]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mempolicy.c
sched/headers: Prepare to use <linux/rcuupdate.h> instead of <linux/rculist.h> in...
[mirror_ubuntu-hirsute-kernel.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/nodemask.h>
79 #include <linux/cpuset.h>
80 #include <linux/slab.h>
81 #include <linux/string.h>
82 #include <linux/export.h>
83 #include <linux/nsproxy.h>
84 #include <linux/interrupt.h>
85 #include <linux/init.h>
86 #include <linux/compat.h>
87 #include <linux/swap.h>
88 #include <linux/seq_file.h>
89 #include <linux/proc_fs.h>
90 #include <linux/migrate.h>
91 #include <linux/ksm.h>
92 #include <linux/rmap.h>
93 #include <linux/security.h>
94 #include <linux/syscalls.h>
95 #include <linux/ctype.h>
96 #include <linux/mm_inline.h>
97 #include <linux/mmu_notifier.h>
98 #include <linux/printk.h>
99
100 #include <asm/tlbflush.h>
101 #include <linux/uaccess.h>
102
103 #include "internal.h"
104
105 /* Internal flags */
106 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
107 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108
109 static struct kmem_cache *policy_cache;
110 static struct kmem_cache *sn_cache;
111
112 /* Highest zone. An specific allocation for a zone below that is not
113 policied. */
114 enum zone_type policy_zone = 0;
115
116 /*
117 * run-time system-wide default policy => local allocation
118 */
119 static struct mempolicy default_policy = {
120 .refcnt = ATOMIC_INIT(1), /* never free it */
121 .mode = MPOL_PREFERRED,
122 .flags = MPOL_F_LOCAL,
123 };
124
125 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
126
127 struct mempolicy *get_task_policy(struct task_struct *p)
128 {
129 struct mempolicy *pol = p->mempolicy;
130 int node;
131
132 if (pol)
133 return pol;
134
135 node = numa_node_id();
136 if (node != NUMA_NO_NODE) {
137 pol = &preferred_node_policy[node];
138 /* preferred_node_policy is not initialised early in boot */
139 if (pol->mode)
140 return pol;
141 }
142
143 return &default_policy;
144 }
145
146 static const struct mempolicy_operations {
147 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
148 /*
149 * If read-side task has no lock to protect task->mempolicy, write-side
150 * task will rebind the task->mempolicy by two step. The first step is
151 * setting all the newly nodes, and the second step is cleaning all the
152 * disallowed nodes. In this way, we can avoid finding no node to alloc
153 * page.
154 * If we have a lock to protect task->mempolicy in read-side, we do
155 * rebind directly.
156 *
157 * step:
158 * MPOL_REBIND_ONCE - do rebind work at once
159 * MPOL_REBIND_STEP1 - set all the newly nodes
160 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 */
162 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
163 enum mpol_rebind_step step);
164 } mpol_ops[MPOL_MAX];
165
166 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
167 {
168 return pol->flags & MPOL_MODE_FLAGS;
169 }
170
171 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
172 const nodemask_t *rel)
173 {
174 nodemask_t tmp;
175 nodes_fold(tmp, *orig, nodes_weight(*rel));
176 nodes_onto(*ret, tmp, *rel);
177 }
178
179 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (nodes_empty(*nodes))
182 return -EINVAL;
183 pol->v.nodes = *nodes;
184 return 0;
185 }
186
187 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
188 {
189 if (!nodes)
190 pol->flags |= MPOL_F_LOCAL; /* local allocation */
191 else if (nodes_empty(*nodes))
192 return -EINVAL; /* no allowed nodes */
193 else
194 pol->v.preferred_node = first_node(*nodes);
195 return 0;
196 }
197
198 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
199 {
200 if (nodes_empty(*nodes))
201 return -EINVAL;
202 pol->v.nodes = *nodes;
203 return 0;
204 }
205
206 /*
207 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
208 * any, for the new policy. mpol_new() has already validated the nodes
209 * parameter with respect to the policy mode and flags. But, we need to
210 * handle an empty nodemask with MPOL_PREFERRED here.
211 *
212 * Must be called holding task's alloc_lock to protect task's mems_allowed
213 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 */
215 static int mpol_set_nodemask(struct mempolicy *pol,
216 const nodemask_t *nodes, struct nodemask_scratch *nsc)
217 {
218 int ret;
219
220 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
221 if (pol == NULL)
222 return 0;
223 /* Check N_MEMORY */
224 nodes_and(nsc->mask1,
225 cpuset_current_mems_allowed, node_states[N_MEMORY]);
226
227 VM_BUG_ON(!nodes);
228 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
229 nodes = NULL; /* explicit local allocation */
230 else {
231 if (pol->flags & MPOL_F_RELATIVE_NODES)
232 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
233 else
234 nodes_and(nsc->mask2, *nodes, nsc->mask1);
235
236 if (mpol_store_user_nodemask(pol))
237 pol->w.user_nodemask = *nodes;
238 else
239 pol->w.cpuset_mems_allowed =
240 cpuset_current_mems_allowed;
241 }
242
243 if (nodes)
244 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
245 else
246 ret = mpol_ops[pol->mode].create(pol, NULL);
247 return ret;
248 }
249
250 /*
251 * This function just creates a new policy, does some check and simple
252 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 */
254 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
255 nodemask_t *nodes)
256 {
257 struct mempolicy *policy;
258
259 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
260 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
261
262 if (mode == MPOL_DEFAULT) {
263 if (nodes && !nodes_empty(*nodes))
264 return ERR_PTR(-EINVAL);
265 return NULL;
266 }
267 VM_BUG_ON(!nodes);
268
269 /*
270 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
271 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
272 * All other modes require a valid pointer to a non-empty nodemask.
273 */
274 if (mode == MPOL_PREFERRED) {
275 if (nodes_empty(*nodes)) {
276 if (((flags & MPOL_F_STATIC_NODES) ||
277 (flags & MPOL_F_RELATIVE_NODES)))
278 return ERR_PTR(-EINVAL);
279 }
280 } else if (mode == MPOL_LOCAL) {
281 if (!nodes_empty(*nodes) ||
282 (flags & MPOL_F_STATIC_NODES) ||
283 (flags & MPOL_F_RELATIVE_NODES))
284 return ERR_PTR(-EINVAL);
285 mode = MPOL_PREFERRED;
286 } else if (nodes_empty(*nodes))
287 return ERR_PTR(-EINVAL);
288 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
289 if (!policy)
290 return ERR_PTR(-ENOMEM);
291 atomic_set(&policy->refcnt, 1);
292 policy->mode = mode;
293 policy->flags = flags;
294
295 return policy;
296 }
297
298 /* Slow path of a mpol destructor. */
299 void __mpol_put(struct mempolicy *p)
300 {
301 if (!atomic_dec_and_test(&p->refcnt))
302 return;
303 kmem_cache_free(policy_cache, p);
304 }
305
306 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
307 enum mpol_rebind_step step)
308 {
309 }
310
311 /*
312 * step:
313 * MPOL_REBIND_ONCE - do rebind work at once
314 * MPOL_REBIND_STEP1 - set all the newly nodes
315 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
316 */
317 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
318 enum mpol_rebind_step step)
319 {
320 nodemask_t tmp;
321
322 if (pol->flags & MPOL_F_STATIC_NODES)
323 nodes_and(tmp, pol->w.user_nodemask, *nodes);
324 else if (pol->flags & MPOL_F_RELATIVE_NODES)
325 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
326 else {
327 /*
328 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
329 * result
330 */
331 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
332 nodes_remap(tmp, pol->v.nodes,
333 pol->w.cpuset_mems_allowed, *nodes);
334 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
335 } else if (step == MPOL_REBIND_STEP2) {
336 tmp = pol->w.cpuset_mems_allowed;
337 pol->w.cpuset_mems_allowed = *nodes;
338 } else
339 BUG();
340 }
341
342 if (nodes_empty(tmp))
343 tmp = *nodes;
344
345 if (step == MPOL_REBIND_STEP1)
346 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
347 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
348 pol->v.nodes = tmp;
349 else
350 BUG();
351
352 if (!node_isset(current->il_next, tmp)) {
353 current->il_next = next_node_in(current->il_next, tmp);
354 if (current->il_next >= MAX_NUMNODES)
355 current->il_next = numa_node_id();
356 }
357 }
358
359 static void mpol_rebind_preferred(struct mempolicy *pol,
360 const nodemask_t *nodes,
361 enum mpol_rebind_step step)
362 {
363 nodemask_t tmp;
364
365 if (pol->flags & MPOL_F_STATIC_NODES) {
366 int node = first_node(pol->w.user_nodemask);
367
368 if (node_isset(node, *nodes)) {
369 pol->v.preferred_node = node;
370 pol->flags &= ~MPOL_F_LOCAL;
371 } else
372 pol->flags |= MPOL_F_LOCAL;
373 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
374 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
375 pol->v.preferred_node = first_node(tmp);
376 } else if (!(pol->flags & MPOL_F_LOCAL)) {
377 pol->v.preferred_node = node_remap(pol->v.preferred_node,
378 pol->w.cpuset_mems_allowed,
379 *nodes);
380 pol->w.cpuset_mems_allowed = *nodes;
381 }
382 }
383
384 /*
385 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 *
387 * If read-side task has no lock to protect task->mempolicy, write-side
388 * task will rebind the task->mempolicy by two step. The first step is
389 * setting all the newly nodes, and the second step is cleaning all the
390 * disallowed nodes. In this way, we can avoid finding no node to alloc
391 * page.
392 * If we have a lock to protect task->mempolicy in read-side, we do
393 * rebind directly.
394 *
395 * step:
396 * MPOL_REBIND_ONCE - do rebind work at once
397 * MPOL_REBIND_STEP1 - set all the newly nodes
398 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 */
400 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
401 enum mpol_rebind_step step)
402 {
403 if (!pol)
404 return;
405 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
406 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
407 return;
408
409 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
410 return;
411
412 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
413 BUG();
414
415 if (step == MPOL_REBIND_STEP1)
416 pol->flags |= MPOL_F_REBINDING;
417 else if (step == MPOL_REBIND_STEP2)
418 pol->flags &= ~MPOL_F_REBINDING;
419 else if (step >= MPOL_REBIND_NSTEP)
420 BUG();
421
422 mpol_ops[pol->mode].rebind(pol, newmask, step);
423 }
424
425 /*
426 * Wrapper for mpol_rebind_policy() that just requires task
427 * pointer, and updates task mempolicy.
428 *
429 * Called with task's alloc_lock held.
430 */
431
432 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
433 enum mpol_rebind_step step)
434 {
435 mpol_rebind_policy(tsk->mempolicy, new, step);
436 }
437
438 /*
439 * Rebind each vma in mm to new nodemask.
440 *
441 * Call holding a reference to mm. Takes mm->mmap_sem during call.
442 */
443
444 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
445 {
446 struct vm_area_struct *vma;
447
448 down_write(&mm->mmap_sem);
449 for (vma = mm->mmap; vma; vma = vma->vm_next)
450 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
451 up_write(&mm->mmap_sem);
452 }
453
454 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
455 [MPOL_DEFAULT] = {
456 .rebind = mpol_rebind_default,
457 },
458 [MPOL_INTERLEAVE] = {
459 .create = mpol_new_interleave,
460 .rebind = mpol_rebind_nodemask,
461 },
462 [MPOL_PREFERRED] = {
463 .create = mpol_new_preferred,
464 .rebind = mpol_rebind_preferred,
465 },
466 [MPOL_BIND] = {
467 .create = mpol_new_bind,
468 .rebind = mpol_rebind_nodemask,
469 },
470 };
471
472 static void migrate_page_add(struct page *page, struct list_head *pagelist,
473 unsigned long flags);
474
475 struct queue_pages {
476 struct list_head *pagelist;
477 unsigned long flags;
478 nodemask_t *nmask;
479 struct vm_area_struct *prev;
480 };
481
482 /*
483 * Scan through pages checking if pages follow certain conditions,
484 * and move them to the pagelist if they do.
485 */
486 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
487 unsigned long end, struct mm_walk *walk)
488 {
489 struct vm_area_struct *vma = walk->vma;
490 struct page *page;
491 struct queue_pages *qp = walk->private;
492 unsigned long flags = qp->flags;
493 int nid, ret;
494 pte_t *pte;
495 spinlock_t *ptl;
496
497 if (pmd_trans_huge(*pmd)) {
498 ptl = pmd_lock(walk->mm, pmd);
499 if (pmd_trans_huge(*pmd)) {
500 page = pmd_page(*pmd);
501 if (is_huge_zero_page(page)) {
502 spin_unlock(ptl);
503 __split_huge_pmd(vma, pmd, addr, false, NULL);
504 } else {
505 get_page(page);
506 spin_unlock(ptl);
507 lock_page(page);
508 ret = split_huge_page(page);
509 unlock_page(page);
510 put_page(page);
511 if (ret)
512 return 0;
513 }
514 } else {
515 spin_unlock(ptl);
516 }
517 }
518
519 if (pmd_trans_unstable(pmd))
520 return 0;
521 retry:
522 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE) {
524 if (!pte_present(*pte))
525 continue;
526 page = vm_normal_page(vma, addr, *pte);
527 if (!page)
528 continue;
529 /*
530 * vm_normal_page() filters out zero pages, but there might
531 * still be PageReserved pages to skip, perhaps in a VDSO.
532 */
533 if (PageReserved(page))
534 continue;
535 nid = page_to_nid(page);
536 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
537 continue;
538 if (PageTransCompound(page)) {
539 get_page(page);
540 pte_unmap_unlock(pte, ptl);
541 lock_page(page);
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545 /* Failed to split -- skip. */
546 if (ret) {
547 pte = pte_offset_map_lock(walk->mm, pmd,
548 addr, &ptl);
549 continue;
550 }
551 goto retry;
552 }
553
554 migrate_page_add(page, qp->pagelist, flags);
555 }
556 pte_unmap_unlock(pte - 1, ptl);
557 cond_resched();
558 return 0;
559 }
560
561 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
562 unsigned long addr, unsigned long end,
563 struct mm_walk *walk)
564 {
565 #ifdef CONFIG_HUGETLB_PAGE
566 struct queue_pages *qp = walk->private;
567 unsigned long flags = qp->flags;
568 int nid;
569 struct page *page;
570 spinlock_t *ptl;
571 pte_t entry;
572
573 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
574 entry = huge_ptep_get(pte);
575 if (!pte_present(entry))
576 goto unlock;
577 page = pte_page(entry);
578 nid = page_to_nid(page);
579 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
580 goto unlock;
581 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
582 if (flags & (MPOL_MF_MOVE_ALL) ||
583 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
584 isolate_huge_page(page, qp->pagelist);
585 unlock:
586 spin_unlock(ptl);
587 #else
588 BUG();
589 #endif
590 return 0;
591 }
592
593 #ifdef CONFIG_NUMA_BALANCING
594 /*
595 * This is used to mark a range of virtual addresses to be inaccessible.
596 * These are later cleared by a NUMA hinting fault. Depending on these
597 * faults, pages may be migrated for better NUMA placement.
598 *
599 * This is assuming that NUMA faults are handled using PROT_NONE. If
600 * an architecture makes a different choice, it will need further
601 * changes to the core.
602 */
603 unsigned long change_prot_numa(struct vm_area_struct *vma,
604 unsigned long addr, unsigned long end)
605 {
606 int nr_updated;
607
608 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
609 if (nr_updated)
610 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
611
612 return nr_updated;
613 }
614 #else
615 static unsigned long change_prot_numa(struct vm_area_struct *vma,
616 unsigned long addr, unsigned long end)
617 {
618 return 0;
619 }
620 #endif /* CONFIG_NUMA_BALANCING */
621
622 static int queue_pages_test_walk(unsigned long start, unsigned long end,
623 struct mm_walk *walk)
624 {
625 struct vm_area_struct *vma = walk->vma;
626 struct queue_pages *qp = walk->private;
627 unsigned long endvma = vma->vm_end;
628 unsigned long flags = qp->flags;
629
630 if (!vma_migratable(vma))
631 return 1;
632
633 if (endvma > end)
634 endvma = end;
635 if (vma->vm_start > start)
636 start = vma->vm_start;
637
638 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
639 if (!vma->vm_next && vma->vm_end < end)
640 return -EFAULT;
641 if (qp->prev && qp->prev->vm_end < vma->vm_start)
642 return -EFAULT;
643 }
644
645 qp->prev = vma;
646
647 if (flags & MPOL_MF_LAZY) {
648 /* Similar to task_numa_work, skip inaccessible VMAs */
649 if (!is_vm_hugetlb_page(vma) &&
650 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
651 !(vma->vm_flags & VM_MIXEDMAP))
652 change_prot_numa(vma, start, endvma);
653 return 1;
654 }
655
656 /* queue pages from current vma */
657 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
658 return 0;
659 return 1;
660 }
661
662 /*
663 * Walk through page tables and collect pages to be migrated.
664 *
665 * If pages found in a given range are on a set of nodes (determined by
666 * @nodes and @flags,) it's isolated and queued to the pagelist which is
667 * passed via @private.)
668 */
669 static int
670 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
671 nodemask_t *nodes, unsigned long flags,
672 struct list_head *pagelist)
673 {
674 struct queue_pages qp = {
675 .pagelist = pagelist,
676 .flags = flags,
677 .nmask = nodes,
678 .prev = NULL,
679 };
680 struct mm_walk queue_pages_walk = {
681 .hugetlb_entry = queue_pages_hugetlb,
682 .pmd_entry = queue_pages_pte_range,
683 .test_walk = queue_pages_test_walk,
684 .mm = mm,
685 .private = &qp,
686 };
687
688 return walk_page_range(start, end, &queue_pages_walk);
689 }
690
691 /*
692 * Apply policy to a single VMA
693 * This must be called with the mmap_sem held for writing.
694 */
695 static int vma_replace_policy(struct vm_area_struct *vma,
696 struct mempolicy *pol)
697 {
698 int err;
699 struct mempolicy *old;
700 struct mempolicy *new;
701
702 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
703 vma->vm_start, vma->vm_end, vma->vm_pgoff,
704 vma->vm_ops, vma->vm_file,
705 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
706
707 new = mpol_dup(pol);
708 if (IS_ERR(new))
709 return PTR_ERR(new);
710
711 if (vma->vm_ops && vma->vm_ops->set_policy) {
712 err = vma->vm_ops->set_policy(vma, new);
713 if (err)
714 goto err_out;
715 }
716
717 old = vma->vm_policy;
718 vma->vm_policy = new; /* protected by mmap_sem */
719 mpol_put(old);
720
721 return 0;
722 err_out:
723 mpol_put(new);
724 return err;
725 }
726
727 /* Step 2: apply policy to a range and do splits. */
728 static int mbind_range(struct mm_struct *mm, unsigned long start,
729 unsigned long end, struct mempolicy *new_pol)
730 {
731 struct vm_area_struct *next;
732 struct vm_area_struct *prev;
733 struct vm_area_struct *vma;
734 int err = 0;
735 pgoff_t pgoff;
736 unsigned long vmstart;
737 unsigned long vmend;
738
739 vma = find_vma(mm, start);
740 if (!vma || vma->vm_start > start)
741 return -EFAULT;
742
743 prev = vma->vm_prev;
744 if (start > vma->vm_start)
745 prev = vma;
746
747 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
748 next = vma->vm_next;
749 vmstart = max(start, vma->vm_start);
750 vmend = min(end, vma->vm_end);
751
752 if (mpol_equal(vma_policy(vma), new_pol))
753 continue;
754
755 pgoff = vma->vm_pgoff +
756 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
757 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
758 vma->anon_vma, vma->vm_file, pgoff,
759 new_pol, vma->vm_userfaultfd_ctx);
760 if (prev) {
761 vma = prev;
762 next = vma->vm_next;
763 if (mpol_equal(vma_policy(vma), new_pol))
764 continue;
765 /* vma_merge() joined vma && vma->next, case 8 */
766 goto replace;
767 }
768 if (vma->vm_start != vmstart) {
769 err = split_vma(vma->vm_mm, vma, vmstart, 1);
770 if (err)
771 goto out;
772 }
773 if (vma->vm_end != vmend) {
774 err = split_vma(vma->vm_mm, vma, vmend, 0);
775 if (err)
776 goto out;
777 }
778 replace:
779 err = vma_replace_policy(vma, new_pol);
780 if (err)
781 goto out;
782 }
783
784 out:
785 return err;
786 }
787
788 /* Set the process memory policy */
789 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
790 nodemask_t *nodes)
791 {
792 struct mempolicy *new, *old;
793 NODEMASK_SCRATCH(scratch);
794 int ret;
795
796 if (!scratch)
797 return -ENOMEM;
798
799 new = mpol_new(mode, flags, nodes);
800 if (IS_ERR(new)) {
801 ret = PTR_ERR(new);
802 goto out;
803 }
804
805 task_lock(current);
806 ret = mpol_set_nodemask(new, nodes, scratch);
807 if (ret) {
808 task_unlock(current);
809 mpol_put(new);
810 goto out;
811 }
812 old = current->mempolicy;
813 current->mempolicy = new;
814 if (new && new->mode == MPOL_INTERLEAVE &&
815 nodes_weight(new->v.nodes))
816 current->il_next = first_node(new->v.nodes);
817 task_unlock(current);
818 mpol_put(old);
819 ret = 0;
820 out:
821 NODEMASK_SCRATCH_FREE(scratch);
822 return ret;
823 }
824
825 /*
826 * Return nodemask for policy for get_mempolicy() query
827 *
828 * Called with task's alloc_lock held
829 */
830 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
831 {
832 nodes_clear(*nodes);
833 if (p == &default_policy)
834 return;
835
836 switch (p->mode) {
837 case MPOL_BIND:
838 /* Fall through */
839 case MPOL_INTERLEAVE:
840 *nodes = p->v.nodes;
841 break;
842 case MPOL_PREFERRED:
843 if (!(p->flags & MPOL_F_LOCAL))
844 node_set(p->v.preferred_node, *nodes);
845 /* else return empty node mask for local allocation */
846 break;
847 default:
848 BUG();
849 }
850 }
851
852 static int lookup_node(unsigned long addr)
853 {
854 struct page *p;
855 int err;
856
857 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
858 if (err >= 0) {
859 err = page_to_nid(p);
860 put_page(p);
861 }
862 return err;
863 }
864
865 /* Retrieve NUMA policy */
866 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
867 unsigned long addr, unsigned long flags)
868 {
869 int err;
870 struct mm_struct *mm = current->mm;
871 struct vm_area_struct *vma = NULL;
872 struct mempolicy *pol = current->mempolicy;
873
874 if (flags &
875 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
876 return -EINVAL;
877
878 if (flags & MPOL_F_MEMS_ALLOWED) {
879 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
880 return -EINVAL;
881 *policy = 0; /* just so it's initialized */
882 task_lock(current);
883 *nmask = cpuset_current_mems_allowed;
884 task_unlock(current);
885 return 0;
886 }
887
888 if (flags & MPOL_F_ADDR) {
889 /*
890 * Do NOT fall back to task policy if the
891 * vma/shared policy at addr is NULL. We
892 * want to return MPOL_DEFAULT in this case.
893 */
894 down_read(&mm->mmap_sem);
895 vma = find_vma_intersection(mm, addr, addr+1);
896 if (!vma) {
897 up_read(&mm->mmap_sem);
898 return -EFAULT;
899 }
900 if (vma->vm_ops && vma->vm_ops->get_policy)
901 pol = vma->vm_ops->get_policy(vma, addr);
902 else
903 pol = vma->vm_policy;
904 } else if (addr)
905 return -EINVAL;
906
907 if (!pol)
908 pol = &default_policy; /* indicates default behavior */
909
910 if (flags & MPOL_F_NODE) {
911 if (flags & MPOL_F_ADDR) {
912 err = lookup_node(addr);
913 if (err < 0)
914 goto out;
915 *policy = err;
916 } else if (pol == current->mempolicy &&
917 pol->mode == MPOL_INTERLEAVE) {
918 *policy = current->il_next;
919 } else {
920 err = -EINVAL;
921 goto out;
922 }
923 } else {
924 *policy = pol == &default_policy ? MPOL_DEFAULT :
925 pol->mode;
926 /*
927 * Internal mempolicy flags must be masked off before exposing
928 * the policy to userspace.
929 */
930 *policy |= (pol->flags & MPOL_MODE_FLAGS);
931 }
932
933 if (vma) {
934 up_read(&current->mm->mmap_sem);
935 vma = NULL;
936 }
937
938 err = 0;
939 if (nmask) {
940 if (mpol_store_user_nodemask(pol)) {
941 *nmask = pol->w.user_nodemask;
942 } else {
943 task_lock(current);
944 get_policy_nodemask(pol, nmask);
945 task_unlock(current);
946 }
947 }
948
949 out:
950 mpol_cond_put(pol);
951 if (vma)
952 up_read(&current->mm->mmap_sem);
953 return err;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 /*
958 * page migration
959 */
960 static void migrate_page_add(struct page *page, struct list_head *pagelist,
961 unsigned long flags)
962 {
963 /*
964 * Avoid migrating a page that is shared with others.
965 */
966 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
967 if (!isolate_lru_page(page)) {
968 list_add_tail(&page->lru, pagelist);
969 inc_node_page_state(page, NR_ISOLATED_ANON +
970 page_is_file_cache(page));
971 }
972 }
973 }
974
975 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
976 {
977 if (PageHuge(page))
978 return alloc_huge_page_node(page_hstate(compound_head(page)),
979 node);
980 else
981 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
982 __GFP_THISNODE, 0);
983 }
984
985 /*
986 * Migrate pages from one node to a target node.
987 * Returns error or the number of pages not migrated.
988 */
989 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
990 int flags)
991 {
992 nodemask_t nmask;
993 LIST_HEAD(pagelist);
994 int err = 0;
995
996 nodes_clear(nmask);
997 node_set(source, nmask);
998
999 /*
1000 * This does not "check" the range but isolates all pages that
1001 * need migration. Between passing in the full user address
1002 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1003 */
1004 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1005 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1006 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1007
1008 if (!list_empty(&pagelist)) {
1009 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1010 MIGRATE_SYNC, MR_SYSCALL);
1011 if (err)
1012 putback_movable_pages(&pagelist);
1013 }
1014
1015 return err;
1016 }
1017
1018 /*
1019 * Move pages between the two nodesets so as to preserve the physical
1020 * layout as much as possible.
1021 *
1022 * Returns the number of page that could not be moved.
1023 */
1024 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1025 const nodemask_t *to, int flags)
1026 {
1027 int busy = 0;
1028 int err;
1029 nodemask_t tmp;
1030
1031 err = migrate_prep();
1032 if (err)
1033 return err;
1034
1035 down_read(&mm->mmap_sem);
1036
1037 /*
1038 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1039 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1040 * bit in 'tmp', and return that <source, dest> pair for migration.
1041 * The pair of nodemasks 'to' and 'from' define the map.
1042 *
1043 * If no pair of bits is found that way, fallback to picking some
1044 * pair of 'source' and 'dest' bits that are not the same. If the
1045 * 'source' and 'dest' bits are the same, this represents a node
1046 * that will be migrating to itself, so no pages need move.
1047 *
1048 * If no bits are left in 'tmp', or if all remaining bits left
1049 * in 'tmp' correspond to the same bit in 'to', return false
1050 * (nothing left to migrate).
1051 *
1052 * This lets us pick a pair of nodes to migrate between, such that
1053 * if possible the dest node is not already occupied by some other
1054 * source node, minimizing the risk of overloading the memory on a
1055 * node that would happen if we migrated incoming memory to a node
1056 * before migrating outgoing memory source that same node.
1057 *
1058 * A single scan of tmp is sufficient. As we go, we remember the
1059 * most recent <s, d> pair that moved (s != d). If we find a pair
1060 * that not only moved, but what's better, moved to an empty slot
1061 * (d is not set in tmp), then we break out then, with that pair.
1062 * Otherwise when we finish scanning from_tmp, we at least have the
1063 * most recent <s, d> pair that moved. If we get all the way through
1064 * the scan of tmp without finding any node that moved, much less
1065 * moved to an empty node, then there is nothing left worth migrating.
1066 */
1067
1068 tmp = *from;
1069 while (!nodes_empty(tmp)) {
1070 int s,d;
1071 int source = NUMA_NO_NODE;
1072 int dest = 0;
1073
1074 for_each_node_mask(s, tmp) {
1075
1076 /*
1077 * do_migrate_pages() tries to maintain the relative
1078 * node relationship of the pages established between
1079 * threads and memory areas.
1080 *
1081 * However if the number of source nodes is not equal to
1082 * the number of destination nodes we can not preserve
1083 * this node relative relationship. In that case, skip
1084 * copying memory from a node that is in the destination
1085 * mask.
1086 *
1087 * Example: [2,3,4] -> [3,4,5] moves everything.
1088 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1089 */
1090
1091 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1092 (node_isset(s, *to)))
1093 continue;
1094
1095 d = node_remap(s, *from, *to);
1096 if (s == d)
1097 continue;
1098
1099 source = s; /* Node moved. Memorize */
1100 dest = d;
1101
1102 /* dest not in remaining from nodes? */
1103 if (!node_isset(dest, tmp))
1104 break;
1105 }
1106 if (source == NUMA_NO_NODE)
1107 break;
1108
1109 node_clear(source, tmp);
1110 err = migrate_to_node(mm, source, dest, flags);
1111 if (err > 0)
1112 busy += err;
1113 if (err < 0)
1114 break;
1115 }
1116 up_read(&mm->mmap_sem);
1117 if (err < 0)
1118 return err;
1119 return busy;
1120
1121 }
1122
1123 /*
1124 * Allocate a new page for page migration based on vma policy.
1125 * Start by assuming the page is mapped by the same vma as contains @start.
1126 * Search forward from there, if not. N.B., this assumes that the
1127 * list of pages handed to migrate_pages()--which is how we get here--
1128 * is in virtual address order.
1129 */
1130 static struct page *new_page(struct page *page, unsigned long start, int **x)
1131 {
1132 struct vm_area_struct *vma;
1133 unsigned long uninitialized_var(address);
1134
1135 vma = find_vma(current->mm, start);
1136 while (vma) {
1137 address = page_address_in_vma(page, vma);
1138 if (address != -EFAULT)
1139 break;
1140 vma = vma->vm_next;
1141 }
1142
1143 if (PageHuge(page)) {
1144 BUG_ON(!vma);
1145 return alloc_huge_page_noerr(vma, address, 1);
1146 }
1147 /*
1148 * if !vma, alloc_page_vma() will use task or system default policy
1149 */
1150 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1151 }
1152 #else
1153
1154 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1155 unsigned long flags)
1156 {
1157 }
1158
1159 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1160 const nodemask_t *to, int flags)
1161 {
1162 return -ENOSYS;
1163 }
1164
1165 static struct page *new_page(struct page *page, unsigned long start, int **x)
1166 {
1167 return NULL;
1168 }
1169 #endif
1170
1171 static long do_mbind(unsigned long start, unsigned long len,
1172 unsigned short mode, unsigned short mode_flags,
1173 nodemask_t *nmask, unsigned long flags)
1174 {
1175 struct mm_struct *mm = current->mm;
1176 struct mempolicy *new;
1177 unsigned long end;
1178 int err;
1179 LIST_HEAD(pagelist);
1180
1181 if (flags & ~(unsigned long)MPOL_MF_VALID)
1182 return -EINVAL;
1183 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1184 return -EPERM;
1185
1186 if (start & ~PAGE_MASK)
1187 return -EINVAL;
1188
1189 if (mode == MPOL_DEFAULT)
1190 flags &= ~MPOL_MF_STRICT;
1191
1192 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1193 end = start + len;
1194
1195 if (end < start)
1196 return -EINVAL;
1197 if (end == start)
1198 return 0;
1199
1200 new = mpol_new(mode, mode_flags, nmask);
1201 if (IS_ERR(new))
1202 return PTR_ERR(new);
1203
1204 if (flags & MPOL_MF_LAZY)
1205 new->flags |= MPOL_F_MOF;
1206
1207 /*
1208 * If we are using the default policy then operation
1209 * on discontinuous address spaces is okay after all
1210 */
1211 if (!new)
1212 flags |= MPOL_MF_DISCONTIG_OK;
1213
1214 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1215 start, start + len, mode, mode_flags,
1216 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1217
1218 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1219
1220 err = migrate_prep();
1221 if (err)
1222 goto mpol_out;
1223 }
1224 {
1225 NODEMASK_SCRATCH(scratch);
1226 if (scratch) {
1227 down_write(&mm->mmap_sem);
1228 task_lock(current);
1229 err = mpol_set_nodemask(new, nmask, scratch);
1230 task_unlock(current);
1231 if (err)
1232 up_write(&mm->mmap_sem);
1233 } else
1234 err = -ENOMEM;
1235 NODEMASK_SCRATCH_FREE(scratch);
1236 }
1237 if (err)
1238 goto mpol_out;
1239
1240 err = queue_pages_range(mm, start, end, nmask,
1241 flags | MPOL_MF_INVERT, &pagelist);
1242 if (!err)
1243 err = mbind_range(mm, start, end, new);
1244
1245 if (!err) {
1246 int nr_failed = 0;
1247
1248 if (!list_empty(&pagelist)) {
1249 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1250 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1251 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1252 if (nr_failed)
1253 putback_movable_pages(&pagelist);
1254 }
1255
1256 if (nr_failed && (flags & MPOL_MF_STRICT))
1257 err = -EIO;
1258 } else
1259 putback_movable_pages(&pagelist);
1260
1261 up_write(&mm->mmap_sem);
1262 mpol_out:
1263 mpol_put(new);
1264 return err;
1265 }
1266
1267 /*
1268 * User space interface with variable sized bitmaps for nodelists.
1269 */
1270
1271 /* Copy a node mask from user space. */
1272 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1273 unsigned long maxnode)
1274 {
1275 unsigned long k;
1276 unsigned long nlongs;
1277 unsigned long endmask;
1278
1279 --maxnode;
1280 nodes_clear(*nodes);
1281 if (maxnode == 0 || !nmask)
1282 return 0;
1283 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1284 return -EINVAL;
1285
1286 nlongs = BITS_TO_LONGS(maxnode);
1287 if ((maxnode % BITS_PER_LONG) == 0)
1288 endmask = ~0UL;
1289 else
1290 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1291
1292 /* When the user specified more nodes than supported just check
1293 if the non supported part is all zero. */
1294 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1295 if (nlongs > PAGE_SIZE/sizeof(long))
1296 return -EINVAL;
1297 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1298 unsigned long t;
1299 if (get_user(t, nmask + k))
1300 return -EFAULT;
1301 if (k == nlongs - 1) {
1302 if (t & endmask)
1303 return -EINVAL;
1304 } else if (t)
1305 return -EINVAL;
1306 }
1307 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1308 endmask = ~0UL;
1309 }
1310
1311 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1312 return -EFAULT;
1313 nodes_addr(*nodes)[nlongs-1] &= endmask;
1314 return 0;
1315 }
1316
1317 /* Copy a kernel node mask to user space */
1318 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1319 nodemask_t *nodes)
1320 {
1321 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1322 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1323
1324 if (copy > nbytes) {
1325 if (copy > PAGE_SIZE)
1326 return -EINVAL;
1327 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1328 return -EFAULT;
1329 copy = nbytes;
1330 }
1331 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1332 }
1333
1334 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1335 unsigned long, mode, const unsigned long __user *, nmask,
1336 unsigned long, maxnode, unsigned, flags)
1337 {
1338 nodemask_t nodes;
1339 int err;
1340 unsigned short mode_flags;
1341
1342 mode_flags = mode & MPOL_MODE_FLAGS;
1343 mode &= ~MPOL_MODE_FLAGS;
1344 if (mode >= MPOL_MAX)
1345 return -EINVAL;
1346 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1347 (mode_flags & MPOL_F_RELATIVE_NODES))
1348 return -EINVAL;
1349 err = get_nodes(&nodes, nmask, maxnode);
1350 if (err)
1351 return err;
1352 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1353 }
1354
1355 /* Set the process memory policy */
1356 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1357 unsigned long, maxnode)
1358 {
1359 int err;
1360 nodemask_t nodes;
1361 unsigned short flags;
1362
1363 flags = mode & MPOL_MODE_FLAGS;
1364 mode &= ~MPOL_MODE_FLAGS;
1365 if ((unsigned int)mode >= MPOL_MAX)
1366 return -EINVAL;
1367 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1368 return -EINVAL;
1369 err = get_nodes(&nodes, nmask, maxnode);
1370 if (err)
1371 return err;
1372 return do_set_mempolicy(mode, flags, &nodes);
1373 }
1374
1375 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1376 const unsigned long __user *, old_nodes,
1377 const unsigned long __user *, new_nodes)
1378 {
1379 const struct cred *cred = current_cred(), *tcred;
1380 struct mm_struct *mm = NULL;
1381 struct task_struct *task;
1382 nodemask_t task_nodes;
1383 int err;
1384 nodemask_t *old;
1385 nodemask_t *new;
1386 NODEMASK_SCRATCH(scratch);
1387
1388 if (!scratch)
1389 return -ENOMEM;
1390
1391 old = &scratch->mask1;
1392 new = &scratch->mask2;
1393
1394 err = get_nodes(old, old_nodes, maxnode);
1395 if (err)
1396 goto out;
1397
1398 err = get_nodes(new, new_nodes, maxnode);
1399 if (err)
1400 goto out;
1401
1402 /* Find the mm_struct */
1403 rcu_read_lock();
1404 task = pid ? find_task_by_vpid(pid) : current;
1405 if (!task) {
1406 rcu_read_unlock();
1407 err = -ESRCH;
1408 goto out;
1409 }
1410 get_task_struct(task);
1411
1412 err = -EINVAL;
1413
1414 /*
1415 * Check if this process has the right to modify the specified
1416 * process. The right exists if the process has administrative
1417 * capabilities, superuser privileges or the same
1418 * userid as the target process.
1419 */
1420 tcred = __task_cred(task);
1421 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1422 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1423 !capable(CAP_SYS_NICE)) {
1424 rcu_read_unlock();
1425 err = -EPERM;
1426 goto out_put;
1427 }
1428 rcu_read_unlock();
1429
1430 task_nodes = cpuset_mems_allowed(task);
1431 /* Is the user allowed to access the target nodes? */
1432 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1433 err = -EPERM;
1434 goto out_put;
1435 }
1436
1437 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1438 err = -EINVAL;
1439 goto out_put;
1440 }
1441
1442 err = security_task_movememory(task);
1443 if (err)
1444 goto out_put;
1445
1446 mm = get_task_mm(task);
1447 put_task_struct(task);
1448
1449 if (!mm) {
1450 err = -EINVAL;
1451 goto out;
1452 }
1453
1454 err = do_migrate_pages(mm, old, new,
1455 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1456
1457 mmput(mm);
1458 out:
1459 NODEMASK_SCRATCH_FREE(scratch);
1460
1461 return err;
1462
1463 out_put:
1464 put_task_struct(task);
1465 goto out;
1466
1467 }
1468
1469
1470 /* Retrieve NUMA policy */
1471 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1472 unsigned long __user *, nmask, unsigned long, maxnode,
1473 unsigned long, addr, unsigned long, flags)
1474 {
1475 int err;
1476 int uninitialized_var(pval);
1477 nodemask_t nodes;
1478
1479 if (nmask != NULL && maxnode < MAX_NUMNODES)
1480 return -EINVAL;
1481
1482 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1483
1484 if (err)
1485 return err;
1486
1487 if (policy && put_user(pval, policy))
1488 return -EFAULT;
1489
1490 if (nmask)
1491 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1492
1493 return err;
1494 }
1495
1496 #ifdef CONFIG_COMPAT
1497
1498 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1499 compat_ulong_t __user *, nmask,
1500 compat_ulong_t, maxnode,
1501 compat_ulong_t, addr, compat_ulong_t, flags)
1502 {
1503 long err;
1504 unsigned long __user *nm = NULL;
1505 unsigned long nr_bits, alloc_size;
1506 DECLARE_BITMAP(bm, MAX_NUMNODES);
1507
1508 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1509 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1510
1511 if (nmask)
1512 nm = compat_alloc_user_space(alloc_size);
1513
1514 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1515
1516 if (!err && nmask) {
1517 unsigned long copy_size;
1518 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1519 err = copy_from_user(bm, nm, copy_size);
1520 /* ensure entire bitmap is zeroed */
1521 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1522 err |= compat_put_bitmap(nmask, bm, nr_bits);
1523 }
1524
1525 return err;
1526 }
1527
1528 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1529 compat_ulong_t, maxnode)
1530 {
1531 long err = 0;
1532 unsigned long __user *nm = NULL;
1533 unsigned long nr_bits, alloc_size;
1534 DECLARE_BITMAP(bm, MAX_NUMNODES);
1535
1536 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1537 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1538
1539 if (nmask) {
1540 err = compat_get_bitmap(bm, nmask, nr_bits);
1541 nm = compat_alloc_user_space(alloc_size);
1542 err |= copy_to_user(nm, bm, alloc_size);
1543 }
1544
1545 if (err)
1546 return -EFAULT;
1547
1548 return sys_set_mempolicy(mode, nm, nr_bits+1);
1549 }
1550
1551 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1552 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1553 compat_ulong_t, maxnode, compat_ulong_t, flags)
1554 {
1555 long err = 0;
1556 unsigned long __user *nm = NULL;
1557 unsigned long nr_bits, alloc_size;
1558 nodemask_t bm;
1559
1560 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1561 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1562
1563 if (nmask) {
1564 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1565 nm = compat_alloc_user_space(alloc_size);
1566 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1567 }
1568
1569 if (err)
1570 return -EFAULT;
1571
1572 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1573 }
1574
1575 #endif
1576
1577 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1578 unsigned long addr)
1579 {
1580 struct mempolicy *pol = NULL;
1581
1582 if (vma) {
1583 if (vma->vm_ops && vma->vm_ops->get_policy) {
1584 pol = vma->vm_ops->get_policy(vma, addr);
1585 } else if (vma->vm_policy) {
1586 pol = vma->vm_policy;
1587
1588 /*
1589 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1590 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1591 * count on these policies which will be dropped by
1592 * mpol_cond_put() later
1593 */
1594 if (mpol_needs_cond_ref(pol))
1595 mpol_get(pol);
1596 }
1597 }
1598
1599 return pol;
1600 }
1601
1602 /*
1603 * get_vma_policy(@vma, @addr)
1604 * @vma: virtual memory area whose policy is sought
1605 * @addr: address in @vma for shared policy lookup
1606 *
1607 * Returns effective policy for a VMA at specified address.
1608 * Falls back to current->mempolicy or system default policy, as necessary.
1609 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1610 * count--added by the get_policy() vm_op, as appropriate--to protect against
1611 * freeing by another task. It is the caller's responsibility to free the
1612 * extra reference for shared policies.
1613 */
1614 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1615 unsigned long addr)
1616 {
1617 struct mempolicy *pol = __get_vma_policy(vma, addr);
1618
1619 if (!pol)
1620 pol = get_task_policy(current);
1621
1622 return pol;
1623 }
1624
1625 bool vma_policy_mof(struct vm_area_struct *vma)
1626 {
1627 struct mempolicy *pol;
1628
1629 if (vma->vm_ops && vma->vm_ops->get_policy) {
1630 bool ret = false;
1631
1632 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1633 if (pol && (pol->flags & MPOL_F_MOF))
1634 ret = true;
1635 mpol_cond_put(pol);
1636
1637 return ret;
1638 }
1639
1640 pol = vma->vm_policy;
1641 if (!pol)
1642 pol = get_task_policy(current);
1643
1644 return pol->flags & MPOL_F_MOF;
1645 }
1646
1647 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1648 {
1649 enum zone_type dynamic_policy_zone = policy_zone;
1650
1651 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1652
1653 /*
1654 * if policy->v.nodes has movable memory only,
1655 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1656 *
1657 * policy->v.nodes is intersect with node_states[N_MEMORY].
1658 * so if the following test faile, it implies
1659 * policy->v.nodes has movable memory only.
1660 */
1661 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1662 dynamic_policy_zone = ZONE_MOVABLE;
1663
1664 return zone >= dynamic_policy_zone;
1665 }
1666
1667 /*
1668 * Return a nodemask representing a mempolicy for filtering nodes for
1669 * page allocation
1670 */
1671 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1672 {
1673 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1674 if (unlikely(policy->mode == MPOL_BIND) &&
1675 apply_policy_zone(policy, gfp_zone(gfp)) &&
1676 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1677 return &policy->v.nodes;
1678
1679 return NULL;
1680 }
1681
1682 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1683 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1684 int nd)
1685 {
1686 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1687 nd = policy->v.preferred_node;
1688 else {
1689 /*
1690 * __GFP_THISNODE shouldn't even be used with the bind policy
1691 * because we might easily break the expectation to stay on the
1692 * requested node and not break the policy.
1693 */
1694 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1695 }
1696
1697 return node_zonelist(nd, gfp);
1698 }
1699
1700 /* Do dynamic interleaving for a process */
1701 static unsigned interleave_nodes(struct mempolicy *policy)
1702 {
1703 unsigned nid, next;
1704 struct task_struct *me = current;
1705
1706 nid = me->il_next;
1707 next = next_node_in(nid, policy->v.nodes);
1708 if (next < MAX_NUMNODES)
1709 me->il_next = next;
1710 return nid;
1711 }
1712
1713 /*
1714 * Depending on the memory policy provide a node from which to allocate the
1715 * next slab entry.
1716 */
1717 unsigned int mempolicy_slab_node(void)
1718 {
1719 struct mempolicy *policy;
1720 int node = numa_mem_id();
1721
1722 if (in_interrupt())
1723 return node;
1724
1725 policy = current->mempolicy;
1726 if (!policy || policy->flags & MPOL_F_LOCAL)
1727 return node;
1728
1729 switch (policy->mode) {
1730 case MPOL_PREFERRED:
1731 /*
1732 * handled MPOL_F_LOCAL above
1733 */
1734 return policy->v.preferred_node;
1735
1736 case MPOL_INTERLEAVE:
1737 return interleave_nodes(policy);
1738
1739 case MPOL_BIND: {
1740 struct zoneref *z;
1741
1742 /*
1743 * Follow bind policy behavior and start allocation at the
1744 * first node.
1745 */
1746 struct zonelist *zonelist;
1747 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1748 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1749 z = first_zones_zonelist(zonelist, highest_zoneidx,
1750 &policy->v.nodes);
1751 return z->zone ? z->zone->node : node;
1752 }
1753
1754 default:
1755 BUG();
1756 }
1757 }
1758
1759 /*
1760 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1761 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1762 * number of present nodes.
1763 */
1764 static unsigned offset_il_node(struct mempolicy *pol,
1765 struct vm_area_struct *vma, unsigned long n)
1766 {
1767 unsigned nnodes = nodes_weight(pol->v.nodes);
1768 unsigned target;
1769 int i;
1770 int nid;
1771
1772 if (!nnodes)
1773 return numa_node_id();
1774 target = (unsigned int)n % nnodes;
1775 nid = first_node(pol->v.nodes);
1776 for (i = 0; i < target; i++)
1777 nid = next_node(nid, pol->v.nodes);
1778 return nid;
1779 }
1780
1781 /* Determine a node number for interleave */
1782 static inline unsigned interleave_nid(struct mempolicy *pol,
1783 struct vm_area_struct *vma, unsigned long addr, int shift)
1784 {
1785 if (vma) {
1786 unsigned long off;
1787
1788 /*
1789 * for small pages, there is no difference between
1790 * shift and PAGE_SHIFT, so the bit-shift is safe.
1791 * for huge pages, since vm_pgoff is in units of small
1792 * pages, we need to shift off the always 0 bits to get
1793 * a useful offset.
1794 */
1795 BUG_ON(shift < PAGE_SHIFT);
1796 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1797 off += (addr - vma->vm_start) >> shift;
1798 return offset_il_node(pol, vma, off);
1799 } else
1800 return interleave_nodes(pol);
1801 }
1802
1803 #ifdef CONFIG_HUGETLBFS
1804 /*
1805 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1806 * @vma: virtual memory area whose policy is sought
1807 * @addr: address in @vma for shared policy lookup and interleave policy
1808 * @gfp_flags: for requested zone
1809 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1810 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1811 *
1812 * Returns a zonelist suitable for a huge page allocation and a pointer
1813 * to the struct mempolicy for conditional unref after allocation.
1814 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1815 * @nodemask for filtering the zonelist.
1816 *
1817 * Must be protected by read_mems_allowed_begin()
1818 */
1819 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1820 gfp_t gfp_flags, struct mempolicy **mpol,
1821 nodemask_t **nodemask)
1822 {
1823 struct zonelist *zl;
1824
1825 *mpol = get_vma_policy(vma, addr);
1826 *nodemask = NULL; /* assume !MPOL_BIND */
1827
1828 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1829 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1830 huge_page_shift(hstate_vma(vma))), gfp_flags);
1831 } else {
1832 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1833 if ((*mpol)->mode == MPOL_BIND)
1834 *nodemask = &(*mpol)->v.nodes;
1835 }
1836 return zl;
1837 }
1838
1839 /*
1840 * init_nodemask_of_mempolicy
1841 *
1842 * If the current task's mempolicy is "default" [NULL], return 'false'
1843 * to indicate default policy. Otherwise, extract the policy nodemask
1844 * for 'bind' or 'interleave' policy into the argument nodemask, or
1845 * initialize the argument nodemask to contain the single node for
1846 * 'preferred' or 'local' policy and return 'true' to indicate presence
1847 * of non-default mempolicy.
1848 *
1849 * We don't bother with reference counting the mempolicy [mpol_get/put]
1850 * because the current task is examining it's own mempolicy and a task's
1851 * mempolicy is only ever changed by the task itself.
1852 *
1853 * N.B., it is the caller's responsibility to free a returned nodemask.
1854 */
1855 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1856 {
1857 struct mempolicy *mempolicy;
1858 int nid;
1859
1860 if (!(mask && current->mempolicy))
1861 return false;
1862
1863 task_lock(current);
1864 mempolicy = current->mempolicy;
1865 switch (mempolicy->mode) {
1866 case MPOL_PREFERRED:
1867 if (mempolicy->flags & MPOL_F_LOCAL)
1868 nid = numa_node_id();
1869 else
1870 nid = mempolicy->v.preferred_node;
1871 init_nodemask_of_node(mask, nid);
1872 break;
1873
1874 case MPOL_BIND:
1875 /* Fall through */
1876 case MPOL_INTERLEAVE:
1877 *mask = mempolicy->v.nodes;
1878 break;
1879
1880 default:
1881 BUG();
1882 }
1883 task_unlock(current);
1884
1885 return true;
1886 }
1887 #endif
1888
1889 /*
1890 * mempolicy_nodemask_intersects
1891 *
1892 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1893 * policy. Otherwise, check for intersection between mask and the policy
1894 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1895 * policy, always return true since it may allocate elsewhere on fallback.
1896 *
1897 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1898 */
1899 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1900 const nodemask_t *mask)
1901 {
1902 struct mempolicy *mempolicy;
1903 bool ret = true;
1904
1905 if (!mask)
1906 return ret;
1907 task_lock(tsk);
1908 mempolicy = tsk->mempolicy;
1909 if (!mempolicy)
1910 goto out;
1911
1912 switch (mempolicy->mode) {
1913 case MPOL_PREFERRED:
1914 /*
1915 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1916 * allocate from, they may fallback to other nodes when oom.
1917 * Thus, it's possible for tsk to have allocated memory from
1918 * nodes in mask.
1919 */
1920 break;
1921 case MPOL_BIND:
1922 case MPOL_INTERLEAVE:
1923 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1924 break;
1925 default:
1926 BUG();
1927 }
1928 out:
1929 task_unlock(tsk);
1930 return ret;
1931 }
1932
1933 /* Allocate a page in interleaved policy.
1934 Own path because it needs to do special accounting. */
1935 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1936 unsigned nid)
1937 {
1938 struct zonelist *zl;
1939 struct page *page;
1940
1941 zl = node_zonelist(nid, gfp);
1942 page = __alloc_pages(gfp, order, zl);
1943 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1944 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1945 return page;
1946 }
1947
1948 /**
1949 * alloc_pages_vma - Allocate a page for a VMA.
1950 *
1951 * @gfp:
1952 * %GFP_USER user allocation.
1953 * %GFP_KERNEL kernel allocations,
1954 * %GFP_HIGHMEM highmem/user allocations,
1955 * %GFP_FS allocation should not call back into a file system.
1956 * %GFP_ATOMIC don't sleep.
1957 *
1958 * @order:Order of the GFP allocation.
1959 * @vma: Pointer to VMA or NULL if not available.
1960 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1961 * @node: Which node to prefer for allocation (modulo policy).
1962 * @hugepage: for hugepages try only the preferred node if possible
1963 *
1964 * This function allocates a page from the kernel page pool and applies
1965 * a NUMA policy associated with the VMA or the current process.
1966 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1967 * mm_struct of the VMA to prevent it from going away. Should be used for
1968 * all allocations for pages that will be mapped into user space. Returns
1969 * NULL when no page can be allocated.
1970 */
1971 struct page *
1972 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1973 unsigned long addr, int node, bool hugepage)
1974 {
1975 struct mempolicy *pol;
1976 struct page *page;
1977 unsigned int cpuset_mems_cookie;
1978 struct zonelist *zl;
1979 nodemask_t *nmask;
1980
1981 retry_cpuset:
1982 pol = get_vma_policy(vma, addr);
1983 cpuset_mems_cookie = read_mems_allowed_begin();
1984
1985 if (pol->mode == MPOL_INTERLEAVE) {
1986 unsigned nid;
1987
1988 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1989 mpol_cond_put(pol);
1990 page = alloc_page_interleave(gfp, order, nid);
1991 goto out;
1992 }
1993
1994 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1995 int hpage_node = node;
1996
1997 /*
1998 * For hugepage allocation and non-interleave policy which
1999 * allows the current node (or other explicitly preferred
2000 * node) we only try to allocate from the current/preferred
2001 * node and don't fall back to other nodes, as the cost of
2002 * remote accesses would likely offset THP benefits.
2003 *
2004 * If the policy is interleave, or does not allow the current
2005 * node in its nodemask, we allocate the standard way.
2006 */
2007 if (pol->mode == MPOL_PREFERRED &&
2008 !(pol->flags & MPOL_F_LOCAL))
2009 hpage_node = pol->v.preferred_node;
2010
2011 nmask = policy_nodemask(gfp, pol);
2012 if (!nmask || node_isset(hpage_node, *nmask)) {
2013 mpol_cond_put(pol);
2014 page = __alloc_pages_node(hpage_node,
2015 gfp | __GFP_THISNODE, order);
2016 goto out;
2017 }
2018 }
2019
2020 nmask = policy_nodemask(gfp, pol);
2021 zl = policy_zonelist(gfp, pol, node);
2022 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2023 mpol_cond_put(pol);
2024 out:
2025 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2026 goto retry_cpuset;
2027 return page;
2028 }
2029
2030 /**
2031 * alloc_pages_current - Allocate pages.
2032 *
2033 * @gfp:
2034 * %GFP_USER user allocation,
2035 * %GFP_KERNEL kernel allocation,
2036 * %GFP_HIGHMEM highmem allocation,
2037 * %GFP_FS don't call back into a file system.
2038 * %GFP_ATOMIC don't sleep.
2039 * @order: Power of two of allocation size in pages. 0 is a single page.
2040 *
2041 * Allocate a page from the kernel page pool. When not in
2042 * interrupt context and apply the current process NUMA policy.
2043 * Returns NULL when no page can be allocated.
2044 *
2045 * Don't call cpuset_update_task_memory_state() unless
2046 * 1) it's ok to take cpuset_sem (can WAIT), and
2047 * 2) allocating for current task (not interrupt).
2048 */
2049 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2050 {
2051 struct mempolicy *pol = &default_policy;
2052 struct page *page;
2053 unsigned int cpuset_mems_cookie;
2054
2055 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2056 pol = get_task_policy(current);
2057
2058 retry_cpuset:
2059 cpuset_mems_cookie = read_mems_allowed_begin();
2060
2061 /*
2062 * No reference counting needed for current->mempolicy
2063 * nor system default_policy
2064 */
2065 if (pol->mode == MPOL_INTERLEAVE)
2066 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2067 else
2068 page = __alloc_pages_nodemask(gfp, order,
2069 policy_zonelist(gfp, pol, numa_node_id()),
2070 policy_nodemask(gfp, pol));
2071
2072 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2073 goto retry_cpuset;
2074
2075 return page;
2076 }
2077 EXPORT_SYMBOL(alloc_pages_current);
2078
2079 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2080 {
2081 struct mempolicy *pol = mpol_dup(vma_policy(src));
2082
2083 if (IS_ERR(pol))
2084 return PTR_ERR(pol);
2085 dst->vm_policy = pol;
2086 return 0;
2087 }
2088
2089 /*
2090 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2091 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2092 * with the mems_allowed returned by cpuset_mems_allowed(). This
2093 * keeps mempolicies cpuset relative after its cpuset moves. See
2094 * further kernel/cpuset.c update_nodemask().
2095 *
2096 * current's mempolicy may be rebinded by the other task(the task that changes
2097 * cpuset's mems), so we needn't do rebind work for current task.
2098 */
2099
2100 /* Slow path of a mempolicy duplicate */
2101 struct mempolicy *__mpol_dup(struct mempolicy *old)
2102 {
2103 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2104
2105 if (!new)
2106 return ERR_PTR(-ENOMEM);
2107
2108 /* task's mempolicy is protected by alloc_lock */
2109 if (old == current->mempolicy) {
2110 task_lock(current);
2111 *new = *old;
2112 task_unlock(current);
2113 } else
2114 *new = *old;
2115
2116 if (current_cpuset_is_being_rebound()) {
2117 nodemask_t mems = cpuset_mems_allowed(current);
2118 if (new->flags & MPOL_F_REBINDING)
2119 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2120 else
2121 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2122 }
2123 atomic_set(&new->refcnt, 1);
2124 return new;
2125 }
2126
2127 /* Slow path of a mempolicy comparison */
2128 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2129 {
2130 if (!a || !b)
2131 return false;
2132 if (a->mode != b->mode)
2133 return false;
2134 if (a->flags != b->flags)
2135 return false;
2136 if (mpol_store_user_nodemask(a))
2137 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2138 return false;
2139
2140 switch (a->mode) {
2141 case MPOL_BIND:
2142 /* Fall through */
2143 case MPOL_INTERLEAVE:
2144 return !!nodes_equal(a->v.nodes, b->v.nodes);
2145 case MPOL_PREFERRED:
2146 return a->v.preferred_node == b->v.preferred_node;
2147 default:
2148 BUG();
2149 return false;
2150 }
2151 }
2152
2153 /*
2154 * Shared memory backing store policy support.
2155 *
2156 * Remember policies even when nobody has shared memory mapped.
2157 * The policies are kept in Red-Black tree linked from the inode.
2158 * They are protected by the sp->lock rwlock, which should be held
2159 * for any accesses to the tree.
2160 */
2161
2162 /*
2163 * lookup first element intersecting start-end. Caller holds sp->lock for
2164 * reading or for writing
2165 */
2166 static struct sp_node *
2167 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2168 {
2169 struct rb_node *n = sp->root.rb_node;
2170
2171 while (n) {
2172 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2173
2174 if (start >= p->end)
2175 n = n->rb_right;
2176 else if (end <= p->start)
2177 n = n->rb_left;
2178 else
2179 break;
2180 }
2181 if (!n)
2182 return NULL;
2183 for (;;) {
2184 struct sp_node *w = NULL;
2185 struct rb_node *prev = rb_prev(n);
2186 if (!prev)
2187 break;
2188 w = rb_entry(prev, struct sp_node, nd);
2189 if (w->end <= start)
2190 break;
2191 n = prev;
2192 }
2193 return rb_entry(n, struct sp_node, nd);
2194 }
2195
2196 /*
2197 * Insert a new shared policy into the list. Caller holds sp->lock for
2198 * writing.
2199 */
2200 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2201 {
2202 struct rb_node **p = &sp->root.rb_node;
2203 struct rb_node *parent = NULL;
2204 struct sp_node *nd;
2205
2206 while (*p) {
2207 parent = *p;
2208 nd = rb_entry(parent, struct sp_node, nd);
2209 if (new->start < nd->start)
2210 p = &(*p)->rb_left;
2211 else if (new->end > nd->end)
2212 p = &(*p)->rb_right;
2213 else
2214 BUG();
2215 }
2216 rb_link_node(&new->nd, parent, p);
2217 rb_insert_color(&new->nd, &sp->root);
2218 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2219 new->policy ? new->policy->mode : 0);
2220 }
2221
2222 /* Find shared policy intersecting idx */
2223 struct mempolicy *
2224 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2225 {
2226 struct mempolicy *pol = NULL;
2227 struct sp_node *sn;
2228
2229 if (!sp->root.rb_node)
2230 return NULL;
2231 read_lock(&sp->lock);
2232 sn = sp_lookup(sp, idx, idx+1);
2233 if (sn) {
2234 mpol_get(sn->policy);
2235 pol = sn->policy;
2236 }
2237 read_unlock(&sp->lock);
2238 return pol;
2239 }
2240
2241 static void sp_free(struct sp_node *n)
2242 {
2243 mpol_put(n->policy);
2244 kmem_cache_free(sn_cache, n);
2245 }
2246
2247 /**
2248 * mpol_misplaced - check whether current page node is valid in policy
2249 *
2250 * @page: page to be checked
2251 * @vma: vm area where page mapped
2252 * @addr: virtual address where page mapped
2253 *
2254 * Lookup current policy node id for vma,addr and "compare to" page's
2255 * node id.
2256 *
2257 * Returns:
2258 * -1 - not misplaced, page is in the right node
2259 * node - node id where the page should be
2260 *
2261 * Policy determination "mimics" alloc_page_vma().
2262 * Called from fault path where we know the vma and faulting address.
2263 */
2264 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2265 {
2266 struct mempolicy *pol;
2267 struct zoneref *z;
2268 int curnid = page_to_nid(page);
2269 unsigned long pgoff;
2270 int thiscpu = raw_smp_processor_id();
2271 int thisnid = cpu_to_node(thiscpu);
2272 int polnid = -1;
2273 int ret = -1;
2274
2275 BUG_ON(!vma);
2276
2277 pol = get_vma_policy(vma, addr);
2278 if (!(pol->flags & MPOL_F_MOF))
2279 goto out;
2280
2281 switch (pol->mode) {
2282 case MPOL_INTERLEAVE:
2283 BUG_ON(addr >= vma->vm_end);
2284 BUG_ON(addr < vma->vm_start);
2285
2286 pgoff = vma->vm_pgoff;
2287 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2288 polnid = offset_il_node(pol, vma, pgoff);
2289 break;
2290
2291 case MPOL_PREFERRED:
2292 if (pol->flags & MPOL_F_LOCAL)
2293 polnid = numa_node_id();
2294 else
2295 polnid = pol->v.preferred_node;
2296 break;
2297
2298 case MPOL_BIND:
2299
2300 /*
2301 * allows binding to multiple nodes.
2302 * use current page if in policy nodemask,
2303 * else select nearest allowed node, if any.
2304 * If no allowed nodes, use current [!misplaced].
2305 */
2306 if (node_isset(curnid, pol->v.nodes))
2307 goto out;
2308 z = first_zones_zonelist(
2309 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2310 gfp_zone(GFP_HIGHUSER),
2311 &pol->v.nodes);
2312 polnid = z->zone->node;
2313 break;
2314
2315 default:
2316 BUG();
2317 }
2318
2319 /* Migrate the page towards the node whose CPU is referencing it */
2320 if (pol->flags & MPOL_F_MORON) {
2321 polnid = thisnid;
2322
2323 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2324 goto out;
2325 }
2326
2327 if (curnid != polnid)
2328 ret = polnid;
2329 out:
2330 mpol_cond_put(pol);
2331
2332 return ret;
2333 }
2334
2335 /*
2336 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2337 * dropped after task->mempolicy is set to NULL so that any allocation done as
2338 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2339 * policy.
2340 */
2341 void mpol_put_task_policy(struct task_struct *task)
2342 {
2343 struct mempolicy *pol;
2344
2345 task_lock(task);
2346 pol = task->mempolicy;
2347 task->mempolicy = NULL;
2348 task_unlock(task);
2349 mpol_put(pol);
2350 }
2351
2352 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2353 {
2354 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2355 rb_erase(&n->nd, &sp->root);
2356 sp_free(n);
2357 }
2358
2359 static void sp_node_init(struct sp_node *node, unsigned long start,
2360 unsigned long end, struct mempolicy *pol)
2361 {
2362 node->start = start;
2363 node->end = end;
2364 node->policy = pol;
2365 }
2366
2367 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2368 struct mempolicy *pol)
2369 {
2370 struct sp_node *n;
2371 struct mempolicy *newpol;
2372
2373 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2374 if (!n)
2375 return NULL;
2376
2377 newpol = mpol_dup(pol);
2378 if (IS_ERR(newpol)) {
2379 kmem_cache_free(sn_cache, n);
2380 return NULL;
2381 }
2382 newpol->flags |= MPOL_F_SHARED;
2383 sp_node_init(n, start, end, newpol);
2384
2385 return n;
2386 }
2387
2388 /* Replace a policy range. */
2389 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2390 unsigned long end, struct sp_node *new)
2391 {
2392 struct sp_node *n;
2393 struct sp_node *n_new = NULL;
2394 struct mempolicy *mpol_new = NULL;
2395 int ret = 0;
2396
2397 restart:
2398 write_lock(&sp->lock);
2399 n = sp_lookup(sp, start, end);
2400 /* Take care of old policies in the same range. */
2401 while (n && n->start < end) {
2402 struct rb_node *next = rb_next(&n->nd);
2403 if (n->start >= start) {
2404 if (n->end <= end)
2405 sp_delete(sp, n);
2406 else
2407 n->start = end;
2408 } else {
2409 /* Old policy spanning whole new range. */
2410 if (n->end > end) {
2411 if (!n_new)
2412 goto alloc_new;
2413
2414 *mpol_new = *n->policy;
2415 atomic_set(&mpol_new->refcnt, 1);
2416 sp_node_init(n_new, end, n->end, mpol_new);
2417 n->end = start;
2418 sp_insert(sp, n_new);
2419 n_new = NULL;
2420 mpol_new = NULL;
2421 break;
2422 } else
2423 n->end = start;
2424 }
2425 if (!next)
2426 break;
2427 n = rb_entry(next, struct sp_node, nd);
2428 }
2429 if (new)
2430 sp_insert(sp, new);
2431 write_unlock(&sp->lock);
2432 ret = 0;
2433
2434 err_out:
2435 if (mpol_new)
2436 mpol_put(mpol_new);
2437 if (n_new)
2438 kmem_cache_free(sn_cache, n_new);
2439
2440 return ret;
2441
2442 alloc_new:
2443 write_unlock(&sp->lock);
2444 ret = -ENOMEM;
2445 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2446 if (!n_new)
2447 goto err_out;
2448 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2449 if (!mpol_new)
2450 goto err_out;
2451 goto restart;
2452 }
2453
2454 /**
2455 * mpol_shared_policy_init - initialize shared policy for inode
2456 * @sp: pointer to inode shared policy
2457 * @mpol: struct mempolicy to install
2458 *
2459 * Install non-NULL @mpol in inode's shared policy rb-tree.
2460 * On entry, the current task has a reference on a non-NULL @mpol.
2461 * This must be released on exit.
2462 * This is called at get_inode() calls and we can use GFP_KERNEL.
2463 */
2464 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2465 {
2466 int ret;
2467
2468 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2469 rwlock_init(&sp->lock);
2470
2471 if (mpol) {
2472 struct vm_area_struct pvma;
2473 struct mempolicy *new;
2474 NODEMASK_SCRATCH(scratch);
2475
2476 if (!scratch)
2477 goto put_mpol;
2478 /* contextualize the tmpfs mount point mempolicy */
2479 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2480 if (IS_ERR(new))
2481 goto free_scratch; /* no valid nodemask intersection */
2482
2483 task_lock(current);
2484 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2485 task_unlock(current);
2486 if (ret)
2487 goto put_new;
2488
2489 /* Create pseudo-vma that contains just the policy */
2490 memset(&pvma, 0, sizeof(struct vm_area_struct));
2491 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2492 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2493
2494 put_new:
2495 mpol_put(new); /* drop initial ref */
2496 free_scratch:
2497 NODEMASK_SCRATCH_FREE(scratch);
2498 put_mpol:
2499 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2500 }
2501 }
2502
2503 int mpol_set_shared_policy(struct shared_policy *info,
2504 struct vm_area_struct *vma, struct mempolicy *npol)
2505 {
2506 int err;
2507 struct sp_node *new = NULL;
2508 unsigned long sz = vma_pages(vma);
2509
2510 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2511 vma->vm_pgoff,
2512 sz, npol ? npol->mode : -1,
2513 npol ? npol->flags : -1,
2514 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2515
2516 if (npol) {
2517 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2518 if (!new)
2519 return -ENOMEM;
2520 }
2521 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2522 if (err && new)
2523 sp_free(new);
2524 return err;
2525 }
2526
2527 /* Free a backing policy store on inode delete. */
2528 void mpol_free_shared_policy(struct shared_policy *p)
2529 {
2530 struct sp_node *n;
2531 struct rb_node *next;
2532
2533 if (!p->root.rb_node)
2534 return;
2535 write_lock(&p->lock);
2536 next = rb_first(&p->root);
2537 while (next) {
2538 n = rb_entry(next, struct sp_node, nd);
2539 next = rb_next(&n->nd);
2540 sp_delete(p, n);
2541 }
2542 write_unlock(&p->lock);
2543 }
2544
2545 #ifdef CONFIG_NUMA_BALANCING
2546 static int __initdata numabalancing_override;
2547
2548 static void __init check_numabalancing_enable(void)
2549 {
2550 bool numabalancing_default = false;
2551
2552 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2553 numabalancing_default = true;
2554
2555 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2556 if (numabalancing_override)
2557 set_numabalancing_state(numabalancing_override == 1);
2558
2559 if (num_online_nodes() > 1 && !numabalancing_override) {
2560 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2561 numabalancing_default ? "Enabling" : "Disabling");
2562 set_numabalancing_state(numabalancing_default);
2563 }
2564 }
2565
2566 static int __init setup_numabalancing(char *str)
2567 {
2568 int ret = 0;
2569 if (!str)
2570 goto out;
2571
2572 if (!strcmp(str, "enable")) {
2573 numabalancing_override = 1;
2574 ret = 1;
2575 } else if (!strcmp(str, "disable")) {
2576 numabalancing_override = -1;
2577 ret = 1;
2578 }
2579 out:
2580 if (!ret)
2581 pr_warn("Unable to parse numa_balancing=\n");
2582
2583 return ret;
2584 }
2585 __setup("numa_balancing=", setup_numabalancing);
2586 #else
2587 static inline void __init check_numabalancing_enable(void)
2588 {
2589 }
2590 #endif /* CONFIG_NUMA_BALANCING */
2591
2592 /* assumes fs == KERNEL_DS */
2593 void __init numa_policy_init(void)
2594 {
2595 nodemask_t interleave_nodes;
2596 unsigned long largest = 0;
2597 int nid, prefer = 0;
2598
2599 policy_cache = kmem_cache_create("numa_policy",
2600 sizeof(struct mempolicy),
2601 0, SLAB_PANIC, NULL);
2602
2603 sn_cache = kmem_cache_create("shared_policy_node",
2604 sizeof(struct sp_node),
2605 0, SLAB_PANIC, NULL);
2606
2607 for_each_node(nid) {
2608 preferred_node_policy[nid] = (struct mempolicy) {
2609 .refcnt = ATOMIC_INIT(1),
2610 .mode = MPOL_PREFERRED,
2611 .flags = MPOL_F_MOF | MPOL_F_MORON,
2612 .v = { .preferred_node = nid, },
2613 };
2614 }
2615
2616 /*
2617 * Set interleaving policy for system init. Interleaving is only
2618 * enabled across suitably sized nodes (default is >= 16MB), or
2619 * fall back to the largest node if they're all smaller.
2620 */
2621 nodes_clear(interleave_nodes);
2622 for_each_node_state(nid, N_MEMORY) {
2623 unsigned long total_pages = node_present_pages(nid);
2624
2625 /* Preserve the largest node */
2626 if (largest < total_pages) {
2627 largest = total_pages;
2628 prefer = nid;
2629 }
2630
2631 /* Interleave this node? */
2632 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2633 node_set(nid, interleave_nodes);
2634 }
2635
2636 /* All too small, use the largest */
2637 if (unlikely(nodes_empty(interleave_nodes)))
2638 node_set(prefer, interleave_nodes);
2639
2640 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2641 pr_err("%s: interleaving failed\n", __func__);
2642
2643 check_numabalancing_enable();
2644 }
2645
2646 /* Reset policy of current process to default */
2647 void numa_default_policy(void)
2648 {
2649 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2650 }
2651
2652 /*
2653 * Parse and format mempolicy from/to strings
2654 */
2655
2656 /*
2657 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2658 */
2659 static const char * const policy_modes[] =
2660 {
2661 [MPOL_DEFAULT] = "default",
2662 [MPOL_PREFERRED] = "prefer",
2663 [MPOL_BIND] = "bind",
2664 [MPOL_INTERLEAVE] = "interleave",
2665 [MPOL_LOCAL] = "local",
2666 };
2667
2668
2669 #ifdef CONFIG_TMPFS
2670 /**
2671 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2672 * @str: string containing mempolicy to parse
2673 * @mpol: pointer to struct mempolicy pointer, returned on success.
2674 *
2675 * Format of input:
2676 * <mode>[=<flags>][:<nodelist>]
2677 *
2678 * On success, returns 0, else 1
2679 */
2680 int mpol_parse_str(char *str, struct mempolicy **mpol)
2681 {
2682 struct mempolicy *new = NULL;
2683 unsigned short mode;
2684 unsigned short mode_flags;
2685 nodemask_t nodes;
2686 char *nodelist = strchr(str, ':');
2687 char *flags = strchr(str, '=');
2688 int err = 1;
2689
2690 if (nodelist) {
2691 /* NUL-terminate mode or flags string */
2692 *nodelist++ = '\0';
2693 if (nodelist_parse(nodelist, nodes))
2694 goto out;
2695 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2696 goto out;
2697 } else
2698 nodes_clear(nodes);
2699
2700 if (flags)
2701 *flags++ = '\0'; /* terminate mode string */
2702
2703 for (mode = 0; mode < MPOL_MAX; mode++) {
2704 if (!strcmp(str, policy_modes[mode])) {
2705 break;
2706 }
2707 }
2708 if (mode >= MPOL_MAX)
2709 goto out;
2710
2711 switch (mode) {
2712 case MPOL_PREFERRED:
2713 /*
2714 * Insist on a nodelist of one node only
2715 */
2716 if (nodelist) {
2717 char *rest = nodelist;
2718 while (isdigit(*rest))
2719 rest++;
2720 if (*rest)
2721 goto out;
2722 }
2723 break;
2724 case MPOL_INTERLEAVE:
2725 /*
2726 * Default to online nodes with memory if no nodelist
2727 */
2728 if (!nodelist)
2729 nodes = node_states[N_MEMORY];
2730 break;
2731 case MPOL_LOCAL:
2732 /*
2733 * Don't allow a nodelist; mpol_new() checks flags
2734 */
2735 if (nodelist)
2736 goto out;
2737 mode = MPOL_PREFERRED;
2738 break;
2739 case MPOL_DEFAULT:
2740 /*
2741 * Insist on a empty nodelist
2742 */
2743 if (!nodelist)
2744 err = 0;
2745 goto out;
2746 case MPOL_BIND:
2747 /*
2748 * Insist on a nodelist
2749 */
2750 if (!nodelist)
2751 goto out;
2752 }
2753
2754 mode_flags = 0;
2755 if (flags) {
2756 /*
2757 * Currently, we only support two mutually exclusive
2758 * mode flags.
2759 */
2760 if (!strcmp(flags, "static"))
2761 mode_flags |= MPOL_F_STATIC_NODES;
2762 else if (!strcmp(flags, "relative"))
2763 mode_flags |= MPOL_F_RELATIVE_NODES;
2764 else
2765 goto out;
2766 }
2767
2768 new = mpol_new(mode, mode_flags, &nodes);
2769 if (IS_ERR(new))
2770 goto out;
2771
2772 /*
2773 * Save nodes for mpol_to_str() to show the tmpfs mount options
2774 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2775 */
2776 if (mode != MPOL_PREFERRED)
2777 new->v.nodes = nodes;
2778 else if (nodelist)
2779 new->v.preferred_node = first_node(nodes);
2780 else
2781 new->flags |= MPOL_F_LOCAL;
2782
2783 /*
2784 * Save nodes for contextualization: this will be used to "clone"
2785 * the mempolicy in a specific context [cpuset] at a later time.
2786 */
2787 new->w.user_nodemask = nodes;
2788
2789 err = 0;
2790
2791 out:
2792 /* Restore string for error message */
2793 if (nodelist)
2794 *--nodelist = ':';
2795 if (flags)
2796 *--flags = '=';
2797 if (!err)
2798 *mpol = new;
2799 return err;
2800 }
2801 #endif /* CONFIG_TMPFS */
2802
2803 /**
2804 * mpol_to_str - format a mempolicy structure for printing
2805 * @buffer: to contain formatted mempolicy string
2806 * @maxlen: length of @buffer
2807 * @pol: pointer to mempolicy to be formatted
2808 *
2809 * Convert @pol into a string. If @buffer is too short, truncate the string.
2810 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2811 * longest flag, "relative", and to display at least a few node ids.
2812 */
2813 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2814 {
2815 char *p = buffer;
2816 nodemask_t nodes = NODE_MASK_NONE;
2817 unsigned short mode = MPOL_DEFAULT;
2818 unsigned short flags = 0;
2819
2820 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2821 mode = pol->mode;
2822 flags = pol->flags;
2823 }
2824
2825 switch (mode) {
2826 case MPOL_DEFAULT:
2827 break;
2828 case MPOL_PREFERRED:
2829 if (flags & MPOL_F_LOCAL)
2830 mode = MPOL_LOCAL;
2831 else
2832 node_set(pol->v.preferred_node, nodes);
2833 break;
2834 case MPOL_BIND:
2835 case MPOL_INTERLEAVE:
2836 nodes = pol->v.nodes;
2837 break;
2838 default:
2839 WARN_ON_ONCE(1);
2840 snprintf(p, maxlen, "unknown");
2841 return;
2842 }
2843
2844 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2845
2846 if (flags & MPOL_MODE_FLAGS) {
2847 p += snprintf(p, buffer + maxlen - p, "=");
2848
2849 /*
2850 * Currently, the only defined flags are mutually exclusive
2851 */
2852 if (flags & MPOL_F_STATIC_NODES)
2853 p += snprintf(p, buffer + maxlen - p, "static");
2854 else if (flags & MPOL_F_RELATIVE_NODES)
2855 p += snprintf(p, buffer + maxlen - p, "relative");
2856 }
2857
2858 if (!nodes_empty(nodes))
2859 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2860 nodemask_pr_args(&nodes));
2861 }