]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
mm: prevent kswapd from freeing excessive amounts of lowmem
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/nodemask.h>
76 #include <linux/cpuset.h>
77 #include <linux/gfp.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/module.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90
91 #include <asm/tlbflush.h>
92 #include <asm/uaccess.h>
93
94 /* Internal flags */
95 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
96 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
97 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
98
99 static struct kmem_cache *policy_cache;
100 static struct kmem_cache *sn_cache;
101
102 /* Highest zone. An specific allocation for a zone below that is not
103 policied. */
104 enum zone_type policy_zone = 0;
105
106 struct mempolicy default_policy = {
107 .refcnt = ATOMIC_INIT(1), /* never free it */
108 .policy = MPOL_DEFAULT,
109 };
110
111 /* Do sanity checking on a policy */
112 static int mpol_check_policy(int mode, nodemask_t *nodes)
113 {
114 int empty = nodes_empty(*nodes);
115
116 switch (mode) {
117 case MPOL_DEFAULT:
118 if (!empty)
119 return -EINVAL;
120 break;
121 case MPOL_BIND:
122 case MPOL_INTERLEAVE:
123 /* Preferred will only use the first bit, but allow
124 more for now. */
125 if (empty)
126 return -EINVAL;
127 break;
128 }
129 return nodes_subset(*nodes, node_online_map) ? 0 : -EINVAL;
130 }
131
132 /* Generate a custom zonelist for the BIND policy. */
133 static struct zonelist *bind_zonelist(nodemask_t *nodes)
134 {
135 struct zonelist *zl;
136 int num, max, nd;
137 enum zone_type k;
138
139 max = 1 + MAX_NR_ZONES * nodes_weight(*nodes);
140 max++; /* space for zlcache_ptr (see mmzone.h) */
141 zl = kmalloc(sizeof(struct zone *) * max, GFP_KERNEL);
142 if (!zl)
143 return ERR_PTR(-ENOMEM);
144 zl->zlcache_ptr = NULL;
145 num = 0;
146 /* First put in the highest zones from all nodes, then all the next
147 lower zones etc. Avoid empty zones because the memory allocator
148 doesn't like them. If you implement node hot removal you
149 have to fix that. */
150 k = MAX_NR_ZONES - 1;
151 while (1) {
152 for_each_node_mask(nd, *nodes) {
153 struct zone *z = &NODE_DATA(nd)->node_zones[k];
154 if (z->present_pages > 0)
155 zl->zones[num++] = z;
156 }
157 if (k == 0)
158 break;
159 k--;
160 }
161 if (num == 0) {
162 kfree(zl);
163 return ERR_PTR(-EINVAL);
164 }
165 zl->zones[num] = NULL;
166 return zl;
167 }
168
169 /* Create a new policy */
170 static struct mempolicy *mpol_new(int mode, nodemask_t *nodes)
171 {
172 struct mempolicy *policy;
173
174 pr_debug("setting mode %d nodes[0] %lx\n",
175 mode, nodes ? nodes_addr(*nodes)[0] : -1);
176
177 if (mode == MPOL_DEFAULT)
178 return NULL;
179 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
180 if (!policy)
181 return ERR_PTR(-ENOMEM);
182 atomic_set(&policy->refcnt, 1);
183 switch (mode) {
184 case MPOL_INTERLEAVE:
185 policy->v.nodes = *nodes;
186 if (nodes_weight(*nodes) == 0) {
187 kmem_cache_free(policy_cache, policy);
188 return ERR_PTR(-EINVAL);
189 }
190 break;
191 case MPOL_PREFERRED:
192 policy->v.preferred_node = first_node(*nodes);
193 if (policy->v.preferred_node >= MAX_NUMNODES)
194 policy->v.preferred_node = -1;
195 break;
196 case MPOL_BIND:
197 policy->v.zonelist = bind_zonelist(nodes);
198 if (IS_ERR(policy->v.zonelist)) {
199 void *error_code = policy->v.zonelist;
200 kmem_cache_free(policy_cache, policy);
201 return error_code;
202 }
203 break;
204 }
205 policy->policy = mode;
206 policy->cpuset_mems_allowed = cpuset_mems_allowed(current);
207 return policy;
208 }
209
210 static void gather_stats(struct page *, void *, int pte_dirty);
211 static void migrate_page_add(struct page *page, struct list_head *pagelist,
212 unsigned long flags);
213
214 /* Scan through pages checking if pages follow certain conditions. */
215 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
216 unsigned long addr, unsigned long end,
217 const nodemask_t *nodes, unsigned long flags,
218 void *private)
219 {
220 pte_t *orig_pte;
221 pte_t *pte;
222 spinlock_t *ptl;
223
224 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
225 do {
226 struct page *page;
227 int nid;
228
229 if (!pte_present(*pte))
230 continue;
231 page = vm_normal_page(vma, addr, *pte);
232 if (!page)
233 continue;
234 /*
235 * The check for PageReserved here is important to avoid
236 * handling zero pages and other pages that may have been
237 * marked special by the system.
238 *
239 * If the PageReserved would not be checked here then f.e.
240 * the location of the zero page could have an influence
241 * on MPOL_MF_STRICT, zero pages would be counted for
242 * the per node stats, and there would be useless attempts
243 * to put zero pages on the migration list.
244 */
245 if (PageReserved(page))
246 continue;
247 nid = page_to_nid(page);
248 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
249 continue;
250
251 if (flags & MPOL_MF_STATS)
252 gather_stats(page, private, pte_dirty(*pte));
253 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
254 migrate_page_add(page, private, flags);
255 else
256 break;
257 } while (pte++, addr += PAGE_SIZE, addr != end);
258 pte_unmap_unlock(orig_pte, ptl);
259 return addr != end;
260 }
261
262 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
263 unsigned long addr, unsigned long end,
264 const nodemask_t *nodes, unsigned long flags,
265 void *private)
266 {
267 pmd_t *pmd;
268 unsigned long next;
269
270 pmd = pmd_offset(pud, addr);
271 do {
272 next = pmd_addr_end(addr, end);
273 if (pmd_none_or_clear_bad(pmd))
274 continue;
275 if (check_pte_range(vma, pmd, addr, next, nodes,
276 flags, private))
277 return -EIO;
278 } while (pmd++, addr = next, addr != end);
279 return 0;
280 }
281
282 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
283 unsigned long addr, unsigned long end,
284 const nodemask_t *nodes, unsigned long flags,
285 void *private)
286 {
287 pud_t *pud;
288 unsigned long next;
289
290 pud = pud_offset(pgd, addr);
291 do {
292 next = pud_addr_end(addr, end);
293 if (pud_none_or_clear_bad(pud))
294 continue;
295 if (check_pmd_range(vma, pud, addr, next, nodes,
296 flags, private))
297 return -EIO;
298 } while (pud++, addr = next, addr != end);
299 return 0;
300 }
301
302 static inline int check_pgd_range(struct vm_area_struct *vma,
303 unsigned long addr, unsigned long end,
304 const nodemask_t *nodes, unsigned long flags,
305 void *private)
306 {
307 pgd_t *pgd;
308 unsigned long next;
309
310 pgd = pgd_offset(vma->vm_mm, addr);
311 do {
312 next = pgd_addr_end(addr, end);
313 if (pgd_none_or_clear_bad(pgd))
314 continue;
315 if (check_pud_range(vma, pgd, addr, next, nodes,
316 flags, private))
317 return -EIO;
318 } while (pgd++, addr = next, addr != end);
319 return 0;
320 }
321
322 /*
323 * Check if all pages in a range are on a set of nodes.
324 * If pagelist != NULL then isolate pages from the LRU and
325 * put them on the pagelist.
326 */
327 static struct vm_area_struct *
328 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
329 const nodemask_t *nodes, unsigned long flags, void *private)
330 {
331 int err;
332 struct vm_area_struct *first, *vma, *prev;
333
334 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
335
336 err = migrate_prep();
337 if (err)
338 return ERR_PTR(err);
339 }
340
341 first = find_vma(mm, start);
342 if (!first)
343 return ERR_PTR(-EFAULT);
344 prev = NULL;
345 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
346 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
347 if (!vma->vm_next && vma->vm_end < end)
348 return ERR_PTR(-EFAULT);
349 if (prev && prev->vm_end < vma->vm_start)
350 return ERR_PTR(-EFAULT);
351 }
352 if (!is_vm_hugetlb_page(vma) &&
353 ((flags & MPOL_MF_STRICT) ||
354 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
355 vma_migratable(vma)))) {
356 unsigned long endvma = vma->vm_end;
357
358 if (endvma > end)
359 endvma = end;
360 if (vma->vm_start > start)
361 start = vma->vm_start;
362 err = check_pgd_range(vma, start, endvma, nodes,
363 flags, private);
364 if (err) {
365 first = ERR_PTR(err);
366 break;
367 }
368 }
369 prev = vma;
370 }
371 return first;
372 }
373
374 /* Apply policy to a single VMA */
375 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
376 {
377 int err = 0;
378 struct mempolicy *old = vma->vm_policy;
379
380 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
381 vma->vm_start, vma->vm_end, vma->vm_pgoff,
382 vma->vm_ops, vma->vm_file,
383 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
384
385 if (vma->vm_ops && vma->vm_ops->set_policy)
386 err = vma->vm_ops->set_policy(vma, new);
387 if (!err) {
388 mpol_get(new);
389 vma->vm_policy = new;
390 mpol_free(old);
391 }
392 return err;
393 }
394
395 /* Step 2: apply policy to a range and do splits. */
396 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
397 unsigned long end, struct mempolicy *new)
398 {
399 struct vm_area_struct *next;
400 int err;
401
402 err = 0;
403 for (; vma && vma->vm_start < end; vma = next) {
404 next = vma->vm_next;
405 if (vma->vm_start < start)
406 err = split_vma(vma->vm_mm, vma, start, 1);
407 if (!err && vma->vm_end > end)
408 err = split_vma(vma->vm_mm, vma, end, 0);
409 if (!err)
410 err = policy_vma(vma, new);
411 if (err)
412 break;
413 }
414 return err;
415 }
416
417 static int contextualize_policy(int mode, nodemask_t *nodes)
418 {
419 if (!nodes)
420 return 0;
421
422 cpuset_update_task_memory_state();
423 if (!cpuset_nodes_subset_current_mems_allowed(*nodes))
424 return -EINVAL;
425 return mpol_check_policy(mode, nodes);
426 }
427
428
429 /*
430 * Update task->flags PF_MEMPOLICY bit: set iff non-default
431 * mempolicy. Allows more rapid checking of this (combined perhaps
432 * with other PF_* flag bits) on memory allocation hot code paths.
433 *
434 * If called from outside this file, the task 'p' should -only- be
435 * a newly forked child not yet visible on the task list, because
436 * manipulating the task flags of a visible task is not safe.
437 *
438 * The above limitation is why this routine has the funny name
439 * mpol_fix_fork_child_flag().
440 *
441 * It is also safe to call this with a task pointer of current,
442 * which the static wrapper mpol_set_task_struct_flag() does,
443 * for use within this file.
444 */
445
446 void mpol_fix_fork_child_flag(struct task_struct *p)
447 {
448 if (p->mempolicy)
449 p->flags |= PF_MEMPOLICY;
450 else
451 p->flags &= ~PF_MEMPOLICY;
452 }
453
454 static void mpol_set_task_struct_flag(void)
455 {
456 mpol_fix_fork_child_flag(current);
457 }
458
459 /* Set the process memory policy */
460 long do_set_mempolicy(int mode, nodemask_t *nodes)
461 {
462 struct mempolicy *new;
463
464 if (contextualize_policy(mode, nodes))
465 return -EINVAL;
466 new = mpol_new(mode, nodes);
467 if (IS_ERR(new))
468 return PTR_ERR(new);
469 mpol_free(current->mempolicy);
470 current->mempolicy = new;
471 mpol_set_task_struct_flag();
472 if (new && new->policy == MPOL_INTERLEAVE)
473 current->il_next = first_node(new->v.nodes);
474 return 0;
475 }
476
477 /* Fill a zone bitmap for a policy */
478 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
479 {
480 int i;
481
482 nodes_clear(*nodes);
483 switch (p->policy) {
484 case MPOL_BIND:
485 for (i = 0; p->v.zonelist->zones[i]; i++)
486 node_set(zone_to_nid(p->v.zonelist->zones[i]),
487 *nodes);
488 break;
489 case MPOL_DEFAULT:
490 break;
491 case MPOL_INTERLEAVE:
492 *nodes = p->v.nodes;
493 break;
494 case MPOL_PREFERRED:
495 /* or use current node instead of online map? */
496 if (p->v.preferred_node < 0)
497 *nodes = node_online_map;
498 else
499 node_set(p->v.preferred_node, *nodes);
500 break;
501 default:
502 BUG();
503 }
504 }
505
506 static int lookup_node(struct mm_struct *mm, unsigned long addr)
507 {
508 struct page *p;
509 int err;
510
511 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
512 if (err >= 0) {
513 err = page_to_nid(p);
514 put_page(p);
515 }
516 return err;
517 }
518
519 /* Retrieve NUMA policy */
520 long do_get_mempolicy(int *policy, nodemask_t *nmask,
521 unsigned long addr, unsigned long flags)
522 {
523 int err;
524 struct mm_struct *mm = current->mm;
525 struct vm_area_struct *vma = NULL;
526 struct mempolicy *pol = current->mempolicy;
527
528 cpuset_update_task_memory_state();
529 if (flags & ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR))
530 return -EINVAL;
531 if (flags & MPOL_F_ADDR) {
532 down_read(&mm->mmap_sem);
533 vma = find_vma_intersection(mm, addr, addr+1);
534 if (!vma) {
535 up_read(&mm->mmap_sem);
536 return -EFAULT;
537 }
538 if (vma->vm_ops && vma->vm_ops->get_policy)
539 pol = vma->vm_ops->get_policy(vma, addr);
540 else
541 pol = vma->vm_policy;
542 } else if (addr)
543 return -EINVAL;
544
545 if (!pol)
546 pol = &default_policy;
547
548 if (flags & MPOL_F_NODE) {
549 if (flags & MPOL_F_ADDR) {
550 err = lookup_node(mm, addr);
551 if (err < 0)
552 goto out;
553 *policy = err;
554 } else if (pol == current->mempolicy &&
555 pol->policy == MPOL_INTERLEAVE) {
556 *policy = current->il_next;
557 } else {
558 err = -EINVAL;
559 goto out;
560 }
561 } else
562 *policy = pol->policy;
563
564 if (vma) {
565 up_read(&current->mm->mmap_sem);
566 vma = NULL;
567 }
568
569 err = 0;
570 if (nmask)
571 get_zonemask(pol, nmask);
572
573 out:
574 if (vma)
575 up_read(&current->mm->mmap_sem);
576 return err;
577 }
578
579 #ifdef CONFIG_MIGRATION
580 /*
581 * page migration
582 */
583 static void migrate_page_add(struct page *page, struct list_head *pagelist,
584 unsigned long flags)
585 {
586 /*
587 * Avoid migrating a page that is shared with others.
588 */
589 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
590 isolate_lru_page(page, pagelist);
591 }
592
593 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
594 {
595 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
596 }
597
598 /*
599 * Migrate pages from one node to a target node.
600 * Returns error or the number of pages not migrated.
601 */
602 int migrate_to_node(struct mm_struct *mm, int source, int dest, int flags)
603 {
604 nodemask_t nmask;
605 LIST_HEAD(pagelist);
606 int err = 0;
607
608 nodes_clear(nmask);
609 node_set(source, nmask);
610
611 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
612 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
613
614 if (!list_empty(&pagelist))
615 err = migrate_pages(&pagelist, new_node_page, dest);
616
617 return err;
618 }
619
620 /*
621 * Move pages between the two nodesets so as to preserve the physical
622 * layout as much as possible.
623 *
624 * Returns the number of page that could not be moved.
625 */
626 int do_migrate_pages(struct mm_struct *mm,
627 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
628 {
629 LIST_HEAD(pagelist);
630 int busy = 0;
631 int err = 0;
632 nodemask_t tmp;
633
634 down_read(&mm->mmap_sem);
635
636 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
637 if (err)
638 goto out;
639
640 /*
641 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
642 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
643 * bit in 'tmp', and return that <source, dest> pair for migration.
644 * The pair of nodemasks 'to' and 'from' define the map.
645 *
646 * If no pair of bits is found that way, fallback to picking some
647 * pair of 'source' and 'dest' bits that are not the same. If the
648 * 'source' and 'dest' bits are the same, this represents a node
649 * that will be migrating to itself, so no pages need move.
650 *
651 * If no bits are left in 'tmp', or if all remaining bits left
652 * in 'tmp' correspond to the same bit in 'to', return false
653 * (nothing left to migrate).
654 *
655 * This lets us pick a pair of nodes to migrate between, such that
656 * if possible the dest node is not already occupied by some other
657 * source node, minimizing the risk of overloading the memory on a
658 * node that would happen if we migrated incoming memory to a node
659 * before migrating outgoing memory source that same node.
660 *
661 * A single scan of tmp is sufficient. As we go, we remember the
662 * most recent <s, d> pair that moved (s != d). If we find a pair
663 * that not only moved, but what's better, moved to an empty slot
664 * (d is not set in tmp), then we break out then, with that pair.
665 * Otherwise when we finish scannng from_tmp, we at least have the
666 * most recent <s, d> pair that moved. If we get all the way through
667 * the scan of tmp without finding any node that moved, much less
668 * moved to an empty node, then there is nothing left worth migrating.
669 */
670
671 tmp = *from_nodes;
672 while (!nodes_empty(tmp)) {
673 int s,d;
674 int source = -1;
675 int dest = 0;
676
677 for_each_node_mask(s, tmp) {
678 d = node_remap(s, *from_nodes, *to_nodes);
679 if (s == d)
680 continue;
681
682 source = s; /* Node moved. Memorize */
683 dest = d;
684
685 /* dest not in remaining from nodes? */
686 if (!node_isset(dest, tmp))
687 break;
688 }
689 if (source == -1)
690 break;
691
692 node_clear(source, tmp);
693 err = migrate_to_node(mm, source, dest, flags);
694 if (err > 0)
695 busy += err;
696 if (err < 0)
697 break;
698 }
699 out:
700 up_read(&mm->mmap_sem);
701 if (err < 0)
702 return err;
703 return busy;
704
705 }
706
707 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
708 {
709 struct vm_area_struct *vma = (struct vm_area_struct *)private;
710
711 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
712 page_address_in_vma(page, vma));
713 }
714 #else
715
716 static void migrate_page_add(struct page *page, struct list_head *pagelist,
717 unsigned long flags)
718 {
719 }
720
721 int do_migrate_pages(struct mm_struct *mm,
722 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
723 {
724 return -ENOSYS;
725 }
726
727 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
728 {
729 return NULL;
730 }
731 #endif
732
733 long do_mbind(unsigned long start, unsigned long len,
734 unsigned long mode, nodemask_t *nmask, unsigned long flags)
735 {
736 struct vm_area_struct *vma;
737 struct mm_struct *mm = current->mm;
738 struct mempolicy *new;
739 unsigned long end;
740 int err;
741 LIST_HEAD(pagelist);
742
743 if ((flags & ~(unsigned long)(MPOL_MF_STRICT |
744 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
745 || mode > MPOL_MAX)
746 return -EINVAL;
747 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
748 return -EPERM;
749
750 if (start & ~PAGE_MASK)
751 return -EINVAL;
752
753 if (mode == MPOL_DEFAULT)
754 flags &= ~MPOL_MF_STRICT;
755
756 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
757 end = start + len;
758
759 if (end < start)
760 return -EINVAL;
761 if (end == start)
762 return 0;
763
764 if (mpol_check_policy(mode, nmask))
765 return -EINVAL;
766
767 new = mpol_new(mode, nmask);
768 if (IS_ERR(new))
769 return PTR_ERR(new);
770
771 /*
772 * If we are using the default policy then operation
773 * on discontinuous address spaces is okay after all
774 */
775 if (!new)
776 flags |= MPOL_MF_DISCONTIG_OK;
777
778 pr_debug("mbind %lx-%lx mode:%ld nodes:%lx\n",start,start+len,
779 mode, nmask ? nodes_addr(*nmask)[0] : -1);
780
781 down_write(&mm->mmap_sem);
782 vma = check_range(mm, start, end, nmask,
783 flags | MPOL_MF_INVERT, &pagelist);
784
785 err = PTR_ERR(vma);
786 if (!IS_ERR(vma)) {
787 int nr_failed = 0;
788
789 err = mbind_range(vma, start, end, new);
790
791 if (!list_empty(&pagelist))
792 nr_failed = migrate_pages(&pagelist, new_vma_page,
793 (unsigned long)vma);
794
795 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
796 err = -EIO;
797 }
798
799 up_write(&mm->mmap_sem);
800 mpol_free(new);
801 return err;
802 }
803
804 /*
805 * User space interface with variable sized bitmaps for nodelists.
806 */
807
808 /* Copy a node mask from user space. */
809 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
810 unsigned long maxnode)
811 {
812 unsigned long k;
813 unsigned long nlongs;
814 unsigned long endmask;
815
816 --maxnode;
817 nodes_clear(*nodes);
818 if (maxnode == 0 || !nmask)
819 return 0;
820 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
821 return -EINVAL;
822
823 nlongs = BITS_TO_LONGS(maxnode);
824 if ((maxnode % BITS_PER_LONG) == 0)
825 endmask = ~0UL;
826 else
827 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
828
829 /* When the user specified more nodes than supported just check
830 if the non supported part is all zero. */
831 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
832 if (nlongs > PAGE_SIZE/sizeof(long))
833 return -EINVAL;
834 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
835 unsigned long t;
836 if (get_user(t, nmask + k))
837 return -EFAULT;
838 if (k == nlongs - 1) {
839 if (t & endmask)
840 return -EINVAL;
841 } else if (t)
842 return -EINVAL;
843 }
844 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
845 endmask = ~0UL;
846 }
847
848 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
849 return -EFAULT;
850 nodes_addr(*nodes)[nlongs-1] &= endmask;
851 return 0;
852 }
853
854 /* Copy a kernel node mask to user space */
855 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
856 nodemask_t *nodes)
857 {
858 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
859 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
860
861 if (copy > nbytes) {
862 if (copy > PAGE_SIZE)
863 return -EINVAL;
864 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
865 return -EFAULT;
866 copy = nbytes;
867 }
868 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
869 }
870
871 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
872 unsigned long mode,
873 unsigned long __user *nmask, unsigned long maxnode,
874 unsigned flags)
875 {
876 nodemask_t nodes;
877 int err;
878
879 err = get_nodes(&nodes, nmask, maxnode);
880 if (err)
881 return err;
882 #ifdef CONFIG_CPUSETS
883 /* Restrict the nodes to the allowed nodes in the cpuset */
884 nodes_and(nodes, nodes, current->mems_allowed);
885 #endif
886 return do_mbind(start, len, mode, &nodes, flags);
887 }
888
889 /* Set the process memory policy */
890 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
891 unsigned long maxnode)
892 {
893 int err;
894 nodemask_t nodes;
895
896 if (mode < 0 || mode > MPOL_MAX)
897 return -EINVAL;
898 err = get_nodes(&nodes, nmask, maxnode);
899 if (err)
900 return err;
901 return do_set_mempolicy(mode, &nodes);
902 }
903
904 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
905 const unsigned long __user *old_nodes,
906 const unsigned long __user *new_nodes)
907 {
908 struct mm_struct *mm;
909 struct task_struct *task;
910 nodemask_t old;
911 nodemask_t new;
912 nodemask_t task_nodes;
913 int err;
914
915 err = get_nodes(&old, old_nodes, maxnode);
916 if (err)
917 return err;
918
919 err = get_nodes(&new, new_nodes, maxnode);
920 if (err)
921 return err;
922
923 /* Find the mm_struct */
924 read_lock(&tasklist_lock);
925 task = pid ? find_task_by_pid(pid) : current;
926 if (!task) {
927 read_unlock(&tasklist_lock);
928 return -ESRCH;
929 }
930 mm = get_task_mm(task);
931 read_unlock(&tasklist_lock);
932
933 if (!mm)
934 return -EINVAL;
935
936 /*
937 * Check if this process has the right to modify the specified
938 * process. The right exists if the process has administrative
939 * capabilities, superuser privileges or the same
940 * userid as the target process.
941 */
942 if ((current->euid != task->suid) && (current->euid != task->uid) &&
943 (current->uid != task->suid) && (current->uid != task->uid) &&
944 !capable(CAP_SYS_NICE)) {
945 err = -EPERM;
946 goto out;
947 }
948
949 task_nodes = cpuset_mems_allowed(task);
950 /* Is the user allowed to access the target nodes? */
951 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
952 err = -EPERM;
953 goto out;
954 }
955
956 if (!nodes_subset(new, node_online_map)) {
957 err = -EINVAL;
958 goto out;
959 }
960
961 err = security_task_movememory(task);
962 if (err)
963 goto out;
964
965 err = do_migrate_pages(mm, &old, &new,
966 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
967 out:
968 mmput(mm);
969 return err;
970 }
971
972
973 /* Retrieve NUMA policy */
974 asmlinkage long sys_get_mempolicy(int __user *policy,
975 unsigned long __user *nmask,
976 unsigned long maxnode,
977 unsigned long addr, unsigned long flags)
978 {
979 int err, pval;
980 nodemask_t nodes;
981
982 if (nmask != NULL && maxnode < MAX_NUMNODES)
983 return -EINVAL;
984
985 err = do_get_mempolicy(&pval, &nodes, addr, flags);
986
987 if (err)
988 return err;
989
990 if (policy && put_user(pval, policy))
991 return -EFAULT;
992
993 if (nmask)
994 err = copy_nodes_to_user(nmask, maxnode, &nodes);
995
996 return err;
997 }
998
999 #ifdef CONFIG_COMPAT
1000
1001 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1002 compat_ulong_t __user *nmask,
1003 compat_ulong_t maxnode,
1004 compat_ulong_t addr, compat_ulong_t flags)
1005 {
1006 long err;
1007 unsigned long __user *nm = NULL;
1008 unsigned long nr_bits, alloc_size;
1009 DECLARE_BITMAP(bm, MAX_NUMNODES);
1010
1011 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1012 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1013
1014 if (nmask)
1015 nm = compat_alloc_user_space(alloc_size);
1016
1017 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1018
1019 if (!err && nmask) {
1020 err = copy_from_user(bm, nm, alloc_size);
1021 /* ensure entire bitmap is zeroed */
1022 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1023 err |= compat_put_bitmap(nmask, bm, nr_bits);
1024 }
1025
1026 return err;
1027 }
1028
1029 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1030 compat_ulong_t maxnode)
1031 {
1032 long err = 0;
1033 unsigned long __user *nm = NULL;
1034 unsigned long nr_bits, alloc_size;
1035 DECLARE_BITMAP(bm, MAX_NUMNODES);
1036
1037 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1038 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1039
1040 if (nmask) {
1041 err = compat_get_bitmap(bm, nmask, nr_bits);
1042 nm = compat_alloc_user_space(alloc_size);
1043 err |= copy_to_user(nm, bm, alloc_size);
1044 }
1045
1046 if (err)
1047 return -EFAULT;
1048
1049 return sys_set_mempolicy(mode, nm, nr_bits+1);
1050 }
1051
1052 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1053 compat_ulong_t mode, compat_ulong_t __user *nmask,
1054 compat_ulong_t maxnode, compat_ulong_t flags)
1055 {
1056 long err = 0;
1057 unsigned long __user *nm = NULL;
1058 unsigned long nr_bits, alloc_size;
1059 nodemask_t bm;
1060
1061 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1062 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1063
1064 if (nmask) {
1065 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1066 nm = compat_alloc_user_space(alloc_size);
1067 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1068 }
1069
1070 if (err)
1071 return -EFAULT;
1072
1073 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1074 }
1075
1076 #endif
1077
1078 /*
1079 * get_vma_policy(@task, @vma, @addr)
1080 * @task - task for fallback if vma policy == default
1081 * @vma - virtual memory area whose policy is sought
1082 * @addr - address in @vma for shared policy lookup
1083 *
1084 * Returns effective policy for a VMA at specified address.
1085 * Falls back to @task or system default policy, as necessary.
1086 * Returned policy has extra reference count if shared, vma,
1087 * or some other task's policy [show_numa_maps() can pass
1088 * @task != current]. It is the caller's responsibility to
1089 * free the reference in these cases.
1090 */
1091 static struct mempolicy * get_vma_policy(struct task_struct *task,
1092 struct vm_area_struct *vma, unsigned long addr)
1093 {
1094 struct mempolicy *pol = task->mempolicy;
1095 int shared_pol = 0;
1096
1097 if (vma) {
1098 if (vma->vm_ops && vma->vm_ops->get_policy) {
1099 pol = vma->vm_ops->get_policy(vma, addr);
1100 shared_pol = 1; /* if pol non-NULL, add ref below */
1101 } else if (vma->vm_policy &&
1102 vma->vm_policy->policy != MPOL_DEFAULT)
1103 pol = vma->vm_policy;
1104 }
1105 if (!pol)
1106 pol = &default_policy;
1107 else if (!shared_pol && pol != current->mempolicy)
1108 mpol_get(pol); /* vma or other task's policy */
1109 return pol;
1110 }
1111
1112 /* Return a zonelist representing a mempolicy */
1113 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1114 {
1115 int nd;
1116
1117 switch (policy->policy) {
1118 case MPOL_PREFERRED:
1119 nd = policy->v.preferred_node;
1120 if (nd < 0)
1121 nd = numa_node_id();
1122 break;
1123 case MPOL_BIND:
1124 /* Lower zones don't get a policy applied */
1125 /* Careful: current->mems_allowed might have moved */
1126 if (gfp_zone(gfp) >= policy_zone)
1127 if (cpuset_zonelist_valid_mems_allowed(policy->v.zonelist))
1128 return policy->v.zonelist;
1129 /*FALL THROUGH*/
1130 case MPOL_INTERLEAVE: /* should not happen */
1131 case MPOL_DEFAULT:
1132 nd = numa_node_id();
1133 break;
1134 default:
1135 nd = 0;
1136 BUG();
1137 }
1138 return NODE_DATA(nd)->node_zonelists + gfp_zone(gfp);
1139 }
1140
1141 /* Do dynamic interleaving for a process */
1142 static unsigned interleave_nodes(struct mempolicy *policy)
1143 {
1144 unsigned nid, next;
1145 struct task_struct *me = current;
1146
1147 nid = me->il_next;
1148 next = next_node(nid, policy->v.nodes);
1149 if (next >= MAX_NUMNODES)
1150 next = first_node(policy->v.nodes);
1151 me->il_next = next;
1152 return nid;
1153 }
1154
1155 /*
1156 * Depending on the memory policy provide a node from which to allocate the
1157 * next slab entry.
1158 */
1159 unsigned slab_node(struct mempolicy *policy)
1160 {
1161 int pol = policy ? policy->policy : MPOL_DEFAULT;
1162
1163 switch (pol) {
1164 case MPOL_INTERLEAVE:
1165 return interleave_nodes(policy);
1166
1167 case MPOL_BIND:
1168 /*
1169 * Follow bind policy behavior and start allocation at the
1170 * first node.
1171 */
1172 return zone_to_nid(policy->v.zonelist->zones[0]);
1173
1174 case MPOL_PREFERRED:
1175 if (policy->v.preferred_node >= 0)
1176 return policy->v.preferred_node;
1177 /* Fall through */
1178
1179 default:
1180 return numa_node_id();
1181 }
1182 }
1183
1184 /* Do static interleaving for a VMA with known offset. */
1185 static unsigned offset_il_node(struct mempolicy *pol,
1186 struct vm_area_struct *vma, unsigned long off)
1187 {
1188 unsigned nnodes = nodes_weight(pol->v.nodes);
1189 unsigned target = (unsigned)off % nnodes;
1190 int c;
1191 int nid = -1;
1192
1193 c = 0;
1194 do {
1195 nid = next_node(nid, pol->v.nodes);
1196 c++;
1197 } while (c <= target);
1198 return nid;
1199 }
1200
1201 /* Determine a node number for interleave */
1202 static inline unsigned interleave_nid(struct mempolicy *pol,
1203 struct vm_area_struct *vma, unsigned long addr, int shift)
1204 {
1205 if (vma) {
1206 unsigned long off;
1207
1208 /*
1209 * for small pages, there is no difference between
1210 * shift and PAGE_SHIFT, so the bit-shift is safe.
1211 * for huge pages, since vm_pgoff is in units of small
1212 * pages, we need to shift off the always 0 bits to get
1213 * a useful offset.
1214 */
1215 BUG_ON(shift < PAGE_SHIFT);
1216 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1217 off += (addr - vma->vm_start) >> shift;
1218 return offset_il_node(pol, vma, off);
1219 } else
1220 return interleave_nodes(pol);
1221 }
1222
1223 #ifdef CONFIG_HUGETLBFS
1224 /*
1225 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1226 * @vma = virtual memory area whose policy is sought
1227 * @addr = address in @vma for shared policy lookup and interleave policy
1228 * @gfp_flags = for requested zone
1229 * @mpol = pointer to mempolicy pointer for reference counted 'BIND policy
1230 *
1231 * Returns a zonelist suitable for a huge page allocation.
1232 * If the effective policy is 'BIND, returns pointer to policy's zonelist.
1233 * If it is also a policy for which get_vma_policy() returns an extra
1234 * reference, we must hold that reference until after allocation.
1235 * In that case, return policy via @mpol so hugetlb allocation can drop
1236 * the reference. For non-'BIND referenced policies, we can/do drop the
1237 * reference here, so the caller doesn't need to know about the special case
1238 * for default and current task policy.
1239 */
1240 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1241 gfp_t gfp_flags, struct mempolicy **mpol)
1242 {
1243 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1244 struct zonelist *zl;
1245
1246 *mpol = NULL; /* probably no unref needed */
1247 if (pol->policy == MPOL_INTERLEAVE) {
1248 unsigned nid;
1249
1250 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1251 __mpol_free(pol); /* finished with pol */
1252 return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags);
1253 }
1254
1255 zl = zonelist_policy(GFP_HIGHUSER, pol);
1256 if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1257 if (pol->policy != MPOL_BIND)
1258 __mpol_free(pol); /* finished with pol */
1259 else
1260 *mpol = pol; /* unref needed after allocation */
1261 }
1262 return zl;
1263 }
1264 #endif
1265
1266 /* Allocate a page in interleaved policy.
1267 Own path because it needs to do special accounting. */
1268 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1269 unsigned nid)
1270 {
1271 struct zonelist *zl;
1272 struct page *page;
1273
1274 zl = NODE_DATA(nid)->node_zonelists + gfp_zone(gfp);
1275 page = __alloc_pages(gfp, order, zl);
1276 if (page && page_zone(page) == zl->zones[0])
1277 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1278 return page;
1279 }
1280
1281 /**
1282 * alloc_page_vma - Allocate a page for a VMA.
1283 *
1284 * @gfp:
1285 * %GFP_USER user allocation.
1286 * %GFP_KERNEL kernel allocations,
1287 * %GFP_HIGHMEM highmem/user allocations,
1288 * %GFP_FS allocation should not call back into a file system.
1289 * %GFP_ATOMIC don't sleep.
1290 *
1291 * @vma: Pointer to VMA or NULL if not available.
1292 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1293 *
1294 * This function allocates a page from the kernel page pool and applies
1295 * a NUMA policy associated with the VMA or the current process.
1296 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1297 * mm_struct of the VMA to prevent it from going away. Should be used for
1298 * all allocations for pages that will be mapped into
1299 * user space. Returns NULL when no page can be allocated.
1300 *
1301 * Should be called with the mm_sem of the vma hold.
1302 */
1303 struct page *
1304 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1305 {
1306 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1307 struct zonelist *zl;
1308
1309 cpuset_update_task_memory_state();
1310
1311 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1312 unsigned nid;
1313
1314 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1315 return alloc_page_interleave(gfp, 0, nid);
1316 }
1317 zl = zonelist_policy(gfp, pol);
1318 if (pol != &default_policy && pol != current->mempolicy) {
1319 /*
1320 * slow path: ref counted policy -- shared or vma
1321 */
1322 struct page *page = __alloc_pages(gfp, 0, zl);
1323 __mpol_free(pol);
1324 return page;
1325 }
1326 /*
1327 * fast path: default or task policy
1328 */
1329 return __alloc_pages(gfp, 0, zl);
1330 }
1331
1332 /**
1333 * alloc_pages_current - Allocate pages.
1334 *
1335 * @gfp:
1336 * %GFP_USER user allocation,
1337 * %GFP_KERNEL kernel allocation,
1338 * %GFP_HIGHMEM highmem allocation,
1339 * %GFP_FS don't call back into a file system.
1340 * %GFP_ATOMIC don't sleep.
1341 * @order: Power of two of allocation size in pages. 0 is a single page.
1342 *
1343 * Allocate a page from the kernel page pool. When not in
1344 * interrupt context and apply the current process NUMA policy.
1345 * Returns NULL when no page can be allocated.
1346 *
1347 * Don't call cpuset_update_task_memory_state() unless
1348 * 1) it's ok to take cpuset_sem (can WAIT), and
1349 * 2) allocating for current task (not interrupt).
1350 */
1351 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1352 {
1353 struct mempolicy *pol = current->mempolicy;
1354
1355 if ((gfp & __GFP_WAIT) && !in_interrupt())
1356 cpuset_update_task_memory_state();
1357 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1358 pol = &default_policy;
1359 if (pol->policy == MPOL_INTERLEAVE)
1360 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1361 return __alloc_pages(gfp, order, zonelist_policy(gfp, pol));
1362 }
1363 EXPORT_SYMBOL(alloc_pages_current);
1364
1365 /*
1366 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1367 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1368 * with the mems_allowed returned by cpuset_mems_allowed(). This
1369 * keeps mempolicies cpuset relative after its cpuset moves. See
1370 * further kernel/cpuset.c update_nodemask().
1371 */
1372 void *cpuset_being_rebound;
1373
1374 /* Slow path of a mempolicy copy */
1375 struct mempolicy *__mpol_copy(struct mempolicy *old)
1376 {
1377 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1378
1379 if (!new)
1380 return ERR_PTR(-ENOMEM);
1381 if (current_cpuset_is_being_rebound()) {
1382 nodemask_t mems = cpuset_mems_allowed(current);
1383 mpol_rebind_policy(old, &mems);
1384 }
1385 *new = *old;
1386 atomic_set(&new->refcnt, 1);
1387 if (new->policy == MPOL_BIND) {
1388 int sz = ksize(old->v.zonelist);
1389 new->v.zonelist = kmemdup(old->v.zonelist, sz, GFP_KERNEL);
1390 if (!new->v.zonelist) {
1391 kmem_cache_free(policy_cache, new);
1392 return ERR_PTR(-ENOMEM);
1393 }
1394 }
1395 return new;
1396 }
1397
1398 /* Slow path of a mempolicy comparison */
1399 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1400 {
1401 if (!a || !b)
1402 return 0;
1403 if (a->policy != b->policy)
1404 return 0;
1405 switch (a->policy) {
1406 case MPOL_DEFAULT:
1407 return 1;
1408 case MPOL_INTERLEAVE:
1409 return nodes_equal(a->v.nodes, b->v.nodes);
1410 case MPOL_PREFERRED:
1411 return a->v.preferred_node == b->v.preferred_node;
1412 case MPOL_BIND: {
1413 int i;
1414 for (i = 0; a->v.zonelist->zones[i]; i++)
1415 if (a->v.zonelist->zones[i] != b->v.zonelist->zones[i])
1416 return 0;
1417 return b->v.zonelist->zones[i] == NULL;
1418 }
1419 default:
1420 BUG();
1421 return 0;
1422 }
1423 }
1424
1425 /* Slow path of a mpol destructor. */
1426 void __mpol_free(struct mempolicy *p)
1427 {
1428 if (!atomic_dec_and_test(&p->refcnt))
1429 return;
1430 if (p->policy == MPOL_BIND)
1431 kfree(p->v.zonelist);
1432 p->policy = MPOL_DEFAULT;
1433 kmem_cache_free(policy_cache, p);
1434 }
1435
1436 /*
1437 * Shared memory backing store policy support.
1438 *
1439 * Remember policies even when nobody has shared memory mapped.
1440 * The policies are kept in Red-Black tree linked from the inode.
1441 * They are protected by the sp->lock spinlock, which should be held
1442 * for any accesses to the tree.
1443 */
1444
1445 /* lookup first element intersecting start-end */
1446 /* Caller holds sp->lock */
1447 static struct sp_node *
1448 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1449 {
1450 struct rb_node *n = sp->root.rb_node;
1451
1452 while (n) {
1453 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1454
1455 if (start >= p->end)
1456 n = n->rb_right;
1457 else if (end <= p->start)
1458 n = n->rb_left;
1459 else
1460 break;
1461 }
1462 if (!n)
1463 return NULL;
1464 for (;;) {
1465 struct sp_node *w = NULL;
1466 struct rb_node *prev = rb_prev(n);
1467 if (!prev)
1468 break;
1469 w = rb_entry(prev, struct sp_node, nd);
1470 if (w->end <= start)
1471 break;
1472 n = prev;
1473 }
1474 return rb_entry(n, struct sp_node, nd);
1475 }
1476
1477 /* Insert a new shared policy into the list. */
1478 /* Caller holds sp->lock */
1479 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1480 {
1481 struct rb_node **p = &sp->root.rb_node;
1482 struct rb_node *parent = NULL;
1483 struct sp_node *nd;
1484
1485 while (*p) {
1486 parent = *p;
1487 nd = rb_entry(parent, struct sp_node, nd);
1488 if (new->start < nd->start)
1489 p = &(*p)->rb_left;
1490 else if (new->end > nd->end)
1491 p = &(*p)->rb_right;
1492 else
1493 BUG();
1494 }
1495 rb_link_node(&new->nd, parent, p);
1496 rb_insert_color(&new->nd, &sp->root);
1497 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1498 new->policy ? new->policy->policy : 0);
1499 }
1500
1501 /* Find shared policy intersecting idx */
1502 struct mempolicy *
1503 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1504 {
1505 struct mempolicy *pol = NULL;
1506 struct sp_node *sn;
1507
1508 if (!sp->root.rb_node)
1509 return NULL;
1510 spin_lock(&sp->lock);
1511 sn = sp_lookup(sp, idx, idx+1);
1512 if (sn) {
1513 mpol_get(sn->policy);
1514 pol = sn->policy;
1515 }
1516 spin_unlock(&sp->lock);
1517 return pol;
1518 }
1519
1520 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1521 {
1522 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1523 rb_erase(&n->nd, &sp->root);
1524 mpol_free(n->policy);
1525 kmem_cache_free(sn_cache, n);
1526 }
1527
1528 struct sp_node *
1529 sp_alloc(unsigned long start, unsigned long end, struct mempolicy *pol)
1530 {
1531 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1532
1533 if (!n)
1534 return NULL;
1535 n->start = start;
1536 n->end = end;
1537 mpol_get(pol);
1538 n->policy = pol;
1539 return n;
1540 }
1541
1542 /* Replace a policy range. */
1543 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1544 unsigned long end, struct sp_node *new)
1545 {
1546 struct sp_node *n, *new2 = NULL;
1547
1548 restart:
1549 spin_lock(&sp->lock);
1550 n = sp_lookup(sp, start, end);
1551 /* Take care of old policies in the same range. */
1552 while (n && n->start < end) {
1553 struct rb_node *next = rb_next(&n->nd);
1554 if (n->start >= start) {
1555 if (n->end <= end)
1556 sp_delete(sp, n);
1557 else
1558 n->start = end;
1559 } else {
1560 /* Old policy spanning whole new range. */
1561 if (n->end > end) {
1562 if (!new2) {
1563 spin_unlock(&sp->lock);
1564 new2 = sp_alloc(end, n->end, n->policy);
1565 if (!new2)
1566 return -ENOMEM;
1567 goto restart;
1568 }
1569 n->end = start;
1570 sp_insert(sp, new2);
1571 new2 = NULL;
1572 break;
1573 } else
1574 n->end = start;
1575 }
1576 if (!next)
1577 break;
1578 n = rb_entry(next, struct sp_node, nd);
1579 }
1580 if (new)
1581 sp_insert(sp, new);
1582 spin_unlock(&sp->lock);
1583 if (new2) {
1584 mpol_free(new2->policy);
1585 kmem_cache_free(sn_cache, new2);
1586 }
1587 return 0;
1588 }
1589
1590 void mpol_shared_policy_init(struct shared_policy *info, int policy,
1591 nodemask_t *policy_nodes)
1592 {
1593 info->root = RB_ROOT;
1594 spin_lock_init(&info->lock);
1595
1596 if (policy != MPOL_DEFAULT) {
1597 struct mempolicy *newpol;
1598
1599 /* Falls back to MPOL_DEFAULT on any error */
1600 newpol = mpol_new(policy, policy_nodes);
1601 if (!IS_ERR(newpol)) {
1602 /* Create pseudo-vma that contains just the policy */
1603 struct vm_area_struct pvma;
1604
1605 memset(&pvma, 0, sizeof(struct vm_area_struct));
1606 /* Policy covers entire file */
1607 pvma.vm_end = TASK_SIZE;
1608 mpol_set_shared_policy(info, &pvma, newpol);
1609 mpol_free(newpol);
1610 }
1611 }
1612 }
1613
1614 int mpol_set_shared_policy(struct shared_policy *info,
1615 struct vm_area_struct *vma, struct mempolicy *npol)
1616 {
1617 int err;
1618 struct sp_node *new = NULL;
1619 unsigned long sz = vma_pages(vma);
1620
1621 pr_debug("set_shared_policy %lx sz %lu %d %lx\n",
1622 vma->vm_pgoff,
1623 sz, npol? npol->policy : -1,
1624 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1625
1626 if (npol) {
1627 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1628 if (!new)
1629 return -ENOMEM;
1630 }
1631 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1632 if (err && new)
1633 kmem_cache_free(sn_cache, new);
1634 return err;
1635 }
1636
1637 /* Free a backing policy store on inode delete. */
1638 void mpol_free_shared_policy(struct shared_policy *p)
1639 {
1640 struct sp_node *n;
1641 struct rb_node *next;
1642
1643 if (!p->root.rb_node)
1644 return;
1645 spin_lock(&p->lock);
1646 next = rb_first(&p->root);
1647 while (next) {
1648 n = rb_entry(next, struct sp_node, nd);
1649 next = rb_next(&n->nd);
1650 rb_erase(&n->nd, &p->root);
1651 mpol_free(n->policy);
1652 kmem_cache_free(sn_cache, n);
1653 }
1654 spin_unlock(&p->lock);
1655 }
1656
1657 /* assumes fs == KERNEL_DS */
1658 void __init numa_policy_init(void)
1659 {
1660 nodemask_t interleave_nodes;
1661 unsigned long largest = 0;
1662 int nid, prefer = 0;
1663
1664 policy_cache = kmem_cache_create("numa_policy",
1665 sizeof(struct mempolicy),
1666 0, SLAB_PANIC, NULL);
1667
1668 sn_cache = kmem_cache_create("shared_policy_node",
1669 sizeof(struct sp_node),
1670 0, SLAB_PANIC, NULL);
1671
1672 /*
1673 * Set interleaving policy for system init. Interleaving is only
1674 * enabled across suitably sized nodes (default is >= 16MB), or
1675 * fall back to the largest node if they're all smaller.
1676 */
1677 nodes_clear(interleave_nodes);
1678 for_each_online_node(nid) {
1679 unsigned long total_pages = node_present_pages(nid);
1680
1681 /* Preserve the largest node */
1682 if (largest < total_pages) {
1683 largest = total_pages;
1684 prefer = nid;
1685 }
1686
1687 /* Interleave this node? */
1688 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1689 node_set(nid, interleave_nodes);
1690 }
1691
1692 /* All too small, use the largest */
1693 if (unlikely(nodes_empty(interleave_nodes)))
1694 node_set(prefer, interleave_nodes);
1695
1696 if (do_set_mempolicy(MPOL_INTERLEAVE, &interleave_nodes))
1697 printk("numa_policy_init: interleaving failed\n");
1698 }
1699
1700 /* Reset policy of current process to default */
1701 void numa_default_policy(void)
1702 {
1703 do_set_mempolicy(MPOL_DEFAULT, NULL);
1704 }
1705
1706 /* Migrate a policy to a different set of nodes */
1707 void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
1708 {
1709 nodemask_t *mpolmask;
1710 nodemask_t tmp;
1711
1712 if (!pol)
1713 return;
1714 mpolmask = &pol->cpuset_mems_allowed;
1715 if (nodes_equal(*mpolmask, *newmask))
1716 return;
1717
1718 switch (pol->policy) {
1719 case MPOL_DEFAULT:
1720 break;
1721 case MPOL_INTERLEAVE:
1722 nodes_remap(tmp, pol->v.nodes, *mpolmask, *newmask);
1723 pol->v.nodes = tmp;
1724 *mpolmask = *newmask;
1725 current->il_next = node_remap(current->il_next,
1726 *mpolmask, *newmask);
1727 break;
1728 case MPOL_PREFERRED:
1729 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1730 *mpolmask, *newmask);
1731 *mpolmask = *newmask;
1732 break;
1733 case MPOL_BIND: {
1734 nodemask_t nodes;
1735 struct zone **z;
1736 struct zonelist *zonelist;
1737
1738 nodes_clear(nodes);
1739 for (z = pol->v.zonelist->zones; *z; z++)
1740 node_set(zone_to_nid(*z), nodes);
1741 nodes_remap(tmp, nodes, *mpolmask, *newmask);
1742 nodes = tmp;
1743
1744 zonelist = bind_zonelist(&nodes);
1745
1746 /* If no mem, then zonelist is NULL and we keep old zonelist.
1747 * If that old zonelist has no remaining mems_allowed nodes,
1748 * then zonelist_policy() will "FALL THROUGH" to MPOL_DEFAULT.
1749 */
1750
1751 if (!IS_ERR(zonelist)) {
1752 /* Good - got mem - substitute new zonelist */
1753 kfree(pol->v.zonelist);
1754 pol->v.zonelist = zonelist;
1755 }
1756 *mpolmask = *newmask;
1757 break;
1758 }
1759 default:
1760 BUG();
1761 break;
1762 }
1763 }
1764
1765 /*
1766 * Wrapper for mpol_rebind_policy() that just requires task
1767 * pointer, and updates task mempolicy.
1768 */
1769
1770 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1771 {
1772 mpol_rebind_policy(tsk->mempolicy, new);
1773 }
1774
1775 /*
1776 * Rebind each vma in mm to new nodemask.
1777 *
1778 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1779 */
1780
1781 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1782 {
1783 struct vm_area_struct *vma;
1784
1785 down_write(&mm->mmap_sem);
1786 for (vma = mm->mmap; vma; vma = vma->vm_next)
1787 mpol_rebind_policy(vma->vm_policy, new);
1788 up_write(&mm->mmap_sem);
1789 }
1790
1791 /*
1792 * Display pages allocated per node and memory policy via /proc.
1793 */
1794
1795 static const char * const policy_types[] =
1796 { "default", "prefer", "bind", "interleave" };
1797
1798 /*
1799 * Convert a mempolicy into a string.
1800 * Returns the number of characters in buffer (if positive)
1801 * or an error (negative)
1802 */
1803 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1804 {
1805 char *p = buffer;
1806 int l;
1807 nodemask_t nodes;
1808 int mode = pol ? pol->policy : MPOL_DEFAULT;
1809
1810 switch (mode) {
1811 case MPOL_DEFAULT:
1812 nodes_clear(nodes);
1813 break;
1814
1815 case MPOL_PREFERRED:
1816 nodes_clear(nodes);
1817 node_set(pol->v.preferred_node, nodes);
1818 break;
1819
1820 case MPOL_BIND:
1821 get_zonemask(pol, &nodes);
1822 break;
1823
1824 case MPOL_INTERLEAVE:
1825 nodes = pol->v.nodes;
1826 break;
1827
1828 default:
1829 BUG();
1830 return -EFAULT;
1831 }
1832
1833 l = strlen(policy_types[mode]);
1834 if (buffer + maxlen < p + l + 1)
1835 return -ENOSPC;
1836
1837 strcpy(p, policy_types[mode]);
1838 p += l;
1839
1840 if (!nodes_empty(nodes)) {
1841 if (buffer + maxlen < p + 2)
1842 return -ENOSPC;
1843 *p++ = '=';
1844 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1845 }
1846 return p - buffer;
1847 }
1848
1849 struct numa_maps {
1850 unsigned long pages;
1851 unsigned long anon;
1852 unsigned long active;
1853 unsigned long writeback;
1854 unsigned long mapcount_max;
1855 unsigned long dirty;
1856 unsigned long swapcache;
1857 unsigned long node[MAX_NUMNODES];
1858 };
1859
1860 static void gather_stats(struct page *page, void *private, int pte_dirty)
1861 {
1862 struct numa_maps *md = private;
1863 int count = page_mapcount(page);
1864
1865 md->pages++;
1866 if (pte_dirty || PageDirty(page))
1867 md->dirty++;
1868
1869 if (PageSwapCache(page))
1870 md->swapcache++;
1871
1872 if (PageActive(page))
1873 md->active++;
1874
1875 if (PageWriteback(page))
1876 md->writeback++;
1877
1878 if (PageAnon(page))
1879 md->anon++;
1880
1881 if (count > md->mapcount_max)
1882 md->mapcount_max = count;
1883
1884 md->node[page_to_nid(page)]++;
1885 }
1886
1887 #ifdef CONFIG_HUGETLB_PAGE
1888 static void check_huge_range(struct vm_area_struct *vma,
1889 unsigned long start, unsigned long end,
1890 struct numa_maps *md)
1891 {
1892 unsigned long addr;
1893 struct page *page;
1894
1895 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1896 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1897 pte_t pte;
1898
1899 if (!ptep)
1900 continue;
1901
1902 pte = *ptep;
1903 if (pte_none(pte))
1904 continue;
1905
1906 page = pte_page(pte);
1907 if (!page)
1908 continue;
1909
1910 gather_stats(page, md, pte_dirty(*ptep));
1911 }
1912 }
1913 #else
1914 static inline void check_huge_range(struct vm_area_struct *vma,
1915 unsigned long start, unsigned long end,
1916 struct numa_maps *md)
1917 {
1918 }
1919 #endif
1920
1921 int show_numa_map(struct seq_file *m, void *v)
1922 {
1923 struct proc_maps_private *priv = m->private;
1924 struct vm_area_struct *vma = v;
1925 struct numa_maps *md;
1926 struct file *file = vma->vm_file;
1927 struct mm_struct *mm = vma->vm_mm;
1928 struct mempolicy *pol;
1929 int n;
1930 char buffer[50];
1931
1932 if (!mm)
1933 return 0;
1934
1935 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1936 if (!md)
1937 return 0;
1938
1939 pol = get_vma_policy(priv->task, vma, vma->vm_start);
1940 mpol_to_str(buffer, sizeof(buffer), pol);
1941 /*
1942 * unref shared or other task's mempolicy
1943 */
1944 if (pol != &default_policy && pol != current->mempolicy)
1945 __mpol_free(pol);
1946
1947 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1948
1949 if (file) {
1950 seq_printf(m, " file=");
1951 seq_path(m, file->f_path.mnt, file->f_path.dentry, "\n\t= ");
1952 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1953 seq_printf(m, " heap");
1954 } else if (vma->vm_start <= mm->start_stack &&
1955 vma->vm_end >= mm->start_stack) {
1956 seq_printf(m, " stack");
1957 }
1958
1959 if (is_vm_hugetlb_page(vma)) {
1960 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
1961 seq_printf(m, " huge");
1962 } else {
1963 check_pgd_range(vma, vma->vm_start, vma->vm_end,
1964 &node_online_map, MPOL_MF_STATS, md);
1965 }
1966
1967 if (!md->pages)
1968 goto out;
1969
1970 if (md->anon)
1971 seq_printf(m," anon=%lu",md->anon);
1972
1973 if (md->dirty)
1974 seq_printf(m," dirty=%lu",md->dirty);
1975
1976 if (md->pages != md->anon && md->pages != md->dirty)
1977 seq_printf(m, " mapped=%lu", md->pages);
1978
1979 if (md->mapcount_max > 1)
1980 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1981
1982 if (md->swapcache)
1983 seq_printf(m," swapcache=%lu", md->swapcache);
1984
1985 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1986 seq_printf(m," active=%lu", md->active);
1987
1988 if (md->writeback)
1989 seq_printf(m," writeback=%lu", md->writeback);
1990
1991 for_each_online_node(n)
1992 if (md->node[n])
1993 seq_printf(m, " N%d=%lu", n, md->node[n]);
1994 out:
1995 seq_putc(m, '\n');
1996 kfree(md);
1997
1998 if (m->count < m->size)
1999 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2000 return 0;
2001 }
2002