]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mempolicy.c
Merge tag 'pwm/for-3.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[mirror_ubuntu-artful-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 /* Check that the nodemask contains at least one populated zone */
166 static int is_valid_nodemask(const nodemask_t *nodemask)
167 {
168 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169 }
170
171 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 {
173 return pol->flags & MPOL_MODE_FLAGS;
174 }
175
176 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 const nodemask_t *rel)
178 {
179 nodemask_t tmp;
180 nodes_fold(tmp, *orig, nodes_weight(*rel));
181 nodes_onto(*ret, tmp, *rel);
182 }
183
184 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190 }
191
192 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 if (!nodes)
195 pol->flags |= MPOL_F_LOCAL; /* local allocation */
196 else if (nodes_empty(*nodes))
197 return -EINVAL; /* no allowed nodes */
198 else
199 pol->v.preferred_node = first_node(*nodes);
200 return 0;
201 }
202
203 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (!is_valid_nodemask(nodes))
206 return -EINVAL;
207 pol->v.nodes = *nodes;
208 return 0;
209 }
210
211 /*
212 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213 * any, for the new policy. mpol_new() has already validated the nodes
214 * parameter with respect to the policy mode and flags. But, we need to
215 * handle an empty nodemask with MPOL_PREFERRED here.
216 *
217 * Must be called holding task's alloc_lock to protect task's mems_allowed
218 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 */
220 static int mpol_set_nodemask(struct mempolicy *pol,
221 const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 {
223 int ret;
224
225 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 if (pol == NULL)
227 return 0;
228 /* Check N_MEMORY */
229 nodes_and(nsc->mask1,
230 cpuset_current_mems_allowed, node_states[N_MEMORY]);
231
232 VM_BUG_ON(!nodes);
233 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 nodes = NULL; /* explicit local allocation */
235 else {
236 if (pol->flags & MPOL_F_RELATIVE_NODES)
237 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 else
239 nodes_and(nsc->mask2, *nodes, nsc->mask1);
240
241 if (mpol_store_user_nodemask(pol))
242 pol->w.user_nodemask = *nodes;
243 else
244 pol->w.cpuset_mems_allowed =
245 cpuset_current_mems_allowed;
246 }
247
248 if (nodes)
249 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 else
251 ret = mpol_ops[pol->mode].create(pol, NULL);
252 return ret;
253 }
254
255 /*
256 * This function just creates a new policy, does some check and simple
257 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 */
259 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 nodemask_t *nodes)
261 {
262 struct mempolicy *policy;
263
264 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266
267 if (mode == MPOL_DEFAULT) {
268 if (nodes && !nodes_empty(*nodes))
269 return ERR_PTR(-EINVAL);
270 return NULL;
271 }
272 VM_BUG_ON(!nodes);
273
274 /*
275 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 * All other modes require a valid pointer to a non-empty nodemask.
278 */
279 if (mode == MPOL_PREFERRED) {
280 if (nodes_empty(*nodes)) {
281 if (((flags & MPOL_F_STATIC_NODES) ||
282 (flags & MPOL_F_RELATIVE_NODES)))
283 return ERR_PTR(-EINVAL);
284 }
285 } else if (mode == MPOL_LOCAL) {
286 if (!nodes_empty(*nodes))
287 return ERR_PTR(-EINVAL);
288 mode = MPOL_PREFERRED;
289 } else if (nodes_empty(*nodes))
290 return ERR_PTR(-EINVAL);
291 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 if (!policy)
293 return ERR_PTR(-ENOMEM);
294 atomic_set(&policy->refcnt, 1);
295 policy->mode = mode;
296 policy->flags = flags;
297
298 return policy;
299 }
300
301 /* Slow path of a mpol destructor. */
302 void __mpol_put(struct mempolicy *p)
303 {
304 if (!atomic_dec_and_test(&p->refcnt))
305 return;
306 kmem_cache_free(policy_cache, p);
307 }
308
309 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 enum mpol_rebind_step step)
311 {
312 }
313
314 /*
315 * step:
316 * MPOL_REBIND_ONCE - do rebind work at once
317 * MPOL_REBIND_STEP1 - set all the newly nodes
318 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 */
320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 enum mpol_rebind_step step)
322 {
323 nodemask_t tmp;
324
325 if (pol->flags & MPOL_F_STATIC_NODES)
326 nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 else {
330 /*
331 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 * result
333 */
334 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 nodes_remap(tmp, pol->v.nodes,
336 pol->w.cpuset_mems_allowed, *nodes);
337 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 } else if (step == MPOL_REBIND_STEP2) {
339 tmp = pol->w.cpuset_mems_allowed;
340 pol->w.cpuset_mems_allowed = *nodes;
341 } else
342 BUG();
343 }
344
345 if (nodes_empty(tmp))
346 tmp = *nodes;
347
348 if (step == MPOL_REBIND_STEP1)
349 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 pol->v.nodes = tmp;
352 else
353 BUG();
354
355 if (!node_isset(current->il_next, tmp)) {
356 current->il_next = next_node(current->il_next, tmp);
357 if (current->il_next >= MAX_NUMNODES)
358 current->il_next = first_node(tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = numa_node_id();
361 }
362 }
363
364 static void mpol_rebind_preferred(struct mempolicy *pol,
365 const nodemask_t *nodes,
366 enum mpol_rebind_step step)
367 {
368 nodemask_t tmp;
369
370 if (pol->flags & MPOL_F_STATIC_NODES) {
371 int node = first_node(pol->w.user_nodemask);
372
373 if (node_isset(node, *nodes)) {
374 pol->v.preferred_node = node;
375 pol->flags &= ~MPOL_F_LOCAL;
376 } else
377 pol->flags |= MPOL_F_LOCAL;
378 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 pol->v.preferred_node = first_node(tmp);
381 } else if (!(pol->flags & MPOL_F_LOCAL)) {
382 pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 pol->w.cpuset_mems_allowed,
384 *nodes);
385 pol->w.cpuset_mems_allowed = *nodes;
386 }
387 }
388
389 /*
390 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 *
392 * If read-side task has no lock to protect task->mempolicy, write-side
393 * task will rebind the task->mempolicy by two step. The first step is
394 * setting all the newly nodes, and the second step is cleaning all the
395 * disallowed nodes. In this way, we can avoid finding no node to alloc
396 * page.
397 * If we have a lock to protect task->mempolicy in read-side, we do
398 * rebind directly.
399 *
400 * step:
401 * MPOL_REBIND_ONCE - do rebind work at once
402 * MPOL_REBIND_STEP1 - set all the newly nodes
403 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 */
405 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 enum mpol_rebind_step step)
407 {
408 if (!pol)
409 return;
410 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 return;
413
414 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 return;
416
417 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 BUG();
419
420 if (step == MPOL_REBIND_STEP1)
421 pol->flags |= MPOL_F_REBINDING;
422 else if (step == MPOL_REBIND_STEP2)
423 pol->flags &= ~MPOL_F_REBINDING;
424 else if (step >= MPOL_REBIND_NSTEP)
425 BUG();
426
427 mpol_ops[pol->mode].rebind(pol, newmask, step);
428 }
429
430 /*
431 * Wrapper for mpol_rebind_policy() that just requires task
432 * pointer, and updates task mempolicy.
433 *
434 * Called with task's alloc_lock held.
435 */
436
437 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 enum mpol_rebind_step step)
439 {
440 mpol_rebind_policy(tsk->mempolicy, new, step);
441 }
442
443 /*
444 * Rebind each vma in mm to new nodemask.
445 *
446 * Call holding a reference to mm. Takes mm->mmap_sem during call.
447 */
448
449 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 {
451 struct vm_area_struct *vma;
452
453 down_write(&mm->mmap_sem);
454 for (vma = mm->mmap; vma; vma = vma->vm_next)
455 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 up_write(&mm->mmap_sem);
457 }
458
459 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 [MPOL_DEFAULT] = {
461 .rebind = mpol_rebind_default,
462 },
463 [MPOL_INTERLEAVE] = {
464 .create = mpol_new_interleave,
465 .rebind = mpol_rebind_nodemask,
466 },
467 [MPOL_PREFERRED] = {
468 .create = mpol_new_preferred,
469 .rebind = mpol_rebind_preferred,
470 },
471 [MPOL_BIND] = {
472 .create = mpol_new_bind,
473 .rebind = mpol_rebind_nodemask,
474 },
475 };
476
477 static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 unsigned long flags);
479
480 /*
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
483 */
484 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 unsigned long addr, unsigned long end,
486 const nodemask_t *nodes, unsigned long flags,
487 void *private)
488 {
489 pte_t *orig_pte;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 do {
495 struct page *page;
496 int nid;
497
498 if (!pte_present(*pte))
499 continue;
500 page = vm_normal_page(vma, addr, *pte);
501 if (!page)
502 continue;
503 /*
504 * vm_normal_page() filters out zero pages, but there might
505 * still be PageReserved pages to skip, perhaps in a VDSO.
506 */
507 if (PageReserved(page))
508 continue;
509 nid = page_to_nid(page);
510 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 continue;
512
513 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 migrate_page_add(page, private, flags);
515 else
516 break;
517 } while (pte++, addr += PAGE_SIZE, addr != end);
518 pte_unmap_unlock(orig_pte, ptl);
519 return addr != end;
520 }
521
522 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 void *private)
525 {
526 #ifdef CONFIG_HUGETLB_PAGE
527 int nid;
528 struct page *page;
529 spinlock_t *ptl;
530 pte_t entry;
531
532 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 entry = huge_ptep_get((pte_t *)pmd);
534 if (!pte_present(entry))
535 goto unlock;
536 page = pte_page(entry);
537 nid = page_to_nid(page);
538 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 goto unlock;
540 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 if (flags & (MPOL_MF_MOVE_ALL) ||
542 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 isolate_huge_page(page, private);
544 unlock:
545 spin_unlock(ptl);
546 #else
547 BUG();
548 #endif
549 }
550
551 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 unsigned long addr, unsigned long end,
553 const nodemask_t *nodes, unsigned long flags,
554 void *private)
555 {
556 pmd_t *pmd;
557 unsigned long next;
558
559 pmd = pmd_offset(pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 if (!pmd_present(*pmd))
563 continue;
564 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 flags, private);
567 continue;
568 }
569 split_huge_page_pmd(vma, addr, pmd);
570 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 continue;
572 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 flags, private))
574 return -EIO;
575 } while (pmd++, addr = next, addr != end);
576 return 0;
577 }
578
579 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 const nodemask_t *nodes, unsigned long flags,
582 void *private)
583 {
584 pud_t *pud;
585 unsigned long next;
586
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 continue;
592 if (pud_none_or_clear_bad(pud))
593 continue;
594 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 flags, private))
596 return -EIO;
597 } while (pud++, addr = next, addr != end);
598 return 0;
599 }
600
601 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end,
603 const nodemask_t *nodes, unsigned long flags,
604 void *private)
605 {
606 pgd_t *pgd;
607 unsigned long next;
608
609 pgd = pgd_offset(vma->vm_mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 flags, private))
616 return -EIO;
617 } while (pgd++, addr = next, addr != end);
618 return 0;
619 }
620
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
626 *
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
630 */
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633 {
634 int nr_updated;
635
636 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 if (nr_updated)
638 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639
640 return nr_updated;
641 }
642 #else
643 static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
645 {
646 return 0;
647 }
648 #endif /* CONFIG_NUMA_BALANCING */
649
650 /*
651 * Walk through page tables and collect pages to be migrated.
652 *
653 * If pages found in a given range are on a set of nodes (determined by
654 * @nodes and @flags,) it's isolated and queued to the pagelist which is
655 * passed via @private.)
656 */
657 static int
658 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 const nodemask_t *nodes, unsigned long flags, void *private)
660 {
661 int err = 0;
662 struct vm_area_struct *vma, *prev;
663
664 vma = find_vma(mm, start);
665 if (!vma)
666 return -EFAULT;
667 prev = NULL;
668 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 unsigned long endvma = vma->vm_end;
670
671 if (endvma > end)
672 endvma = end;
673 if (vma->vm_start > start)
674 start = vma->vm_start;
675
676 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 if (!vma->vm_next && vma->vm_end < end)
678 return -EFAULT;
679 if (prev && prev->vm_end < vma->vm_start)
680 return -EFAULT;
681 }
682
683 if (flags & MPOL_MF_LAZY) {
684 /* Similar to task_numa_work, skip inaccessible VMAs */
685 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
686 change_prot_numa(vma, start, endvma);
687 goto next;
688 }
689
690 if ((flags & MPOL_MF_STRICT) ||
691 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
692 vma_migratable(vma))) {
693
694 err = queue_pages_pgd_range(vma, start, endvma, nodes,
695 flags, private);
696 if (err)
697 break;
698 }
699 next:
700 prev = vma;
701 }
702 return err;
703 }
704
705 /*
706 * Apply policy to a single VMA
707 * This must be called with the mmap_sem held for writing.
708 */
709 static int vma_replace_policy(struct vm_area_struct *vma,
710 struct mempolicy *pol)
711 {
712 int err;
713 struct mempolicy *old;
714 struct mempolicy *new;
715
716 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
717 vma->vm_start, vma->vm_end, vma->vm_pgoff,
718 vma->vm_ops, vma->vm_file,
719 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
720
721 new = mpol_dup(pol);
722 if (IS_ERR(new))
723 return PTR_ERR(new);
724
725 if (vma->vm_ops && vma->vm_ops->set_policy) {
726 err = vma->vm_ops->set_policy(vma, new);
727 if (err)
728 goto err_out;
729 }
730
731 old = vma->vm_policy;
732 vma->vm_policy = new; /* protected by mmap_sem */
733 mpol_put(old);
734
735 return 0;
736 err_out:
737 mpol_put(new);
738 return err;
739 }
740
741 /* Step 2: apply policy to a range and do splits. */
742 static int mbind_range(struct mm_struct *mm, unsigned long start,
743 unsigned long end, struct mempolicy *new_pol)
744 {
745 struct vm_area_struct *next;
746 struct vm_area_struct *prev;
747 struct vm_area_struct *vma;
748 int err = 0;
749 pgoff_t pgoff;
750 unsigned long vmstart;
751 unsigned long vmend;
752
753 vma = find_vma(mm, start);
754 if (!vma || vma->vm_start > start)
755 return -EFAULT;
756
757 prev = vma->vm_prev;
758 if (start > vma->vm_start)
759 prev = vma;
760
761 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
762 next = vma->vm_next;
763 vmstart = max(start, vma->vm_start);
764 vmend = min(end, vma->vm_end);
765
766 if (mpol_equal(vma_policy(vma), new_pol))
767 continue;
768
769 pgoff = vma->vm_pgoff +
770 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
771 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
772 vma->anon_vma, vma->vm_file, pgoff,
773 new_pol);
774 if (prev) {
775 vma = prev;
776 next = vma->vm_next;
777 if (mpol_equal(vma_policy(vma), new_pol))
778 continue;
779 /* vma_merge() joined vma && vma->next, case 8 */
780 goto replace;
781 }
782 if (vma->vm_start != vmstart) {
783 err = split_vma(vma->vm_mm, vma, vmstart, 1);
784 if (err)
785 goto out;
786 }
787 if (vma->vm_end != vmend) {
788 err = split_vma(vma->vm_mm, vma, vmend, 0);
789 if (err)
790 goto out;
791 }
792 replace:
793 err = vma_replace_policy(vma, new_pol);
794 if (err)
795 goto out;
796 }
797
798 out:
799 return err;
800 }
801
802 /* Set the process memory policy */
803 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
804 nodemask_t *nodes)
805 {
806 struct mempolicy *new, *old;
807 NODEMASK_SCRATCH(scratch);
808 int ret;
809
810 if (!scratch)
811 return -ENOMEM;
812
813 new = mpol_new(mode, flags, nodes);
814 if (IS_ERR(new)) {
815 ret = PTR_ERR(new);
816 goto out;
817 }
818
819 task_lock(current);
820 ret = mpol_set_nodemask(new, nodes, scratch);
821 if (ret) {
822 task_unlock(current);
823 mpol_put(new);
824 goto out;
825 }
826 old = current->mempolicy;
827 current->mempolicy = new;
828 if (new && new->mode == MPOL_INTERLEAVE &&
829 nodes_weight(new->v.nodes))
830 current->il_next = first_node(new->v.nodes);
831 task_unlock(current);
832 mpol_put(old);
833 ret = 0;
834 out:
835 NODEMASK_SCRATCH_FREE(scratch);
836 return ret;
837 }
838
839 /*
840 * Return nodemask for policy for get_mempolicy() query
841 *
842 * Called with task's alloc_lock held
843 */
844 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
845 {
846 nodes_clear(*nodes);
847 if (p == &default_policy)
848 return;
849
850 switch (p->mode) {
851 case MPOL_BIND:
852 /* Fall through */
853 case MPOL_INTERLEAVE:
854 *nodes = p->v.nodes;
855 break;
856 case MPOL_PREFERRED:
857 if (!(p->flags & MPOL_F_LOCAL))
858 node_set(p->v.preferred_node, *nodes);
859 /* else return empty node mask for local allocation */
860 break;
861 default:
862 BUG();
863 }
864 }
865
866 static int lookup_node(struct mm_struct *mm, unsigned long addr)
867 {
868 struct page *p;
869 int err;
870
871 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
872 if (err >= 0) {
873 err = page_to_nid(p);
874 put_page(p);
875 }
876 return err;
877 }
878
879 /* Retrieve NUMA policy */
880 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
881 unsigned long addr, unsigned long flags)
882 {
883 int err;
884 struct mm_struct *mm = current->mm;
885 struct vm_area_struct *vma = NULL;
886 struct mempolicy *pol = current->mempolicy;
887
888 if (flags &
889 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
890 return -EINVAL;
891
892 if (flags & MPOL_F_MEMS_ALLOWED) {
893 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
894 return -EINVAL;
895 *policy = 0; /* just so it's initialized */
896 task_lock(current);
897 *nmask = cpuset_current_mems_allowed;
898 task_unlock(current);
899 return 0;
900 }
901
902 if (flags & MPOL_F_ADDR) {
903 /*
904 * Do NOT fall back to task policy if the
905 * vma/shared policy at addr is NULL. We
906 * want to return MPOL_DEFAULT in this case.
907 */
908 down_read(&mm->mmap_sem);
909 vma = find_vma_intersection(mm, addr, addr+1);
910 if (!vma) {
911 up_read(&mm->mmap_sem);
912 return -EFAULT;
913 }
914 if (vma->vm_ops && vma->vm_ops->get_policy)
915 pol = vma->vm_ops->get_policy(vma, addr);
916 else
917 pol = vma->vm_policy;
918 } else if (addr)
919 return -EINVAL;
920
921 if (!pol)
922 pol = &default_policy; /* indicates default behavior */
923
924 if (flags & MPOL_F_NODE) {
925 if (flags & MPOL_F_ADDR) {
926 err = lookup_node(mm, addr);
927 if (err < 0)
928 goto out;
929 *policy = err;
930 } else if (pol == current->mempolicy &&
931 pol->mode == MPOL_INTERLEAVE) {
932 *policy = current->il_next;
933 } else {
934 err = -EINVAL;
935 goto out;
936 }
937 } else {
938 *policy = pol == &default_policy ? MPOL_DEFAULT :
939 pol->mode;
940 /*
941 * Internal mempolicy flags must be masked off before exposing
942 * the policy to userspace.
943 */
944 *policy |= (pol->flags & MPOL_MODE_FLAGS);
945 }
946
947 if (vma) {
948 up_read(&current->mm->mmap_sem);
949 vma = NULL;
950 }
951
952 err = 0;
953 if (nmask) {
954 if (mpol_store_user_nodemask(pol)) {
955 *nmask = pol->w.user_nodemask;
956 } else {
957 task_lock(current);
958 get_policy_nodemask(pol, nmask);
959 task_unlock(current);
960 }
961 }
962
963 out:
964 mpol_cond_put(pol);
965 if (vma)
966 up_read(&current->mm->mmap_sem);
967 return err;
968 }
969
970 #ifdef CONFIG_MIGRATION
971 /*
972 * page migration
973 */
974 static void migrate_page_add(struct page *page, struct list_head *pagelist,
975 unsigned long flags)
976 {
977 /*
978 * Avoid migrating a page that is shared with others.
979 */
980 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
981 if (!isolate_lru_page(page)) {
982 list_add_tail(&page->lru, pagelist);
983 inc_zone_page_state(page, NR_ISOLATED_ANON +
984 page_is_file_cache(page));
985 }
986 }
987 }
988
989 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
990 {
991 if (PageHuge(page))
992 return alloc_huge_page_node(page_hstate(compound_head(page)),
993 node);
994 else
995 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
996 }
997
998 /*
999 * Migrate pages from one node to a target node.
1000 * Returns error or the number of pages not migrated.
1001 */
1002 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1003 int flags)
1004 {
1005 nodemask_t nmask;
1006 LIST_HEAD(pagelist);
1007 int err = 0;
1008
1009 nodes_clear(nmask);
1010 node_set(source, nmask);
1011
1012 /*
1013 * This does not "check" the range but isolates all pages that
1014 * need migration. Between passing in the full user address
1015 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1016 */
1017 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1018 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1019 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1020
1021 if (!list_empty(&pagelist)) {
1022 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1023 MIGRATE_SYNC, MR_SYSCALL);
1024 if (err)
1025 putback_movable_pages(&pagelist);
1026 }
1027
1028 return err;
1029 }
1030
1031 /*
1032 * Move pages between the two nodesets so as to preserve the physical
1033 * layout as much as possible.
1034 *
1035 * Returns the number of page that could not be moved.
1036 */
1037 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1038 const nodemask_t *to, int flags)
1039 {
1040 int busy = 0;
1041 int err;
1042 nodemask_t tmp;
1043
1044 err = migrate_prep();
1045 if (err)
1046 return err;
1047
1048 down_read(&mm->mmap_sem);
1049
1050 err = migrate_vmas(mm, from, to, flags);
1051 if (err)
1052 goto out;
1053
1054 /*
1055 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1056 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1057 * bit in 'tmp', and return that <source, dest> pair for migration.
1058 * The pair of nodemasks 'to' and 'from' define the map.
1059 *
1060 * If no pair of bits is found that way, fallback to picking some
1061 * pair of 'source' and 'dest' bits that are not the same. If the
1062 * 'source' and 'dest' bits are the same, this represents a node
1063 * that will be migrating to itself, so no pages need move.
1064 *
1065 * If no bits are left in 'tmp', or if all remaining bits left
1066 * in 'tmp' correspond to the same bit in 'to', return false
1067 * (nothing left to migrate).
1068 *
1069 * This lets us pick a pair of nodes to migrate between, such that
1070 * if possible the dest node is not already occupied by some other
1071 * source node, minimizing the risk of overloading the memory on a
1072 * node that would happen if we migrated incoming memory to a node
1073 * before migrating outgoing memory source that same node.
1074 *
1075 * A single scan of tmp is sufficient. As we go, we remember the
1076 * most recent <s, d> pair that moved (s != d). If we find a pair
1077 * that not only moved, but what's better, moved to an empty slot
1078 * (d is not set in tmp), then we break out then, with that pair.
1079 * Otherwise when we finish scanning from_tmp, we at least have the
1080 * most recent <s, d> pair that moved. If we get all the way through
1081 * the scan of tmp without finding any node that moved, much less
1082 * moved to an empty node, then there is nothing left worth migrating.
1083 */
1084
1085 tmp = *from;
1086 while (!nodes_empty(tmp)) {
1087 int s,d;
1088 int source = NUMA_NO_NODE;
1089 int dest = 0;
1090
1091 for_each_node_mask(s, tmp) {
1092
1093 /*
1094 * do_migrate_pages() tries to maintain the relative
1095 * node relationship of the pages established between
1096 * threads and memory areas.
1097 *
1098 * However if the number of source nodes is not equal to
1099 * the number of destination nodes we can not preserve
1100 * this node relative relationship. In that case, skip
1101 * copying memory from a node that is in the destination
1102 * mask.
1103 *
1104 * Example: [2,3,4] -> [3,4,5] moves everything.
1105 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1106 */
1107
1108 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1109 (node_isset(s, *to)))
1110 continue;
1111
1112 d = node_remap(s, *from, *to);
1113 if (s == d)
1114 continue;
1115
1116 source = s; /* Node moved. Memorize */
1117 dest = d;
1118
1119 /* dest not in remaining from nodes? */
1120 if (!node_isset(dest, tmp))
1121 break;
1122 }
1123 if (source == NUMA_NO_NODE)
1124 break;
1125
1126 node_clear(source, tmp);
1127 err = migrate_to_node(mm, source, dest, flags);
1128 if (err > 0)
1129 busy += err;
1130 if (err < 0)
1131 break;
1132 }
1133 out:
1134 up_read(&mm->mmap_sem);
1135 if (err < 0)
1136 return err;
1137 return busy;
1138
1139 }
1140
1141 /*
1142 * Allocate a new page for page migration based on vma policy.
1143 * Start by assuming the page is mapped by the same vma as contains @start.
1144 * Search forward from there, if not. N.B., this assumes that the
1145 * list of pages handed to migrate_pages()--which is how we get here--
1146 * is in virtual address order.
1147 */
1148 static struct page *new_page(struct page *page, unsigned long start, int **x)
1149 {
1150 struct vm_area_struct *vma;
1151 unsigned long uninitialized_var(address);
1152
1153 vma = find_vma(current->mm, start);
1154 while (vma) {
1155 address = page_address_in_vma(page, vma);
1156 if (address != -EFAULT)
1157 break;
1158 vma = vma->vm_next;
1159 }
1160
1161 if (PageHuge(page)) {
1162 BUG_ON(!vma);
1163 return alloc_huge_page_noerr(vma, address, 1);
1164 }
1165 /*
1166 * if !vma, alloc_page_vma() will use task or system default policy
1167 */
1168 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1169 }
1170 #else
1171
1172 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1173 unsigned long flags)
1174 {
1175 }
1176
1177 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1178 const nodemask_t *to, int flags)
1179 {
1180 return -ENOSYS;
1181 }
1182
1183 static struct page *new_page(struct page *page, unsigned long start, int **x)
1184 {
1185 return NULL;
1186 }
1187 #endif
1188
1189 static long do_mbind(unsigned long start, unsigned long len,
1190 unsigned short mode, unsigned short mode_flags,
1191 nodemask_t *nmask, unsigned long flags)
1192 {
1193 struct mm_struct *mm = current->mm;
1194 struct mempolicy *new;
1195 unsigned long end;
1196 int err;
1197 LIST_HEAD(pagelist);
1198
1199 if (flags & ~(unsigned long)MPOL_MF_VALID)
1200 return -EINVAL;
1201 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1202 return -EPERM;
1203
1204 if (start & ~PAGE_MASK)
1205 return -EINVAL;
1206
1207 if (mode == MPOL_DEFAULT)
1208 flags &= ~MPOL_MF_STRICT;
1209
1210 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1211 end = start + len;
1212
1213 if (end < start)
1214 return -EINVAL;
1215 if (end == start)
1216 return 0;
1217
1218 new = mpol_new(mode, mode_flags, nmask);
1219 if (IS_ERR(new))
1220 return PTR_ERR(new);
1221
1222 if (flags & MPOL_MF_LAZY)
1223 new->flags |= MPOL_F_MOF;
1224
1225 /*
1226 * If we are using the default policy then operation
1227 * on discontinuous address spaces is okay after all
1228 */
1229 if (!new)
1230 flags |= MPOL_MF_DISCONTIG_OK;
1231
1232 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1233 start, start + len, mode, mode_flags,
1234 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1235
1236 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1237
1238 err = migrate_prep();
1239 if (err)
1240 goto mpol_out;
1241 }
1242 {
1243 NODEMASK_SCRATCH(scratch);
1244 if (scratch) {
1245 down_write(&mm->mmap_sem);
1246 task_lock(current);
1247 err = mpol_set_nodemask(new, nmask, scratch);
1248 task_unlock(current);
1249 if (err)
1250 up_write(&mm->mmap_sem);
1251 } else
1252 err = -ENOMEM;
1253 NODEMASK_SCRATCH_FREE(scratch);
1254 }
1255 if (err)
1256 goto mpol_out;
1257
1258 err = queue_pages_range(mm, start, end, nmask,
1259 flags | MPOL_MF_INVERT, &pagelist);
1260 if (!err)
1261 err = mbind_range(mm, start, end, new);
1262
1263 if (!err) {
1264 int nr_failed = 0;
1265
1266 if (!list_empty(&pagelist)) {
1267 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1268 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1269 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1270 if (nr_failed)
1271 putback_movable_pages(&pagelist);
1272 }
1273
1274 if (nr_failed && (flags & MPOL_MF_STRICT))
1275 err = -EIO;
1276 } else
1277 putback_movable_pages(&pagelist);
1278
1279 up_write(&mm->mmap_sem);
1280 mpol_out:
1281 mpol_put(new);
1282 return err;
1283 }
1284
1285 /*
1286 * User space interface with variable sized bitmaps for nodelists.
1287 */
1288
1289 /* Copy a node mask from user space. */
1290 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1291 unsigned long maxnode)
1292 {
1293 unsigned long k;
1294 unsigned long nlongs;
1295 unsigned long endmask;
1296
1297 --maxnode;
1298 nodes_clear(*nodes);
1299 if (maxnode == 0 || !nmask)
1300 return 0;
1301 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1302 return -EINVAL;
1303
1304 nlongs = BITS_TO_LONGS(maxnode);
1305 if ((maxnode % BITS_PER_LONG) == 0)
1306 endmask = ~0UL;
1307 else
1308 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1309
1310 /* When the user specified more nodes than supported just check
1311 if the non supported part is all zero. */
1312 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1313 if (nlongs > PAGE_SIZE/sizeof(long))
1314 return -EINVAL;
1315 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1316 unsigned long t;
1317 if (get_user(t, nmask + k))
1318 return -EFAULT;
1319 if (k == nlongs - 1) {
1320 if (t & endmask)
1321 return -EINVAL;
1322 } else if (t)
1323 return -EINVAL;
1324 }
1325 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1326 endmask = ~0UL;
1327 }
1328
1329 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1330 return -EFAULT;
1331 nodes_addr(*nodes)[nlongs-1] &= endmask;
1332 return 0;
1333 }
1334
1335 /* Copy a kernel node mask to user space */
1336 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1337 nodemask_t *nodes)
1338 {
1339 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1340 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1341
1342 if (copy > nbytes) {
1343 if (copy > PAGE_SIZE)
1344 return -EINVAL;
1345 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1346 return -EFAULT;
1347 copy = nbytes;
1348 }
1349 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1350 }
1351
1352 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1353 unsigned long, mode, const unsigned long __user *, nmask,
1354 unsigned long, maxnode, unsigned, flags)
1355 {
1356 nodemask_t nodes;
1357 int err;
1358 unsigned short mode_flags;
1359
1360 mode_flags = mode & MPOL_MODE_FLAGS;
1361 mode &= ~MPOL_MODE_FLAGS;
1362 if (mode >= MPOL_MAX)
1363 return -EINVAL;
1364 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1365 (mode_flags & MPOL_F_RELATIVE_NODES))
1366 return -EINVAL;
1367 err = get_nodes(&nodes, nmask, maxnode);
1368 if (err)
1369 return err;
1370 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1371 }
1372
1373 /* Set the process memory policy */
1374 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1375 unsigned long, maxnode)
1376 {
1377 int err;
1378 nodemask_t nodes;
1379 unsigned short flags;
1380
1381 flags = mode & MPOL_MODE_FLAGS;
1382 mode &= ~MPOL_MODE_FLAGS;
1383 if ((unsigned int)mode >= MPOL_MAX)
1384 return -EINVAL;
1385 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1386 return -EINVAL;
1387 err = get_nodes(&nodes, nmask, maxnode);
1388 if (err)
1389 return err;
1390 return do_set_mempolicy(mode, flags, &nodes);
1391 }
1392
1393 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1394 const unsigned long __user *, old_nodes,
1395 const unsigned long __user *, new_nodes)
1396 {
1397 const struct cred *cred = current_cred(), *tcred;
1398 struct mm_struct *mm = NULL;
1399 struct task_struct *task;
1400 nodemask_t task_nodes;
1401 int err;
1402 nodemask_t *old;
1403 nodemask_t *new;
1404 NODEMASK_SCRATCH(scratch);
1405
1406 if (!scratch)
1407 return -ENOMEM;
1408
1409 old = &scratch->mask1;
1410 new = &scratch->mask2;
1411
1412 err = get_nodes(old, old_nodes, maxnode);
1413 if (err)
1414 goto out;
1415
1416 err = get_nodes(new, new_nodes, maxnode);
1417 if (err)
1418 goto out;
1419
1420 /* Find the mm_struct */
1421 rcu_read_lock();
1422 task = pid ? find_task_by_vpid(pid) : current;
1423 if (!task) {
1424 rcu_read_unlock();
1425 err = -ESRCH;
1426 goto out;
1427 }
1428 get_task_struct(task);
1429
1430 err = -EINVAL;
1431
1432 /*
1433 * Check if this process has the right to modify the specified
1434 * process. The right exists if the process has administrative
1435 * capabilities, superuser privileges or the same
1436 * userid as the target process.
1437 */
1438 tcred = __task_cred(task);
1439 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1440 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1441 !capable(CAP_SYS_NICE)) {
1442 rcu_read_unlock();
1443 err = -EPERM;
1444 goto out_put;
1445 }
1446 rcu_read_unlock();
1447
1448 task_nodes = cpuset_mems_allowed(task);
1449 /* Is the user allowed to access the target nodes? */
1450 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1451 err = -EPERM;
1452 goto out_put;
1453 }
1454
1455 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1456 err = -EINVAL;
1457 goto out_put;
1458 }
1459
1460 err = security_task_movememory(task);
1461 if (err)
1462 goto out_put;
1463
1464 mm = get_task_mm(task);
1465 put_task_struct(task);
1466
1467 if (!mm) {
1468 err = -EINVAL;
1469 goto out;
1470 }
1471
1472 err = do_migrate_pages(mm, old, new,
1473 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1474
1475 mmput(mm);
1476 out:
1477 NODEMASK_SCRATCH_FREE(scratch);
1478
1479 return err;
1480
1481 out_put:
1482 put_task_struct(task);
1483 goto out;
1484
1485 }
1486
1487
1488 /* Retrieve NUMA policy */
1489 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1490 unsigned long __user *, nmask, unsigned long, maxnode,
1491 unsigned long, addr, unsigned long, flags)
1492 {
1493 int err;
1494 int uninitialized_var(pval);
1495 nodemask_t nodes;
1496
1497 if (nmask != NULL && maxnode < MAX_NUMNODES)
1498 return -EINVAL;
1499
1500 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1501
1502 if (err)
1503 return err;
1504
1505 if (policy && put_user(pval, policy))
1506 return -EFAULT;
1507
1508 if (nmask)
1509 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1510
1511 return err;
1512 }
1513
1514 #ifdef CONFIG_COMPAT
1515
1516 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1517 compat_ulong_t __user *, nmask,
1518 compat_ulong_t, maxnode,
1519 compat_ulong_t, addr, compat_ulong_t, flags)
1520 {
1521 long err;
1522 unsigned long __user *nm = NULL;
1523 unsigned long nr_bits, alloc_size;
1524 DECLARE_BITMAP(bm, MAX_NUMNODES);
1525
1526 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1528
1529 if (nmask)
1530 nm = compat_alloc_user_space(alloc_size);
1531
1532 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1533
1534 if (!err && nmask) {
1535 unsigned long copy_size;
1536 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1537 err = copy_from_user(bm, nm, copy_size);
1538 /* ensure entire bitmap is zeroed */
1539 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1540 err |= compat_put_bitmap(nmask, bm, nr_bits);
1541 }
1542
1543 return err;
1544 }
1545
1546 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1547 compat_ulong_t, maxnode)
1548 {
1549 long err = 0;
1550 unsigned long __user *nm = NULL;
1551 unsigned long nr_bits, alloc_size;
1552 DECLARE_BITMAP(bm, MAX_NUMNODES);
1553
1554 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1555 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1556
1557 if (nmask) {
1558 err = compat_get_bitmap(bm, nmask, nr_bits);
1559 nm = compat_alloc_user_space(alloc_size);
1560 err |= copy_to_user(nm, bm, alloc_size);
1561 }
1562
1563 if (err)
1564 return -EFAULT;
1565
1566 return sys_set_mempolicy(mode, nm, nr_bits+1);
1567 }
1568
1569 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1570 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1571 compat_ulong_t, maxnode, compat_ulong_t, flags)
1572 {
1573 long err = 0;
1574 unsigned long __user *nm = NULL;
1575 unsigned long nr_bits, alloc_size;
1576 nodemask_t bm;
1577
1578 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1579 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1580
1581 if (nmask) {
1582 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1583 nm = compat_alloc_user_space(alloc_size);
1584 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1585 }
1586
1587 if (err)
1588 return -EFAULT;
1589
1590 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1591 }
1592
1593 #endif
1594
1595 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1596 unsigned long addr)
1597 {
1598 struct mempolicy *pol = NULL;
1599
1600 if (vma) {
1601 if (vma->vm_ops && vma->vm_ops->get_policy) {
1602 pol = vma->vm_ops->get_policy(vma, addr);
1603 } else if (vma->vm_policy) {
1604 pol = vma->vm_policy;
1605
1606 /*
1607 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1608 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1609 * count on these policies which will be dropped by
1610 * mpol_cond_put() later
1611 */
1612 if (mpol_needs_cond_ref(pol))
1613 mpol_get(pol);
1614 }
1615 }
1616
1617 return pol;
1618 }
1619
1620 /*
1621 * get_vma_policy(@vma, @addr)
1622 * @vma: virtual memory area whose policy is sought
1623 * @addr: address in @vma for shared policy lookup
1624 *
1625 * Returns effective policy for a VMA at specified address.
1626 * Falls back to current->mempolicy or system default policy, as necessary.
1627 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1628 * count--added by the get_policy() vm_op, as appropriate--to protect against
1629 * freeing by another task. It is the caller's responsibility to free the
1630 * extra reference for shared policies.
1631 */
1632 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1633 unsigned long addr)
1634 {
1635 struct mempolicy *pol = __get_vma_policy(vma, addr);
1636
1637 if (!pol)
1638 pol = get_task_policy(current);
1639
1640 return pol;
1641 }
1642
1643 bool vma_policy_mof(struct vm_area_struct *vma)
1644 {
1645 struct mempolicy *pol;
1646
1647 if (vma->vm_ops && vma->vm_ops->get_policy) {
1648 bool ret = false;
1649
1650 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1651 if (pol && (pol->flags & MPOL_F_MOF))
1652 ret = true;
1653 mpol_cond_put(pol);
1654
1655 return ret;
1656 }
1657
1658 pol = vma->vm_policy;
1659 if (!pol)
1660 pol = get_task_policy(current);
1661
1662 return pol->flags & MPOL_F_MOF;
1663 }
1664
1665 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1666 {
1667 enum zone_type dynamic_policy_zone = policy_zone;
1668
1669 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1670
1671 /*
1672 * if policy->v.nodes has movable memory only,
1673 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1674 *
1675 * policy->v.nodes is intersect with node_states[N_MEMORY].
1676 * so if the following test faile, it implies
1677 * policy->v.nodes has movable memory only.
1678 */
1679 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1680 dynamic_policy_zone = ZONE_MOVABLE;
1681
1682 return zone >= dynamic_policy_zone;
1683 }
1684
1685 /*
1686 * Return a nodemask representing a mempolicy for filtering nodes for
1687 * page allocation
1688 */
1689 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1690 {
1691 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1692 if (unlikely(policy->mode == MPOL_BIND) &&
1693 apply_policy_zone(policy, gfp_zone(gfp)) &&
1694 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1695 return &policy->v.nodes;
1696
1697 return NULL;
1698 }
1699
1700 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1701 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1702 int nd)
1703 {
1704 switch (policy->mode) {
1705 case MPOL_PREFERRED:
1706 if (!(policy->flags & MPOL_F_LOCAL))
1707 nd = policy->v.preferred_node;
1708 break;
1709 case MPOL_BIND:
1710 /*
1711 * Normally, MPOL_BIND allocations are node-local within the
1712 * allowed nodemask. However, if __GFP_THISNODE is set and the
1713 * current node isn't part of the mask, we use the zonelist for
1714 * the first node in the mask instead.
1715 */
1716 if (unlikely(gfp & __GFP_THISNODE) &&
1717 unlikely(!node_isset(nd, policy->v.nodes)))
1718 nd = first_node(policy->v.nodes);
1719 break;
1720 default:
1721 BUG();
1722 }
1723 return node_zonelist(nd, gfp);
1724 }
1725
1726 /* Do dynamic interleaving for a process */
1727 static unsigned interleave_nodes(struct mempolicy *policy)
1728 {
1729 unsigned nid, next;
1730 struct task_struct *me = current;
1731
1732 nid = me->il_next;
1733 next = next_node(nid, policy->v.nodes);
1734 if (next >= MAX_NUMNODES)
1735 next = first_node(policy->v.nodes);
1736 if (next < MAX_NUMNODES)
1737 me->il_next = next;
1738 return nid;
1739 }
1740
1741 /*
1742 * Depending on the memory policy provide a node from which to allocate the
1743 * next slab entry.
1744 */
1745 unsigned int mempolicy_slab_node(void)
1746 {
1747 struct mempolicy *policy;
1748 int node = numa_mem_id();
1749
1750 if (in_interrupt())
1751 return node;
1752
1753 policy = current->mempolicy;
1754 if (!policy || policy->flags & MPOL_F_LOCAL)
1755 return node;
1756
1757 switch (policy->mode) {
1758 case MPOL_PREFERRED:
1759 /*
1760 * handled MPOL_F_LOCAL above
1761 */
1762 return policy->v.preferred_node;
1763
1764 case MPOL_INTERLEAVE:
1765 return interleave_nodes(policy);
1766
1767 case MPOL_BIND: {
1768 /*
1769 * Follow bind policy behavior and start allocation at the
1770 * first node.
1771 */
1772 struct zonelist *zonelist;
1773 struct zone *zone;
1774 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1775 zonelist = &NODE_DATA(node)->node_zonelists[0];
1776 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1777 &policy->v.nodes,
1778 &zone);
1779 return zone ? zone->node : node;
1780 }
1781
1782 default:
1783 BUG();
1784 }
1785 }
1786
1787 /* Do static interleaving for a VMA with known offset. */
1788 static unsigned offset_il_node(struct mempolicy *pol,
1789 struct vm_area_struct *vma, unsigned long off)
1790 {
1791 unsigned nnodes = nodes_weight(pol->v.nodes);
1792 unsigned target;
1793 int c;
1794 int nid = NUMA_NO_NODE;
1795
1796 if (!nnodes)
1797 return numa_node_id();
1798 target = (unsigned int)off % nnodes;
1799 c = 0;
1800 do {
1801 nid = next_node(nid, pol->v.nodes);
1802 c++;
1803 } while (c <= target);
1804 return nid;
1805 }
1806
1807 /* Determine a node number for interleave */
1808 static inline unsigned interleave_nid(struct mempolicy *pol,
1809 struct vm_area_struct *vma, unsigned long addr, int shift)
1810 {
1811 if (vma) {
1812 unsigned long off;
1813
1814 /*
1815 * for small pages, there is no difference between
1816 * shift and PAGE_SHIFT, so the bit-shift is safe.
1817 * for huge pages, since vm_pgoff is in units of small
1818 * pages, we need to shift off the always 0 bits to get
1819 * a useful offset.
1820 */
1821 BUG_ON(shift < PAGE_SHIFT);
1822 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1823 off += (addr - vma->vm_start) >> shift;
1824 return offset_il_node(pol, vma, off);
1825 } else
1826 return interleave_nodes(pol);
1827 }
1828
1829 /*
1830 * Return the bit number of a random bit set in the nodemask.
1831 * (returns NUMA_NO_NODE if nodemask is empty)
1832 */
1833 int node_random(const nodemask_t *maskp)
1834 {
1835 int w, bit = NUMA_NO_NODE;
1836
1837 w = nodes_weight(*maskp);
1838 if (w)
1839 bit = bitmap_ord_to_pos(maskp->bits,
1840 get_random_int() % w, MAX_NUMNODES);
1841 return bit;
1842 }
1843
1844 #ifdef CONFIG_HUGETLBFS
1845 /*
1846 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1847 * @vma: virtual memory area whose policy is sought
1848 * @addr: address in @vma for shared policy lookup and interleave policy
1849 * @gfp_flags: for requested zone
1850 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1851 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1852 *
1853 * Returns a zonelist suitable for a huge page allocation and a pointer
1854 * to the struct mempolicy for conditional unref after allocation.
1855 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1856 * @nodemask for filtering the zonelist.
1857 *
1858 * Must be protected by read_mems_allowed_begin()
1859 */
1860 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1861 gfp_t gfp_flags, struct mempolicy **mpol,
1862 nodemask_t **nodemask)
1863 {
1864 struct zonelist *zl;
1865
1866 *mpol = get_vma_policy(vma, addr);
1867 *nodemask = NULL; /* assume !MPOL_BIND */
1868
1869 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1870 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1871 huge_page_shift(hstate_vma(vma))), gfp_flags);
1872 } else {
1873 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1874 if ((*mpol)->mode == MPOL_BIND)
1875 *nodemask = &(*mpol)->v.nodes;
1876 }
1877 return zl;
1878 }
1879
1880 /*
1881 * init_nodemask_of_mempolicy
1882 *
1883 * If the current task's mempolicy is "default" [NULL], return 'false'
1884 * to indicate default policy. Otherwise, extract the policy nodemask
1885 * for 'bind' or 'interleave' policy into the argument nodemask, or
1886 * initialize the argument nodemask to contain the single node for
1887 * 'preferred' or 'local' policy and return 'true' to indicate presence
1888 * of non-default mempolicy.
1889 *
1890 * We don't bother with reference counting the mempolicy [mpol_get/put]
1891 * because the current task is examining it's own mempolicy and a task's
1892 * mempolicy is only ever changed by the task itself.
1893 *
1894 * N.B., it is the caller's responsibility to free a returned nodemask.
1895 */
1896 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1897 {
1898 struct mempolicy *mempolicy;
1899 int nid;
1900
1901 if (!(mask && current->mempolicy))
1902 return false;
1903
1904 task_lock(current);
1905 mempolicy = current->mempolicy;
1906 switch (mempolicy->mode) {
1907 case MPOL_PREFERRED:
1908 if (mempolicy->flags & MPOL_F_LOCAL)
1909 nid = numa_node_id();
1910 else
1911 nid = mempolicy->v.preferred_node;
1912 init_nodemask_of_node(mask, nid);
1913 break;
1914
1915 case MPOL_BIND:
1916 /* Fall through */
1917 case MPOL_INTERLEAVE:
1918 *mask = mempolicy->v.nodes;
1919 break;
1920
1921 default:
1922 BUG();
1923 }
1924 task_unlock(current);
1925
1926 return true;
1927 }
1928 #endif
1929
1930 /*
1931 * mempolicy_nodemask_intersects
1932 *
1933 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1934 * policy. Otherwise, check for intersection between mask and the policy
1935 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1936 * policy, always return true since it may allocate elsewhere on fallback.
1937 *
1938 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1939 */
1940 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1941 const nodemask_t *mask)
1942 {
1943 struct mempolicy *mempolicy;
1944 bool ret = true;
1945
1946 if (!mask)
1947 return ret;
1948 task_lock(tsk);
1949 mempolicy = tsk->mempolicy;
1950 if (!mempolicy)
1951 goto out;
1952
1953 switch (mempolicy->mode) {
1954 case MPOL_PREFERRED:
1955 /*
1956 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1957 * allocate from, they may fallback to other nodes when oom.
1958 * Thus, it's possible for tsk to have allocated memory from
1959 * nodes in mask.
1960 */
1961 break;
1962 case MPOL_BIND:
1963 case MPOL_INTERLEAVE:
1964 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1965 break;
1966 default:
1967 BUG();
1968 }
1969 out:
1970 task_unlock(tsk);
1971 return ret;
1972 }
1973
1974 /* Allocate a page in interleaved policy.
1975 Own path because it needs to do special accounting. */
1976 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1977 unsigned nid)
1978 {
1979 struct zonelist *zl;
1980 struct page *page;
1981
1982 zl = node_zonelist(nid, gfp);
1983 page = __alloc_pages(gfp, order, zl);
1984 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1985 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1986 return page;
1987 }
1988
1989 /**
1990 * alloc_pages_vma - Allocate a page for a VMA.
1991 *
1992 * @gfp:
1993 * %GFP_USER user allocation.
1994 * %GFP_KERNEL kernel allocations,
1995 * %GFP_HIGHMEM highmem/user allocations,
1996 * %GFP_FS allocation should not call back into a file system.
1997 * %GFP_ATOMIC don't sleep.
1998 *
1999 * @order:Order of the GFP allocation.
2000 * @vma: Pointer to VMA or NULL if not available.
2001 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2002 *
2003 * This function allocates a page from the kernel page pool and applies
2004 * a NUMA policy associated with the VMA or the current process.
2005 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2006 * mm_struct of the VMA to prevent it from going away. Should be used for
2007 * all allocations for pages that will be mapped into
2008 * user space. Returns NULL when no page can be allocated.
2009 *
2010 * Should be called with the mm_sem of the vma hold.
2011 */
2012 struct page *
2013 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2014 unsigned long addr, int node)
2015 {
2016 struct mempolicy *pol;
2017 struct page *page;
2018 unsigned int cpuset_mems_cookie;
2019
2020 retry_cpuset:
2021 pol = get_vma_policy(vma, addr);
2022 cpuset_mems_cookie = read_mems_allowed_begin();
2023
2024 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2025 unsigned nid;
2026
2027 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2028 mpol_cond_put(pol);
2029 page = alloc_page_interleave(gfp, order, nid);
2030 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2031 goto retry_cpuset;
2032
2033 return page;
2034 }
2035 page = __alloc_pages_nodemask(gfp, order,
2036 policy_zonelist(gfp, pol, node),
2037 policy_nodemask(gfp, pol));
2038 mpol_cond_put(pol);
2039 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2040 goto retry_cpuset;
2041 return page;
2042 }
2043
2044 /**
2045 * alloc_pages_current - Allocate pages.
2046 *
2047 * @gfp:
2048 * %GFP_USER user allocation,
2049 * %GFP_KERNEL kernel allocation,
2050 * %GFP_HIGHMEM highmem allocation,
2051 * %GFP_FS don't call back into a file system.
2052 * %GFP_ATOMIC don't sleep.
2053 * @order: Power of two of allocation size in pages. 0 is a single page.
2054 *
2055 * Allocate a page from the kernel page pool. When not in
2056 * interrupt context and apply the current process NUMA policy.
2057 * Returns NULL when no page can be allocated.
2058 *
2059 * Don't call cpuset_update_task_memory_state() unless
2060 * 1) it's ok to take cpuset_sem (can WAIT), and
2061 * 2) allocating for current task (not interrupt).
2062 */
2063 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2064 {
2065 struct mempolicy *pol = &default_policy;
2066 struct page *page;
2067 unsigned int cpuset_mems_cookie;
2068
2069 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2070 pol = get_task_policy(current);
2071
2072 retry_cpuset:
2073 cpuset_mems_cookie = read_mems_allowed_begin();
2074
2075 /*
2076 * No reference counting needed for current->mempolicy
2077 * nor system default_policy
2078 */
2079 if (pol->mode == MPOL_INTERLEAVE)
2080 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2081 else
2082 page = __alloc_pages_nodemask(gfp, order,
2083 policy_zonelist(gfp, pol, numa_node_id()),
2084 policy_nodemask(gfp, pol));
2085
2086 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2087 goto retry_cpuset;
2088
2089 return page;
2090 }
2091 EXPORT_SYMBOL(alloc_pages_current);
2092
2093 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2094 {
2095 struct mempolicy *pol = mpol_dup(vma_policy(src));
2096
2097 if (IS_ERR(pol))
2098 return PTR_ERR(pol);
2099 dst->vm_policy = pol;
2100 return 0;
2101 }
2102
2103 /*
2104 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2105 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2106 * with the mems_allowed returned by cpuset_mems_allowed(). This
2107 * keeps mempolicies cpuset relative after its cpuset moves. See
2108 * further kernel/cpuset.c update_nodemask().
2109 *
2110 * current's mempolicy may be rebinded by the other task(the task that changes
2111 * cpuset's mems), so we needn't do rebind work for current task.
2112 */
2113
2114 /* Slow path of a mempolicy duplicate */
2115 struct mempolicy *__mpol_dup(struct mempolicy *old)
2116 {
2117 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2118
2119 if (!new)
2120 return ERR_PTR(-ENOMEM);
2121
2122 /* task's mempolicy is protected by alloc_lock */
2123 if (old == current->mempolicy) {
2124 task_lock(current);
2125 *new = *old;
2126 task_unlock(current);
2127 } else
2128 *new = *old;
2129
2130 if (current_cpuset_is_being_rebound()) {
2131 nodemask_t mems = cpuset_mems_allowed(current);
2132 if (new->flags & MPOL_F_REBINDING)
2133 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2134 else
2135 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2136 }
2137 atomic_set(&new->refcnt, 1);
2138 return new;
2139 }
2140
2141 /* Slow path of a mempolicy comparison */
2142 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2143 {
2144 if (!a || !b)
2145 return false;
2146 if (a->mode != b->mode)
2147 return false;
2148 if (a->flags != b->flags)
2149 return false;
2150 if (mpol_store_user_nodemask(a))
2151 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2152 return false;
2153
2154 switch (a->mode) {
2155 case MPOL_BIND:
2156 /* Fall through */
2157 case MPOL_INTERLEAVE:
2158 return !!nodes_equal(a->v.nodes, b->v.nodes);
2159 case MPOL_PREFERRED:
2160 return a->v.preferred_node == b->v.preferred_node;
2161 default:
2162 BUG();
2163 return false;
2164 }
2165 }
2166
2167 /*
2168 * Shared memory backing store policy support.
2169 *
2170 * Remember policies even when nobody has shared memory mapped.
2171 * The policies are kept in Red-Black tree linked from the inode.
2172 * They are protected by the sp->lock spinlock, which should be held
2173 * for any accesses to the tree.
2174 */
2175
2176 /* lookup first element intersecting start-end */
2177 /* Caller holds sp->lock */
2178 static struct sp_node *
2179 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2180 {
2181 struct rb_node *n = sp->root.rb_node;
2182
2183 while (n) {
2184 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2185
2186 if (start >= p->end)
2187 n = n->rb_right;
2188 else if (end <= p->start)
2189 n = n->rb_left;
2190 else
2191 break;
2192 }
2193 if (!n)
2194 return NULL;
2195 for (;;) {
2196 struct sp_node *w = NULL;
2197 struct rb_node *prev = rb_prev(n);
2198 if (!prev)
2199 break;
2200 w = rb_entry(prev, struct sp_node, nd);
2201 if (w->end <= start)
2202 break;
2203 n = prev;
2204 }
2205 return rb_entry(n, struct sp_node, nd);
2206 }
2207
2208 /* Insert a new shared policy into the list. */
2209 /* Caller holds sp->lock */
2210 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2211 {
2212 struct rb_node **p = &sp->root.rb_node;
2213 struct rb_node *parent = NULL;
2214 struct sp_node *nd;
2215
2216 while (*p) {
2217 parent = *p;
2218 nd = rb_entry(parent, struct sp_node, nd);
2219 if (new->start < nd->start)
2220 p = &(*p)->rb_left;
2221 else if (new->end > nd->end)
2222 p = &(*p)->rb_right;
2223 else
2224 BUG();
2225 }
2226 rb_link_node(&new->nd, parent, p);
2227 rb_insert_color(&new->nd, &sp->root);
2228 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2229 new->policy ? new->policy->mode : 0);
2230 }
2231
2232 /* Find shared policy intersecting idx */
2233 struct mempolicy *
2234 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2235 {
2236 struct mempolicy *pol = NULL;
2237 struct sp_node *sn;
2238
2239 if (!sp->root.rb_node)
2240 return NULL;
2241 spin_lock(&sp->lock);
2242 sn = sp_lookup(sp, idx, idx+1);
2243 if (sn) {
2244 mpol_get(sn->policy);
2245 pol = sn->policy;
2246 }
2247 spin_unlock(&sp->lock);
2248 return pol;
2249 }
2250
2251 static void sp_free(struct sp_node *n)
2252 {
2253 mpol_put(n->policy);
2254 kmem_cache_free(sn_cache, n);
2255 }
2256
2257 /**
2258 * mpol_misplaced - check whether current page node is valid in policy
2259 *
2260 * @page: page to be checked
2261 * @vma: vm area where page mapped
2262 * @addr: virtual address where page mapped
2263 *
2264 * Lookup current policy node id for vma,addr and "compare to" page's
2265 * node id.
2266 *
2267 * Returns:
2268 * -1 - not misplaced, page is in the right node
2269 * node - node id where the page should be
2270 *
2271 * Policy determination "mimics" alloc_page_vma().
2272 * Called from fault path where we know the vma and faulting address.
2273 */
2274 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2275 {
2276 struct mempolicy *pol;
2277 struct zone *zone;
2278 int curnid = page_to_nid(page);
2279 unsigned long pgoff;
2280 int thiscpu = raw_smp_processor_id();
2281 int thisnid = cpu_to_node(thiscpu);
2282 int polnid = -1;
2283 int ret = -1;
2284
2285 BUG_ON(!vma);
2286
2287 pol = get_vma_policy(vma, addr);
2288 if (!(pol->flags & MPOL_F_MOF))
2289 goto out;
2290
2291 switch (pol->mode) {
2292 case MPOL_INTERLEAVE:
2293 BUG_ON(addr >= vma->vm_end);
2294 BUG_ON(addr < vma->vm_start);
2295
2296 pgoff = vma->vm_pgoff;
2297 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2298 polnid = offset_il_node(pol, vma, pgoff);
2299 break;
2300
2301 case MPOL_PREFERRED:
2302 if (pol->flags & MPOL_F_LOCAL)
2303 polnid = numa_node_id();
2304 else
2305 polnid = pol->v.preferred_node;
2306 break;
2307
2308 case MPOL_BIND:
2309 /*
2310 * allows binding to multiple nodes.
2311 * use current page if in policy nodemask,
2312 * else select nearest allowed node, if any.
2313 * If no allowed nodes, use current [!misplaced].
2314 */
2315 if (node_isset(curnid, pol->v.nodes))
2316 goto out;
2317 (void)first_zones_zonelist(
2318 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2319 gfp_zone(GFP_HIGHUSER),
2320 &pol->v.nodes, &zone);
2321 polnid = zone->node;
2322 break;
2323
2324 default:
2325 BUG();
2326 }
2327
2328 /* Migrate the page towards the node whose CPU is referencing it */
2329 if (pol->flags & MPOL_F_MORON) {
2330 polnid = thisnid;
2331
2332 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2333 goto out;
2334 }
2335
2336 if (curnid != polnid)
2337 ret = polnid;
2338 out:
2339 mpol_cond_put(pol);
2340
2341 return ret;
2342 }
2343
2344 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2345 {
2346 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2347 rb_erase(&n->nd, &sp->root);
2348 sp_free(n);
2349 }
2350
2351 static void sp_node_init(struct sp_node *node, unsigned long start,
2352 unsigned long end, struct mempolicy *pol)
2353 {
2354 node->start = start;
2355 node->end = end;
2356 node->policy = pol;
2357 }
2358
2359 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2360 struct mempolicy *pol)
2361 {
2362 struct sp_node *n;
2363 struct mempolicy *newpol;
2364
2365 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2366 if (!n)
2367 return NULL;
2368
2369 newpol = mpol_dup(pol);
2370 if (IS_ERR(newpol)) {
2371 kmem_cache_free(sn_cache, n);
2372 return NULL;
2373 }
2374 newpol->flags |= MPOL_F_SHARED;
2375 sp_node_init(n, start, end, newpol);
2376
2377 return n;
2378 }
2379
2380 /* Replace a policy range. */
2381 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2382 unsigned long end, struct sp_node *new)
2383 {
2384 struct sp_node *n;
2385 struct sp_node *n_new = NULL;
2386 struct mempolicy *mpol_new = NULL;
2387 int ret = 0;
2388
2389 restart:
2390 spin_lock(&sp->lock);
2391 n = sp_lookup(sp, start, end);
2392 /* Take care of old policies in the same range. */
2393 while (n && n->start < end) {
2394 struct rb_node *next = rb_next(&n->nd);
2395 if (n->start >= start) {
2396 if (n->end <= end)
2397 sp_delete(sp, n);
2398 else
2399 n->start = end;
2400 } else {
2401 /* Old policy spanning whole new range. */
2402 if (n->end > end) {
2403 if (!n_new)
2404 goto alloc_new;
2405
2406 *mpol_new = *n->policy;
2407 atomic_set(&mpol_new->refcnt, 1);
2408 sp_node_init(n_new, end, n->end, mpol_new);
2409 n->end = start;
2410 sp_insert(sp, n_new);
2411 n_new = NULL;
2412 mpol_new = NULL;
2413 break;
2414 } else
2415 n->end = start;
2416 }
2417 if (!next)
2418 break;
2419 n = rb_entry(next, struct sp_node, nd);
2420 }
2421 if (new)
2422 sp_insert(sp, new);
2423 spin_unlock(&sp->lock);
2424 ret = 0;
2425
2426 err_out:
2427 if (mpol_new)
2428 mpol_put(mpol_new);
2429 if (n_new)
2430 kmem_cache_free(sn_cache, n_new);
2431
2432 return ret;
2433
2434 alloc_new:
2435 spin_unlock(&sp->lock);
2436 ret = -ENOMEM;
2437 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2438 if (!n_new)
2439 goto err_out;
2440 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2441 if (!mpol_new)
2442 goto err_out;
2443 goto restart;
2444 }
2445
2446 /**
2447 * mpol_shared_policy_init - initialize shared policy for inode
2448 * @sp: pointer to inode shared policy
2449 * @mpol: struct mempolicy to install
2450 *
2451 * Install non-NULL @mpol in inode's shared policy rb-tree.
2452 * On entry, the current task has a reference on a non-NULL @mpol.
2453 * This must be released on exit.
2454 * This is called at get_inode() calls and we can use GFP_KERNEL.
2455 */
2456 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2457 {
2458 int ret;
2459
2460 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2461 spin_lock_init(&sp->lock);
2462
2463 if (mpol) {
2464 struct vm_area_struct pvma;
2465 struct mempolicy *new;
2466 NODEMASK_SCRATCH(scratch);
2467
2468 if (!scratch)
2469 goto put_mpol;
2470 /* contextualize the tmpfs mount point mempolicy */
2471 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2472 if (IS_ERR(new))
2473 goto free_scratch; /* no valid nodemask intersection */
2474
2475 task_lock(current);
2476 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2477 task_unlock(current);
2478 if (ret)
2479 goto put_new;
2480
2481 /* Create pseudo-vma that contains just the policy */
2482 memset(&pvma, 0, sizeof(struct vm_area_struct));
2483 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2484 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2485
2486 put_new:
2487 mpol_put(new); /* drop initial ref */
2488 free_scratch:
2489 NODEMASK_SCRATCH_FREE(scratch);
2490 put_mpol:
2491 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2492 }
2493 }
2494
2495 int mpol_set_shared_policy(struct shared_policy *info,
2496 struct vm_area_struct *vma, struct mempolicy *npol)
2497 {
2498 int err;
2499 struct sp_node *new = NULL;
2500 unsigned long sz = vma_pages(vma);
2501
2502 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2503 vma->vm_pgoff,
2504 sz, npol ? npol->mode : -1,
2505 npol ? npol->flags : -1,
2506 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2507
2508 if (npol) {
2509 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2510 if (!new)
2511 return -ENOMEM;
2512 }
2513 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2514 if (err && new)
2515 sp_free(new);
2516 return err;
2517 }
2518
2519 /* Free a backing policy store on inode delete. */
2520 void mpol_free_shared_policy(struct shared_policy *p)
2521 {
2522 struct sp_node *n;
2523 struct rb_node *next;
2524
2525 if (!p->root.rb_node)
2526 return;
2527 spin_lock(&p->lock);
2528 next = rb_first(&p->root);
2529 while (next) {
2530 n = rb_entry(next, struct sp_node, nd);
2531 next = rb_next(&n->nd);
2532 sp_delete(p, n);
2533 }
2534 spin_unlock(&p->lock);
2535 }
2536
2537 #ifdef CONFIG_NUMA_BALANCING
2538 static int __initdata numabalancing_override;
2539
2540 static void __init check_numabalancing_enable(void)
2541 {
2542 bool numabalancing_default = false;
2543
2544 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2545 numabalancing_default = true;
2546
2547 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2548 if (numabalancing_override)
2549 set_numabalancing_state(numabalancing_override == 1);
2550
2551 if (nr_node_ids > 1 && !numabalancing_override) {
2552 pr_info("%s automatic NUMA balancing. "
2553 "Configure with numa_balancing= or the "
2554 "kernel.numa_balancing sysctl",
2555 numabalancing_default ? "Enabling" : "Disabling");
2556 set_numabalancing_state(numabalancing_default);
2557 }
2558 }
2559
2560 static int __init setup_numabalancing(char *str)
2561 {
2562 int ret = 0;
2563 if (!str)
2564 goto out;
2565
2566 if (!strcmp(str, "enable")) {
2567 numabalancing_override = 1;
2568 ret = 1;
2569 } else if (!strcmp(str, "disable")) {
2570 numabalancing_override = -1;
2571 ret = 1;
2572 }
2573 out:
2574 if (!ret)
2575 pr_warn("Unable to parse numa_balancing=\n");
2576
2577 return ret;
2578 }
2579 __setup("numa_balancing=", setup_numabalancing);
2580 #else
2581 static inline void __init check_numabalancing_enable(void)
2582 {
2583 }
2584 #endif /* CONFIG_NUMA_BALANCING */
2585
2586 /* assumes fs == KERNEL_DS */
2587 void __init numa_policy_init(void)
2588 {
2589 nodemask_t interleave_nodes;
2590 unsigned long largest = 0;
2591 int nid, prefer = 0;
2592
2593 policy_cache = kmem_cache_create("numa_policy",
2594 sizeof(struct mempolicy),
2595 0, SLAB_PANIC, NULL);
2596
2597 sn_cache = kmem_cache_create("shared_policy_node",
2598 sizeof(struct sp_node),
2599 0, SLAB_PANIC, NULL);
2600
2601 for_each_node(nid) {
2602 preferred_node_policy[nid] = (struct mempolicy) {
2603 .refcnt = ATOMIC_INIT(1),
2604 .mode = MPOL_PREFERRED,
2605 .flags = MPOL_F_MOF | MPOL_F_MORON,
2606 .v = { .preferred_node = nid, },
2607 };
2608 }
2609
2610 /*
2611 * Set interleaving policy for system init. Interleaving is only
2612 * enabled across suitably sized nodes (default is >= 16MB), or
2613 * fall back to the largest node if they're all smaller.
2614 */
2615 nodes_clear(interleave_nodes);
2616 for_each_node_state(nid, N_MEMORY) {
2617 unsigned long total_pages = node_present_pages(nid);
2618
2619 /* Preserve the largest node */
2620 if (largest < total_pages) {
2621 largest = total_pages;
2622 prefer = nid;
2623 }
2624
2625 /* Interleave this node? */
2626 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2627 node_set(nid, interleave_nodes);
2628 }
2629
2630 /* All too small, use the largest */
2631 if (unlikely(nodes_empty(interleave_nodes)))
2632 node_set(prefer, interleave_nodes);
2633
2634 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2635 pr_err("%s: interleaving failed\n", __func__);
2636
2637 check_numabalancing_enable();
2638 }
2639
2640 /* Reset policy of current process to default */
2641 void numa_default_policy(void)
2642 {
2643 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2644 }
2645
2646 /*
2647 * Parse and format mempolicy from/to strings
2648 */
2649
2650 /*
2651 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2652 */
2653 static const char * const policy_modes[] =
2654 {
2655 [MPOL_DEFAULT] = "default",
2656 [MPOL_PREFERRED] = "prefer",
2657 [MPOL_BIND] = "bind",
2658 [MPOL_INTERLEAVE] = "interleave",
2659 [MPOL_LOCAL] = "local",
2660 };
2661
2662
2663 #ifdef CONFIG_TMPFS
2664 /**
2665 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2666 * @str: string containing mempolicy to parse
2667 * @mpol: pointer to struct mempolicy pointer, returned on success.
2668 *
2669 * Format of input:
2670 * <mode>[=<flags>][:<nodelist>]
2671 *
2672 * On success, returns 0, else 1
2673 */
2674 int mpol_parse_str(char *str, struct mempolicy **mpol)
2675 {
2676 struct mempolicy *new = NULL;
2677 unsigned short mode;
2678 unsigned short mode_flags;
2679 nodemask_t nodes;
2680 char *nodelist = strchr(str, ':');
2681 char *flags = strchr(str, '=');
2682 int err = 1;
2683
2684 if (nodelist) {
2685 /* NUL-terminate mode or flags string */
2686 *nodelist++ = '\0';
2687 if (nodelist_parse(nodelist, nodes))
2688 goto out;
2689 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2690 goto out;
2691 } else
2692 nodes_clear(nodes);
2693
2694 if (flags)
2695 *flags++ = '\0'; /* terminate mode string */
2696
2697 for (mode = 0; mode < MPOL_MAX; mode++) {
2698 if (!strcmp(str, policy_modes[mode])) {
2699 break;
2700 }
2701 }
2702 if (mode >= MPOL_MAX)
2703 goto out;
2704
2705 switch (mode) {
2706 case MPOL_PREFERRED:
2707 /*
2708 * Insist on a nodelist of one node only
2709 */
2710 if (nodelist) {
2711 char *rest = nodelist;
2712 while (isdigit(*rest))
2713 rest++;
2714 if (*rest)
2715 goto out;
2716 }
2717 break;
2718 case MPOL_INTERLEAVE:
2719 /*
2720 * Default to online nodes with memory if no nodelist
2721 */
2722 if (!nodelist)
2723 nodes = node_states[N_MEMORY];
2724 break;
2725 case MPOL_LOCAL:
2726 /*
2727 * Don't allow a nodelist; mpol_new() checks flags
2728 */
2729 if (nodelist)
2730 goto out;
2731 mode = MPOL_PREFERRED;
2732 break;
2733 case MPOL_DEFAULT:
2734 /*
2735 * Insist on a empty nodelist
2736 */
2737 if (!nodelist)
2738 err = 0;
2739 goto out;
2740 case MPOL_BIND:
2741 /*
2742 * Insist on a nodelist
2743 */
2744 if (!nodelist)
2745 goto out;
2746 }
2747
2748 mode_flags = 0;
2749 if (flags) {
2750 /*
2751 * Currently, we only support two mutually exclusive
2752 * mode flags.
2753 */
2754 if (!strcmp(flags, "static"))
2755 mode_flags |= MPOL_F_STATIC_NODES;
2756 else if (!strcmp(flags, "relative"))
2757 mode_flags |= MPOL_F_RELATIVE_NODES;
2758 else
2759 goto out;
2760 }
2761
2762 new = mpol_new(mode, mode_flags, &nodes);
2763 if (IS_ERR(new))
2764 goto out;
2765
2766 /*
2767 * Save nodes for mpol_to_str() to show the tmpfs mount options
2768 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2769 */
2770 if (mode != MPOL_PREFERRED)
2771 new->v.nodes = nodes;
2772 else if (nodelist)
2773 new->v.preferred_node = first_node(nodes);
2774 else
2775 new->flags |= MPOL_F_LOCAL;
2776
2777 /*
2778 * Save nodes for contextualization: this will be used to "clone"
2779 * the mempolicy in a specific context [cpuset] at a later time.
2780 */
2781 new->w.user_nodemask = nodes;
2782
2783 err = 0;
2784
2785 out:
2786 /* Restore string for error message */
2787 if (nodelist)
2788 *--nodelist = ':';
2789 if (flags)
2790 *--flags = '=';
2791 if (!err)
2792 *mpol = new;
2793 return err;
2794 }
2795 #endif /* CONFIG_TMPFS */
2796
2797 /**
2798 * mpol_to_str - format a mempolicy structure for printing
2799 * @buffer: to contain formatted mempolicy string
2800 * @maxlen: length of @buffer
2801 * @pol: pointer to mempolicy to be formatted
2802 *
2803 * Convert @pol into a string. If @buffer is too short, truncate the string.
2804 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2805 * longest flag, "relative", and to display at least a few node ids.
2806 */
2807 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2808 {
2809 char *p = buffer;
2810 nodemask_t nodes = NODE_MASK_NONE;
2811 unsigned short mode = MPOL_DEFAULT;
2812 unsigned short flags = 0;
2813
2814 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2815 mode = pol->mode;
2816 flags = pol->flags;
2817 }
2818
2819 switch (mode) {
2820 case MPOL_DEFAULT:
2821 break;
2822 case MPOL_PREFERRED:
2823 if (flags & MPOL_F_LOCAL)
2824 mode = MPOL_LOCAL;
2825 else
2826 node_set(pol->v.preferred_node, nodes);
2827 break;
2828 case MPOL_BIND:
2829 case MPOL_INTERLEAVE:
2830 nodes = pol->v.nodes;
2831 break;
2832 default:
2833 WARN_ON_ONCE(1);
2834 snprintf(p, maxlen, "unknown");
2835 return;
2836 }
2837
2838 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2839
2840 if (flags & MPOL_MODE_FLAGS) {
2841 p += snprintf(p, buffer + maxlen - p, "=");
2842
2843 /*
2844 * Currently, the only defined flags are mutually exclusive
2845 */
2846 if (flags & MPOL_F_STATIC_NODES)
2847 p += snprintf(p, buffer + maxlen - p, "static");
2848 else if (flags & MPOL_F_RELATIVE_NODES)
2849 p += snprintf(p, buffer + maxlen - p, "relative");
2850 }
2851
2852 if (!nodes_empty(nodes)) {
2853 p += snprintf(p, buffer + maxlen - p, ":");
2854 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2855 }
2856 }