]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mempolicy.c
Merge tag 'for-linus-5.15b-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / mm / mempolicy.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple NUMA memory policy for the Linux kernel.
4 *
5 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * preferred many Try a set of nodes first before normal fallback. This is
35 * similar to preferred without the special case.
36 *
37 * default Allocate on the local node first, or when on a VMA
38 * use the process policy. This is what Linux always did
39 * in a NUMA aware kernel and still does by, ahem, default.
40 *
41 * The process policy is applied for most non interrupt memory allocations
42 * in that process' context. Interrupts ignore the policies and always
43 * try to allocate on the local CPU. The VMA policy is only applied for memory
44 * allocations for a VMA in the VM.
45 *
46 * Currently there are a few corner cases in swapping where the policy
47 * is not applied, but the majority should be handled. When process policy
48 * is used it is not remembered over swap outs/swap ins.
49 *
50 * Only the highest zone in the zone hierarchy gets policied. Allocations
51 * requesting a lower zone just use default policy. This implies that
52 * on systems with highmem kernel lowmem allocation don't get policied.
53 * Same with GFP_DMA allocations.
54 *
55 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
56 * all users and remembered even when nobody has memory mapped.
57 */
58
59 /* Notebook:
60 fix mmap readahead to honour policy and enable policy for any page cache
61 object
62 statistics for bigpages
63 global policy for page cache? currently it uses process policy. Requires
64 first item above.
65 handle mremap for shared memory (currently ignored for the policy)
66 grows down?
67 make bind policy root only? It can trigger oom much faster and the
68 kernel is not always grateful with that.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/mempolicy.h>
74 #include <linux/pagewalk.h>
75 #include <linux/highmem.h>
76 #include <linux/hugetlb.h>
77 #include <linux/kernel.h>
78 #include <linux/sched.h>
79 #include <linux/sched/mm.h>
80 #include <linux/sched/numa_balancing.h>
81 #include <linux/sched/task.h>
82 #include <linux/nodemask.h>
83 #include <linux/cpuset.h>
84 #include <linux/slab.h>
85 #include <linux/string.h>
86 #include <linux/export.h>
87 #include <linux/nsproxy.h>
88 #include <linux/interrupt.h>
89 #include <linux/init.h>
90 #include <linux/compat.h>
91 #include <linux/ptrace.h>
92 #include <linux/swap.h>
93 #include <linux/seq_file.h>
94 #include <linux/proc_fs.h>
95 #include <linux/migrate.h>
96 #include <linux/ksm.h>
97 #include <linux/rmap.h>
98 #include <linux/security.h>
99 #include <linux/syscalls.h>
100 #include <linux/ctype.h>
101 #include <linux/mm_inline.h>
102 #include <linux/mmu_notifier.h>
103 #include <linux/printk.h>
104 #include <linux/swapops.h>
105
106 #include <asm/tlbflush.h>
107 #include <linux/uaccess.h>
108
109 #include "internal.h"
110
111 /* Internal flags */
112 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
113 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
114
115 static struct kmem_cache *policy_cache;
116 static struct kmem_cache *sn_cache;
117
118 /* Highest zone. An specific allocation for a zone below that is not
119 policied. */
120 enum zone_type policy_zone = 0;
121
122 /*
123 * run-time system-wide default policy => local allocation
124 */
125 static struct mempolicy default_policy = {
126 .refcnt = ATOMIC_INIT(1), /* never free it */
127 .mode = MPOL_LOCAL,
128 };
129
130 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
131
132 /**
133 * numa_map_to_online_node - Find closest online node
134 * @node: Node id to start the search
135 *
136 * Lookup the next closest node by distance if @nid is not online.
137 */
138 int numa_map_to_online_node(int node)
139 {
140 int min_dist = INT_MAX, dist, n, min_node;
141
142 if (node == NUMA_NO_NODE || node_online(node))
143 return node;
144
145 min_node = node;
146 for_each_online_node(n) {
147 dist = node_distance(node, n);
148 if (dist < min_dist) {
149 min_dist = dist;
150 min_node = n;
151 }
152 }
153
154 return min_node;
155 }
156 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
157
158 struct mempolicy *get_task_policy(struct task_struct *p)
159 {
160 struct mempolicy *pol = p->mempolicy;
161 int node;
162
163 if (pol)
164 return pol;
165
166 node = numa_node_id();
167 if (node != NUMA_NO_NODE) {
168 pol = &preferred_node_policy[node];
169 /* preferred_node_policy is not initialised early in boot */
170 if (pol->mode)
171 return pol;
172 }
173
174 return &default_policy;
175 }
176
177 static const struct mempolicy_operations {
178 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
179 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
180 } mpol_ops[MPOL_MAX];
181
182 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
183 {
184 return pol->flags & MPOL_MODE_FLAGS;
185 }
186
187 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
188 const nodemask_t *rel)
189 {
190 nodemask_t tmp;
191 nodes_fold(tmp, *orig, nodes_weight(*rel));
192 nodes_onto(*ret, tmp, *rel);
193 }
194
195 static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
196 {
197 if (nodes_empty(*nodes))
198 return -EINVAL;
199 pol->nodes = *nodes;
200 return 0;
201 }
202
203 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (nodes_empty(*nodes))
206 return -EINVAL;
207
208 nodes_clear(pol->nodes);
209 node_set(first_node(*nodes), pol->nodes);
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags.
217 *
218 * Must be called holding task's alloc_lock to protect task's mems_allowed
219 * and mempolicy. May also be called holding the mmap_lock for write.
220 */
221 static int mpol_set_nodemask(struct mempolicy *pol,
222 const nodemask_t *nodes, struct nodemask_scratch *nsc)
223 {
224 int ret;
225
226 /*
227 * Default (pol==NULL) resp. local memory policies are not a
228 * subject of any remapping. They also do not need any special
229 * constructor.
230 */
231 if (!pol || pol->mode == MPOL_LOCAL)
232 return 0;
233
234 /* Check N_MEMORY */
235 nodes_and(nsc->mask1,
236 cpuset_current_mems_allowed, node_states[N_MEMORY]);
237
238 VM_BUG_ON(!nodes);
239
240 if (pol->flags & MPOL_F_RELATIVE_NODES)
241 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
242 else
243 nodes_and(nsc->mask2, *nodes, nsc->mask1);
244
245 if (mpol_store_user_nodemask(pol))
246 pol->w.user_nodemask = *nodes;
247 else
248 pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
249
250 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283
284 mode = MPOL_LOCAL;
285 }
286 } else if (mode == MPOL_LOCAL) {
287 if (!nodes_empty(*nodes) ||
288 (flags & MPOL_F_STATIC_NODES) ||
289 (flags & MPOL_F_RELATIVE_NODES))
290 return ERR_PTR(-EINVAL);
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
312 {
313 }
314
315 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328
329 if (nodes_empty(tmp))
330 tmp = *nodes;
331
332 pol->nodes = tmp;
333 }
334
335 static void mpol_rebind_preferred(struct mempolicy *pol,
336 const nodemask_t *nodes)
337 {
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340
341 /*
342 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 *
344 * Per-vma policies are protected by mmap_lock. Allocations using per-task
345 * policies are protected by task->mems_allowed_seq to prevent a premature
346 * OOM/allocation failure due to parallel nodemask modification.
347 */
348 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
349 {
350 if (!pol)
351 return;
352 if (!mpol_store_user_nodemask(pol) &&
353 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
354 return;
355
356 mpol_ops[pol->mode].rebind(pol, newmask);
357 }
358
359 /*
360 * Wrapper for mpol_rebind_policy() that just requires task
361 * pointer, and updates task mempolicy.
362 *
363 * Called with task's alloc_lock held.
364 */
365
366 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
367 {
368 mpol_rebind_policy(tsk->mempolicy, new);
369 }
370
371 /*
372 * Rebind each vma in mm to new nodemask.
373 *
374 * Call holding a reference to mm. Takes mm->mmap_lock during call.
375 */
376
377 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
378 {
379 struct vm_area_struct *vma;
380
381 mmap_write_lock(mm);
382 for (vma = mm->mmap; vma; vma = vma->vm_next)
383 mpol_rebind_policy(vma->vm_policy, new);
384 mmap_write_unlock(mm);
385 }
386
387 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
388 [MPOL_DEFAULT] = {
389 .rebind = mpol_rebind_default,
390 },
391 [MPOL_INTERLEAVE] = {
392 .create = mpol_new_nodemask,
393 .rebind = mpol_rebind_nodemask,
394 },
395 [MPOL_PREFERRED] = {
396 .create = mpol_new_preferred,
397 .rebind = mpol_rebind_preferred,
398 },
399 [MPOL_BIND] = {
400 .create = mpol_new_nodemask,
401 .rebind = mpol_rebind_nodemask,
402 },
403 [MPOL_LOCAL] = {
404 .rebind = mpol_rebind_default,
405 },
406 [MPOL_PREFERRED_MANY] = {
407 .create = mpol_new_nodemask,
408 .rebind = mpol_rebind_preferred,
409 },
410 };
411
412 static int migrate_page_add(struct page *page, struct list_head *pagelist,
413 unsigned long flags);
414
415 struct queue_pages {
416 struct list_head *pagelist;
417 unsigned long flags;
418 nodemask_t *nmask;
419 unsigned long start;
420 unsigned long end;
421 struct vm_area_struct *first;
422 };
423
424 /*
425 * Check if the page's nid is in qp->nmask.
426 *
427 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
428 * in the invert of qp->nmask.
429 */
430 static inline bool queue_pages_required(struct page *page,
431 struct queue_pages *qp)
432 {
433 int nid = page_to_nid(page);
434 unsigned long flags = qp->flags;
435
436 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
437 }
438
439 /*
440 * queue_pages_pmd() has four possible return values:
441 * 0 - pages are placed on the right node or queued successfully, or
442 * special page is met, i.e. huge zero page.
443 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
444 * specified.
445 * 2 - THP was split.
446 * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
447 * existing page was already on a node that does not follow the
448 * policy.
449 */
450 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
451 unsigned long end, struct mm_walk *walk)
452 __releases(ptl)
453 {
454 int ret = 0;
455 struct page *page;
456 struct queue_pages *qp = walk->private;
457 unsigned long flags;
458
459 if (unlikely(is_pmd_migration_entry(*pmd))) {
460 ret = -EIO;
461 goto unlock;
462 }
463 page = pmd_page(*pmd);
464 if (is_huge_zero_page(page)) {
465 spin_unlock(ptl);
466 walk->action = ACTION_CONTINUE;
467 goto out;
468 }
469 if (!queue_pages_required(page, qp))
470 goto unlock;
471
472 flags = qp->flags;
473 /* go to thp migration */
474 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
475 if (!vma_migratable(walk->vma) ||
476 migrate_page_add(page, qp->pagelist, flags)) {
477 ret = 1;
478 goto unlock;
479 }
480 } else
481 ret = -EIO;
482 unlock:
483 spin_unlock(ptl);
484 out:
485 return ret;
486 }
487
488 /*
489 * Scan through pages checking if pages follow certain conditions,
490 * and move them to the pagelist if they do.
491 *
492 * queue_pages_pte_range() has three possible return values:
493 * 0 - pages are placed on the right node or queued successfully, or
494 * special page is met, i.e. zero page.
495 * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
496 * specified.
497 * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
498 * on a node that does not follow the policy.
499 */
500 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
501 unsigned long end, struct mm_walk *walk)
502 {
503 struct vm_area_struct *vma = walk->vma;
504 struct page *page;
505 struct queue_pages *qp = walk->private;
506 unsigned long flags = qp->flags;
507 int ret;
508 bool has_unmovable = false;
509 pte_t *pte, *mapped_pte;
510 spinlock_t *ptl;
511
512 ptl = pmd_trans_huge_lock(pmd, vma);
513 if (ptl) {
514 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
515 if (ret != 2)
516 return ret;
517 }
518 /* THP was split, fall through to pte walk */
519
520 if (pmd_trans_unstable(pmd))
521 return 0;
522
523 mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
524 for (; addr != end; pte++, addr += PAGE_SIZE) {
525 if (!pte_present(*pte))
526 continue;
527 page = vm_normal_page(vma, addr, *pte);
528 if (!page)
529 continue;
530 /*
531 * vm_normal_page() filters out zero pages, but there might
532 * still be PageReserved pages to skip, perhaps in a VDSO.
533 */
534 if (PageReserved(page))
535 continue;
536 if (!queue_pages_required(page, qp))
537 continue;
538 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
539 /* MPOL_MF_STRICT must be specified if we get here */
540 if (!vma_migratable(vma)) {
541 has_unmovable = true;
542 break;
543 }
544
545 /*
546 * Do not abort immediately since there may be
547 * temporary off LRU pages in the range. Still
548 * need migrate other LRU pages.
549 */
550 if (migrate_page_add(page, qp->pagelist, flags))
551 has_unmovable = true;
552 } else
553 break;
554 }
555 pte_unmap_unlock(mapped_pte, ptl);
556 cond_resched();
557
558 if (has_unmovable)
559 return 1;
560
561 return addr != end ? -EIO : 0;
562 }
563
564 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
565 unsigned long addr, unsigned long end,
566 struct mm_walk *walk)
567 {
568 int ret = 0;
569 #ifdef CONFIG_HUGETLB_PAGE
570 struct queue_pages *qp = walk->private;
571 unsigned long flags = (qp->flags & MPOL_MF_VALID);
572 struct page *page;
573 spinlock_t *ptl;
574 pte_t entry;
575
576 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
577 entry = huge_ptep_get(pte);
578 if (!pte_present(entry))
579 goto unlock;
580 page = pte_page(entry);
581 if (!queue_pages_required(page, qp))
582 goto unlock;
583
584 if (flags == MPOL_MF_STRICT) {
585 /*
586 * STRICT alone means only detecting misplaced page and no
587 * need to further check other vma.
588 */
589 ret = -EIO;
590 goto unlock;
591 }
592
593 if (!vma_migratable(walk->vma)) {
594 /*
595 * Must be STRICT with MOVE*, otherwise .test_walk() have
596 * stopped walking current vma.
597 * Detecting misplaced page but allow migrating pages which
598 * have been queued.
599 */
600 ret = 1;
601 goto unlock;
602 }
603
604 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
605 if (flags & (MPOL_MF_MOVE_ALL) ||
606 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) {
607 if (!isolate_huge_page(page, qp->pagelist) &&
608 (flags & MPOL_MF_STRICT))
609 /*
610 * Failed to isolate page but allow migrating pages
611 * which have been queued.
612 */
613 ret = 1;
614 }
615 unlock:
616 spin_unlock(ptl);
617 #else
618 BUG();
619 #endif
620 return ret;
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
628 *
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
632 */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
635 {
636 int nr_updated;
637
638 nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651
652 static int queue_pages_test_walk(unsigned long start, unsigned long end,
653 struct mm_walk *walk)
654 {
655 struct vm_area_struct *vma = walk->vma;
656 struct queue_pages *qp = walk->private;
657 unsigned long endvma = vma->vm_end;
658 unsigned long flags = qp->flags;
659
660 /* range check first */
661 VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
662
663 if (!qp->first) {
664 qp->first = vma;
665 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
666 (qp->start < vma->vm_start))
667 /* hole at head side of range */
668 return -EFAULT;
669 }
670 if (!(flags & MPOL_MF_DISCONTIG_OK) &&
671 ((vma->vm_end < qp->end) &&
672 (!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
673 /* hole at middle or tail of range */
674 return -EFAULT;
675
676 /*
677 * Need check MPOL_MF_STRICT to return -EIO if possible
678 * regardless of vma_migratable
679 */
680 if (!vma_migratable(vma) &&
681 !(flags & MPOL_MF_STRICT))
682 return 1;
683
684 if (endvma > end)
685 endvma = end;
686
687 if (flags & MPOL_MF_LAZY) {
688 /* Similar to task_numa_work, skip inaccessible VMAs */
689 if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
690 !(vma->vm_flags & VM_MIXEDMAP))
691 change_prot_numa(vma, start, endvma);
692 return 1;
693 }
694
695 /* queue pages from current vma */
696 if (flags & MPOL_MF_VALID)
697 return 0;
698 return 1;
699 }
700
701 static const struct mm_walk_ops queue_pages_walk_ops = {
702 .hugetlb_entry = queue_pages_hugetlb,
703 .pmd_entry = queue_pages_pte_range,
704 .test_walk = queue_pages_test_walk,
705 };
706
707 /*
708 * Walk through page tables and collect pages to be migrated.
709 *
710 * If pages found in a given range are on a set of nodes (determined by
711 * @nodes and @flags,) it's isolated and queued to the pagelist which is
712 * passed via @private.
713 *
714 * queue_pages_range() has three possible return values:
715 * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
716 * specified.
717 * 0 - queue pages successfully or no misplaced page.
718 * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
719 * memory range specified by nodemask and maxnode points outside
720 * your accessible address space (-EFAULT)
721 */
722 static int
723 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
724 nodemask_t *nodes, unsigned long flags,
725 struct list_head *pagelist)
726 {
727 int err;
728 struct queue_pages qp = {
729 .pagelist = pagelist,
730 .flags = flags,
731 .nmask = nodes,
732 .start = start,
733 .end = end,
734 .first = NULL,
735 };
736
737 err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
738
739 if (!qp.first)
740 /* whole range in hole */
741 err = -EFAULT;
742
743 return err;
744 }
745
746 /*
747 * Apply policy to a single VMA
748 * This must be called with the mmap_lock held for writing.
749 */
750 static int vma_replace_policy(struct vm_area_struct *vma,
751 struct mempolicy *pol)
752 {
753 int err;
754 struct mempolicy *old;
755 struct mempolicy *new;
756
757 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
758 vma->vm_start, vma->vm_end, vma->vm_pgoff,
759 vma->vm_ops, vma->vm_file,
760 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
761
762 new = mpol_dup(pol);
763 if (IS_ERR(new))
764 return PTR_ERR(new);
765
766 if (vma->vm_ops && vma->vm_ops->set_policy) {
767 err = vma->vm_ops->set_policy(vma, new);
768 if (err)
769 goto err_out;
770 }
771
772 old = vma->vm_policy;
773 vma->vm_policy = new; /* protected by mmap_lock */
774 mpol_put(old);
775
776 return 0;
777 err_out:
778 mpol_put(new);
779 return err;
780 }
781
782 /* Step 2: apply policy to a range and do splits. */
783 static int mbind_range(struct mm_struct *mm, unsigned long start,
784 unsigned long end, struct mempolicy *new_pol)
785 {
786 struct vm_area_struct *next;
787 struct vm_area_struct *prev;
788 struct vm_area_struct *vma;
789 int err = 0;
790 pgoff_t pgoff;
791 unsigned long vmstart;
792 unsigned long vmend;
793
794 vma = find_vma(mm, start);
795 VM_BUG_ON(!vma);
796
797 prev = vma->vm_prev;
798 if (start > vma->vm_start)
799 prev = vma;
800
801 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
802 next = vma->vm_next;
803 vmstart = max(start, vma->vm_start);
804 vmend = min(end, vma->vm_end);
805
806 if (mpol_equal(vma_policy(vma), new_pol))
807 continue;
808
809 pgoff = vma->vm_pgoff +
810 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
811 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
812 vma->anon_vma, vma->vm_file, pgoff,
813 new_pol, vma->vm_userfaultfd_ctx);
814 if (prev) {
815 vma = prev;
816 next = vma->vm_next;
817 if (mpol_equal(vma_policy(vma), new_pol))
818 continue;
819 /* vma_merge() joined vma && vma->next, case 8 */
820 goto replace;
821 }
822 if (vma->vm_start != vmstart) {
823 err = split_vma(vma->vm_mm, vma, vmstart, 1);
824 if (err)
825 goto out;
826 }
827 if (vma->vm_end != vmend) {
828 err = split_vma(vma->vm_mm, vma, vmend, 0);
829 if (err)
830 goto out;
831 }
832 replace:
833 err = vma_replace_policy(vma, new_pol);
834 if (err)
835 goto out;
836 }
837
838 out:
839 return err;
840 }
841
842 /* Set the process memory policy */
843 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
844 nodemask_t *nodes)
845 {
846 struct mempolicy *new, *old;
847 NODEMASK_SCRATCH(scratch);
848 int ret;
849
850 if (!scratch)
851 return -ENOMEM;
852
853 new = mpol_new(mode, flags, nodes);
854 if (IS_ERR(new)) {
855 ret = PTR_ERR(new);
856 goto out;
857 }
858
859 if (flags & MPOL_F_NUMA_BALANCING) {
860 if (new && new->mode == MPOL_BIND) {
861 new->flags |= (MPOL_F_MOF | MPOL_F_MORON);
862 } else {
863 ret = -EINVAL;
864 mpol_put(new);
865 goto out;
866 }
867 }
868
869 ret = mpol_set_nodemask(new, nodes, scratch);
870 if (ret) {
871 mpol_put(new);
872 goto out;
873 }
874 task_lock(current);
875 old = current->mempolicy;
876 current->mempolicy = new;
877 if (new && new->mode == MPOL_INTERLEAVE)
878 current->il_prev = MAX_NUMNODES-1;
879 task_unlock(current);
880 mpol_put(old);
881 ret = 0;
882 out:
883 NODEMASK_SCRATCH_FREE(scratch);
884 return ret;
885 }
886
887 /*
888 * Return nodemask for policy for get_mempolicy() query
889 *
890 * Called with task's alloc_lock held
891 */
892 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
893 {
894 nodes_clear(*nodes);
895 if (p == &default_policy)
896 return;
897
898 switch (p->mode) {
899 case MPOL_BIND:
900 case MPOL_INTERLEAVE:
901 case MPOL_PREFERRED:
902 case MPOL_PREFERRED_MANY:
903 *nodes = p->nodes;
904 break;
905 case MPOL_LOCAL:
906 /* return empty node mask for local allocation */
907 break;
908 default:
909 BUG();
910 }
911 }
912
913 static int lookup_node(struct mm_struct *mm, unsigned long addr)
914 {
915 struct page *p = NULL;
916 int err;
917
918 int locked = 1;
919 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
920 if (err > 0) {
921 err = page_to_nid(p);
922 put_page(p);
923 }
924 if (locked)
925 mmap_read_unlock(mm);
926 return err;
927 }
928
929 /* Retrieve NUMA policy */
930 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
931 unsigned long addr, unsigned long flags)
932 {
933 int err;
934 struct mm_struct *mm = current->mm;
935 struct vm_area_struct *vma = NULL;
936 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
937
938 if (flags &
939 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
940 return -EINVAL;
941
942 if (flags & MPOL_F_MEMS_ALLOWED) {
943 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
944 return -EINVAL;
945 *policy = 0; /* just so it's initialized */
946 task_lock(current);
947 *nmask = cpuset_current_mems_allowed;
948 task_unlock(current);
949 return 0;
950 }
951
952 if (flags & MPOL_F_ADDR) {
953 /*
954 * Do NOT fall back to task policy if the
955 * vma/shared policy at addr is NULL. We
956 * want to return MPOL_DEFAULT in this case.
957 */
958 mmap_read_lock(mm);
959 vma = vma_lookup(mm, addr);
960 if (!vma) {
961 mmap_read_unlock(mm);
962 return -EFAULT;
963 }
964 if (vma->vm_ops && vma->vm_ops->get_policy)
965 pol = vma->vm_ops->get_policy(vma, addr);
966 else
967 pol = vma->vm_policy;
968 } else if (addr)
969 return -EINVAL;
970
971 if (!pol)
972 pol = &default_policy; /* indicates default behavior */
973
974 if (flags & MPOL_F_NODE) {
975 if (flags & MPOL_F_ADDR) {
976 /*
977 * Take a refcount on the mpol, lookup_node()
978 * will drop the mmap_lock, so after calling
979 * lookup_node() only "pol" remains valid, "vma"
980 * is stale.
981 */
982 pol_refcount = pol;
983 vma = NULL;
984 mpol_get(pol);
985 err = lookup_node(mm, addr);
986 if (err < 0)
987 goto out;
988 *policy = err;
989 } else if (pol == current->mempolicy &&
990 pol->mode == MPOL_INTERLEAVE) {
991 *policy = next_node_in(current->il_prev, pol->nodes);
992 } else {
993 err = -EINVAL;
994 goto out;
995 }
996 } else {
997 *policy = pol == &default_policy ? MPOL_DEFAULT :
998 pol->mode;
999 /*
1000 * Internal mempolicy flags must be masked off before exposing
1001 * the policy to userspace.
1002 */
1003 *policy |= (pol->flags & MPOL_MODE_FLAGS);
1004 }
1005
1006 err = 0;
1007 if (nmask) {
1008 if (mpol_store_user_nodemask(pol)) {
1009 *nmask = pol->w.user_nodemask;
1010 } else {
1011 task_lock(current);
1012 get_policy_nodemask(pol, nmask);
1013 task_unlock(current);
1014 }
1015 }
1016
1017 out:
1018 mpol_cond_put(pol);
1019 if (vma)
1020 mmap_read_unlock(mm);
1021 if (pol_refcount)
1022 mpol_put(pol_refcount);
1023 return err;
1024 }
1025
1026 #ifdef CONFIG_MIGRATION
1027 /*
1028 * page migration, thp tail pages can be passed.
1029 */
1030 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1031 unsigned long flags)
1032 {
1033 struct page *head = compound_head(page);
1034 /*
1035 * Avoid migrating a page that is shared with others.
1036 */
1037 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1038 if (!isolate_lru_page(head)) {
1039 list_add_tail(&head->lru, pagelist);
1040 mod_node_page_state(page_pgdat(head),
1041 NR_ISOLATED_ANON + page_is_file_lru(head),
1042 thp_nr_pages(head));
1043 } else if (flags & MPOL_MF_STRICT) {
1044 /*
1045 * Non-movable page may reach here. And, there may be
1046 * temporary off LRU pages or non-LRU movable pages.
1047 * Treat them as unmovable pages since they can't be
1048 * isolated, so they can't be moved at the moment. It
1049 * should return -EIO for this case too.
1050 */
1051 return -EIO;
1052 }
1053 }
1054
1055 return 0;
1056 }
1057
1058 /*
1059 * Migrate pages from one node to a target node.
1060 * Returns error or the number of pages not migrated.
1061 */
1062 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1063 int flags)
1064 {
1065 nodemask_t nmask;
1066 LIST_HEAD(pagelist);
1067 int err = 0;
1068 struct migration_target_control mtc = {
1069 .nid = dest,
1070 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1071 };
1072
1073 nodes_clear(nmask);
1074 node_set(source, nmask);
1075
1076 /*
1077 * This does not "check" the range but isolates all pages that
1078 * need migration. Between passing in the full user address
1079 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1080 */
1081 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1082 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1083 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1084
1085 if (!list_empty(&pagelist)) {
1086 err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1087 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1088 if (err)
1089 putback_movable_pages(&pagelist);
1090 }
1091
1092 return err;
1093 }
1094
1095 /*
1096 * Move pages between the two nodesets so as to preserve the physical
1097 * layout as much as possible.
1098 *
1099 * Returns the number of page that could not be moved.
1100 */
1101 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1102 const nodemask_t *to, int flags)
1103 {
1104 int busy = 0;
1105 int err = 0;
1106 nodemask_t tmp;
1107
1108 lru_cache_disable();
1109
1110 mmap_read_lock(mm);
1111
1112 /*
1113 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1114 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1115 * bit in 'tmp', and return that <source, dest> pair for migration.
1116 * The pair of nodemasks 'to' and 'from' define the map.
1117 *
1118 * If no pair of bits is found that way, fallback to picking some
1119 * pair of 'source' and 'dest' bits that are not the same. If the
1120 * 'source' and 'dest' bits are the same, this represents a node
1121 * that will be migrating to itself, so no pages need move.
1122 *
1123 * If no bits are left in 'tmp', or if all remaining bits left
1124 * in 'tmp' correspond to the same bit in 'to', return false
1125 * (nothing left to migrate).
1126 *
1127 * This lets us pick a pair of nodes to migrate between, such that
1128 * if possible the dest node is not already occupied by some other
1129 * source node, minimizing the risk of overloading the memory on a
1130 * node that would happen if we migrated incoming memory to a node
1131 * before migrating outgoing memory source that same node.
1132 *
1133 * A single scan of tmp is sufficient. As we go, we remember the
1134 * most recent <s, d> pair that moved (s != d). If we find a pair
1135 * that not only moved, but what's better, moved to an empty slot
1136 * (d is not set in tmp), then we break out then, with that pair.
1137 * Otherwise when we finish scanning from_tmp, we at least have the
1138 * most recent <s, d> pair that moved. If we get all the way through
1139 * the scan of tmp without finding any node that moved, much less
1140 * moved to an empty node, then there is nothing left worth migrating.
1141 */
1142
1143 tmp = *from;
1144 while (!nodes_empty(tmp)) {
1145 int s, d;
1146 int source = NUMA_NO_NODE;
1147 int dest = 0;
1148
1149 for_each_node_mask(s, tmp) {
1150
1151 /*
1152 * do_migrate_pages() tries to maintain the relative
1153 * node relationship of the pages established between
1154 * threads and memory areas.
1155 *
1156 * However if the number of source nodes is not equal to
1157 * the number of destination nodes we can not preserve
1158 * this node relative relationship. In that case, skip
1159 * copying memory from a node that is in the destination
1160 * mask.
1161 *
1162 * Example: [2,3,4] -> [3,4,5] moves everything.
1163 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1164 */
1165
1166 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1167 (node_isset(s, *to)))
1168 continue;
1169
1170 d = node_remap(s, *from, *to);
1171 if (s == d)
1172 continue;
1173
1174 source = s; /* Node moved. Memorize */
1175 dest = d;
1176
1177 /* dest not in remaining from nodes? */
1178 if (!node_isset(dest, tmp))
1179 break;
1180 }
1181 if (source == NUMA_NO_NODE)
1182 break;
1183
1184 node_clear(source, tmp);
1185 err = migrate_to_node(mm, source, dest, flags);
1186 if (err > 0)
1187 busy += err;
1188 if (err < 0)
1189 break;
1190 }
1191 mmap_read_unlock(mm);
1192
1193 lru_cache_enable();
1194 if (err < 0)
1195 return err;
1196 return busy;
1197
1198 }
1199
1200 /*
1201 * Allocate a new page for page migration based on vma policy.
1202 * Start by assuming the page is mapped by the same vma as contains @start.
1203 * Search forward from there, if not. N.B., this assumes that the
1204 * list of pages handed to migrate_pages()--which is how we get here--
1205 * is in virtual address order.
1206 */
1207 static struct page *new_page(struct page *page, unsigned long start)
1208 {
1209 struct vm_area_struct *vma;
1210 unsigned long address;
1211
1212 vma = find_vma(current->mm, start);
1213 while (vma) {
1214 address = page_address_in_vma(page, vma);
1215 if (address != -EFAULT)
1216 break;
1217 vma = vma->vm_next;
1218 }
1219
1220 if (PageHuge(page)) {
1221 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1222 vma, address);
1223 } else if (PageTransHuge(page)) {
1224 struct page *thp;
1225
1226 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1227 HPAGE_PMD_ORDER);
1228 if (!thp)
1229 return NULL;
1230 prep_transhuge_page(thp);
1231 return thp;
1232 }
1233 /*
1234 * if !vma, alloc_page_vma() will use task or system default policy
1235 */
1236 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1237 vma, address);
1238 }
1239 #else
1240
1241 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1242 unsigned long flags)
1243 {
1244 return -EIO;
1245 }
1246
1247 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1248 const nodemask_t *to, int flags)
1249 {
1250 return -ENOSYS;
1251 }
1252
1253 static struct page *new_page(struct page *page, unsigned long start)
1254 {
1255 return NULL;
1256 }
1257 #endif
1258
1259 static long do_mbind(unsigned long start, unsigned long len,
1260 unsigned short mode, unsigned short mode_flags,
1261 nodemask_t *nmask, unsigned long flags)
1262 {
1263 struct mm_struct *mm = current->mm;
1264 struct mempolicy *new;
1265 unsigned long end;
1266 int err;
1267 int ret;
1268 LIST_HEAD(pagelist);
1269
1270 if (flags & ~(unsigned long)MPOL_MF_VALID)
1271 return -EINVAL;
1272 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1273 return -EPERM;
1274
1275 if (start & ~PAGE_MASK)
1276 return -EINVAL;
1277
1278 if (mode == MPOL_DEFAULT)
1279 flags &= ~MPOL_MF_STRICT;
1280
1281 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1282 end = start + len;
1283
1284 if (end < start)
1285 return -EINVAL;
1286 if (end == start)
1287 return 0;
1288
1289 new = mpol_new(mode, mode_flags, nmask);
1290 if (IS_ERR(new))
1291 return PTR_ERR(new);
1292
1293 if (flags & MPOL_MF_LAZY)
1294 new->flags |= MPOL_F_MOF;
1295
1296 /*
1297 * If we are using the default policy then operation
1298 * on discontinuous address spaces is okay after all
1299 */
1300 if (!new)
1301 flags |= MPOL_MF_DISCONTIG_OK;
1302
1303 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1304 start, start + len, mode, mode_flags,
1305 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1306
1307 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1308
1309 lru_cache_disable();
1310 }
1311 {
1312 NODEMASK_SCRATCH(scratch);
1313 if (scratch) {
1314 mmap_write_lock(mm);
1315 err = mpol_set_nodemask(new, nmask, scratch);
1316 if (err)
1317 mmap_write_unlock(mm);
1318 } else
1319 err = -ENOMEM;
1320 NODEMASK_SCRATCH_FREE(scratch);
1321 }
1322 if (err)
1323 goto mpol_out;
1324
1325 ret = queue_pages_range(mm, start, end, nmask,
1326 flags | MPOL_MF_INVERT, &pagelist);
1327
1328 if (ret < 0) {
1329 err = ret;
1330 goto up_out;
1331 }
1332
1333 err = mbind_range(mm, start, end, new);
1334
1335 if (!err) {
1336 int nr_failed = 0;
1337
1338 if (!list_empty(&pagelist)) {
1339 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1340 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1341 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND, NULL);
1342 if (nr_failed)
1343 putback_movable_pages(&pagelist);
1344 }
1345
1346 if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1347 err = -EIO;
1348 } else {
1349 up_out:
1350 if (!list_empty(&pagelist))
1351 putback_movable_pages(&pagelist);
1352 }
1353
1354 mmap_write_unlock(mm);
1355 mpol_out:
1356 mpol_put(new);
1357 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1358 lru_cache_enable();
1359 return err;
1360 }
1361
1362 /*
1363 * User space interface with variable sized bitmaps for nodelists.
1364 */
1365 static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
1366 unsigned long maxnode)
1367 {
1368 unsigned long nlongs = BITS_TO_LONGS(maxnode);
1369 int ret;
1370
1371 if (in_compat_syscall())
1372 ret = compat_get_bitmap(mask,
1373 (const compat_ulong_t __user *)nmask,
1374 maxnode);
1375 else
1376 ret = copy_from_user(mask, nmask,
1377 nlongs * sizeof(unsigned long));
1378
1379 if (ret)
1380 return -EFAULT;
1381
1382 if (maxnode % BITS_PER_LONG)
1383 mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
1384
1385 return 0;
1386 }
1387
1388 /* Copy a node mask from user space. */
1389 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1390 unsigned long maxnode)
1391 {
1392 --maxnode;
1393 nodes_clear(*nodes);
1394 if (maxnode == 0 || !nmask)
1395 return 0;
1396 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1397 return -EINVAL;
1398
1399 /*
1400 * When the user specified more nodes than supported just check
1401 * if the non supported part is all zero, one word at a time,
1402 * starting at the end.
1403 */
1404 while (maxnode > MAX_NUMNODES) {
1405 unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
1406 unsigned long t;
1407
1408 if (get_bitmap(&t, &nmask[maxnode / BITS_PER_LONG], bits))
1409 return -EFAULT;
1410
1411 if (maxnode - bits >= MAX_NUMNODES) {
1412 maxnode -= bits;
1413 } else {
1414 maxnode = MAX_NUMNODES;
1415 t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1416 }
1417 if (t)
1418 return -EINVAL;
1419 }
1420
1421 return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
1422 }
1423
1424 /* Copy a kernel node mask to user space */
1425 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1426 nodemask_t *nodes)
1427 {
1428 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1429 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1430 bool compat = in_compat_syscall();
1431
1432 if (compat)
1433 nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
1434
1435 if (copy > nbytes) {
1436 if (copy > PAGE_SIZE)
1437 return -EINVAL;
1438 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1439 return -EFAULT;
1440 copy = nbytes;
1441 maxnode = nr_node_ids;
1442 }
1443
1444 if (compat)
1445 return compat_put_bitmap((compat_ulong_t __user *)mask,
1446 nodes_addr(*nodes), maxnode);
1447
1448 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1449 }
1450
1451 /* Basic parameter sanity check used by both mbind() and set_mempolicy() */
1452 static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
1453 {
1454 *flags = *mode & MPOL_MODE_FLAGS;
1455 *mode &= ~MPOL_MODE_FLAGS;
1456
1457 if ((unsigned int)(*mode) >= MPOL_MAX)
1458 return -EINVAL;
1459 if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
1460 return -EINVAL;
1461
1462 return 0;
1463 }
1464
1465 static long kernel_mbind(unsigned long start, unsigned long len,
1466 unsigned long mode, const unsigned long __user *nmask,
1467 unsigned long maxnode, unsigned int flags)
1468 {
1469 unsigned short mode_flags;
1470 nodemask_t nodes;
1471 int lmode = mode;
1472 int err;
1473
1474 start = untagged_addr(start);
1475 err = sanitize_mpol_flags(&lmode, &mode_flags);
1476 if (err)
1477 return err;
1478
1479 err = get_nodes(&nodes, nmask, maxnode);
1480 if (err)
1481 return err;
1482
1483 return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
1484 }
1485
1486 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1487 unsigned long, mode, const unsigned long __user *, nmask,
1488 unsigned long, maxnode, unsigned int, flags)
1489 {
1490 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1491 }
1492
1493 /* Set the process memory policy */
1494 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1495 unsigned long maxnode)
1496 {
1497 unsigned short mode_flags;
1498 nodemask_t nodes;
1499 int lmode = mode;
1500 int err;
1501
1502 err = sanitize_mpol_flags(&lmode, &mode_flags);
1503 if (err)
1504 return err;
1505
1506 err = get_nodes(&nodes, nmask, maxnode);
1507 if (err)
1508 return err;
1509
1510 return do_set_mempolicy(lmode, mode_flags, &nodes);
1511 }
1512
1513 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1514 unsigned long, maxnode)
1515 {
1516 return kernel_set_mempolicy(mode, nmask, maxnode);
1517 }
1518
1519 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1520 const unsigned long __user *old_nodes,
1521 const unsigned long __user *new_nodes)
1522 {
1523 struct mm_struct *mm = NULL;
1524 struct task_struct *task;
1525 nodemask_t task_nodes;
1526 int err;
1527 nodemask_t *old;
1528 nodemask_t *new;
1529 NODEMASK_SCRATCH(scratch);
1530
1531 if (!scratch)
1532 return -ENOMEM;
1533
1534 old = &scratch->mask1;
1535 new = &scratch->mask2;
1536
1537 err = get_nodes(old, old_nodes, maxnode);
1538 if (err)
1539 goto out;
1540
1541 err = get_nodes(new, new_nodes, maxnode);
1542 if (err)
1543 goto out;
1544
1545 /* Find the mm_struct */
1546 rcu_read_lock();
1547 task = pid ? find_task_by_vpid(pid) : current;
1548 if (!task) {
1549 rcu_read_unlock();
1550 err = -ESRCH;
1551 goto out;
1552 }
1553 get_task_struct(task);
1554
1555 err = -EINVAL;
1556
1557 /*
1558 * Check if this process has the right to modify the specified process.
1559 * Use the regular "ptrace_may_access()" checks.
1560 */
1561 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1562 rcu_read_unlock();
1563 err = -EPERM;
1564 goto out_put;
1565 }
1566 rcu_read_unlock();
1567
1568 task_nodes = cpuset_mems_allowed(task);
1569 /* Is the user allowed to access the target nodes? */
1570 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1571 err = -EPERM;
1572 goto out_put;
1573 }
1574
1575 task_nodes = cpuset_mems_allowed(current);
1576 nodes_and(*new, *new, task_nodes);
1577 if (nodes_empty(*new))
1578 goto out_put;
1579
1580 err = security_task_movememory(task);
1581 if (err)
1582 goto out_put;
1583
1584 mm = get_task_mm(task);
1585 put_task_struct(task);
1586
1587 if (!mm) {
1588 err = -EINVAL;
1589 goto out;
1590 }
1591
1592 err = do_migrate_pages(mm, old, new,
1593 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1594
1595 mmput(mm);
1596 out:
1597 NODEMASK_SCRATCH_FREE(scratch);
1598
1599 return err;
1600
1601 out_put:
1602 put_task_struct(task);
1603 goto out;
1604
1605 }
1606
1607 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1608 const unsigned long __user *, old_nodes,
1609 const unsigned long __user *, new_nodes)
1610 {
1611 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1612 }
1613
1614
1615 /* Retrieve NUMA policy */
1616 static int kernel_get_mempolicy(int __user *policy,
1617 unsigned long __user *nmask,
1618 unsigned long maxnode,
1619 unsigned long addr,
1620 unsigned long flags)
1621 {
1622 int err;
1623 int pval;
1624 nodemask_t nodes;
1625
1626 if (nmask != NULL && maxnode < nr_node_ids)
1627 return -EINVAL;
1628
1629 addr = untagged_addr(addr);
1630
1631 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1632
1633 if (err)
1634 return err;
1635
1636 if (policy && put_user(pval, policy))
1637 return -EFAULT;
1638
1639 if (nmask)
1640 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1641
1642 return err;
1643 }
1644
1645 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1646 unsigned long __user *, nmask, unsigned long, maxnode,
1647 unsigned long, addr, unsigned long, flags)
1648 {
1649 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1650 }
1651
1652 bool vma_migratable(struct vm_area_struct *vma)
1653 {
1654 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1655 return false;
1656
1657 /*
1658 * DAX device mappings require predictable access latency, so avoid
1659 * incurring periodic faults.
1660 */
1661 if (vma_is_dax(vma))
1662 return false;
1663
1664 if (is_vm_hugetlb_page(vma) &&
1665 !hugepage_migration_supported(hstate_vma(vma)))
1666 return false;
1667
1668 /*
1669 * Migration allocates pages in the highest zone. If we cannot
1670 * do so then migration (at least from node to node) is not
1671 * possible.
1672 */
1673 if (vma->vm_file &&
1674 gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1675 < policy_zone)
1676 return false;
1677 return true;
1678 }
1679
1680 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1681 unsigned long addr)
1682 {
1683 struct mempolicy *pol = NULL;
1684
1685 if (vma) {
1686 if (vma->vm_ops && vma->vm_ops->get_policy) {
1687 pol = vma->vm_ops->get_policy(vma, addr);
1688 } else if (vma->vm_policy) {
1689 pol = vma->vm_policy;
1690
1691 /*
1692 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1693 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1694 * count on these policies which will be dropped by
1695 * mpol_cond_put() later
1696 */
1697 if (mpol_needs_cond_ref(pol))
1698 mpol_get(pol);
1699 }
1700 }
1701
1702 return pol;
1703 }
1704
1705 /*
1706 * get_vma_policy(@vma, @addr)
1707 * @vma: virtual memory area whose policy is sought
1708 * @addr: address in @vma for shared policy lookup
1709 *
1710 * Returns effective policy for a VMA at specified address.
1711 * Falls back to current->mempolicy or system default policy, as necessary.
1712 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1713 * count--added by the get_policy() vm_op, as appropriate--to protect against
1714 * freeing by another task. It is the caller's responsibility to free the
1715 * extra reference for shared policies.
1716 */
1717 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1718 unsigned long addr)
1719 {
1720 struct mempolicy *pol = __get_vma_policy(vma, addr);
1721
1722 if (!pol)
1723 pol = get_task_policy(current);
1724
1725 return pol;
1726 }
1727
1728 bool vma_policy_mof(struct vm_area_struct *vma)
1729 {
1730 struct mempolicy *pol;
1731
1732 if (vma->vm_ops && vma->vm_ops->get_policy) {
1733 bool ret = false;
1734
1735 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1736 if (pol && (pol->flags & MPOL_F_MOF))
1737 ret = true;
1738 mpol_cond_put(pol);
1739
1740 return ret;
1741 }
1742
1743 pol = vma->vm_policy;
1744 if (!pol)
1745 pol = get_task_policy(current);
1746
1747 return pol->flags & MPOL_F_MOF;
1748 }
1749
1750 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1751 {
1752 enum zone_type dynamic_policy_zone = policy_zone;
1753
1754 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1755
1756 /*
1757 * if policy->nodes has movable memory only,
1758 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1759 *
1760 * policy->nodes is intersect with node_states[N_MEMORY].
1761 * so if the following test fails, it implies
1762 * policy->nodes has movable memory only.
1763 */
1764 if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
1765 dynamic_policy_zone = ZONE_MOVABLE;
1766
1767 return zone >= dynamic_policy_zone;
1768 }
1769
1770 /*
1771 * Return a nodemask representing a mempolicy for filtering nodes for
1772 * page allocation
1773 */
1774 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1775 {
1776 int mode = policy->mode;
1777
1778 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1779 if (unlikely(mode == MPOL_BIND) &&
1780 apply_policy_zone(policy, gfp_zone(gfp)) &&
1781 cpuset_nodemask_valid_mems_allowed(&policy->nodes))
1782 return &policy->nodes;
1783
1784 if (mode == MPOL_PREFERRED_MANY)
1785 return &policy->nodes;
1786
1787 return NULL;
1788 }
1789
1790 /*
1791 * Return the preferred node id for 'prefer' mempolicy, and return
1792 * the given id for all other policies.
1793 *
1794 * policy_node() is always coupled with policy_nodemask(), which
1795 * secures the nodemask limit for 'bind' and 'prefer-many' policy.
1796 */
1797 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1798 {
1799 if (policy->mode == MPOL_PREFERRED) {
1800 nd = first_node(policy->nodes);
1801 } else {
1802 /*
1803 * __GFP_THISNODE shouldn't even be used with the bind policy
1804 * because we might easily break the expectation to stay on the
1805 * requested node and not break the policy.
1806 */
1807 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1808 }
1809
1810 return nd;
1811 }
1812
1813 /* Do dynamic interleaving for a process */
1814 static unsigned interleave_nodes(struct mempolicy *policy)
1815 {
1816 unsigned next;
1817 struct task_struct *me = current;
1818
1819 next = next_node_in(me->il_prev, policy->nodes);
1820 if (next < MAX_NUMNODES)
1821 me->il_prev = next;
1822 return next;
1823 }
1824
1825 /*
1826 * Depending on the memory policy provide a node from which to allocate the
1827 * next slab entry.
1828 */
1829 unsigned int mempolicy_slab_node(void)
1830 {
1831 struct mempolicy *policy;
1832 int node = numa_mem_id();
1833
1834 if (!in_task())
1835 return node;
1836
1837 policy = current->mempolicy;
1838 if (!policy)
1839 return node;
1840
1841 switch (policy->mode) {
1842 case MPOL_PREFERRED:
1843 return first_node(policy->nodes);
1844
1845 case MPOL_INTERLEAVE:
1846 return interleave_nodes(policy);
1847
1848 case MPOL_BIND:
1849 case MPOL_PREFERRED_MANY:
1850 {
1851 struct zoneref *z;
1852
1853 /*
1854 * Follow bind policy behavior and start allocation at the
1855 * first node.
1856 */
1857 struct zonelist *zonelist;
1858 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1859 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1860 z = first_zones_zonelist(zonelist, highest_zoneidx,
1861 &policy->nodes);
1862 return z->zone ? zone_to_nid(z->zone) : node;
1863 }
1864 case MPOL_LOCAL:
1865 return node;
1866
1867 default:
1868 BUG();
1869 }
1870 }
1871
1872 /*
1873 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1874 * node in pol->nodes (starting from n=0), wrapping around if n exceeds the
1875 * number of present nodes.
1876 */
1877 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1878 {
1879 nodemask_t nodemask = pol->nodes;
1880 unsigned int target, nnodes;
1881 int i;
1882 int nid;
1883 /*
1884 * The barrier will stabilize the nodemask in a register or on
1885 * the stack so that it will stop changing under the code.
1886 *
1887 * Between first_node() and next_node(), pol->nodes could be changed
1888 * by other threads. So we put pol->nodes in a local stack.
1889 */
1890 barrier();
1891
1892 nnodes = nodes_weight(nodemask);
1893 if (!nnodes)
1894 return numa_node_id();
1895 target = (unsigned int)n % nnodes;
1896 nid = first_node(nodemask);
1897 for (i = 0; i < target; i++)
1898 nid = next_node(nid, nodemask);
1899 return nid;
1900 }
1901
1902 /* Determine a node number for interleave */
1903 static inline unsigned interleave_nid(struct mempolicy *pol,
1904 struct vm_area_struct *vma, unsigned long addr, int shift)
1905 {
1906 if (vma) {
1907 unsigned long off;
1908
1909 /*
1910 * for small pages, there is no difference between
1911 * shift and PAGE_SHIFT, so the bit-shift is safe.
1912 * for huge pages, since vm_pgoff is in units of small
1913 * pages, we need to shift off the always 0 bits to get
1914 * a useful offset.
1915 */
1916 BUG_ON(shift < PAGE_SHIFT);
1917 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1918 off += (addr - vma->vm_start) >> shift;
1919 return offset_il_node(pol, off);
1920 } else
1921 return interleave_nodes(pol);
1922 }
1923
1924 #ifdef CONFIG_HUGETLBFS
1925 /*
1926 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1927 * @vma: virtual memory area whose policy is sought
1928 * @addr: address in @vma for shared policy lookup and interleave policy
1929 * @gfp_flags: for requested zone
1930 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1931 * @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
1932 *
1933 * Returns a nid suitable for a huge page allocation and a pointer
1934 * to the struct mempolicy for conditional unref after allocation.
1935 * If the effective policy is 'bind' or 'prefer-many', returns a pointer
1936 * to the mempolicy's @nodemask for filtering the zonelist.
1937 *
1938 * Must be protected by read_mems_allowed_begin()
1939 */
1940 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1941 struct mempolicy **mpol, nodemask_t **nodemask)
1942 {
1943 int nid;
1944 int mode;
1945
1946 *mpol = get_vma_policy(vma, addr);
1947 *nodemask = NULL;
1948 mode = (*mpol)->mode;
1949
1950 if (unlikely(mode == MPOL_INTERLEAVE)) {
1951 nid = interleave_nid(*mpol, vma, addr,
1952 huge_page_shift(hstate_vma(vma)));
1953 } else {
1954 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1955 if (mode == MPOL_BIND || mode == MPOL_PREFERRED_MANY)
1956 *nodemask = &(*mpol)->nodes;
1957 }
1958 return nid;
1959 }
1960
1961 /*
1962 * init_nodemask_of_mempolicy
1963 *
1964 * If the current task's mempolicy is "default" [NULL], return 'false'
1965 * to indicate default policy. Otherwise, extract the policy nodemask
1966 * for 'bind' or 'interleave' policy into the argument nodemask, or
1967 * initialize the argument nodemask to contain the single node for
1968 * 'preferred' or 'local' policy and return 'true' to indicate presence
1969 * of non-default mempolicy.
1970 *
1971 * We don't bother with reference counting the mempolicy [mpol_get/put]
1972 * because the current task is examining it's own mempolicy and a task's
1973 * mempolicy is only ever changed by the task itself.
1974 *
1975 * N.B., it is the caller's responsibility to free a returned nodemask.
1976 */
1977 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1978 {
1979 struct mempolicy *mempolicy;
1980
1981 if (!(mask && current->mempolicy))
1982 return false;
1983
1984 task_lock(current);
1985 mempolicy = current->mempolicy;
1986 switch (mempolicy->mode) {
1987 case MPOL_PREFERRED:
1988 case MPOL_PREFERRED_MANY:
1989 case MPOL_BIND:
1990 case MPOL_INTERLEAVE:
1991 *mask = mempolicy->nodes;
1992 break;
1993
1994 case MPOL_LOCAL:
1995 init_nodemask_of_node(mask, numa_node_id());
1996 break;
1997
1998 default:
1999 BUG();
2000 }
2001 task_unlock(current);
2002
2003 return true;
2004 }
2005 #endif
2006
2007 /*
2008 * mempolicy_in_oom_domain
2009 *
2010 * If tsk's mempolicy is "bind", check for intersection between mask and
2011 * the policy nodemask. Otherwise, return true for all other policies
2012 * including "interleave", as a tsk with "interleave" policy may have
2013 * memory allocated from all nodes in system.
2014 *
2015 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2016 */
2017 bool mempolicy_in_oom_domain(struct task_struct *tsk,
2018 const nodemask_t *mask)
2019 {
2020 struct mempolicy *mempolicy;
2021 bool ret = true;
2022
2023 if (!mask)
2024 return ret;
2025
2026 task_lock(tsk);
2027 mempolicy = tsk->mempolicy;
2028 if (mempolicy && mempolicy->mode == MPOL_BIND)
2029 ret = nodes_intersects(mempolicy->nodes, *mask);
2030 task_unlock(tsk);
2031
2032 return ret;
2033 }
2034
2035 /* Allocate a page in interleaved policy.
2036 Own path because it needs to do special accounting. */
2037 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2038 unsigned nid)
2039 {
2040 struct page *page;
2041
2042 page = __alloc_pages(gfp, order, nid, NULL);
2043 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2044 if (!static_branch_likely(&vm_numa_stat_key))
2045 return page;
2046 if (page && page_to_nid(page) == nid) {
2047 preempt_disable();
2048 __count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
2049 preempt_enable();
2050 }
2051 return page;
2052 }
2053
2054 static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
2055 int nid, struct mempolicy *pol)
2056 {
2057 struct page *page;
2058 gfp_t preferred_gfp;
2059
2060 /*
2061 * This is a two pass approach. The first pass will only try the
2062 * preferred nodes but skip the direct reclaim and allow the
2063 * allocation to fail, while the second pass will try all the
2064 * nodes in system.
2065 */
2066 preferred_gfp = gfp | __GFP_NOWARN;
2067 preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2068 page = __alloc_pages(preferred_gfp, order, nid, &pol->nodes);
2069 if (!page)
2070 page = __alloc_pages(gfp, order, numa_node_id(), NULL);
2071
2072 return page;
2073 }
2074
2075 /**
2076 * alloc_pages_vma - Allocate a page for a VMA.
2077 * @gfp: GFP flags.
2078 * @order: Order of the GFP allocation.
2079 * @vma: Pointer to VMA or NULL if not available.
2080 * @addr: Virtual address of the allocation. Must be inside @vma.
2081 * @node: Which node to prefer for allocation (modulo policy).
2082 * @hugepage: For hugepages try only the preferred node if possible.
2083 *
2084 * Allocate a page for a specific address in @vma, using the appropriate
2085 * NUMA policy. When @vma is not NULL the caller must hold the mmap_lock
2086 * of the mm_struct of the VMA to prevent it from going away. Should be
2087 * used for all allocations for pages that will be mapped into user space.
2088 *
2089 * Return: The page on success or NULL if allocation fails.
2090 */
2091 struct page *alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2092 unsigned long addr, int node, bool hugepage)
2093 {
2094 struct mempolicy *pol;
2095 struct page *page;
2096 int preferred_nid;
2097 nodemask_t *nmask;
2098
2099 pol = get_vma_policy(vma, addr);
2100
2101 if (pol->mode == MPOL_INTERLEAVE) {
2102 unsigned nid;
2103
2104 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2105 mpol_cond_put(pol);
2106 page = alloc_page_interleave(gfp, order, nid);
2107 goto out;
2108 }
2109
2110 if (pol->mode == MPOL_PREFERRED_MANY) {
2111 page = alloc_pages_preferred_many(gfp, order, node, pol);
2112 mpol_cond_put(pol);
2113 goto out;
2114 }
2115
2116 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2117 int hpage_node = node;
2118
2119 /*
2120 * For hugepage allocation and non-interleave policy which
2121 * allows the current node (or other explicitly preferred
2122 * node) we only try to allocate from the current/preferred
2123 * node and don't fall back to other nodes, as the cost of
2124 * remote accesses would likely offset THP benefits.
2125 *
2126 * If the policy is interleave or does not allow the current
2127 * node in its nodemask, we allocate the standard way.
2128 */
2129 if (pol->mode == MPOL_PREFERRED)
2130 hpage_node = first_node(pol->nodes);
2131
2132 nmask = policy_nodemask(gfp, pol);
2133 if (!nmask || node_isset(hpage_node, *nmask)) {
2134 mpol_cond_put(pol);
2135 /*
2136 * First, try to allocate THP only on local node, but
2137 * don't reclaim unnecessarily, just compact.
2138 */
2139 page = __alloc_pages_node(hpage_node,
2140 gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2141
2142 /*
2143 * If hugepage allocations are configured to always
2144 * synchronous compact or the vma has been madvised
2145 * to prefer hugepage backing, retry allowing remote
2146 * memory with both reclaim and compact as well.
2147 */
2148 if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2149 page = __alloc_pages_node(hpage_node,
2150 gfp, order);
2151
2152 goto out;
2153 }
2154 }
2155
2156 nmask = policy_nodemask(gfp, pol);
2157 preferred_nid = policy_node(gfp, pol, node);
2158 page = __alloc_pages(gfp, order, preferred_nid, nmask);
2159 mpol_cond_put(pol);
2160 out:
2161 return page;
2162 }
2163 EXPORT_SYMBOL(alloc_pages_vma);
2164
2165 /**
2166 * alloc_pages - Allocate pages.
2167 * @gfp: GFP flags.
2168 * @order: Power of two of number of pages to allocate.
2169 *
2170 * Allocate 1 << @order contiguous pages. The physical address of the
2171 * first page is naturally aligned (eg an order-3 allocation will be aligned
2172 * to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
2173 * process is honoured when in process context.
2174 *
2175 * Context: Can be called from any context, providing the appropriate GFP
2176 * flags are used.
2177 * Return: The page on success or NULL if allocation fails.
2178 */
2179 struct page *alloc_pages(gfp_t gfp, unsigned order)
2180 {
2181 struct mempolicy *pol = &default_policy;
2182 struct page *page;
2183
2184 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2185 pol = get_task_policy(current);
2186
2187 /*
2188 * No reference counting needed for current->mempolicy
2189 * nor system default_policy
2190 */
2191 if (pol->mode == MPOL_INTERLEAVE)
2192 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2193 else if (pol->mode == MPOL_PREFERRED_MANY)
2194 page = alloc_pages_preferred_many(gfp, order,
2195 numa_node_id(), pol);
2196 else
2197 page = __alloc_pages(gfp, order,
2198 policy_node(gfp, pol, numa_node_id()),
2199 policy_nodemask(gfp, pol));
2200
2201 return page;
2202 }
2203 EXPORT_SYMBOL(alloc_pages);
2204
2205 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2206 {
2207 struct mempolicy *pol = mpol_dup(vma_policy(src));
2208
2209 if (IS_ERR(pol))
2210 return PTR_ERR(pol);
2211 dst->vm_policy = pol;
2212 return 0;
2213 }
2214
2215 /*
2216 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2217 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2218 * with the mems_allowed returned by cpuset_mems_allowed(). This
2219 * keeps mempolicies cpuset relative after its cpuset moves. See
2220 * further kernel/cpuset.c update_nodemask().
2221 *
2222 * current's mempolicy may be rebinded by the other task(the task that changes
2223 * cpuset's mems), so we needn't do rebind work for current task.
2224 */
2225
2226 /* Slow path of a mempolicy duplicate */
2227 struct mempolicy *__mpol_dup(struct mempolicy *old)
2228 {
2229 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2230
2231 if (!new)
2232 return ERR_PTR(-ENOMEM);
2233
2234 /* task's mempolicy is protected by alloc_lock */
2235 if (old == current->mempolicy) {
2236 task_lock(current);
2237 *new = *old;
2238 task_unlock(current);
2239 } else
2240 *new = *old;
2241
2242 if (current_cpuset_is_being_rebound()) {
2243 nodemask_t mems = cpuset_mems_allowed(current);
2244 mpol_rebind_policy(new, &mems);
2245 }
2246 atomic_set(&new->refcnt, 1);
2247 return new;
2248 }
2249
2250 /* Slow path of a mempolicy comparison */
2251 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2252 {
2253 if (!a || !b)
2254 return false;
2255 if (a->mode != b->mode)
2256 return false;
2257 if (a->flags != b->flags)
2258 return false;
2259 if (mpol_store_user_nodemask(a))
2260 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2261 return false;
2262
2263 switch (a->mode) {
2264 case MPOL_BIND:
2265 case MPOL_INTERLEAVE:
2266 case MPOL_PREFERRED:
2267 case MPOL_PREFERRED_MANY:
2268 return !!nodes_equal(a->nodes, b->nodes);
2269 case MPOL_LOCAL:
2270 return true;
2271 default:
2272 BUG();
2273 return false;
2274 }
2275 }
2276
2277 /*
2278 * Shared memory backing store policy support.
2279 *
2280 * Remember policies even when nobody has shared memory mapped.
2281 * The policies are kept in Red-Black tree linked from the inode.
2282 * They are protected by the sp->lock rwlock, which should be held
2283 * for any accesses to the tree.
2284 */
2285
2286 /*
2287 * lookup first element intersecting start-end. Caller holds sp->lock for
2288 * reading or for writing
2289 */
2290 static struct sp_node *
2291 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2292 {
2293 struct rb_node *n = sp->root.rb_node;
2294
2295 while (n) {
2296 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2297
2298 if (start >= p->end)
2299 n = n->rb_right;
2300 else if (end <= p->start)
2301 n = n->rb_left;
2302 else
2303 break;
2304 }
2305 if (!n)
2306 return NULL;
2307 for (;;) {
2308 struct sp_node *w = NULL;
2309 struct rb_node *prev = rb_prev(n);
2310 if (!prev)
2311 break;
2312 w = rb_entry(prev, struct sp_node, nd);
2313 if (w->end <= start)
2314 break;
2315 n = prev;
2316 }
2317 return rb_entry(n, struct sp_node, nd);
2318 }
2319
2320 /*
2321 * Insert a new shared policy into the list. Caller holds sp->lock for
2322 * writing.
2323 */
2324 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2325 {
2326 struct rb_node **p = &sp->root.rb_node;
2327 struct rb_node *parent = NULL;
2328 struct sp_node *nd;
2329
2330 while (*p) {
2331 parent = *p;
2332 nd = rb_entry(parent, struct sp_node, nd);
2333 if (new->start < nd->start)
2334 p = &(*p)->rb_left;
2335 else if (new->end > nd->end)
2336 p = &(*p)->rb_right;
2337 else
2338 BUG();
2339 }
2340 rb_link_node(&new->nd, parent, p);
2341 rb_insert_color(&new->nd, &sp->root);
2342 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2343 new->policy ? new->policy->mode : 0);
2344 }
2345
2346 /* Find shared policy intersecting idx */
2347 struct mempolicy *
2348 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2349 {
2350 struct mempolicy *pol = NULL;
2351 struct sp_node *sn;
2352
2353 if (!sp->root.rb_node)
2354 return NULL;
2355 read_lock(&sp->lock);
2356 sn = sp_lookup(sp, idx, idx+1);
2357 if (sn) {
2358 mpol_get(sn->policy);
2359 pol = sn->policy;
2360 }
2361 read_unlock(&sp->lock);
2362 return pol;
2363 }
2364
2365 static void sp_free(struct sp_node *n)
2366 {
2367 mpol_put(n->policy);
2368 kmem_cache_free(sn_cache, n);
2369 }
2370
2371 /**
2372 * mpol_misplaced - check whether current page node is valid in policy
2373 *
2374 * @page: page to be checked
2375 * @vma: vm area where page mapped
2376 * @addr: virtual address where page mapped
2377 *
2378 * Lookup current policy node id for vma,addr and "compare to" page's
2379 * node id. Policy determination "mimics" alloc_page_vma().
2380 * Called from fault path where we know the vma and faulting address.
2381 *
2382 * Return: NUMA_NO_NODE if the page is in a node that is valid for this
2383 * policy, or a suitable node ID to allocate a replacement page from.
2384 */
2385 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2386 {
2387 struct mempolicy *pol;
2388 struct zoneref *z;
2389 int curnid = page_to_nid(page);
2390 unsigned long pgoff;
2391 int thiscpu = raw_smp_processor_id();
2392 int thisnid = cpu_to_node(thiscpu);
2393 int polnid = NUMA_NO_NODE;
2394 int ret = NUMA_NO_NODE;
2395
2396 pol = get_vma_policy(vma, addr);
2397 if (!(pol->flags & MPOL_F_MOF))
2398 goto out;
2399
2400 switch (pol->mode) {
2401 case MPOL_INTERLEAVE:
2402 pgoff = vma->vm_pgoff;
2403 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2404 polnid = offset_il_node(pol, pgoff);
2405 break;
2406
2407 case MPOL_PREFERRED:
2408 if (node_isset(curnid, pol->nodes))
2409 goto out;
2410 polnid = first_node(pol->nodes);
2411 break;
2412
2413 case MPOL_LOCAL:
2414 polnid = numa_node_id();
2415 break;
2416
2417 case MPOL_BIND:
2418 /* Optimize placement among multiple nodes via NUMA balancing */
2419 if (pol->flags & MPOL_F_MORON) {
2420 if (node_isset(thisnid, pol->nodes))
2421 break;
2422 goto out;
2423 }
2424 fallthrough;
2425
2426 case MPOL_PREFERRED_MANY:
2427 /*
2428 * use current page if in policy nodemask,
2429 * else select nearest allowed node, if any.
2430 * If no allowed nodes, use current [!misplaced].
2431 */
2432 if (node_isset(curnid, pol->nodes))
2433 goto out;
2434 z = first_zones_zonelist(
2435 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2436 gfp_zone(GFP_HIGHUSER),
2437 &pol->nodes);
2438 polnid = zone_to_nid(z->zone);
2439 break;
2440
2441 default:
2442 BUG();
2443 }
2444
2445 /* Migrate the page towards the node whose CPU is referencing it */
2446 if (pol->flags & MPOL_F_MORON) {
2447 polnid = thisnid;
2448
2449 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2450 goto out;
2451 }
2452
2453 if (curnid != polnid)
2454 ret = polnid;
2455 out:
2456 mpol_cond_put(pol);
2457
2458 return ret;
2459 }
2460
2461 /*
2462 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2463 * dropped after task->mempolicy is set to NULL so that any allocation done as
2464 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2465 * policy.
2466 */
2467 void mpol_put_task_policy(struct task_struct *task)
2468 {
2469 struct mempolicy *pol;
2470
2471 task_lock(task);
2472 pol = task->mempolicy;
2473 task->mempolicy = NULL;
2474 task_unlock(task);
2475 mpol_put(pol);
2476 }
2477
2478 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2479 {
2480 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2481 rb_erase(&n->nd, &sp->root);
2482 sp_free(n);
2483 }
2484
2485 static void sp_node_init(struct sp_node *node, unsigned long start,
2486 unsigned long end, struct mempolicy *pol)
2487 {
2488 node->start = start;
2489 node->end = end;
2490 node->policy = pol;
2491 }
2492
2493 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2494 struct mempolicy *pol)
2495 {
2496 struct sp_node *n;
2497 struct mempolicy *newpol;
2498
2499 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2500 if (!n)
2501 return NULL;
2502
2503 newpol = mpol_dup(pol);
2504 if (IS_ERR(newpol)) {
2505 kmem_cache_free(sn_cache, n);
2506 return NULL;
2507 }
2508 newpol->flags |= MPOL_F_SHARED;
2509 sp_node_init(n, start, end, newpol);
2510
2511 return n;
2512 }
2513
2514 /* Replace a policy range. */
2515 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2516 unsigned long end, struct sp_node *new)
2517 {
2518 struct sp_node *n;
2519 struct sp_node *n_new = NULL;
2520 struct mempolicy *mpol_new = NULL;
2521 int ret = 0;
2522
2523 restart:
2524 write_lock(&sp->lock);
2525 n = sp_lookup(sp, start, end);
2526 /* Take care of old policies in the same range. */
2527 while (n && n->start < end) {
2528 struct rb_node *next = rb_next(&n->nd);
2529 if (n->start >= start) {
2530 if (n->end <= end)
2531 sp_delete(sp, n);
2532 else
2533 n->start = end;
2534 } else {
2535 /* Old policy spanning whole new range. */
2536 if (n->end > end) {
2537 if (!n_new)
2538 goto alloc_new;
2539
2540 *mpol_new = *n->policy;
2541 atomic_set(&mpol_new->refcnt, 1);
2542 sp_node_init(n_new, end, n->end, mpol_new);
2543 n->end = start;
2544 sp_insert(sp, n_new);
2545 n_new = NULL;
2546 mpol_new = NULL;
2547 break;
2548 } else
2549 n->end = start;
2550 }
2551 if (!next)
2552 break;
2553 n = rb_entry(next, struct sp_node, nd);
2554 }
2555 if (new)
2556 sp_insert(sp, new);
2557 write_unlock(&sp->lock);
2558 ret = 0;
2559
2560 err_out:
2561 if (mpol_new)
2562 mpol_put(mpol_new);
2563 if (n_new)
2564 kmem_cache_free(sn_cache, n_new);
2565
2566 return ret;
2567
2568 alloc_new:
2569 write_unlock(&sp->lock);
2570 ret = -ENOMEM;
2571 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2572 if (!n_new)
2573 goto err_out;
2574 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2575 if (!mpol_new)
2576 goto err_out;
2577 goto restart;
2578 }
2579
2580 /**
2581 * mpol_shared_policy_init - initialize shared policy for inode
2582 * @sp: pointer to inode shared policy
2583 * @mpol: struct mempolicy to install
2584 *
2585 * Install non-NULL @mpol in inode's shared policy rb-tree.
2586 * On entry, the current task has a reference on a non-NULL @mpol.
2587 * This must be released on exit.
2588 * This is called at get_inode() calls and we can use GFP_KERNEL.
2589 */
2590 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2591 {
2592 int ret;
2593
2594 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2595 rwlock_init(&sp->lock);
2596
2597 if (mpol) {
2598 struct vm_area_struct pvma;
2599 struct mempolicy *new;
2600 NODEMASK_SCRATCH(scratch);
2601
2602 if (!scratch)
2603 goto put_mpol;
2604 /* contextualize the tmpfs mount point mempolicy */
2605 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2606 if (IS_ERR(new))
2607 goto free_scratch; /* no valid nodemask intersection */
2608
2609 task_lock(current);
2610 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2611 task_unlock(current);
2612 if (ret)
2613 goto put_new;
2614
2615 /* Create pseudo-vma that contains just the policy */
2616 vma_init(&pvma, NULL);
2617 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2618 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2619
2620 put_new:
2621 mpol_put(new); /* drop initial ref */
2622 free_scratch:
2623 NODEMASK_SCRATCH_FREE(scratch);
2624 put_mpol:
2625 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2626 }
2627 }
2628
2629 int mpol_set_shared_policy(struct shared_policy *info,
2630 struct vm_area_struct *vma, struct mempolicy *npol)
2631 {
2632 int err;
2633 struct sp_node *new = NULL;
2634 unsigned long sz = vma_pages(vma);
2635
2636 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2637 vma->vm_pgoff,
2638 sz, npol ? npol->mode : -1,
2639 npol ? npol->flags : -1,
2640 npol ? nodes_addr(npol->nodes)[0] : NUMA_NO_NODE);
2641
2642 if (npol) {
2643 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2644 if (!new)
2645 return -ENOMEM;
2646 }
2647 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2648 if (err && new)
2649 sp_free(new);
2650 return err;
2651 }
2652
2653 /* Free a backing policy store on inode delete. */
2654 void mpol_free_shared_policy(struct shared_policy *p)
2655 {
2656 struct sp_node *n;
2657 struct rb_node *next;
2658
2659 if (!p->root.rb_node)
2660 return;
2661 write_lock(&p->lock);
2662 next = rb_first(&p->root);
2663 while (next) {
2664 n = rb_entry(next, struct sp_node, nd);
2665 next = rb_next(&n->nd);
2666 sp_delete(p, n);
2667 }
2668 write_unlock(&p->lock);
2669 }
2670
2671 #ifdef CONFIG_NUMA_BALANCING
2672 static int __initdata numabalancing_override;
2673
2674 static void __init check_numabalancing_enable(void)
2675 {
2676 bool numabalancing_default = false;
2677
2678 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2679 numabalancing_default = true;
2680
2681 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2682 if (numabalancing_override)
2683 set_numabalancing_state(numabalancing_override == 1);
2684
2685 if (num_online_nodes() > 1 && !numabalancing_override) {
2686 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2687 numabalancing_default ? "Enabling" : "Disabling");
2688 set_numabalancing_state(numabalancing_default);
2689 }
2690 }
2691
2692 static int __init setup_numabalancing(char *str)
2693 {
2694 int ret = 0;
2695 if (!str)
2696 goto out;
2697
2698 if (!strcmp(str, "enable")) {
2699 numabalancing_override = 1;
2700 ret = 1;
2701 } else if (!strcmp(str, "disable")) {
2702 numabalancing_override = -1;
2703 ret = 1;
2704 }
2705 out:
2706 if (!ret)
2707 pr_warn("Unable to parse numa_balancing=\n");
2708
2709 return ret;
2710 }
2711 __setup("numa_balancing=", setup_numabalancing);
2712 #else
2713 static inline void __init check_numabalancing_enable(void)
2714 {
2715 }
2716 #endif /* CONFIG_NUMA_BALANCING */
2717
2718 /* assumes fs == KERNEL_DS */
2719 void __init numa_policy_init(void)
2720 {
2721 nodemask_t interleave_nodes;
2722 unsigned long largest = 0;
2723 int nid, prefer = 0;
2724
2725 policy_cache = kmem_cache_create("numa_policy",
2726 sizeof(struct mempolicy),
2727 0, SLAB_PANIC, NULL);
2728
2729 sn_cache = kmem_cache_create("shared_policy_node",
2730 sizeof(struct sp_node),
2731 0, SLAB_PANIC, NULL);
2732
2733 for_each_node(nid) {
2734 preferred_node_policy[nid] = (struct mempolicy) {
2735 .refcnt = ATOMIC_INIT(1),
2736 .mode = MPOL_PREFERRED,
2737 .flags = MPOL_F_MOF | MPOL_F_MORON,
2738 .nodes = nodemask_of_node(nid),
2739 };
2740 }
2741
2742 /*
2743 * Set interleaving policy for system init. Interleaving is only
2744 * enabled across suitably sized nodes (default is >= 16MB), or
2745 * fall back to the largest node if they're all smaller.
2746 */
2747 nodes_clear(interleave_nodes);
2748 for_each_node_state(nid, N_MEMORY) {
2749 unsigned long total_pages = node_present_pages(nid);
2750
2751 /* Preserve the largest node */
2752 if (largest < total_pages) {
2753 largest = total_pages;
2754 prefer = nid;
2755 }
2756
2757 /* Interleave this node? */
2758 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2759 node_set(nid, interleave_nodes);
2760 }
2761
2762 /* All too small, use the largest */
2763 if (unlikely(nodes_empty(interleave_nodes)))
2764 node_set(prefer, interleave_nodes);
2765
2766 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2767 pr_err("%s: interleaving failed\n", __func__);
2768
2769 check_numabalancing_enable();
2770 }
2771
2772 /* Reset policy of current process to default */
2773 void numa_default_policy(void)
2774 {
2775 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2776 }
2777
2778 /*
2779 * Parse and format mempolicy from/to strings
2780 */
2781
2782 static const char * const policy_modes[] =
2783 {
2784 [MPOL_DEFAULT] = "default",
2785 [MPOL_PREFERRED] = "prefer",
2786 [MPOL_BIND] = "bind",
2787 [MPOL_INTERLEAVE] = "interleave",
2788 [MPOL_LOCAL] = "local",
2789 [MPOL_PREFERRED_MANY] = "prefer (many)",
2790 };
2791
2792
2793 #ifdef CONFIG_TMPFS
2794 /**
2795 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2796 * @str: string containing mempolicy to parse
2797 * @mpol: pointer to struct mempolicy pointer, returned on success.
2798 *
2799 * Format of input:
2800 * <mode>[=<flags>][:<nodelist>]
2801 *
2802 * On success, returns 0, else 1
2803 */
2804 int mpol_parse_str(char *str, struct mempolicy **mpol)
2805 {
2806 struct mempolicy *new = NULL;
2807 unsigned short mode_flags;
2808 nodemask_t nodes;
2809 char *nodelist = strchr(str, ':');
2810 char *flags = strchr(str, '=');
2811 int err = 1, mode;
2812
2813 if (flags)
2814 *flags++ = '\0'; /* terminate mode string */
2815
2816 if (nodelist) {
2817 /* NUL-terminate mode or flags string */
2818 *nodelist++ = '\0';
2819 if (nodelist_parse(nodelist, nodes))
2820 goto out;
2821 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2822 goto out;
2823 } else
2824 nodes_clear(nodes);
2825
2826 mode = match_string(policy_modes, MPOL_MAX, str);
2827 if (mode < 0)
2828 goto out;
2829
2830 switch (mode) {
2831 case MPOL_PREFERRED:
2832 /*
2833 * Insist on a nodelist of one node only, although later
2834 * we use first_node(nodes) to grab a single node, so here
2835 * nodelist (or nodes) cannot be empty.
2836 */
2837 if (nodelist) {
2838 char *rest = nodelist;
2839 while (isdigit(*rest))
2840 rest++;
2841 if (*rest)
2842 goto out;
2843 if (nodes_empty(nodes))
2844 goto out;
2845 }
2846 break;
2847 case MPOL_INTERLEAVE:
2848 /*
2849 * Default to online nodes with memory if no nodelist
2850 */
2851 if (!nodelist)
2852 nodes = node_states[N_MEMORY];
2853 break;
2854 case MPOL_LOCAL:
2855 /*
2856 * Don't allow a nodelist; mpol_new() checks flags
2857 */
2858 if (nodelist)
2859 goto out;
2860 break;
2861 case MPOL_DEFAULT:
2862 /*
2863 * Insist on a empty nodelist
2864 */
2865 if (!nodelist)
2866 err = 0;
2867 goto out;
2868 case MPOL_PREFERRED_MANY:
2869 case MPOL_BIND:
2870 /*
2871 * Insist on a nodelist
2872 */
2873 if (!nodelist)
2874 goto out;
2875 }
2876
2877 mode_flags = 0;
2878 if (flags) {
2879 /*
2880 * Currently, we only support two mutually exclusive
2881 * mode flags.
2882 */
2883 if (!strcmp(flags, "static"))
2884 mode_flags |= MPOL_F_STATIC_NODES;
2885 else if (!strcmp(flags, "relative"))
2886 mode_flags |= MPOL_F_RELATIVE_NODES;
2887 else
2888 goto out;
2889 }
2890
2891 new = mpol_new(mode, mode_flags, &nodes);
2892 if (IS_ERR(new))
2893 goto out;
2894
2895 /*
2896 * Save nodes for mpol_to_str() to show the tmpfs mount options
2897 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2898 */
2899 if (mode != MPOL_PREFERRED) {
2900 new->nodes = nodes;
2901 } else if (nodelist) {
2902 nodes_clear(new->nodes);
2903 node_set(first_node(nodes), new->nodes);
2904 } else {
2905 new->mode = MPOL_LOCAL;
2906 }
2907
2908 /*
2909 * Save nodes for contextualization: this will be used to "clone"
2910 * the mempolicy in a specific context [cpuset] at a later time.
2911 */
2912 new->w.user_nodemask = nodes;
2913
2914 err = 0;
2915
2916 out:
2917 /* Restore string for error message */
2918 if (nodelist)
2919 *--nodelist = ':';
2920 if (flags)
2921 *--flags = '=';
2922 if (!err)
2923 *mpol = new;
2924 return err;
2925 }
2926 #endif /* CONFIG_TMPFS */
2927
2928 /**
2929 * mpol_to_str - format a mempolicy structure for printing
2930 * @buffer: to contain formatted mempolicy string
2931 * @maxlen: length of @buffer
2932 * @pol: pointer to mempolicy to be formatted
2933 *
2934 * Convert @pol into a string. If @buffer is too short, truncate the string.
2935 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2936 * longest flag, "relative", and to display at least a few node ids.
2937 */
2938 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2939 {
2940 char *p = buffer;
2941 nodemask_t nodes = NODE_MASK_NONE;
2942 unsigned short mode = MPOL_DEFAULT;
2943 unsigned short flags = 0;
2944
2945 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2946 mode = pol->mode;
2947 flags = pol->flags;
2948 }
2949
2950 switch (mode) {
2951 case MPOL_DEFAULT:
2952 case MPOL_LOCAL:
2953 break;
2954 case MPOL_PREFERRED:
2955 case MPOL_PREFERRED_MANY:
2956 case MPOL_BIND:
2957 case MPOL_INTERLEAVE:
2958 nodes = pol->nodes;
2959 break;
2960 default:
2961 WARN_ON_ONCE(1);
2962 snprintf(p, maxlen, "unknown");
2963 return;
2964 }
2965
2966 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2967
2968 if (flags & MPOL_MODE_FLAGS) {
2969 p += snprintf(p, buffer + maxlen - p, "=");
2970
2971 /*
2972 * Currently, the only defined flags are mutually exclusive
2973 */
2974 if (flags & MPOL_F_STATIC_NODES)
2975 p += snprintf(p, buffer + maxlen - p, "static");
2976 else if (flags & MPOL_F_RELATIVE_NODES)
2977 p += snprintf(p, buffer + maxlen - p, "relative");
2978 }
2979
2980 if (!nodes_empty(nodes))
2981 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2982 nodemask_pr_args(&nodes));
2983 }
2984
2985 bool numa_demotion_enabled = false;
2986
2987 #ifdef CONFIG_SYSFS
2988 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2989 struct kobj_attribute *attr, char *buf)
2990 {
2991 return sysfs_emit(buf, "%s\n",
2992 numa_demotion_enabled? "true" : "false");
2993 }
2994
2995 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2996 struct kobj_attribute *attr,
2997 const char *buf, size_t count)
2998 {
2999 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3000 numa_demotion_enabled = true;
3001 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3002 numa_demotion_enabled = false;
3003 else
3004 return -EINVAL;
3005
3006 return count;
3007 }
3008
3009 static struct kobj_attribute numa_demotion_enabled_attr =
3010 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3011 numa_demotion_enabled_store);
3012
3013 static struct attribute *numa_attrs[] = {
3014 &numa_demotion_enabled_attr.attr,
3015 NULL,
3016 };
3017
3018 static const struct attribute_group numa_attr_group = {
3019 .attrs = numa_attrs,
3020 };
3021
3022 static int __init numa_init_sysfs(void)
3023 {
3024 int err;
3025 struct kobject *numa_kobj;
3026
3027 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3028 if (!numa_kobj) {
3029 pr_err("failed to create numa kobject\n");
3030 return -ENOMEM;
3031 }
3032 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3033 if (err) {
3034 pr_err("failed to register numa group\n");
3035 goto delete_obj;
3036 }
3037 return 0;
3038
3039 delete_obj:
3040 kobject_put(numa_kobj);
3041 return err;
3042 }
3043 subsys_initcall(numa_init_sysfs);
3044 #endif