 return 1;
575
576 return addr != end ? -EIO : 0;
577 }
578
579 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
580 unsigned long addr, unsigned long end,
581 struct mm_walk *walk)
582 {
583 #ifdef CONFIG_HUGETLB_PAGE
584 struct queue_pages *qp = walk->private;
585 unsigned long flags = qp->flags;
586 struct page *page;
587 spinlock_t *ptl;
588 pte_t entry;
589
590 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
591 entry = huge_ptep_get(pte);
592 if (!pte_present(entry))
593 goto unlock;
594 page = pte_page(entry);
595 if (!queue_pages_required(page, qp))
596 goto unlock;
597 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
598 if (flags & (MPOL_MF_MOVE_ALL) ||
599 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
600 isolate_huge_page(page, qp->pagelist);
601 unlock:
602 spin_unlock(ptl);
603 #else
604 BUG();
605 #endif
606 return 0;
607 }
608
609 #ifdef CONFIG_NUMA_BALANCING
610 /*
611 * This is used to mark a range of virtual addresses to be inaccessible.
612 * These are later cleared by a NUMA hinting fault. Depending on these
613 * faults, pages may be migrated for better NUMA placement.
614 *
615 * This is assuming that NUMA faults are handled using PROT_NONE. If
616 * an architecture makes a different choice, it will need further
617 * changes to the core.
618 */
619 unsigned long change_prot_numa(struct vm_area_struct *vma,
620 unsigned long addr, unsigned long end)
621 {
622 int nr_updated;
623
624 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
625 if (nr_updated)
626 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
627
628 return nr_updated;
629 }
630 #else
631 static unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633 {
634 return 0;
635 }
636 #endif /* CONFIG_NUMA_BALANCING */
637
638 static int queue_pages_test_walk(unsigned long start, unsigned long end,
639 struct mm_walk *walk)
640 {
641 struct vm_area_struct *vma = walk->vma;
642 struct queue_pages *qp = walk->private;
643 unsigned long endvma = vma->vm_end;
644 unsigned long flags = qp->flags;
645
646 /*
647 * Need check MPOL_MF_STRICT to return -EIO if possible
648 * regardless of vma_migratable
649 */
650 if (!vma_migratable(vma) &&
651 !(flags & MPOL_MF_STRICT))
652 return 1;
653
654 if (endvma > end)
655 endvma = end;
656 if (vma->vm_start > start)
657 start = vma->vm_start;
658
659 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
660 if (!vma->vm_next && vma->vm_end < end)
661 return -EFAULT;
662 if (qp->prev && qp->prev->vm_end < vma->vm_start)
663 return -EFAULT;
664 }
665
666 qp->prev = vma;
667
668 if (flags & MPOL_MF_LAZY) {
669 /* Similar to task_numa_work, skip inaccessible VMAs */
670 if (!is_vm_hugetlb_page(vma) &&
671 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
672 !(vma->vm_flags & VM_MIXEDMAP))
673 change_prot_numa(vma, start, endvma);
674 return 1;
675 }
676
677 /* queue pages from current vma */
678 if (flags & MPOL_MF_VALID)
679 return 0;
680 return 1;
681 }
682
683 /*
684 * Walk through page tables and collect pages to be migrated.
685 *
686 * If pages found in a given range are on a set of nodes (determined by
687 * @nodes and @flags,) it's isolated and queued to the pagelist which is
688 * passed via @private.
689 *
690 * queue_pages_range() has three possible return values:
691 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
692 * specified.
693 * 0 - queue pages successfully or no misplaced page.
694 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
695 * memory range specified by nodemask and maxnode points outside
696 * your accessible address space (-EFAULT)
697 */
698 static int
699 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
700 nodemask_t *nodes, unsigned long flags,
701 struct list_head *pagelist)
702 {
703 struct queue_pages qp = {
704 .pagelist = pagelist,
705 .flags = flags,
706 .nmask = nodes,
707 .prev = NULL,
708 };
709 struct mm_walk queue_pages_walk = {
710 .hugetlb_entry = queue_pages_hugetlb,
711 .pmd_entry = queue_pages_pte_range,
712 .test_walk = queue_pages_test_walk,
713 .mm = mm,
714 .private = &qp,
715 };
716
717 return walk_page_range(start, end, &queue_pages_walk);
718 }
719
720 /*
721 * Apply policy to a single VMA
722 * This must be called with the mmap_sem held for writing.
723 */
724 static int vma_replace_policy(struct vm_area_struct *vma,
725 struct mempolicy *pol)
726 {
727 int err;
728 struct mempolicy *old;
729 struct mempolicy *new;
730
731 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
732 vma->vm_start, vma->vm_end, vma->vm_pgoff,
733 vma->vm_ops, vma->vm_file,
734 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
735
736 new = mpol_dup(pol);
737 if (IS_ERR(new))
738 return PTR_ERR(new);
739
740 if (vma->vm_ops && vma->vm_ops->set_policy) {
741 err = vma->vm_ops->set_policy(vma, new);
742 if (err)
743 goto err_out;
744 }
745
746 old = vma->vm_policy;
747 vma->vm_policy = new; /* protected by mmap_sem */
748 mpol_put(old);
749
750 return 0;
751 err_out:
752 mpol_put(new);
753 return err;
754 }
755
756 /* Step 2: apply policy to a range and do splits. */
757 static int mbind_range(struct mm_struct *mm, unsigned long start,
758 unsigned long end, struct mempolicy *new_pol)
759 {
760 struct vm_area_struct *next;
761 struct vm_area_struct *prev;
762 struct vm_area_struct *vma;
763 int err = 0;
764 pgoff_t pgoff;
765 unsigned long vmstart;
766 unsigned long vmend;
767
768 vma = find_vma(mm, start);
769 if (!vma || vma->vm_start > start)
770 return -EFAULT;
771
772 prev = vma->vm_prev;
773 if (start > vma->vm_start)
774 prev = vma;
775
776 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
777 next = vma->vm_next;
778 vmstart = max(start, vma->vm_start);
779 vmend = min(end, vma->vm_end);
780
781 if (mpol_equal(vma_policy(vma), new_pol))
782 continue;
783
784 pgoff = vma->vm_pgoff +
785 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
786 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
787 vma->anon_vma, vma->vm_file, pgoff,
788 new_pol, vma->vm_userfaultfd_ctx);
789 if (prev) {
790 vma = prev;
791 next = vma->vm_next;
792 if (mpol_equal(vma_policy(vma), new_pol))
793 continue;
794 /* vma_merge() joined vma && vma->next, case 8 */
795 goto replace;
796 }
797 if (vma->vm_start != vmstart) {
798 err = split_vma(vma->vm_mm, vma, vmstart, 1);
799 if (err)
800 goto out;
801 }
802 if (vma->vm_end != vmend) {
803 err = split_vma(vma->vm_mm, vma, vmend, 0);
804 if (err)
805 goto out;
806 }
807 replace:
808 err = vma_replace_policy(vma, new_pol);
809 if (err)
810 goto out;
811 }
812
813 out:
814 return err;
815 }
816
817 /* Set the process memory policy */
818 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
819 nodemask_t *nodes)
820 {
821 struct mempolicy *new, *old;
822 NODEMASK_SCRATCH(scratch);
823 int ret;
824
825 if (!scratch)
826 return -ENOMEM;
827
828 new = mpol_new(mode, flags, nodes);
829 if (IS_ERR(new)) {
830 ret = PTR_ERR(new);
831 goto out;
832 }
833
834 task_lock(current);
835 ret = mpol_set_nodemask(new, nodes, scratch);
836 if (ret) {
837 task_unlock(current);
838 mpol_put(new);
839 goto out;
840 }
841 old = current->mempolicy;
842 current->mempolicy = new;
843 if (new && new->mode == MPOL_INTERLEAVE)
844 current->il_prev = MAX_NUMNODES-1;
845 task_unlock(current);
846 mpol_put(old);
847 ret = 0;
848 out:
849 NODEMASK_SCRATCH_FREE(scratch);
850 return ret;
851 }
852
853 /*
854 * Return nodemask for policy for get_mempolicy() query
855 *
856 * Called with task's alloc_lock held
857 */
858 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
859 {
860 nodes_clear(*nodes);
861 if (p == &default_policy)
862 return;
863
864 switch (p->mode) {
865 case MPOL_BIND:
866 /* Fall through */
867 case MPOL_INTERLEAVE:
868 *nodes = p->v.nodes;
869 break;
870 case MPOL_PREFERRED:
871 if (!(p->flags & MPOL_F_LOCAL))
872 node_set(p->v.preferred_node, *nodes);
873 /* else return empty node mask for local allocation */
874 break;
875 default:
876 BUG();
877 }
878 }
879
880 static int lookup_node(unsigned long addr)
881 {
882 struct page *p;
883 int err;
884
885 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
886 if (err >= 0) {
887 err = page_to_nid(p);
888 put_page(p);
889 }
890 return err;
891 }
892
893 /* Retrieve NUMA policy */
894 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
895 unsigned long addr, unsigned long flags)
896 {
897 int err;
898 struct mm_struct *mm = current->mm;
899 struct vm_area_struct *vma = NULL;
900 struct mempolicy *pol = current->mempolicy;
901
902 if (flags &
903 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
904 return -EINVAL;
905
906 if (flags & MPOL_F_MEMS_ALLOWED) {
907 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
908 return -EINVAL;
909 *policy = 0; /* just so it's initialized */
910 task_lock(current);
911 *nmask = cpuset_current_mems_allowed;
912 task_unlock(current);
913 return 0;
914 }
915
916 if (flags & MPOL_F_ADDR) {
917 /*
918 * Do NOT fall back to task policy if the
919 * vma/shared policy at addr is NULL. We
920 * want to return MPOL_DEFAULT in this case.
921 */
922 down_read(&mm->mmap_sem);
923 vma = find_vma_intersection(mm, addr, addr+1);
924 if (!vma) {
925 up_read(&mm->mmap_sem);
926 return -EFAULT;
927 }
928 if (vma->vm_ops && vma->vm_ops->get_policy)
929 pol = vma->vm_ops->get_policy(vma, addr);
930 else
931 pol = vma->vm_policy;
932 } else if (addr)
933 return -EINVAL;
934
935 if (!pol)
936 pol = &default_policy; /* indicates default behavior */
937
938 if (flags & MPOL_F_NODE) {
939 if (flags & MPOL_F_ADDR) {
940 err = lookup_node(addr);
941 if (err < 0)
942 goto out;
943 *policy = err;
944 } else if (pol == current->mempolicy &&
945 pol->mode == MPOL_INTERLEAVE) {
946 *policy = next_node_in(current->il_prev, pol->v.nodes);
947 } else {
948 err = -EINVAL;
949 goto out;
950 }
951 } else {
952 *policy = pol == &default_policy ? MPOL_DEFAULT :
953 pol->mode;
954 /*
955 * Internal mempolicy flags must be masked off before exposing
956 * the policy to userspace.
957 */
958 *policy |= (pol->flags & MPOL_MODE_FLAGS);
959 }
960
961 err = 0;
962 if (nmask) {
963 if (mpol_store_user_nodemask(pol)) {
964 *nmask = pol->w.user_nodemask;
965 } else {
966 task_lock(current);
967 get_policy_nodemask(pol, nmask);
968 task_unlock(current);
969 }
970 }
971
972 out:
973 mpol_cond_put(pol);
974 if (vma)
975 up_read(&current->mm->mmap_sem);
976 return err;
977 }
978
979 #ifdef CONFIG_MIGRATION
980 /*
981 * page migration, thp tail pages can be passed.
982 */
983 static int migrate_page_add(struct page *page, struct list_head *pagelist,
984 unsigned long flags)
985 {
986 struct page *head = compound_head(page);
987 /*
988 * Avoid migrating a page that is shared with others.
989 */
990 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
991 if (!isolate_lru_page(head)) {
992 list_add_tail(&head->lru, pagelist);
993 mod_node_page_state(page_pgdat(head),
994 NR_ISOLATED_ANON + page_is_file_cache(head),
995 hpage_nr_pages(head));
996 } else if (flags & MPOL_MF_STRICT) {
997 /*
998 * Non-movable page may reach here. And, there may be
999 * temporary off LRU pages or non-LRU movable pages.
1000 * Treat them as unmovable pages since they can't be
1001 * isolated, so they can't be moved at the moment. It
1002 * should return -EIO for this case too.
1003 */
1004 return -EIO;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1012 {
1013 if (PageHuge(page))
1014 return alloc_huge_page_node(page_hstate(compound_head(page)),
1015 node);
1016 else if (thp_migration_supported() && PageTransHuge(page)) {
1017 struct page *thp;
1018
1019 thp = alloc_pages_node(node,
1020 (GFP_TRANSHUGE | __GFP_THISNODE),
1021 HPAGE_PMD_ORDER);
1022 if (!thp)
1023 return NULL;
1024 prep_transhuge_page(thp);
1025 return thp;
1026 } else
1027 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
1028 __GFP_THISNODE, 0);
1029 }
1030
1031 /*
1032 * Migrate pages from one node to a target node.
1033 * Returns error or the number of pages not migrated.
1034 */
1035 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1036 int flags)
1037 {
1038 nodemask_t nmask;
1039 LIST_HEAD(pagelist);
1040 int err = 0;
1041
1042 nodes_clear(nmask);
1043 node_set(source, nmask);
1044
1045 /*
1046 * This does not "check" the range but isolates all pages that
1047 * need migration. Between passing in the full user address
1048 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1049 */
1050 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1051 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1052 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1053
1054 if (!list_empty(&pagelist)) {
1055 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1056 MIGRATE_SYNC, MR_SYSCALL);
1057 if (err)
1058 putback_movable_pages(&pagelist);
1059 }
1060
1061 return err;
1062 }
1063
1064 /*
1065 * Move pages between the two nodesets so as to preserve the physical
1066 * layout as much as possible.
1067 *
1068 * Returns the number of page that could not be moved.
1069 */
1070 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1071 const nodemask_t *to, int flags)
1072 {
1073 int busy = 0;
1074 int err;
1075 nodemask_t tmp;
1076
1077 err = migrate_prep();
1078 if (err)
1079 return err;
1080
1081 down_read(&mm->mmap_sem);
1082
1083 /*
1084 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1085 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1086 * bit in 'tmp', and return that <source, dest> pair for migration.
1087 * The pair of nodemasks 'to' and 'from' define the map.
1088 *
1089 * If no pair of bits is found that way, fallback to picking some
1090 * pair of 'source' and 'dest' bits that are not the same. If the
1091 * 'source' and 'dest' bits are the same, this represents a node
1092 * that will be migrating to itself, so no pages need move.
1093 *
1094 * If no bits are left in 'tmp', or if all remaining bits left
1095 * in 'tmp' correspond to the same bit in 'to', return false
1096 * (nothing left to migrate).
1097 *
1098 * This lets us pick a pair of nodes to migrate between, such that
1099 * if possible the dest node is not already occupied by some other
1100 * source node, minimizing the risk of overloading the memory on a
1101 * node that would happen if we migrated incoming memory to a node
1102 * before migrating outgoing memory source that same node.
1103 *
1104 * A single scan of tmp is sufficient. As we go, we remember the
1105 * most recent <s, d> pair that moved (s != d). If we find a pair
1106 * that not only moved, but what's better, moved to an empty slot
1107 * (d is not set in tmp), then we break out then, with that pair.
1108 * Otherwise when we finish scanning from_tmp, we at least have the
1109 * most recent <s, d> pair that moved. If we get all the way through
1110 * the scan of tmp without finding any node that moved, much less
1111 * moved to an empty node, then there is nothing left worth migrating.
1112 */
1113
1114 tmp = *from;
1115 while (!nodes_empty(tmp)) {
1116 int s,d;
1117 int source = NUMA_NO_NODE;
1118 int dest = 0;
1119
1120 for_each_node_mask(s, tmp) {
1121
1122 /*
1123 * do_migrate_pages() tries to maintain the relative
1124 * node relationship of the pages established between
1125 * threads and memory areas.
1126 *
1127 * However if the number of source nodes is not equal to
1128 * the number of destination nodes we can not preserve
1129 * this node relative relationship. In that case, skip
1130 * copying memory from a node that is in the destination
1131 * mask.
1132 *
1133 * Example: [2,3,4] -> [3,4,5] moves everything.
1134 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1135 */
1136
1137 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1138 (node_isset(s, *to)))
1139 continue;
1140
1141 d = node_remap(s, *from, *to);
1142 if (s == d)
1143 continue;
1144
1145 source = s; /* Node moved. Memorize */
1146 dest = d;
1147
1148 /* dest not in remaining from nodes? */
1149 if (!node_isset(dest, tmp))
1150 break;
1151 }
1152 if (source == NUMA_NO_NODE)
1153 break;
1154
1155 node_clear(source, tmp);
1156 err = migrate_to_node(mm, source, dest, flags);
1157 if (err > 0)
1158 busy += err;
1159 if (err < 0)
1160 break;
1161 }
1162 up_read(&mm->mmap_sem);
1163 if (err < 0)
1164 return err;
1165 return busy;
1166
1167 }
1168
1169 /*
1170 * Allocate a new page for page migration based on vma policy.
1171 * Start by assuming the page is mapped by the same vma as contains @start.
1172 * Search forward from there, if not. N.B., this assumes that the
1173 * list of pages handed to migrate_pages()--which is how we get here--
1174 * is in virtual address order.
1175 */
1176 static struct page *new_page(struct page *page, unsigned long start, int **x)
1177 {
1178 struct vm_area_struct *vma;
1179 unsigned long uninitialized_var(address);
1180
1181 vma = find_vma(current->mm, start);
1182 while (vma) {
1183 address = page_address_in_vma(page, vma);
1184 if (address != -EFAULT)
1185 break;
1186 vma = vma->vm_next;
1187 }
1188
1189 if (PageHuge(page)) {
1190 BUG_ON(!vma);
1191 return alloc_huge_page_noerr(vma, address, 1);
1192 } else if (thp_migration_supported() && PageTransHuge(page)) {
1193 struct page *thp;
1194
1195 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1196 HPAGE_PMD_ORDER);
1197 if (!thp)
1198 return NULL;
1199 prep_transhuge_page(thp);
1200 return thp;
1201 }
1202 /*
1203 * if !vma, alloc_page_vma() will use task or system default policy
1204 */
1205 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1206 vma, address);
1207 }
1208 #else
1209
1210 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1211 unsigned long flags)
1212 {
1213 return -EIO;
1214 }
1215
1216 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1217 const nodemask_t *to, int flags)
1218 {
1219 return -ENOSYS;
1220 }
1221
1222 static struct page *new_page(struct page *page, unsigned long start, int **x)
1223 {
1224 return NULL;
1225 }
1226 #endif
1227
1228 static long do_mbind(unsigned long start, unsigned long len,
1229 unsigned short mode, unsigned short mode_flags,
1230 nodemask_t *nmask, unsigned long flags)
1231 {
1232 struct mm_struct *mm = current->mm;
1233 struct mempolicy *new;
1234 unsigned long end;
1235 int err;
1236 int ret;
1237 LIST_HEAD(pagelist);
1238
1239 if (flags & ~(unsigned long)MPOL_MF_VALID)
1240 return -EINVAL;
1241 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1242 return -EPERM;
1243
1244 if (start & ~PAGE_MASK)
1245 return -EINVAL;
1246
1247 if (mode == MPOL_DEFAULT)
1248 flags &= ~MPOL_MF_STRICT;
1249
1250 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1251 end = start + len;
1252
1253 if (end < start)
1254 return -EINVAL;
1255 if (end == start)
1256 return 0;
1257
1258 new = mpol_new(mode, mode_flags, nmask);
1259 if (IS_ERR(new))
1260 return PTR_ERR(new);
1261
1262 if (flags & MPOL_MF_LAZY)
1263 new->flags |= MPOL_F_MOF;
1264
1265 /*
1266 * If we are using the default policy then operation
1267 * on discontinuous address spaces is okay after all
1268 */
1269 if (!new)
1270 flags |= MPOL_MF_DISCONTIG_OK;
1271
1272 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1273 start, start + len, mode, mode_flags,
1274 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1275
1276 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1277
1278 err = migrate_prep();
1279 if (err)
1280 goto mpol_out;
1281 }
1282 {
1283 NODEMASK_SCRATCH(scratch);
1284 if (scratch) {
1285 down_write(&mm->mmap_sem);
1286 task_lock(current);
1287 err = mpol_set_nodemask(new, nmask, scratch);
1288 task_unlock(current);
1289 if (err)
1290 up_write(&mm->mmap_sem);
1291 } else
1292 err = -ENOMEM;
1293 NODEMASK_SCRATCH_FREE(scratch);
1294 }
1295 if (err)
1296 goto mpol_out;
1297
1298 ret = queue_pages_range(mm, start, end, nmask,
1299 flags | MPOL_MF_INVERT, &pagelist);
1300
1301 if (ret < 0) {
1302 err = ret;
1303 goto up_out;
1304 }
1305
1306 err = mbind_range(mm, start, end, new);
1307
1308 if (!err) {
1309 int nr_failed = 0;
1310
1311 if (!list_empty(&pagelist)) {
1312 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1313 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1314 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1315 if (nr_failed)
1316 putback_movable_pages(&pagelist);
1317 }
1318
1319 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1320 err = -EIO;
1321 } else {
1322 up_out:
1323 if (!list_empty(&pagelist))
1324 putback_movable_pages(&pagelist);
1325 }
1326
1327 up_write(&mm->mmap_sem);
1328 mpol_out:
1329 mpol_put(new);
1330 return err;
1331 }
1332
1333 /*
1334 * User space interface with variable sized bitmaps for nodelists.
1335 */
1336
1337 /* Copy a node mask from user space. */
1338 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1339 unsigned long maxnode)
1340 {
1341 unsigned long k;
1342 unsigned long t;
1343 unsigned long nlongs;
1344 unsigned long endmask;
1345
1346 --maxnode;
1347 nodes_clear(*nodes);
1348 if (maxnode == 0 || !nmask)
1349 return 0;
1350 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1351 return -EINVAL;
1352
1353 nlongs = BITS_TO_LONGS(maxnode);
1354 if ((maxnode % BITS_PER_LONG) == 0)
1355 endmask = ~0UL;
1356 else
1357 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1358
1359 /*
1360 * When the user specified more nodes than supported just check
1361 * if the non supported part is all zero.
1362 *
1363 * If maxnode have more longs than MAX_NUMNODES, check
1364 * the bits in that area first. And then go through to
1365 * check the rest bits which equal or bigger than MAX_NUMNODES.
1366 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1367 */
1368 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1369 if (nlongs > PAGE_SIZE/sizeof(long))
1370 return -EINVAL;
1371 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1372 if (get_user(t, nmask + k))
1373 return -EFAULT;
1374 if (k == nlongs - 1) {
1375 if (t & endmask)
1376 return -EINVAL;
1377 } else if (t)
1378 return -EINVAL;
1379 }
1380 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1381 endmask = ~0UL;
1382 }
1383
1384 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1385 unsigned long valid_mask = endmask;
1386
1387 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1388 if (get_user(t, nmask + nlongs - 1))
1389 return -EFAULT;
1390 if (t & valid_mask)
1391 return -EINVAL;
1392 }
1393
1394 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1395 return -EFAULT;
1396 nodes_addr(*nodes)[nlongs-1] &= endmask;
1397 return 0;
1398 }
1399
1400 /* Copy a kernel node mask to user space */
1401 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1402 nodemask_t *nodes)
1403 {
1404 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1405 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1406
1407 if (copy > nbytes) {
1408 if (copy > PAGE_SIZE)
1409 return -EINVAL;
1410 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1411 return -EFAULT;
1412 copy = nbytes;
1413 }
1414 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1415 }
1416
1417 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1418 unsigned long, mode, const unsigned long __user *, nmask,
1419 unsigned long, maxnode, unsigned, flags)
1420 {
1421 nodemask_t nodes;
1422 int err;
1423 unsigned short mode_flags;
1424
1425 mode_flags = mode & MPOL_MODE_FLAGS;
1426 mode &= ~MPOL_MODE_FLAGS;
1427 if (mode >= MPOL_MAX)
1428 return -EINVAL;
1429 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1430 (mode_flags & MPOL_F_RELATIVE_NODES))
1431 return -EINVAL;
1432 err = get_nodes(&nodes, nmask, maxnode);
1433 if (err)
1434 return err;
1435 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1436 }
1437
1438 /* Set the process memory policy */
1439 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1440 unsigned long, maxnode)
1441 {
1442 int err;
1443 nodemask_t nodes;
1444 unsigned short flags;
1445
1446 flags = mode & MPOL_MODE_FLAGS;
1447 mode &= ~MPOL_MODE_FLAGS;
1448 if ((unsigned int)mode >= MPOL_MAX)
1449 return -EINVAL;
1450 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1451 return -EINVAL;
1452 err = get_nodes(&nodes, nmask, maxnode);
1453 if (err)
1454 return err;
1455 return do_set_mempolicy(mode, flags, &nodes);
1456 }
1457
1458 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1459 const unsigned long __user *, old_nodes,
1460 const unsigned long __user *, new_nodes)
1461 {
1462 struct mm_struct *mm = NULL;
1463 struct task_struct *task;
1464 nodemask_t task_nodes;
1465 int err;
1466 nodemask_t *old;
1467 nodemask_t *new;
1468 NODEMASK_SCRATCH(scratch);
1469
1470 if (!scratch)
1471 return -ENOMEM;
1472
1473 old = &scratch->mask1;
1474 new = &scratch->mask2;
1475
1476 err = get_nodes(old, old_nodes, maxnode);
1477 if (err)
1478 goto out;
1479
1480 err = get_nodes(new, new_nodes, maxnode);
1481 if (err)
1482 goto out;
1483
1484 /* Find the mm_struct */
1485 rcu_read_lock();
1486 task = pid ? find_task_by_vpid(pid) : current;
1487 if (!task) {
1488 rcu_read_unlock();
1489 err = -ESRCH;
1490 goto out;
1491 }
1492 get_task_struct(task);
1493
1494 err = -EINVAL;
1495
1496 /*
1497 * Check if this process has the right to modify the specified process.
1498 * Use the regular "ptrace_may_access()" checks.
1499 */
1500 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1501 rcu_read_unlock();
1502 err = -EPERM;
1503 goto out_put;
1504 }
1505 rcu_read_unlock();
1506
1507 task_nodes = cpuset_mems_allowed(task);
1508 /* Is the user allowed to access the target nodes? */
1509 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1510 err = -EPERM;
1511 goto out_put;
1512 }
1513
1514 task_nodes = cpuset_mems_allowed(current);
1515 nodes_and(*new, *new, task_nodes);
1516 if (nodes_empty(*new))
1517 goto out_put;
1518
1519 nodes_and(*new, *new, node_states[N_MEMORY]);
1520 if (nodes_empty(*new))
1521 goto out_put;
1522
1523 err = security_task_movememory(task);
1524 if (err)
1525 goto out_put;
1526
1527 mm = get_task_mm(task);
1528 put_task_struct(task);
1529
1530 if (!mm) {
1531 err = -EINVAL;
1532 goto out;
1533 }
1534
1535 err = do_migrate_pages(mm, old, new,
1536 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1537
1538 mmput(mm);
1539 out:
1540 NODEMASK_SCRATCH_FREE(scratch);
1541
1542 return err;
1543
1544 out_put:
1545 put_task_struct(task);
1546 goto out;
1547
1548 }
1549
1550
1551 /* Retrieve NUMA policy */
1552 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1553 unsigned long __user *, nmask, unsigned long, maxnode,
1554 unsigned long, addr, unsigned long, flags)
1555 {
1556 int err;
1557 int uninitialized_var(pval);
1558 nodemask_t nodes;
1559
1560 if (nmask != NULL && maxnode < nr_node_ids)
1561 return -EINVAL;
1562
1563 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1564
1565 if (err)
1566 return err;
1567
1568 if (policy && put_user(pval, policy))
1569 return -EFAULT;
1570
1571 if (nmask)
1572 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1573
1574 return err;
1575 }
1576
1577 #ifdef CONFIG_COMPAT
1578
1579 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1580 compat_ulong_t __user *, nmask,
1581 compat_ulong_t, maxnode,
1582 compat_ulong_t, addr, compat_ulong_t, flags)
1583 {
1584 long err;
1585 unsigned long __user *nm = NULL;
1586 unsigned long nr_bits, alloc_size;
1587 DECLARE_BITMAP(bm, MAX_NUMNODES);
1588
1589 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1590 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1591
1592 if (nmask)
1593 nm = compat_alloc_user_space(alloc_size);
1594
1595 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1596
1597 if (!err && nmask) {
1598 unsigned long copy_size;
1599 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1600 err = copy_from_user(bm, nm, copy_size);
1601 /* ensure entire bitmap is zeroed */
1602 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1603 err |= compat_put_bitmap(nmask, bm, nr_bits);
1604 }
1605
1606 return err;
1607 }
1608
1609 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1610 compat_ulong_t, maxnode)
1611 {
1612 unsigned long __user *nm = NULL;
1613 unsigned long nr_bits, alloc_size;
1614 DECLARE_BITMAP(bm, MAX_NUMNODES);
1615
1616 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1617 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1618
1619 if (nmask) {
1620 if (compat_get_bitmap(bm, nmask, nr_bits))
1621 return -EFAULT;
1622 nm = compat_alloc_user_space(alloc_size);
1623 if (copy_to_user(nm, bm, alloc_size))
1624 return -EFAULT;
1625 }
1626
1627 return sys_set_mempolicy(mode, nm, nr_bits+1);
1628 }
1629
1630 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1631 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1632 compat_ulong_t, maxnode, compat_ulong_t, flags)
1633 {
1634 unsigned long __user *nm = NULL;
1635 unsigned long nr_bits, alloc_size;
1636 nodemask_t bm;
1637
1638 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1639 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1640
1641 if (nmask) {
1642 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1643 return -EFAULT;
1644 nm = compat_alloc_user_space(alloc_size);
1645 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1646 return -EFAULT;
1647 }
1648
1649 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1650 }
1651
1652 #endif
1653
1654 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1655 unsigned long addr)
1656 {
1657 struct mempolicy *pol = NULL;
1658
1659 if (vma) {
1660 if (vma->vm_ops && vma->vm_ops->get_policy) {
1661 pol = vma->vm_ops->get_policy(vma, addr);
1662 } else if (vma->vm_policy) {
1663 pol = vma->vm_policy;
1664
1665 /*
1666 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1667 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1668 * count on these policies which will be dropped by
1669 * mpol_cond_put() later
1670 */
1671 if (mpol_needs_cond_ref(pol))
1672 mpol_get(pol);
1673 }
1674 }
1675
1676 return pol;
1677 }
1678
1679 /*
1680 * get_vma_policy(@vma, @addr)
1681 * @vma: virtual memory area whose policy is sought
1682 * @addr: address in @vma for shared policy lookup
1683 *
1684 * Returns effective policy for a VMA at specified address.
1685 * Falls back to current->mempolicy or system default policy, as necessary.
1686 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1687 * count--added by the get_policy() vm_op, as appropriate--to protect against
1688 * freeing by another task. It is the caller's responsibility to free the
1689 * extra reference for shared policies.
1690 */
1691 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1692 unsigned long addr)
1693 {
1694 struct mempolicy *pol = __get_vma_policy(vma, addr);
1695
1696 if (!pol)
1697 pol = get_task_policy(current);
1698
1699 return pol;
1700 }
1701
1702 bool vma_policy_mof(struct vm_area_struct *vma)
1703 {
1704 struct mempolicy *pol;
1705
1706 if (vma->vm_ops && vma->vm_ops->get_policy) {
1707 bool ret = false;
1708
1709 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1710 if (pol && (pol->flags & MPOL_F_MOF))
1711 ret = true;
1712 mpol_cond_put(pol);
1713
1714 return ret;
1715 }
1716
1717 pol = vma->vm_policy;
1718 if (!pol)
1719 pol = get_task_policy(current);
1720
1721 return pol->flags & MPOL_F_MOF;
1722 }
1723
1724 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1725 {
1726 enum zone_type dynamic_policy_zone = policy_zone;
1727
1728 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1729
1730 /*
1731 * if policy->v.nodes has movable memory only,
1732 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1733 *
1734 * policy->v.nodes is intersect with node_states[N_MEMORY].
1735 * so if the following test faile, it implies
1736 * policy->v.nodes has movable memory only.
1737 */
1738 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1739 dynamic_policy_zone = ZONE_MOVABLE;
1740
1741 return zone >= dynamic_policy_zone;
1742 }
1743
1744 /*
1745 * Return a nodemask representing a mempolicy for filtering nodes for
1746 * page allocation
1747 */
1748 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1749 {
1750 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1751 if (unlikely(policy->mode == MPOL_BIND) &&
1752 apply_policy_zone(policy, gfp_zone(gfp)) &&
1753 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1754 return &policy->v.nodes;
1755
1756 return NULL;
1757 }
1758
1759 /* Return the node id preferred by the given mempolicy, or the given id */
1760 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1761 int nd)
1762 {
1763 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1764 nd = policy->v.preferred_node;
1765 else {
1766 /*
1767 * __GFP_THISNODE shouldn't even be used with the bind policy
1768 * because we might easily break the expectation to stay on the
1769 * requested node and not break the policy.
1770 */
1771 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1772 }
1773
1774 return nd;
1775 }
1776
1777 /* Do dynamic interleaving for a process */
1778 static unsigned interleave_nodes(struct mempolicy *policy)
1779 {
1780 unsigned next;
1781 struct task_struct *me = current;
1782
1783 next = next_node_in(me->il_prev, policy->v.nodes);
1784 if (next < MAX_NUMNODES)
1785 me->il_prev = next;
1786 return next;
1787 }
1788
1789 /*
1790 * Depending on the memory policy provide a node from which to allocate the
1791 * next slab entry.
1792 */
1793 unsigned int mempolicy_slab_node(void)
1794 {
1795 struct mempolicy *policy;
1796 int node = numa_mem_id();
1797
1798 if (in_interrupt())
1799 return node;
1800
1801 policy = current->mempolicy;
1802 if (!policy || policy->flags & MPOL_F_LOCAL)
1803 return node;
1804
1805 switch (policy->mode) {
1806 case MPOL_PREFERRED:
1807 /*
1808 * handled MPOL_F_LOCAL above
1809 */
1810 return policy->v.preferred_node;
1811
1812 case MPOL_INTERLEAVE:
1813 return interleave_nodes(policy);
1814
1815 case MPOL_BIND: {
1816 struct zoneref *z;
1817
1818 /*
1819 * Follow bind policy behavior and start allocation at the
1820 * first node.
1821 */
1822 struct zonelist *zonelist;
1823 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1824 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1825 z = first_zones_zonelist(zonelist, highest_zoneidx,
1826 &policy->v.nodes);
1827 return z->zone ? z->zone->node : node;
1828 }
1829
1830 default:
1831 BUG();
1832 }
1833 }
1834
1835 /*
1836 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1837 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1838 * number of present nodes.
1839 */
1840 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1841 {
1842 unsigned nnodes = nodes_weight(pol->v.nodes);
1843 unsigned target;
1844 int i;
1845 int nid;
1846
1847 if (!nnodes)
1848 return numa_node_id();
1849 target = (unsigned int)n % nnodes;
1850 nid = first_node(pol->v.nodes);
1851 for (i = 0; i < target; i++)
1852 nid = next_node(nid, pol->v.nodes);
1853 return nid;
1854 }
1855
1856 /* Determine a node number for interleave */
1857 static inline unsigned interleave_nid(struct mempolicy *pol,
1858 struct vm_area_struct *vma, unsigned long addr, int shift)
1859 {
1860 if (vma) {
1861 unsigned long off;
1862
1863 /*
1864 * for small pages, there is no difference between
1865 * shift and PAGE_SHIFT, so the bit-shift is safe.
1866 * for huge pages, since vm_pgoff is in units of small
1867 * pages, we need to shift off the always 0 bits to get
1868 * a useful offset.
1869 */
1870 BUG_ON(shift < PAGE_SHIFT);
1871 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1872 off += (addr - vma->vm_start) >> shift;
1873 return offset_il_node(pol, off);
1874 } else
1875 return interleave_nodes(pol);
1876 }
1877
1878 #ifdef CONFIG_HUGETLBFS
1879 /*
1880 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1881 * @vma: virtual memory area whose policy is sought
1882 * @addr: address in @vma for shared policy lookup and interleave policy
1883 * @gfp_flags: for requested zone
1884 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1885 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1886 *
1887 * Returns a nid suitable for a huge page allocation and a pointer
1888 * to the struct mempolicy for conditional unref after allocation.
1889 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1890 * @nodemask for filtering the zonelist.
1891 *
1892 * Must be protected by read_mems_allowed_begin()
1893 */
1894 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1895 struct mempolicy **mpol, nodemask_t **nodemask)
1896 {
1897 int nid;
1898
1899 *mpol = get_vma_policy(vma, addr);
1900 *nodemask = NULL; /* assume !MPOL_BIND */
1901
1902 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1903 nid = interleave_nid(*mpol, vma, addr,
1904 huge_page_shift(hstate_vma(vma)));
1905 } else {
1906 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1907 if ((*mpol)->mode == MPOL_BIND)
1908 *nodemask = &(*mpol)->v.nodes;
1909 }
1910 return nid;
1911 }
1912
1913 /*
1914 * init_nodemask_of_mempolicy
1915 *
1916 * If the current task's mempolicy is "default" [NULL], return 'false'
1917 * to indicate default policy. Otherwise, extract the policy nodemask
1918 * for 'bind' or 'interleave' policy into the argument nodemask, or
1919 * initialize the argument nodemask to contain the single node for
1920 * 'preferred' or 'local' policy and return 'true' to indicate presence
1921 * of non-default mempolicy.
1922 *
1923 * We don't bother with reference counting the mempolicy [mpol_get/put]
1924 * because the current task is examining it's own mempolicy and a task's
1925 * mempolicy is only ever changed by the task itself.
1926 *
1927 * N.B., it is the caller's responsibility to free a returned nodemask.
1928 */
1929 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1930 {
1931 struct mempolicy *mempolicy;
1932 int nid;
1933
1934 if (!(mask && current->mempolicy))
1935 return false;
1936
1937 task_lock(current);
1938 mempolicy = current->mempolicy;
1939 switch (mempolicy->mode) {
1940 case MPOL_PREFERRED:
1941 if (mempolicy->flags & MPOL_F_LOCAL)
1942 nid = numa_node_id();
1943 else
1944 nid = mempolicy->v.preferred_node;
1945 init_nodemask_of_node(mask, nid);
1946 break;
1947
1948 case MPOL_BIND:
1949 /* Fall through */
1950 case MPOL_INTERLEAVE:
1951 *mask = mempolicy->v.nodes;
1952 break;
1953
1954 default:
1955 BUG();
1956 }
1957 task_unlock(current);
1958
1959 return true;
1960 }
1961 #endif
1962
1963 /*
1964 * mempolicy_nodemask_intersects
1965 *
1966 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1967 * policy. Otherwise, check for intersection between mask and the policy
1968 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1969 * policy, always return true since it may allocate elsewhere on fallback.
1970 *
1971 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1972 */
1973 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1974 const nodemask_t *mask)
1975 {
1976 struct mempolicy *mempolicy;
1977 bool ret = true;
1978
1979 if (!mask)
1980 return ret;
1981 task_lock(tsk);
1982 mempolicy = tsk->mempolicy;
1983 if (!mempolicy)
1984 goto out;
1985
1986 switch (mempolicy->mode) {
1987 case MPOL_PREFERRED:
1988 /*
1989 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1990 * allocate from, they may fallback to other nodes when oom.
1991 * Thus, it's possible for tsk to have allocated memory from
1992 * nodes in mask.
1993 */
1994 break;
1995 case MPOL_BIND:
1996 case MPOL_INTERLEAVE:
1997 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1998 break;
1999 default:
2000 BUG();
2001 }
2002 out:
2003 task_unlock(tsk);
2004 return ret;
2005 }
2006
2007 /* Allocate a page in interleaved policy.
2008 Own path because it needs to do special accounting. */
2009 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2010 unsigned nid)
2011 {
2012 struct page *page;
2013
2014 page = __alloc_pages(gfp, order, nid);
2015 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2016 if (!static_branch_likely(&vm_numa_stat_key))
2017 return page;
2018 if (page && page_to_nid(page) == nid) {
2019 preempt_disable();
2020 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2021 preempt_enable();
2022 }
2023 return page;
2024 }
2025
2026 /**
2027 * alloc_pages_vma - Allocate a page for a VMA.
2028 *
2029 * @gfp:
2030 * %GFP_USER user allocation.
2031 * %GFP_KERNEL kernel allocations,
2032 * %GFP_HIGHMEM highmem/user allocations,
2033 * %GFP_FS allocation should not call back into a file system.
2034 * %GFP_ATOMIC don't sleep.
2035 *
2036 * @order:Order of the GFP allocation.
2037 * @vma: Pointer to VMA or NULL if not available.
2038 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2039 * @node: Which node to prefer for allocation (modulo policy).
2040 * @hugepage: for hugepages try only the preferred node if possible
2041 *
2042 * This function allocates a page from the kernel page pool and applies
2043 * a NUMA policy associated with the VMA or the current process.
2044 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2045 * mm_struct of the VMA to prevent it from going away. Should be used for
2046 * all allocations for pages that will be mapped into user space. Returns
2047 * NULL when no page can be allocated.
2048 */
2049 struct page *
2050 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2051 unsigned long addr, int node, bool hugepage)
2052 {
2053 struct mempolicy *pol;
2054 struct page *page;
2055 int preferred_nid;
2056 nodemask_t *nmask;
2057
2058 pol = get_vma_policy(vma, addr);
2059
2060 if (pol->mode == MPOL_INTERLEAVE) {
2061 unsigned nid;
2062
2063 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2064 mpol_cond_put(pol);
2065 page = alloc_page_interleave(gfp, order, nid);
2066 goto out;
2067 }
2068
2069 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2070 int hpage_node = node;
2071
2072 /*
2073 * For hugepage allocation and non-interleave policy which
2074 * allows the current node (or other explicitly preferred
2075 * node) we only try to allocate from the current/preferred
2076 * node and don't fall back to other nodes, as the cost of
2077 * remote accesses would likely offset THP benefits.
2078 *
2079 * If the policy is interleave, or does not allow the current
2080 * node in its nodemask, we allocate the standard way.
2081 */
2082 if (pol->mode == MPOL_PREFERRED &&
2083 !(pol->flags & MPOL_F_LOCAL))
2084 hpage_node = pol->v.preferred_node;
2085
2086 nmask = policy_nodemask(gfp, pol);
2087 if (!nmask || node_isset(hpage_node, *nmask)) {
2088 mpol_cond_put(pol);
2089 /*
2090 * We cannot invoke reclaim if __GFP_THISNODE
2091 * is set. Invoking reclaim with
2092 * __GFP_THISNODE set, would cause THP
2093 * allocations to trigger heavy swapping
2094 * despite there may be tons of free memory
2095 * (including potentially plenty of THP
2096 * already available in the buddy) on all the
2097 * other NUMA nodes.
2098 *
2099 * At most we could invoke compaction when
2100 * __GFP_THISNODE is set (but we would need to
2101 * refrain from invoking reclaim even if
2102 * compaction returned COMPACT_SKIPPED because
2103 * there wasn't not enough memory to succeed
2104 * compaction). For now just avoid
2105 * __GFP_THISNODE instead of limiting the
2106 * allocation path to a strict and single
2107 * compaction invocation.
2108 *
2109 * Supposedly if direct reclaim was enabled by
2110 * the caller, the app prefers THP regardless
2111 * of the node it comes from so this would be
2112 * more desiderable behavior than only
2113 * providing THP originated from the local
2114 * node in such case.
2115 */
2116 if (!(gfp & __GFP_DIRECT_RECLAIM))
2117 gfp |= __GFP_THISNODE;
2118 page = __alloc_pages_node(hpage_node, gfp, order);
2119 goto out;
2120 }
2121 }
2122
2123 nmask = policy_nodemask(gfp, pol);
2124 preferred_nid = policy_node(gfp, pol, node);
2125 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2126 mpol_cond_put(pol);
2127 out:
2128 return page;
2129 }
2130
2131 /**
2132 * alloc_pages_current - Allocate pages.
2133 *
2134 * @gfp:
2135 * %GFP_USER user allocation,
2136 * %GFP_KERNEL kernel allocation,
2137 * %GFP_HIGHMEM highmem allocation,
2138 * %GFP_FS don't call back into a file system.
2139 * %GFP_ATOMIC don't sleep.
2140 * @order: Power of two of allocation size in pages. 0 is a single page.
2141 *
2142 * Allocate a page from the kernel page pool. When not in
2143 * interrupt context and apply the current process NUMA policy.
2144 * Returns NULL when no page can be allocated.
2145 */
2146 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2147 {
2148 struct mempolicy *pol = &default_policy;
2149 struct page *page;
2150
2151 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2152 pol = get_task_policy(current);
2153
2154 /*
2155 * No reference counting needed for current->mempolicy
2156 * nor system default_policy
2157 */
2158 if (pol->mode == MPOL_INTERLEAVE)
2159 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2160 else
2161 page = __alloc_pages_nodemask(gfp, order,
2162 policy_node(gfp, pol, numa_node_id()),
2163 policy_nodemask(gfp, pol));
2164
2165 return page;
2166 }
2167 EXPORT_SYMBOL(alloc_pages_current);
2168
2169 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2170 {
2171 struct mempolicy *pol = mpol_dup(vma_policy(src));
2172
2173 if (IS_ERR(pol))
2174 return PTR_ERR(pol);
2175 dst->vm_policy = pol;
2176 return 0;
2177 }
2178
2179 /*
2180 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2181 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2182 * with the mems_allowed returned by cpuset_mems_allowed(). This
2183 * keeps mempolicies cpuset relative after its cpuset moves. See
2184 * further kernel/cpuset.c update_nodemask().
2185 *
2186 * current's mempolicy may be rebinded by the other task(the task that changes
2187 * cpuset's mems), so we needn't do rebind work for current task.
2188 */
2189
2190 /* Slow path of a mempolicy duplicate */
2191 struct mempolicy *__mpol_dup(struct mempolicy *old)
2192 {
2193 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2194
2195 if (!new)
2196 return ERR_PTR(-ENOMEM);
2197
2198 /* task's mempolicy is protected by alloc_lock */
2199 if (old == current->mempolicy) {
2200 task_lock(current);
2201 *new = *old;
2202 task_unlock(current);
2203 } else
2204 *new = *old;
2205
2206 if (current_cpuset_is_being_rebound()) {
2207 nodemask_t mems = cpuset_mems_allowed(current);
2208 mpol_rebind_policy(new, &mems);
2209 }
2210 atomic_set(&new->refcnt, 1);
2211 return new;
2212 }
2213
2214 /* Slow path of a mempolicy comparison */
2215 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2216 {
2217 if (!a || !b)
2218 return false;
2219 if (a->mode != b->mode)
2220 return false;
2221 if (a->flags != b->flags)
2222 return false;
2223 if (mpol_store_user_nodemask(a))
2224 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2225 return false;
2226
2227 switch (a->mode) {
2228 case MPOL_BIND:
2229 /* Fall through */
2230 case MPOL_INTERLEAVE:
2231 return !!nodes_equal(a->v.nodes, b->v.nodes);
2232 case MPOL_PREFERRED:
2233 /* a's ->flags is the same as b's */
2234 if (a->flags & MPOL_F_LOCAL)
2235 return true;
2236 return a->v.preferred_node == b->v.preferred_node;
2237 default:
2238 BUG();
2239 return false;
2240 }
2241 }
2242
2243 /*
2244 * Shared memory backing store policy support.
2245 *
2246 * Remember policies even when nobody has shared memory mapped.
2247 * The policies are kept in Red-Black tree linked from the inode.
2248 * They are protected by the sp->lock rwlock, which should be held
2249 * for any accesses to the tree.
2250 */
2251
2252 /*
2253 * lookup first element intersecting start-end. Caller holds sp->lock for
2254 * reading or for writing
2255 */
2256 static struct sp_node *
2257 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2258 {
2259 struct rb_node *n = sp->root.rb_node;
2260
2261 while (n) {
2262 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2263
2264 if (start >= p->end)
2265 n = n->rb_right;
2266 else if (end <= p->start)
2267 n = n->rb_left;
2268 else
2269 break;
2270 }
2271 if (!n)
2272 return NULL;
2273 for (;;) {
2274 struct sp_node *w = NULL;
2275 struct rb_node *prev = rb_prev(n);
2276 if (!prev)
2277 break;
2278 w = rb_entry(prev, struct sp_node, nd);
2279 if (w->end <= start)
2280 break;
2281 n = prev;
2282 }
2283 return rb_entry(n, struct sp_node, nd);
2284 }
2285
2286 /*
2287 * Insert a new shared policy into the list. Caller holds sp->lock for
2288 * writing.
2289 */
2290 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2291 {
2292 struct rb_node **p = &sp->root.rb_node;
2293 struct rb_node *parent = NULL;
2294 struct sp_node *nd;
2295
2296 while (*p) {
2297 parent = *p;
2298 nd = rb_entry(parent, struct sp_node, nd);
2299 if (new->start < nd->start)
2300 p = &(*p)->rb_left;
2301 else if (new->end > nd->end)
2302 p = &(*p)->rb_right;
2303 else
2304 BUG();
2305 }
2306 rb_link_node(&new->nd, parent, p);
2307 rb_insert_color(&new->nd, &sp->root);
2308 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2309 new->policy ? new->policy->mode : 0);
2310 }
2311
2312 /* Find shared policy intersecting idx */
2313 struct mempolicy *
2314 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2315 {
2316 struct mempolicy *pol = NULL;
2317 struct sp_node *sn;
2318
2319 if (!sp->root.rb_node)
2320 return NULL;
2321 read_lock(&sp->lock);
2322 sn = sp_lookup(sp, idx, idx+1);
2323 if (sn) {
2324 mpol_get(sn->policy);
2325 pol = sn->policy;
2326 }
2327 read_unlock(&sp->lock);
2328 return pol;
2329 }
2330
2331 static void sp_free(struct sp_node *n)
2332 {
2333 mpol_put(n->policy);
2334 kmem_cache_free(sn_cache, n);
2335 }
2336
2337 /**
2338 * mpol_misplaced - check whether current page node is valid in policy
2339 *
2340 * @page: page to be checked
2341 * @vma: vm area where page mapped
2342 * @addr: virtual address where page mapped
2343 *
2344 * Lookup current policy node id for vma,addr and "compare to" page's
2345 * node id.
2346 *
2347 * Returns:
2348 * -1 - not misplaced, page is in the right node
2349 * node - node id where the page should be
2350 *
2351 * Policy determination "mimics" alloc_page_vma().
2352 * Called from fault path where we know the vma and faulting address.
2353 */
2354 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2355 {
2356 struct mempolicy *pol;
2357 struct zoneref *z;
2358 int curnid = page_to_nid(page);
2359 unsigned long pgoff;
2360 int thiscpu = raw_smp_processor_id();
2361 int thisnid = cpu_to_node(thiscpu);
2362 int polnid = -1;
2363 int ret = -1;
2364
2365 pol = get_vma_policy(vma, addr);
2366 if (!(pol->flags & MPOL_F_MOF))
2367 goto out;
2368
2369 switch (pol->mode) {
2370 case MPOL_INTERLEAVE:
2371 pgoff = vma->vm_pgoff;
2372 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2373 polnid = offset_il_node(pol, pgoff);
2374 break;
2375
2376 case MPOL_PREFERRED:
2377 if (pol->flags & MPOL_F_LOCAL)
2378 polnid = numa_node_id();
2379 else
2380 polnid = pol->v.preferred_node;
2381 break;
2382
2383 case MPOL_BIND:
2384
2385 /*
2386 * allows binding to multiple nodes.
2387 * use current page if in policy nodemask,
2388 * else select nearest allowed node, if any.
2389 * If no allowed nodes, use current [!misplaced].
2390 */
2391 if (node_isset(curnid, pol->v.nodes))
2392 goto out;
2393 z = first_zones_zonelist(
2394 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2395 gfp_zone(GFP_HIGHUSER),
2396 &pol->v.nodes);
2397 polnid = z->zone->node;
2398 break;
2399
2400 default:
2401 BUG();
2402 }
2403
2404 /* Migrate the page towards the node whose CPU is referencing it */
2405 if (pol->flags & MPOL_F_MORON) {
2406 polnid = thisnid;
2407
2408 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2409 goto out;
2410 }
2411
2412 if (curnid != polnid)
2413 ret = polnid;
2414 out:
2415 mpol_cond_put(pol);
2416
2417 return ret;
2418 }
2419
2420 /*
2421 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2422 * dropped after task->mempolicy is set to NULL so that any allocation done as
2423 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2424 * policy.
2425 */
2426 void mpol_put_task_policy(struct task_struct *task)
2427 {
2428 struct mempolicy *pol;
2429
2430 task_lock(task);
2431 pol = task->mempolicy;
2432 task->mempolicy = NULL;
2433 task_unlock(task);
2434 mpol_put(pol);
2435 }
2436
2437 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2438 {
2439 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2440 rb_erase(&n->nd, &sp->root);
2441 sp_free(n);
2442 }
2443
2444 static void sp_node_init(struct sp_node *node, unsigned long start,
2445 unsigned long end, struct mempolicy *pol)
2446 {
2447 node->start = start;
2448 node->end = end;
2449 node->policy = pol;
2450 }
2451
2452 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2453 struct mempolicy *pol)
2454 {
2455 struct sp_node *n;
2456 struct mempolicy *newpol;
2457
2458 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2459 if (!n)
2460 return NULL;
2461
2462 newpol = mpol_dup(pol);
2463 if (IS_ERR(newpol)) {
2464 kmem_cache_free(sn_cache, n);
2465 return NULL;
2466 }
2467 newpol->flags |= MPOL_F_SHARED;
2468 sp_node_init(n, start, end, newpol);
2469
2470 return n;
2471 }
2472
2473 /* Replace a policy range. */
2474 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2475 unsigned long end, struct sp_node *new)
2476 {
2477 struct sp_node *n;
2478 struct sp_node *n_new = NULL;
2479 struct mempolicy *mpol_new = NULL;
2480 int ret = 0;
2481
2482 restart:
2483 write_lock(&sp->lock);
2484 n = sp_lookup(sp, start, end);
2485 /* Take care of old policies in the same range. */
2486 while (n && n->start < end) {
2487 struct rb_node *next = rb_next(&n->nd);
2488 if (n->start >= start) {
2489 if (n->end <= end)
2490 sp_delete(sp, n);
2491 else
2492 n->start = end;
2493 } else {
2494 /* Old policy spanning whole new range. */
2495 if (n->end > end) {
2496 if (!n_new)
2497 goto alloc_new;
2498
2499 *mpol_new = *n->policy;
2500 atomic_set(&mpol_new->refcnt, 1);
2501 sp_node_init(n_new, end, n->end, mpol_new);
2502 n->end = start;
2503 sp_insert(sp, n_new);
2504 n_new = NULL;
2505 mpol_new = NULL;
2506 break;
2507 } else
2508 n->end = start;
2509 }
2510 if (!next)
2511 break;
2512 n = rb_entry(next, struct sp_node, nd);
2513 }
2514 if (new)
2515 sp_insert(sp, new);
2516 write_unlock(&sp->lock);
2517 ret = 0;
2518
2519 err_out:
2520 if (mpol_new)
2521 mpol_put(mpol_new);
2522 if (n_new)
2523 kmem_cache_free(sn_cache, n_new);
2524
2525 return ret;
2526
2527 alloc_new:
2528 write_unlock(&sp->lock);
2529 ret = -ENOMEM;
2530 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2531 if (!n_new)
2532 goto err_out;
2533 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2534 if (!mpol_new)
2535 goto err_out;
2536 goto restart;
2537 }
2538
2539 /**
2540 * mpol_shared_policy_init - initialize shared policy for inode
2541 * @sp: pointer to inode shared policy
2542 * @mpol: struct mempolicy to install
2543 *
2544 * Install non-NULL @mpol in inode's shared policy rb-tree.
2545 * On entry, the current task has a reference on a non-NULL @mpol.
2546 * This must be released on exit.
2547 * This is called at get_inode() calls and we can use GFP_KERNEL.
2548 */
2549 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2550 {
2551 int ret;
2552
2553 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2554 rwlock_init(&sp->lock);
2555
2556 if (mpol) {
2557 struct vm_area_struct pvma;
2558 struct mempolicy *new;
2559 NODEMASK_SCRATCH(scratch);
2560
2561 if (!scratch)
2562 goto put_mpol;
2563 /* contextualize the tmpfs mount point mempolicy */
2564 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2565 if (IS_ERR(new))
2566 goto free_scratch; /* no valid nodemask intersection */
2567
2568 task_lock(current);
2569 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2570 task_unlock(current);
2571 if (ret)
2572 goto put_new;
2573
2574 /* Create pseudo-vma that contains just the policy */
2575 memset(&pvma, 0, sizeof(struct vm_area_struct));
2576 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2577 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2578
2579 put_new:
2580 mpol_put(new); /* drop initial ref */
2581 free_scratch:
2582 NODEMASK_SCRATCH_FREE(scratch);
2583 put_mpol:
2584 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2585 }
2586 }
2587
2588 int mpol_set_shared_policy(struct shared_policy *info,
2589 struct vm_area_struct *vma, struct mempolicy *npol)
2590 {
2591 int err;
2592 struct sp_node *new = NULL;
2593 unsigned long sz = vma_pages(vma);
2594
2595 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2596 vma->vm_pgoff,
2597 sz, npol ? npol->mode : -1,
2598 npol ? npol->flags : -1,
2599 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2600
2601 if (npol) {
2602 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2603 if (!new)
2604 return -ENOMEM;
2605 }
2606 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2607 if (err && new)
2608 sp_free(new);
2609 return err;
2610 }
2611
2612 /* Free a backing policy store on inode delete. */
2613 void mpol_free_shared_policy(struct shared_policy *p)
2614 {
2615 struct sp_node *n;
2616 struct rb_node *next;
2617
2618 if (!p->root.rb_node)
2619 return;
2620 write_lock(&p->lock);
2621 next = rb_first(&p->root);
2622 while (next) {
2623 n = rb_entry(next, struct sp_node, nd);
2624 next = rb_next(&n->nd);
2625 sp_delete(p, n);
2626 }
2627 write_unlock(&p->lock);
2628 }
2629
2630 #ifdef CONFIG_NUMA_BALANCING
2631 static int __initdata numabalancing_override;
2632
2633 static void __init check_numabalancing_enable(void)
2634 {
2635 bool numabalancing_default = false;
2636
2637 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2638 numabalancing_default = true;
2639
2640 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2641 if (numabalancing_override)
2642 set_numabalancing_state(numabalancing_override == 1);
2643
2644 if (num_online_nodes() > 1 && !numabalancing_override) {
2645 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2646 numabalancing_default ? "Enabling" : "Disabling");
2647 set_numabalancing_state(numabalancing_default);
2648 }
2649 }
2650
2651 static int __init setup_numabalancing(char *str)
2652 {
2653 int ret = 0;
2654 if (!str)
2655 goto out;
2656
2657 if (!strcmp(str, "enable")) {
2658 numabalancing_override = 1;
2659 ret = 1;
2660 } else if (!strcmp(str, "disable")) {
2661 numabalancing_override = -1;
2662 ret = 1;
2663 }
2664 out:
2665 if (!ret)
2666 pr_warn("Unable to parse numa_balancing=\n");
2667
2668 return ret;
2669 }
2670 __setup("numa_balancing=", setup_numabalancing);
2671 #else
2672 static inline void __init check_numabalancing_enable(void)
2673 {
2674 }
2675 #endif /* CONFIG_NUMA_BALANCING */
2676
2677 /* assumes fs == KERNEL_DS */
2678 void __init numa_policy_init(void)
2679 {
2680 nodemask_t interleave_nodes;
2681 unsigned long largest = 0;
2682 int nid, prefer = 0;
2683
2684 policy_cache = kmem_cache_create("numa_policy",
2685 sizeof(struct mempolicy),
2686 0, SLAB_PANIC, NULL);
2687
2688 sn_cache = kmem_cache_create("shared_policy_node",
2689 sizeof(struct sp_node),
2690 0, SLAB_PANIC, NULL);
2691
2692 for_each_node(nid) {
2693 preferred_node_policy[nid] = (struct mempolicy) {
2694 .refcnt = ATOMIC_INIT(1),
2695 .mode = MPOL_PREFERRED,
2696 .flags = MPOL_F_MOF | MPOL_F_MORON,
2697 .v = { .preferred_node = nid, },
2698 };
2699 }
2700
2701 /*
2702 * Set interleaving policy for system init. Interleaving is only
2703 * enabled across suitably sized nodes (default is >= 16MB), or
2704 * fall back to the largest node if they're all smaller.
2705 */
2706 nodes_clear(interleave_nodes);
2707 for_each_node_state(nid, N_MEMORY) {
2708 unsigned long total_pages = node_present_pages(nid);
2709
2710 /* Preserve the largest node */
2711 if (largest < total_pages) {
2712 largest = total_pages;
2713 prefer = nid;
2714 }
2715
2716 /* Interleave this node? */
2717 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2718 node_set(nid, interleave_nodes);
2719 }
2720
2721 /* All too small, use the largest */
2722 if (unlikely(nodes_empty(interleave_nodes)))
2723 node_set(prefer, interleave_nodes);
2724
2725 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2726 pr_err("%s: interleaving failed\n", __func__);
2727
2728 check_numabalancing_enable();
2729 }
2730
2731 /* Reset policy of current process to default */
2732 void numa_default_policy(void)
2733 {
2734 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2735 }
2736
2737 /*
2738 * Parse and format mempolicy from/to strings
2739 */
2740
2741 /*
2742 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2743 */
2744 static const char * const policy_modes[] =
2745 {
2746 [MPOL_DEFAULT] = "default",
2747 [MPOL_PREFERRED] = "prefer",
2748 [MPOL_BIND] = "bind",
2749 [MPOL_INTERLEAVE] = "interleave",
2750 [MPOL_LOCAL] = "local",
2751 };
2752
2753
2754 #ifdef CONFIG_TMPFS
2755 /**
2756 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2757 * @str: string containing mempolicy to parse
2758 * @mpol: pointer to struct mempolicy pointer, returned on success.
2759 *
2760 * Format of input:
2761 * <mode>[=<flags>][:<nodelist>]
2762 *
2763 * On success, returns 0, else 1
2764 */
2765 int mpol_parse_str(char *str, struct mempolicy **mpol)
2766 {
2767 struct mempolicy *new = NULL;
2768 unsigned short mode;
2769 unsigned short mode_flags;
2770 nodemask_t nodes;
2771 char *nodelist = strchr(str, ':');
2772 char *flags = strchr(str, '=');
2773 int err = 1;
2774
2775 if (flags)
2776 *flags++ = '\0'; /* terminate mode string */
2777
2778 if (nodelist) {
2779 /* NUL-terminate mode or flags string */
2780 *nodelist++ = '\0';
2781 if (nodelist_parse(nodelist, nodes))
2782 goto out;
2783 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2784 goto out;
2785 } else
2786 nodes_clear(nodes);
2787
2788 for (mode = 0; mode < MPOL_MAX; mode++) {
2789 if (!strcmp(str, policy_modes[mode])) {
2790 break;
2791 }
2792 }
2793 if (mode >= MPOL_MAX)
2794 goto out;
2795
2796 switch (mode) {
2797 case MPOL_PREFERRED:
2798 /*
2799 * Insist on a nodelist of one node only
2800 */
2801 if (nodelist) {
2802 char *rest = nodelist;
2803 while (isdigit(*rest))
2804 rest++;
2805 if (*rest)
2806 goto out;
2807 }
2808 break;
2809 case MPOL_INTERLEAVE:
2810 /*
2811 * Default to online nodes with memory if no nodelist
2812 */
2813 if (!nodelist)
2814 nodes = node_states[N_MEMORY];
2815 break;
2816 case MPOL_LOCAL:
2817 /*
2818 * Don't allow a nodelist; mpol_new() checks flags
2819 */
2820 if (nodelist)
2821 goto out;
2822 mode = MPOL_PREFERRED;
2823 break;
2824 case MPOL_DEFAULT:
2825 /*
2826 * Insist on a empty nodelist
2827 */
2828 if (!nodelist)
2829 err = 0;
2830 goto out;
2831 case MPOL_BIND:
2832 /*
2833 * Insist on a nodelist
2834 */
2835 if (!nodelist)
2836 goto out;
2837 }
2838
2839 mode_flags = 0;
2840 if (flags) {
2841 /*
2842 * Currently, we only support two mutually exclusive
2843 * mode flags.
2844 */
2845 if (!strcmp(flags, "static"))
2846 mode_flags |= MPOL_F_STATIC_NODES;
2847 else if (!strcmp(flags, "relative"))
2848 mode_flags |= MPOL_F_RELATIVE_NODES;
2849 else
2850 goto out;
2851 }
2852
2853 new = mpol_new(mode, mode_flags, &nodes);
2854 if (IS_ERR(new))
2855 goto out;
2856
2857 /*
2858 * Save nodes for mpol_to_str() to show the tmpfs mount options
2859 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2860 */
2861 if (mode != MPOL_PREFERRED)
2862 new->v.nodes = nodes;
2863 else if (nodelist)
2864 new->v.preferred_node = first_node(nodes);
2865 else
2866 new->flags |= MPOL_F_LOCAL;
2867
2868 /*
2869 * Save nodes for contextualization: this will be used to "clone"
2870 * the mempolicy in a specific context [cpuset] at a later time.
2871 */
2872 new->w.user_nodemask = nodes;
2873
2874 err = 0;
2875
2876 out:
2877 /* Restore string for error message */
2878 if (nodelist)
2879 *--nodelist = ':';
2880 if (flags)
2881 *--flags = '=';
2882 if (!err)
2883 *mpol = new;
2884 return err;
2885 }
2886 #endif /* CONFIG_TMPFS */
2887
2888 /**
2889 * mpol_to_str - format a mempolicy structure for printing
2890 * @buffer: to contain formatted mempolicy string
2891 * @maxlen: length of @buffer
2892 * @pol: pointer to mempolicy to be formatted
2893 *
2894 * Convert @pol into a string. If @buffer is too short, truncate the string.
2895 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2896 * longest flag, "relative", and to display at least a few node ids.
2897 */
2898 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2899 {
2900 char *p = buffer;
2901 nodemask_t nodes = NODE_MASK_NONE;
2902 unsigned short mode = MPOL_DEFAULT;
2903 unsigned short flags = 0;
2904
2905 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2906 mode = pol->mode;
2907 flags = pol->flags;
2908 }
2909
2910 switch (mode) {
2911 case MPOL_DEFAULT:
2912 break;
2913 case MPOL_PREFERRED:
2914 if (flags & MPOL_F_LOCAL)
2915 mode = MPOL_LOCAL;
2916 else
2917 node_set(pol->v.preferred_node, nodes);
2918 break;
2919 case MPOL_BIND:
2920 case MPOL_INTERLEAVE:
2921 nodes = pol->v.nodes;
2922 break;
2923 default:
2924 WARN_ON_ONCE(1);
2925 snprintf(p, maxlen, "unknown");
2926 return;
2927 }
2928
2929 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2930
2931 if (flags & MPOL_MODE_FLAGS) {
2932 p += snprintf(p, buffer + maxlen - p, "=");
2933
2934 /*
2935 * Currently, the only defined flags are mutually exclusive
2936 */
2937 if (flags & MPOL_F_STATIC_NODES)
2938 p += snprintf(p, buffer + maxlen - p, "static");
2939 else if (flags & MPOL_F_RELATIVE_NODES)
2940 p += snprintf(p, buffer + maxlen - p, "relative");
2941 }
2942
2943 if (!nodes_empty(nodes))
2944 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2945 nodemask_pr_args(&nodes));
2946 }