]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mempolicy.c
Merge branch 'sh/for-2.6.34' of git://git.kernel.org/pub/scm/linux/kernel/git/lethal...
[mirror_ubuntu-zesty-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/ksm.h>
89 #include <linux/rmap.h>
90 #include <linux/security.h>
91 #include <linux/syscalls.h>
92 #include <linux/ctype.h>
93 #include <linux/mm_inline.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97
98 #include "internal.h"
99
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static const struct mempolicy_operations {
122 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
123 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
124 } mpol_ops[MPOL_MAX];
125
126 /* Check that the nodemask contains at least one populated zone */
127 static int is_valid_nodemask(const nodemask_t *nodemask)
128 {
129 int nd, k;
130
131 /* Check that there is something useful in this mask */
132 k = policy_zone;
133
134 for_each_node_mask(nd, *nodemask) {
135 struct zone *z;
136
137 for (k = 0; k <= policy_zone; k++) {
138 z = &NODE_DATA(nd)->node_zones[k];
139 if (z->present_pages > 0)
140 return 1;
141 }
142 }
143
144 return 0;
145 }
146
147 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
148 {
149 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
150 }
151
152 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
153 const nodemask_t *rel)
154 {
155 nodemask_t tmp;
156 nodes_fold(tmp, *orig, nodes_weight(*rel));
157 nodes_onto(*ret, tmp, *rel);
158 }
159
160 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
161 {
162 if (nodes_empty(*nodes))
163 return -EINVAL;
164 pol->v.nodes = *nodes;
165 return 0;
166 }
167
168 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
169 {
170 if (!nodes)
171 pol->flags |= MPOL_F_LOCAL; /* local allocation */
172 else if (nodes_empty(*nodes))
173 return -EINVAL; /* no allowed nodes */
174 else
175 pol->v.preferred_node = first_node(*nodes);
176 return 0;
177 }
178
179 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (!is_valid_nodemask(nodes))
182 return -EINVAL;
183 pol->v.nodes = *nodes;
184 return 0;
185 }
186
187 /*
188 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
189 * any, for the new policy. mpol_new() has already validated the nodes
190 * parameter with respect to the policy mode and flags. But, we need to
191 * handle an empty nodemask with MPOL_PREFERRED here.
192 *
193 * Must be called holding task's alloc_lock to protect task's mems_allowed
194 * and mempolicy. May also be called holding the mmap_semaphore for write.
195 */
196 static int mpol_set_nodemask(struct mempolicy *pol,
197 const nodemask_t *nodes, struct nodemask_scratch *nsc)
198 {
199 int ret;
200
201 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
202 if (pol == NULL)
203 return 0;
204 /* Check N_HIGH_MEMORY */
205 nodes_and(nsc->mask1,
206 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
207
208 VM_BUG_ON(!nodes);
209 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
210 nodes = NULL; /* explicit local allocation */
211 else {
212 if (pol->flags & MPOL_F_RELATIVE_NODES)
213 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
214 else
215 nodes_and(nsc->mask2, *nodes, nsc->mask1);
216
217 if (mpol_store_user_nodemask(pol))
218 pol->w.user_nodemask = *nodes;
219 else
220 pol->w.cpuset_mems_allowed =
221 cpuset_current_mems_allowed;
222 }
223
224 if (nodes)
225 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
226 else
227 ret = mpol_ops[pol->mode].create(pol, NULL);
228 return ret;
229 }
230
231 /*
232 * This function just creates a new policy, does some check and simple
233 * initialization. You must invoke mpol_set_nodemask() to set nodes.
234 */
235 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
236 nodemask_t *nodes)
237 {
238 struct mempolicy *policy;
239
240 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
241 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
242
243 if (mode == MPOL_DEFAULT) {
244 if (nodes && !nodes_empty(*nodes))
245 return ERR_PTR(-EINVAL);
246 return NULL; /* simply delete any existing policy */
247 }
248 VM_BUG_ON(!nodes);
249
250 /*
251 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
252 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
253 * All other modes require a valid pointer to a non-empty nodemask.
254 */
255 if (mode == MPOL_PREFERRED) {
256 if (nodes_empty(*nodes)) {
257 if (((flags & MPOL_F_STATIC_NODES) ||
258 (flags & MPOL_F_RELATIVE_NODES)))
259 return ERR_PTR(-EINVAL);
260 }
261 } else if (nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
264 if (!policy)
265 return ERR_PTR(-ENOMEM);
266 atomic_set(&policy->refcnt, 1);
267 policy->mode = mode;
268 policy->flags = flags;
269
270 return policy;
271 }
272
273 /* Slow path of a mpol destructor. */
274 void __mpol_put(struct mempolicy *p)
275 {
276 if (!atomic_dec_and_test(&p->refcnt))
277 return;
278 kmem_cache_free(policy_cache, p);
279 }
280
281 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
282 {
283 }
284
285 static void mpol_rebind_nodemask(struct mempolicy *pol,
286 const nodemask_t *nodes)
287 {
288 nodemask_t tmp;
289
290 if (pol->flags & MPOL_F_STATIC_NODES)
291 nodes_and(tmp, pol->w.user_nodemask, *nodes);
292 else if (pol->flags & MPOL_F_RELATIVE_NODES)
293 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
294 else {
295 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
296 *nodes);
297 pol->w.cpuset_mems_allowed = *nodes;
298 }
299
300 pol->v.nodes = tmp;
301 if (!node_isset(current->il_next, tmp)) {
302 current->il_next = next_node(current->il_next, tmp);
303 if (current->il_next >= MAX_NUMNODES)
304 current->il_next = first_node(tmp);
305 if (current->il_next >= MAX_NUMNODES)
306 current->il_next = numa_node_id();
307 }
308 }
309
310 static void mpol_rebind_preferred(struct mempolicy *pol,
311 const nodemask_t *nodes)
312 {
313 nodemask_t tmp;
314
315 if (pol->flags & MPOL_F_STATIC_NODES) {
316 int node = first_node(pol->w.user_nodemask);
317
318 if (node_isset(node, *nodes)) {
319 pol->v.preferred_node = node;
320 pol->flags &= ~MPOL_F_LOCAL;
321 } else
322 pol->flags |= MPOL_F_LOCAL;
323 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
324 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
325 pol->v.preferred_node = first_node(tmp);
326 } else if (!(pol->flags & MPOL_F_LOCAL)) {
327 pol->v.preferred_node = node_remap(pol->v.preferred_node,
328 pol->w.cpuset_mems_allowed,
329 *nodes);
330 pol->w.cpuset_mems_allowed = *nodes;
331 }
332 }
333
334 /* Migrate a policy to a different set of nodes */
335 static void mpol_rebind_policy(struct mempolicy *pol,
336 const nodemask_t *newmask)
337 {
338 if (!pol)
339 return;
340 if (!mpol_store_user_nodemask(pol) &&
341 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
342 return;
343 mpol_ops[pol->mode].rebind(pol, newmask);
344 }
345
346 /*
347 * Wrapper for mpol_rebind_policy() that just requires task
348 * pointer, and updates task mempolicy.
349 *
350 * Called with task's alloc_lock held.
351 */
352
353 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
354 {
355 mpol_rebind_policy(tsk->mempolicy, new);
356 }
357
358 /*
359 * Rebind each vma in mm to new nodemask.
360 *
361 * Call holding a reference to mm. Takes mm->mmap_sem during call.
362 */
363
364 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
365 {
366 struct vm_area_struct *vma;
367
368 down_write(&mm->mmap_sem);
369 for (vma = mm->mmap; vma; vma = vma->vm_next)
370 mpol_rebind_policy(vma->vm_policy, new);
371 up_write(&mm->mmap_sem);
372 }
373
374 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
375 [MPOL_DEFAULT] = {
376 .rebind = mpol_rebind_default,
377 },
378 [MPOL_INTERLEAVE] = {
379 .create = mpol_new_interleave,
380 .rebind = mpol_rebind_nodemask,
381 },
382 [MPOL_PREFERRED] = {
383 .create = mpol_new_preferred,
384 .rebind = mpol_rebind_preferred,
385 },
386 [MPOL_BIND] = {
387 .create = mpol_new_bind,
388 .rebind = mpol_rebind_nodemask,
389 },
390 };
391
392 static void gather_stats(struct page *, void *, int pte_dirty);
393 static void migrate_page_add(struct page *page, struct list_head *pagelist,
394 unsigned long flags);
395
396 /* Scan through pages checking if pages follow certain conditions. */
397 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
398 unsigned long addr, unsigned long end,
399 const nodemask_t *nodes, unsigned long flags,
400 void *private)
401 {
402 pte_t *orig_pte;
403 pte_t *pte;
404 spinlock_t *ptl;
405
406 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
407 do {
408 struct page *page;
409 int nid;
410
411 if (!pte_present(*pte))
412 continue;
413 page = vm_normal_page(vma, addr, *pte);
414 if (!page)
415 continue;
416 /*
417 * vm_normal_page() filters out zero pages, but there might
418 * still be PageReserved pages to skip, perhaps in a VDSO.
419 * And we cannot move PageKsm pages sensibly or safely yet.
420 */
421 if (PageReserved(page) || PageKsm(page))
422 continue;
423 nid = page_to_nid(page);
424 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
425 continue;
426
427 if (flags & MPOL_MF_STATS)
428 gather_stats(page, private, pte_dirty(*pte));
429 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
430 migrate_page_add(page, private, flags);
431 else
432 break;
433 } while (pte++, addr += PAGE_SIZE, addr != end);
434 pte_unmap_unlock(orig_pte, ptl);
435 return addr != end;
436 }
437
438 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
439 unsigned long addr, unsigned long end,
440 const nodemask_t *nodes, unsigned long flags,
441 void *private)
442 {
443 pmd_t *pmd;
444 unsigned long next;
445
446 pmd = pmd_offset(pud, addr);
447 do {
448 next = pmd_addr_end(addr, end);
449 if (pmd_none_or_clear_bad(pmd))
450 continue;
451 if (check_pte_range(vma, pmd, addr, next, nodes,
452 flags, private))
453 return -EIO;
454 } while (pmd++, addr = next, addr != end);
455 return 0;
456 }
457
458 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
459 unsigned long addr, unsigned long end,
460 const nodemask_t *nodes, unsigned long flags,
461 void *private)
462 {
463 pud_t *pud;
464 unsigned long next;
465
466 pud = pud_offset(pgd, addr);
467 do {
468 next = pud_addr_end(addr, end);
469 if (pud_none_or_clear_bad(pud))
470 continue;
471 if (check_pmd_range(vma, pud, addr, next, nodes,
472 flags, private))
473 return -EIO;
474 } while (pud++, addr = next, addr != end);
475 return 0;
476 }
477
478 static inline int check_pgd_range(struct vm_area_struct *vma,
479 unsigned long addr, unsigned long end,
480 const nodemask_t *nodes, unsigned long flags,
481 void *private)
482 {
483 pgd_t *pgd;
484 unsigned long next;
485
486 pgd = pgd_offset(vma->vm_mm, addr);
487 do {
488 next = pgd_addr_end(addr, end);
489 if (pgd_none_or_clear_bad(pgd))
490 continue;
491 if (check_pud_range(vma, pgd, addr, next, nodes,
492 flags, private))
493 return -EIO;
494 } while (pgd++, addr = next, addr != end);
495 return 0;
496 }
497
498 /*
499 * Check if all pages in a range are on a set of nodes.
500 * If pagelist != NULL then isolate pages from the LRU and
501 * put them on the pagelist.
502 */
503 static struct vm_area_struct *
504 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags, void *private)
506 {
507 int err;
508 struct vm_area_struct *first, *vma, *prev;
509
510
511 first = find_vma(mm, start);
512 if (!first)
513 return ERR_PTR(-EFAULT);
514 prev = NULL;
515 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
516 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
517 if (!vma->vm_next && vma->vm_end < end)
518 return ERR_PTR(-EFAULT);
519 if (prev && prev->vm_end < vma->vm_start)
520 return ERR_PTR(-EFAULT);
521 }
522 if (!is_vm_hugetlb_page(vma) &&
523 ((flags & MPOL_MF_STRICT) ||
524 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
525 vma_migratable(vma)))) {
526 unsigned long endvma = vma->vm_end;
527
528 if (endvma > end)
529 endvma = end;
530 if (vma->vm_start > start)
531 start = vma->vm_start;
532 err = check_pgd_range(vma, start, endvma, nodes,
533 flags, private);
534 if (err) {
535 first = ERR_PTR(err);
536 break;
537 }
538 }
539 prev = vma;
540 }
541 return first;
542 }
543
544 /* Apply policy to a single VMA */
545 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
546 {
547 int err = 0;
548 struct mempolicy *old = vma->vm_policy;
549
550 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
551 vma->vm_start, vma->vm_end, vma->vm_pgoff,
552 vma->vm_ops, vma->vm_file,
553 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
554
555 if (vma->vm_ops && vma->vm_ops->set_policy)
556 err = vma->vm_ops->set_policy(vma, new);
557 if (!err) {
558 mpol_get(new);
559 vma->vm_policy = new;
560 mpol_put(old);
561 }
562 return err;
563 }
564
565 /* Step 2: apply policy to a range and do splits. */
566 static int mbind_range(struct mm_struct *mm, unsigned long start,
567 unsigned long end, struct mempolicy *new_pol)
568 {
569 struct vm_area_struct *next;
570 struct vm_area_struct *prev;
571 struct vm_area_struct *vma;
572 int err = 0;
573 pgoff_t pgoff;
574 unsigned long vmstart;
575 unsigned long vmend;
576
577 vma = find_vma_prev(mm, start, &prev);
578 if (!vma || vma->vm_start > start)
579 return -EFAULT;
580
581 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
582 next = vma->vm_next;
583 vmstart = max(start, vma->vm_start);
584 vmend = min(end, vma->vm_end);
585
586 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
587 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
588 vma->anon_vma, vma->vm_file, pgoff, new_pol);
589 if (prev) {
590 vma = prev;
591 next = vma->vm_next;
592 continue;
593 }
594 if (vma->vm_start != vmstart) {
595 err = split_vma(vma->vm_mm, vma, vmstart, 1);
596 if (err)
597 goto out;
598 }
599 if (vma->vm_end != vmend) {
600 err = split_vma(vma->vm_mm, vma, vmend, 0);
601 if (err)
602 goto out;
603 }
604 err = policy_vma(vma, new_pol);
605 if (err)
606 goto out;
607 }
608
609 out:
610 return err;
611 }
612
613 /*
614 * Update task->flags PF_MEMPOLICY bit: set iff non-default
615 * mempolicy. Allows more rapid checking of this (combined perhaps
616 * with other PF_* flag bits) on memory allocation hot code paths.
617 *
618 * If called from outside this file, the task 'p' should -only- be
619 * a newly forked child not yet visible on the task list, because
620 * manipulating the task flags of a visible task is not safe.
621 *
622 * The above limitation is why this routine has the funny name
623 * mpol_fix_fork_child_flag().
624 *
625 * It is also safe to call this with a task pointer of current,
626 * which the static wrapper mpol_set_task_struct_flag() does,
627 * for use within this file.
628 */
629
630 void mpol_fix_fork_child_flag(struct task_struct *p)
631 {
632 if (p->mempolicy)
633 p->flags |= PF_MEMPOLICY;
634 else
635 p->flags &= ~PF_MEMPOLICY;
636 }
637
638 static void mpol_set_task_struct_flag(void)
639 {
640 mpol_fix_fork_child_flag(current);
641 }
642
643 /* Set the process memory policy */
644 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
645 nodemask_t *nodes)
646 {
647 struct mempolicy *new, *old;
648 struct mm_struct *mm = current->mm;
649 NODEMASK_SCRATCH(scratch);
650 int ret;
651
652 if (!scratch)
653 return -ENOMEM;
654
655 new = mpol_new(mode, flags, nodes);
656 if (IS_ERR(new)) {
657 ret = PTR_ERR(new);
658 goto out;
659 }
660 /*
661 * prevent changing our mempolicy while show_numa_maps()
662 * is using it.
663 * Note: do_set_mempolicy() can be called at init time
664 * with no 'mm'.
665 */
666 if (mm)
667 down_write(&mm->mmap_sem);
668 task_lock(current);
669 ret = mpol_set_nodemask(new, nodes, scratch);
670 if (ret) {
671 task_unlock(current);
672 if (mm)
673 up_write(&mm->mmap_sem);
674 mpol_put(new);
675 goto out;
676 }
677 old = current->mempolicy;
678 current->mempolicy = new;
679 mpol_set_task_struct_flag();
680 if (new && new->mode == MPOL_INTERLEAVE &&
681 nodes_weight(new->v.nodes))
682 current->il_next = first_node(new->v.nodes);
683 task_unlock(current);
684 if (mm)
685 up_write(&mm->mmap_sem);
686
687 mpol_put(old);
688 ret = 0;
689 out:
690 NODEMASK_SCRATCH_FREE(scratch);
691 return ret;
692 }
693
694 /*
695 * Return nodemask for policy for get_mempolicy() query
696 *
697 * Called with task's alloc_lock held
698 */
699 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
700 {
701 nodes_clear(*nodes);
702 if (p == &default_policy)
703 return;
704
705 switch (p->mode) {
706 case MPOL_BIND:
707 /* Fall through */
708 case MPOL_INTERLEAVE:
709 *nodes = p->v.nodes;
710 break;
711 case MPOL_PREFERRED:
712 if (!(p->flags & MPOL_F_LOCAL))
713 node_set(p->v.preferred_node, *nodes);
714 /* else return empty node mask for local allocation */
715 break;
716 default:
717 BUG();
718 }
719 }
720
721 static int lookup_node(struct mm_struct *mm, unsigned long addr)
722 {
723 struct page *p;
724 int err;
725
726 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
727 if (err >= 0) {
728 err = page_to_nid(p);
729 put_page(p);
730 }
731 return err;
732 }
733
734 /* Retrieve NUMA policy */
735 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
736 unsigned long addr, unsigned long flags)
737 {
738 int err;
739 struct mm_struct *mm = current->mm;
740 struct vm_area_struct *vma = NULL;
741 struct mempolicy *pol = current->mempolicy;
742
743 if (flags &
744 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
745 return -EINVAL;
746
747 if (flags & MPOL_F_MEMS_ALLOWED) {
748 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
749 return -EINVAL;
750 *policy = 0; /* just so it's initialized */
751 task_lock(current);
752 *nmask = cpuset_current_mems_allowed;
753 task_unlock(current);
754 return 0;
755 }
756
757 if (flags & MPOL_F_ADDR) {
758 /*
759 * Do NOT fall back to task policy if the
760 * vma/shared policy at addr is NULL. We
761 * want to return MPOL_DEFAULT in this case.
762 */
763 down_read(&mm->mmap_sem);
764 vma = find_vma_intersection(mm, addr, addr+1);
765 if (!vma) {
766 up_read(&mm->mmap_sem);
767 return -EFAULT;
768 }
769 if (vma->vm_ops && vma->vm_ops->get_policy)
770 pol = vma->vm_ops->get_policy(vma, addr);
771 else
772 pol = vma->vm_policy;
773 } else if (addr)
774 return -EINVAL;
775
776 if (!pol)
777 pol = &default_policy; /* indicates default behavior */
778
779 if (flags & MPOL_F_NODE) {
780 if (flags & MPOL_F_ADDR) {
781 err = lookup_node(mm, addr);
782 if (err < 0)
783 goto out;
784 *policy = err;
785 } else if (pol == current->mempolicy &&
786 pol->mode == MPOL_INTERLEAVE) {
787 *policy = current->il_next;
788 } else {
789 err = -EINVAL;
790 goto out;
791 }
792 } else {
793 *policy = pol == &default_policy ? MPOL_DEFAULT :
794 pol->mode;
795 /*
796 * Internal mempolicy flags must be masked off before exposing
797 * the policy to userspace.
798 */
799 *policy |= (pol->flags & MPOL_MODE_FLAGS);
800 }
801
802 if (vma) {
803 up_read(&current->mm->mmap_sem);
804 vma = NULL;
805 }
806
807 err = 0;
808 if (nmask) {
809 if (mpol_store_user_nodemask(pol)) {
810 *nmask = pol->w.user_nodemask;
811 } else {
812 task_lock(current);
813 get_policy_nodemask(pol, nmask);
814 task_unlock(current);
815 }
816 }
817
818 out:
819 mpol_cond_put(pol);
820 if (vma)
821 up_read(&current->mm->mmap_sem);
822 return err;
823 }
824
825 #ifdef CONFIG_MIGRATION
826 /*
827 * page migration
828 */
829 static void migrate_page_add(struct page *page, struct list_head *pagelist,
830 unsigned long flags)
831 {
832 /*
833 * Avoid migrating a page that is shared with others.
834 */
835 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
836 if (!isolate_lru_page(page)) {
837 list_add_tail(&page->lru, pagelist);
838 inc_zone_page_state(page, NR_ISOLATED_ANON +
839 page_is_file_cache(page));
840 }
841 }
842 }
843
844 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
845 {
846 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
847 }
848
849 /*
850 * Migrate pages from one node to a target node.
851 * Returns error or the number of pages not migrated.
852 */
853 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
854 int flags)
855 {
856 nodemask_t nmask;
857 LIST_HEAD(pagelist);
858 int err = 0;
859
860 nodes_clear(nmask);
861 node_set(source, nmask);
862
863 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
864 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
865
866 if (!list_empty(&pagelist))
867 err = migrate_pages(&pagelist, new_node_page, dest, 0);
868
869 return err;
870 }
871
872 /*
873 * Move pages between the two nodesets so as to preserve the physical
874 * layout as much as possible.
875 *
876 * Returns the number of page that could not be moved.
877 */
878 int do_migrate_pages(struct mm_struct *mm,
879 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
880 {
881 int busy = 0;
882 int err;
883 nodemask_t tmp;
884
885 err = migrate_prep();
886 if (err)
887 return err;
888
889 down_read(&mm->mmap_sem);
890
891 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
892 if (err)
893 goto out;
894
895 /*
896 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
897 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
898 * bit in 'tmp', and return that <source, dest> pair for migration.
899 * The pair of nodemasks 'to' and 'from' define the map.
900 *
901 * If no pair of bits is found that way, fallback to picking some
902 * pair of 'source' and 'dest' bits that are not the same. If the
903 * 'source' and 'dest' bits are the same, this represents a node
904 * that will be migrating to itself, so no pages need move.
905 *
906 * If no bits are left in 'tmp', or if all remaining bits left
907 * in 'tmp' correspond to the same bit in 'to', return false
908 * (nothing left to migrate).
909 *
910 * This lets us pick a pair of nodes to migrate between, such that
911 * if possible the dest node is not already occupied by some other
912 * source node, minimizing the risk of overloading the memory on a
913 * node that would happen if we migrated incoming memory to a node
914 * before migrating outgoing memory source that same node.
915 *
916 * A single scan of tmp is sufficient. As we go, we remember the
917 * most recent <s, d> pair that moved (s != d). If we find a pair
918 * that not only moved, but what's better, moved to an empty slot
919 * (d is not set in tmp), then we break out then, with that pair.
920 * Otherwise when we finish scannng from_tmp, we at least have the
921 * most recent <s, d> pair that moved. If we get all the way through
922 * the scan of tmp without finding any node that moved, much less
923 * moved to an empty node, then there is nothing left worth migrating.
924 */
925
926 tmp = *from_nodes;
927 while (!nodes_empty(tmp)) {
928 int s,d;
929 int source = -1;
930 int dest = 0;
931
932 for_each_node_mask(s, tmp) {
933 d = node_remap(s, *from_nodes, *to_nodes);
934 if (s == d)
935 continue;
936
937 source = s; /* Node moved. Memorize */
938 dest = d;
939
940 /* dest not in remaining from nodes? */
941 if (!node_isset(dest, tmp))
942 break;
943 }
944 if (source == -1)
945 break;
946
947 node_clear(source, tmp);
948 err = migrate_to_node(mm, source, dest, flags);
949 if (err > 0)
950 busy += err;
951 if (err < 0)
952 break;
953 }
954 out:
955 up_read(&mm->mmap_sem);
956 if (err < 0)
957 return err;
958 return busy;
959
960 }
961
962 /*
963 * Allocate a new page for page migration based on vma policy.
964 * Start assuming that page is mapped by vma pointed to by @private.
965 * Search forward from there, if not. N.B., this assumes that the
966 * list of pages handed to migrate_pages()--which is how we get here--
967 * is in virtual address order.
968 */
969 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
970 {
971 struct vm_area_struct *vma = (struct vm_area_struct *)private;
972 unsigned long uninitialized_var(address);
973
974 while (vma) {
975 address = page_address_in_vma(page, vma);
976 if (address != -EFAULT)
977 break;
978 vma = vma->vm_next;
979 }
980
981 /*
982 * if !vma, alloc_page_vma() will use task or system default policy
983 */
984 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
985 }
986 #else
987
988 static void migrate_page_add(struct page *page, struct list_head *pagelist,
989 unsigned long flags)
990 {
991 }
992
993 int do_migrate_pages(struct mm_struct *mm,
994 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
995 {
996 return -ENOSYS;
997 }
998
999 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1000 {
1001 return NULL;
1002 }
1003 #endif
1004
1005 static long do_mbind(unsigned long start, unsigned long len,
1006 unsigned short mode, unsigned short mode_flags,
1007 nodemask_t *nmask, unsigned long flags)
1008 {
1009 struct vm_area_struct *vma;
1010 struct mm_struct *mm = current->mm;
1011 struct mempolicy *new;
1012 unsigned long end;
1013 int err;
1014 LIST_HEAD(pagelist);
1015
1016 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1017 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1018 return -EINVAL;
1019 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1020 return -EPERM;
1021
1022 if (start & ~PAGE_MASK)
1023 return -EINVAL;
1024
1025 if (mode == MPOL_DEFAULT)
1026 flags &= ~MPOL_MF_STRICT;
1027
1028 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1029 end = start + len;
1030
1031 if (end < start)
1032 return -EINVAL;
1033 if (end == start)
1034 return 0;
1035
1036 new = mpol_new(mode, mode_flags, nmask);
1037 if (IS_ERR(new))
1038 return PTR_ERR(new);
1039
1040 /*
1041 * If we are using the default policy then operation
1042 * on discontinuous address spaces is okay after all
1043 */
1044 if (!new)
1045 flags |= MPOL_MF_DISCONTIG_OK;
1046
1047 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1048 start, start + len, mode, mode_flags,
1049 nmask ? nodes_addr(*nmask)[0] : -1);
1050
1051 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1052
1053 err = migrate_prep();
1054 if (err)
1055 goto mpol_out;
1056 }
1057 {
1058 NODEMASK_SCRATCH(scratch);
1059 if (scratch) {
1060 down_write(&mm->mmap_sem);
1061 task_lock(current);
1062 err = mpol_set_nodemask(new, nmask, scratch);
1063 task_unlock(current);
1064 if (err)
1065 up_write(&mm->mmap_sem);
1066 } else
1067 err = -ENOMEM;
1068 NODEMASK_SCRATCH_FREE(scratch);
1069 }
1070 if (err)
1071 goto mpol_out;
1072
1073 vma = check_range(mm, start, end, nmask,
1074 flags | MPOL_MF_INVERT, &pagelist);
1075
1076 err = PTR_ERR(vma);
1077 if (!IS_ERR(vma)) {
1078 int nr_failed = 0;
1079
1080 err = mbind_range(mm, start, end, new);
1081
1082 if (!list_empty(&pagelist))
1083 nr_failed = migrate_pages(&pagelist, new_vma_page,
1084 (unsigned long)vma, 0);
1085
1086 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1087 err = -EIO;
1088 } else
1089 putback_lru_pages(&pagelist);
1090
1091 up_write(&mm->mmap_sem);
1092 mpol_out:
1093 mpol_put(new);
1094 return err;
1095 }
1096
1097 /*
1098 * User space interface with variable sized bitmaps for nodelists.
1099 */
1100
1101 /* Copy a node mask from user space. */
1102 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1103 unsigned long maxnode)
1104 {
1105 unsigned long k;
1106 unsigned long nlongs;
1107 unsigned long endmask;
1108
1109 --maxnode;
1110 nodes_clear(*nodes);
1111 if (maxnode == 0 || !nmask)
1112 return 0;
1113 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1114 return -EINVAL;
1115
1116 nlongs = BITS_TO_LONGS(maxnode);
1117 if ((maxnode % BITS_PER_LONG) == 0)
1118 endmask = ~0UL;
1119 else
1120 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1121
1122 /* When the user specified more nodes than supported just check
1123 if the non supported part is all zero. */
1124 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1125 if (nlongs > PAGE_SIZE/sizeof(long))
1126 return -EINVAL;
1127 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1128 unsigned long t;
1129 if (get_user(t, nmask + k))
1130 return -EFAULT;
1131 if (k == nlongs - 1) {
1132 if (t & endmask)
1133 return -EINVAL;
1134 } else if (t)
1135 return -EINVAL;
1136 }
1137 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1138 endmask = ~0UL;
1139 }
1140
1141 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1142 return -EFAULT;
1143 nodes_addr(*nodes)[nlongs-1] &= endmask;
1144 return 0;
1145 }
1146
1147 /* Copy a kernel node mask to user space */
1148 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1149 nodemask_t *nodes)
1150 {
1151 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1152 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1153
1154 if (copy > nbytes) {
1155 if (copy > PAGE_SIZE)
1156 return -EINVAL;
1157 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1158 return -EFAULT;
1159 copy = nbytes;
1160 }
1161 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1162 }
1163
1164 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1165 unsigned long, mode, unsigned long __user *, nmask,
1166 unsigned long, maxnode, unsigned, flags)
1167 {
1168 nodemask_t nodes;
1169 int err;
1170 unsigned short mode_flags;
1171
1172 mode_flags = mode & MPOL_MODE_FLAGS;
1173 mode &= ~MPOL_MODE_FLAGS;
1174 if (mode >= MPOL_MAX)
1175 return -EINVAL;
1176 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1177 (mode_flags & MPOL_F_RELATIVE_NODES))
1178 return -EINVAL;
1179 err = get_nodes(&nodes, nmask, maxnode);
1180 if (err)
1181 return err;
1182 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1183 }
1184
1185 /* Set the process memory policy */
1186 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1187 unsigned long, maxnode)
1188 {
1189 int err;
1190 nodemask_t nodes;
1191 unsigned short flags;
1192
1193 flags = mode & MPOL_MODE_FLAGS;
1194 mode &= ~MPOL_MODE_FLAGS;
1195 if ((unsigned int)mode >= MPOL_MAX)
1196 return -EINVAL;
1197 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1198 return -EINVAL;
1199 err = get_nodes(&nodes, nmask, maxnode);
1200 if (err)
1201 return err;
1202 return do_set_mempolicy(mode, flags, &nodes);
1203 }
1204
1205 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1206 const unsigned long __user *, old_nodes,
1207 const unsigned long __user *, new_nodes)
1208 {
1209 const struct cred *cred = current_cred(), *tcred;
1210 struct mm_struct *mm;
1211 struct task_struct *task;
1212 nodemask_t old;
1213 nodemask_t new;
1214 nodemask_t task_nodes;
1215 int err;
1216
1217 err = get_nodes(&old, old_nodes, maxnode);
1218 if (err)
1219 return err;
1220
1221 err = get_nodes(&new, new_nodes, maxnode);
1222 if (err)
1223 return err;
1224
1225 /* Find the mm_struct */
1226 read_lock(&tasklist_lock);
1227 task = pid ? find_task_by_vpid(pid) : current;
1228 if (!task) {
1229 read_unlock(&tasklist_lock);
1230 return -ESRCH;
1231 }
1232 mm = get_task_mm(task);
1233 read_unlock(&tasklist_lock);
1234
1235 if (!mm)
1236 return -EINVAL;
1237
1238 /*
1239 * Check if this process has the right to modify the specified
1240 * process. The right exists if the process has administrative
1241 * capabilities, superuser privileges or the same
1242 * userid as the target process.
1243 */
1244 rcu_read_lock();
1245 tcred = __task_cred(task);
1246 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1247 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1248 !capable(CAP_SYS_NICE)) {
1249 rcu_read_unlock();
1250 err = -EPERM;
1251 goto out;
1252 }
1253 rcu_read_unlock();
1254
1255 task_nodes = cpuset_mems_allowed(task);
1256 /* Is the user allowed to access the target nodes? */
1257 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1258 err = -EPERM;
1259 goto out;
1260 }
1261
1262 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1263 err = -EINVAL;
1264 goto out;
1265 }
1266
1267 err = security_task_movememory(task);
1268 if (err)
1269 goto out;
1270
1271 err = do_migrate_pages(mm, &old, &new,
1272 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1273 out:
1274 mmput(mm);
1275 return err;
1276 }
1277
1278
1279 /* Retrieve NUMA policy */
1280 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1281 unsigned long __user *, nmask, unsigned long, maxnode,
1282 unsigned long, addr, unsigned long, flags)
1283 {
1284 int err;
1285 int uninitialized_var(pval);
1286 nodemask_t nodes;
1287
1288 if (nmask != NULL && maxnode < MAX_NUMNODES)
1289 return -EINVAL;
1290
1291 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1292
1293 if (err)
1294 return err;
1295
1296 if (policy && put_user(pval, policy))
1297 return -EFAULT;
1298
1299 if (nmask)
1300 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1301
1302 return err;
1303 }
1304
1305 #ifdef CONFIG_COMPAT
1306
1307 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1308 compat_ulong_t __user *nmask,
1309 compat_ulong_t maxnode,
1310 compat_ulong_t addr, compat_ulong_t flags)
1311 {
1312 long err;
1313 unsigned long __user *nm = NULL;
1314 unsigned long nr_bits, alloc_size;
1315 DECLARE_BITMAP(bm, MAX_NUMNODES);
1316
1317 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1318 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1319
1320 if (nmask)
1321 nm = compat_alloc_user_space(alloc_size);
1322
1323 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1324
1325 if (!err && nmask) {
1326 err = copy_from_user(bm, nm, alloc_size);
1327 /* ensure entire bitmap is zeroed */
1328 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1329 err |= compat_put_bitmap(nmask, bm, nr_bits);
1330 }
1331
1332 return err;
1333 }
1334
1335 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1336 compat_ulong_t maxnode)
1337 {
1338 long err = 0;
1339 unsigned long __user *nm = NULL;
1340 unsigned long nr_bits, alloc_size;
1341 DECLARE_BITMAP(bm, MAX_NUMNODES);
1342
1343 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1344 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1345
1346 if (nmask) {
1347 err = compat_get_bitmap(bm, nmask, nr_bits);
1348 nm = compat_alloc_user_space(alloc_size);
1349 err |= copy_to_user(nm, bm, alloc_size);
1350 }
1351
1352 if (err)
1353 return -EFAULT;
1354
1355 return sys_set_mempolicy(mode, nm, nr_bits+1);
1356 }
1357
1358 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1359 compat_ulong_t mode, compat_ulong_t __user *nmask,
1360 compat_ulong_t maxnode, compat_ulong_t flags)
1361 {
1362 long err = 0;
1363 unsigned long __user *nm = NULL;
1364 unsigned long nr_bits, alloc_size;
1365 nodemask_t bm;
1366
1367 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1368 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1369
1370 if (nmask) {
1371 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1372 nm = compat_alloc_user_space(alloc_size);
1373 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1374 }
1375
1376 if (err)
1377 return -EFAULT;
1378
1379 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1380 }
1381
1382 #endif
1383
1384 /*
1385 * get_vma_policy(@task, @vma, @addr)
1386 * @task - task for fallback if vma policy == default
1387 * @vma - virtual memory area whose policy is sought
1388 * @addr - address in @vma for shared policy lookup
1389 *
1390 * Returns effective policy for a VMA at specified address.
1391 * Falls back to @task or system default policy, as necessary.
1392 * Current or other task's task mempolicy and non-shared vma policies
1393 * are protected by the task's mmap_sem, which must be held for read by
1394 * the caller.
1395 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1396 * count--added by the get_policy() vm_op, as appropriate--to protect against
1397 * freeing by another task. It is the caller's responsibility to free the
1398 * extra reference for shared policies.
1399 */
1400 static struct mempolicy *get_vma_policy(struct task_struct *task,
1401 struct vm_area_struct *vma, unsigned long addr)
1402 {
1403 struct mempolicy *pol = task->mempolicy;
1404
1405 if (vma) {
1406 if (vma->vm_ops && vma->vm_ops->get_policy) {
1407 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1408 addr);
1409 if (vpol)
1410 pol = vpol;
1411 } else if (vma->vm_policy)
1412 pol = vma->vm_policy;
1413 }
1414 if (!pol)
1415 pol = &default_policy;
1416 return pol;
1417 }
1418
1419 /*
1420 * Return a nodemask representing a mempolicy for filtering nodes for
1421 * page allocation
1422 */
1423 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1424 {
1425 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1426 if (unlikely(policy->mode == MPOL_BIND) &&
1427 gfp_zone(gfp) >= policy_zone &&
1428 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1429 return &policy->v.nodes;
1430
1431 return NULL;
1432 }
1433
1434 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1435 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1436 {
1437 int nd = numa_node_id();
1438
1439 switch (policy->mode) {
1440 case MPOL_PREFERRED:
1441 if (!(policy->flags & MPOL_F_LOCAL))
1442 nd = policy->v.preferred_node;
1443 break;
1444 case MPOL_BIND:
1445 /*
1446 * Normally, MPOL_BIND allocations are node-local within the
1447 * allowed nodemask. However, if __GFP_THISNODE is set and the
1448 * current node is part of the mask, we use the zonelist for
1449 * the first node in the mask instead.
1450 */
1451 if (unlikely(gfp & __GFP_THISNODE) &&
1452 unlikely(!node_isset(nd, policy->v.nodes)))
1453 nd = first_node(policy->v.nodes);
1454 break;
1455 case MPOL_INTERLEAVE: /* should not happen */
1456 break;
1457 default:
1458 BUG();
1459 }
1460 return node_zonelist(nd, gfp);
1461 }
1462
1463 /* Do dynamic interleaving for a process */
1464 static unsigned interleave_nodes(struct mempolicy *policy)
1465 {
1466 unsigned nid, next;
1467 struct task_struct *me = current;
1468
1469 nid = me->il_next;
1470 next = next_node(nid, policy->v.nodes);
1471 if (next >= MAX_NUMNODES)
1472 next = first_node(policy->v.nodes);
1473 if (next < MAX_NUMNODES)
1474 me->il_next = next;
1475 return nid;
1476 }
1477
1478 /*
1479 * Depending on the memory policy provide a node from which to allocate the
1480 * next slab entry.
1481 * @policy must be protected by freeing by the caller. If @policy is
1482 * the current task's mempolicy, this protection is implicit, as only the
1483 * task can change it's policy. The system default policy requires no
1484 * such protection.
1485 */
1486 unsigned slab_node(struct mempolicy *policy)
1487 {
1488 if (!policy || policy->flags & MPOL_F_LOCAL)
1489 return numa_node_id();
1490
1491 switch (policy->mode) {
1492 case MPOL_PREFERRED:
1493 /*
1494 * handled MPOL_F_LOCAL above
1495 */
1496 return policy->v.preferred_node;
1497
1498 case MPOL_INTERLEAVE:
1499 return interleave_nodes(policy);
1500
1501 case MPOL_BIND: {
1502 /*
1503 * Follow bind policy behavior and start allocation at the
1504 * first node.
1505 */
1506 struct zonelist *zonelist;
1507 struct zone *zone;
1508 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1509 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1510 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1511 &policy->v.nodes,
1512 &zone);
1513 return zone->node;
1514 }
1515
1516 default:
1517 BUG();
1518 }
1519 }
1520
1521 /* Do static interleaving for a VMA with known offset. */
1522 static unsigned offset_il_node(struct mempolicy *pol,
1523 struct vm_area_struct *vma, unsigned long off)
1524 {
1525 unsigned nnodes = nodes_weight(pol->v.nodes);
1526 unsigned target;
1527 int c;
1528 int nid = -1;
1529
1530 if (!nnodes)
1531 return numa_node_id();
1532 target = (unsigned int)off % nnodes;
1533 c = 0;
1534 do {
1535 nid = next_node(nid, pol->v.nodes);
1536 c++;
1537 } while (c <= target);
1538 return nid;
1539 }
1540
1541 /* Determine a node number for interleave */
1542 static inline unsigned interleave_nid(struct mempolicy *pol,
1543 struct vm_area_struct *vma, unsigned long addr, int shift)
1544 {
1545 if (vma) {
1546 unsigned long off;
1547
1548 /*
1549 * for small pages, there is no difference between
1550 * shift and PAGE_SHIFT, so the bit-shift is safe.
1551 * for huge pages, since vm_pgoff is in units of small
1552 * pages, we need to shift off the always 0 bits to get
1553 * a useful offset.
1554 */
1555 BUG_ON(shift < PAGE_SHIFT);
1556 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1557 off += (addr - vma->vm_start) >> shift;
1558 return offset_il_node(pol, vma, off);
1559 } else
1560 return interleave_nodes(pol);
1561 }
1562
1563 #ifdef CONFIG_HUGETLBFS
1564 /*
1565 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1566 * @vma = virtual memory area whose policy is sought
1567 * @addr = address in @vma for shared policy lookup and interleave policy
1568 * @gfp_flags = for requested zone
1569 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1570 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1571 *
1572 * Returns a zonelist suitable for a huge page allocation and a pointer
1573 * to the struct mempolicy for conditional unref after allocation.
1574 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1575 * @nodemask for filtering the zonelist.
1576 */
1577 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1578 gfp_t gfp_flags, struct mempolicy **mpol,
1579 nodemask_t **nodemask)
1580 {
1581 struct zonelist *zl;
1582
1583 *mpol = get_vma_policy(current, vma, addr);
1584 *nodemask = NULL; /* assume !MPOL_BIND */
1585
1586 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1587 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1588 huge_page_shift(hstate_vma(vma))), gfp_flags);
1589 } else {
1590 zl = policy_zonelist(gfp_flags, *mpol);
1591 if ((*mpol)->mode == MPOL_BIND)
1592 *nodemask = &(*mpol)->v.nodes;
1593 }
1594 return zl;
1595 }
1596
1597 /*
1598 * init_nodemask_of_mempolicy
1599 *
1600 * If the current task's mempolicy is "default" [NULL], return 'false'
1601 * to indicate default policy. Otherwise, extract the policy nodemask
1602 * for 'bind' or 'interleave' policy into the argument nodemask, or
1603 * initialize the argument nodemask to contain the single node for
1604 * 'preferred' or 'local' policy and return 'true' to indicate presence
1605 * of non-default mempolicy.
1606 *
1607 * We don't bother with reference counting the mempolicy [mpol_get/put]
1608 * because the current task is examining it's own mempolicy and a task's
1609 * mempolicy is only ever changed by the task itself.
1610 *
1611 * N.B., it is the caller's responsibility to free a returned nodemask.
1612 */
1613 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1614 {
1615 struct mempolicy *mempolicy;
1616 int nid;
1617
1618 if (!(mask && current->mempolicy))
1619 return false;
1620
1621 mempolicy = current->mempolicy;
1622 switch (mempolicy->mode) {
1623 case MPOL_PREFERRED:
1624 if (mempolicy->flags & MPOL_F_LOCAL)
1625 nid = numa_node_id();
1626 else
1627 nid = mempolicy->v.preferred_node;
1628 init_nodemask_of_node(mask, nid);
1629 break;
1630
1631 case MPOL_BIND:
1632 /* Fall through */
1633 case MPOL_INTERLEAVE:
1634 *mask = mempolicy->v.nodes;
1635 break;
1636
1637 default:
1638 BUG();
1639 }
1640
1641 return true;
1642 }
1643 #endif
1644
1645 /* Allocate a page in interleaved policy.
1646 Own path because it needs to do special accounting. */
1647 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1648 unsigned nid)
1649 {
1650 struct zonelist *zl;
1651 struct page *page;
1652
1653 zl = node_zonelist(nid, gfp);
1654 page = __alloc_pages(gfp, order, zl);
1655 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1656 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1657 return page;
1658 }
1659
1660 /**
1661 * alloc_page_vma - Allocate a page for a VMA.
1662 *
1663 * @gfp:
1664 * %GFP_USER user allocation.
1665 * %GFP_KERNEL kernel allocations,
1666 * %GFP_HIGHMEM highmem/user allocations,
1667 * %GFP_FS allocation should not call back into a file system.
1668 * %GFP_ATOMIC don't sleep.
1669 *
1670 * @vma: Pointer to VMA or NULL if not available.
1671 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1672 *
1673 * This function allocates a page from the kernel page pool and applies
1674 * a NUMA policy associated with the VMA or the current process.
1675 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1676 * mm_struct of the VMA to prevent it from going away. Should be used for
1677 * all allocations for pages that will be mapped into
1678 * user space. Returns NULL when no page can be allocated.
1679 *
1680 * Should be called with the mm_sem of the vma hold.
1681 */
1682 struct page *
1683 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1684 {
1685 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1686 struct zonelist *zl;
1687
1688 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1689 unsigned nid;
1690
1691 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1692 mpol_cond_put(pol);
1693 return alloc_page_interleave(gfp, 0, nid);
1694 }
1695 zl = policy_zonelist(gfp, pol);
1696 if (unlikely(mpol_needs_cond_ref(pol))) {
1697 /*
1698 * slow path: ref counted shared policy
1699 */
1700 struct page *page = __alloc_pages_nodemask(gfp, 0,
1701 zl, policy_nodemask(gfp, pol));
1702 __mpol_put(pol);
1703 return page;
1704 }
1705 /*
1706 * fast path: default or task policy
1707 */
1708 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1709 }
1710
1711 /**
1712 * alloc_pages_current - Allocate pages.
1713 *
1714 * @gfp:
1715 * %GFP_USER user allocation,
1716 * %GFP_KERNEL kernel allocation,
1717 * %GFP_HIGHMEM highmem allocation,
1718 * %GFP_FS don't call back into a file system.
1719 * %GFP_ATOMIC don't sleep.
1720 * @order: Power of two of allocation size in pages. 0 is a single page.
1721 *
1722 * Allocate a page from the kernel page pool. When not in
1723 * interrupt context and apply the current process NUMA policy.
1724 * Returns NULL when no page can be allocated.
1725 *
1726 * Don't call cpuset_update_task_memory_state() unless
1727 * 1) it's ok to take cpuset_sem (can WAIT), and
1728 * 2) allocating for current task (not interrupt).
1729 */
1730 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1731 {
1732 struct mempolicy *pol = current->mempolicy;
1733
1734 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1735 pol = &default_policy;
1736
1737 /*
1738 * No reference counting needed for current->mempolicy
1739 * nor system default_policy
1740 */
1741 if (pol->mode == MPOL_INTERLEAVE)
1742 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1743 return __alloc_pages_nodemask(gfp, order,
1744 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1745 }
1746 EXPORT_SYMBOL(alloc_pages_current);
1747
1748 /*
1749 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1750 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1751 * with the mems_allowed returned by cpuset_mems_allowed(). This
1752 * keeps mempolicies cpuset relative after its cpuset moves. See
1753 * further kernel/cpuset.c update_nodemask().
1754 */
1755
1756 /* Slow path of a mempolicy duplicate */
1757 struct mempolicy *__mpol_dup(struct mempolicy *old)
1758 {
1759 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1760
1761 if (!new)
1762 return ERR_PTR(-ENOMEM);
1763 rcu_read_lock();
1764 if (current_cpuset_is_being_rebound()) {
1765 nodemask_t mems = cpuset_mems_allowed(current);
1766 mpol_rebind_policy(old, &mems);
1767 }
1768 rcu_read_unlock();
1769 *new = *old;
1770 atomic_set(&new->refcnt, 1);
1771 return new;
1772 }
1773
1774 /*
1775 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1776 * eliminate the * MPOL_F_* flags that require conditional ref and
1777 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1778 * after return. Use the returned value.
1779 *
1780 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1781 * policy lookup, even if the policy needs/has extra ref on lookup.
1782 * shmem_readahead needs this.
1783 */
1784 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1785 struct mempolicy *frompol)
1786 {
1787 if (!mpol_needs_cond_ref(frompol))
1788 return frompol;
1789
1790 *tompol = *frompol;
1791 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1792 __mpol_put(frompol);
1793 return tompol;
1794 }
1795
1796 static int mpol_match_intent(const struct mempolicy *a,
1797 const struct mempolicy *b)
1798 {
1799 if (a->flags != b->flags)
1800 return 0;
1801 if (!mpol_store_user_nodemask(a))
1802 return 1;
1803 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1804 }
1805
1806 /* Slow path of a mempolicy comparison */
1807 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1808 {
1809 if (!a || !b)
1810 return 0;
1811 if (a->mode != b->mode)
1812 return 0;
1813 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1814 return 0;
1815 switch (a->mode) {
1816 case MPOL_BIND:
1817 /* Fall through */
1818 case MPOL_INTERLEAVE:
1819 return nodes_equal(a->v.nodes, b->v.nodes);
1820 case MPOL_PREFERRED:
1821 return a->v.preferred_node == b->v.preferred_node &&
1822 a->flags == b->flags;
1823 default:
1824 BUG();
1825 return 0;
1826 }
1827 }
1828
1829 /*
1830 * Shared memory backing store policy support.
1831 *
1832 * Remember policies even when nobody has shared memory mapped.
1833 * The policies are kept in Red-Black tree linked from the inode.
1834 * They are protected by the sp->lock spinlock, which should be held
1835 * for any accesses to the tree.
1836 */
1837
1838 /* lookup first element intersecting start-end */
1839 /* Caller holds sp->lock */
1840 static struct sp_node *
1841 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1842 {
1843 struct rb_node *n = sp->root.rb_node;
1844
1845 while (n) {
1846 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1847
1848 if (start >= p->end)
1849 n = n->rb_right;
1850 else if (end <= p->start)
1851 n = n->rb_left;
1852 else
1853 break;
1854 }
1855 if (!n)
1856 return NULL;
1857 for (;;) {
1858 struct sp_node *w = NULL;
1859 struct rb_node *prev = rb_prev(n);
1860 if (!prev)
1861 break;
1862 w = rb_entry(prev, struct sp_node, nd);
1863 if (w->end <= start)
1864 break;
1865 n = prev;
1866 }
1867 return rb_entry(n, struct sp_node, nd);
1868 }
1869
1870 /* Insert a new shared policy into the list. */
1871 /* Caller holds sp->lock */
1872 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1873 {
1874 struct rb_node **p = &sp->root.rb_node;
1875 struct rb_node *parent = NULL;
1876 struct sp_node *nd;
1877
1878 while (*p) {
1879 parent = *p;
1880 nd = rb_entry(parent, struct sp_node, nd);
1881 if (new->start < nd->start)
1882 p = &(*p)->rb_left;
1883 else if (new->end > nd->end)
1884 p = &(*p)->rb_right;
1885 else
1886 BUG();
1887 }
1888 rb_link_node(&new->nd, parent, p);
1889 rb_insert_color(&new->nd, &sp->root);
1890 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1891 new->policy ? new->policy->mode : 0);
1892 }
1893
1894 /* Find shared policy intersecting idx */
1895 struct mempolicy *
1896 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1897 {
1898 struct mempolicy *pol = NULL;
1899 struct sp_node *sn;
1900
1901 if (!sp->root.rb_node)
1902 return NULL;
1903 spin_lock(&sp->lock);
1904 sn = sp_lookup(sp, idx, idx+1);
1905 if (sn) {
1906 mpol_get(sn->policy);
1907 pol = sn->policy;
1908 }
1909 spin_unlock(&sp->lock);
1910 return pol;
1911 }
1912
1913 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1914 {
1915 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1916 rb_erase(&n->nd, &sp->root);
1917 mpol_put(n->policy);
1918 kmem_cache_free(sn_cache, n);
1919 }
1920
1921 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1922 struct mempolicy *pol)
1923 {
1924 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1925
1926 if (!n)
1927 return NULL;
1928 n->start = start;
1929 n->end = end;
1930 mpol_get(pol);
1931 pol->flags |= MPOL_F_SHARED; /* for unref */
1932 n->policy = pol;
1933 return n;
1934 }
1935
1936 /* Replace a policy range. */
1937 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1938 unsigned long end, struct sp_node *new)
1939 {
1940 struct sp_node *n, *new2 = NULL;
1941
1942 restart:
1943 spin_lock(&sp->lock);
1944 n = sp_lookup(sp, start, end);
1945 /* Take care of old policies in the same range. */
1946 while (n && n->start < end) {
1947 struct rb_node *next = rb_next(&n->nd);
1948 if (n->start >= start) {
1949 if (n->end <= end)
1950 sp_delete(sp, n);
1951 else
1952 n->start = end;
1953 } else {
1954 /* Old policy spanning whole new range. */
1955 if (n->end > end) {
1956 if (!new2) {
1957 spin_unlock(&sp->lock);
1958 new2 = sp_alloc(end, n->end, n->policy);
1959 if (!new2)
1960 return -ENOMEM;
1961 goto restart;
1962 }
1963 n->end = start;
1964 sp_insert(sp, new2);
1965 new2 = NULL;
1966 break;
1967 } else
1968 n->end = start;
1969 }
1970 if (!next)
1971 break;
1972 n = rb_entry(next, struct sp_node, nd);
1973 }
1974 if (new)
1975 sp_insert(sp, new);
1976 spin_unlock(&sp->lock);
1977 if (new2) {
1978 mpol_put(new2->policy);
1979 kmem_cache_free(sn_cache, new2);
1980 }
1981 return 0;
1982 }
1983
1984 /**
1985 * mpol_shared_policy_init - initialize shared policy for inode
1986 * @sp: pointer to inode shared policy
1987 * @mpol: struct mempolicy to install
1988 *
1989 * Install non-NULL @mpol in inode's shared policy rb-tree.
1990 * On entry, the current task has a reference on a non-NULL @mpol.
1991 * This must be released on exit.
1992 * This is called at get_inode() calls and we can use GFP_KERNEL.
1993 */
1994 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1995 {
1996 int ret;
1997
1998 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1999 spin_lock_init(&sp->lock);
2000
2001 if (mpol) {
2002 struct vm_area_struct pvma;
2003 struct mempolicy *new;
2004 NODEMASK_SCRATCH(scratch);
2005
2006 if (!scratch)
2007 return;
2008 /* contextualize the tmpfs mount point mempolicy */
2009 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2010 if (IS_ERR(new)) {
2011 mpol_put(mpol); /* drop our ref on sb mpol */
2012 NODEMASK_SCRATCH_FREE(scratch);
2013 return; /* no valid nodemask intersection */
2014 }
2015
2016 task_lock(current);
2017 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2018 task_unlock(current);
2019 mpol_put(mpol); /* drop our ref on sb mpol */
2020 if (ret) {
2021 NODEMASK_SCRATCH_FREE(scratch);
2022 mpol_put(new);
2023 return;
2024 }
2025
2026 /* Create pseudo-vma that contains just the policy */
2027 memset(&pvma, 0, sizeof(struct vm_area_struct));
2028 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2029 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2030 mpol_put(new); /* drop initial ref */
2031 NODEMASK_SCRATCH_FREE(scratch);
2032 }
2033 }
2034
2035 int mpol_set_shared_policy(struct shared_policy *info,
2036 struct vm_area_struct *vma, struct mempolicy *npol)
2037 {
2038 int err;
2039 struct sp_node *new = NULL;
2040 unsigned long sz = vma_pages(vma);
2041
2042 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2043 vma->vm_pgoff,
2044 sz, npol ? npol->mode : -1,
2045 npol ? npol->flags : -1,
2046 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2047
2048 if (npol) {
2049 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2050 if (!new)
2051 return -ENOMEM;
2052 }
2053 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2054 if (err && new)
2055 kmem_cache_free(sn_cache, new);
2056 return err;
2057 }
2058
2059 /* Free a backing policy store on inode delete. */
2060 void mpol_free_shared_policy(struct shared_policy *p)
2061 {
2062 struct sp_node *n;
2063 struct rb_node *next;
2064
2065 if (!p->root.rb_node)
2066 return;
2067 spin_lock(&p->lock);
2068 next = rb_first(&p->root);
2069 while (next) {
2070 n = rb_entry(next, struct sp_node, nd);
2071 next = rb_next(&n->nd);
2072 rb_erase(&n->nd, &p->root);
2073 mpol_put(n->policy);
2074 kmem_cache_free(sn_cache, n);
2075 }
2076 spin_unlock(&p->lock);
2077 }
2078
2079 /* assumes fs == KERNEL_DS */
2080 void __init numa_policy_init(void)
2081 {
2082 nodemask_t interleave_nodes;
2083 unsigned long largest = 0;
2084 int nid, prefer = 0;
2085
2086 policy_cache = kmem_cache_create("numa_policy",
2087 sizeof(struct mempolicy),
2088 0, SLAB_PANIC, NULL);
2089
2090 sn_cache = kmem_cache_create("shared_policy_node",
2091 sizeof(struct sp_node),
2092 0, SLAB_PANIC, NULL);
2093
2094 /*
2095 * Set interleaving policy for system init. Interleaving is only
2096 * enabled across suitably sized nodes (default is >= 16MB), or
2097 * fall back to the largest node if they're all smaller.
2098 */
2099 nodes_clear(interleave_nodes);
2100 for_each_node_state(nid, N_HIGH_MEMORY) {
2101 unsigned long total_pages = node_present_pages(nid);
2102
2103 /* Preserve the largest node */
2104 if (largest < total_pages) {
2105 largest = total_pages;
2106 prefer = nid;
2107 }
2108
2109 /* Interleave this node? */
2110 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2111 node_set(nid, interleave_nodes);
2112 }
2113
2114 /* All too small, use the largest */
2115 if (unlikely(nodes_empty(interleave_nodes)))
2116 node_set(prefer, interleave_nodes);
2117
2118 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2119 printk("numa_policy_init: interleaving failed\n");
2120 }
2121
2122 /* Reset policy of current process to default */
2123 void numa_default_policy(void)
2124 {
2125 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2126 }
2127
2128 /*
2129 * Parse and format mempolicy from/to strings
2130 */
2131
2132 /*
2133 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2134 * Used only for mpol_parse_str() and mpol_to_str()
2135 */
2136 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
2137 static const char * const policy_types[] =
2138 { "default", "prefer", "bind", "interleave", "local" };
2139
2140
2141 #ifdef CONFIG_TMPFS
2142 /**
2143 * mpol_parse_str - parse string to mempolicy
2144 * @str: string containing mempolicy to parse
2145 * @mpol: pointer to struct mempolicy pointer, returned on success.
2146 * @no_context: flag whether to "contextualize" the mempolicy
2147 *
2148 * Format of input:
2149 * <mode>[=<flags>][:<nodelist>]
2150 *
2151 * if @no_context is true, save the input nodemask in w.user_nodemask in
2152 * the returned mempolicy. This will be used to "clone" the mempolicy in
2153 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2154 * mount option. Note that if 'static' or 'relative' mode flags were
2155 * specified, the input nodemask will already have been saved. Saving
2156 * it again is redundant, but safe.
2157 *
2158 * On success, returns 0, else 1
2159 */
2160 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2161 {
2162 struct mempolicy *new = NULL;
2163 unsigned short uninitialized_var(mode);
2164 unsigned short uninitialized_var(mode_flags);
2165 nodemask_t nodes;
2166 char *nodelist = strchr(str, ':');
2167 char *flags = strchr(str, '=');
2168 int i;
2169 int err = 1;
2170
2171 if (nodelist) {
2172 /* NUL-terminate mode or flags string */
2173 *nodelist++ = '\0';
2174 if (nodelist_parse(nodelist, nodes))
2175 goto out;
2176 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2177 goto out;
2178 } else
2179 nodes_clear(nodes);
2180
2181 if (flags)
2182 *flags++ = '\0'; /* terminate mode string */
2183
2184 for (i = 0; i <= MPOL_LOCAL; i++) {
2185 if (!strcmp(str, policy_types[i])) {
2186 mode = i;
2187 break;
2188 }
2189 }
2190 if (i > MPOL_LOCAL)
2191 goto out;
2192
2193 switch (mode) {
2194 case MPOL_PREFERRED:
2195 /*
2196 * Insist on a nodelist of one node only
2197 */
2198 if (nodelist) {
2199 char *rest = nodelist;
2200 while (isdigit(*rest))
2201 rest++;
2202 if (*rest)
2203 goto out;
2204 }
2205 break;
2206 case MPOL_INTERLEAVE:
2207 /*
2208 * Default to online nodes with memory if no nodelist
2209 */
2210 if (!nodelist)
2211 nodes = node_states[N_HIGH_MEMORY];
2212 break;
2213 case MPOL_LOCAL:
2214 /*
2215 * Don't allow a nodelist; mpol_new() checks flags
2216 */
2217 if (nodelist)
2218 goto out;
2219 mode = MPOL_PREFERRED;
2220 break;
2221 case MPOL_DEFAULT:
2222 /*
2223 * Insist on a empty nodelist
2224 */
2225 if (!nodelist)
2226 err = 0;
2227 goto out;
2228 case MPOL_BIND:
2229 /*
2230 * Insist on a nodelist
2231 */
2232 if (!nodelist)
2233 goto out;
2234 }
2235
2236 mode_flags = 0;
2237 if (flags) {
2238 /*
2239 * Currently, we only support two mutually exclusive
2240 * mode flags.
2241 */
2242 if (!strcmp(flags, "static"))
2243 mode_flags |= MPOL_F_STATIC_NODES;
2244 else if (!strcmp(flags, "relative"))
2245 mode_flags |= MPOL_F_RELATIVE_NODES;
2246 else
2247 goto out;
2248 }
2249
2250 new = mpol_new(mode, mode_flags, &nodes);
2251 if (IS_ERR(new))
2252 goto out;
2253
2254 {
2255 int ret;
2256 NODEMASK_SCRATCH(scratch);
2257 if (scratch) {
2258 task_lock(current);
2259 ret = mpol_set_nodemask(new, &nodes, scratch);
2260 task_unlock(current);
2261 } else
2262 ret = -ENOMEM;
2263 NODEMASK_SCRATCH_FREE(scratch);
2264 if (ret) {
2265 mpol_put(new);
2266 goto out;
2267 }
2268 }
2269 err = 0;
2270 if (no_context) {
2271 /* save for contextualization */
2272 new->w.user_nodemask = nodes;
2273 }
2274
2275 out:
2276 /* Restore string for error message */
2277 if (nodelist)
2278 *--nodelist = ':';
2279 if (flags)
2280 *--flags = '=';
2281 if (!err)
2282 *mpol = new;
2283 return err;
2284 }
2285 #endif /* CONFIG_TMPFS */
2286
2287 /**
2288 * mpol_to_str - format a mempolicy structure for printing
2289 * @buffer: to contain formatted mempolicy string
2290 * @maxlen: length of @buffer
2291 * @pol: pointer to mempolicy to be formatted
2292 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2293 *
2294 * Convert a mempolicy into a string.
2295 * Returns the number of characters in buffer (if positive)
2296 * or an error (negative)
2297 */
2298 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2299 {
2300 char *p = buffer;
2301 int l;
2302 nodemask_t nodes;
2303 unsigned short mode;
2304 unsigned short flags = pol ? pol->flags : 0;
2305
2306 /*
2307 * Sanity check: room for longest mode, flag and some nodes
2308 */
2309 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2310
2311 if (!pol || pol == &default_policy)
2312 mode = MPOL_DEFAULT;
2313 else
2314 mode = pol->mode;
2315
2316 switch (mode) {
2317 case MPOL_DEFAULT:
2318 nodes_clear(nodes);
2319 break;
2320
2321 case MPOL_PREFERRED:
2322 nodes_clear(nodes);
2323 if (flags & MPOL_F_LOCAL)
2324 mode = MPOL_LOCAL; /* pseudo-policy */
2325 else
2326 node_set(pol->v.preferred_node, nodes);
2327 break;
2328
2329 case MPOL_BIND:
2330 /* Fall through */
2331 case MPOL_INTERLEAVE:
2332 if (no_context)
2333 nodes = pol->w.user_nodemask;
2334 else
2335 nodes = pol->v.nodes;
2336 break;
2337
2338 default:
2339 BUG();
2340 }
2341
2342 l = strlen(policy_types[mode]);
2343 if (buffer + maxlen < p + l + 1)
2344 return -ENOSPC;
2345
2346 strcpy(p, policy_types[mode]);
2347 p += l;
2348
2349 if (flags & MPOL_MODE_FLAGS) {
2350 if (buffer + maxlen < p + 2)
2351 return -ENOSPC;
2352 *p++ = '=';
2353
2354 /*
2355 * Currently, the only defined flags are mutually exclusive
2356 */
2357 if (flags & MPOL_F_STATIC_NODES)
2358 p += snprintf(p, buffer + maxlen - p, "static");
2359 else if (flags & MPOL_F_RELATIVE_NODES)
2360 p += snprintf(p, buffer + maxlen - p, "relative");
2361 }
2362
2363 if (!nodes_empty(nodes)) {
2364 if (buffer + maxlen < p + 2)
2365 return -ENOSPC;
2366 *p++ = ':';
2367 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2368 }
2369 return p - buffer;
2370 }
2371
2372 struct numa_maps {
2373 unsigned long pages;
2374 unsigned long anon;
2375 unsigned long active;
2376 unsigned long writeback;
2377 unsigned long mapcount_max;
2378 unsigned long dirty;
2379 unsigned long swapcache;
2380 unsigned long node[MAX_NUMNODES];
2381 };
2382
2383 static void gather_stats(struct page *page, void *private, int pte_dirty)
2384 {
2385 struct numa_maps *md = private;
2386 int count = page_mapcount(page);
2387
2388 md->pages++;
2389 if (pte_dirty || PageDirty(page))
2390 md->dirty++;
2391
2392 if (PageSwapCache(page))
2393 md->swapcache++;
2394
2395 if (PageActive(page) || PageUnevictable(page))
2396 md->active++;
2397
2398 if (PageWriteback(page))
2399 md->writeback++;
2400
2401 if (PageAnon(page))
2402 md->anon++;
2403
2404 if (count > md->mapcount_max)
2405 md->mapcount_max = count;
2406
2407 md->node[page_to_nid(page)]++;
2408 }
2409
2410 #ifdef CONFIG_HUGETLB_PAGE
2411 static void check_huge_range(struct vm_area_struct *vma,
2412 unsigned long start, unsigned long end,
2413 struct numa_maps *md)
2414 {
2415 unsigned long addr;
2416 struct page *page;
2417 struct hstate *h = hstate_vma(vma);
2418 unsigned long sz = huge_page_size(h);
2419
2420 for (addr = start; addr < end; addr += sz) {
2421 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2422 addr & huge_page_mask(h));
2423 pte_t pte;
2424
2425 if (!ptep)
2426 continue;
2427
2428 pte = *ptep;
2429 if (pte_none(pte))
2430 continue;
2431
2432 page = pte_page(pte);
2433 if (!page)
2434 continue;
2435
2436 gather_stats(page, md, pte_dirty(*ptep));
2437 }
2438 }
2439 #else
2440 static inline void check_huge_range(struct vm_area_struct *vma,
2441 unsigned long start, unsigned long end,
2442 struct numa_maps *md)
2443 {
2444 }
2445 #endif
2446
2447 /*
2448 * Display pages allocated per node and memory policy via /proc.
2449 */
2450 int show_numa_map(struct seq_file *m, void *v)
2451 {
2452 struct proc_maps_private *priv = m->private;
2453 struct vm_area_struct *vma = v;
2454 struct numa_maps *md;
2455 struct file *file = vma->vm_file;
2456 struct mm_struct *mm = vma->vm_mm;
2457 struct mempolicy *pol;
2458 int n;
2459 char buffer[50];
2460
2461 if (!mm)
2462 return 0;
2463
2464 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2465 if (!md)
2466 return 0;
2467
2468 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2469 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2470 mpol_cond_put(pol);
2471
2472 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2473
2474 if (file) {
2475 seq_printf(m, " file=");
2476 seq_path(m, &file->f_path, "\n\t= ");
2477 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2478 seq_printf(m, " heap");
2479 } else if (vma->vm_start <= mm->start_stack &&
2480 vma->vm_end >= mm->start_stack) {
2481 seq_printf(m, " stack");
2482 }
2483
2484 if (is_vm_hugetlb_page(vma)) {
2485 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2486 seq_printf(m, " huge");
2487 } else {
2488 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2489 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2490 }
2491
2492 if (!md->pages)
2493 goto out;
2494
2495 if (md->anon)
2496 seq_printf(m," anon=%lu",md->anon);
2497
2498 if (md->dirty)
2499 seq_printf(m," dirty=%lu",md->dirty);
2500
2501 if (md->pages != md->anon && md->pages != md->dirty)
2502 seq_printf(m, " mapped=%lu", md->pages);
2503
2504 if (md->mapcount_max > 1)
2505 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2506
2507 if (md->swapcache)
2508 seq_printf(m," swapcache=%lu", md->swapcache);
2509
2510 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2511 seq_printf(m," active=%lu", md->active);
2512
2513 if (md->writeback)
2514 seq_printf(m," writeback=%lu", md->writeback);
2515
2516 for_each_node_state(n, N_HIGH_MEMORY)
2517 if (md->node[n])
2518 seq_printf(m, " N%d=%lu", n, md->node[n]);
2519 out:
2520 seq_putc(m, '\n');
2521 kfree(md);
2522
2523 if (m->count < m->size)
2524 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2525 return 0;
2526 }