]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108
109 #include "internal.h"
110
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
114
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117
118 /* Highest zone. An specific allocation for a zone below that is not
119 policied. */
120 enum zone_type policy_zone = 0;
121
122 /*
123 * run-time system-wide default policy => local allocation
124 */
125 static struct mempolicy default_policy = {
126 .refcnt = ATOMIC_INIT(1), /* never free it */
127 .mode = MPOL_LOCAL,
128 };
129
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131
132 /**
133 * numa_map_to_online_node - Find closest online node
134 * @node: Node id to start the search
135 *
136 * Lookup the next closest node by distance if @nid is not online.
137 */
138 int numa_map_to_online_node(int node)
139 {
140 int min_dist = INT_MAX, dist, n, min_node;
141
142 if (node == NUMA_NO_NODE || node_online(node))
143 return node;
144
145 min_node = node;
146 for_each_online_node(n) {
147 dist = node_distance(node, n);
148 if (dist < min_dist) {
149 min_dist = dist;
150 min_node = n;
151 }
152 }
153
154 return min_node;
155 }
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
157
158 struct mempolicy *get_task_policy(struct task_struct *p)
159 {
160 struct mempolicy *pol = p->mempolicy;
161 int node;
162
163 if (pol)
164 return pol;
165
166 node = numa_node_id();
167 if (node != NUMA_NO_NODE) {
168 pol = &preferred_node_policy[node];
169 /* preferred_node_policy is not initialised early in boot */
170 if (pol->mode)
171 return pol;
172 }
173
174 return &default_policy;
175 }
176
177 static const struct mempolicy_operations {
178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
181
182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
183 {
184 return pol->flags & MPOL_MODE_FLAGS;
185 }
186
187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 const nodemask_t *rel)
189 {
190 nodemask_t tmp;
191 nodes_fold(tmp, *orig, nodes_weight(*rel));
192 nodes_onto(*ret, tmp, *rel);
193 }
194
195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
196 {
197 if (nodes_empty(*nodes))
198 return -EINVAL;
199 pol->nodes = *nodes;
200 return 0;
201 }
202
203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (nodes_empty(*nodes))
206 return -EINVAL;
207
208 nodes_clear(pol->nodes);
209 node_set(first_node(*nodes), pol->nodes);
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags.
217 *
218 * Must be called holding task's alloc_lock to protect task's mems_allowed
219 * and mempolicy. May also be called holding the mmap_lock for write.
220 */
221 static int mpol_set_nodemask(struct mempolicy *pol,
222 const nodemask_t *nodes, struct nodemask_scratch *nsc)
223 {
224 int ret;
225
226 /*
227 * Default (pol==NULL) resp. local memory policies are not a
228 * subject of any remapping. They also do not need any special
229 * constructor.
230 */
231 if (!pol || pol->mode == MPOL_LOCAL)
232 return 0;
233
234 /* Check N_MEMORY */
235 nodes_and(nsc->mask1,
236 cpuset_current_mems_allowed, node_states[N_MEMORY]);
237
238 VM_BUG_ON(!nodes);
239
240 if (pol->flags & MPOL_F_RELATIVE_NODES)
241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
242 else
243 nodes_and(nsc->mask2, *nodes, nsc->mask1);
244
245 if (mpol_store_user_nodemask(pol))
246 pol->w.user_nodemask = *nodes;
247 else
248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
249
250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283
284 mode = MPOL_LOCAL;
285 }
286 } else if (mode == MPOL_LOCAL) {
287 if (!nodes_empty(*nodes) ||
288 (flags & MPOL_F_STATIC_NODES) ||
289 (flags & MPOL_F_RELATIVE_NODES))
290 return ERR_PTR(-EINVAL);
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
312 {
313 }
314
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328
329 if (nodes_empty(tmp))
330 tmp = *nodes;
331
332 pol->nodes = tmp;
333 }
334
335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 const nodemask_t *nodes)
337 {
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_lock. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_lock during call.
375 */
376
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 mmap_write_lock(mm);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 mmap_write_unlock(mm);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_nodemask,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
402 },
403 [MPOL_LOCAL] = {
404 .rebind = mpol_rebind_default,
405 },
406 [MPOL_PREFERRED_MANY] = {
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_preferred,
409 },
410 };
411
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 unsigned long flags);
414
415 struct queue_pages {
416 struct list_head *pagelist;
417 unsigned long flags;
418 nodemask_t *nmask;
419 unsigned long start;
420 unsigned long end;
421 struct vm_area_struct *first;
422 };
423
424 /*
425 * Check if the page's nid is in qp->nmask.
426 *
427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428 * in the invert of qp->nmask.
429 */
430 static inline bool queue_pages_required(struct page *page,
431 struct queue_pages *qp)
432 {
433 int nid = page_to_nid(page);
434 unsigned long flags = qp->flags;
435
436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
437 }
438
439 /*
440 * queue_pages_pmd() has four possible return values:
441 * 0 - pages are placed on the right node or queued successfully, or
442 * special page is met, i.e. huge zero page.
443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
444 * specified.
445 * 2 - THP was split.
446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447 * existing page was already on a node that does not follow the
448 * policy.
449 */
450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 unsigned long end, struct mm_walk *walk)
452 __releases(ptl)
453 {
454 int ret = 0;
455 struct page *page;
456 struct queue_pages *qp = walk->private;
457 unsigned long flags;
458
459 if (unlikely(is_pmd_migration_entry(*pmd))) {
460 ret = -EIO;
461 goto unlock;
462 }
463 page = pmd_page(*pmd);
464 if (is_huge_zero_page(page)) {
465 spin_unlock(ptl);
466 walk->action = ACTION_CONTINUE;
467 goto out;
468 }
469 if (!queue_pages_required(page, qp))
470 goto unlock;
471
472 flags = qp->flags;
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
477 ret = 1;
478 goto unlock;
479 }
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 *
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully, or
494 * special page is met, i.e. zero page.
495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
496 * specified.
497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498 * on a node that does not follow the policy.
499 */
500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 unsigned long end, struct mm_walk *walk)
502 {
503 struct vm_area_struct *vma = walk->vma;
504 struct page *page;
505 struct queue_pages *qp = walk->private;
506 unsigned long flags = qp->flags;
507 int ret;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
510 spinlock_t *ptl;
511
512 ptl = pmd_trans_huge_lock(pmd, vma);
513 if (ptl) {
514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
515 if (ret != 2)
516 return ret;
517 }
518 /* THP was split, fall through to pte walk */
519
520 if (pmd_trans_unstable(pmd))
521 return 0;
522
523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
526 continue;
527 page = vm_normal_page(vma, addr, *pte);
528 if (!page)
529 continue;
530 /*
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
533 */
534 if (PageReserved(page))
535 continue;
536 if (!queue_pages_required(page, qp))
537 continue;
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 /* MPOL_MF_STRICT must be specified if we get here */
540 if (!vma_migratable(vma)) {
541 has_unmovable = true;
542 break;
543 }
544
545 /*
546 * Do not abort immediately since there may be
547 * temporary off LRU pages in the range. Still
548 * need migrate other LRU pages.
549 */
550 if (migrate_page_add(page, qp->pagelist, flags))
551 has_unmovable = true;
552 } else
553 break;
554 }
555 pte_unmap_unlock(mapped_pte, ptl);
556 cond_resched();
557
558 if (has_unmovable)
559 return 1;
560
561 return addr != end ? -EIO : 0;
562 }
563
564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 unsigned long addr, unsigned long end,
566 struct mm_walk *walk)
567 {
568 int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 struct queue_pages *qp = walk->private;
571 unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 struct page *page;
573 spinlock_t *ptl;
574 pte_t entry;
575
576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 entry = huge_ptep_get(pte);
578 if (!pte_present(entry))
579 goto unlock;
580 page = pte_page(entry);
581 if (!queue_pages_required(page, qp))
582 goto unlock;
583
584 if (flags == MPOL_MF_STRICT) {
585 /*
586 * STRICT alone means only detecting misplaced page and no
587 * need to further check other vma.
588 */
589 ret = -EIO;
590 goto unlock;
591 }
592
593 if (!vma_migratable(walk->vma)) {
594 /*
595 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 * stopped walking current vma.
597 * Detecting misplaced page but allow migrating pages which
598 * have been queued.
599 */
600 ret = 1;
601 goto unlock;
602 }
603
604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 if (flags & (MPOL_MF_MOVE_ALL) ||
606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
607 if (!isolate_huge_page(page, qp->pagelist) &&
608 (flags & MPOL_MF_STRICT))
609 /*
610 * Failed to isolate page but allow migrating pages
611 * which have been queued.
612 */
613 ret = 1;
614 }
615 unlock:
616 spin_unlock(ptl);
617 #else
618 BUG();
619 #endif
620 return ret;
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
628 *
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
632 */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
635 {
636 int nr_updated;
637
638 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
654 {
655 struct vm_area_struct *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
659
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
662
663 if (!qp->first) {
664 qp->first = vma;
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
668 return -EFAULT;
669 }
670 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
671 ((vma->vm_end < qp->end) &&
672 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
673 /* hole at middle or tail of range */
674 return -EFAULT;
675
676 /*
677 * Need check MPOL_MF_STRICT to return -EIO if possible
678 * regardless of vma_migratable
679 */
680 if (!vma_migratable(vma) &&
681 !(flags & MPOL_MF_STRICT))
682 return 1;
683
684 if (endvma > end)
685 endvma = end;
686
687 if (flags & MPOL_MF_LAZY) {
688 /* Similar to task_numa_work, skip inaccessible VMAs */
689 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
690 !(vma->vm_flags & VM_MIXEDMAP))
691 change_prot_numa(vma, start, endvma);
692 return 1;
693 }
694
695 /* queue pages from current vma */
696 if (flags & MPOL_MF_VALID)
697 return 0;
698 return 1;
699 }
700
701 static const struct mm_walk_ops queue_pages_walk_ops = {
702 .hugetlb_entry = queue_pages_hugetlb,
703 .pmd_entry = queue_pages_pte_range,
704 .test_walk = queue_pages_test_walk,
705 };
706
707 /*
708 * Walk through page tables and collect pages to be migrated.
709 *
710 * If pages found in a given range are on a set of nodes (determined by
711 * @nodes and @flags,) it's isolated and queued to the pagelist which is
712 * passed via @private.
713 *
714 * queue_pages_range() has three possible return values:
715 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
716 * specified.
717 * 0 - queue pages successfully or no misplaced page.
718 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
719 * memory range specified by nodemask and maxnode points outside
720 * your accessible address space (-EFAULT)
721 */
722 static int
723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
724 nodemask_t *nodes, unsigned long flags,
725 struct list_head *pagelist)
726 {
727 int err;
728 struct queue_pages qp = {
729 .pagelist = pagelist,
730 .flags = flags,
731 .nmask = nodes,
732 .start = start,
733 .end = end,
734 .first = NULL,
735 };
736
737 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
738
739 if (!qp.first)
740 /* whole range in hole */
741 err = -EFAULT;
742
743 return err;
744 }
745
746 /*
747 * Apply policy to a single VMA
748 * This must be called with the mmap_lock held for writing.
749 */
750 static int vma_replace_policy(struct vm_area_struct *vma,
751 struct mempolicy *pol)
752 {
753 int err;
754 struct mempolicy *old;
755 struct mempolicy *new;
756
757 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
758 vma->vm_start, vma->vm_end, vma->vm_pgoff,
759 vma->vm_ops, vma->vm_file,
760 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
761
762 new = mpol_dup(pol);
763 if (IS_ERR(new))
764 return PTR_ERR(new);
765
766 if (vma->vm_ops && vma->vm_ops->set_policy) {
767 err = vma->vm_ops->set_policy(vma, new);
768 if (err)
769 goto err_out;
770 }
771
772 old = vma->vm_policy;
773 vma->vm_policy = new; /* protected by mmap_lock */
774 mpol_put(old);
775
776 return 0;
777 err_out:
778 mpol_put(new);
779 return err;
780 }
781
782 /* Step 2: apply policy to a range and do splits. */
783 static int mbind_range(struct mm_struct *mm, unsigned long start,
784 unsigned long end, struct mempolicy *new_pol)
785 {
786 struct vm_area_struct *next;
787 struct vm_area_struct *prev;
788 struct vm_area_struct *vma;
789 int err = 0;
790 pgoff_t pgoff;
791 unsigned long vmstart;
792 unsigned long vmend;
793
794 vma = find_vma(mm, start);
795 VM_BUG_ON(!vma);
796
797 prev = vma->vm_prev;
798 if (start > vma->vm_start)
799 prev = vma;
800
801 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
802 next = vma->vm_next;
803 vmstart = max(start, vma->vm_start);
804 vmend = min(end, vma->vm_end);
805
806 if (mpol_equal(vma_policy(vma), new_pol))
807 continue;
808
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx);
814 if (prev) {
815 vma = prev;
816 next = vma->vm_next;
817 if (mpol_equal(vma_policy(vma), new_pol))
818 continue;
819 /* vma_merge() joined vma && vma->next, case 8 */
820 goto replace;
821 }
822 if (vma->vm_start != vmstart) {
823 err = split_vma(vma->vm_mm, vma, vmstart, 1);
824 if (err)
825 goto out;
826 }
827 if (vma->vm_end != vmend) {
828 err = split_vma(vma->vm_mm, vma, vmend, 0);
829 if (err)
830 goto out;
831 }
832 replace:
833 err = vma_replace_policy(vma, new_pol);
834 if (err)
835 goto out;
836 }
837
838 out:
839 return err;
840 }
841
842 /* Set the process memory policy */
843 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
844 nodemask_t *nodes)
845 {
846 struct mempolicy *new, *old;
847 NODEMASK_SCRATCH(scratch);
848 int ret;
849
850 if (!scratch)
851 return -ENOMEM;
852
853 new = mpol_new(mode, flags, nodes);
854 if (IS_ERR(new)) {
855 ret = PTR_ERR(new);
856 goto out;
857 }
858
859 ret = mpol_set_nodemask(new, nodes, scratch);
860 if (ret) {
861 mpol_put(new);
862 goto out;
863 }
864 task_lock(current);
865 old = current->mempolicy;
866 current->mempolicy = new;
867 if (new && new->mode == MPOL_INTERLEAVE)
868 current->il_prev = MAX_NUMNODES-1;
869 task_unlock(current);
870 mpol_put(old);
871 ret = 0;
872 out:
873 NODEMASK_SCRATCH_FREE(scratch);
874 return ret;
875 }
876
877 /*
878 * Return nodemask for policy for get_mempolicy() query
879 *
880 * Called with task's alloc_lock held
881 */
882 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
883 {
884 nodes_clear(*nodes);
885 if (p == &default_policy)
886 return;
887
888 switch (p->mode) {
889 case MPOL_BIND:
890 case MPOL_INTERLEAVE:
891 case MPOL_PREFERRED:
892 case MPOL_PREFERRED_MANY:
893 *nodes = p->nodes;
894 break;
895 case MPOL_LOCAL:
896 /* return empty node mask for local allocation */
897 break;
898 default:
899 BUG();
900 }
901 }
902
903 static int lookup_node(struct mm_struct *mm, unsigned long addr)
904 {
905 struct page *p = NULL;
906 int err;
907
908 int locked = 1;
909 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
910 if (err > 0) {
911 err = page_to_nid(p);
912 put_page(p);
913 }
914 if (locked)
915 mmap_read_unlock(mm);
916 return err;
917 }
918
919 /* Retrieve NUMA policy */
920 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
921 unsigned long addr, unsigned long flags)
922 {
923 int err;
924 struct mm_struct *mm = current->mm;
925 struct vm_area_struct *vma = NULL;
926 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
927
928 if (flags &
929 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
930 return -EINVAL;
931
932 if (flags & MPOL_F_MEMS_ALLOWED) {
933 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
934 return -EINVAL;
935 *policy = 0; /* just so it's initialized */
936 task_lock(current);
937 *nmask = cpuset_current_mems_allowed;
938 task_unlock(current);
939 return 0;
940 }
941
942 if (flags & MPOL_F_ADDR) {
943 /*
944 * Do NOT fall back to task policy if the
945 * vma/shared policy at addr is NULL. We
946 * want to return MPOL_DEFAULT in this case.
947 */
948 mmap_read_lock(mm);
949 vma = vma_lookup(mm, addr);
950 if (!vma) {
951 mmap_read_unlock(mm);
952 return -EFAULT;
953 }
954 if (vma->vm_ops && vma->vm_ops->get_policy)
955 pol = vma->vm_ops->get_policy(vma, addr);
956 else
957 pol = vma->vm_policy;
958 } else if (addr)
959 return -EINVAL;
960
961 if (!pol)
962 pol = &default_policy; /* indicates default behavior */
963
964 if (flags & MPOL_F_NODE) {
965 if (flags & MPOL_F_ADDR) {
966 /*
967 * Take a refcount on the mpol, lookup_node()
968 * will drop the mmap_lock, so after calling
969 * lookup_node() only "pol" remains valid, "vma"
970 * is stale.
971 */
972 pol_refcount = pol;
973 vma = NULL;
974 mpol_get(pol);
975 err = lookup_node(mm, addr);
976 if (err < 0)
977 goto out;
978 *policy = err;
979 } else if (pol == current->mempolicy &&
980 pol->mode == MPOL_INTERLEAVE) {
981 *policy = next_node_in(current->il_prev, pol->nodes);
982 } else {
983 err = -EINVAL;
984 goto out;
985 }
986 } else {
987 *policy = pol == &default_policy ? MPOL_DEFAULT :
988 pol->mode;
989 /*
990 * Internal mempolicy flags must be masked off before exposing
991 * the policy to userspace.
992 */
993 *policy |= (pol->flags & MPOL_MODE_FLAGS);
994 }
995
996 err = 0;
997 if (nmask) {
998 if (mpol_store_user_nodemask(pol)) {
999 *nmask = pol->w.user_nodemask;
1000 } else {
1001 task_lock(current);
1002 get_policy_nodemask(pol, nmask);
1003 task_unlock(current);
1004 }
1005 }
1006
1007 out:
1008 mpol_cond_put(pol);
1009 if (vma)
1010 mmap_read_unlock(mm);
1011 if (pol_refcount)
1012 mpol_put(pol_refcount);
1013 return err;
1014 }
1015
1016 #ifdef CONFIG_MIGRATION
1017 /*
1018 * page migration, thp tail pages can be passed.
1019 */
1020 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1021 unsigned long flags)
1022 {
1023 struct page *head = compound_head(page);
1024 /*
1025 * Avoid migrating a page that is shared with others.
1026 */
1027 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1028 if (!isolate_lru_page(head)) {
1029 list_add_tail(&head->lru, pagelist);
1030 mod_node_page_state(page_pgdat(head),
1031 NR_ISOLATED_ANON + page_is_file_lru(head),
1032 thp_nr_pages(head));
1033 } else if (flags & MPOL_MF_STRICT) {
1034 /*
1035 * Non-movable page may reach here. And, there may be
1036 * temporary off LRU pages or non-LRU movable pages.
1037 * Treat them as unmovable pages since they can't be
1038 * isolated, so they can't be moved at the moment. It
1039 * should return -EIO for this case too.
1040 */
1041 return -EIO;
1042 }
1043 }
1044
1045 return 0;
1046 }
1047
1048 /*
1049 * Migrate pages from one node to a target node.
1050 * Returns error or the number of pages not migrated.
1051 */
1052 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1053 int flags)
1054 {
1055 nodemask_t nmask;
1056 LIST_HEAD(pagelist);
1057 int err = 0;
1058 struct migration_target_control mtc = {
1059 .nid = dest,
1060 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1061 };
1062
1063 nodes_clear(nmask);
1064 node_set(source, nmask);
1065
1066 /*
1067 * This does not "check" the range but isolates all pages that
1068 * need migration. Between passing in the full user address
1069 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1070 */
1071 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1072 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1073 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1074
1075 if (!list_empty(&pagelist)) {
1076 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1077 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1078 if (err)
1079 putback_movable_pages(&pagelist);
1080 }
1081
1082 return err;
1083 }
1084
1085 /*
1086 * Move pages between the two nodesets so as to preserve the physical
1087 * layout as much as possible.
1088 *
1089 * Returns the number of page that could not be moved.
1090 */
1091 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1092 const nodemask_t *to, int flags)
1093 {
1094 int busy = 0;
1095 int err = 0;
1096 nodemask_t tmp;
1097
1098 lru_cache_disable();
1099
1100 mmap_read_lock(mm);
1101
1102 /*
1103 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1104 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1105 * bit in 'tmp', and return that <source, dest> pair for migration.
1106 * The pair of nodemasks 'to' and 'from' define the map.
1107 *
1108 * If no pair of bits is found that way, fallback to picking some
1109 * pair of 'source' and 'dest' bits that are not the same. If the
1110 * 'source' and 'dest' bits are the same, this represents a node
1111 * that will be migrating to itself, so no pages need move.
1112 *
1113 * If no bits are left in 'tmp', or if all remaining bits left
1114 * in 'tmp' correspond to the same bit in 'to', return false
1115 * (nothing left to migrate).
1116 *
1117 * This lets us pick a pair of nodes to migrate between, such that
1118 * if possible the dest node is not already occupied by some other
1119 * source node, minimizing the risk of overloading the memory on a
1120 * node that would happen if we migrated incoming memory to a node
1121 * before migrating outgoing memory source that same node.
1122 *
1123 * A single scan of tmp is sufficient. As we go, we remember the
1124 * most recent <s, d> pair that moved (s != d). If we find a pair
1125 * that not only moved, but what's better, moved to an empty slot
1126 * (d is not set in tmp), then we break out then, with that pair.
1127 * Otherwise when we finish scanning from_tmp, we at least have the
1128 * most recent <s, d> pair that moved. If we get all the way through
1129 * the scan of tmp without finding any node that moved, much less
1130 * moved to an empty node, then there is nothing left worth migrating.
1131 */
1132
1133 tmp = *from;
1134 while (!nodes_empty(tmp)) {
1135 int s, d;
1136 int source = NUMA_NO_NODE;
1137 int dest = 0;
1138
1139 for_each_node_mask(s, tmp) {
1140
1141 /*
1142 * do_migrate_pages() tries to maintain the relative
1143 * node relationship of the pages established between
1144 * threads and memory areas.
1145 *
1146 * However if the number of source nodes is not equal to
1147 * the number of destination nodes we can not preserve
1148 * this node relative relationship. In that case, skip
1149 * copying memory from a node that is in the destination
1150 * mask.
1151 *
1152 * Example: [2,3,4] -> [3,4,5] moves everything.
1153 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1154 */
1155
1156 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1157 (node_isset(s, *to)))
1158 continue;
1159
1160 d = node_remap(s, *from, *to);
1161 if (s == d)
1162 continue;
1163
1164 source = s; /* Node moved. Memorize */
1165 dest = d;
1166
1167 /* dest not in remaining from nodes? */
1168 if (!node_isset(dest, tmp))
1169 break;
1170 }
1171 if (source == NUMA_NO_NODE)
1172 break;
1173
1174 node_clear(source, tmp);
1175 err = migrate_to_node(mm, source, dest, flags);
1176 if (err > 0)
1177 busy += err;
1178 if (err < 0)
1179 break;
1180 }
1181 mmap_read_unlock(mm);
1182
1183 lru_cache_enable();
1184 if (err < 0)
1185 return err;
1186 return busy;
1187
1188 }
1189
1190 /*
1191 * Allocate a new page for page migration based on vma policy.
1192 * Start by assuming the page is mapped by the same vma as contains @start.
1193 * Search forward from there, if not. N.B., this assumes that the
1194 * list of pages handed to migrate_pages()--which is how we get here--
1195 * is in virtual address order.
1196 */
1197 static struct page *new_page(struct page *page, unsigned long start)
1198 {
1199 struct vm_area_struct *vma;
1200 unsigned long address;
1201
1202 vma = find_vma(current->mm, start);
1203 while (vma) {
1204 address = page_address_in_vma(page, vma);
1205 if (address != -EFAULT)
1206 break;
1207 vma = vma->vm_next;
1208 }
1209
1210 if (PageHuge(page)) {
1211 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1212 vma, address);
1213 } else if (PageTransHuge(page)) {
1214 struct page *thp;
1215
1216 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1217 HPAGE_PMD_ORDER);
1218 if (!thp)
1219 return NULL;
1220 prep_transhuge_page(thp);
1221 return thp;
1222 }
1223 /*
1224 * if !vma, alloc_page_vma() will use task or system default policy
1225 */
1226 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1227 vma, address);
1228 }
1229 #else
1230
1231 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1232 unsigned long flags)
1233 {
1234 return -EIO;
1235 }
1236
1237 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1238 const nodemask_t *to, int flags)
1239 {
1240 return -ENOSYS;
1241 }
1242
1243 static struct page *new_page(struct page *page, unsigned long start)
1244 {
1245 return NULL;
1246 }
1247 #endif
1248
1249 static long do_mbind(unsigned long start, unsigned long len,
1250 unsigned short mode, unsigned short mode_flags,
1251 nodemask_t *nmask, unsigned long flags)
1252 {
1253 struct mm_struct *mm = current->mm;
1254 struct mempolicy *new;
1255 unsigned long end;
1256 int err;
1257 int ret;
1258 LIST_HEAD(pagelist);
1259
1260 if (flags & ~(unsigned long)MPOL_MF_VALID)
1261 return -EINVAL;
1262 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1263 return -EPERM;
1264
1265 if (start & ~PAGE_MASK)
1266 return -EINVAL;
1267
1268 if (mode == MPOL_DEFAULT)
1269 flags &= ~MPOL_MF_STRICT;
1270
1271 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1272 end = start + len;
1273
1274 if (end < start)
1275 return -EINVAL;
1276 if (end == start)
1277 return 0;
1278
1279 new = mpol_new(mode, mode_flags, nmask);
1280 if (IS_ERR(new))
1281 return PTR_ERR(new);
1282
1283 if (flags & MPOL_MF_LAZY)
1284 new->flags |= MPOL_F_MOF;
1285
1286 /*
1287 * If we are using the default policy then operation
1288 * on discontinuous address spaces is okay after all
1289 */
1290 if (!new)
1291 flags |= MPOL_MF_DISCONTIG_OK;
1292
1293 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1294 start, start + len, mode, mode_flags,
1295 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1296
1297 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1298
1299 lru_cache_disable();
1300 }
1301 {
1302 NODEMASK_SCRATCH(scratch);
1303 if (scratch) {
1304 mmap_write_lock(mm);
1305 err = mpol_set_nodemask(new, nmask, scratch);
1306 if (err)
1307 mmap_write_unlock(mm);
1308 } else
1309 err = -ENOMEM;
1310 NODEMASK_SCRATCH_FREE(scratch);
1311 }
1312 if (err)
1313 goto mpol_out;
1314
1315 ret = queue_pages_range(mm, start, end, nmask,
1316 flags | MPOL_MF_INVERT, &pagelist);
1317
1318 if (ret < 0) {
1319 err = ret;
1320 goto up_out;
1321 }
1322
1323 err = mbind_range(mm, start, end, new);
1324
1325 if (!err) {
1326 int nr_failed = 0;
1327
1328 if (!list_empty(&pagelist)) {
1329 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1330 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1331 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1332 if (nr_failed)
1333 putback_movable_pages(&pagelist);
1334 }
1335
1336 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1337 err = -EIO;
1338 } else {
1339 up_out:
1340 if (!list_empty(&pagelist))
1341 putback_movable_pages(&pagelist);
1342 }
1343
1344 mmap_write_unlock(mm);
1345 mpol_out:
1346 mpol_put(new);
1347 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1348 lru_cache_enable();
1349 return err;
1350 }
1351
1352 /*
1353 * User space interface with variable sized bitmaps for nodelists.
1354 */
1355 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1356 unsigned long maxnode)
1357 {
1358 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1359 int ret;
1360
1361 if (in_compat_syscall())
1362 ret = compat_get_bitmap(mask,
1363 (const compat_ulong_t __user *)nmask,
1364 maxnode);
1365 else
1366 ret = copy_from_user(mask, nmask,
1367 nlongs * sizeof(unsigned long));
1368
1369 if (ret)
1370 return -EFAULT;
1371
1372 if (maxnode % BITS_PER_LONG)
1373 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1374
1375 return 0;
1376 }
1377
1378 /* Copy a node mask from user space. */
1379 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1380 unsigned long maxnode)
1381 {
1382 --maxnode;
1383 nodes_clear(*nodes);
1384 if (maxnode == 0 || !nmask)
1385 return 0;
1386 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1387 return -EINVAL;
1388
1389 /*
1390 * When the user specified more nodes than supported just check
1391 * if the non supported part is all zero, one word at a time,
1392 * starting at the end.
1393 */
1394 while (maxnode > MAX_NUMNODES) {
1395 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1396 unsigned long t;
1397
1398 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1399 return -EFAULT;
1400
1401 if (maxnode - bits >= MAX_NUMNODES) {
1402 maxnode -= bits;
1403 } else {
1404 maxnode = MAX_NUMNODES;
1405 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1406 }
1407 if (t)
1408 return -EINVAL;
1409 }
1410
1411 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1412 }
1413
1414 /* Copy a kernel node mask to user space */
1415 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1416 nodemask_t *nodes)
1417 {
1418 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1419 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1420 bool compat = in_compat_syscall();
1421
1422 if (compat)
1423 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1424
1425 if (copy > nbytes) {
1426 if (copy > PAGE_SIZE)
1427 return -EINVAL;
1428 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1429 return -EFAULT;
1430 copy = nbytes;
1431 maxnode = nr_node_ids;
1432 }
1433
1434 if (compat)
1435 return compat_put_bitmap((compat_ulong_t __user *)mask,
1436 nodes_addr(*nodes), maxnode);
1437
1438 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1439 }
1440
1441 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1442 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1443 {
1444 *flags = *mode & MPOL_MODE_FLAGS;
1445 *mode &= ~MPOL_MODE_FLAGS;
1446
1447 if ((unsigned int)(*mode) >= MPOL_MAX)
1448 return -EINVAL;
1449 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1450 return -EINVAL;
1451 if (*flags & MPOL_F_NUMA_BALANCING) {
1452 if (*mode != MPOL_BIND)
1453 return -EINVAL;
1454 *flags |= (MPOL_F_MOF | MPOL_F_MORON);
1455 }
1456 return 0;
1457 }
1458
1459 static long kernel_mbind(unsigned long start, unsigned long len,
1460 unsigned long mode, const unsigned long __user *nmask,
1461 unsigned long maxnode, unsigned int flags)
1462 {
1463 unsigned short mode_flags;
1464 nodemask_t nodes;
1465 int lmode = mode;
1466 int err;
1467
1468 start = untagged_addr(start);
1469 err = sanitize_mpol_flags(&lmode, &mode_flags);
1470 if (err)
1471 return err;
1472
1473 err = get_nodes(&nodes, nmask, maxnode);
1474 if (err)
1475 return err;
1476
1477 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1478 }
1479
1480 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1481 unsigned long, mode, const unsigned long __user *, nmask,
1482 unsigned long, maxnode, unsigned int, flags)
1483 {
1484 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1485 }
1486
1487 /* Set the process memory policy */
1488 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1489 unsigned long maxnode)
1490 {
1491 unsigned short mode_flags;
1492 nodemask_t nodes;
1493 int lmode = mode;
1494 int err;
1495
1496 err = sanitize_mpol_flags(&lmode, &mode_flags);
1497 if (err)
1498 return err;
1499
1500 err = get_nodes(&nodes, nmask, maxnode);
1501 if (err)
1502 return err;
1503
1504 return do_set_mempolicy(lmode, mode_flags, &nodes);
1505 }
1506
1507 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1508 unsigned long, maxnode)
1509 {
1510 return kernel_set_mempolicy(mode, nmask, maxnode);
1511 }
1512
1513 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1514 const unsigned long __user *old_nodes,
1515 const unsigned long __user *new_nodes)
1516 {
1517 struct mm_struct *mm = NULL;
1518 struct task_struct *task;
1519 nodemask_t task_nodes;
1520 int err;
1521 nodemask_t *old;
1522 nodemask_t *new;
1523 NODEMASK_SCRATCH(scratch);
1524
1525 if (!scratch)
1526 return -ENOMEM;
1527
1528 old = &scratch->mask1;
1529 new = &scratch->mask2;
1530
1531 err = get_nodes(old, old_nodes, maxnode);
1532 if (err)
1533 goto out;
1534
1535 err = get_nodes(new, new_nodes, maxnode);
1536 if (err)
1537 goto out;
1538
1539 /* Find the mm_struct */
1540 rcu_read_lock();
1541 task = pid ? find_task_by_vpid(pid) : current;
1542 if (!task) {
1543 rcu_read_unlock();
1544 err = -ESRCH;
1545 goto out;
1546 }
1547 get_task_struct(task);
1548
1549 err = -EINVAL;
1550
1551 /*
1552 * Check if this process has the right to modify the specified process.
1553 * Use the regular "ptrace_may_access()" checks.
1554 */
1555 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1556 rcu_read_unlock();
1557 err = -EPERM;
1558 goto out_put;
1559 }
1560 rcu_read_unlock();
1561
1562 task_nodes = cpuset_mems_allowed(task);
1563 /* Is the user allowed to access the target nodes? */
1564 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1565 err = -EPERM;
1566 goto out_put;
1567 }
1568
1569 task_nodes = cpuset_mems_allowed(current);
1570 nodes_and(*new, *new, task_nodes);
1571 if (nodes_empty(*new))
1572 goto out_put;
1573
1574 err = security_task_movememory(task);
1575 if (err)
1576 goto out_put;
1577
1578 mm = get_task_mm(task);
1579 put_task_struct(task);
1580
1581 if (!mm) {
1582 err = -EINVAL;
1583 goto out;
1584 }
1585
1586 err = do_migrate_pages(mm, old, new,
1587 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1588
1589 mmput(mm);
1590 out:
1591 NODEMASK_SCRATCH_FREE(scratch);
1592
1593 return err;
1594
1595 out_put:
1596 put_task_struct(task);
1597 goto out;
1598
1599 }
1600
1601 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1602 const unsigned long __user *, old_nodes,
1603 const unsigned long __user *, new_nodes)
1604 {
1605 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1606 }
1607
1608
1609 /* Retrieve NUMA policy */
1610 static int kernel_get_mempolicy(int __user *policy,
1611 unsigned long __user *nmask,
1612 unsigned long maxnode,
1613 unsigned long addr,
1614 unsigned long flags)
1615 {
1616 int err;
1617 int pval;
1618 nodemask_t nodes;
1619
1620 if (nmask != NULL && maxnode < nr_node_ids)
1621 return -EINVAL;
1622
1623 addr = untagged_addr(addr);
1624
1625 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1626
1627 if (err)
1628 return err;
1629
1630 if (policy && put_user(pval, policy))
1631 return -EFAULT;
1632
1633 if (nmask)
1634 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1635
1636 return err;
1637 }
1638
1639 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 unsigned long __user *, nmask, unsigned long, maxnode,
1641 unsigned long, addr, unsigned long, flags)
1642 {
1643 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1644 }
1645
1646 bool vma_migratable(struct vm_area_struct *vma)
1647 {
1648 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1649 return false;
1650
1651 /*
1652 * DAX device mappings require predictable access latency, so avoid
1653 * incurring periodic faults.
1654 */
1655 if (vma_is_dax(vma))
1656 return false;
1657
1658 if (is_vm_hugetlb_page(vma) &&
1659 !hugepage_migration_supported(hstate_vma(vma)))
1660 return false;
1661
1662 /*
1663 * Migration allocates pages in the highest zone. If we cannot
1664 * do so then migration (at least from node to node) is not
1665 * possible.
1666 */
1667 if (vma->vm_file &&
1668 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1669 < policy_zone)
1670 return false;
1671 return true;
1672 }
1673
1674 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1675 unsigned long addr)
1676 {
1677 struct mempolicy *pol = NULL;
1678
1679 if (vma) {
1680 if (vma->vm_ops && vma->vm_ops->get_policy) {
1681 pol = vma->vm_ops->get_policy(vma, addr);
1682 } else if (vma->vm_policy) {
1683 pol = vma->vm_policy;
1684
1685 /*
1686 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1687 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1688 * count on these policies which will be dropped by
1689 * mpol_cond_put() later
1690 */
1691 if (mpol_needs_cond_ref(pol))
1692 mpol_get(pol);
1693 }
1694 }
1695
1696 return pol;
1697 }
1698
1699 /*
1700 * get_vma_policy(@vma, @addr)
1701 * @vma: virtual memory area whose policy is sought
1702 * @addr: address in @vma for shared policy lookup
1703 *
1704 * Returns effective policy for a VMA at specified address.
1705 * Falls back to current->mempolicy or system default policy, as necessary.
1706 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1707 * count--added by the get_policy() vm_op, as appropriate--to protect against
1708 * freeing by another task. It is the caller's responsibility to free the
1709 * extra reference for shared policies.
1710 */
1711 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1712 unsigned long addr)
1713 {
1714 struct mempolicy *pol = __get_vma_policy(vma, addr);
1715
1716 if (!pol)
1717 pol = get_task_policy(current);
1718
1719 return pol;
1720 }
1721
1722 bool vma_policy_mof(struct vm_area_struct *vma)
1723 {
1724 struct mempolicy *pol;
1725
1726 if (vma->vm_ops && vma->vm_ops->get_policy) {
1727 bool ret = false;
1728
1729 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1730 if (pol && (pol->flags & MPOL_F_MOF))
1731 ret = true;
1732 mpol_cond_put(pol);
1733
1734 return ret;
1735 }
1736
1737 pol = vma->vm_policy;
1738 if (!pol)
1739 pol = get_task_policy(current);
1740
1741 return pol->flags & MPOL_F_MOF;
1742 }
1743
1744 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1745 {
1746 enum zone_type dynamic_policy_zone = policy_zone;
1747
1748 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1749
1750 /*
1751 * if policy->nodes has movable memory only,
1752 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1753 *
1754 * policy->nodes is intersect with node_states[N_MEMORY].
1755 * so if the following test fails, it implies
1756 * policy->nodes has movable memory only.
1757 */
1758 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1759 dynamic_policy_zone = ZONE_MOVABLE;
1760
1761 return zone >= dynamic_policy_zone;
1762 }
1763
1764 /*
1765 * Return a nodemask representing a mempolicy for filtering nodes for
1766 * page allocation
1767 */
1768 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1769 {
1770 int mode = policy->mode;
1771
1772 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1773 if (unlikely(mode == MPOL_BIND) &&
1774 apply_policy_zone(policy, gfp_zone(gfp)) &&
1775 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1776 return &policy->nodes;
1777
1778 if (mode == MPOL_PREFERRED_MANY)
1779 return &policy->nodes;
1780
1781 return NULL;
1782 }
1783
1784 /*
1785 * Return the preferred node id for 'prefer' mempolicy, and return
1786 * the given id for all other policies.
1787 *
1788 * policy_node() is always coupled with policy_nodemask(), which
1789 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1790 */
1791 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1792 {
1793 if (policy->mode == MPOL_PREFERRED) {
1794 nd = first_node(policy->nodes);
1795 } else {
1796 /*
1797 * __GFP_THISNODE shouldn't even be used with the bind policy
1798 * because we might easily break the expectation to stay on the
1799 * requested node and not break the policy.
1800 */
1801 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1802 }
1803
1804 return nd;
1805 }
1806
1807 /* Do dynamic interleaving for a process */
1808 static unsigned interleave_nodes(struct mempolicy *policy)
1809 {
1810 unsigned next;
1811 struct task_struct *me = current;
1812
1813 next = next_node_in(me->il_prev, policy->nodes);
1814 if (next < MAX_NUMNODES)
1815 me->il_prev = next;
1816 return next;
1817 }
1818
1819 /*
1820 * Depending on the memory policy provide a node from which to allocate the
1821 * next slab entry.
1822 */
1823 unsigned int mempolicy_slab_node(void)
1824 {
1825 struct mempolicy *policy;
1826 int node = numa_mem_id();
1827
1828 if (!in_task())
1829 return node;
1830
1831 policy = current->mempolicy;
1832 if (!policy)
1833 return node;
1834
1835 switch (policy->mode) {
1836 case MPOL_PREFERRED:
1837 return first_node(policy->nodes);
1838
1839 case MPOL_INTERLEAVE:
1840 return interleave_nodes(policy);
1841
1842 case MPOL_BIND:
1843 case MPOL_PREFERRED_MANY:
1844 {
1845 struct zoneref *z;
1846
1847 /*
1848 * Follow bind policy behavior and start allocation at the
1849 * first node.
1850 */
1851 struct zonelist *zonelist;
1852 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1853 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1854 z = first_zones_zonelist(zonelist, highest_zoneidx,
1855 &policy->nodes);
1856 return z->zone ? zone_to_nid(z->zone) : node;
1857 }
1858 case MPOL_LOCAL:
1859 return node;
1860
1861 default:
1862 BUG();
1863 }
1864 }
1865
1866 /*
1867 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1868 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1869 * number of present nodes.
1870 */
1871 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1872 {
1873 nodemask_t nodemask = pol->nodes;
1874 unsigned int target, nnodes;
1875 int i;
1876 int nid;
1877 /*
1878 * The barrier will stabilize the nodemask in a register or on
1879 * the stack so that it will stop changing under the code.
1880 *
1881 * Between first_node() and next_node(), pol->nodes could be changed
1882 * by other threads. So we put pol->nodes in a local stack.
1883 */
1884 barrier();
1885
1886 nnodes = nodes_weight(nodemask);
1887 if (!nnodes)
1888 return numa_node_id();
1889 target = (unsigned int)n % nnodes;
1890 nid = first_node(nodemask);
1891 for (i = 0; i < target; i++)
1892 nid = next_node(nid, nodemask);
1893 return nid;
1894 }
1895
1896 /* Determine a node number for interleave */
1897 static inline unsigned interleave_nid(struct mempolicy *pol,
1898 struct vm_area_struct *vma, unsigned long addr, int shift)
1899 {
1900 if (vma) {
1901 unsigned long off;
1902
1903 /*
1904 * for small pages, there is no difference between
1905 * shift and PAGE_SHIFT, so the bit-shift is safe.
1906 * for huge pages, since vm_pgoff is in units of small
1907 * pages, we need to shift off the always 0 bits to get
1908 * a useful offset.
1909 */
1910 BUG_ON(shift < PAGE_SHIFT);
1911 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1912 off += (addr - vma->vm_start) >> shift;
1913 return offset_il_node(pol, off);
1914 } else
1915 return interleave_nodes(pol);
1916 }
1917
1918 #ifdef CONFIG_HUGETLBFS
1919 /*
1920 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1921 * @vma: virtual memory area whose policy is sought
1922 * @addr: address in @vma for shared policy lookup and interleave policy
1923 * @gfp_flags: for requested zone
1924 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1925 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1926 *
1927 * Returns a nid suitable for a huge page allocation and a pointer
1928 * to the struct mempolicy for conditional unref after allocation.
1929 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1930 * to the mempolicy's @nodemask for filtering the zonelist.
1931 *
1932 * Must be protected by read_mems_allowed_begin()
1933 */
1934 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1935 struct mempolicy **mpol, nodemask_t **nodemask)
1936 {
1937 int nid;
1938 int mode;
1939
1940 *mpol = get_vma_policy(vma, addr);
1941 *nodemask = NULL;
1942 mode = (*mpol)->mode;
1943
1944 if (unlikely(mode == MPOL_INTERLEAVE)) {
1945 nid = interleave_nid(*mpol, vma, addr,
1946 huge_page_shift(hstate_vma(vma)));
1947 } else {
1948 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1949 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
1950 *nodemask = &(*mpol)->nodes;
1951 }
1952 return nid;
1953 }
1954
1955 /*
1956 * init_nodemask_of_mempolicy
1957 *
1958 * If the current task's mempolicy is "default" [NULL], return 'false'
1959 * to indicate default policy. Otherwise, extract the policy nodemask
1960 * for 'bind' or 'interleave' policy into the argument nodemask, or
1961 * initialize the argument nodemask to contain the single node for
1962 * 'preferred' or 'local' policy and return 'true' to indicate presence
1963 * of non-default mempolicy.
1964 *
1965 * We don't bother with reference counting the mempolicy [mpol_get/put]
1966 * because the current task is examining it's own mempolicy and a task's
1967 * mempolicy is only ever changed by the task itself.
1968 *
1969 * N.B., it is the caller's responsibility to free a returned nodemask.
1970 */
1971 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1972 {
1973 struct mempolicy *mempolicy;
1974
1975 if (!(mask && current->mempolicy))
1976 return false;
1977
1978 task_lock(current);
1979 mempolicy = current->mempolicy;
1980 switch (mempolicy->mode) {
1981 case MPOL_PREFERRED:
1982 case MPOL_PREFERRED_MANY:
1983 case MPOL_BIND:
1984 case MPOL_INTERLEAVE:
1985 *mask = mempolicy->nodes;
1986 break;
1987
1988 case MPOL_LOCAL:
1989 init_nodemask_of_node(mask, numa_node_id());
1990 break;
1991
1992 default:
1993 BUG();
1994 }
1995 task_unlock(current);
1996
1997 return true;
1998 }
1999 #endif
2000
2001 /*
2002 * mempolicy_in_oom_domain
2003 *
2004 * If tsk's mempolicy is "bind", check for intersection between mask and
2005 * the policy nodemask. Otherwise, return true for all other policies
2006 * including "interleave", as a tsk with "interleave" policy may have
2007 * memory allocated from all nodes in system.
2008 *
2009 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2010 */
2011 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2012 const nodemask_t *mask)
2013 {
2014 struct mempolicy *mempolicy;
2015 bool ret = true;
2016
2017 if (!mask)
2018 return ret;
2019
2020 task_lock(tsk);
2021 mempolicy = tsk->mempolicy;
2022 if (mempolicy && mempolicy->mode == MPOL_BIND)
2023 ret = nodes_intersects(mempolicy->nodes, *mask);
2024 task_unlock(tsk);
2025
2026 return ret;
2027 }
2028
2029 /* Allocate a page in interleaved policy.
2030 Own path because it needs to do special accounting. */
2031 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2032 unsigned nid)
2033 {
2034 struct page *page;
2035
2036 page = __alloc_pages(gfp, order, nid, NULL);
2037 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2038 if (!static_branch_likely(&vm_numa_stat_key))
2039 return page;
2040 if (page && page_to_nid(page) == nid) {
2041 preempt_disable();
2042 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2043 preempt_enable();
2044 }
2045 return page;
2046 }
2047
2048 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2049 int nid, struct mempolicy *pol)
2050 {
2051 struct page *page;
2052 gfp_t preferred_gfp;
2053
2054 /*
2055 * This is a two pass approach. The first pass will only try the
2056 * preferred nodes but skip the direct reclaim and allow the
2057 * allocation to fail, while the second pass will try all the
2058 * nodes in system.
2059 */
2060 preferred_gfp = gfp | __GFP_NOWARN;
2061 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2062 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2063 if (!page)
2064 page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2065
2066 return page;
2067 }
2068
2069 /**
2070 * alloc_pages_vma - Allocate a page for a VMA.
2071 * @gfp: GFP flags.
2072 * @order: Order of the GFP allocation.
2073 * @vma: Pointer to VMA or NULL if not available.
2074 * @addr: Virtual address of the allocation. Must be inside @vma.
2075 * @node: Which node to prefer for allocation (modulo policy).
2076 * @hugepage: For hugepages try only the preferred node if possible.
2077 *
2078 * Allocate a page for a specific address in @vma, using the appropriate
2079 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2080 * of the mm_struct of the VMA to prevent it from going away. Should be
2081 * used for all allocations for pages that will be mapped into user space.
2082 *
2083 * Return: The page on success or NULL if allocation fails.
2084 */
2085 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2086 unsigned long addr, int node, bool hugepage)
2087 {
2088 struct mempolicy *pol;
2089 struct page *page;
2090 int preferred_nid;
2091 nodemask_t *nmask;
2092
2093 pol = get_vma_policy(vma, addr);
2094
2095 if (pol->mode == MPOL_INTERLEAVE) {
2096 unsigned nid;
2097
2098 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2099 mpol_cond_put(pol);
2100 page = alloc_page_interleave(gfp, order, nid);
2101 goto out;
2102 }
2103
2104 if (pol->mode == MPOL_PREFERRED_MANY) {
2105 page = alloc_pages_preferred_many(gfp, order, node, pol);
2106 mpol_cond_put(pol);
2107 goto out;
2108 }
2109
2110 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2111 int hpage_node = node;
2112
2113 /*
2114 * For hugepage allocation and non-interleave policy which
2115 * allows the current node (or other explicitly preferred
2116 * node) we only try to allocate from the current/preferred
2117 * node and don't fall back to other nodes, as the cost of
2118 * remote accesses would likely offset THP benefits.
2119 *
2120 * If the policy is interleave or does not allow the current
2121 * node in its nodemask, we allocate the standard way.
2122 */
2123 if (pol->mode == MPOL_PREFERRED)
2124 hpage_node = first_node(pol->nodes);
2125
2126 nmask = policy_nodemask(gfp, pol);
2127 if (!nmask || node_isset(hpage_node, *nmask)) {
2128 mpol_cond_put(pol);
2129 /*
2130 * First, try to allocate THP only on local node, but
2131 * don't reclaim unnecessarily, just compact.
2132 */
2133 page = __alloc_pages_node(hpage_node,
2134 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2135
2136 /*
2137 * If hugepage allocations are configured to always
2138 * synchronous compact or the vma has been madvised
2139 * to prefer hugepage backing, retry allowing remote
2140 * memory with both reclaim and compact as well.
2141 */
2142 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2143 page = __alloc_pages_node(hpage_node,
2144 gfp, order);
2145
2146 goto out;
2147 }
2148 }
2149
2150 nmask = policy_nodemask(gfp, pol);
2151 preferred_nid = policy_node(gfp, pol, node);
2152 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2153 mpol_cond_put(pol);
2154 out:
2155 return page;
2156 }
2157 EXPORT_SYMBOL(alloc_pages_vma);
2158
2159 /**
2160 * alloc_pages - Allocate pages.
2161 * @gfp: GFP flags.
2162 * @order: Power of two of number of pages to allocate.
2163 *
2164 * Allocate 1 << @order contiguous pages. The physical address of the
2165 * first page is naturally aligned (eg an order-3 allocation will be aligned
2166 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2167 * process is honoured when in process context.
2168 *
2169 * Context: Can be called from any context, providing the appropriate GFP
2170 * flags are used.
2171 * Return: The page on success or NULL if allocation fails.
2172 */
2173 struct page *alloc_pages(gfp_t gfp, unsigned order)
2174 {
2175 struct mempolicy *pol = &default_policy;
2176 struct page *page;
2177
2178 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2179 pol = get_task_policy(current);
2180
2181 /*
2182 * No reference counting needed for current->mempolicy
2183 * nor system default_policy
2184 */
2185 if (pol->mode == MPOL_INTERLEAVE)
2186 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2187 else if (pol->mode == MPOL_PREFERRED_MANY)
2188 page = alloc_pages_preferred_many(gfp, order,
2189 numa_node_id(), pol);
2190 else
2191 page = __alloc_pages(gfp, order,
2192 policy_node(gfp, pol, numa_node_id()),
2193 policy_nodemask(gfp, pol));
2194
2195 return page;
2196 }
2197 EXPORT_SYMBOL(alloc_pages);
2198
2199 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2200 {
2201 struct mempolicy *pol = mpol_dup(vma_policy(src));
2202
2203 if (IS_ERR(pol))
2204 return PTR_ERR(pol);
2205 dst->vm_policy = pol;
2206 return 0;
2207 }
2208
2209 /*
2210 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2211 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2212 * with the mems_allowed returned by cpuset_mems_allowed(). This
2213 * keeps mempolicies cpuset relative after its cpuset moves. See
2214 * further kernel/cpuset.c update_nodemask().
2215 *
2216 * current's mempolicy may be rebinded by the other task(the task that changes
2217 * cpuset's mems), so we needn't do rebind work for current task.
2218 */
2219
2220 /* Slow path of a mempolicy duplicate */
2221 struct mempolicy *__mpol_dup(struct mempolicy *old)
2222 {
2223 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2224
2225 if (!new)
2226 return ERR_PTR(-ENOMEM);
2227
2228 /* task's mempolicy is protected by alloc_lock */
2229 if (old == current->mempolicy) {
2230 task_lock(current);
2231 *new = *old;
2232 task_unlock(current);
2233 } else
2234 *new = *old;
2235
2236 if (current_cpuset_is_being_rebound()) {
2237 nodemask_t mems = cpuset_mems_allowed(current);
2238 mpol_rebind_policy(new, &mems);
2239 }
2240 atomic_set(&new->refcnt, 1);
2241 return new;
2242 }
2243
2244 /* Slow path of a mempolicy comparison */
2245 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2246 {
2247 if (!a || !b)
2248 return false;
2249 if (a->mode != b->mode)
2250 return false;
2251 if (a->flags != b->flags)
2252 return false;
2253 if (mpol_store_user_nodemask(a))
2254 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2255 return false;
2256
2257 switch (a->mode) {
2258 case MPOL_BIND:
2259 case MPOL_INTERLEAVE:
2260 case MPOL_PREFERRED:
2261 case MPOL_PREFERRED_MANY:
2262 return !!nodes_equal(a->nodes, b->nodes);
2263 case MPOL_LOCAL:
2264 return true;
2265 default:
2266 BUG();
2267 return false;
2268 }
2269 }
2270
2271 /*
2272 * Shared memory backing store policy support.
2273 *
2274 * Remember policies even when nobody has shared memory mapped.
2275 * The policies are kept in Red-Black tree linked from the inode.
2276 * They are protected by the sp->lock rwlock, which should be held
2277 * for any accesses to the tree.
2278 */
2279
2280 /*
2281 * lookup first element intersecting start-end. Caller holds sp->lock for
2282 * reading or for writing
2283 */
2284 static struct sp_node *
2285 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2286 {
2287 struct rb_node *n = sp->root.rb_node;
2288
2289 while (n) {
2290 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2291
2292 if (start >= p->end)
2293 n = n->rb_right;
2294 else if (end <= p->start)
2295 n = n->rb_left;
2296 else
2297 break;
2298 }
2299 if (!n)
2300 return NULL;
2301 for (;;) {
2302 struct sp_node *w = NULL;
2303 struct rb_node *prev = rb_prev(n);
2304 if (!prev)
2305 break;
2306 w = rb_entry(prev, struct sp_node, nd);
2307 if (w->end <= start)
2308 break;
2309 n = prev;
2310 }
2311 return rb_entry(n, struct sp_node, nd);
2312 }
2313
2314 /*
2315 * Insert a new shared policy into the list. Caller holds sp->lock for
2316 * writing.
2317 */
2318 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2319 {
2320 struct rb_node **p = &sp->root.rb_node;
2321 struct rb_node *parent = NULL;
2322 struct sp_node *nd;
2323
2324 while (*p) {
2325 parent = *p;
2326 nd = rb_entry(parent, struct sp_node, nd);
2327 if (new->start < nd->start)
2328 p = &(*p)->rb_left;
2329 else if (new->end > nd->end)
2330 p = &(*p)->rb_right;
2331 else
2332 BUG();
2333 }
2334 rb_link_node(&new->nd, parent, p);
2335 rb_insert_color(&new->nd, &sp->root);
2336 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2337 new->policy ? new->policy->mode : 0);
2338 }
2339
2340 /* Find shared policy intersecting idx */
2341 struct mempolicy *
2342 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2343 {
2344 struct mempolicy *pol = NULL;
2345 struct sp_node *sn;
2346
2347 if (!sp->root.rb_node)
2348 return NULL;
2349 read_lock(&sp->lock);
2350 sn = sp_lookup(sp, idx, idx+1);
2351 if (sn) {
2352 mpol_get(sn->policy);
2353 pol = sn->policy;
2354 }
2355 read_unlock(&sp->lock);
2356 return pol;
2357 }
2358
2359 static void sp_free(struct sp_node *n)
2360 {
2361 mpol_put(n->policy);
2362 kmem_cache_free(sn_cache, n);
2363 }
2364
2365 /**
2366 * mpol_misplaced - check whether current page node is valid in policy
2367 *
2368 * @page: page to be checked
2369 * @vma: vm area where page mapped
2370 * @addr: virtual address where page mapped
2371 *
2372 * Lookup current policy node id for vma,addr and "compare to" page's
2373 * node id. Policy determination "mimics" alloc_page_vma().
2374 * Called from fault path where we know the vma and faulting address.
2375 *
2376 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2377 * policy, or a suitable node ID to allocate a replacement page from.
2378 */
2379 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2380 {
2381 struct mempolicy *pol;
2382 struct zoneref *z;
2383 int curnid = page_to_nid(page);
2384 unsigned long pgoff;
2385 int thiscpu = raw_smp_processor_id();
2386 int thisnid = cpu_to_node(thiscpu);
2387 int polnid = NUMA_NO_NODE;
2388 int ret = NUMA_NO_NODE;
2389
2390 pol = get_vma_policy(vma, addr);
2391 if (!(pol->flags & MPOL_F_MOF))
2392 goto out;
2393
2394 switch (pol->mode) {
2395 case MPOL_INTERLEAVE:
2396 pgoff = vma->vm_pgoff;
2397 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2398 polnid = offset_il_node(pol, pgoff);
2399 break;
2400
2401 case MPOL_PREFERRED:
2402 if (node_isset(curnid, pol->nodes))
2403 goto out;
2404 polnid = first_node(pol->nodes);
2405 break;
2406
2407 case MPOL_LOCAL:
2408 polnid = numa_node_id();
2409 break;
2410
2411 case MPOL_BIND:
2412 /* Optimize placement among multiple nodes via NUMA balancing */
2413 if (pol->flags & MPOL_F_MORON) {
2414 if (node_isset(thisnid, pol->nodes))
2415 break;
2416 goto out;
2417 }
2418 fallthrough;
2419
2420 case MPOL_PREFERRED_MANY:
2421 /*
2422 * use current page if in policy nodemask,
2423 * else select nearest allowed node, if any.
2424 * If no allowed nodes, use current [!misplaced].
2425 */
2426 if (node_isset(curnid, pol->nodes))
2427 goto out;
2428 z = first_zones_zonelist(
2429 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2430 gfp_zone(GFP_HIGHUSER),
2431 &pol->nodes);
2432 polnid = zone_to_nid(z->zone);
2433 break;
2434
2435 default:
2436 BUG();
2437 }
2438
2439 /* Migrate the page towards the node whose CPU is referencing it */
2440 if (pol->flags & MPOL_F_MORON) {
2441 polnid = thisnid;
2442
2443 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2444 goto out;
2445 }
2446
2447 if (curnid != polnid)
2448 ret = polnid;
2449 out:
2450 mpol_cond_put(pol);
2451
2452 return ret;
2453 }
2454
2455 /*
2456 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2457 * dropped after task->mempolicy is set to NULL so that any allocation done as
2458 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2459 * policy.
2460 */
2461 void mpol_put_task_policy(struct task_struct *task)
2462 {
2463 struct mempolicy *pol;
2464
2465 task_lock(task);
2466 pol = task->mempolicy;
2467 task->mempolicy = NULL;
2468 task_unlock(task);
2469 mpol_put(pol);
2470 }
2471
2472 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2473 {
2474 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2475 rb_erase(&n->nd, &sp->root);
2476 sp_free(n);
2477 }
2478
2479 static void sp_node_init(struct sp_node *node, unsigned long start,
2480 unsigned long end, struct mempolicy *pol)
2481 {
2482 node->start = start;
2483 node->end = end;
2484 node->policy = pol;
2485 }
2486
2487 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2488 struct mempolicy *pol)
2489 {
2490 struct sp_node *n;
2491 struct mempolicy *newpol;
2492
2493 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2494 if (!n)
2495 return NULL;
2496
2497 newpol = mpol_dup(pol);
2498 if (IS_ERR(newpol)) {
2499 kmem_cache_free(sn_cache, n);
2500 return NULL;
2501 }
2502 newpol->flags |= MPOL_F_SHARED;
2503 sp_node_init(n, start, end, newpol);
2504
2505 return n;
2506 }
2507
2508 /* Replace a policy range. */
2509 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2510 unsigned long end, struct sp_node *new)
2511 {
2512 struct sp_node *n;
2513 struct sp_node *n_new = NULL;
2514 struct mempolicy *mpol_new = NULL;
2515 int ret = 0;
2516
2517 restart:
2518 write_lock(&sp->lock);
2519 n = sp_lookup(sp, start, end);
2520 /* Take care of old policies in the same range. */
2521 while (n && n->start < end) {
2522 struct rb_node *next = rb_next(&n->nd);
2523 if (n->start >= start) {
2524 if (n->end <= end)
2525 sp_delete(sp, n);
2526 else
2527 n->start = end;
2528 } else {
2529 /* Old policy spanning whole new range. */
2530 if (n->end > end) {
2531 if (!n_new)
2532 goto alloc_new;
2533
2534 *mpol_new = *n->policy;
2535 atomic_set(&mpol_new->refcnt, 1);
2536 sp_node_init(n_new, end, n->end, mpol_new);
2537 n->end = start;
2538 sp_insert(sp, n_new);
2539 n_new = NULL;
2540 mpol_new = NULL;
2541 break;
2542 } else
2543 n->end = start;
2544 }
2545 if (!next)
2546 break;
2547 n = rb_entry(next, struct sp_node, nd);
2548 }
2549 if (new)
2550 sp_insert(sp, new);
2551 write_unlock(&sp->lock);
2552 ret = 0;
2553
2554 err_out:
2555 if (mpol_new)
2556 mpol_put(mpol_new);
2557 if (n_new)
2558 kmem_cache_free(sn_cache, n_new);
2559
2560 return ret;
2561
2562 alloc_new:
2563 write_unlock(&sp->lock);
2564 ret = -ENOMEM;
2565 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2566 if (!n_new)
2567 goto err_out;
2568 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2569 if (!mpol_new)
2570 goto err_out;
2571 goto restart;
2572 }
2573
2574 /**
2575 * mpol_shared_policy_init - initialize shared policy for inode
2576 * @sp: pointer to inode shared policy
2577 * @mpol: struct mempolicy to install
2578 *
2579 * Install non-NULL @mpol in inode's shared policy rb-tree.
2580 * On entry, the current task has a reference on a non-NULL @mpol.
2581 * This must be released on exit.
2582 * This is called at get_inode() calls and we can use GFP_KERNEL.
2583 */
2584 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2585 {
2586 int ret;
2587
2588 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2589 rwlock_init(&sp->lock);
2590
2591 if (mpol) {
2592 struct vm_area_struct pvma;
2593 struct mempolicy *new;
2594 NODEMASK_SCRATCH(scratch);
2595
2596 if (!scratch)
2597 goto put_mpol;
2598 /* contextualize the tmpfs mount point mempolicy */
2599 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2600 if (IS_ERR(new))
2601 goto free_scratch; /* no valid nodemask intersection */
2602
2603 task_lock(current);
2604 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2605 task_unlock(current);
2606 if (ret)
2607 goto put_new;
2608
2609 /* Create pseudo-vma that contains just the policy */
2610 vma_init(&pvma, NULL);
2611 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2612 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2613
2614 put_new:
2615 mpol_put(new); /* drop initial ref */
2616 free_scratch:
2617 NODEMASK_SCRATCH_FREE(scratch);
2618 put_mpol:
2619 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2620 }
2621 }
2622
2623 int mpol_set_shared_policy(struct shared_policy *info,
2624 struct vm_area_struct *vma, struct mempolicy *npol)
2625 {
2626 int err;
2627 struct sp_node *new = NULL;
2628 unsigned long sz = vma_pages(vma);
2629
2630 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2631 vma->vm_pgoff,
2632 sz, npol ? npol->mode : -1,
2633 npol ? npol->flags : -1,
2634 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2635
2636 if (npol) {
2637 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2638 if (!new)
2639 return -ENOMEM;
2640 }
2641 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2642 if (err && new)
2643 sp_free(new);
2644 return err;
2645 }
2646
2647 /* Free a backing policy store on inode delete. */
2648 void mpol_free_shared_policy(struct shared_policy *p)
2649 {
2650 struct sp_node *n;
2651 struct rb_node *next;
2652
2653 if (!p->root.rb_node)
2654 return;
2655 write_lock(&p->lock);
2656 next = rb_first(&p->root);
2657 while (next) {
2658 n = rb_entry(next, struct sp_node, nd);
2659 next = rb_next(&n->nd);
2660 sp_delete(p, n);
2661 }
2662 write_unlock(&p->lock);
2663 }
2664
2665 #ifdef CONFIG_NUMA_BALANCING
2666 static int __initdata numabalancing_override;
2667
2668 static void __init check_numabalancing_enable(void)
2669 {
2670 bool numabalancing_default = false;
2671
2672 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2673 numabalancing_default = true;
2674
2675 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2676 if (numabalancing_override)
2677 set_numabalancing_state(numabalancing_override == 1);
2678
2679 if (num_online_nodes() > 1 && !numabalancing_override) {
2680 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2681 numabalancing_default ? "Enabling" : "Disabling");
2682 set_numabalancing_state(numabalancing_default);
2683 }
2684 }
2685
2686 static int __init setup_numabalancing(char *str)
2687 {
2688 int ret = 0;
2689 if (!str)
2690 goto out;
2691
2692 if (!strcmp(str, "enable")) {
2693 numabalancing_override = 1;
2694 ret = 1;
2695 } else if (!strcmp(str, "disable")) {
2696 numabalancing_override = -1;
2697 ret = 1;
2698 }
2699 out:
2700 if (!ret)
2701 pr_warn("Unable to parse numa_balancing=\n");
2702
2703 return ret;
2704 }
2705 __setup("numa_balancing=", setup_numabalancing);
2706 #else
2707 static inline void __init check_numabalancing_enable(void)
2708 {
2709 }
2710 #endif /* CONFIG_NUMA_BALANCING */
2711
2712 /* assumes fs == KERNEL_DS */
2713 void __init numa_policy_init(void)
2714 {
2715 nodemask_t interleave_nodes;
2716 unsigned long largest = 0;
2717 int nid, prefer = 0;
2718
2719 policy_cache = kmem_cache_create("numa_policy",
2720 sizeof(struct mempolicy),
2721 0, SLAB_PANIC, NULL);
2722
2723 sn_cache = kmem_cache_create("shared_policy_node",
2724 sizeof(struct sp_node),
2725 0, SLAB_PANIC, NULL);
2726
2727 for_each_node(nid) {
2728 preferred_node_policy[nid] = (struct mempolicy) {
2729 .refcnt = ATOMIC_INIT(1),
2730 .mode = MPOL_PREFERRED,
2731 .flags = MPOL_F_MOF | MPOL_F_MORON,
2732 .nodes = nodemask_of_node(nid),
2733 };
2734 }
2735
2736 /*
2737 * Set interleaving policy for system init. Interleaving is only
2738 * enabled across suitably sized nodes (default is >= 16MB), or
2739 * fall back to the largest node if they're all smaller.
2740 */
2741 nodes_clear(interleave_nodes);
2742 for_each_node_state(nid, N_MEMORY) {
2743 unsigned long total_pages = node_present_pages(nid);
2744
2745 /* Preserve the largest node */
2746 if (largest < total_pages) {
2747 largest = total_pages;
2748 prefer = nid;
2749 }
2750
2751 /* Interleave this node? */
2752 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2753 node_set(nid, interleave_nodes);
2754 }
2755
2756 /* All too small, use the largest */
2757 if (unlikely(nodes_empty(interleave_nodes)))
2758 node_set(prefer, interleave_nodes);
2759
2760 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2761 pr_err("%s: interleaving failed\n", __func__);
2762
2763 check_numabalancing_enable();
2764 }
2765
2766 /* Reset policy of current process to default */
2767 void numa_default_policy(void)
2768 {
2769 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2770 }
2771
2772 /*
2773 * Parse and format mempolicy from/to strings
2774 */
2775
2776 static const char * const policy_modes[] =
2777 {
2778 [MPOL_DEFAULT] = "default",
2779 [MPOL_PREFERRED] = "prefer",
2780 [MPOL_BIND] = "bind",
2781 [MPOL_INTERLEAVE] = "interleave",
2782 [MPOL_LOCAL] = "local",
2783 [MPOL_PREFERRED_MANY] = "prefer (many)",
2784 };
2785
2786
2787 #ifdef CONFIG_TMPFS
2788 /**
2789 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2790 * @str: string containing mempolicy to parse
2791 * @mpol: pointer to struct mempolicy pointer, returned on success.
2792 *
2793 * Format of input:
2794 * <mode>[=<flags>][:<nodelist>]
2795 *
2796 * On success, returns 0, else 1
2797 */
2798 int mpol_parse_str(char *str, struct mempolicy **mpol)
2799 {
2800 struct mempolicy *new = NULL;
2801 unsigned short mode_flags;
2802 nodemask_t nodes;
2803 char *nodelist = strchr(str, ':');
2804 char *flags = strchr(str, '=');
2805 int err = 1, mode;
2806
2807 if (flags)
2808 *flags++ = '\0'; /* terminate mode string */
2809
2810 if (nodelist) {
2811 /* NUL-terminate mode or flags string */
2812 *nodelist++ = '\0';
2813 if (nodelist_parse(nodelist, nodes))
2814 goto out;
2815 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2816 goto out;
2817 } else
2818 nodes_clear(nodes);
2819
2820 mode = match_string(policy_modes, MPOL_MAX, str);
2821 if (mode < 0)
2822 goto out;
2823
2824 switch (mode) {
2825 case MPOL_PREFERRED:
2826 /*
2827 * Insist on a nodelist of one node only, although later
2828 * we use first_node(nodes) to grab a single node, so here
2829 * nodelist (or nodes) cannot be empty.
2830 */
2831 if (nodelist) {
2832 char *rest = nodelist;
2833 while (isdigit(*rest))
2834 rest++;
2835 if (*rest)
2836 goto out;
2837 if (nodes_empty(nodes))
2838 goto out;
2839 }
2840 break;
2841 case MPOL_INTERLEAVE:
2842 /*
2843 * Default to online nodes with memory if no nodelist
2844 */
2845 if (!nodelist)
2846 nodes = node_states[N_MEMORY];
2847 break;
2848 case MPOL_LOCAL:
2849 /*
2850 * Don't allow a nodelist; mpol_new() checks flags
2851 */
2852 if (nodelist)
2853 goto out;
2854 break;
2855 case MPOL_DEFAULT:
2856 /*
2857 * Insist on a empty nodelist
2858 */
2859 if (!nodelist)
2860 err = 0;
2861 goto out;
2862 case MPOL_PREFERRED_MANY:
2863 case MPOL_BIND:
2864 /*
2865 * Insist on a nodelist
2866 */
2867 if (!nodelist)
2868 goto out;
2869 }
2870
2871 mode_flags = 0;
2872 if (flags) {
2873 /*
2874 * Currently, we only support two mutually exclusive
2875 * mode flags.
2876 */
2877 if (!strcmp(flags, "static"))
2878 mode_flags |= MPOL_F_STATIC_NODES;
2879 else if (!strcmp(flags, "relative"))
2880 mode_flags |= MPOL_F_RELATIVE_NODES;
2881 else
2882 goto out;
2883 }
2884
2885 new = mpol_new(mode, mode_flags, &nodes);
2886 if (IS_ERR(new))
2887 goto out;
2888
2889 /*
2890 * Save nodes for mpol_to_str() to show the tmpfs mount options
2891 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2892 */
2893 if (mode != MPOL_PREFERRED) {
2894 new->nodes = nodes;
2895 } else if (nodelist) {
2896 nodes_clear(new->nodes);
2897 node_set(first_node(nodes), new->nodes);
2898 } else {
2899 new->mode = MPOL_LOCAL;
2900 }
2901
2902 /*
2903 * Save nodes for contextualization: this will be used to "clone"
2904 * the mempolicy in a specific context [cpuset] at a later time.
2905 */
2906 new->w.user_nodemask = nodes;
2907
2908 err = 0;
2909
2910 out:
2911 /* Restore string for error message */
2912 if (nodelist)
2913 *--nodelist = ':';
2914 if (flags)
2915 *--flags = '=';
2916 if (!err)
2917 *mpol = new;
2918 return err;
2919 }
2920 #endif /* CONFIG_TMPFS */
2921
2922 /**
2923 * mpol_to_str - format a mempolicy structure for printing
2924 * @buffer: to contain formatted mempolicy string
2925 * @maxlen: length of @buffer
2926 * @pol: pointer to mempolicy to be formatted
2927 *
2928 * Convert @pol into a string. If @buffer is too short, truncate the string.
2929 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2930 * longest flag, "relative", and to display at least a few node ids.
2931 */
2932 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2933 {
2934 char *p = buffer;
2935 nodemask_t nodes = NODE_MASK_NONE;
2936 unsigned short mode = MPOL_DEFAULT;
2937 unsigned short flags = 0;
2938
2939 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2940 mode = pol->mode;
2941 flags = pol->flags;
2942 }
2943
2944 switch (mode) {
2945 case MPOL_DEFAULT:
2946 case MPOL_LOCAL:
2947 break;
2948 case MPOL_PREFERRED:
2949 case MPOL_PREFERRED_MANY:
2950 case MPOL_BIND:
2951 case MPOL_INTERLEAVE:
2952 nodes = pol->nodes;
2953 break;
2954 default:
2955 WARN_ON_ONCE(1);
2956 snprintf(p, maxlen, "unknown");
2957 return;
2958 }
2959
2960 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2961
2962 if (flags & MPOL_MODE_FLAGS) {
2963 p += snprintf(p, buffer + maxlen - p, "=");
2964
2965 /*
2966 * Currently, the only defined flags are mutually exclusive
2967 */
2968 if (flags & MPOL_F_STATIC_NODES)
2969 p += snprintf(p, buffer + maxlen - p, "static");
2970 else if (flags & MPOL_F_RELATIVE_NODES)
2971 p += snprintf(p, buffer + maxlen - p, "relative");
2972 }
2973
2974 if (!nodes_empty(nodes))
2975 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2976 nodemask_pr_args(&nodes));
2977 }
2978
2979 bool numa_demotion_enabled = false;
2980
2981 #ifdef CONFIG_SYSFS
2982 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2983 struct kobj_attribute *attr, char *buf)
2984 {
2985 return sysfs_emit(buf, "%s\n",
2986 numa_demotion_enabled? "true" : "false");
2987 }
2988
2989 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2990 struct kobj_attribute *attr,
2991 const char *buf, size_t count)
2992 {
2993 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
2994 numa_demotion_enabled = true;
2995 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
2996 numa_demotion_enabled = false;
2997 else
2998 return -EINVAL;
2999
3000 return count;
3001 }
3002
3003 static struct kobj_attribute numa_demotion_enabled_attr =
3004 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3005 numa_demotion_enabled_store);
3006
3007 static struct attribute *numa_attrs[] = {
3008 &numa_demotion_enabled_attr.attr,
3009 NULL,
3010 };
3011
3012 static const struct attribute_group numa_attr_group = {
3013 .attrs = numa_attrs,
3014 };
3015
3016 static int __init numa_init_sysfs(void)
3017 {
3018 int err;
3019 struct kobject *numa_kobj;
3020
3021 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3022 if (!numa_kobj) {
3023 pr_err("failed to create numa kobject\n");
3024 return -ENOMEM;
3025 }
3026 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3027 if (err) {
3028 pr_err("failed to register numa group\n");
3029 goto delete_obj;
3030 }
3031 return 0;
3032
3033 delete_obj:
3034 kobject_put(numa_kobj);
3035 return err;
3036 }
3037 subsys_initcall(numa_init_sysfs);
3038 #endif